Exact Solution for a Boson-Fermion Model and application to ultra-cold atoms

L. M. Martelo^{1,2} and N. Andrei³

Jniversidade do Porto

¹ DEF, Engineering Faculty, University of Porto, 4200-465 Porto, Portugal ² CFP, Sciences Faculty, University of Porto, 4169-007 Porto, Portugal ³ Physics and Astronomy Dept., Rutgers University, NJ 08854, USA

where 1 is the unit operator, P the spin exchange oper-

1 Introduction

The progress on ultra-cold atoms experiments allowing to tune fermionic systems through a Feshbach resonance where itinerant fermionic atoms may form tightly bound pairs ("bosonic" molecules) [1,2] has lead to a renewed theoretical interest in boson-fermion models. We study a 1D boson fermion resonance model describing itinerant spin-1/2 fermions and itinerant scalar bosons coupled through a local interaction of strength g which describes the binding of a pair of opposite spin fermions to form a scalar boson, and the reverse process. The model also includes a detuning term characterized by a detuning parameter ν . It is found that the model has an exact solution by Bethe Ansatz.

Model

Hamiltonian given by

$$\begin{split} H &= -\frac{1}{2m} \int dx \psi_{\sigma}^{+}(x) \partial_{x}^{2} \psi_{\sigma}(x) - \\ &- \frac{1}{2m_{b}} \int dx \phi^{+}(x) \partial_{x}^{2} \phi(x) + \nu \int dx \phi^{+}(x) \phi(x) + \\ &+ g \int dx [\psi_{\uparrow}^{+}(x) \psi_{\downarrow}^{+}(x) \phi(x) + \phi^{+}(x) \psi_{\downarrow}(x) \psi_{\uparrow}(x)] \end{split}$$

ator, $c = \frac{g^2}{2}$ and $\alpha(k_1, k_2) = (k_1^3 - k_2^3)/m^2 + \nu(k_1 - k_2)$. Bosonic wave function:

$$G(x) = \frac{2}{img}(k_1 - k_2) \left(1 - S_s^{12}\right) A_s e^{i(k_1 + k_2)x}$$

where A_s is the fermionic singlet spin amplitude and S_s^{12} is the "singlet part" of the S-matrix. The N particle wavefunction is constructed as follows:

$$F_N \rangle = \left[\int d\bar{x} F_{a_1...a_N}^{N;0}(\bar{x}) \prod_{i=1}^N \psi_{a_i}^+(x_i) + \int d\bar{x} dy F_{a_1...a_{N-2}}^{N-2;1}(\bar{x};y) \prod_{i=1}^{N-2} \psi_{a_i}^+(x_i) \phi^+(y) + ... \right] |0\rangle$$

The usual Bethe Ansatz is used to construted the purely fermionic wave function $F^{N;0}$. It can be shown that Yang-Baxter equations [3] are satisfied. The system is defined in a ring of finite length L and periodic boundary conditions (PBC) must be imposed to the wave function $|F_N\rangle$. The use of PBC leads to the Bethe equations:

$$e^{ik_jL} = \prod_{\gamma=1}^M \frac{\Lambda_\gamma - \alpha(k_j) - ic/2}{\Lambda_\gamma - \alpha(k_j) + ic/2}$$

$$\prod_{\delta=1(\delta\neq\gamma)}^{M} \frac{\Lambda_{\gamma} - \Lambda_{\delta} - ic}{\Lambda_{\gamma} - \Lambda_{\delta} + ic} = \prod_{j=1}^{N} \frac{\Lambda_{\gamma} - \alpha(k_j) - ic/2}{\Lambda_{\gamma} - \alpha(k_j) + ic/2}$$

where $M = N_{\downarrow}$. In the thermodynamic limit, density of

4 Results

Ground state results by solving numerically the Bethe Ansatz equations are shown in Figures 1, 2, and 3.

Fig. 1: (a)(b): $c = 1 \nu = 2$ ($L = 50, N = 42, N_u = 42, N_b = 0, M = 0$), (c): $c = 1, \nu = 2, n = 0.78.$

where m and m_b are the fermion and boson masses, respectively, σ are the fermion spin-1/2 indices, g is the strength of the boson-fermion coupling and ν is a detuning parameter. The field operators satisfy canonical commutation/anti-commutation relations. Importantly, neither the number of fermions nor the number of bosons are conserved. The total particle number operator $N = N_f + 2N_b$ where $N_f = \sum_a \int dx \psi_a^+(x) \psi_a(x)$ and $N_b = \int dx \phi^+(x) \phi(x)$ are the total number of fermions and bosons, respectively, is conserved.

Bethe Ansatz 3

Two-particle wave function:

$$|F_2\rangle = \int dx_1 \int dx_2 F_{a_1 a_2}(x_1, x_2) \psi_{a_1}^+(x_1) \psi_{a_2}^+(x_2) |0\rangle - \int dx G(x) \phi^+(x) |0\rangle$$

Coupled Schödinger equations:

solutions are used and the integral equations are:

$$\rho(k) = \frac{1}{2\pi} + \alpha'(k) \int_{D_{\Lambda}} \sigma(\Lambda) K_1(\alpha(k) - \Lambda) d\Lambda$$

$$\sigma(\Lambda) = \int_{D_k} \rho(k) K_1(\alpha(k) - \Lambda) dk - \int_{D_{\Lambda}} \sigma(\Lambda') K_2(\Lambda - \Lambda') d\Lambda'$$

where $K_n(x) = \frac{1}{\pi} \frac{nc/2}{(nc/2)^2 + x^2}$. The integration limits satisfy the conditions:

$$\int_{D_k} \rho(k) dk = \frac{N}{L} \quad \int_{D_\Lambda} \sigma(\Lambda) d\Lambda = \frac{M}{L}$$

Energy per site: $E/L = -(1/2m) \int_{D_k} k^2 \rho(k) dk$. Real k's and real Λ 's solutions correspond to unbound fermions. Bound states of two fermions correspond to k-strings solutions. For two bound fermions $k^{\pm} = q \pm i\xi$ with q and ξ real and $\xi > 0$. When dealing with unbound and bound states we apply Bethe Ansatz for Composites [4] and obtain the following Bethe equations:

$$e^{ik_jL} = \prod_{\gamma=1}^M \frac{\Lambda_\gamma - \alpha(k_j) - ic/2}{\Lambda_\gamma - \alpha(k_j) + ic/2} \prod_{l=1}^{N^b} \frac{\phi(q_l) - \alpha(k_j) - ic/2}{\phi(q_l) - \alpha(k_j) + ic/2}$$
$$\prod_{\delta=1(\delta\neq\gamma)}^M \frac{\Lambda_\gamma - \Lambda_\delta - ic}{\Lambda_\gamma - \Lambda_\delta + ic} = \prod_{j=1}^{N^u} \frac{\Lambda_\gamma - \alpha(k_j) - ic/2}{\Lambda_\gamma - \alpha(k_j) + ic/2}$$
$$e^{2iq_lL} = \prod_{j=1}^{N^u} \frac{\alpha(k_j) - \phi(q_l) - ic/2}{\alpha(k_j) - \phi(q_l) + ic/2} \prod_{n=1(n\neq l)}^{N^b} \frac{\phi(q_n) - \phi(q_l) - ic}{\phi(q_n) - \phi(q_l) + ic}$$

Fig. 3: Ground State energy as function of the detuning parameter ν (c = 1, n = 0.80).

Conclusions 5

We find that the model supports fermion bound pairs. For sufficiently large values of ν the ground state consists of purely unbound fermions forming a Fermi liquid. As one decreases the detuning parameter the system goes through a Feshbach resonance and the ground state becomes unstable with respect to the formation of bound fermion pairs. In this case unbound fermions and bound fermions pairs coexist.

Acknowledgements 6

 $\begin{cases} \frac{1}{2m} (\partial_{x_1}^2 + \partial_{x_2}^2) F_{a_1 a_2}(x_1, x_2) + \\ + \frac{g}{2} (\delta_{a_1 \uparrow} \delta_{a_2 \downarrow} - \delta_{a_1 \downarrow} \delta_{a_2 \uparrow}) \delta(x_1 - x_2) G(x_1) = E F_{a_1 a_2}(x_1, x_2) \end{cases}$ $-\frac{1}{2m}\partial_x^2 G(x) + g(F_{\uparrow\downarrow}(x,x) - F_{\downarrow\uparrow}(x,x)) = (E-\nu)G(x)$

Ansatz:

 $F_{a_1a_2}(x_1, x_2) = \mathcal{A}e^{i(k_1x_1 + k_2x_2)}[A_{a_1a_2}\theta(x_2 - x_1) + B_{a_1a_2}\theta(x_1 - x_2)]$

where \mathcal{A} is the antisymmetrizer operator. Energy eigenvalue:

 $E = -\frac{1}{2m}(k_1^2 + k_2^2)$

Two-particle S-matrix: $B_{a_1a_2} = S_{a_1a_2}^{b_1b_2}(k_1, k_2)A_{b_1b_2}$

 $S_{a_1,a_2}^{b_1,b_2}(k_1,k_2) = \frac{\alpha(k_1,k_2)\mathbf{1}_{a_1,a_2}^{b_1,b_2} + ic\mathbf{P}_{a_1,a_2}^{b_1,b_2}}{\alpha(k_1,k_2) + ic}$

where $N = N^{u} + 2N^{b}$ is the total number of particles, N^u the number of unbound fermions, N^b the number of bound fermion pairs, and $M = N^u_{\downarrow}$. Integral equations in the thermodynamic limit:

 $\rho_u(k) = \frac{1}{2\pi} + \alpha'(k) \int_{D_*} \sigma(\Lambda) K_1(\alpha(k) - \Lambda) d\Lambda + \alpha'(k) \int_{D_*} \rho_b(q) K_1(\alpha(k) - \phi(q)) dq$ $\sigma(\Lambda) = \int_{D_{1}} \rho_{u}(k) K_{1}(\alpha(k) - \Lambda) - \int_{D_{1}} \sigma(\Lambda') K_{2}(\Lambda - \Lambda') d\Lambda'$ $ho_b(q) = rac{1}{\pi} + \phi'(q) \int_{D_1}
ho_u(k) K_1(lpha(k) - \phi(q)) dk + \phi'(q) \int_D
ho_b(q') K_2(\phi(q) - \phi(q')) dq'$

where $\phi(q) = \frac{1}{m^2}(q^2 - 3\xi^2(q) + m\nu)q$. The integration limits satisfy:

$$\int_{D_k} \rho_u(k) dk = \frac{N^u}{L}, \quad \int_{D_\Lambda} \sigma(\Lambda) d\Lambda = \frac{M}{L}, \quad \int_{D_q} \rho_b(q) dk = \frac{N^b}{L}$$

Energy per site: $E/L = -(1/2m) \int_{D_k} k^2 \rho_u(k) dk (1/m)\int_{D_a}(q^2-\xi^2(q))
ho_b(q)dq.$

One of us (L.M.M.) is especially grateful to J. L. dos Santos for stimulating and illuminating discussions. This work was partially supported by FCT (Portugal) through the Grant SFRH/BSAB/600/2006.

References

[1] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003)

[2] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. **92**, 040403 (2004)

[3] C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).

[4] D. Braak and N. Andrei, Nuc. Phys. B 542, 551 (1999).

martelo@fe.up.pt	•	CCQS, 8-12 October 2012, Évora, Portugal	•	Typeset with LATEX 2 $_{arepsilon}$	