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POPULAR SCIENCE SUMMARY 
 

Lymphoma is a blood cancer of B lymphocytes, the cells that are an important component of 

our immune system involved in producing antibodies. Malignant B lymphocytes are dividing 

and proliferating excessively without becoming fully mature, and spreading to other tissues. 

When lymphoma cells are in tissues, such as lymph nodes and bone marrow, they can disturb 

the development of other blood cells and lead to complications.  

In tissues, lymphoma cells interact with surrounding non-malignant cells, helping the 

malignant cells to hide and survive from therapies. Some mechanisms used in these interactions 

have already been found, and various treatments exploit these features to force the malignant 

cells to leave that pro-survival environment and reach the blood circulation. In the blood, 

malignant cells become more sensitive to external factors, such as chemotherapy. However, 

not all patients respond to these treatment strategies and more knowledge is necessary to 

improve the outcome. This thesis focuses on important mechanisms involved in the cancer 

pathobiology. 

One of my research projects explored the way lymphoma cells from different tissue origin 

(blood and lymph node) interact with and attach to non-malignant cells, in a co-culture in vitro 

system. This system could be useful to test lymphoma cells from patients before deciding on 

the treatment, in order to improve the efficacy of therapy from the start. This might decrease 

the risks of relapse and/or the development of aggressive disease.  

During my PhD, we discovered a protein, G alpha z, to be highly expressed in mantle cell 

lymphoma compared with healthy B lymphocytes. G alpha z conveys signals from cell surface 

bound receptors to inside the cell and might play a role in the localization of malignant cells in 

tissues. I also show in this thesis that another molecule, 2-AG, has a similar impact on 

lymphoma cells. 2-AG is a ligand to the cannabinoid receptors, which are best known for being 

expressed in neurons where they mediate the effects of marijuana. Cannabinoid receptors and 

their ligands are dysregulated in many malignancies including lymphoma. Here, we provide 

evidence that 2-AG attracts the lymphoma cells.  

Finally, THC and CBD administration to lymphoma patients modulates levels of blood 

leukocytes and is probably inducing the migration of lymphoma cells and normal lymphocytes 

away from the blood into the tissues. These effects are unwanted during lymphoma therapy 

since the lymphoma cells thrive in lymph nodes and bone marrow where they receive 

protection from chemotherapy.  

In summary, these studies have provided new information on factors that regulate the migration 

of lymphoma cells from blood to tissues and might pave way for increased understanding of 

novel mechanisms involved in the interaction between lymphoma cells and cells of the tissue 

microenvironment.   



ABSTRACT 

 

Mantle cell lymphoma (MCL) and chronic lymphocytic leukaemia (CLL) are two incurable B 

cell malignancies, with an overall survival of 5 to 8 years and 6 to 10 years, respectively. 

Therapies are available but are often very aggressive, and patients relapse due to minimal 

residual disease. Minimal residual disease is defined by the presence of few malignant cells 

that escaped from therapy, mainly due to the survival signals provided by non-malignant cells 

from the tissue environment, in lymph nodes and in bone marrow. Alternative and targeted 

therapies are under investigation to increase patient overall survival and to reduce the risks of 

relapses. However, some patients do not respond to these treatments, as malignant cells develop 

mechanisms that prevent the drug efficacy. Many factors have already been depicted to 

contribute to MCL pathogenesis, and in this thesis, a new potential actor in MCL pathobiology 

is described, the protein G alpha z (Gαz).  

The gene encoding for Gαz, GNAZ is overexpressed in most MCL cases compared to B 

lymphocytes from reactive lymph nodes. It was found that GNAZ expression correlates with 

lymphocytosis, and inversely correlates with the cannabinoid receptor type 1 previously 

described as a receptor potentially involved in the egress and/or retention of MCL cells within 

the tissue. Although the downregulation of GNAZ did not affect cell survival, proliferation or 

chemotaxis in vitro, its potential role in MCL pathobiology is of interest and needs further 

investigation. 

Moreover, we characterize a co-culture in vitro system of MCL cell lines with mesenchymal 

stromal cells that permitted to identify differentially expressed genes between cells from 

different tissue origin. The JeKo-1 MCL cell line from peripheral blood origin, utilized the 

BCR signalling pathway to adhere to stromal cells, while the Rec-1 MCL cell line from lymph 

node origin did not, which conferred resistance to BCR targeted therapies. This system could 

be useful for testing patient samples to determinate a potential resistance before treatment 

decision.  

Finally, the endocannabinoid system has been previously identified as dysregulated in both 

MCL and CLL. Here, we provide a new role of the endogenous cannabinoid 2-

arachidonoylglycerol in chemotaxis of malignant B cells, regulated by both cannabinoid 

receptors type 1 and type 2. This endocannabinoid did not only induce chemotaxis by itself but 

also modulated the chemotaxis towards the chemokine CXCL12. In addition, a single 

administration of the natural cannabinoids, THC and CBD, in lymphoma patients promoted the 

redistribution of malignant cells from peripheral blood, and also affected non-malignant 

immune cells in blood. This potential negative effect of cannabinoids on the immune cells 

should be taken into consideration, knowing that around 25% of cancer patients use 

cannabinoids to alleviate symptoms and side effects from therapy.  
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1 INTRODUCTION OF THE RESEARCH FIELD 

 

In this thesis, molecular and mechanistic pathways are investigated in two B lymphoid 

malignancies: mantle cell lymphoma (MCL) and chronic lymphocytic leukaemia (CLL), with 

the aim to increase knowledge on their pathogenesis and pathobiology. To understand how 

these cancers arise, it is important to first describe the development of a normal B lymphocyte 

(Figure 1). 

 

1.1 B CELL DEVELOPMENT 

The immune system is divided in two types of responses: the innate immune response and the 

adaptive immune response. The innate response is the fast first response to foreign bodies, 

germs or tissue injury but is a non-specific and short-term response. The adaptive response on 

the other hand, will produce a specific and long-lasting response, with a memory for already 

encountered pathogens that will facilitate and accentuate the next response (Abbas et al, 2014). 

The adaptive immune response consists of two main parts: the humoral immunity and the cell-

mediated immunity. B lymphocytes are responsible for the humoral immunity, due to their 

production of proteins called antibodies. Antibodies are formed by a combination of 

immunoglobulin chains (described below) and specifically target antigens that come from the 

pathogens. Only fully mature B lymphocytes will be able to produce efficient antibodies after 

encountering antigens.  

During development and maturation, B lymphocytes go through several steps of 

differentiation. Each step is characterized by changes in: i) cell morphology, ii) cluster of 

differentiation (CD), which are used for the recognition of cell surface molecules and for 

immunophenotyping of cells, iii) the immunoglobulin (Ig) heavy and light chains that form the 

B cell receptor (BCR) and secreted antibodies (Burger et al, 2018, DeFranco 2015). It is a 

dynamic process involving different stimuli and checkpoints (Melchers 2015, Perez-Andres et 

al, 2010).  

After birth, B lymphocytes start their development in the bone marrow (BM) from a 

haematopoietic stem cell, characterized by expression of CD34 and CD45 (pan-leukocyte 

marker). The CD34+/CD45+ stem cell first differentiates into an early stage called pro-B cell, 

that expresses the B lymphocyte marker CD19, which will be expressed during the whole 

development until latest stage of plasma blast when it will be lost. The next step of the 

development is the pre-B cell, characterized by the Ig surface expression due to the 

rearrangement by DNA break and repair mechanism to assemble exons from variable (V), 

diversity (D) and joining (J) genes of the Ig heavy chain (Lieber 2009). This VDJ arrangement 

forms the antigen recognition and binding part of the Ig. Additionally, the association of the 

Lambda5 and VpreB surrogate light chains will form the pre-BCR. At that stage, pre-B cells 
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have lost CD34 but have attained CD20, another B cell marker, in addition to CD45 and CD19. 

Once the pre-BCR matures into a fully functioned BCR with heavy (VDJ segments and 

constant region Cµ region) and light chains (VJ combination coupled with Cκ or Cλ), the pre-

B cell becomes an immature B cell, expressing IgM at the cell surface (Figure 1). Immature B 

cells that will come out of the BM, acquire also surface IgD due to alternative splicing that will 

assemble the VDJ segments with a different constant region C gene (here from Cµ to Cδ) and 

become fully mature B cells (Abbas, et al 2014).  

The maturation process of B lymphocytes in BM requires the expression of the chemokine 

receptor CXCR4 and the cannabinoid receptor (CB) type 2. Indeed, knock-out studies in mice 

showed that the absence of CXCR4 resulted in impaired lymphopoiesis and reduced 

haematopoiesis in BM (Ma et al, 1998), and that the absence of CB2 led to a defective retention 

of immature B cells in BM, thus an accumulation in the blood instead (Pereira et al, 2009).  

The mature but naïve B cells encounter pathogens in follicles of secondary lymphoid organs 

such as lymph nodes (LN), spleen or Peyer’s patches in small intestine. The entry and 

maintenance of immune cells into the lymphoid organs are driven by the presence of 

chemokines such as CXCL12, CXCL13, CCL19 and CCL21, secreted by stromal cells. 

Chemokines are low-molecular weight proteins that have a chemo-attractive effect on cells that 

express the respective receptor, in this case: CXCR4, CXCR5 and CCR7 (Okada et al, 2002). 

In the secondary lymphoid organs, B cells become activated after antigen binding to their BCR, 

and the process from naïve mature B cells to fully activated competent plasma or memory cells 

mostly occurs in the germinal centres (GC) of these organs. It can also take place outside GC, 

so called extrafollicular B cell activation (Chappell et al, 2012).  

Germinal centres are important histological structures that also involve the presence of 

chemokines, and that lymphocytes express the receptors CXCR4, CXCR5 and CCR7. Knock-

out of these receptors results in altered LN and spleen GC structures due to the impaired 

migration of lymphocytes in those areas (Förster et al, 1996, Förster et al, 1999, Müller et al, 

2002). The sphingosine-1-phosphate receptors (S1PR) 1 and 2 are also participating in the 

presence of B lymphocytes in GC. B lymphocytes downregulate S1PR1, which is an egress 

receptor binding to its ligand S1P in high concentration in peripheral blood (PB), and instead 

express at the cell surface S1PR2 that inhibits the migration of cells, therefore keeping them in 

GC (reviewed in (Cyster et al, 2012)). Cells that do not encounter antigen, meaning that the 

BCR is not activated, will upregulate S1PR1 and egress from the LN (Arnon et al, 2013). 

The B cell in the GC proliferates in the “dark zone” of the GC first and acquire somatic 

mutations in the variable region of the heavy and light chains (hypermutation), in order to 

possess a wide variety of BCR to recognize as many antigens as possible. The proliferating and 

activated B cells are called centroblasts. Once the centroblasts have proliferated, they will 

arrive at the “light zone” where follicular dendritic cells will display the specific antigen for 

high affinity selection of the specific B cell clone that recognizes that antigen. In addition, the 

B lymphocyte will interact with T lymphocytes via different mechanisms, including the binding 

of CD40 to CD40 ligand on T lymphocyte, and the major histocompatibility complex (MHC) 
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II to T cell receptor. These stimuli induce the clonal expansion and Ig class switch resulting in 

the expression of a new heavy chain isotype (Cα, Cγ or Cε). These clones express IgA, IgG 

and IgE, which provides other functions of the Ig such as Fc-receptor binding, localization to 

mucosal areas (IgA), and binding to mast cells and eosinophils (IgE), therefore activating a 

relevant type of immune response (Abbas, et al 2014, Cyster et al, 2019). 

These mature cells expressing different types of Ig are smaller in size and are called 

centrocytes. The centrocytes will leave the GC to become memory B cell or antibody secreting 

plasma cells, which are both long lived cells (Reviewed in (Cyster and Allen 2019, LeBien et 

al, 2008)). 

During this development process, checkpoints are in place to ensure that the BCR recognizes 

antigens with sufficient strength, and on the other hand, that the BCR does not recognize self-

antigens that would damage the surrounding cells and lead to autoimmune diseases. In such 

cases, the B cell will go through another round of Ig genes rearrangement or be eliminated by 

apoptosis (Melchers 2015).  
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Figure 1. Representation of key steps of the B cell development and different B-cell lymphoma that can arise from 

cells at the different stage of their differentiation. Abbreviations: BL, Burkitt lymphoma; cMCL, classical mantle 

cell lymphoma; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; HSC, haematopoietic stem 

cell; MCL, mantle cell lymphoma; M-CLL, mutated chronic lymphocytic leukaemia; MM, multiple myeloma; 

MZL, marginal zone lymphoma; nnMCL, non-nodal mantle cell lymphoma; SMZL, splenic marginal zone 

lymphoma; U-CLL, unmutated chronic lymphocytic leukaemia; WM, Waldenstrom macroglobulinaemia (adapted 

with permission from Burger, J.A. & Wiestner, A. (2018) Targeting B cell receptor signalling in cancer: preclinical 

and clinical advances. Nat Rev Cancer, 18, 148-167).   
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1.2 DOWNSTREAM SIGNALLING OF BCR 

Signalling through the BCR is essential for B cell survival and proliferation, and knocking 

down the BCR results in cell apoptosis (Lam et al, 1997). After binding of antigen, the BCR 

encounters a conformational change that will activate the SRC protein tyrosine kinases family, 

such as LYN. These kinases will phosphorylate the two signal transduction proteins CD79A 

and CD79B that are coupled to the BCR intracellular domain. This will recruit SYK protein 

that will transduce the signal by activating the BCR co-receptor CD19 together with other 

adaptor proteins, and recruiting phosphoinositide 3-kinase (PI3K) to the plasma membrane. 

There, PI3K activation will generate the second messenger phosphatidylinositol-3,4,5-

triphosphate (PIP3) that is important for the activation of the Bruton’s tyrosine kinase BTK and 

its downstream target phospholipase Cγ2 (PLCγ2). Several signalling cascades are then 

activated, including calcium mobilization and activation of protein kinase C (PKC) and 

CARD11 containing complex, which lead to activation of the transcription factor NFκB. NFκB 

will induce the release of cytokines, such as CCL3 and CCL4, and activate pathways involved 

in survival (Sasaki et al, 2016), cell adhesion (Spaargaren et al, 2003) and migration (de Gorter 

et al, 2007). Several other signalling pathways are also activated upon BCR stimulation, such 

as the serine/threonine kinase AKT and the mitogen-activated protein kinases (MAPK) 

ERK1/2 and p38, all regulating cell proliferation and survival (Reviewed in (Burger and 

Wiestner 2018, DeFranco 2015, Efremov et al, 2020, Seda et al, 2015); Figure 2). 

 

 

 

 

Figure 2. Scheme representing the main signalling molecules involved upon BCR activation (inspired and adapted 

with permission from Jerkeman, M. et al., (2017) Targeting of B-cell receptor signalling in B-cell malignancies. 

Journal of internal medicine).  
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1.3 B CELL MALIGNANCIES 

B cell malignancies can arise from any steps of the B cell development, as highlighted in Figure 

1. It can be divided in two types: Hodgkin and non-Hodgkin (NHL) lymphoma. Mantle cell 

lymphoma (MCL) and chronic lymphocytic leukaemia (CLL) are NHLs, both with 

characteristics of a mature B cell, expressing CD5 and IgM at the cell surface. They are two 

lymphoma entities with very similar characteristics but also some disparities, summarized in 

Table 1 below.  

 

 

Table 1. Characteristics of MCL and CLL. 

 

  
 MCL CLL 

Immunophenotype 
CD5+ CD19+ 

CD23-; CD20+ (bright) CD23+; CD20+ (dim) 

Incidence 
100 cases per year in Sweden      

(in Europe 1-2 per 100,000 person) 

500 cases per year in Sweden       

(4 per 100,000 person) 

Prevalence 2-10% NHL 

Survival 5 to 8 years 6 to >10 years 

Median age 65-year-old 72-year-old 

Male:Female ratio 3:1 2:1 

Therapy 
rituximab + chemotherapy combination 

ibrutinib idelalisib, ibrutinib, venetoclax 

Frequent genetic 

aberrations 

t(11;14) tri(12), del(13q) 

somatic mutation on ATM and TP53 genes together with del(11q) and/or 

del(17p) 

BCR dependent on the BCR signalling 

SOX11 SOX11+ SOX11- SOX11- 

IGHV mutation 

IGHV 

unmutated, 

classical nodal 

MCL 

IGHV mutated, 

TP53 mutation, 

non-nodal 

leukemic cases 

IGHV 

unmutated, 

shorter 

survival 

IGHV mutated, 

longer survival 

CB1 
CB1 

overexpression 
CB1 negative overexpression in 50% cases 

CB2 overexpression in 100% cases overexpression in 90-95% cases 
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1.3.1 Mantle Cell Lymphoma 

Mantle cell lymphoma (MCL) is aggressive and incurable lymphoma with a median survival 

of only 5-8 years (Abrahamsson et al, 2014, Jain et al, 2019, Nygren et al, 2012). MCL cells 

have the morphological characteristics of mantle zone B cells. 

1.3.1.1 Genetic characteristics 

The first genetic aberration that defines MCL is the chromosomal translocation 

t(11;14)(q13;q32), which occurs at the pre-B cell stage, when the V(D)J segments are being 

joined to form the Ig (Küppers et al, 2001, Nadeu et al, 2020). This translocation places the 

gene encoding for cyclin D1 under the control of the IGH enhancer, leading to cyclin D1 

overexpression, which promotes transition from G1 to S phase in the cell cycle. Since more 

than 95% of MCL tumours express cyclin D1, while normal lymphocytes and most other 

lymphomas are cyclin D1 negative, immunohistochemical staining for cyclin D1 (Figure 3A) 

is part of the diagnostic work-up and the fluorescence in situ hybridization (FISH) method for 

detecting the translocation (Li et al, 1999) (Figure 3B). However, carrying this chromosomal 

translocation isn’t sufficient to develop MCL as cells with the t(11;14) have been detected by 

sensitive PCR method in 1-7% of healthy individuals without consequences (Hirt et al, 2004, 

Lecluse et al, 2009). Other genetic aberrations are therefore necessary and happen later in the 

B cell development, such as deletion or mutations of ATM (Campo et al, 2015), which is 

important for DNA damage recognition. Other additional cellular functions are dysregulated 

in MCL, including defects in DNA-repair, cell cycle regulation and apoptosis (reviewed in 

(Jares et al, 2012)). SOX11 has also become a diagnostic marker since it is expressed in 90% 

of MCL cases and is important for the distinction from CLL (described in the next section) in 

the rare cyclin D1 negative MCL cases (Wasik et al, 2015a).  

1.3.1.2 Clinical presentation 

MCL is usually first detected in LN, but BM involvement is frequent, and the disease can also 

involve the spleen or gastro-intestinal tract. Two subtypes of MCL can be distinguished: 

classical/conventional nodal MCL (cMCL) and leukemic non-nodal MCL (nnMCL) 

(Swerdlow et al, 2016).  

cMCL is characterized by SOX11 expression and it is believed that the cells have not entered 

the GC (reviewed in (Ghia et al, 2017)). Instead, these cells locate in the mantle zone, and do 

not experience rearrangement of the variable region of Ig heavy chain (IGHV), and therefore 

present an unmutated IGHV gene (>98% homology with the germline sequence). This subtype 

can evolve into a more aggressive variant (blastoid MCL), which is characterized by a larger 

cell size, high proliferation (Ki67+), TP53 mutations and multiple genetic alterations (Beà et 

al, 1999). TP53 can also be mutated in the cMCL, which is then associated to worse outcome 

((Hernandez et al, 1996) and reviewed in (Sander et al, 2016)).  
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nnMCL was first classified as atypical CLL, because of the leukemic presentation rather than 

LN engagement, and presence of mutated IGHV genes (Orchard et al, 2003). However, as the 

malignant cells in the blood carry the t(11,14), which is the hallmark of MCL, the CLL 

diagnosis was revised. It is now well known that nnMCL has a distinct genomic signature, with 

fewer chromosomal alterations than cMCL ((Fernàndez et al, 2010, Royo et al, 2012); Figure 

3C). Based on these findings, a molecular assay has recently been developed by Clot et al. to 

identify and discriminate between cMCL and nnMCL in situations where clinical and 

biological characteristics were not sufficient to determine the subtype of MCL (Clot et al, 

2018). Among the identified genes, the cannabinoid receptor type 1 (CNR1 encoding for the 

protein CB1, described in more details in sections 1.4.4.1 and 1.6) is described as highly 

expressed in cMCL and at a low expression level in nnMCL. This molecular assay could be 

used in the decision of the treatment strategy, as patients with the indolent nnMCL form do not 

require treatment until symptoms, but most cMCL, also those with leukemic presentation will 

need therapy. 

 

 

 
 

 
Figure 3. Characteristics of MCL. A. Cyclin D1 staining in MCL case visualized by positive staining (brown) 

detected in the nuclei. The staining is normally variable with both weakly and strongly positive cells (original 

magnification x10). B. FISH staining using probes targeting chromosome 14 (green) and chromosome 11 (red), 

yellow signal represents gene chromosomal fusion (original magnification x63). C. chromosomal alterations 

differences between cMCL and nnMCL. (A and B were kindly provided by Prof. Birgitta Sander; C was obtained 

with permission from Fernàndez, V. et al., (2010) Genomic and gene expression profiling defines indolent forms 

of mantle cell lymphoma. Cancer Res, 70, 1408-1418.). 
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1.3.1.3 Treatment options 

The conventional treatment for MCL is R-CHOP regimen, which consists of rituximab 

antibody targeting CD20 together with a chemotherapy combination (cyclophosphamide, 

doxorubicin, vincristine and prednisone). Today, most young patients are treated with an 

intensified R-CHOP alternating with high dose of cytarabine, followed by stem cell rescue, so 

called autologous stem cell transplantation. This options has been reported to increase the 

overall survival for young and fit patients (Dreyling et al, 2005, Eskelund et al, 2016, Geisler 

et al, 2008, Kolstad et al, 2017). Recently, targeting the BCR signalling pathway became a new 

treatment option (e.g. BTK inhibitors ibrutinib or acalabrutinib). Also inhibitors of Bcl-2 and 

cyclin-dependent kinases are under investigation (reviewed in (Jerkeman et al, 2017)). 

However, these targeted therapies are still given mostly to relapsed MCL patients (Dreyling et 

al, 2018). 

Although nnMCL has a longer survival of 7-10 years, compared with 3-5 years for cMCL, 

MCL is still an incurable disease.  

 

1.3.2 Chronic Lymphocytic Leukaemia 

Chronic lymphocytic leukaemia (CLL) is a common subtype of lymphoma/leukaemia. It is a 

heterogenous disease which results in various clinical outcome (Hallek 2019).  

1.3.2.1 Genetic characteristics 

CLL is characterized by four main chromosomal abnormalities: deletion of long arm of 

chromosome 11 (del(11q)), which deletes ATM gene involved in DNA damage detection, like 

for MCL; trisomy 12 (tri12); del(13q) which deletes the micro-RNA miR15a and miR16-1 that 

are normally silencing the gene encoding for the anti-apoptotic Bcl-2 protein (Calin et al, 2002, 

Cimmino et al, 2005); and deletion of TP53 on the short arm of chromosome 17 (del(17p), 

(Döhner et al, 2000), Figure 4). All these alterations promote cell survival and proliferation. A 

worse prognosis is seen when del(11q) and del(17p) are combined with somatic mutations in 

the remaining ATM and TP53 genes (Zenz et al, 2010). Twenty percent of CLL cases, however, 

do not carry any of these four genetic aberrations (Döhner, et al 2000).  

The mutation status of IGHV gene is also a prognostic factor in CLL, with unmutated IGHV 

(U-CLL) associated to a more aggressive disease course (Hamblin et al, 1999, Oscier et al, 

2002). Gene sequencing analysis of the IGHV gene is now considered part of the diagnostic 

routine for CLL (Davi et al, 2020, International CLL-IPI working group. 2016, Langerak et al, 

2011, Rosenquist et al, 2017) and because it has been done already in a large proportion of 

cases, it is now possible to evaluate and get a risk stratification of CLL disease course and 

overall survival according to IGHV mutation status (International CLL-IPI working group. 

2016). The mutation status of IGHV and the presence of specific sequences help to predict 

therapy responses and outcome (Fischer et al, 2017, Sutton et al, 2017). 
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Figure 4. The most common genetic alterations in CLL (blue box represents loss of gene and orange box 

overexpression of the gene; inspired by Hallek, M., Shanafelt, T.D. & Eichhorst, B. (2018) Chronic lymphocytic 

leukaemia. Lancet, 391, 1524-1537). 

 

1.3.2.2 Clinical presentation 

As for MCL, CLL cells proliferate in BM and in secondary lymphoid organs, but also 

accumulate in PB. For a CLL diagnosis, the threshold of B lymphocyte count is at least 5x109 

cells per litre of blood. 

CLL is a heterogenous disease, that can present as a pre-leukemic form (small cell lymphocytic 

lymphoma), an indolent form, or be progressive and resistant to therapy. The severity of the 

disease is measured according to the Rai and Binet staging system, including the assessment 

of symptoms, clinical parameters such as anaemia, thrombocytopenia, lymphadenopathy 

(Hallek et al, 2018), presence of genetic aberrations and as mentioned above the IGHV 

mutation status.  

Interestingly, CLL cells that are found in the PB are less activated compared with cells in BM 

and LN as the gene signature was enriched for the NFκB pathway in CLL cells from LN 

(Burger and Wiestner 2018, Herishanu et al, 2011).  

1.3.2.3 Treatment options 

The standard therapy for CLL includes a chemotherapy cocktail, mostly fludarabine and 

cyclophosphamide, combined with anti-CD20 antibody rituximab. However, targeted therapy 

is more used in CLL, especially the BTK irreversible inhibitor ibrutinib (reviewed in (Smith 

2017)). Other signalling pathways inhibitors such as the PI3K inhibitor (idelalisib), the Bcl-2 

inhibitor (venetoclax) or SYK inhibitors have shown promising results (reviewed in (Jerkeman, 

et al 2017)).  
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In both MCL and CLL, disease progression and relapse after treatment are very common, due 

to resistances to treatment (Ondrisova et al, 2020), which can be intrinsic or acquired (Zhao et 

al, 2017). Resistances can arise when malignant cells try to escape by mutating the region in 

the drug-binding sites to avoid recognition from it. For instance, after ibrutinib, a point mutation 

(BTK C481S) reduces the binding affinity of ibrutinib for BTK. Other types of mutations have 

been described such as gain-of-function mutations on PLCγ2 gene, which allows a BCR 

signalling independent of BTK activation (Woyach et al, 2014).  

Relapses are common also in patients with minimal residual disease. It is hypothesised that 

minimal residual disease is due to a few lymphoma cells that reside in tissues, supported by 

non-malignant cells in the microenvironment and receiving survival signals that make them 

resistant to therapies (Burger et al, 2011, Kurtova et al, 2009, Medina et al, 2012).  

 

1.4 LYMPHOMA MICROENVIRONMENT 

Like many cancer types, lymphoma cells need the signals and interactions with surrounding 

non-malignant cells and other components, called the microenvironment, to survive and 

proliferate. One striking clue about the importance of the microenvironment came from studies 

that demonstrated that primary MCL or CLL cells survived up to several months in co-culture 

with stromal cells, compared with just few days when cultured alone (Medina, et al 2012, 

Panayiotidis et al, 1996). Several actors are involved in the communication between lymphoma 

cells and non-malignant cells in the tissue microenvironment, and the main ones are described 

below and presented in Figure 5. 

 

1.4.1 The B Cell Receptor 

The BCR signalling is a key-player in both MCL and CLL. The initial role of the BCR in a 

normal B lymphocyte is to recognize the antigen that will stimulate the cells into proliferation 

and differentiation processes in order to produce antibodies. The malignant B cells are utilizing 

the same mechanisms and pathways through the BCR for survival and proliferation.  

Ibrutinib is a drug that inhibits BCR signalling by targeting the downstream tyrosine kinase 

BTK. Ibrutinib irreversibly blocks BTK, which causes the egress of tumour cells out from the 

tissue into the blood stream in both CLL and MCL (Chang et al, 2013), confirming the 

communication between malignant and non-malignant cells via the BCR. 

Indeed, in the malignant context, the BCR is continuously active and sometimes over-

stimulated as a result of the following mechanisms: i) binding of auto-antigen from the 

surrounding cells in the microenvironment, ii) acquirement of activating mutations in the BCR 

downstream signalling molecules, iii) antigen-independent tonic activation of the BCR 

(reviewed in (Burger et al, 2014, Burger and Wiestner 2018)).  
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1.4.1.1 Auto-antigen stimulation 

In CLL, it has been discovered that approximately one third of patients share a similar IGHV 

sequence, specifically the antigen recognition domain (complementarity-determining region 3; 

(Agathangelidis et al, 2012)). These subsets of BCR are called stereotypes. This stereotypy can 

be explained by the recognition of antigens that are not commonly recognized by normal B 

lymphocytes (low frequency of these IGHV sequences normally) as they are auto-antigens 

present in the microenvironment, but specifically selected by CLL cells. In MCL the same 

phenomenon has been reported but with different IGHV gene sequence profile compared to 

CLL (Hadzidimitriou et al, 2011, Sutton et al, 2013).  

1.4.1.2 Activating mutations 

Mutations in different proteins involved in the BCR signalling pathway can occur (e.g. 

mutations in the gene encoding for CD79B) and lead to continuous activation of the pathway 

together with inhibition of the negative feedback loop that should control the BCR stimulation. 

However, these mutations are rare in MCL and CLL (reviewed in (Burger and Wiestner 2018)).  

1.4.1.3 Tonic antigen-independent BCR signalling 

The third way of BCR activation is the tonic signalling, which occurs independently from 

antigen binding. It is mediated by PI3K pathway, and serves for the normal B lymphocytes as 

a survival signal when no antigen is binding (reviewed in (Rickert 2013)). Malignant B cells 

also use this signalling pathway, increasing the signalling by the activation of important protein 

kinases or the downregulation of PI3K inhibitor protein (Burger et al, 2013, Merolle et al, 

2018).  

1.4.1.4 Tissue localization 

Gene pathway analysis in both MCL and CLL demonstrated that the BCR and downstream 

NFκB signalling are enriched, especially within the LN, compared with PB, where there is little 

interaction with other cells (Herishanu, et al 2011, Saba et al, 2016). NFκB signalling regulates 

cell survival and proliferation (reviewed in (Burger and Wiestner 2018, Efremov, et al 2020, 

Ghia, et al 2017)). Indeed, non-malignant cells in the microenvironment, especially in LNs, 

(e.g. lymphoma-associated macrophages) provide signals that activate BCR-signalling 

(reviewed in (Ten Hacken et al, 2016)).  

 

1.4.2 Non-malignant cells 

MCL and CLL cells in tissues interact with the surrounding cells, especially other immune cells 

that are communicating with normal B cells to develop immune responses upon antigen 

encountering (Cyster and Allen 2019). Malignant cells can reside in BM or other lymphoid 

tissues such as LN, where different cell types provide support for the tumour cells. The role of 

the non-malignant cells is very complex and still needs to be investigated further. 
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1.4.2.1 Bone marrow stromal cells 

In BM, the stromal cells (also called mesenchymal stem cells, MSCs) predominantly support 

CLL and MCL survival by secreting chemokines and expressing essential surface molecules 

(Honczarenko et al, 2006, Li et al, 2016). Importantly, the communication between the 

malignant cell and the non-malignant BM MSCs has to involve direct contact (Lagneaux et al, 

1998) and is bi-directional (Ding et al, 2009). Indeed, malignant cells are attracted to MSCs, 

bind to them and have the capacity to migrate beneath them, all due to the expression of 

adhesion molecules and chemokine receptors that recognize chemokines secreted by MSCs 

(Burger et al, 1999, Kurtova, et al 2009, Medina, et al 2012). In return, signalling pathways 

such as ERK1/2, AKT and NFκB are activated in MSCs after interaction with CLL cells (Ding, 

et al 2009, Lutzny et al, 2013).  

In addition, MCL and CLL primary cells co-cultured with BM MSCs induce the secretion of 

several soluble factors such as interleukin IL-6 (Zhang et al, 2012) and chemokines CCL3 and 

CCL4 (Zucchetto et al, 2010), activating different signalling pathways that all promote 

survival.  

Altogether these close interactions activate survival pathways like ERK1/2 (Kurtova, et al 

2009) and anti-apoptotic proteins, such as Bcl-2 (Lagneaux et al, 1999, Lwin et al, 2009, Lwin 

et al, 2007), making lymphoma cells protected from therapy by MSCs.  

1.4.2.2 Lymph node microenvironment 

Compared with BM, the LN microenvironment has been more investigated in haematological 

malignancies. It is composed of a wide variety of cells, due to the fact that it is the location for 

presentation of antigen, activation, proliferation and maturation of antigen-specific B 

lymphocytes. It is also where CLL and MCL proliferate the most, compared to BM and PB 

(Herishanu, et al 2011, Saba, et al 2016). 

T lymphocytes are an important part of the LN microenvironment. In MCL, the amount of T 

lymphocytes found in LN biopsies is lower in the aggressive form of disease, and a high ratio 

of CD4+/CD8+ T cells is correlated to longer overall survival in MCL (Nygren et al, 2014). 

This suggests that the aggressive forms of MCL are less dependent on the microenvironment 

signals.  

In CLL, CD8+ T lymphocytes are enriched in blood (Herrmann et al, 1982), and cytotoxic 

CD4+ T cells are attracted in LN microenvironment by CLL cells that secrete cytokines 

(Hartmann et al, 2016). Interaction between B and T lymphocytes results in proliferation 

signals in B cells via for instance CD40-CD40L interaction (Abbas, et al 2014, Castillo et al, 

2000).  

The presence of CD4+ T lymphocytes in LNs are related to a good patient outcome in MCL 

(Nygren, et al 2014) and in CLL (Nunes et al, 2012), due to their anti-tumoral role (Dobrzanski 

2013). However, malignant cells develop a way to exhaust T cells. Indeed, once the CD4+ T 

cells interact with CLL cells, they lose their ability to form immunological synapse (Ramsay 
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et al, 2012). The immunological synapse consists of changes in cytoskeleton of T cells in 

contact with the antigen presenting B cell via the MHC-II, or with the tumour cell via self-

antigen, which is supposed to activate the T cell for cytotoxic actions (Houghton et al, 2004, 

Nassef Kadry Naguib Roufaiel et al, 2015). Nevertheless, this effect is inhibited by the 

presence of programmed cell death protein 1 (PD) ligand PD-L-1 on MCL/CLL cells 

(Allahmoradi et al, 2017, Wang et al, 2013). PD-L-1, which is a negative regulator of T cells 

in normal condition to avoid auto-immune responses (Jin et al, 2011), is then recognized by 

the receptor PD-1 on T cells, providing signals that abolish their function of tumour cell lysis 

(Wang, et al 2013).  

Monocytes, macrophages and nurse like cells attract malignant cells into lymph nodes and 

other lymphoid organs by secreting chemokines (Burger et al, 2000). In addition, these non-

malignant cells are attracted by malignant cells via chemokines, such as CCL3 and CCL4 

(Zucchetto, et al 2010).  

 

1.4.3 Chemokines and adhesion molecules 

Many different chemokines, cytokines and other molecules, their respective receptors, as well 

as adhesion molecules are involved in the communication between the non-malignant cells and 

CLL/MCL cells, but only the most relevant ones to this thesis are described here. 

1.4.3.1 Chemokine and egress receptors 

CXCR4, CXCR5 and CCR7 are chemokine receptors expressed in normal B lymphocytes, and 

they are important for their development, maturation and differentiation. These chemokine 

receptors are part of the superfamily of G protein coupled receptors (GPCR), and are 

overexpressed in MCL (Corcione et al, 2004, Kurtova, et al 2009) and CLL (Burger, et al 1999, 

Till et al, 2002). 

Malignant cells use essentially the same mechanisms as the non-malignant B cells, to promote 

their survival and proliferation, while diminishing the effects of the opposite mechanisms such 

as apoptosis. In a healthy setting, CCR7 ligand (CCL21) is responsible for the entry of 

lymphocytes into LN, CXCR5 ligand (CXCL13) for the positioning in follicular areas in LN 

and CXCR4 ligand (CXCL12) for the entry and maintenance of B cells in BM. In lymphoma, 

the expression of these receptors and ligands is also different according to the tissue 

compartments, in favour of cell retention (Middle et al, 2015). This is explained by the 

lymphoma tissue microenvironment secreting these ligands, creating a gradient and attracting 

cells expressing the receptors, therefore playing a major role in homing of lymphoma cells into 

tissues.  
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In MCL and CLL, all three chemokine receptors (CXCR4, CXCR5 and CCR7) are upregulated 

at the cell surface (reviewed in (Burger and Ford 2011, Burger and Gribben 2014)). In CLL, 

the high levels of CCR7 and CXCR4 could at least partially be explained by the enhanced 

recycling of the receptors compared with non-malignant B lymphocytes (Patrussi et al, 2015).  

Additionally, there is a balance, or unbalance in the case of malignancy, of expression between 

the chemokine receptors that induce the retention of cells in tissues, and S1PR1 which promotes 

their egress (Cyster and Schwab 2012, Patrussi, et al 2015).  

S1PR1 is involved in the egress of normal B lymphocytes from LN into PB, where its ligand, 

the biolipid S1P, is in high concentration. S1PR1 is expressed in most MCL cases (Nishimura 

et al, 2010), with a different expression level observed in different tissue of origin derived MCL 

cell lines (Sadeghi et al, 2020). S1PR1 gene is also found mutated in 8% of MCL cases, 

inducing in most cases the reduction of S1PR1 expression, correlating with advanced stages of 

the disease and promoting the retention of cells within the tissue (Wasik et al, 2018). In CLL, 

the expression of S1PR1 is often impaired, and its surface expression is even more reduced in 

vitro upon several stimuli like BCR stimulation with anti-IgM antibody or CD40-CD40L 

interaction (Borge et al, 2014, Till et al, 2015).  

Both CXCR4 and CXCR5 were shown to be involved in the migration of malignant cells 

beneath MSCs, thus protecting them from therapies (Burger, et al 1999, Kurtova, et al 2009). 

CXCR4 expression is important for the malignant cell survival as it was demonstrated that 

culturing MCL cell lines with its ligand CXCL12 increased survival compared with medium 

alone, and that knock-down of CXCR4 reduced cell proliferation (Chen et al, 2016b). In 

addition, CXCR4 expression is dynamic, allowing the cells to recirculate from LN to PB and 

vice-versa (Chen et al, 2016a). CXCR7 is also a receptor for CXCL12 but is mostly involved 

in cell adhesion rather than migration (Burns et al, 2006) and is not expressed in leukocytes 

(Berahovich et al, 2010).  

Because all interactions are dynamic, cross-activation of specific downstream signalling 

pathways happens, as for instance the phosphorylation and activation of BTK by CXCL12 in 

CLL (Montresor et al, 2018, Nore et al, 2000), involving both CXCR4 and BTK signalling 

pathways in adhesion of cells. In MCL, we found that these signalling pathways are differently 

activated in different cell lines (Sadeghi, et al 2020). Interaction between BCR and CXCR4 

signalling is also suggested by the fact that CLL and MCL cells are released in PB after 

ibrutinib treatment (Chang, et al 2013), due to the inhibition of surface CXCR4 expression 

(Chen, et al 2016a).  

Also, BCR signalling results in secretion of CCL3 and CCL4 from CLL, which will further 

attract non-malignant immune cells such as monocytes and T cells as mentioned earlier (Burger 

et al, 2009).  
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1.4.3.2 Adhesion molecules 

Adhesion molecules are participating in cell-to-cell adhesion, as well as cell-to-extracellular 

matrix (ECM) contacts. They are part of the process of homing and retention of B lymphocytes 

into lymphoid tissue.  

There are several types of adhesion molecules, categorized based on their structures. Integrins 

are transmembrane receptors composed of two subunits: α and β. Different α and β subunits 

can be paired together, creating a variety of different integrins. The very late activation antigen 

(VLA-4, also known as CD49d) is a α4β1 integrin expressed on leukocytes. It can recognize 

ECM components such as fibronectin and vascular cell adhesion molecule-1 (VCAM-1). 

CD49d is also expressed at the cell surface of MCL and CLL cells. This integrin is part of the 

mechanism used by non-malignant and malignant lymphocytes to migrate beneath the MSCs 

(Burger et al, 2001, Kurtova, et al 2009, Miyake et al, 1992). In malignancies, VLA-4 is 

therefore associated with nodal and extra-nodal involvement (Strati et al, 2017, Terol et al, 

1999) and worse prognosis due to drug resistance (Kurtova, et al 2009, Shanafelt et al, 2008).  

Another adhesion molecule of importance is ICAM-1, expressed mainly on stromal cells but 

also on some leukocytes, and in some of MCL and CLL cases (Jacob et al, 1999, Molica et al, 

1995). ICAM-1 is upregulated upon adhesion to stromal cells in co-culture in vitro system 

(Sadeghi, et al 2020), validating the fact that its expression is higher in MCL and CLL samples 

from LN compared with PB (Arvidsson et al, 2018).  

 

1.4.4 Cannabinoid receptors and ligands 

1.4.4.1 Cannabinoid receptors  

Gene expression analysis comparing LN biopsies from MCL patients and non-malignant cells 

from reactive tonsils and LNs described for the first time the overexpression of cannabinoid 

receptors (CB) type 1 and type 2 in MCL (described in section 1.6.1; (Ek et al, 2002, Islam et 

al, 2003)). Screening of different NHL subtypes identified CB1 and CB2 overexpressed in 

most of the B cell lymphoma subtypes included in the study such as CLL, marginal zone, 

follicular and diffuse large B cell lymphomas (Gustafsson et al, 2008, Rayman et al, 2007).  

The mRNA expression of CBs had already been identified in human immune cells in the 1990s 

(Bouaboula et al, 1993, Galiegue et al, 1995) after the publication of earlier reports describing 

effects of the CB ligands from the marijuana plant (delta-9-tetrahydrocannabinol, THC) in 

immune cells function, hypothesizing that the receptors should then be expressed on those cells. 

Both CB1 (encoded by CNR1 gene) and CB2 (encoded by CNR2 gene) mRNA expression 

could be quantified in lymphoid organs and immune cell subtypes. CNR2 is there expressed at 

higher levels compared to CNR1, up to 100-fold increase, and the highest expression levels for 

both receptors were found in tonsil, and B lymphocytes (Galiegue, et al 1995).  
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In MCL and CLL, the range of expression measured by quantitative PCR is wide for CNR1 

(relative fold increase (RFI) compared to non-malignant B cells from 0.63 to nearly 5000) and 

CNR2 (RFI from 1.06 to nearly 200), with CNR1 reaching the levels of CNR2 for some cases, 

if not higher (Wasik et al, 2014). Protein expression was also confirmed in patient samples and 

in MCL cell lines (Gustafsson, et al 2008, Islam, et al 2003). CNR1 has two splice variants in 

addition to the full-length, which causes impaired binding to endocannabinoids (Ryberg et al, 

2005). However, only splice variant CNR1a and not CNR1b seems to be expressed in MCL, 

and at very low levels since it was not detected on the first round of PCR but instead on the 

second round of PCR performed on the product from the first round (Gustafsson, et al 2008). 

The role of the CBs in lymphoma is not yet deciphered. However, analysis of CB expression 

and clinical data from a study in our group showed that low CNR1 levels correlated to 

lymphocytosis (>5x109 lymphocytes/litre of blood) (Wasik, et al 2014). CNR1 was also found 

at lower levels in indolent (low progression of disease) MCL (Fernàndez, et al 2010), and 

confirmed recently from gene expression analysis comparing cMCL and nnMCL profiles, in 

which CNR1 is downregulated in leukemic nnMCL compared with cMCL (Clot, et al 2018). 

Therefore, it is hypothesized that CB1 might be involved in homing, retention and/or egress of 

the malignant B-cells from the tissue to the PB.  

In CLL, low CNR1 cases displayed more frequently unmutated IHGV genes (U-CLL), and low 

CNR1 expression levels correlated to better overall survival (Freund et al, 2016).  

1.4.4.2 Endogenous ligands to cannabinoid receptors 

In addition, endogenous ligands to cannabinoid receptors (endocannabinoids, described in 

further detail in chapter 1.6) are released on demand by MSCs in BM (Kose et al, 2018). 

Endocannabinoids might play a role in the tumour microenvironment as their expression levels 

are found dysregulated in plasma of cancer patients compared with healthy individuals, as well 

as at the site of tumour in mice models (Sailler et al, 2014, Zhang et al, 2016).  
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Figure 5. Simplified scheme representing the interactions between the lymphoma cell and the non-malignant 

microenvironment. Note that only the factors of relevance to this thesis are represented. 
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1.5 G PROTEIN AND G PROTEIN COUPLED RECEPTORS 

Chemokine and cannabinoid receptors described in previous chapters are part of the G protein 

coupled receptors (GPCR) superfamily (Fredriksson et al, 2003, Nugent et al, 2017). The 

structure, general mechanism of action and downstream signalling are similar for all GPCRs, 

including chemokine and cannabinoid receptors.  

 

1.5.1 G protein coupled receptors 

The G protein coupled receptor (GPCR) superfamily contains around 800 different proteins 

divided into five families that share similar phylogeny origins (Fredriksson, et al 2003, Katritch 

et al, 2013). Chemokine and cannabinoid receptors are part of the same rhodopsin-like receptor 

family (also called family A). 

The main common feature of GPCRs is the structure: seven transmembrane helical domains, 

all linked by loops, and with an extracellular N-terminus and a C-terminus inside the cell 

(Figure 6A). This kind of structure allows transmission of extracellular signals into the cell and 

the subsequent induction of intracellular signalling pathways. The presence of an eighth helix 

(H8) has also been described in most of the rhodopsin family receptors, located in the C-

terminus, close to the intracellular part of the membrane (Weis et al, 2018). 

Upon activation, mainly due to ligand binding at the N-terminus, or after homo- or hetero-

dimerization (reviewed in (Faron-Górecka et al, 2019)), the GPCR encounters conformational 

change that leads to recruitment of the heterotrimeric G proteins complex composed of subunits 

α, β and γ. It also induces the exchange of guanosine diphosphate (GDP) to guanosine 

triphosphate (GTP, abundant in the cell) that triggers the separation of the G protein complex. 

The subunit Gα is released from the GPCR and from the two other subunits, and activates 

signalling pathways that are involved in different cell biology processes such as glucose 

metabolism, synaptic transmission, cell survival and migration (reviewed in (Neves et al, 2002, 

Syrovatkina et al, 2016)), through the activation of second messengers and signalling pathways 

such as PI3K, MAPK and AKT (reviewed in (Gutkind 2000); Figure 6B).  

Once the receptor is in active state, it becomes phosphorylated by specific kinases and recruits 

β-arrestin protein (Figure 6B). This promotes desensitization of the receptor signalling and 

receptor internalization (reviewed in (Moore et al, 2007)). After internalization, the receptor is 

either recycled back at the cell surface or degraded. Additionally, β-arrestin itself induces 

downstream signalling upon binding to the activated and phosphorylated receptor, creating a 

biased signalling (one ligand binding to one receptor, which results in two responses; reviewed 

in (Rajagopal et al, 2010)). 

Many different types of ligands can bind to GPCRs, provoking different levels of activation or 

inactivation depending on their specificity and efficacy to induce receptor conformational 

changes and recruitment of G protein (reviewed in (Hilger et al, 2018)). Depending on the 

downstream response upon binding, the ligand is considered as agonist or antagonist. If the 
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binding induces 100% of activation of receptor, the ligand is considered as full agonist. 

However, it is possible that the receptor becomes only partially activated, which makes the 

ligand a partial agonist. An antagonist will compete for the binding site with the agonist, 

without affecting the conformation of the receptor. The last type of ligand is the inverse agonist, 

which upon binding will induce the inactive state of the receptor and inhibit the basal signalling 

(Figure 6C). 

 

 

 

 

Figure 6. GPCR structure and activation mechanism. A. Structure of GPCR. B. Steps of a GPCR activation upon 

ligand binding. C. Ligand response. (A and C were obtained with permission from Weis, W.I. & Kobilka, B.K. 

(2018) The Molecular Basis of G Protein-Coupled Receptor Activation. Annu Rev Biochem, 87, 897-919.; B was 

obtained with permission from Hilger, D., Masureel, M. & Kobilka, B.K. (2018) Structure and dynamics of GPCR 

signaling complexes. Nature Structural & Molecular Biology, 25, 4-12.). 
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1.5.2 G proteins 

G proteins are responsible for the signal transduction after GPCR activation. Only 21 Gα 

proteins have been identified, implicating a conserved G protein binding pocket domain on 

GPCRs. Six Gβ and eleven Gγ subunits have been identified so far (reviewed in (Syrovatkina, 

et al 2016)). 

The subunit Gα is divided into four families, based on their sequence similarity and similar 

functions: i) Gαi: inhibits the enzyme adenylyl cyclase thus decreasing the levels of the second 

messenger cAMP in the cells; ii) Gαs: stimulates adenylyl cyclase, which increases cAMP 

levels; iii) Gαq: activates phospholipase C (PLC); iv) Gα12/13: targets small Rho-GTPases. 

The Gαi family is the largest of all four families, containing seven members including Gαo and 

Gαz. Gαi are expressed in many different cell types, and chemokine receptors usually bind to 

the Gαi/o family.  

1.5.2.1 G protein alpha z 

Although it is considered as part of Gαi family, due to the inhibition of adenylyl cyclase, Gαz 

is the only member of Gαi to be insensitive to pertussis toxin (PTX) (Fong et al, 1988, 

Matsuoka et al, 1990). PTX is blocking the binding of Gαi protein to the GPCR by catalysing 

ADP ribosylation at the C-terminus of the G protein. However, that part is lacking in Gαz. 

Indeed, Gαz is sharing only 60% of sequence homology with Gαi. Nevertheless, Gαz is binding 

to similar receptors recognized by Gαi, as indirectly shown by the fact that similar downstream 

signalling is activated upon GPCR stimulation, but resistant to PTX treatment (Ho et al, 2001).  

Not much is known regarding the function or expression of Gαz. Gαz has mostly been 

described in neuronal cells where it couples neurotransmitter receptors to ion channels 

regulating calcium mobilization (Jeong et al, 1998) and in retina cells (Hinton et al, 1990). Gαz 

can also be found in platelets (Gagnon et al, 1991) and other non-neural cells where it might 

control the Golgi structure maintenance (Nagahama et al, 2002).  

Moreover, we described recently the overexpression of Gαz in a subset of mantle cell 

lymphoma patients, compared with expression in reactive LN (Mundt et al, 2019). Analysis of 

clinical data showed that high Gαz mRNA expression correlated with poor patient survival, 

which was also the case for other malignancies such as endometrial, gastric and liver cancers. 

Its expression also correlated to spread of lymphoma cells to the blood (lymphocytosis) and an 

inverse correlation was found with CNR1 expression. Downregulation of Gαz in MCL cell 

lines did not affect cell survival, and the chemotaxis properties of the cells were intact (Mundt, 

et al 2019). The role of Gαz in mantle cell lymphoma has therefore to be investigated further. 
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1.5.3 CXCR4 signalling  

CXCR4 is a chemokine receptor (described earlier in section 1.4.3.1) expressed on many 

different cell types. This section is focused on CXCR4 expression on B lymphocytes 

(malignant and non-malignant).  

As mentioned, CXCR4 binds to Gαi protein family, reducing levels of the second messenger 

cAMP due to the inhibition of adenylyl cyclase by Gαi subunit. The other two subunits, βγ 

activate two enzymes responsible for signal transduction: PLCβ and PI3K. These enzymes will 

allow the activation of the second messengers inositol (1,4,5)-triphosphate (IP3) and 

diacylglycerol (DAG), that are responsible for calcium release and activation of PKC and 

MAPK. Additional signalling pathways are activated upon CXCL12 ligation, including 

ERK1/2, p38, STAT3 and NFκB involved in cell survival and chemotaxis (Ganju et al, 1998, 

Teicher et al, 2010).  

CXCR4 can also recruit G protein Gα13, that activates the Rho GTPase, complementing Gαi 

activation of the small GTP binding protein Rac, and inducing chemotaxis and phosphorylation 

of ERK1/2 (Tan et al, 2006). Rho and Rac are indeed regulating cell cytoskeleton 

reorganization and cell movement upon signalling, that will permit the cells to migrate towards 

the gradient of chemoattractant (reviewed in (Rikitake et al, 2011)).  

Apart from G protein signalling, CXCR4 also interacts with β-arrestin, mediating its 

internalization and activation of ERK1/2 (Cheng et al, 2000).  

CXCR4 has been described to dimerize with other receptors, such as CB2. This occurred when 

both receptors were activated by respective agonists, CXCL12 and the synthetic selective CB2 

agonist JWH-015 in breast and prostate cancers. This interaction prevented the internalization 

of CXCR4, thus inhibiting chemotaxis towards CXCL12 (Nasser et al, 2011). CXCR4 and 

cannabinoid receptor signalling are also interacting in T lymphocytes (Ghosh et al, 2006), MCL 

and CLL cells (Merrien et al., manuscript), affecting the chemotaxis. However, it seems that a 

different mechanism than in breast and prostate cancer is involved, as CXCR4 surface 

expression was not affected in either studies.  

Due to the increased interaction with cells from the microenvironment, signalling pathways 

through CXCR4 are dysregulated in haematological malignancies. For instance, it was shown 

that lymphoma cells use the signalling downstream of CXCR4 to promote cell survival, rather 

than to respond by chemotaxis (O'Hayre et al, 2010).  
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1.5.4 Signalling through the cannabinoid receptors  

Cannabinoid receptors are GPCRs that also signal via Gαi/o, inhibiting adenylyl cyclase 

(Howlett et al, 2002). In some circumstances, CB1 can bind to Gαs protein instead of Gαi, 

inducing an inverse effect on signalling pathways, mainly reported in neuronal cells (Abadji et 

al, 1999, Glass et al, 1997). Cannabinoid receptors have also been described to activate MAPK 

signalling pathway by phosphorylating ERK1/2, which is involved in cell proliferation 

(reviewed in (Zhang et al, 2002)). CB2 has been reported to recruit at the cell membrane β-

arrestin, a scaffold protein involved in regulation of signalling proteins such as ERK 

(McGuinness et al, 2009). Signalling pathways activated upon ligand binding to cannabinoid 

receptors can vary depending on the tissue localization (reviewed in (Howlett et al, 2017)). 

 

1.6 THE ENDOCANNABINOID SYSTEM 

The endocannabinoid system refers to the cannabinoid receptors, their endogenous ligands 

(endocannabinoids) and the enzymes synthesizing and metabolizing the endocannabinoids. 

The role of the endocannabinoid system has been described in many organs, tissues, cell types 

and biological processes (reviewed in (Bukiya 2019)). In addition, the endocannabinoid system 

is dysregulated in diseases including solid cancers and haematological malignancies (reviewed 

in (Laezza et al, 2020, Schwarz et al, 2018, Wasik et al, 2015b, Velasco et al, 2015)). This 

section is describing the endocannabinoid system in the context of the immune system and 

lymphoma. 

  

1.6.1 Cannabinoid receptors 

Cannabinoid receptors were first identified as the receptors binding the main active component 

of Cannabis sativa plant, ∆9-tetrahydrocannabinol (THC). CNR1 gene is located in 

chromosome 6q16, and CNR2 gene in chromosome 1p36. CB1 and CB2 protein sequences 

share approximately 44% of identity.  

1.6.1.1 Cannabinoid receptor type 1 

Cannabinoid receptor type 1 was discovered and described for the first time in rat central 

nervous system using the radiolabelled synthetic cannabinoid analogue [3H]CP-55,940 

(Devane et al, 1988). Two years later, CB1 was cloned from rat cerebral cortex (Matsuda et al, 

1990). It was subsequently described to be expressed (mRNA and protein levels) in 

hippocampus, cerebral cortex and cerebellum (Herkenham et al, 1990, Matsuda et al, 1993, 

Tsou et al, 1998), and particularly in presynaptic neuron terminals (reviewed in (Howlett, et al 

2002)). There, CB1 regulates synaptic signalling by inhibiting the neurotransmitter release 

upon 2-AG binding (Freund et al, 2003), to avoid excessive neuronal activity. The mapping of 

CB1 in the central nervous system helped to understand the psychoactive effects of THC.  
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Knock-out studies showed behavioural defects, including reduced activity and locomotion of 

animals, and defects in the brain development (reviewed in (Howlett, et al 2002)). It has also 

helped to identify non-CB1 and non-CB2 receptors for endocannabinoids (Di Marzo et al, 

2000). 

CB1 is expressed in other tissues like skeletal muscle, fat tissue, liver and pancreas. Its 

expression was also described in immune cells, although at low levels (Bouaboula, et al 1993, 

Galiegue, et al 1995). In T lymphocytes, CNR1 expression can be upregulated upon stimulation 

with THC and the pro-inflammatory IL-4 (Borner et al, 2007), which indicates a role for CB1 

in the immune system.  

Importantly, CB1 is involved in cell migration of neuronal cells, via the activation of focal 

adhesion kinase (FAK) upon treatment with the CB1 synthetic agonist WIN55,212-2 (Dalton 

et al, 2013). FAK is a tyrosine kinase that is implicated in actin cytoskeleton reorganization, in 

response to chemokines or other stimuli for cell adhesion and migration (reviewed in (Schaller 

2010)). Interestingly, FAK is upregulated in BM infiltrates and some of the LN biopsies from 

MCL cases, promoting cell adhesion and providing survival signals through NFκB, AKT and 

ERK1/2 activation (Rudelius et al, 2018). This suggests, together with the involvement of CB1 

in chemotaxis of MCL and CLL primary cells and MCL cell lines (Merrien et al., manuscript), 

that investigating the role of CB1 and FAK in MCL would be of interest. 

1.6.1.2 Cannabinoid receptor type 2 

Cannabinoid receptor type 2 was discovered and cloned from a promyelocytic leukemic cell 

line HL60 (Munro et al, 1993). Two years later, CB2 was described to be expressed in 

peripheral and lymphoid tissues such as tonsils, spleen, and BM, and in immune cells with 

higher expression in B, NK cells and monocytes (Galiegue, et al 1995). CB2 is also expressed 

in neuronal cells such as microglia and astrocytes, however in much lower levels than CB1, 

and it has mainly been described in condition of inflammation (reviewed in (Atwood et al, 

2010) and (Howlett and Abood 2017)).  

Knock-out of CB2 in mice does not induce any strong morphological phenotype. However, 

deficiency in CB2 impairs osteoblast and osteoclasts balance in favour of osteoporosis (Ofek 

et al, 2006). Pereira et al., demonstrated that mice deficient for CB2 had an accumulation of 

immature B lymphocytes in blood and a lack of that cell population in BM. This data showed 

the importance of CB2 expression in keeping the immature B cells in BM because of high 

levels of 2-AG there, in association with the integrin VLA-4 (Pereira, et al 2009). CB2 was 

also demonstrated to participate in the B cell repertoire generation and response to antigen, as 

CB2 lacking mice displayed rare B lymphocytes with λ light chain, and mostly κ light chain 

instead (Pereira, et al 2009). Additionally, B lymphocytes that lacked CB2 failed to produce 

IgM as a results of impaired homing and localization in marginal zones of the spleen, where 

blood antigens are carried and scanned by immune cells (Basu et al, 2011, Muppidi et al, 2011).  



 

 25 

In B leukaemia cells, CNR2 expression was associated with regulation of glucose uptake in 

response to the transcription factor PAX5, which was defined as a tumour-suppressor in acute 

lymphocytic leukaemia (Chan et al, 2017). Chan et al., reported that CNR2 inhibits glucose 

uptake, which might confer a negative impact on the malignancy development, as glucose is a 

source of energy for cancer cell transformation (Chan, et al 2017).  

 

Both cannabinoid receptors play a role in the immune response, as double knock-out of CB1 

and CB2 receptors in mice induced chronic inflammation and increased the response to 

influenza infection, due to higher capability of antigen presentation by dendritic cells, which 

lead to increased T cells activity and increased pro-inflammatory IL-17 and interferon gamma 

cytokines production ((Karmaus et al, 2011), reviewed in (Kaplan 2013)). In line with that, the 

expression of both cannabinoid receptors genes is increased in T lymphocytes upon stimulation 

with pro-inflammatory cytokines such as the tumour necrosis factor (TNF)-α (Jean-Gilles et 

al, 2015), emphasizing the role of cannabinoid receptors in the balance of the immune response. 

 

1.6.2 Ligands to cannabinoid receptors 

There are at least 15 endogenous cannabinoids identified (reviewed in (Pertwee 2015)). 2-

arachidonoylglycerol (2-AG) and anandamide are the two most abundant endocannabinoids, 

therefore the most studied ones. They are active lipids (eicosanoids) synthesized “on demand” 

by neuronal cells as well as immune cells from precursor lipids (arachidonic acid) present in 

the cytoplasmic membrane.  

Phytocannabinoids are cannabinoids that are contained in the Cannabis sativa plant. Almost 

500 compounds have been extracted from the Cannabis sativa plant, and around 100 are 

considered as cannabinoids (reviewed in (Andre et al, 2016, Flores-Sanchez et al, 2008)).  

In addition, synthetic cannabinoids have been developed for the investigation of cannabinoid 

receptors structure and function, and for therapeutic use.  

1.6.2.1 2-arachidonoylglycerol 

The endocannabinoid 2-AG is the most abundant endocannabinoid in the brain and is 

considered as a full agonist to both CB1 and CB2. 2-AG is also secreted in other tissues, 

mediating numerous responses upon binding to its receptors (reviewed in (Sugiura et al, 2006)). 

One of the effects of 2-AG is the induction of chemotaxis, and importantly chemotaxis of 

immune cells in vitro and ex-vivo, such as NK cells (Kishimoto et al, 2005), monocytes and 

macrophages (Kishimoto et al, 2003), and eosinophils (but not neutrophils; (Kishimoto et al, 

2006, Larose et al, 2014, Oka et al, 2004)) from peripheral blood, of the B lymphoblastic cell 

line Raji (Rayman et al, 2004), the leukemic T cell line Jurkat (Gasperi et al, 2014), as well as 

CD34+ hematopoietic stem cells (Köse et al, 2018) and BM MSCs (Rossi et al, 2013).  
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Most of the chemotactic effects have been reported to be mediated via CB2 (summarized in 

Table 2), however, in most studies, the cells did not express or expressed low levels of CB1. In 

our study, we also show that 2-AG induces chemotaxis of primary lymphoma cells (MCL and 

CLL) and MCL cell lines (Merrien et al., manuscript). In the case of lymphoma cells, both 

receptors are expressed at higher levels than in normal B lymphocytes, and they both contribute 

to the 2-AG mediated chemotaxis.  

1.6.2.2 Delta-9-tetrahydrocannabinol 

Delta-9-tetrahydrocannabinol (THC) is the main active and abundant component of Cannabis 

sativa, responsible for the psychoactive effects of the plant after ingestion, by binding to CB1 

present in the neuronal cells.  

THC is also a ligand for CB2, in which it acts as a weak agonist. Nevertheless, in some 

circumstances, THC can also act as an antagonist to CB2 as THC was shown to inhibit the 

chemotaxis mediated by 2-AG in NK cells (Kishimoto, et al 2005).  

Furthermore, THC induces cell death in different cancer types in vitro and in xenografts 

models, including gliomas cell lines (Galve-Roperh et al, 2000), melanoma (Armstrong et al, 

2015), leukaemia cells (Herrera et al, 2005, Kampa-Schittenhelm et al, 2016, McKallip et al, 

2002, Powles et al, 2005). Cell cycle progression of breast cancer cells was also described to 

be repressed by THC (Caffarel et al, 2006). Importantly, these effects were obtained at 

micromolar concentrations, but not at lower (nanomolar) concentrations. The effects of THC 

were mediated by CB1, or CB2, or the combination of CB1 and CB2, depending on the cell 

type (summarized in Table 2). 

In vitro, THC has an immunosuppressive role by inhibiting mitogen-stimulated lymphocyte 

replication, T-cell proliferation and cytokine production (reviewed in (Klein 2005), (Borner, et 

al 2007, Yuan et al, 2002)). 

1.6.2.3 Cannabidiol  

Cannabidiol (CBD) is a non-psychoactive component of Cannabis sativa plant. When 

combined with THC, it suppresses the psychoactive effects of THC by acting as an antagonist 

to CB1 (Klein et al, 2011, Thomas et al, 2007). However, the effects of CBD on CB2 are not 

fully understood, as some reports describe it as a partial agonism, as well as a negative allosteric 

and/or orthosteric modulator (reviewed in (Pertwee 2008), (Martinez-Pinilla et al, 2017, Tham 

et al, 2019)). 
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CBD has been reported to modulate the inflammatory response by reducing the pro-

inflammatory cytokines such as IL-17, IL-1β or IL-6, increasing the anti-inflammatory ones 

like IL-10 ((Khuja et al, 2019, Kozela et al, 2013), reviewed in (Peyravian et al, 2020)) and 

inhibiting the chemotaxis of some immune cells like neutrophils (McHugh et al, 2008). The 

combination of CBD to THC increased the cell death induced by THC alone in melanoma cells 

in vitro and enhanced the THC effect on reducing tumour size in xenograft melanoma model 

(Armstrong, et al 2015).  

1.6.2.4 Synthetic cannabinoids 

Synthetic cannabinoids have been described to induce cell death. For instance, the synthetic 

cannabinoids WIN55,212-2 and R-methanandamide, both agonists to CB1 and CB2, generate 

accumulation of ceramide and induction of apoptosis via the activation of p38 pathway in MCL 

primary cells, xenograft model and cell lines (Flygare et al, 2005, Gustafsson et al, 2006, 

Gustafsson, et al 2008). It was also depicted that WIN55,212-2 induces cell death via 

cytoplasmic vacuolation in apoptosis-resistant MCL cell lines (Wasik et al, 2011).  
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Table 2. Effects of 2-AG, THC, CBD and WIN55,212-2 in healthy and malignant cells of the immune system. 

 

 cannabinoid type effect concentration cell type 
receptor 

mediated 
reference 

2-AG endocannabinoid 

increased chemotaxis 

1µM NK cells CB2 
Kishimoto et al., 

2005 

0.1-3µM 

HL-60 promyelocytic leukaemia cell 

line + differentiated into 

macrophage 

CB1 and CB2 
Kishimoto et al., 

2003 

0.1-10µM human eosinophils from PB CB2 
Kishimoto et al., 

2006 

0.1-3µM human eosinophils CB1 and CB2 
Larose et al., 

2014 

0.01-10µM 
human eosinophilic leukemic EoL-1 

cell line 
CB2 

Oka et al., 2004 

1µM human eosinophils from PB CB2 

0.3µM B lymphoblastic cell line Raji CB2 
Rayman et al., 

2004 

0.3µM, 1µ, 50µM 
human CD34+ hematopoietic stem 

cells from BM 
CB1 and CB2 Kose et al., 2018 

10µM 
human mesenchymal stromal cells 

from BM 
CB2 Rossi et al., 2014 

100nM MCL cell lines (JeKo-1, Granta519) CB1 and CB2 
Merrien et al., 

manuscript 

increased chemotaxis towards 

HUVEC cells pre-treated with 

2-AG 

1µM Jurkat T cell line CB1 and CB2 
Gasperi et al., 

2014 

THC phytocannabinoid 

inhibition of 2-AG (1µM) 

mediated chemotaxis 
1µM NK cells - 

Kishimoto et al., 

2005 

cell death by apoptosis 1.5µM Jurkat T cell line CB2 
Herrera et al., 

2005 

cell death by apoptosis 30-75µM Jurkat, acute monocytic leukaemia 

(MOLM13) cell lines 

CB1 and CB2 

Kampa-

Schitternhelm et 

al., 2016 

reduction of proliferation 10-80µM - 

reduction of cell viability 50µM 

acute myeloid and acute 

lymphoblastic leukaemia primary 

samples 

sensitive samples 

with higher CB1 

and CB2 levels 
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 cannabinoid type effect concentration cell type 
receptor 

mediated 
reference 

cell death by apoptosis 5µM 

T-leukaemia cell lines  

(Jurkat, Molt-4, U251) 
CB2 

McKallip et al., 

2002 
acute lymphoblastic leukaemia 

primary samples 
- 

reduction of tumour size 5mg/kg murine lymphoma EL-4 cells in mice - 

reduction of cell viability 50µM 
leukemic cell lines (CEM, HEL-92, 

HL60 and MOLT-4) 
CB2 

Powles et al., 

2005 

reduction of cell viability 2.5µM, 12.5µM 

Jurkat T cell line 

- 
Borner et al., 

2007 
increased CB1 mRNA 

expression 
0.1-0.5µM CB2 

reduction of cell proliferation 2.5µM, 5µM 

T cells activated by dendritic cells 

(from same PB donor) 

- 

Yuan et al., 2002 

alteration of cytokine release 

(increase of IL-4 and IL-5, 

decrease of IL-2 and IFN-

gamma) 

5µM CB2 

CBD phytocannabinoid 

reduction of cell proliferation 10µM 

CD3 activated mouse splenocytes 

- 

Khuja et al., 

2019 

alteration of cytokine mRNA 

expression (increase of IL-10, 

IL-5 and TNFalpha, decrease of 

IL-17a) 

3µM - 

reduction of IL-17 cytokine 1-5µM 
mouse T cells from LN cocultured 

with dendritic cells 

CB1 and CB2 

independent 

Kozela et al., 

2013 

inhibition of fMLP (potent 

chemoattractant)-induced 

chemotaxis 

0.01-1µM human neutrophils from PB - 
McHugh et al., 

2007 

WIN55,212-

2 
synthetic 

reduction of cell viability 5µM primary MCL cells - 
Flygare et al., 

2005 

cell death by apoptosis 10µM 

MCL cell lines (Rec-1, JeKo-1,  

JVM-2), 3 primary MCL cells (from 

tonsil, LN and PB) 

CB1 and CB2 
Gustafsson et al., 

2006 

cell death by cytoplasmic 

vacuolation 
10µM MCL cell line Granta519 

CB1 and CB2 

independent 

Wasik et al., 

2011 

Abbreviations: BM, bone marrow; HUVEC, human umbilical vein endothelial cells; LN, lymph node; PB, peripheral blood. "-" means data not available. 
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1.6.3 Enzymes 

Endocannabinoid synthesis is in general dependent on Ca2+ influx, induced by neuronal cell 

depolarization signalling and/or via the activation of Gαq protein (reviewed in (Zou et al, 

2018)). 2-AG and anandamide are synthesised by several types of reactions (hydrolysis, 

cleavage or dephosphorylation) from arachidonic-acid phospholipids. The enzyme N-acyl-

phosphatidyl-ethanolamine phospholipase D (NAPE-PLD) is one of the enzymes responsible 

for the synthesis of anandamide and 1,2-diacylglycerol (DAG) lipases for 2-AG synthesis. 

Metabolism of anandamide into arachidonic acids and ethanolamine is mainly regulated by 

fatty acid amide hydrolase (FAAH). 2-AG can also be metabolised by FAAH, but 

monoacylglycerol lipase (MAGL) is the major enzyme contributing to its hydrolysis into 

arachidonic acid and glycerol (Figure 7). Both endocannabinoids can be metabolised by 

cyclooxygenase-2 into anandamide/2-AG-derived prostaglandins, thus playing a role in 

inflammation (Jhaveri et al, 2008).  

 

 

 
 

Figure 7. Scheme depicting synthesis and degradation of anandamide and 2-AG. 
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In MCL, it was shown by our group that NAPE-PLD and FAAH enzymes are dysregulated 

(Wasik, et al 2014). Indeed, NAPE-PLD was found upregulated in all the samples analysed, 

and the degrading enzyme FAAH was at low levels in almost all samples from the study; all 

compared to non-malignant B cells. Together with the upregulation of CB1 and CB2 mentioned 

earlier, this data indicates an accumulation of endocannabinoids, and increased signalling 

through the receptors, in MCL cells (Figure 8). 

 

 

 

 

Figure 8. Scheme showing current knowledge on the dysregulated endocannabinoid system in MCL (scheme from 

Wasik, A.M. & Sander, B. (2015b) Cannabinoid receptors in mantle cell lymphoma. Cell cycle, 14, 291-292.). 
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1.6.4 Other receptors binding cannabinoids 

Apart from CB1 and CB2, cannabinoids can also interact with other receptors, like G protein 

receptor 55 (GPR55), GPR18, GPR119, and the peroxisome proliferator-activated receptors 

(PPAR) family (reviewed in (Pertwee 2015)).  

GPR55 has been described to promote cancer progression in some malignancies (reviewed in 

(Morales et al, 2016)), to heterodimerize with CB2, and to play a role in the migration of 

neutrophils (Balenga et al, 2014). Expression of GPR55 was reported in immune cells such as 

NK cells and monocytes (Chiurchiu et al, 2015), as well as in Hodgkin lymphoma and the non-

Hodgkin lymphoma cell line Karpas 422 (Benz et al, 2013), but it has not yet been described 

in other haematological malignancies. While CBD is an antagonist to GPR55, the effects of 

THC on the receptor and signalling activation are conflicting (reviewed in (Morales et al, 2017, 

Pertwee et al, 2010)). 

GPR18 is expressed in lymphoid tissues and lymphocytes (Gantz et al, 1997, Kohno et al, 

2006) and its expression was identified in MCL, without any defined role in the pathobiology 

(Henson et al, 2011, Piccaluga et al, 2019).  

Cannabidiol and THC can also bind to ion channels, such as voltage-gated sodium and 

potassium channels, and the transient receptor potential vanilloid type-1 receptor (TRPV1) 

(Peyravian, et al 2020, Sait et al, 2020), which are involved in cell proliferation, survival and 

migration in T and B leukaemia cells (Arcangeli et al, 2012, Punzo et al, 2018).  

Voltage-gated potassium (Kv) channels are especially of interest, since they are important for 

B and T lymphocytes proliferation and activation, for the immunological synapse during 

antigen presentation, as well as for the cell migration (reviewed in (Comes et al, 2015)). Kv1.3 

and Kv1.5 are particularly expressed in lymphocytes, and in B-cell malignancies such as MCL 

(Vallejo-Gracia et al, 2013). 

 

1.7 MEDICAL USE OF CANNABINOIDS  

Cannabinoids from Cannabis sativa plant have been used in medicine for centuries (Li 1974, 

Long et al, 2017). It is consumed by up to 25 percent of cancer patients to alleviate symptoms 

and side effects from chemotherapy (Macari et al, 2020, Martell et al, 2018, Pergam et al, 

2017), as well as used as a recreational drug.  

The use of phytocannabinoids in clinics is controversial due to the psychoactive effects that the 

Cannabis sativa active component THC induces, and the dependence that can be developed 

(reviewed in (Černe 2020)). The immunosuppressive effects of THC and CBD might also 

induce progression of certain cancers instead of regression (Bar-Sela et al, 2020, McKallip et 

al, 2005). Furthermore, in CLL, a single dose of the combination of THC and CBD appears to 

induce a redistribution of malignant cells within the tissues without inducing apoptosis, which 
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might be in favour of cell survival instead of anti-tumoral treatment (Melén, Merrien et al., 

manuscript).  

However, cannabinoid treatment has shown positive effects as therapy for multiple sclerosis to 

reduce neuropathic pain and spasms ((Barnes 2006), reviewed in (Nielsen et al, 2018)). CBD 

alone is approved by the Food and Drug Agency for treatment of certain types of epilepsy 

(reviewed in (Devinsky et al, 2014)). In addition, several studies are conducted in brain 

tumours, showing the improved effects of alkylating agents by combining with the 

phytocannabinoids THC and CBD (López-Valero et al, 2018).  

The endocannabinoid system is in general a very complex system, that acts in a variety of cell 

types with different responses to stimuli, being context dependent (reviewed in (Joshi et al, 

2019)). In addition, the endocannabinoids are biolipids released under different conditions such 

as stress (Dlugos et al, 2012), and they can bind to many different receptors, inducing several 

signalling pathways related to cell migration, inflammation, glucose metabolism or cell 

survival (Alhouayek et al, 2014, Nogueiras et al, 2009).  

In cancer, the endocannabinoid system is also differently regulated in different cancer types 

(reviewed in (Das et al, 2019)). When using the online data set available for different cancer 

types (kmplot.com; (Nagy et al, 2018)), the expression of cannabinoid receptors or enzymes 

predicts different outcomes in different cancer types. These features make it difficult to predict 

whether the use of cannabinoids for cancer therapy will be beneficial or harmful.  

 





 

 35 

2 RESEARCH AIMS  

 

2.1 OVERALL AIM 

 

The overall aim of this thesis was to decipher the role of dysregulated proteins and signalling 

in the pathobiology of two B cell malignancies, chronic lymphocytic leukaemia (CLL) and 

mantle cell lymphoma (MCL). The focus was on the possible implication of these dysregulated 

mechanisms in biological processes of lymphoma including disease presentation, interaction 

with the tissue microenvironment and chemotaxis. 

 

2.2 SPECIFIC AIMS 

 

Paper I investigated the expression pattern of GPCRs and G proteins in MCL in order to 

provide information on the global expression pattern as compared to non-malignant lymph 

nodes. We describe that G protein alpha z is overexpressed in MCL and we further investigated 

its role in MCL pathobiology.  

 

Paper II aimed at increasing the understanding of factors of importance for interaction of 

lymphoma cells with stromal cells. We analysed changes in gene expression when MCL cell 

lines from different tissue origin adhered to stromal cells in a co-culture system. 

 

Paper III focused on the effects of the endocannabinoid 2-arachidonoylglycerol on lymphoma 

chemotaxis, alone and in combination with the chemokine CXCL12, and therefore its potential 

role in retention of MCL and CLL cells in tissues. 

 

Paper IV describes the effects of giving patients with indolent B cell lymphoma/leukaemia a 

combination of THC/CBD. Dosing, vital parameters and patient experienced side effects were 

investigated as well as effects on lymphoma cells and on non-malignant cells in blood.  
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3 ASPECTS ON THE METHODOLOGIES USED 

 

The studies included in this thesis were performed using several techniques, for which the 

material and methods are described in detail in each papers and manuscripts. This section is to 

highlight some important aspects. 

 

3.1 ETHICAL CONSIDERATIONS 

All the studies included in this thesis were performed in compliance with the Declaration of 

Helsinki. 

In Paper I, Paper III and Paper IV, patient samples were used. Patient samples were obtained 

after informed consent signed from patients. Patients can agree to allow the use of left-over 

material from diagnosis (paraffin embedded tissue, frozen sample or viable cells). They can 

also agree to donate an additional sample for research. It can be blood, tonsil or faeces. Patients 

also agree that clinical parameters of importance for lymphoma disease can be retrieved from 

hospital records and used for research purpose. In addition, patients are informed that the 

information obtained from the studies is saved in a protected file at the Pathology department. 

Patients can also refuse to provide material for research, without giving any explanation and 

without risking that the refusal affects their treatment or relation with the medical care. The 

files in which patients’ information are stored are made anonymous to us, as researchers. The 

master data base and the biobank data can be searched by the clinical doctors only. 

The written informed consent has been agreed by the ethical committee and comprises the 

name of the clinical doctor in charge. It includes the agreement of investigating genes, proteins, 

and functional studies of living tumour cells, tumour tissues and living non-tumour cells. 

Additionally, research samples have to be given back whenever the clinics needs it for 

diagnosis, clinical diagnosis always goes first to ensure the best care for the patient.  

It is very important that patients are well informed about the possibilities they have regarding 

their samples. Personuppgiftslagen (PUL) makes it possible for the patients to demand that all 

information is erased and that samples from biobank and files are destroyed, without having to 

provide any explanation. Patients obtain the information of whom to contact in such case.  

Regarding the clinical trial that we conducted, patients were also very well informed before 

being included in the study. The patients were followed during the day of the trial, monitored 

and supervised by the doctor and nurses that reported anything unusual, to ensure the well-

being of the patient. Patients could at any time contact the doctors and the nurses responsible 

for the study. 
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3.2 CELL LINES AND PATIENTS MATERIAL 

3.2.1 MCL cell lines and stromal cells 

In three out of four papers, experiments were designed using MCL cell lines. Cell lines are a 

simplified model for deciphering mechanisms. It has the benefit of being easy to culture and 

allowing the acquisition of rather reproducible results. We could then, investigate specific roles 

of proteins (Gαz for Paper I and CBs for Paper III) and signalling pathways (Paper II and 

Paper III) in a “clean” system.  

In our lab we have a set of seven MCL cell lines to choose from, which permitted to see 

variability between them, according to their origin or growth pattern for instance. We chose to 

work especially with JeKo-1, Granta519, Rec-1 and JVM-2 cell lines. They were all cultured 

in a similar way (RPMI-GlutaMAX medium, supplemented with 50mg/ml gentamicin and 

10% foetal bovine serum (FBS)).  

However, the major disadvantage of the monoculture in vitro system is that it doesn’t represent 

the in vivo settings such as the complex microenvironment that surrounds malignant cells. 

Moreover, the cells in culture proliferate independently from external signals. The co-culture 

system in Paper II used to investigate the adhesion, is a more complex system and more 

relevant. We could indeed compare the gene expression data of adherent MCL cells to MSCs 

to available data from primary MCL cells from LN and PB.  

Stromal cells used in Paper II were mouse stromal cells. We used it to differentiate between 

MCL cells and stromal cells regarding the gene expression analysis without having to separate 

them after adhesion assay. This way, we could distinguish between human (MCL cell lines) 

and mouse (stromal cells) genome, while reducing the number of sample processing steps 

which could increase changes in cell genome (as well as epigenome, proteomics, phospho-

proteomics). 

3.2.2 Patient material  

Patients’ material was available for us to include in our studies for ex vivo experiments (Paper 

III and Paper IV), which is the strength of this thesis. In vivo data were also collected during 

the clinical trial (Paper IV), which gave immediate insight into the effects of THC/CBD.  

This comes with the fact that this work would never have been possible without the close 

collaboration that we have with clinicians and research nurses to recruit and collect the samples, 

as well as the routine flow cytometry personal that are providing us with the left-over material 

from diagnostic samples. 

In Paper III and Paper IV, mostly CLL could be collected and a few MCL samples only, due 

to the prevalence of both diseases. CLL is a more common disease than MCL. Moreover, at 

diagnosis, MCL requires more often BM biopsy rather than blood sample. Furthermore, many 

MCL patients are treated at diagnosis while for CLL, many patients are undergoing watchful 

waiting. This also makes it more difficult to recruit untreated MCL patients to the studies. 
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3.3 B CELLS ENRICHMENT FROM PATIENT BLOOD SAMPLES 

Patients samples were collected, and only PB was used in the thesis. B cells (mostly malignant 

cells) were enriched using a cocktail of antibodies (RosetteSep®) targeting platelets and 

leukocytes except B cells. The antibodies bound to the different cells form rosettes with 

erythrocytes. Using the density gradient medium Ficoll-Paque and centrifugation for separation 

of different fractions, only untouched B cells were collected from the interphase layer of cells.  

The efficiency of the antibody cocktail was assessed by flow cytometry analysis. We included 

CD5 and CD19 markers to quantify and control that the fraction was not contaminated by T 

cells (CD19-). It was important to exclude the presence of T lymphocytes as they express 

similar chemokine receptors as B lymphocytes (CXCR4, CB2 for instance) and have a higher 

chemotaxis capacity compared to B lymphocytes, MCL cell lines, and especially compared to 

CLL cells that lose their CXCR4-mediated chemotaxis in the profit of survival signalling 

(O'Hayre, et al 2010).  

In addition, we realized that sometimes a large double negative population was present in the 

sample, which was due to erythrocytes that might have aggregated and been collected in the 

interphase layer together with B cells. For this reason, anti-CD45 antibody (CD45 as marker 

of leukocytes) was later added and used for the first gating. 

MCL and CLL primary cells for Paper III were frozen and thawed for chemotaxis assay. 

Importantly, after the cells were thawed, they were kept for one hour in culture media 

supplemented by 10% FBS, at 37°C in order for the cells to recover from thawing, but not 

longer time as phosphorylation status could have changed.  

 

3.4 GENE SILENCING USING SIRNA AND ELECTROPORATION METHOD 

To knock-down genes, we used siRNA method which consists of small RNA sequence 

complementary to the gene of interest, which upon recognition will induce degradation of the 

double-stranded RNA. Subsequently, protein levels should be reduced after RNA degradation. 

Predesigned siRNA was incorporated using electroporation device AMAXA, using the 

program X-01. For CNR2 gene, two different siRNAs were used in order to maximize the 

downregulation efficiency.  

To verify that the genes were downregulated, we performed quantitative PCR (RT-qPCR). 

However, we noticed that CNR2 gene was still expressed, and after checking the literature we 

found out that these signals could be false-positive coming from binding of the qPCR primers 

to the region that was not degraded upon siRNA incorporation (Herbert et al, 2011). We thus 

designed new primers targeting a different region, which allowed us to see a downregulation.  
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3.5 PROTEIN EXPRESSION  

3.5.1 Western blotting 

Fresh protein lysates or maximum one-time thawing were used to investigate phosphorylation 

of different signalling pathways proteins, because phosphorylation might be affected by the 

fact of thawing and it would be difficult to detect any signal after more thawing.  

In addition, phospho-protein and total protein specific antibodies were added on two 

membranes, from two gels that were loaded and ran in parallel. This technical detail was 

implemented because the antibody that recognized phospho-sites blocked the sites for the 

antibody that should recognize the total-protein. GAPDH was used for loading control and 

normalization for quantification. 

Unfortunately, it was not possible to assess the protein levels for cannabinoid receptors as the 

currently commercially available antibodies are not specific when used in lymphoma cells, 

probably because of cross-interaction, as both CB1 and CB2 receptors are at high levels in 

those cells. In contrast to normal B lymphocyte (low CB1/high CB2) or brain samples (high 

CB1/low CB2). The antibodies we had in our possession did not give specific bands on Western 

blot. Other groups have reported the same issue (Freund, et al 2016, Grimsey et al, 2008, 

Marchalant et al, 2014). 

3.5.2 Flow cytometry analysis 

Flow cytometry analysis was used to measure cell surface protein expression, to distinguish 

between different cell populations. We also used it to assess the internalization and recycling 

of CXCR4 chemokine receptor. Analysis was performed using FlowJo (v10). 

 

3.6 CHEMOTAXIS AND ADHESION ASSAYS 

3.6.1 Cells staining 

For chemotaxis assays in Paper I, Paper II and Paper III, the cells were stained with calcein-

AM. We checked that the dye was not released by the cells in the culture media, which would 

increase the fluorescence without being an indication of migrated cells (Beem et al, 2013).  

Carboxyfluorescein succinimidyl ester (CFSE) was used in Paper II for adhesion experiments, 

rather than calcein-AM, as calcein-AM would affect adhesion of the cells.  

3.6.2 Boyden chamber assay for chemotaxis assessment 

We used a Boyden chamber assay for assessing the chemotaxis of both MCL cell lines and 

MCL/CLL primary cells. Two pore sizes were used, 8µm for the cell lines, and because primary 

cells are smaller cells, we had to use a smaller pore size of 5µm.  
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3.6.3 Co-culture for adhesion assay 

Mouse stromal cells were seeded 24 hours prior to the addition of MCL suspension cell line, 

so they would reach approximately 70% confluence for the experiment.  

3.6.4 Read-out 

For the chemotaxis assay, two different read-outs were used. For JeKo-1 and primary MCL 

and CLL cells, images of the migrated cells in the bottom well (in focus) were captured every 

30min and fluorescent cells were then counted using NIS-Elements AR software (see Figure 9 

below). 

 

 

 

Figure 9. Graphic representation of microscopy read out for chemotaxis assay and an example of chemotaxis 

performed with JeKo-1 cell line towards CXCL12 (200ng/ml). 

 

 

Granta519 and JVM-2 are cells that grow in aggregates (cell clumps), which makes evaluation 

of chemotaxis by microscopy impossible. For these cells, we therefore used the fluorescence 

intensity measurement at one time point (4 hour), including for each experiment a standard 

curve to validate that the fluorescence intensity value would represent the number of cells. 

Fluorescence intensity read-out could also be used for JeKo-1 cell line. 

The co-cultured adherent MCL cells were quantified using flow cytometry (CFSE labelled), 

without the need of separating them from the stromal cells that were not stained.  

 



 

42 

3.7 BIOINFORMATIC TOOLS 

Statistical analysis was mainly achieved with Origin Pro8 for Windows (Paper I), GraphPad 

Prism 8 for Windows (Paper III) and Stata 9.2 (Paper I) and Stata version 14.2 for Paper IV.  

Survival was analysed with Kaplan-Meier curves. Principle component analysis in Paper I 

were performed with R and “prcomp” function of its package.  

Significance was set with p<0.05.  
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4 RESULTS AND DISCUSSION 

 

4.1 PAPER I 

The aim of Paper I was to investigate the expression pattern of GPCRs and G proteins in 

mantle cell lymphoma, as GPCRs are involved in pathways controlling, among others, cell 

survival, proliferation and migration. Furthermore, GPCRs constitute the most druggable 

protein family.  

 

4.1.1 Results 

Using gene expression data from 17 MCL biopsies and 8 reactive LNs as a comparison, we 

could identify 29/475 probe sets, representing 26 genes encoding for GPCRs and G proteins, 

which were differentially expressed in MCL compared to LNs. From the genes encoding for G 

proteins (18 genes represented by 19 probe sets), GNAZ was the most significantly changed in 

the data set (adjusted p=0.002), being upregulated in 16/17 cases.  

We confirmed the over-expression of GNAZ by qPCR in a validation cohort of 108 samples 

and in sorted B cells from 18 MCL cases by qPCR, compared with B cells from reactive LNs.  

Furthermore, GNAZ mRNA expression predicted overall survival as a continuous variable 

(Cox regression, p=0.014). Detailed clinical and pathological parameters were available for 77 

patients from this cohort allowing for a comprehensive analysis. Among patients that did not 

undergo autologous stem cell transplantation (55/75), GNAZ also predicted worse overall 

survival (p=0.033). When performing a multivariate analysis of GNAZ expression with clinical 

and pathological parameters such as autologous stem cell transplantation, Eastern Cooperative 

Oncology Group performance =>2, >4 nodal presentation sites, anaemia, and blastoid 

morphology, GNAZ did not correlate anymore with overall survival.  

However, GNAZ expression correlated with lymphocytosis (>5x109 lymphocytes per litter of 

blood) (p=0.011), and it moderately inversely correlated with expression of gene encoding 

cannabinoid receptor 1 CNR1 (Spearman correlation coefficient = -0.31; p=0.006).  

We investigated the potential role of GNAZ in MCL pathobiology, first by verifying by Western 

blot that the gene GNAZ translates to the G protein alpha z (Gαz) in MCL cell lines. The protein 

expression pattern corresponded to the mRNA levels.  

We showed that transient downregulation of GNAZ by siRNA in MCL cell lines did not affect 

survival or proliferation. We then assessed whether Gαz participates in chemotaxis of MCL 

cell lines. However, we could not see any effect of GNAZ downregulation on chemotaxis 

mediated by FBS, the homing chemokines CXCL12 and CXCL13, or the biolipid S1P involved 

in egress of MCL into the bloodstream.  
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4.1.2 Discussion 

In this article we mapped the gene expression pattern of GPCRs and G-proteins. We identified 

GNAZ, encoding Gαz, as the most significantly overexpressed gene among G-proteins, 

compared to reactive LNs and showed that high GNAZ expression correlates to shorter OS in 

MCL patients. This was true also for MCL patients who did not undergo autologous stem cell 

transplantation, suggesting that poor prognosis of high GNAZ-expressors is not due to that type 

of therapy, but probably to MCL pathobiology.  

Furthermore, high GNAZ expression correlated to lymphocytosis in MCL patients suggesting 

that Gαz could potentially participate in the localization of MCL cells in tissues or egress of 

the malignant cells.  

We then confirmed that GNAZ translates to Gαz protein in MCL cell line Granta519 and our 

results showed that Gαz participates in neither proliferation nor chemotaxis in this in vitro 

model system. Although Gαz is part of the Gαi family, which mediates signalling for cell 

migration, also seen in NK cells, it shows that Gαz has a singular role, yet unknown. The 

previous findings from the group demonstrated that CNR1 inversely correlates to 

lymphocytosis. In this study, we showed that GNAZ correlates to lymphocytosis and inversely 

correlates to CNR1 in the MCL cohort encouraging more studies in this area. 

 

 

  



 

 45 

4.2 PAPER II 

This study aimed at describing the differences in gene expression of MCL cell lines from 

different tissue origin upon adhesion to stromal cells, using a co-culture system that reflects 

some important aspects of the interactions with the microenvironment in vivo. 

 

4.2.1 Results 

Two MCL cell lines, JeKo-1 and Rec-1 were subjected to adhesion assay to BM-derived 

mesenchymal stromal cells. While JeKo-1 showed an increased adhesion over time, Rec-1 

displayed a plateau very early. The two patterns of adhesion were confirmed by differential 

gene expression profiling. We identified 590 genes that were differentially regulated upon 

adhesion to stromal cells between the two cell lines. Several of these genes were adhesion 

molecules such as ICAM-1, and the chemokine receptor CXCR4. The BCR and NFκB 

downstream signalling molecules were also differentially expressed.  

The BCR and NFκB gene signatures were in fact increased in JeKo-1 upon adhesion, while 

unchanged in Rec-1. Rec-1 expressed a functional BCR but was not engaged during the 

adhesion with the stromal cells, seen by a lack of CCL3 and CCL4 secretion, and a lack of 

response upon downregulation/inhibition of BTK prior to adhesion assay.  

We also measured the CXCR4 surface expression in both cell lines. JeKo-1 expressed higher 

levels of CXCR4 compared to Rec-1, and this receptor was essential for JeKo-1 adhesion and 

chemotaxis but not for Rec-1. Our results also showed that JeKo-1 uses the same steps for 

adhesion by CXCR4 and BCR. 

Next, we focused on adhesion related genes that were differentially regulated between the cell 

lines and we investigated the role of ICAM-1 and S1PR1 in the adhesion of JeKo-1 and Rec-

1. It appeared that ICAM-1 is upregulated in non-adherent Rec-1 and it is expressed at lower 

levels in JeKo-1, but upon adhesion, the two cell lines express similar levels. Downregulation 

of ICAM-1 reduced both JeKo-1 and Rec-1 adhesion. Downregulation of the egress receptor 

S1PR1 increased the adhesion of Rec-1 to the level of JeKo-1 cells.  
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4.2.2 Discussion 

In MCL, alternative treatments are to target molecules that are participating in the 

communication between the malignant cells and the non-malignant cells from the 

microenvironment, in order to disrupt the pro-survival and pro-proliferative signalling that it 

confers. BTK and CXCR4 inhibitors are for instance used and induce the rapid release of cells 

from lymphoid tissues. However, some patients are refractory to these therapies.  

Here, we show evidence that a co-culture system using mesenchymal stromal cells, could be 

used to test the resistance to therapy before the treatment. Indeed, while JeKo-1 uses the BCR 

and CXCR4 downstream signalling for adhesion to and/or chemotaxis towards mesenchymal 

stromal cells, Rec-1 does not. This represents the variability between the patients and responses 

to treatments, with some malignant cells being adapted and using non-BCR-mediated survival 

signalling strategies.  

In addition, the egress receptor S1PR1 that is highly expressed in Rec-1 might be the reason 

for the reduced adhesion as its expression facilitates the mobilization from tissue to the blood 

circulation.  

The main difference between the two cell lines is their origin: JeKo-1 is from peripheral blood 

origin and Rec-1 from LN origin. Cells that are found in blood are expressing higher CXCR4 

than the ones in LN, and CXCR4 is usually downregulated when S1PR1 is expressed. 

Additionally, gene expression associated with cell adhesion from the MCL cell lines clustered 

with gene expression from MCL primary cells from different origin, which increases the 

relevance of this study.  
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4.3 PAPER III 

The aim of Paper III was to investigate the effects of the endocannabinoid 2-

arachidonoylglycerol (2-AG) on lymphoma chemotaxis, alone and in combination with the 

chemokine CXCL12, and therefore its potential role in retention of MCL and CLL cells in 

tissues. We hypothesised that 2-AG is involved in the chemotaxis of lymphoma cells because 

i) most cases of MCL and CLL overexpress cannabinoid receptors, ii) 2-AG is produced by 

stromal cells that are present in the microenvironment of lymphoma cells in vivo settings.  

 

4.3.1 Results 

Five MCL and nineteen CLL samples were collected. All samples expressed CNR2, and 22/24 

expressed CNR1. Comparison between MCL and CLL showed that MCL express higher 

CNR1, and CLL had higher levels of CNR2 than MCL. 

We subjected the primary cells to chemotaxis assay towards 2-AG. Three out of five MCL 

samples and 17/19 CLL samples had an increased chemotaxis towards 2-AG compared with 

medium alone. We subjected the primary cells to chemotaxis towards the chemokine CXCL12 

which is in high levels in LNs, and the combination of CXCL12 and 2-AG. In CLL, the 

combination enhanced the chemotaxis compared with CXCL12 alone (median of 1.3-fold 

increase, p<0.001). They were too few MCL samples for statistical analysis, however three out 

of five MCL had a reduced chemotaxis compared with CXCL12 alone (up to 50% reduction).  

We used three MCL cell lines, Granta519, JeKo-1 and JVM-2 to investigate the mechanism of 

the observed phenomenon. Granta519 and JeKo-1 migrated towards 2-AG, but not JVM-2. In 

JeKo-1, the 2-AG mediated chemotaxis was not significantly different from the chemotaxis 

towards medium alone after specific CB1 inverse agonist treatment. 2-AG chemotaxis was 

completely inhibited by CB2 inverse agonist. All three cell lines had increased chemotaxis 

towards CXCL12 and behaved differently towards the combination of CXCL12 and 2-AG. 

CXCL12 and 2-AG combination reduced the CXCL12-mediated chemotaxis in JeKo-1 and 

JVM-2, while it did not affect chemotaxis towards CXCL12 in Granta519 cells.  

We measured the CXCR4 membrane expression and could conclude that 2-AG did not disturb 

the receptor internalization or recycling. Next, we assessed the phosphorylation status of some 

key signalling pathways and the present data could only confirm that 2-AG affects the ERK1/2 

phosphorylation induced by CXCL12.  
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4.3.2 Discussion 

The results from this study show that 2-AG is a chemoattractant for lymphoma cells and it 

participates in the signalling for migration of CLL and MCL. We used a low concentration 

(100nM) of 2-AG to be able to compare with physiological conditions. This concentration of 

2-AG did not affect cell survival and proliferation, but induced the chemotaxis of majority of 

MCL and CLL samples, as well as MCL cell lines. We could also show that both CB1 and 

CB2 contributed to the chemotaxis.  

Importantly, the combination of the chemokine CXCL12 and the endocannabinoid 2-AG 

affected the chemotaxis of most cells, without impairing CXCR4 expression, internalization or 

recycling. We also demonstrate that ERK1/2 is affected by incubation of MCL cell lines with 

the combination of 2-AG and CXCL12 but the direct participation of ERK1/2 in MCL cells 

chemotaxis remains to be confirmed. 

2-AG is agonist to both CB1 and CB2, however in this study we cannot exclude that 2-AG 

binds to other receptors which could be involved in modulating the CXCR4 response to 

CXCL12.  
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4.4 PAPER IV 

Paper IV investigated the effects of a single administration of an oro-mucosal spray containing 

THC and CBD combination in patients with indolent B lymphoid malignancies, specifically 

the effects on malignant and non-malignant cells. Based on correlative studies and in vitro and 

xenograft in vivo studies targeting cannabinoid receptors in MCL, we hypothesised that THC 

and CBD could be beneficial for lymphoma patients. This study also participated in the 

understanding of the effects of cannabinoids on immune cells and on lymphoma cells, since 

THC and CBD are used in the clinics for other indications, and that there is a growing interest 

of the impact of the use of THC and CBD for palliative treatment.  

 

4.4.1 Results  

Twenty-three patients were included in this study, comprising fifteen men and eight women, 

and the median age was 72 years. Twenty patients were diagnosed with CLL, one with MCL, 

one with follicular lymphoma and one with marginal zone lymphoma. All patients expressed 

CB2, and 17/23 expressed CB1. 

Patients received THC/CBD at 9AM. Blood was collected just before administration, and at 1, 

2, 4, 6 and 24 hours post-THC/CBD. Samples were analysed for cell subsets, chemistry, drug 

concentration (in plasma), and for functional studies (proliferation, cell death, and chemotaxis). 

The maximum tolerated dose was seven actuations, which corresponds to 18.9 mg THC and 

17.5 mg CBD. It was given to fifteen patients and it resulted in a median peak plasma 

concentration of 8.8 ng/mL for THC and 4.9 ng/mL for CBD. All the patients manifested side 

effects of maximum grade 2. Dry mouth, vertigo, somnolence, hallucination, confusion and 

euphoria were the most common side effects reported. The severity of side effects was dose 

dependent. 

For thirteen patients, we could measure the different cell count in blood on a day prior to the 

ingestion of THC and CBD combination. We describe a decrease of malignant B cells in blood, 

of approximately 10% reduction at 1PM compared with the 9AM sample. This variation was 

not seen in any other leukocyte subsets during the sampling time (9AM-3PM).  

During the day of treatment with THC/CBD, malignant B cells decreased rapidly, from one 

hour after administration of the drug, which was not due to apoptosis or reduced proliferation. 

Interestingly, CB1-negative cases displayed a quicker and deeper decrease (up to 10% decrease 

for CB1-positive cases and 15% decrease for CB1-positive cases at 1PM, compared with 

9AM). A quick decrease was also seen in non-malignant B lymphocytes and CD3+ cells. 

However, there was no change in CD4+/CD8+ ratio. Neutrophils and serum cortisol were 

however increased four hours after THC/CBD administration. CXCR4 expression was 

increased in malignant B cells and in T lymphocytes, four and six hours after THC/CBD 

administration, respectively. The effects of THC and CBD combination on the measured 

parameters were gone twenty-four hours later.  
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4.4.2  Discussion 

The combination of THC and CBD was safe for an elderly population despite adverse events 

reported, and it did not affect the course of the disease. The psychotropic side effects were 

however the dose limiting factor. 

The biological effects of THC and CBD combination were seen by a quick decrease in 

lymphocytes counts in the blood circulation without evidence of apoptosis. Apoptosis upon 

THC/CBD did not occur probably because the plasma concentrations of THC and CBD were 

in the nanomolar range and not in micromolar, as reported by studies showing induction of cell 

death in vitro and ex vivo settings upon cannabinoids treatment. At a later time-point, an 

increase of the chemokine CXCR4 at the cell surface of T and B lymphocytes was observed, 

which could be associated with redistribution of the cells into secondary lymphoid organs.  

During this study, we could describe a diurnal fluctuation of malignant B cells, which was not 

seen in non-malignant B cells or another leukocyte subset. The circadian rhythm of malignant 

cells from the patients could be perturbed due to aberrant expression of important circadian 

clock genes, reported in CLL.  

Interestingly, a quicker decrease of malignant B lymphocytes occurred in the samples that did 

not express CB1, which could be due to the increased signalling through CB2. Indeed, CB2 is 

involved in the circulation of immature B cells, which could then explain the faster 

redistribution of those cells. However, we cannot exclude that THC and CBD effects could be 

due to their binding to and signalling activation through other receptors. 
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5 CONCLUSIONS 

 

This thesis focuses on dysregulated signalling in B cell malignancies and on the interaction 

between the malignant cells and the microenvironment. Here, I describe my contribution to the 

identification of new players important for lymphoma B cell localization in the tissue.  

We identified, for the first time, the gene GNAZ, encoding for the protein G alpha z, as being 

upregulated in MCL, which was correlated to high lymphocyte count in blood and poor 

prognosis as a continuous variable in Cox regression analysis. Additionally, its mRNA 

expression was inversely correlated to the cannabinoid receptor type 1. The impact of G alpha 

z in MCL pathobiology needs to be investigated further, with emphasis on its potential role in 

the positioning of the cells in tissue.  

We also described differential gene signatures upon adhesion to stromal cells from two MCL 

cell lines (Rec-1 and JeKo-1) of different tissue origin. We found different signalling signature 

involved in the cell adhesion of those two cell lines, and identified potential mechanism behind 

different response of MCL to Btk inhibitor therapy. The co-culture system used could help to 

identify resistance/sensitivity of lymphoma cells to treatment before therapy.  

In addition, we identified that the endocannabinoid 2-arachidonoylglycerol induced 

chemotaxis of MCL and CLL primary cells and MCL cell lines. We reported that the 2-AG-

induced chemotaxis cross-talks with CXCR4 signalling. The current data on 2-AG-mediated 

chemotaxis of these cells, as well as the apparent redistribution of malignant and non-malignant 

cells upon the single administration of THC and CBD combination, support the hypothesis that 

the endocannabinoid system is involved in regulating circulation of lymphoma cells. 

Finally, we reported that the use of combined THC and CBD (ratio 1:1) in lymphoma patients 

has to be considered with caution. Indeed, we observed that THC/CBD affects immune cells, 

and that it might lead to the malignant cell survival instead of an anti-tumoral treatment due to 

the possible redistribution of cells in lymphoid tissues. 
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6 POINTS OF PERSPECTIVE 

 

Although several research questions were answered during my PhD studies, many other aspects 

of this research topic would need further investigation. 

For instance, we identified the protein G alpha z upregulated in MCL, but it would be 

interesting to see whether it is also dysregulated in other lymphoma subtypes. Moreover, the 

receptor to which G alpha z binds it is still unknown, as well as the type of signalling that it 

triggers.  

Additionally, we tested the effects of gene downregulation on chemotaxis towards a few 

chemokines, but it would be interesting to check if GNAZ downregulation affects the 

chemotaxis mediated by the endocannabinoid 2-AG.  

As there are currently no reliable antibody for cannabinoid receptors to use in lymphoma cells, 

it would be of importance to develop new strategies to visualize the protein expression in cells. 

Also, we could set up an in situ hybridization method on tissue sections to see where/which 

cell expresses the mRNA.  

Additionally, an investigation on the expression of other cannabinoid-binding receptors in 

MCL cell lines, and MCL and CLL primary cells would be important to decipher the 

mechanism behind the change of chemotaxis when CXCL12 and 2-AG are combined.  

Regarding the effects of the combination CBD and THC in lymphoma patients, measurements 

of cytokines and endocannabinoids (2-AG and anandamide) levels in plasma would provide a 

more complete view on the impact of cannabinoids in vivo. It would also be interesting to 

understand the decrease of lymphocytes counts in blood by setting up a chemotaxis assay with 

primary cells treated with THC and CBD ex vivo, as well as by doing phospho-proteomic 

analysis, which would indicate which signalling pathways are affected.  
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