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ROMAN GAME DOMINATION SUBDIVISION NUMBER OF A GRAPH
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Communicated by Hamid Reza Maimani

Abstract. A Roman dominating function on a graph G = (V,E) is a function f : V −→ {0, 1, 2}
satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for

which f(u) = 2. The weight of a Roman dominating function is the value w(f) =
∑

v∈V f(v). The

Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman

dominating function on G. The Roman game domination subdivision number of a graph G is defined

by the following game. Two players D and A, D playing first, alternately mark or subdivide an edge

of G which is not yet marked nor subdivided. The game ends when all the edges of G are marked or

subdivided and results in a new graph G′. The purpose of D is to minimize the Roman domination

number γR(G′) of G′ while A tries to maximize it. If both A and D play according to their optimal

strategies, γR(G′) is well defined. We call this number the Roman game domination subdivision number

of G and denote it by γRgs(G). In this paper we initiate the study of the Roman game domination

subdivision number of a graph and present sharp bounds on the Roman game domination subdivision

number of a tree.

1. Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set E(G) (briefly V and E).

The number of vertices of a graph G is its order n = n(G). For every vertex v ∈ V , the open

neighborhood NG(v) = N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v

is the set NG[v] = N [v] = N(v) ∪ {v}. Similarly, the open neighborhood of a set S ⊆ V is the set

NG(S) = N(S) = ∪v∈SN(v), and the closed neighborhood of S is the set NG[S] = N [S] = N(S) ∪ S.

For a vertex v in a rooted tree T , let D(v) denote the set of descendants of v and D[v] = D(v) ∪ {v}.
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The maximal subtree at v is the subtree of T induced by D[v], and is denoted by Tv. For terminology

and notation on graph theory not defined here, the reader is referred to [7].

A vertex v ∈ V is said to dominate all the vertices in its closed neighborhood N [v]. A subset D

of V is a dominating set of G if D dominates every vertex of V \ D at least once. The domination

number γ(G) is the minimum cardinality among all dominating sets of G. Similarly, a subset D of

V is a 2-dominating set of G if D dominates every vertex of V \D at least twice. The 2-domination

number γ2(G) is the minimum cardinality among all 2-dominating sets of G.

The game domination subdivision number of graph G, introduced by Favaron et al. in [5], is defined

by the following game. Two players A and D alternately play on a given graph G, D playing first, by

marking or subdividing an edge of G. An edge which is neither marked nor subdivided is said to be

free. At the beginning of the game, all the edges of G are free. At each turn, D marks a free edge of

G and A subdivides a free edge of G by a new vertex. The game ends when all the edges of G are

marked or subdivided and results in a new graph G′. The purpose of D is to minimize the domination

number γ(G′) of G′ while A tries to maximize it. If both A and D play according to their optimal

strategies, γ(G′) is well defined. We call this number the game domination subdivision number of G

and denote it by γgs(G).

A Roman dominating function (RDF) on a graph G = (V,E) is defined in [10, 11] as a function

f : V −→ {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to

at least one vertex u for which f(u) = 2. The weight of an RDF is the value w(f) =
∑

v∈V f(v).

The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of an

RDF on G. A γR(G)-function is a Roman dominating function of G with weight γR(G). A Roman

dominating function f : V −→ {0, 1, 2} can be represented by the ordered partition (V0, V1, V2) of V ,

where Vi = {v ∈ V | f(v) = i}. In this representation, the weight of f is w(f) = |V1| + 2|V2|. The

Roman domination number has been studied by several authors (see for example [2, 3, 6, 8, 9]).

We propose here a similar game based on the Roman domination number. Two players A and

D alternately play on a given graph G, D playing first, by marking or subdividing an edge of G.

At the beginning of the game, all the edges of G are free. At each turn, D marks a free edge of G

and A subdivides a free edge of G by a new vertex. The game ends when all the edges of G are

marked or subdivided and results in a new graph G′. The purpose of D is to minimize the Roman

domination number γR(G′) of G′ while A tries to maximize it. If both A and D play according to

their optimal strategies, γR(G′) is well defined. We call this number the Roman game domination

subdivision number of G and denote it by γRgs(G). As the Roman domination number of any graph

obtained by subdividing some of its edges is at least as large as the Roman domination number of the

graph itself, we clearly have γR(G) ≤ γRgs(G).

Our purpose in this paper is to initiate the study of the Roman game domination subdivision

number of a graph. We first determine γRgs(G) for several classes of graphs, and then we establish

some bounds on it when G is a tree.
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2. Preliminary Results

Observation 2.1. Consider the variant of the game defined by the same rule with the exception that

in one turn of the game, D is allowed to mark two free edges instead of one. For this variant, the

Roman game domination subdivision number γ′Rgs satisfies γ′Rgs(G) ≤ γRgs(G).

Proposition 2.2. Let G be a connected graph, D a dominating set of G such that V \D is independent,

A the set of the vertices of V \D having at least two neighbors in D, and B = V \ (D ∪A). Then

γRgs(G) ≤ 2|D|+
⌊
|B|
2

⌋
.

Proof. First Player D marks an edge between D and B when B 6= ∅, otherwise any free edge, and

continues as follows. When A subdivides an edge between D and B then D marks a free edge between

D and B if any, otherwise any free edge. When A subdivides an edge wu between D and A with

w ∈ D and u ∈ A then D marks a free edge w′u with w′ ∈ D if any, otherwise any free edge. In the

end of the game, the vertices of A and those of a subset B′ of B are extremity of a marked edge and

the function f : V (G′)→ {0, 1, 2} defined by f(v) = 2 for v ∈ D, f(v) = 1 for v ∈ B \B′ and f(v) = 0

otherwise, is a Roman dominating function of the resulting graph G′. Since D began, |B′| ≥ d |B|2 e.
Hence γRgs(G) = γR(G′) ≤ 2|D|+

⌊
|B|
2

⌋
. �

The next result is an immediate consequence of Proposition 2.2.

Proposition 2.3. If X is an independent set of G such that V \ X is a 2-dominating set, then

γRgs(G) ≤ 2(n− |X|). In particular, if δ(G) ≥ 2 then γRgs(G) ≤ 2(n− α(G)).

Proposition 2.4. ([12]) If G is a bipartite graph, then α(G) = n(G)/2 if and only if n(G) is even

and G has a perfect matching.

Corollary 2.5. If G is a bipartite graph with δ(G) ≥ 2, then γRgs(G) ≤ n(G), with equality only if

n(G) is even and G has a perfect matching.

Proof. If G is a bipartite graph, then α(G) ≥ n(G)/2. Using Proposition 2.3, we arrive at γRgs(G) ≤
2(n(G) − α(G)) ≤ n(G). If n(G) is odd or G has no perfect matching, then Proposition 2.4 implies

that α(G) < n(G)/2 and it follows from Proposition 2.3 that γRgs(G) ≤ n(G)− 1. �

Proposition 2.6. For n ≥ 2, γRgs(K1,n−1) = dn+2
2 e.

Proof. A subdivides bn−1
2 c edges and thus γRgs(K1,n−1) = bn−1

2 c+ 2 = dn+2
2 e. �

The next proposition can be found in [3].

Proposition 2.7. For the classes of paths Pn and cycles Cn,

γR(Pn) = γR(Cn) =
⌈

2n
3

⌉
.

Proposition 2.8. For n ≥ 2 for a path and n ≥ 3 for a cycle, γRgs(Pn) = γRgs(Cn) = n.
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Proof. In the game on a path or a cycle, all the strategies of D and A are equivalent since subdividing

any edge of a path or cycle results a new path or cycle with one more vertex. If G = Pn, then A
subdivides bn−1

2 c edges and G′ = Pn′ with n′ = n + bn−1
2 c. If G = Cn, then A subdivides bn2 c edges

and G′ = Cn′ with n′ = n + bn2 c. Applying Proposition 2.7, we have γR(Pn′) = γR(Cn′) = d2n′

3 e and

therefore

γRgs(Pn) = γRgs(Cn) =

⌈
2(n+ bn−1

2 c)
3

⌉
=
⌈

2(n+ bn2 c)
3

⌉
= n.

�

If G is an even cycle Cn, then Proposition 2.8 shows that equality in Corollary 2.5 is possible. The

following lower bound for the Roman domination number of any graph is proved in [4].

Proposition 2.9. For any graph G of order n and maximum degree ∆ ≥ 1,

γR(G) ≥ 2n
∆ + 1

.

Proposition 2.10. Let G be an r-regular graph of order n with r ≥ 2. Then

γRgs(G) ≥
⌈

2(n+ b(rn)/4c)
r + 1

⌉
.

Proof. The graph G has (rn)/2 edges. Therefore player A subdivides b(rn)/4c edges. It follows that

the resulting graph G′ has maximum degree r and n + b(rn)/4c vertices. Using Proposition 2.9, we

deduce that

γRgs(G) = γR(G′) ≥
⌈

2(n+ b(rn)/4c)
r + 1

⌉
.

�

If Cn is a cycle of order n, then Proposition 2.8 shows that

γRgs(Cn) = n =
⌈

2(n+ b(2n)/4c)
3

⌉
.

Therefore Proposition 2.10 is sharp, at least for r = 2.

The Dutch-windmill graph, K(m)
3 , is a graph which consists of m copies of K3 with a vertex in

common.

Proposition 2.11. For every positive integer m, γRgs(K
(m)
3 ) = 2 + dm2 e+ 2bm2 c.

Proof. By Proposition 2.8, we may assume that m ≥ 2. Let v, ui, wi are the vertices of the i-th copy

of K3 in K
(m)
3 (v is the common vertex). In the graph K

(m)′

3 obtained at the end of the game, let p

and q be the numbers of cycles whose one edge respectively, two edges are subdivided. Then clearly

γR(K(m)′

3 ) = 2 + p+ 2q.

The strategy of A is as follows. When some edge remains free after D has played, A subdivides a

free edge in a cycle whose one edge is marked and one edge is subdivided if possible, otherwise a free

edge in a cycle with two marked edges if possible, otherwise a free edge of cycle that all its edges are

free if possible, otherwise a free edge in the cycle still having free edges. On this way, the number of
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cycles with at least two subdivided edges is bm2 c and the number of cycles with one subdivided edge

is dm2 e. Hence γR(K(m)′

3 ) = 2 + dm2 e+ 2bm2 c. �

For two positive integers p and q, we call a double star DSp,q the graph obtained from two stars

K1,p of center u and K1,q of center v by adding the edge uv.

Proposition 2.12. For the double star DS1,q of order n = q + 3,

γRgs(DS1,q) = 2 +
⌈n

2

⌉
.

Proof. If q = 1, the result follows from Proposition 2.8. Let q ≥ 2. Then, Player D cannot prevent A
to subdivide some edge of the star K1,q. If q = 2, then clearly γRgs(DS1,2) = 5 = 2 + dn2 e. Assume

henceforth q ≥ 3. Player A subdivides b q+2
2 c edges that among them q′ are edges of the star K1,q

with 0 < q′ ≤ b q+2
2 c < q. Thus the resulting graph DS′1,q has Roman domination number q′ + 3 if

q′ = b q+2
2 c and q′ + 4 when q′ ≤ b q

2c . Hence D tries to mark and A to subdivide the largest possible

number of edges of the star K1,q. At the end of the game, as D began, b q
2c edges of the star are

subdivided and γR(DS′1,q) = b q
2c+ 4 = bn+1

2 c+ 2 = dn2 e+ 2. �

Proposition 2.13. For the double star DSp,q of order n = p+ q + 2 with 2 ≤ p ≤ q,

γRgs(DSp,q) =

{
n+1

2 + 2 if n is odd
n
2 + 3 if n is even

=
⌈
n+ 1

2

⌉
+ 2.

Proof. In the graph DS′p,q obtained at the end of the game, let p′ and q′ be the numbers of edges which

have been subdivided in the stars K1,p and K1,q respectively. Moreover, let η = 1 if uv is subdivided,

η = 0 otherwise. Clearly p′ + q′ + η = bn−1
2 c and p′ + q′ ≤ bn−1

2 c < n− 2 = p+ q. Then

γR(DS′p,q) = p′ + q′ + 4 =
⌊
n− 1

2

⌋
− η + 4.

The strategy of A is as follows. When some edge remains free after D has played, A subdivides a

free edge in a star already containing marked edges if possible, otherwise a free edge of the star still

having the maximum number of free edges if possible, otherwise the edge uv. On this way, A never

simultaneously subdivides uv and all the edges of a star. Hence γR(DS′p,q) ≥ bn−1
2 c+ 4. Moreover if

n is even, then A does not subdivide uv, p′ < p, q′ < q, p′ + q′ = p+q
2 , and γR(DS′p,q) = p′ + q′ + 4 =

p+q
2 + 4 = n−2

2 + 4 = n
2 + 3. If n is odd, the total number of edges is even and if D never marks uv, A

is obliged to subdivide it. Hence η = 1 and γR(DS′p,q) = bn−1
2 c+ 3 = n+1

2 + 2. �

Theorem 2.14. If p and q are two integers with 2 ≤ p ≤ q, then

p+ 2 ≤
⌈

2(p+ q + b(pq)/2c)
q + 1

⌉
≤ γRgs(Kp,q) ≤ 2p.

In particular, γRgs(Kp,q) = 2p for 2 ≤ p ≤ 4,

Proof. Applying Proposition 2.3, we obtain γRgs(Kp,q) ≤ 2(p+ q − q) = 2p.
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The graph G = Kp,q has pq edges. Therefore player A subdivides b(pq)/2c edges. It follows that

the resulting graph G′ has maximum degree q and p + q + b(pq)/2c vertices. Using Proposition 2.9,

we deduce that

γRgs(G) = γR(G′) ≥
⌈

2(p+ q + b(pq)/2c)
q + 1

⌉
.

Now it is straightforward to verify that⌈
2(p+ q + b(pq)/2c)

q + 1

⌉
≥ p+ 2,

and thus the desired inequality chain is proved. It follows that γRgs(K2,q) = 4 = 2p for p = 2.

For p = 3, we deduce that 5 ≤ γRgs(K3,q) ≤ 6. Suppose that there exists a γR(G′)-function

f = (V0, V1, V2) with weight γR(G′) = 5. Since γR(G′) = 5 = |V1| + 2|V2|, we see that |V1| ≥ 1

and |V2| ≤ 2. Thus V1 ∪ V2 dominates at most 1 + 2(q + 1) = 2q + 3 vertices of G′. However, G′

contains q + 3 + b(3q)/2c vertices. This leads to the contradiction q + 3 + b(3q)/2c > 2q + 3, and so

γRgs(K3,q) = 6.

For p = 4, we deduce that

7 =
⌈

2(4 + q + 2q)
q + 1

⌉
≤ γR(G′) = γRgs(K4,q) ≤ 2p = 8.

Suppose that there exists a γR(G′)-function f = (V0, V1, V2) with weight γR(G′) = 7. Since γR(G′) =

7 = |V1|+2|V2|, we see that |V1| ≥ 1 and |V2| ≤ 3. Thus V1∪V2 dominates at most 1+3(q+1) = 3q+4

vertices of G′. Let X = {x1, x2, x3, x4} and Y = {y1, y2, . . . , yq} be the partite sets of K4,q, and

let V2 = {u1, u2, u3} and V1 = {v}. Since G′ contains exactly 3q + 4 vertices, we observe that

|NG′ [ui]| = q + 1 and NG′ [ui] ∩NG′ [uj ] = ∅ for 1 ≤ i 6= j ≤ 3. Therefore {u1, u2, u3} ⊂ X and v ∈ X.

We note that it is no problem for player A to subdivide an edge adjacent to u1, u2, u3 and v. If player

A has subdivided the edge vw by vz and zw, then the vertex z is not dominated by V1 ∪ V2. This

contradiction shows that γR(G′) = 7 is not possible and so γR(G′) = γRgs(K4,q) = 2p = 8. �

Conjecture 1. If p and q are two integers with 2 ≤ p ≤ q, then γRgs(Kp,q) = 2p.

Theorem 2.14 shows that Conjecture 1 is valid for 2 ≤ p ≤ 4.

3. Trees

In this section we present lower and upper bounds on the Roman game domination subdivision

number of a tree.

3.1. An upper bound in terms of 2-domination number. First we present an upper bound on

the Roman game domination subdivision number of trees in terms of 2-domination number and then

we characterize all extremal graphs. A vertex of degree one is a leaf and a support vertex is a vertex

that is adjacent to at least one leaf.

Theorem 3.1. For any tree T of order n ≥ 2,

γRgs(T ) ≤ 2γ2(T )− 1.
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Proof. The proof is by induction on n. Obviously, the statement is true for n ≤ 3. Assume the

statement is true for all trees of order less than n, where n ≥ 4. Let T be a tree of order n. If T

is a star K1,n−1, then γ2(T ) = n − 1 and, by Proposition 2.6, γRgs(T ) = dn+2
2 e. This implies that

γRgs(T ) < 2γ2(T ) − 1. If T is a double star DSp,q then by Propositions 2.12 and 2.13, γRgs(T ) <

2γ2(T ) − 1. Hence, we assume that T is not a star or double star. Then diam(T ) ≥ 4. Assume

that P = v1v2 . . . vk, k ≥ 5, is a longest path of T . We denote dT (vk−1) = t. Let D be a minimum

2-dominating set of T not containing vk−1. It is easy to see that such a minimum 2-dominating set

exists. We consider two cases. In each of them, we define a subtree T1 of order at least two of T and

a strategy for D. We denote by T ′ and T ′1 the trees obtained from T and T1 at the end of the game.

Case 1. Assume that t ≥ 3.

Let u1, u2, . . . , ut−2, vk be the leaves adjacent to vk−1. Then {u1, u2, . . . , ut−2, vk} ⊆ D. Clearly, the

set D \ {u1, u2, . . . , ut−2, vk} is a 2-dominating set of the tree T1 = T − Tvk−1
and thus

γ2(T1) ≤ γ2(T )− (t− 1).

Player D plays the game according to an optimal strategy on T1 as long as A subdivides an edge of

T1. If A subdivides an edge in {vk−2vk−1, vk−1vk, vk−1u1, . . . , vk−1ut−2}, then D marks a free edge in

{vk−1vk, vk−1u1, . . . , vk−1ut−2} provided that is any. Otherwise, D marks an arbitrary free edge in T1.

It follows from Observation 2.1 that γR(T ′1) ≤ γRgs(T1). It is easy to see that γR(T ′) ≤ γR(T ′1)+2+b t
2c.

Hence

γRgs(T ) ≤ γR(T ′) ≤ γR(T ′1) + 2 + b t
2
c ≤ γRgs(T1) + 2 + b t

2
c.

It follows from the induction hypothesis and the fact t ≥ 3 that

(3.1) γRgs(T ) ≤ γRgs(T1) + 2 + b t
2
c ≤ (2γ2(T1)− 1) + 2 + b t

2
c ≤ 2γ2(T )− 2t+ 3 + b t

2
c ≤ 2γ2(T )− 2.

Case 2. Assume that t = 2.

Since vk−1 /∈ D, {vk, vk−2} ⊆ D and D \ {vk} is a 2-dominating set of the tree T1 = T − {vk, vk−1}.
Thus

γ2(T1) ≤ γ2(T )− 1.

Player D plays the game according to an optimal strategy on T1 as long as A subdivides an edge

of T1 and when A subdivides one edge in {vk−2vk−1, vk−1vk} then D marks the second edge in

{vk−2vk−1, vk−1vk}. We may assume, without loss of generality, that A subdivides the edge vk−1vk

by a new vertex z. We can extend each γR(T ′1)-function, f , to a Roman dominating function of T ′ by

assigning 2 to z. Hence

γRgs(T ) ≤ γRgs(T1) + 2.

By the induction hypothesis we have

(3.2) γRgs(T ) ≤ γRgs(T1) + 2 ≤ 2γ2(T1)− 1 + 2 ≤ 2γ2(T )− 1.

This completes the proof. �
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In what follows, we provide a constructive characterization of all trees T for which γRgs(T ) =

2γ2(T )− 1. To do this, we describe a procedure to build a family F of labeled trees that attains the

bound in Theorem 3.1. First we define the following operation on labeled trees. The label of a vertex

is also called its status and denoted sta(v). Let F be the family of labeled trees that:

(1) contains P3 where the two leaves have status A, and the central vertex has status B, and

(2) is closed under the operation T, which extend the tree T by attaching a tree to the vertex

y ∈ V (T ), called the attacher.

Operation T. If sta(y) = A, then T adds a path yxw to T with sta(x) = B and sta(w) = A.

s s s
&%
'$

ABA
T :

Figure 1. The operation

If T ∈ F , we let A(T ) and B(T ) be the set of vertices of status A and B, respectively, in T .

Observation 3.2. Let T ∈ F and v ∈ V (T ).

(1) If v is a leaf, then sta(v) = A and if v is a support vertex, then sta(v) = B.

(2) If sta(v) = B, then deg(v) = 2 and the neighbors of v have status A.

(3) If sta(v) = A, then all neighbors of v have status B.

(4) A(T ) is an independent set.

(5) B(T ) is an independent set.

Proposition 3.3. If T ∈ F , then γ2(T ) = |A(T )|.

Proof. We show that A is the unique minimum 2-dominating set of T . By Observation 3.2, the set A

is a 2-dominating set of T , but not B which contains no leaf. Let A1 ∪ B1 with A1 ⊂ A and B1 ⊆ B

be another 2-dominating set. Every vertex of A \ A1 is 2-dominated by B1. Since T is a tree, the

number e(B1, A \A1) of edges between B1 and A \A1 satisfies

2(|A| − |A1|) ≤ e(B1, A \A1) ≤ |B1|+ |A| − |A1| − 1.

Hence |B1| + |A1| ≥ |A| + 1, which shows that A is the unique minimum 2-dominating set of T and

γ2(T ) = |A|. �

Proposition A. (Atapour et al. [1]) Let T ′ be a tree of order at least 3 and y ∈ V (T ′). Let T be a

tree obtained from T ′ by attaching a path uvw to T ′ with an edge yu. Then γR(T ) = γR(T ′) + 2.

Theorem 3.4. If T ∈ F , then γRgs(T ) = 2γ2(T )− 1.

Proof. Let T ∈ F be obtained from a path P3 by successive operations T1,T2, . . . ,Tm, where Ti = T

if m ≥ 1 and T = P3 if m = 0. The proof is by induction on m. If m = 0, then clearly the statement

is true. Let m ≥ 1 and assume that the statement holds for all trees which are obtained from P3



Trans. Comb. 2 no. 4 (2013) 1-12 J. Amjadi, H. Karami, S. M. Sheikholeslami and L. Volkmann 9

by applying at most m − 1 operations. Let Tm−1 be the tree obtained from P3 by the first m − 1

operations T1,T2, . . . ,Tm−1. Then Tm adds a path xx1x2 in which x ∈ A(Tm−1).

The strategy of A is that he plays the game according to an optimal strategy on Tm−1 = Tm −
{x1, x2}, as long as D marks edges of Tm−1, and when D marks an edge in F = {xx1, x1x2} then A
subdivides the other edge in F with a new vertex z. Suppose T ′m is the tree obtained at the end of

the game. Then T ′m − {x1, x2, z} is the tree T ′m−1 obtained from Tm−1 at the end of the game and

γRgs(Tm−1) = γR(T ′m−1). It follows from Proposition A that

γRgs(Tm) = γR(T ′m) = γR(T ′m−1) + 2 = γRgs(Tm−1) + 2.

By the inductive hypothesis and Proposition 3.3, we have

γRgs(Tm) = γRgs(Tm−1) + 2 = 2γ2(Tm−1) + 1 = 2|A(Tm−1)|+ 1

= 2(|A(Tm−1)|+ 1)− 1 = 2|A(Tm)| − 1 = 2γ2(Tm)− 1.

This completes the proof. �

Theorem 3.5. Let T be a tree of order n ≥ 2. Then γRgs(T ) = 2γ2(T )− 1 if and only if T ∈ F .

Proof. By Theorem 3.4, we only need to prove that every tree T with γRgs(T ) = 2γ2(T ) − 1 is in

F . We prove this by induction on n. Since γRgs(T ) = 2γ2(T ) − 1, we have n ≥ 3. If n = 3, then

the only tree T of order 3 and γRgs(T ) = 2γ2(T ) − 1 is P3 ∈ F . Let n ≥ 4 and assume that the

statement holds for every tree of order less than n with γRgs(T ) = 2γ2(T ) − 1. Let T be a tree of

order n and γRgs(T ) = 2γ2(T ) − 1. Assume that P = v1v2 . . . vr is a longest path in T . Obviously,

deg(v1) = deg(vr) = 1 and deg(v2) = deg(vr−1) = 2 by the proof of Theorem 3.1. Since γ2(P4) = 3

and γRgs(P4) = 4, we have n ≥ 5. Suppose that T is rooted at v1.

Let T1 = T − {vr, vr−1}. Since γRgs(T ) = 2γ2(T ) − 1, the inequalities occurring in (3) become

equalities. Hence γRgs(T1) = 2γ2(T1) − 1. By the inductive hypothesis, T1 ∈ F . We claim that

staT1(vr−2) = A. In that case, T can be obtained from T1 by the operation T. Suppose to the

contrary that staT1(vr−2) = B. Suppose that D is a minimum 2-dominating set of T not containing

vr−1. Then vr−2 ∈ D and D − {vr} is a 2-dominating set of T1 containing a vertex with status B.

It follows from the proof of Proposition 3.3 that |D| − 1 ≥ γ2(T1) + 1 and hence γ2(T ) = γ2(T1) + 2.

Then

γRgs(T ) ≤ γRgs(T1) + 2 = 2γ2(T1)− 1 + 2 = 2(γ2(T )− 2) + 1 ≤ 2γ2(T )− 3,

which is a contradiction. This completes the proof. �

3.2. Bounds in terms of order. A support vertex is said to be an end-support vertex if all its

neighbors except one of them are leaves.

Theorem 3.6. For any tree T of order n ≥ 2,

γRgs(T ) ≥
⌈
n+ 2

2

⌉
,

with equality if and only if T is a star.
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Proof. The proof is by induction on n. Clearly, the statement is true for n = 2, 3. Assume that the

statement is true for all trees of order less than n, where n ≥ 4. Let T be a tree of order n. If T

is a star, then the result is immediate by Proposition 2.6. If T is a double star, then it follows from

Propositions 2.12 and 2.13 that γgs(T ) > dn+2
2 e. Suppose that diam(T ) ≥ 4. Let P = v1v2 . . . vk be

a diametral path in T and let d = dT (vk−1) and t = dT (v2). Assume that u1, u2, . . . , ud−2, vk are the

leaves adjacent to vk−1 if d ≥ 3 and u′1, u
′
1, . . . , u

′
t−2, v1 are the leaves adjacent to v2 when t ≥ 3.

First let d be even. The strategy of A is that he plays the game according to an optimal strategy

on T1 = T − Tvk−1
, where T is rooted in v1, as long as D marks edges of T1, and when D marks an

edge in F = {vk−2vk−1, u1vk−1, . . . , ud−2vk−1, vk−1vk} then A subdivides a free edge in F . Suppose

that T ′ is the tree obtained at the end of the game. Clearly A subdivides exactly d
2 edges in F .

Let {z1, z2, . . . , z d
2
} be the subdivision vertices used to subdivide the edges in F . Then T ′ − T ′vk−1

is

the tree T ′1 obtained from T1 at the end of the game and γRgs(T1) = γR(T ′1). It is easy to see that

γR(T ′) ≥ γR(T ′1) + d
2 + 1. This implies that γRgs(T ) ≥ γRgs(T − {vk−1, vk, u1, . . . , ud−2}) + d

2 + 1. By

the induction hypothesis we have

γRgs(T ) ≥ γRgs(T − Tvk−1
) + d

2 + 1

≥ dn−d+2
2 e+ d

2 + 1

≥ dn+4
2 e > d

n+2
2 e.

Similarly, if t is even, then γRgs(T ) > dn+2
2 e. Thus we assume that t and d are odd.

If diam(T ) = 4 and deg(v3) = 2, then it is easy to see that γRgs(T ) > dn+2
2 e. Thus we as-

sume that deg(v3) ≥ 3 or diam(T ) > 4. Player A plays according to an optimal strategy on

T1 = T − {u1, . . . , ud−2, vk−1, vk, u
′
1, . . . , u

′
t−2, v1, v2} as long as D marks edges of T1, and when D

marks an edge in {vk−2vk−1, v2v3} then A subdivides the other edge in {vk−2vk−1, v2v3} with vertex

z, when D marks an edge in F1 = {vkvk−1, u1vk−1, . . . , ud−2vk−1} then A subdivides a free edge in

{vkvk−1, u1vk−1, . . . , ud−2vk−1} and when D marks an edge in F2 = {v1v2, u′1v2, . . . , u′t−2v2} then A
subdivides a free edge in {v1v2, u′1v2, . . . , u′t−2v2}. Suppose that T ′ is the tree obtained at the end

of the game. Clearly A subdivides one edge in {vk−2vk−1, v2v3}, exactly d−1
2 edges in F1 and ex-

actly t−1
2 edges in F2. Let {z1, z2, . . . , z d−1

2
} be the subdivision vertices used to subdivide the edges

in F1 and {z′1, z′2, . . . , z′t−1
2

} be the subdivision vertices used to subdivide the edges in F2. Then

T ′ − {z, u1, . . . , ud−2, vk−1, vk, z1, . . . , z d−1
2
, v1, v2, z

′
1, . . . , z

′
t−1
2

} is the tree T ′1 obtained from T1 at the

end of the game and γRgs(T1) = γR(T ′1). It is easy to see that γR(T ′) ≥ γR(T ′1) + 2 + d−1
2 + t−1

2 .

It follows from the induction hypothesis that γRgs(T ) ≥ dn−d−t+2
2 e + 2 + d−1

2 + t−1
2 > dn+2

2 e. This

completes the proof. �

Theorem 3.7. For any tree T of order n ≥ 2,

γRgs(T ) ≤ n.
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Moreover, γRgs(T ) = n only when n = 2, 3, T ∈ {DS1,1, DS1,2, DS2,2} or diam(T ) ≥ 4 and all the

end-support vertices of T have degree at most 4 and at most one of them has degree 4.

Proof. The proof is by induction on n. If n = 2, 3, then clearly γRgs(T ) = n. Let n ≥ 4. Assume that

the result is true for any non-trivial tree of order less than n, and let T be a tree of order n. If T is a

star, then γRgs(T ) < n by Proposition 2.6 and n ≥ 4. Assume that T is not a star. If T is a double

star, then it follows from Propositions 2.12 and 2.13 that γRgs(T ) ≤ n with equality if and only if

T ∈ {DS1,1, DS1,2, DS2,2}.
Now let diam(T ) ≥ 4, and let x be an end-support vertex of degree dT (x) = t of T , y1, y2, . . . , yt−1

the leaves attached at x, and z the neighbor of x of degree at least 2. The tree T1 = T−{x, y1, y2, . . . , yt−1}
has order at least two. In the following three cases, we define a strategy for D and denote by T ′ and

T ′1 the trees obtained from T and T1 at the end of the game.

Case 1. The tree T has an end-support vertex of degree at least 5.

Player D plays its best strategy on T1 as long as A subdivides edges of T1. When A subdivides an

edge of {xz, xy1, . . . , xyt−1}, then D marks a free edge in {xy1, . . . , xyt−1}. It is easy to see that

γR(T ′) ≤ γR(T ′1) + b t
2c+ 2. Hence, by the induction hypothesis and t ≥ 5,

γRgs(T ) = γR(T ′) ≤ γR(T ′1) +
⌊
t

2

⌋
+ 2 = γRgs(T1) +

⌊
t

2

⌋
+ 2 ≤ n− t+

⌊
t

2

⌋
+ 2 < n.

Case 2. T admits two end-support vertices x, x′ of degree 4.

Assume that y′1, y′2, y′3 are the leaves attached at x′, and z′ the neighbor of x′ of degree at least 2.

Suppose that T2 = T − {x, y1, y2, y3, x′, y′1, y′2, y′3}. If T2 = K1, then z = z′ and it is easy to see that

γRgs(T ) < n. Let T2 have order at least two. The strategy of D is that he plays its best strategy on T2

as long as A subdivides edges of T2. When A subdivides an edge of {xy1, xy2, xy3, x′y′1, x′y′2, x′y′3},
D marks a free edge of {xy1, xy2, xy3, x′y′1, x′y′2, x′y′3} and when A subdivides an edge in {xz, x′z′},
D marks the other edge in {xz, x′z′}. Clearly γR(T ′) ≤ γR(T ′2) + 7. By the inductive hypothesis, we

have

γRgs(T ) = γR(T ′) ≤ γR(T ′2) + 7 = γRgs(T2) + 7 ≤ n− 8 + 7 < n.

Case 3. All the end-support vertices of T have degree at most 4 and at most one of them has degree

4.

Let x be an end-support vertex of degree t. Player D plays its best strategy on T1 as long as A
subdivides edges of T1. When A subdivides an edge of {xy1, xy2, . . . , xyt−1, xz}, D marks an edge of

{xy1, xy2, . . . , xyt−1} if possible, otherwise the edge xz if still free, otherwise any other free edge of

T1. At the end of the game, at most b t
2c edges of xy1, xy2, . . . , xyt−1 are subdivided. It is easy to see

that γR(T ′) ≤ γR(T ′1) + 2 when t = 2 and γR(T ′) ≤ γR(T ′1) + 2 + b t
2c when t = 3, 4. It follows from

the induction hypothesis that γRgs(T ) ≤ γR(T ′) ≤ n and the proof is complete. �

We conclude this paper with the following conjecture.

Conjecture 2. For any graph G of order n, γRgs(G) ≤ n.
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