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I. Introduction 

I.1 Diseases and healthcare 

Pathogens have co-evolved with their hosts in a so called ‘arms race’ [1]. Mutations in either 

the host or pathogen are favored if they confer improved resistance or pathogenicity [2]. After 

each mutation, a new equilibrium between host and pathogen is established. From the 

beginning of society, humans have tried to shift this equilibrium in their favor using potions 

and herbs [3]. The motivation to do so was the improvement in health through the absence of 

disease, which has ultimately led to modern medicine, pharmacology and healthcare systems. 

I.2 Biopharmaceuticals 

In pre-industrialized times, drugs were often prepared as a crude mixture of substances 

isolated from natural biological sources such as plants [4, 5]. These were the earliest 

biopharmaceuticals. With the emergence of natural sciences in the 18
th

 and 19
th

 centuries, the 

concept that drugs must contain a certain active pharmaceutical ingredient (API) was 

developed, whereupon traditional drugs fell into disrepute because it was impossible to 

identify specific APIs in their formulations [5]. Many subsequent drugs therefore contained 

chemically-synthesized molecules such as acetylsalicylic acid or sulfonamides as APIs until 

the mid-20
th

 century [6-8]. Biopharmaceuticals were re-established as scientifically-sound 

drugs from the late 19
th

 to mid-20
th

 century e.g. by the works of Emil von Behring (diphtheria 

antitoxin) and Alexander Fleming (antibiotics) [9-12]. The advantage of biopharmaceuticals 

over chemically-synthesized APIs is that their structure can be much more complex, allowing 

complex disease mechanisms to be targeted [13-18]. This is because biopharmaceutical 

production uses the selectivity and efficiency of enzymes [19], which may be provided by 

cultured microbial or mammalian cells as well as whole organisms such as plants [20]. 

Biopharmaceuticals can be divided into two major groups. The first consists of small 

molecules (often secondary metabolites) that are synthesized naturally by cells [9, 21, 22]. 

Metabolic engineering allows alternative hosts to produce the same molecules. For example, 

paclitaxel (Taxol) is isolated from Taxus brevifolia (Pacific yew tree) and is used to treat 

breast cancer, but it can also be produced in optimized plant cell cultures [13]. The second 

group consists of proteins, and since most medically-relevant proteins are from humans they 

are usually produced in genetically-engineered cells or organisms. 
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I.3 Production of biopharmaceutical proteins 

The first recombinant biopharmaceutical proteins (such as insulin) were produced in the 

bacterium Escherichia coli [23, 24]. However, bacteria have only a limited potential for post-

translational modifications (PTMs) such as phosphorylation and glycosylation, which are 

necessary for the functional efficacy of many human proteins [25]. Bacteria can also produce 

endotoxins that pose a serious risk to human health (e.g. inducing septic shock) when present 

in the final drug product [26]. Therefore, many recombinant proteins are now produced in 

mammalian cell cultures [24]. The most prominent examples are monoclonal antibodies, 

which are often produced in Chinese hamster ovary (CHO) cells with a median sales price of 

$US 8000 per gram and a total market value of more than $US 10 billion [27-30]. Even so, 

mammalian cells suffer disadvantages including the potential for contamination with human 

pathogens such as retroviruses (requiring sterile conditions to be maintained at all times), the 

expensive sterile cultivation equipment including stainless-steel fermenters and expensive 

media [31]. The up-front costs are therefore high despite the trend towards disposable 

technologies aiming to replace most of the fixed-process installations [32]. 

I.4 Plant-made pharmaceuticals 

The first transgenic plants expressing recombinant proteins were developed in the early 1980s 

but the first biopharmaceutical proteins were not produced in plants until 1989 [33-35]. 

Several characteristics have to be considered when selecting a plant species and tissue for 

production [36, 37]. Cereal crops, such as wheat (Triticum L. spp.), barley 

(Hordeum vulgare L.) or maize (Zea mays L.), allow the long-term storage of recombinant 

proteins in seeds but the potential exists to contaminate the human food chain [38, 39]. 

Nicotiana species, such as N. tabacum (common tobacco) or N. benthamiana, offer a high 

biomass yield and recombinant proteins are generally produced in the leaves [40]. However, 

the removal of toxic secondary metabolites such as nicotine must be demonstrated during the 

purification process, although this can be facilitated by selecting a variety with low basal 

levels of nicotine. The first plant-derived pharmaceutical protein (a monoclonal antibody) was 

expressed in tobacco [35] although since then many other pharmaceutical proteins have been 

produced in a diverse range of plants [41]. 

Plants offer numerous advantages for the production of biopharmaceutical proteins 

including the low cost of upstream production, the potential for large-scale cultivation, and 

inherent safety reflecting the inability of human pathogens to replicate in plants [31, 36-38, 

42]. Additionally, plant cells can assemble oligomeric proteins correctly and introduce PTMs 
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[43-45]. The glycosylation of proteins in plants can be controlled to improve API efficacy and 

reduce immunogenicity in humans [46-48]. 

Despite the advantages of plants, the first plant-derived biopharmaceutical product for 

human use was only granted full FDA approval in May 2012 (Elelyso, produced by Protalix 

Biotherapeutics, Carmiel, Israel; FDA application number (NDA) 022458). There are many 

technological and economic reasons for this delay [48, 49]. One technological issue is the low 

and variable yields of recombinant protein in many plant-based platforms (compared to 

established systems such as CHO cells) resulting in batch-to-batch variation [41, 50]. This 

may be caused by gene silencing, particularly when two identical promoters are used to drive 

the expression of different genes, such as those encoding the heavy and light chains of a 

monoclonal antibody [51]. Many strategies have been proposed to prevent homology-based 

gene silencing including the use of synthetic promoters and the generation of combinatorial 

diversity by shuffling different elements from several promoters [52, 53]. The 5'UTR 

sequences should be included in these strategies because sequence repeats shorter than 50 bp 

may still be sufficient to induce gene silencing [51]. The 5'UTRs are known to affect protein 

synthesis, so they are also interesting candidates to improve and/or balance the expression of 

recombinant proteins in their own right [54-59]. Therefore, promoter/5'UTR combinations not 

only affect the level of recombinant protein expression in plants but may also play a crucial 

role in the quality and consistency of a biopharmaceutical product. Promoter/5'UTR 

combinations should therefore be evaluated before designing such a process. 

Mechanistic models have been established for certain promoters in bacteria [60], yeast 

[61, 62] and Drosophila melanogaster embryos [63, 64]. For single-celled organisms these 

models often describe promoter activity in terms of their dependence on one or more 

regulatory molecules (e.g. lactose, LacI and cAMP in case of the lac operon) [60]. Models for 

eukaryotic promoters require more precise knowledge about the transcription factors (TFs) 

involved and their spatiotemporal expression profiles [63, 64]. However, the size and 

complexity of tobacco plants makes it difficult to determine the distribution of TFs and the 

costs of mechanistic modeling are likely to outweigh the benefits. Therefore, the use of 

descriptive rather than mechanistic models seems more appropriate. These models should not 

only consider the promoter and 5'UTR as factors, but should include parameters such as leaf 

age and incubation time because these factors also affect recombinant protein expression and 

will thus improve the model quality if included in the experimental setup [65-68]. However, 

previous studies have either focused on promoter analysis alone [69, 70] or have used cell 

suspension cultures to compare different sequences [54, 56, 57, 71-73]. Some studies 
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considered the temporal accumulation of a reporter protein in seeds or buds rather than leaves 

[74, 75]. Others did not resolve differences among leaves of different ages when analyzing 

promoters [76, 77] or investigated expression in chloroplasts [78]. A model is therefore 

required that links the impact of promoters and 5'UTRs on protein accumulation on one hand 

with the spatiotemporal constraints of transient protein expression in whole plants on the 

other. Such a model would allow the rational evaluation of promoter/5'UTR combinations in 

terms of their suitability for the reproducible, high-level or balanced expression of one or 

several recombinant proteins, thus improving batch-to-batch reproducibility and regulatory 

compliance. 

I.5 Protein expression strategies in plants 

There are two main strategies for the production of recombinant proteins in plants: stable 

expression (transgenic plants) and transient expression [37, 79]. Transgenic plants can be 

generated by the introduction of exogenous DNA into plant cells using particle bombardment 

and other direct transfer methods, or biological delivery with a natural pathogen such as 

Agrobacterium tumefaciens, in each case followed by selection for stable integration events 

[80]. To facilitate selection, the introduced DNA includes a marker gene such as neomycin 

phosphotransferase (nptII) which provides resistance to aminoglycoside antibiotics [81]. 

Transformed cells are usually selected in callus culture, followed by regeneration into fertile 

plants [82]. These are self-pollinated for several generations to produce homozygous 

transgenic plants which will not segregate the transgene nor lose it due to genetic instability 

[83, 84]. The duration of this process depends on the generation time of the plant species, but 

about 24 months are required when using the Petit Havana SR1 variety of tobacco, assuming 

five rounds of self-pollination (T5) [37]. The advantages of stable transgenic plants are the 

reproducible transgene expression levels , the defined master seed bank and the ease of 

scale-up [37, 49, 85]. 

Transient expression allows the rapid production of large amounts of recombinant 

protein because wild-type plants are used, avoiding the time-consuming transformation, 

regeneration and self-pollination steps [66, 85-87]. Transient expression is achieved by 

injecting or vacuum infiltrating leaves with A. tumefaciens carrying either a standard transfer 

DNA (T-DNA) expression construct or a hybrid construct containing elements from plant 

viruses [88]. The T-DNA containing the gene of interest (GOI) is then exported to nearby 

plant cells via a type IV secretion system [89], and imported into the nucleus of recipient cells 

by the combined activity of plant and bacterial proteins, so that the GOI is expressed resulting 
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in the synthesis of the recombinant protein (protein of interest, POI) [88]. Then plants, or 

parts thereof, are harvested after an incubation period of typically 3–8 days [67, 90-92]. Using 

this method, it is possible to obtain the recombinant protein less than two months after the 

DNA construct is provided, and within 3 weeks if wild-type tobacco plants of a suitable age 

are always kept ready [93]. The ability to scale up production rapidly is a significant 

advantage over both transgenic plants and conventional production platforms allowing the 

provision of vaccines in response to sudden epidemic outbreaks, e.g. of influenza or SARS. 

Transient expression also allows the production of proteins that are toxic to plants if they 

accumulate during vegetative growth [94]. 

One drawback of transient expression systems is that they are considered to suffer 

greater batch-to-batch yield variation than transgenic plants, thus conflicting with the 

requirements of current good manufacturing practice (cGMP) [95-97]. The cGMP guidelines 

apply to the production of all biopharmaceuticals and emphasize quality criteria such as 

batch-to-batch consistency and reproducibility [38, 49]. To fulfill cGMP requirements for 

transient expression systems, the sources of variation need to be identified and measures must 

be implemented to reduce or eliminate their impact on the production process. Less 

batch-to-batch variation increases the likelihood of regulatory acceptance and makes it 

possible to predict the outcome of a production process more accurately. Factors such as 

incubation temperature and leaf age can affect the accumulation of recombinant proteins in 

plant tissues during transient expression (I.4), but the precise impact and correlations have not 

been quantified [65, 67]. Therefore, a model describing the dependence of transient protein 

expression in tobacco leaves on process parameters such as post-infiltration incubation 

temperature, plant and leaf age as well as the optical density of the A. tumefaciens solution 

would improve our understanding of the transient expression system substantially. Such a 

model could predict protein expression in future batches and thereby form a process analytical 

technology (PAT) database for parameter and out-of-specification limits under a cGMP-

compliant process. Integrating this model with those for other upstream and/or downstream 

operations (I.4, [98]) could form the basis of a quality by design (QbD) concept for the whole 

production process and would significantly enhance the likelihood of regulatory approval. 

I.6 Plant–bacterial interactions 

As stated above (I.4), the accumulation of recombinant proteins in plants often falls short of 

the levels achieved in more traditional protein expression systems such as mammalian cell 

cultures, e.g. monoclonal antibody manufacturing in CHO cells [41, 50]. Transient expression 
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achieves higher protein yields than expression in transgenic plants [85-87], and a broad set of 

approaches has been developed to improve the transient system further, including the use of 

stronger and/or synthetic promoters [56, 57], the inclusion of 5'UTRs and introns [58], 

combinations of viral and bacterial transformation vectors [99, 100] and the use of silencing 

suppressors [101]. 

 

Figure I.1: Known plant cell targets of the TTEs AvrPtoB, AvrRpt2, HopF2, HopAO1 and HopI1. 

TTE – type III effector; TTSS – type III secretion system; ROS – reactive oxygen species; CDPK – calcium-

dependent protein kinase; MAPK – mitogen-activated protein kinase; HSP70 – heat shock protein 70; SA – 

salicylic acid. Adapted from [102]. 

Type III effectors (TTEs) from the plant pathogen Pseudomonas syringae can also 

boost transient protein expression when induced in genetically-modified Arabidopsis thaliana 

plants prior to treatment with A. tumefaciens [103]. TTEs are synthesized by the pathogen and 

exported into the plant cell using the bacterial type III secretion system (TTSS) [102, 104-

106]. The purpose of TTEs is to interfere with pathogen-triggered immunity (PTI) and 

effector-triggered immunity (ETI), and ultimately to block plant countermeasures against the 

pathogen [102, 107-110]. PTI is induced in plants following contact with pathogen-associated 

molecular patterns (PAMP) such as bacterial flagellins [111]. The perception of PAMPs is 

dependent on membrane receptors known as pattern recognition receptors (PRRs) [111]. PTI 
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is often characterized by reactions such as cell wall strengthening through the formation of 

callose deposits or the synthesis of phenolic compounds such as salicylic acid [112, 113]. ETI 

reflects the binding of TTEs to so-called resistance proteins (R-proteins) that are often 

intracellular receptors of the nucleotide binding leucine-rich repeat (NB-LRR) family [114]. 

ETI may have evolved in plants as a secondary response to TTEs [114]. However, some TTEs 

can block ETI, such as AvrPtoB [115]. ETI is accompanied by programmed cell death (PCD), 

in this context also referred to as the hypersensitive response (HR) [114]. Recent studies 

indicate that PTI and ETI may overlap in terms of triggers and responses [114, 116]. 

Pathogens use a broad set of TTEs to target different host cell proteins and suppress plant 

defenses (Figure I.1) [102, 110]. 

AvrPtoB (Avr = avirulence) prevents plant defense signaling upstream of the MAPK 

(mitogen-activated protein kinase) cascade by binding to receptors or associated proteins 

[102]. This TTE can also ubiquitinylate R-proteins using its C-terminal E3-ligase domain, 

thereby targeting the R-proteins for proteasomal degradation, preventing PCD [115]. AvrRpt2 

probably interferes with salicylic acid-dependent signaling and auxin metabolism in the host 

through its cysteine protease activity [117]. The presence of AvrRpt2 is detected by the plant 

protein RIN-4 and this elicits PCD, but HopF2 (hypersensitive response and pathogenicity 

outer protein) can prevent detection [102, 118]. HopF2 also interferes with plant cell signaling 

by the ADP-ribosylation of MAPKKs [119]. HopAO1 has a similar effect on signaling by 

phosphorylating and thus inactivating MAPKs [120]. HopI1 is localized in the chloroplasts 

and modulates salicylic acid defense signaling [108]. 

PTI/ETI also occurs if A. tumefaciens is injected/infiltrated into tobacco plants, 

resulting in the formation of callose deposits, the induction of secondary metabolism and cell 

death [121-124]. Co-expressing TTEs together with a POI might reduce these effects and thus 

improve protein expression levels by (i) reducing callose deposition to enhance the transfer of 

T-DNA into the plant cell, (ii) avoiding the induction of secondary metabolism leaving more 

resources for recombinant protein synthesis, and (iii) preventing cell death. 

I.6.1 Economic considerations for downstream process design 

Recent data suggest that DSP accounts for a major part of the production costs when plants 

are used to produce biopharmaceutical proteins [41]. On one hand this is because upstream 

costs are lower for plant-based production compared to other expression systems and DSP 

costs thus account for a larger share of the total costs [31, 37]. On the other hand, plant 

secondary metabolites and polymers may interfere with DSP by clogging equipment due to 
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their tendency to undergo oxidization and precipitation, so the actual costs may be higher 

[125]. The DSP costs can be reduced if less biomass needs to be processed to manufacture a 

certain amount of target protein. This can be achieved if expression levels are increased by 

using better promoters, and by optimizing codon usage or other genetic elements [54, 56, 58], 

but expression levels remain a problem associated with plant-based systems as stated above 

(I.4). However, another approach is to reduce the process volume by rational and 

knowledge-based selection of the processed biomass, e.g. by selecting only those plant parts 

with the highest expression levels. For transgenic plants, this approach tends to have only a 

minimal impact because the target proteins accumulate in different tissues throughout the 

growth period, resulting in homogenous levels of the target protein in all parts of the plant 

[56, 126, 127]. However, selective biomass processing can prove advantageous in transient 

expression systems if the variability of expression can be linked to certain properties of the 

plant allowing the guided selection of the biomass for processing. 

I.7 Design of experiments 

Experiments or observations aim to gather information about a subject or system and use the 

information to make predictions about its future behavior. For example, a process is 

predictable when parameters causing significant variation are identified and controlled. 

Varying these parameters within meaningful ranges in a set of experiments spans the so-called 

design space [128, 129]. When the information from the different data points (experiments) 

within a design space is combined, a model of the process can be built. The classical approach 

to span a design space is to vary one factor at a time (OFAT), but this concentrates the data 

points along lines within the design space reflecting the variation of a single process 

parameter (Figure I.2 A) [130]. Accordingly, coverage of the design space is poor, the 

information output is low and interactions between factors are unlikely to be found, resulting 

in poor predictions and suboptimal processes. 



I. Introduction  page 9 

 

Institute for Molecular Biotechnology at the RWTH Aachen University 

PhD thesis 2013 by Johannes Felix Buyel 

 

Figure I.2: Comparison of OFAT and DoE designs. 

A. Experiments using an OFAT design resemble pearls-on-a-string if projected into the design space, leaving 

wide areas (hatched ovals) for which no information is available. B. In a DoE approach, experiments are 

distributed evenly throughout the design space, increasing the information obtained about the system and the 

likelihood of finding a desired operation point. 

In contrast, much more information can be obtained from a statistical design of 

experiments (DoE), which is achieved most effectively using specialized software packages 

that allow the user to define the problem as well as constraints affecting the factors that are 

tested. The idea behind a statistical DoE is to scatter the data points (experiments) evenly 

throughout the design space under investigation and thus collect the maximum amount of 

information with the minimum effort (Figure I.2 B) [130, 131]. Parameters included in the 

design space are called factors, whereas those excluded must be kept constant at all times. 

There are categoric and numeric factors. Categoric factors are subdivided into nominal 

factors, such as different colors, and ordinal factors, such as the leaves on a plant. Numeric 

factors are normally continuous, like concentration or length measurements, but practical 

considerations may limit them to discrete values during a DoE, e.g. if only a limited number 

of temperatures can be tested. The measured variable is called a response, e.g. the 

recombinant protein concentration, fluorescence intensity, filter lifetime or extract turbidity. 

The ranges of a factor tested in a DoE are often determined in initial experiments or 

known from experience or the literature. The ranges can also be determined or narrowed 

down by full or fractional factorial designs. Categoric factors can be delimited by irregular 

factorial designs. Two-level factorial (TLF) designs are often selected when many numeric 

factors are investigated. Each of these factors then adopts one of two possible values in every 

experiment so the mean (linear) effect of each factor can be assessed (Equation 1) [132]. 

Selecting a meaningful range for each factor is crucial because otherwise an important effect 

may remain concealed, as seen in Figure I.3. TLFs can be augmented with central and 

optional star points to form a so-called central-composite design (CCD) to avoid this problem 
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albeit at the cost of additional experiments [132]. However, a CCD can also estimate the 

non-linear effects of a factor allowing the construction of a so-called response surface model 

(RSM). Using an optimal design algorithm, the number of experiments required to build a 

RSM can be reduced compared to a CCD. The three major optimal criteria are listed in Table 

I.1, but IV-optimal algorithms provide a model that has an evenly-distributed prediction 

quality throughout the design space and is thus ideal for the evaluation of process robustness. 

There are also several other design types for specific applications such as mixture plans [133]. 

                   
∑   

 
   

 
 

∑   
 
   

 
 

Equation 1: Effect of factor A as the difference in average response at high factor level yi and low factor level yj 

with k and l representing the number of experiments with high and low factor levels respectively. In a full-

factorial design, k = l. 

 

Figure I.3: The importance of meaningful factor range selection. 

In a linear factor-response relationship (green line) the effect of the factor is correctly estimated with a TLF 

(circles). However, for a quadratic correlation (red curve) the optimal value is not captured by a TLF (triangles) 

and additional experiments are required (e.g. in a CCD, open triangle). In narrow dose-response relationships 

(blue Gaussian shaped curve) the effects can remain concealed due to the inadequate selection of factor levels 

(squares). 

Table I.1: Criteria for the generation of optimal DoE algorithms commonly used in RSM designs. 

Design optimality Criterion 

A Minimize the average prediction variance of the model 

D Maximize accuracy of model coefficient estimates 

IV Minimize prediction variance of the model across the entire design space 

An important advantage of the statistical DoE approach is that interactions between 

factors are more likely to be found, although data analysis is dependent on specialized 

software and care must be taken to avoid misinterpretations based on missing or incorrect 

data. Common indicators for model quality are r
2
 (Equation 2), adjusted r

2 
and predicted r

2
 

(Equation 3 and Equation 4) [134]. The inclusion of additional factors in the model is 

penalized in the adjusted r
2
 calculation by reducing the degree of freedom (df) and thus the 

adjusted r
2
 value so that only factors which substantially increase the model quality will also 
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increase the adjusted r
2
. This indicator can therefore be used to detect and prevent model 

over-fitting. The predicted r
2
 uses the predicted residual sum of squares (PRESS, Equation 5) 

and  is similar to a leave-one-out analysis and thus measures the predictive power of a model 

[134]. Other measures to identify low-quality models may not be suitable to evaluate a DoE 

because data redundancy is low by design and thus leave-many-out (LMO) analysis is likely 

to result in models with artificially low quality. Alternatively, lack-of-fit (LOF) tests can be 

used to correlate the pure error of replicate experiments with the deviance of model and 

experimental data (Equation 6) [134-137]. A significant LOF indicates a low-quality model or 

problems with the raw data. Indicators such as normal plots of the residuals, 

predicted-versus-actual and residuals-versus-run allow the non-quantitative evaluation of the 

model [134]. 

     [
          

                  
] 

Equation 2: R-squared (r
2
) calculation, with residual sum of squares ssresidual and model sum of squares ssmodel. 

         [
(
          

          
)

(
                  

                  
)
] 

Equation 3: Adjusted r
2
 calculation, with residual sum of squares ssresidual, model sum of squares ssmodel, degrees 

of freedom of the residuals dfresiduals and degrees of freedom of the model dfmodel. 

          [
     

                 
] 

Equation 4: Predicted r
2
 calculation, with predicted residual sum of squares (PRESS, Equation 5), residual sum 

of squares ssresidual and model sum of squares ssmodel. 

      ∑(     )
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Equation 5: Predicted residual sum of squares (PRESS) as the sum of predicted residuals ei,-i, with the residuals 

ei, the diagonal element of the hat matrix (H) hii, and the actual and predicted values for each point yi and ŷi 

respectively. The suffix “i,-i” indicates that the calculation was performed for the i
th

 element of a data set but 

excluding that specific element from the calculation [138, 139]. 

                                  [
(
     

     
)

(
            

            
)
] 

Equation 6: F-test for lack of fit with residual sum of squares ssresidual, lack of fit sum of squares ssLOF, pure error 

sum of squares sspure error, degrees of freedom of the lack of fit dfLOF and degrees of freedom of the pure error 

dfpure error. 

Using DoE, the robust analysis of complete datasets results in accurate predictions of 

optimal parameter settings within the design space covered by the model. Once a good model 

is established, factors (process parameters included in the model) can be adjusted to 
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accommodate desired responses (outcomes), e.g. a shorter process time or a higher yield. By 

assigning suitable weighting terms to two or more different responses, the factor setting can 

be trimmed as required. In a subsequent step, the process model can be combined with a cost 

function [140]. The resulting process cost model then allows the process to be optimized for 

different cost positions, e.g. overall product costs, consumables costs or downstream costs. 

Recent reports indicate that applying a DoE modeling approach to highly complex systems 

such as competitive protein binding during chromatography can be challenging [141]. 

I.8 Aim of this thesis and workflow 

This thesis considers different aspects of upstream production (USP) and how they can affect 

DSP and process costs for a plant-derived biopharmaceutical protein (Figure I.4). Initially, 

parameters affecting transient protein expression in Nicotiana species were identified and 

their impact on protein accumulation was quantified using DoE and modeling tools. The 

tested parameters included cultivation conditions, genetic elements and plant properties, as 

outlined in sections I.4 and I.5. Additionally, the impact of type-III effectors on co-expressed 

target proteins by means of defense response modulation was assessed (I.6). The rationale was 

that such effectors might inhibit the defense responses elicited by A. tumefaciens, thereby 

increasing the capacity of plant cells to produce target recombinant proteins. The monoclonal 

antibody 2G12 (specific for the HIV gp120 glycoprotein) and the fluorescent marker protein 

DsRed were used as model proteins for the work described in this thesis. An antibody was 

chosen because this is the most prevalent type of biopharmaceutical protein (section I.3), 

whereas DsRed was selected because it is easy to detect and quantify by fluorescence 

analysis. Furthermore, a GMP-compliant production process for these two proteins was 

recently established providing background data for comparison with the results described in 

this thesis. 
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Figure I.4: Workflow during this PhD thesis, as described in section I.8. 

The work packages in blue are part of an accompanying PhD thesis entitled “Manufacturing biopharmaceutical 

proteins in tobacco” [98]. 
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II. Materials and methods 

II.1 Equipment and chemicals 

All equipment is listed together with the manufacturers’ information in the appendix, section 

VII.1. All chemicals and buffers are listed in the appendix, sections VII.4 and VII.5, 

respectively. 

II.2 Expression vectors and cloning 

II.2.1 General cloning procedures and cultivation of bacteria 

Recombinant plasmids were propagated in Escherichia coli K12 strain DH5. Bacteria were 

cultured in lysogeny broth (LB) containing 50 µg/mL ampicillin for the selection of 

recombinant clones at 37°C. Plasmid DNA was isolated using NucleoSpin® Plasmid columns 

from MN (Düren, Germany) according to the manufacturer’s protocol. All restriction 

endonucleases (RE) were ordered from New England Biolabs (NEB) (Ipswich, MA, USA) 

and used according to the manufacturer’s recommendations. DNA fragments were separated 

by agarose gel electrophorese after RE treatment in 0.8–2.0% (w/v) gels at 100 V for ~45 

min. DNA fragments were purified using NucleoSpin® Gel and PCR Clean-up columns from 

MN according to the manufacturer’s protocol. KAPAHiFi™ polymerase from PEQLAB 

(Erlangen, Germany) was used to amplify DNA sequences by PCR using an annealing 

temperature set 5°C below the melting temperature calculated for the primer pairs using 

Clone Manager 9.0 by Sci-Ed Software (Cary, NC, USA). All primers were ordered from 

Eurofins MWG Operon (Ebersberg, Germany). Synthetic genes were ordered from GeneArt 

(now part of Life Technologies GmbH, Darmstadt, Germany) and codon optimized for 

expression in N. tabacum. DNA fragments were ligated using the Quick Ligation™ Kit from 

NEB. Manipulated plasmids were introduced into E. coli RbCl-competent cells by heat shock 

transformation at 42°C for 1.5 min [142]. 

II.2.2 Agrobacterium tumefaciens infiltration of plants 

A. tumefaciens strain GV3101:pMP90RK was transformed with the plasmids (section II.2.1 as 

well as II.2.3, II.2.4 and II.2.5) by electroporation [143]. Bacteria were cultivated in yeast 

extract broth (YEB) containing carbenicillin (50 µg mL
-1

), kanamycin (25 µg mL
-1

) and 

rifampicin (25 µg mL
-1

) for the selection of recombinant clones at 25°C. For transient 

expression in N. tabacum or N. benthamiana, A. tumefaciens was cultured to an optical 

density at 600 nm (OD600nm) of ~5.0 and diluted with two-fold infiltration medium and tap 
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water to the desired final OD600nm. An OD600nm of 1.0 corresponded to 1.43 ± 0.12 x 10
9
 

colony forming units per mL (n = 6). For the co-expression of TTEs and pGFD, the OD600nm 

of the bacteria carrying each construct was adjusted to twice the final desired value and the 

bacterial suspensions were mixed 1:1 prior to use (Table III.9). Bacteria were inoculated 

either by manual injection into intercostal fields using 1-mL syringes or by 

vacuum-infiltration of whole plants at ~50 Pa absolute pressure for 15 min followed by 

sudden vacuum release. Leaves 1–8 of tobacco plants were used for this treatment with leaf 1 

defined as the oldest non-cotyledon leaf and leaf 8 the youngest fully-expanded leaf (Figure 

II.1 A). Each leaf was subdivided into four positions to resolve differences in protein 

expression along the mid-vein axis (Figure II.1 B). 

 

Figure II.1: Plant segmentation and promoter/5'UTR properties (section II.2.4). 

A. schematic representation of a tobacco plant at 47 days after seeding (time of harvest) with numbers indicating 

the leaf age as used throughout this thesis, 1 being the oldest and 8 the youngest leaf. B. Subdivision of each leaf 

into four positions along the mid-vein axis, as used during infiltration and model building. C. Length and 

GC-content of the promoter and 5'UTR sequences describe in section II.2.4 and III.2. 
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II.2.3 pGFD vector 

The pGFD vector, a derivative of pPAM (GenBank AY027531), was kindly supplied by Dr. 

Thomas Rademacher, Fraunhofer IME [144]. This vector included a backbone lactamase 

gene for selection in A. tumefaciens and a T-DNA containing the genes for DsRed (GenBank 

AF168419; R2G mutant), the 2G12  light chain (F62 version) and the 2G12  heavy chain, 

separated by scaffold attachment regions (SARs) from the tobacco RB7 gene (GenBank 

U67919). The SARs were included even though they are not expected to function during 

transient expression so that exactly the same constructs could be compared in transgenic 

plants. This holds true for all other constructs described below. The DsRed gene was fused to 

the transit peptide sequence from the barley granule-bound starch synthase I gene (gbssI) 

allowing the recombinant protein to be imported into plastids (GenBank X07932), whereas 

the light and heavy antibody chain genes included their native (human) signal peptide 

sequences allowing secretion to the apoplast. Each gene was expressed under the control of 

the Cauliflower mosaic virus (CaMV) 35S promoter. Transgenic tobacco seeds carrying the 

same integrated T-DNA were also kindly supplied by Dr. Thomas Rademacher. 

II.2.4 Promoter/5'UTR combinations for DsRed expression 

Eight vectors containing different promoter/5'UTR combinations were constructed to express 

a modified DsRed gene, as shown in Figure III.11. The vector backbone was as described 

above. Coding sequences for a His6 tag and a KDEL retention/retrieval signal for localization 

in the endoplasmic reticulum (ER) were added in-frame to the 3'-end of the DsRed coding 

sequence. All constructs contained the CaMV 35S polyadenylation (polyA) signal. The length 

and GC-content of the genetic elements are shown in Figure II.1 C. The folding energies of 

the different mRNAs at 25°C were calculated using the RNAfold webserver [145] based on 

the mRNA sequence from the reported transcriptional start sites of the CaMV 35SS [146] and 

nos [147] promoters to the first 50 bp of the DsRed coding sequence. These vectors were 

constructed and cloned by Thomas Kaever as part of his bachelors thesis [148]. 

II.2.5 Type III effectors 

Five vectors containing different TTE genes were constructed using vector pAIX-2, which is 

also based on pPAM and shares the same backbone features as described above. The T-DNA 

contained one of the TTE genes flanked by RB7 SARs and expression was driven by a 

combination of the nos promoter, the omega-prime 5'UTR and nos polyA signal. A schematic 

representation of the expression cassette is shown in the results section (Figure III.16). Some 

of the cloning was carried out by Claudia Haase as part of her bachelors thesis [149]. 



II. Materials and methods  page 17 

 

Institute for Molecular Biotechnology at the RWTH Aachen University 

PhD thesis 2013 by Johannes Felix Buyel 

II.3 Plant growth 

II.3.1 Plant species 

The N. tabacum variety Petit Havana SR1 (for brevity referred to as SR1 hereafter) was used 

for transient protein expression in this thesis (II.2.2). 

II.3.2 Greenhouse 

Tobacco seeds were germinated on rockwool blocks (Cultilène, The Netherlands) and were 

cultivated in a greenhouse at 25/22°C day/night temperature with a 16-h photoperiod (180 

µmol s
-1

 m
-2

; =400–700 nm) and at 70% relative humidity. The plants were irrigated with a 

0.1% (w/v) solution of Ferty 2 Mega (Kammlott GmbH, Germany) and were grown for either 

35 (no bud) or 42 days (developing bud) prior to infiltration with A. tumefaciens, or for 47 

days (mature bud) prior to harvest in case of transgenic SR1 plants. Transgenic K326 plants 

were harvested 51 days post seeding. 

II.3.3 Post-infiltration incubation 

Infiltrated plants were transferred into phytotrons and incubated for 5 d at 70% relative 

humidity with a 16-h photoperiod, using six Osram cool white 36 W fluorescent tubes per 

0.7 m
2
 (75 µmol s

-1
 m

-2
; = 400–700 nm). The incubation temperature was set to 15, 17, 20, 

22, 25, 28 or 30°C. Treated leaves were sampled 5 days post injection (dpi) when plants 

reached 40 or 47 days post seeding (dps) corresponding to the growing and mature bud stages, 

respectively. 

II.4 Sample preparation and analysis 

II.4.1 Sampling from infiltrated plants 

Samples were taken from infiltrated leaf parts (II.2.2) using a cork borer, and 3 µL of 

extraction buffer (50 mM sodium phosphate buffer, 500 mM NaCl; pH 8.0) was added per 

1 mg of fresh biomass. Proteins were extracted by grinding with an electric pestle. Extracts 

were centrifuged twice at 16,000 x g, 20 min, 4°C, and supernatants were stored at –80°C. 

II.4.2 Protein quantitation 

The quantity of total soluble protein (TSP) in the supernatants was determined using the 

Bradford method [150, 151]. Briefly, 2.5 or 5.0 µL of supernatant was mixed with 200 µL of 

Bradford reagent (Thermo Fisher Scientific, Rockford, Illinois) in 96-well plates and 

incubated for 10 min at 22°C before measuring absorbance at 595 nm using a Synergy HT 
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plate reader (BioTek Instruments, Winooski, Vermont). Eight dilutions of bovine serum 

albumin (0–2000 µg mL
-1

) were prepared in triplicate and used to build a standard curve. 

DsRed fluorescence in supernatants was determined using a Synergy HT plate reader 

fitted with 530/25 nm (excitation) and 590/35 nm (emission) filter sets in 96-well half area 

plates. Reads were averaged over triplicate samples of 50 µL and a standard curve was 

generated with dilutions in the range 0–225 mg mL
-1

. 

The quantity of 2G12 antibody was determined by surface plasmon resonance (SPR) 

spectroscopy using a Biacore T100 (GE Healthcare, Uppsala, Sweden) measuring the amount 

of antibody binding to Protein A (Sigma-Aldrich, St. Louis, MO) immobilized on the surface 

of a CM5 chip by EDC/NHS coupling [152, 153]. A 585 ng mL
-1

 reference solution of 2G12 

(Polymun Scientific, Klosterneuburg, Austria) was used for one-point calibration with 

HBS-EP+ as the running buffer. 

II.4.3 SDS-PAGE analysis 

Pre-cast 4–12% (w/v) continuous Bis-Tris gels and additional equipment from Life 

Technologies were used for sample (II.4.1) analysis by reducing sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). Samples were prepared and separated 

according to the manufacturer’s protocol. Briefly, samples were boiled in LDS-running 

sample buffer and reducing agent, and 10 µL was loaded per well. Samples were separated for 

37 min at 200 V in MES running buffer. After washing in water, gels were stained for 1 h in 

SimplyBlue™ SafeStain and excess staining solution was removed by washing in water. 

Stained gels were scanned with a Canon 8800 (Canon, Krefeld, Germany) at a resolution of 

600 dpi using Adobe Photoshop 6.0 (San Jose, CA, USA). Silver staining was carried out 

using the SilverQuest™ Kit. The gels were washed in water, fixed using an acidic 

ethanol:water mixture, sensitized, stained and developed with intervening washing steps. 

II.4.4 Western blot and immunodetection 

Samples separated by SDS-PAGE (II.4.3) were transferred at 30 V for 2 h onto nitrocellulose 

membranes (GE Healthcare, Waukesha, WI, USA) using a tank blotting device from Life 

Technologies. After blocking with 5% (w/v) milk powder in phosphate buffered saline (PBS) 

containing 0.05% (v/v) Tween-20, proteins were specifically labeled with (pairs of) mAbs 

(Table II.1). The last mAb in the incubation series was always conjugated with alkaline 

phosphatase (AP) allowing quantitative detection using a colorimetric reaction with nitroblue 

tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP). The NBT and BCIP 
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solutions (stock concentrations 0.3 and 0.15 mg mL
-1

, respectively) were prepared by adding 

100 µL stock per 10 mL AP buffer during development. 

Table II.1: Monoclonal antibody (pairs) used for specific protein detection as 1:5000 dilutions. 

Target protein/domain 1
st
 antibody 2

nd
 antibody 

2G12 
Goat -Human-H+L-AP (Dianova 109-

055-003) 
--- 

DsRed Rabbit -DsRed (MBL PM005) Goat--rabbit-H+L-AP (Jackson 111-

045-045) His6 Rabbit-his (Genescript A00174) 

c-myc Mouse-c-myc 
Goat--mouse-Fc-AP (Jackson 115-

005-008) 

II.4.5 Trypan blue staining of dead cells 

Leaf samples transiently expressing TTEs were stained with Trypan blue using a modified 

form of the original protocol (Table II.2) [154, 155]. Briefly, leaf samples were heated in 

staining solution (70% (v/v) ethanol, 10% (v/v) glycerol, 10% (v/v) lactic acid, 10% (v/v) 

Milli-Q water, 0.0125% (w/v) Trypan blue), washed in chloral hydrate (2.5 g mL
-1

) and 

mounted in 50% (v/v) glycerol on glass slides for microscopy. 

Table II.2: Trypan blue staining protocol parameter settings. 

Protocol parameter Original value
1
 Optimized value

2
 

Heating temperature [°C] 80 90 

Heating time [s] 60 90 

Incubation temperature [°C] 30 15 

Incubation time [min] 10 22 

Trypan blue concentration [mg mL
-1

] 0.250 0.125 

De-staining temperature [°C] 30 37 

1
 Values from [154], 

2
 Values from [155]. 

II.4.6 Callose staining 

Callose deposits in leaf samples treated with A. tumefaciens were stained at 2 dpi as described 

[156]. Samples were covered with de-staining solution (6:1 v/v ethanol/acetic acid) and 

heated to 45°C for 60 min, and the process was repeated with fresh de-staining solution. The 

samples were rinsed with water, equilibrated in phosphate buffer (K2HPO4, 150 mM, pH 9.0) 

for 30 min and stained in the same buffer containing 0.05% (w/v) aniline blue for 24 h. The 

samples were then rinsed with water and mounted in 50% (v/v) glycerol on glass slides for 

microscopy. 
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II.4.7 Microscopy 

Stained leaf samples and particles in extracts were analyzed using a LEICA DRM light 

microscope (LEICA, Wetzlar, Germany) or an Opera confocal microscope (PerkinElmer, 

Waltham, MA, USA). A list of objectives and filters is provided in Table II.3 and Table II.4. 

Images were captured using a LEICA DFC 320 camera or the built-in optics of the Opera 

confocal microscope. 

Table II.3: Objectives used with the LEICA DRM. 

Objective Magnification
1
 Medium Aperture 

HCX PL Fluostar 1.6 Air 0.05 

HC PL Fluostar 10 Air 0.30 

HCX PL Fluostar 20 Air 0.40 

PL Fluostar 40 Oil 1.00 – 0.50 

HCX PL APO 63 Oil 1.32 – 0.6 

HCX PL APO 100 Oil 1.4 

1
 The mounted ocular HC Plan 10x/25 provided an additional 10-fold magnification to be multiplied with 

these values to yield the total magnification. 

Table II.4: Filters used with the LEICA DRM. 

Filter cube 
Excitation filter 

[nm] 
Beam splitter [nm] 

Emission filter 

[nm] 
Substance to detect 

Chroma 400 DCLP 350/50 400 445/40 Callose 

Y3 (DsRed) 545/30 565 610/75 DsRed 

GFP 470/40 500 525/50 GFP/autofluorescence 

II.4.8 Metabolic analysis 

Plant secondary metabolites were separated using an ÄKTA explorer equipped with a 

Chromolith FastGradient RP-18 endcapped 50-2 column (Merck, Darmstadt, Germany) and a 

Security Guard Cartridge Holder (Phenomenex, Aschaffenburg, Germany) with a C18 

cartridge AJ0-4286. Leaf samples were prepared as described above (II.4.1) by extracting in a 

40/60 (v/v) mixture of methanol/water acidified to pH 3.6 with 0.1% (v/v) acetic acid, 

followed by centrifugation as above but at –15°C. A Phenex RC 4-mm syringe 0.2 µm filter 

AF0-3203-52 (Phenomenex, Aschaffenburg, Germany) was used to clear remaining particles 

from the samples before chromatography. A 10-l sample was injected at a flow rate of 

0.8 mL min
-1

 and eluted in a 0–80% B gradient in 6.5 min after a 0.5-min wash. Sample 

elution was monitored at 260, 320 and 360 nm as described [157]. Solvent A was water (WFI 

quality) acidified with 0.01% (v/v) TFA to pH 3.0, and solvent B was HPLC-grade methanol. 

Authentic standards used to identify plant secondary metabolites are listed in Table II.5. 
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Table II.5: Authentic standards used for identification of plant secondary metabolites. 

Standard Final concentration [µg/mL] 

4-Aminopyridine 5 

Nicotine 80 

Quinoline 75 

2,4’-Dipyridyl 20 

Caffeic acid 5 

Chlorogenic acid 25 

Rutin 10 

Cinnamic acid 5 

II.5 Design of experiments 

Design Expert 8.0 (Stat-Ease, MN, USA) was used to build and evaluate all experimental 

designs. Unless otherwise noted, error bars on the predicted values indicate the 95% 

confidence interval of the model which equals 2 x  and is thus twice the size of the standard 

deviation normally shown using error bars. 

II.5.1 Transient protein expression model 

For plants harvested after 40 or 47 days, stepwise augmented IV-optimal response surface 

designs were used to build models for transient protein expression depending on the factors 

listed in Table II.6. Categorical balance was forced for the factors. DsRed and 2G12 

concentrations in extracts from plants harvested at 40 dps were modeled based on 142 

samples, and 465 samples were used to model the concentrations of the same proteins in 

plants harvested at 47 dps. Factors showing a significant influence on protein expression were 

pre-selected from a fourth-order model by automatic backwards selection using a p-value 

threshold of 0.100, and factors with p-values greater than 0.050 were removed manually. 

Exceptions were made if a factor was needed to maintain the model hierarchy [158, 159]. The 

resulting models for plants harvested after 40 or 47 days were compared and a consensus 

model was established including all factors present in both models. 

Table II.6: Factors considered during DoE and for model building including the range of their set points. 

Factor Unit Lower boundary Upper boundary 

Post-injection temperature [°C] 15 30 

Plant age at time of injection [dps] 35 42 

Leaf age [-] 1 8
1
 

Position on leaf [-] 1 4 

Optical density of injected 

A. tumefaciens 
[-] 0.13 2.00 

1
 5 for plants injected 35 dps 
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II.5.2 Promoter strength model 

A D-optimal response surface design was used to build a model for transient protein 

expression depending on the numeric factors listed in Table II.7. Promoters and 5'UTRs were 

treated as categoric factors with the different sequences corresponding to the factor levels 

(Figure III.11). Categorical balance was forced for the factors. A total of 630 samples was 

used to model DsRed concentrations in extracts from plants harvested 2, 5 or 8 dpi. Factors 

showing a significant influence on protein expression were pre-selected from a cubic model 

by automatic backwards selection using a p-value threshold of 0.100, and factors with 

p-values greater than 0.050 were removed manually. 

Table II.7: Numeric factors considered during DoE and for promoter model building including the range 

of their set points. 

Factor Unit 
Lower 

boundary 

Upper 

boundary 

Position on leaf [-] 1 4 

Incubation time after A. tumefaciens injection [d] 2 8 

Leaf age [-] 1 8 
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III. Results and discussion 

III.1 Transient protein expression model 

The results presented in this section have been published as: 

1. Buyel JF, Fischer R. 2012. Predictive models for transient protein expression in 

tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream 

costs. Biotechnology and Bioengineering 109(10):2575-88. 

2. Buyel JF, Fischer R. 2013. Processing heterogeneous biomass: Overcoming the 

hurdles in model building. Bioengineered 4(1). 

III.1.1 Model theory 

III.1.1.1 Model concept 

Protein quantitation often involves two steps, an initial target-specific step (e.g. ELISA or 

fluorescence measurement) to determine the concentration, and a second non-specific step to 

measure the volume of the bulk extract [160]. A routine extraction procedure using a fixed 

volume of extraction buffer per unit biomass allows the protein concentration and 

corresponding extract volume to be determined for homogenous source materials, e.g. a 

clarified cell pellet extract. When the concentration (C) and volume (V) are known, the 

quantity of recombinant protein (m) can be calculated as shown in Equation 7. However, 

where the source material is heterogeneous (e.g. leaves of a plant at different stages of 

maturity) different parts of the material will contain significantly different amounts of 

recombinant protein. The quantity and distribution of the protein in the source material must 

therefore be determined to improve the process layout, because this allows the optimal 

process material to be selected. To determine the quantity and distribution of the recombinant 

protein (P), the concentration and volume terms of Equation 7 are required for each portion of 

the source material. 

 [ ]     [ ] 

Equation 7: Calculation of the mass of a recombinant protein m[P] from a given volume V and concentration of 

the recombinant protein C[P]. 

III.1.1.2 Plant parameters 

Tobacco leaves transiently expressing a fluorescent protein (DsRed) and a monoclonal 

antibody (2G12) were used as an example of heterogeneous source material. Two parameters 

were introduced to describe the heterogeneity of the leaves: (i) the variable k denoting the 

individual leaves of each plant (Figure III.1 A); and (ii) the variable p indicating different 
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positions within a leaf. Although the classification into leaves (k) is intuitive, the second 

classification seems artificial but is based on experience with protein expression patterns in 

leaves. The number of levels for k is specified by the habit and age of the tobacco plants 

whereas four different positions were defined for p (Figure III.1 D). This definition was 

advantageous, first because it facilitated second-order (quadratic) polynomial fitting of the 

resulting volume and concentration data over each leaf, and second because it allowed the size 

of each leaf to be normalized into four relative length units with each position spanning an 

interval of one unit. Assigning the integers 1–4 as the intervals means that 0.5 and 4.5 

represent the leaf apex and node, respectively. Length normalization from zero to unity is also 

possible but the volume and concentration data would then need to be transformed prior to 

further calculations and integration. 

III.1.1.3 Volume model 

Having subdivided the plant, a model was built for the volume term of Equation 7 as shown in 

Figure III.1 A–F. Three experimentally-determined ratios (k,  and k,p) were used to convert 

the average total biomass of a leaf (mt,k) into position-specific extract volumes for that leaf 

(Vk,p) as shown in Equation 8. Second-order polynomial fits through the four Vk,p values (Vk,1 

to Vk,4) were used to obtain continuous volume functions for each leaf as shown in Equation 9. 

This allowed subsequent multiplication with protein concentration functions and integration 

to determine the protein yield. Because the volume model is not dependent on the properties 

of a recombinant protein it can be combined with the concentration function of any protein of 

interest. 

                    

Equation 8: Calculation of extract volumes Vk,p for the positions p of a given leaf k, where mt,k is the average 

total leaf biomass of leaf k [g], k is the effective biomass ratio for each leaf k (intercostal field biomass [g]/total 

leaf biomass [g]), k,p is the position ratio for each leaf k (biomass of position p [g]/effective leaf biomass [g]) 

and  is the extract ratio (volume of solids-free extract [mL]/biomass [g]). 

 (       )                          
     (              ) 

Equation 9: Linear second-order polynomial fit of extract volumes (Vk,p [mL]) over the four positions (p) of an 

individual leaf (k), where k, through k,3 represent the fitted coefficients for each leaf k. Vk,p values were 

obtained from Equation 8. 
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Figure III.1: Procedure for calculating the amount of recombinant protein in each leaf of an infiltrated 

plant (II.2.2, II.4.1, and II.4.2). 

A. Each leaf is assigned a number k that declines in older leaves. B. Total biomass mt,k is determined for every 

leaf k. C. Veins are removed and the effective biomass me,k is determined. The ratio of these two biomasses is the 

effective biomass ratio k. D. Effective leaf biomasses are divided into four segment classes and used to 

calculate the ratios of these classes to the effective biomass of each leaf k,p. Given these two sets of ratios, k 

and k,p, the effective biomass of each leaf position can be calculated for every leaf in a given plant, mk,p, or plant 

population (Equation 8). E. When proteins are extracted from biomass, each gram of biomass will yield 

approximately 2.75 mL of extract under routine conditions, giving an extract ratio  of 2.75 mL g
-1

. G. 

Concentrations of recombinant protein are predicted using the model Equation 10. F. and H. Linear second-order 

polynomial fitting is used to transform discrete position-dependent volumes and concentrations into continuous 

functions for each leaf (Equation 9 and Equation 11). I. Integrating the product of volume and concentration 

functions over all positions of a leaf (p) yields the amount of recombinant protein for an individual leaf. The sum 

of integrals over all leaves (k) predicts the amount of recombinant protein that can be isolated from one tobacco 

plant under the conditions described (compare Figure III.3 B and Equation 12). 
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III.1.1.4 Concentration model 

Concentration functions for DsRed and 2G12 were built in a second step (Figure III.1 

A-D, G, H). Concentrations were initially considered to be dependent on parameters k and p 

as well as the following additional process parameters: incubation temperature (, optical 

density of the injected A. tumefaciens at 600 nm (OD600nm) and plant age at time of harvest 

(dps). These three process parameters were selected instead of (for example) humidity or light 

source because they can be controlled in most laboratories and would be more valuable for the 

standardization of process conditions. Parameter combinations were selected to span the 

design space using DesignExpert 8.0 according to an IV-optimal design plan (II.5.1). The 

same software was used to fit a model on the experimental data to generate Equation 10 (an 

example of a graphical representation of this equation is shown in Figure III.2). The 

significance of the model and selected factors are shown in Table III.1 and Table III.2, 

respectively. To reflect the conditions during a given production process, fixed values for 

incubation temperature (22°C) and OD600nm (1.0) were then used to predict the leaf (k)- and 

position (p)-dependent protein concentrations (Ck,p) for plants at two growth stages (harvested 

at 40 or 47 dps, respectively). Second-order polynomial fits were once again used to obtain 

continuous concentration functions for both recombinant proteins as shown in Equation 11. 

     (    [ ])

                                           
       

 

            
       

          
        

  

Equation 10: Empirical formula for the calculation of protein concentration (Ck,p[P]) in the extract of a tobacco 

leaf (k) at position (p) based on the evaluation of DoE data, where k is the leaf age, p the position on leaf (see 

also Figure III.1 D),  is the temperature in the range 15–30°C, and OD600nm is the optical density of the injected 

A. tumefaciens culture at 600nm. The model statistics are shown in Table III.1. 

 (       )                          
                      

Equation 11: Linear second-order polynomial fit of protein concentrations (Ck,p, [µg/mL]) over the four 

positions (p) of an individual leaf (k), where k, through k,3 represent the fitted, protein-dependent coefficients. 

Ck,p values were obtained from Equation 10. 

Table III.1: Validation statistics of a consensus model for the two recombinant proteins at both harvesting 

times. 

Plant age [dps] 40 47 

Protein DsRed 2G12 DsRed 2G12 

r
2
 0.96 0.91 0.94 0.88 

Adjusted r
2
 0.95 0.89 0.93 0.87 

Predicted r
2
 0.93 0.86 0.93 0.85 
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Table III.2: Model factors with a significant impact on transient protein expression in N. tabacum. 

Source 
Sum of 

squares 

Degrees of 

freedom 
F-value p-value 

Model 29.47 26 44.25 < 0.0001 

Temperature [°C] (A) 0.21 1 8.26 0.0048 

Leaf number [-] (B) 7.68 4 75.00 < 0.0001 

Position on leaf [-] (C) 0.24 1 9.49 0.0026 

OD 600nm [-] (D) 0.04 1 1.45 0.2304 

AB 2.17 4 21.19 < 0.0001 

AC 0.08 1 3.22 0.0754 

BC 0.52 4 5.05 0.0009 

A
2
 14.63 1 571.23 < 0.0001 

C
2
 0.0003 1 0.015 0.9038 

D
2
 0.14 1 5.45 0.0213 

A
2
B 1.10 4 10.72 < 0.0001 

A
2
C 0.13 1 4.88 0.0292 

A
3
 0.16 1 6.25 0.0138 

A
4
 0.015 1 0.57 0.4501 

Residual 2.92 114 n.a. n.a. 

Lack of Fit 2.53 92 1.56 0.1172 

Pure Error 0.39 22 n.a. n.a. 

 

Figure III.2: The concentration of 2G12 [µg mL
-1

] in leaf extracts from tobacco plants injected with 

A. tumefaciens (OD600nm = 1.0) at 42 dps is dependent on the developmental stage of a leaf (II.4.1 and 

II.5.1). 

A distinct increase in 2G12 concentration was observed between leaf 4 (A) and leaf 5 (B). The concentration of 

DsRed is presented as a function of post-infiltration incubation temperature and position on a leaf. 
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Table III.3: Costs for energy, consumables and labor required for a transient protein expression process 

in tobacco. Note that GCFA, ICA and DCF in Equation 13 correspond to the summed costs for upstream 

production, infiltration and downstream processing respectively. For GCFA and ICA there are two values 

depending on the age of the plants that are processed: GCF40dps or GCF47dps and IC40dps or IC47dps. 

   

Required units per 

plant 

Unit 

cost 
Costs per plant [€] 

Step Factor Position 40 dps 47 dps 

[€/L] or 

[€/h] or 

[€/kWh] 

40 dps 47 dps 

Upstream Energy Light [kWh] 8.53 12.94 0.14 1.19 1.81 

  
Climate control [kWh] 3.58 5.42 0.14 0.50 0.76 

 
Consumables 

Growth support [-] 

(rockwool) 
1.00 1.00 0.15 0.15 0.15 

  
Fertilizer [L] 5.73 10.44 0.002 0.01 0.02 

  
Fresh water [L] 5.86 10.64 0.01 0.03 0.05 

  Labor Labor [h] 0.13 0.14 30.00 3.79 4.27 

         Sum  (GCFA) 5.67 7.06 

        

   

Required units per 

batch 

Unit 

cost 

Costs per batch 

[€] 

Step Factor Position 40 dps 47 dps 

[€/L] or 

[€/h] or 

[€/kWh] 

40 dps
a
 47 dps 

Infiltration Energy Fermentation [kWh] 281.42 432.96 0.14 39.40 60.61 

  

Infiltration/vacuum 

[kWh] 
5.20 8.00 0.14 0.73 1.12 

  

Medium temperature 

adjustment [kWh] 
7.55 11.61 0.14 1.06 1.63 

 
Consumables YEB medium [L] 99.67 153.33 1.15 114.20 175.70 

  
Infiltration medium [L] 325.00 500.00 2.22 721.17 1109.49 

  
Fresh water [L] 1074.67 1653.33 0.01 5.37 8.27 

  
Inactivation chemicals [L] 6.50 10.00 21.63 140.60 216.30 

  Labor Labor [h] 36.00 36.00 30.00 1080.00 1080.00 

         Sum  (ICA) 2102.53 2653.12 

        

Step Factor Position 

Required units per 

kg processed 

biomass 

Unit 

cost 

[€/L] or 

[€/h] or 

[€/kWh] 

Costs per kg 

processed biomass 

[€] 

Downstream
b
 Energy Homogenization [kWh] 0.15 0.14 0.02 

  
Filtration [kWh] 0.02 0.14 0.002 

  
Chromatography [kWh] 0.11 0.14 0.02 

 
Consumables Bags [-] n.a. n.a. 37.77 

  
Filters [-] n.a. n.a. 41.60 

  
Chromatography resin [-] n.a. n.a. 44.57 

  
Tubing [-] n.a. n.a. 21.58 

  
Chemicals [-] n.a. n.a. 6.50 

  

Water for buffers and 

cleaning [L] 
20.00 0.01 0.10 

  Labor Labor [h] 1.69 30.00 50.55 

         Sum  (DCF) 202.71 

a
 Infiltration costs for plants harvested 40 dps were 65% compared to plants harvested 47 dps because the 

former were shorter and required less infiltration solution, only the labor remained the same; 
b
 The 

required units and costs per kg biomass calculations were based on data from a 200-kg GMP process 

producing the same proteins in transgenic plants. 
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III.1.1.5 Yield model 

In order to calculate the average amount of protein (m[P]) that can be isolated from all the 

leaves of an infiltrated tobacco plant under the described conditions, the volume and 

concentration functions (f and g respectively) were multiplied to give the mass function u 

(Equation 12, Figure III.1 I). This function was then integrated over the whole interval of the 

control variable p (0.5–4.5) and summed for all leaves (k) to predict the amount of protein 

produced per plant. 

 [ ]  ∑ ∫ ( (       )   (       ))    ∑ ∫         

   

   

 

   

   

   

 

   

 

Equation 12: Final equation for the calculation of total recombinant protein mass (m[P], [µg]) from a single 

tobacco plant infiltrated with A. tumefaciens (OD600 nm = 1.0) and incubated at 22°C for 5 d. The parameter n 

varies for plants at different ages and corresponds to the total number leaves of a plant (n = 5 or 8 for plants 

harvested 40 and 47 dps, respectively). The value of k can vary in the range 1 ≤ k < n for the different harvesting 

schemes, corresponding to the number of the oldest leaf to be harvested in that specific scheme. 

III.1.1.6 Cost function 

The costs of a plant-based production process were separated into three sections: (i) upstream 

costs for plant growth; (ii) infiltration costs for treatment with A. tumefaciens; and (iii) 

downstream costs for the preparation of extracts and purification of the recombinant protein. 

This strategy was chosen because upstream costs can be calculated easily on a per-plant basis, 

whereas infiltration is performed batch-wise and downstream costs are usually calculated on a 

per-liter or per-kg basis because the process begins with bulk plant biomass (Table III.3). 

Furthermore, the biomass and leaf count of plants differs according to age and harvest 

scheme, so the number of plants alone is an inappropriate estimator for the costs that will arise 

during extraction and purification. The infiltration costs were assumed to be constant for the 

anticipated batch sizes of 2500–5000 plants. However, for plants harvested at 40 dps instead 

of 47 dps the infiltration costs were reduced by ~20% because the plants were ~35% shorter 

and required less infiltration medium but the same amount of labor (Table III.3). Process costs 

were calculated according to Equation 13 for 5 g of purified recombinant protein, including a 

recovery factor (RF) accounting for ~30% losses during purification. This factor is based on a 

200-kg GMP process producing the same recombinant proteins in transgenic plants (Dr. 

Jürgen Drossard, unpublished data). The first term in Equation 13 corresponds to the number 

of plants needed to produce the desired amount of protein (mf[P]) depending on plant age (A) 

and harvest scheme (k). The second term combines upstream costs (which are dependent on 

plant number and age) and downstream costs (which are dependent on plant number, age and 

harvest scheme). The last term in Equation 13 represents the age-dependent infiltration costs. 
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  [ ]

    [ ]  
 [              ]      

Equation 13: Cost function for the production of DsRed or 2G12 by transient expression in tobacco, where 

mf[P] is a specified final amount of recombinant protein required after purification [g], RF is the average 

recovery factor accounting for losses during purification, m[P]kA is the amount of recombinant protein per plant 

depending on harvest scheme k and harvest time A [g/plant], GFCA is the growth cost factor depending on 

harvest time A [€/plant], DCF is the downstream cost factor [€/kg biomass], mkA is the biomass factor depending 

on harvest scheme k and harvest time A [kg biomass/plant], and ICA is the infiltration costs depending on harvest 

time A [€]. Note that the value of DCF was based on a two-step antibody purification process using Protein A. 

With the strategy described in sections III.1.1.1 to III.1.1.6, predictive models based 

on individual sampling and process parameters can be built for both the concentration and 

volume terms in Equation 7, leading to a yield function. With these models in hand, different 

production platform settings can be compared, and can be combined with a cost function to 

optimize processes duration, yield and/or downstream costs given a reasonable degree of 

reproducibility and repeatability. 

III.1.2 Model building and key factors 

III.1.2.1 System consistency and repeatability 

A model that predicts the outcome of a process is useful if the outcome is dependent on 

certain parameters, but the predictive accuracy would be reduced by further experimental 

variation. It is therefore necessary to investigate the consistency of the process and the 

repeatability of its performance. 

Transient protein expression is noted for inter-batch variations in yield [95, 96]. 

Therefore, parameters that affect consistency were investigated to determine their influence 

on tobacco plants cultivated in a greenhouse/phytotron setting (II.3), focusing on intra-plant, 

inter-plant and inter-batch variation in the yield of two recombinant proteins. Plants 

co-expressing a secreted monoclonal antibody (2G12) and a plastid-targeted fluorescent 

marker protein (DsRed) were studied and compared to transgenic plants expressing the same 

proteins as part of the Pharma-Planta project [161]. The leaf biomass distribution was used as 

a second indicator for the degree of variation among plants and batches (Figure III.3 A), thus 

allowing comparison to the protein yields (Figure III.3 B). 



III. Results and discussion  page 31 

 

Institute for Molecular Biotechnology at the RWTH Aachen University 

PhD thesis 2013 by Johannes Felix Buyel 

 

Figure III.3: Dependence of leaf biomass and transient protein expression on leaf and plant age (II.3, 

II.4.1 and II.4.2). 

A. Averages of total leaf and intercostal field biomasses (mt,k and me,k, respectively) are shown for plants 

harvested 40 or 47 dps (right and left side of the y-axis, respectively). B. Amount of DsRed or 2G12 produced in 

leaves of plants harvested 40 or 47 dps (right and left side of the y-axis, respectively). Numbers on y-axis 

correspond to the leaf age (1 = the oldest, non-cotyledon leaf). 

Significant intra-plant variation for protein expression was observed among leaves of 

different ages and among different positions within a single leaf (Figure III.3 B). Therefore, 

these two significant sources of variation were included as model parameters inherent to the 

production platform (concentration model). For individual leaves, the average coefficient of 

variation (C.V.) between neighboring intercostal fields separated by the midrib was protein-

dependent but was in both cases <10% and was therefore considered insignificant (Figure 

III.4 A). 

 

Figure III.4: Variation in DsRed levels within a single leaf (II.2.2). 

A. Axial symmetry of transient protein expression in tobacco leaves. Data points represent the ratios of protein 

concentrations in extracts from sections of left side (relative to the mid vein) divided by those of corresponding 

sections from right side at different positions on the leaf (see Figure II.1 and Figure III.1 D for position 

numbering). Dashed lines indicate average inter-plant coefficient of variation (n = 9) over all leaf positions. 

Protein expression not biased by the leaf side will result in random scattering around the value 1, as observed 

here. B. Variation in DsRed levels at different positions within the leaf among different plants in a single batch 

(intra-batch, squares; n = 3) and among plants of different batches (inter-batch, diamonds; n = 3). Note that 

x-axis positions for both data series are shifted by 0.1 from the corresponding integer for clarity. 
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Although treated as insignificant, the C.V. for intra-batch variation was marginally 

greater than 15% (Figure III.4 B), which was attributed in part to non-avoidable sampling 

artifacts. Individual variations in leaf morphology mean that the corresponding intercostal 

fields from any two leaves differ slightly in position, increasing the C.V., and it becomes 

impossible to separate intra-plant and inter-plant variation. A C.V. of 18–30% for transient 

protein expression in N. benthamiana has been reported in recent publications [66, 67] and 

even transgenic plants exhibit a similar degree of inter-plant variation with a C.V. ≥18% (Dr. 

Jürgen Drossard, unpublished data) [162]. 

Inter-batch variation was found to be more significant, with a C.V. of ~33% (Figure 

III.4 B). However, similar values (30–35%) have been found in transgenic plants (Dr. Jürgen 

Drossard, unpublished data) and have also been reported in the literature [162]. Indeed, 

because the inter-batch variation was <50%, introducing the batch number as a block factor 

could partially compensate for this variability during model building. Larger batch sizes are 

also likely to reduce C.V. values because individual plants would have a smaller impact. The 

intra-plant, inter-plant and inter-batch variation in transient expression therefore appeared 

similar to that in transgenic plants. The conclusion was that a predictive model for transient 

protein expression will yield valuable information about the system in terms of process 

design. 

 

Figure III.5: Experimentally determined ratios  and and the prediction of total recombinant protein 

produced per plant (II.5.1). 

A. Ratios were determined for each leaf of plants harvested 40 and 47 dps, respectively. Error bars indicate 

standard deviation, n = 3 for plants harvested at 40 dps and n = 20 for those harvested at 47 dps. B. Amounts of 

DsRed and 2G12 antibody produced per plant based on model prediction. Error bars indicate 95% C.I. 

III.1.2.2 Volume model 

As discussed above, the values of three ratios were determined because they were necessary 

for the transformation of leaf biomass into extract volume (k,  and k,p) at two different 

growth stages, 40 and 47 dps (Figure III.5 A). Transformation ratios k and k,p were similar 
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for plants harvested at both stages and the extract ratio  was the same in both groups, with a 

value of 2.75 ± 0.16 (n = 50). As expected, older plants had a greater per leaf biomass than 

younger plants, and therefore produced larger extract volumes (Figure III.3 A). Second-order 

polynomial fits through the four position-specific volumes of each leaf resulted in r
2
 values of 

~0.98 for most leaves at both growth stages. The lowest r
2
 value was 0.93. 

III.1.2.3 Concentration model 

A consensus model was then built for all four combinations of recombinant protein and plant 

age by including all factors meeting the 5% significance level in at least one of the individual 

models. This final model also contained the factor p
2
 (quadratic effect of the position on leaf) 

although it did not meet the stated significance level. This factor was included because the 

analysis of single leaves clearly indicated that leaf position resulted in a quadratic effect 

(Figure III.4 B and Figure III.5 A). The inter-batch C.V. of ~33% discussed above probably 

obscured the impact of this factor. However, including p
2
 in the model will improve the 

overall quality because it reflects the actual concentration distribution on a leaf. The final 

model was then used to calculate the concentrations of both 2G12 and DsRed at both growth 

stages (Equation 12, Figure III.6). 

Temperature was found to have the most significant impact on transient protein 

expression. The optimal temperature range for 2G12 production was broad, with a maximum 

at ~21°C (Figure III.2), whereas DsRed expression increased steadily up to a maximum 

temperature of ~25°C followed by a steep reduction at higher temperatures (Figure III.7). The 

parabolic dependence of protein expression on temperature may reflect the limited activation 

energy of participating enzymes and the onset of temperature stress, e.g. the increased 

synthesis of chaperones, limiting protein synthesis within the low and high temperature zones, 

respectively. The efficiency of transformation by A. tumefaciens may also be reduced at 

elevated temperatures [163]. These data are in good agreement with previous findings [65]. 

Leaf age was another important factor influencing protein expression, probably 

reflecting the greater potential for protein synthesis in young, growing leaves compared to 

mature ones (Figure III.8) [66, 67, 164]. This reflects the finding presented here that protein 

yields were higher in leaves from plants harvested at 40 dps compared to those harvested 

seven days later. However, the pattern may shift for other plant species [68]. The spike in 

transient protein expression levels between the fourth and fifth leaves of plants harvested at 

47 dps presumably reflects a sink-source transition (Figure III.3 B, Figure III.8 B and C). 



III. Results and discussion  page 34 

 

Institute for Molecular Biotechnology at the RWTH Aachen University 

PhD thesis 2013 by Johannes Felix Buyel 

 

Figure III.6: Predicted versus actual plots for models of transient DsRed (A+C) and 2G12 (B+D) 

expression in plants harvested at 40 dps (tow row) or 47 dps (bottom row) (II.4.1 and II.5.1). 

Gray diagonal corresponds to the ideal model, i.e. perfect match between actual and predicted values. 

The third major factor influencing transient expression was the age of the plant, with 

lower yields in older plants. The basis of this observation is that young plants expressed large 

amounts of the recombinant proteins in all leaves (Figure III.3 B), whereas in older plants 

there was a clear division between younger and older leaves, as already discussed. Plant 

age-dependent recombinant protein expression has been noted by others [68]. Expression 

levels increase with age in the related tobacco species N. benthamiana, which was attributed 

to species-dependent differences [66]. 
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Figure III.7: The concentration of DsRed [µg mL
-1

] in leaf extracts as a function of temperature and 

position on the leaf (II.4.1 and II.5.1). 

A. tumefaciens solutions of different OD600nm values during injection showed only minor effects protein 

expression levels, whereas a distinct temperature optimum was found. Top row: injection into leaf 4 of tobacco 

plants at 35 dps (harvest at 40 dps); bottom row: injection into leaf 6 of tobacco plants at 42 dps (harvest at 47 

dps). 

The position within the leaf also had a significant impact on transient expression levels 

at least in the middle range. The youngest leaves showed uniformly high expression and the 

oldest leaves showed uniformly low expression, but between these extremes there was an age-

dependent gradient of expression from node to tip with expression beginning to decline first at 

the node and then progressively towards the leaf tip over time (Figure III.8). This might 

reflect the underlying age-dependent pattern of mitotic activity which correlates with reduced 

protein synthesis [165]. Others have also reported position-specific transient protein 

expression in leaves, although as above the observed patterns appear to be species-dependent 

[65]. 

Finally, the yield of recombinant protein depended on the OD600nm of the injected 

A. tumefaciens culture, with the highest levels generated following infiltration with cultures at 

an OD600nm of ~1.0 (Figure III.7). The influence of this factor was low compared to the others 

discussed above and large changes only shifted the recombinant protein yields by ± 10–15%. 

This suggests that A. tumefaciens solutions with an OD600nm of 0.25 could be used for 

infiltration without a significant loss of yield, thus lowering production costs by reducing the 
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scale of bacterial cultures required for infiltration. Similar OD600nm effects have been reported 

for N. benthamiana and lettuce [65, 67]. 

 

Figure III.8: The concentration of DsRed [µg mL
-1

] in leaf extracts from tobacco plants injected with 

A. tumefaciens (OD600nm = 1.0) at 42 dps is dependent on the developmental stage of a leaf (II.4.1 and 

II.5.1). 

Sections A–D illustrate calculations for leaves at different stages: leaf 1 is the first non-cotyledon leaf, leaf 8 is 

the youngest fully expanded leaf. The concentration of DsRed is presented as a function of post-infiltration 

incubation temperature and position on a leaf. 

III.1.2.4 Yield model 

The yield model was built by combining the volume and concentration models as described 

above (III.1.1.5), allowing the yield of recombinant protein to be predicted for individual 

leaves (Figure III.3 B) and whole plants (Figure III.5 B). Protein expression per unit biomass 
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was higher in younger than older plants, especially in the case of DsRed. Younger plants 

produced the same amount of DsRed as older plants despite having only half the biomass, and 

they produced 66% as much 2G12. The difference in expression levels relative to biomass 

may reflect the unique properties of each protein but could also be explained by the secretion 

of the antibody to the apoplast versus the import of DsRed into the plastids, i.e. each protein 

will be exposed to environments that influence stability in different ways [40, 43, 91]. 

III.1.2.5 Model testing 

The yield models (including the volume and concentration models) were tested for their 

predictive accuracy in tobacco leaves vacuum infiltrated with A. tumefaciens carrying the 

DsRed/2G12 expression vector and harvested at 40 dps (5 days after infiltration). The yield of 

DsRed in each position of leaf 3 was found to fall well within the 95% confidence interval 

(CI) predicted by the model, whereas the yield of 2G12 was slightly lower than the 95% CI at 

one leaf position (Figure III.9). All averages of 2G12 expression fell within the lower range of 

the 95% CI. This trend can mainly be attributed to a batch effect because all plants used for 

model validation came from the same batch, whereas the models were built using samples 

from different batches. The use of agroinfiltration rather than injection may also have 

influenced transgene expression [166]. However, observed and predicted average yields 

matched well for both recombinant proteins, confirming the validity of the yield models. 

 

Figure III.9: Validation of the DsRed (A) and 2G12 (B) yield models (II.2.2 and II.4.2). 

Extracts from whole infiltrated leaves (stage 3) from tobacco plants harvested 40 dps were used for model 

validation. Observed (circles, bars indicate standard deviation, n = 3) and predicted (solid line marks prediction 

average, dotted lines mark 95% CI) expression levels for both model proteins matched well. 

III.1.2.6 Cost function 

The cost function as described above (III.1.1.6) was applied to the yield models to provide 

insight into production optimization strategies. According to the yield models, the greatest 

proportion of each recombinant protein was located in young leaves (Figure III.3 B) allowing 
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the evaluation of the economic impact of several harvest schemes differing in the number and 

type of leaves processed per plant. In consecutive harvest schemes, the oldest leaves were 

iteratively excluded from processing. A process output of 5 g purified recombinant protein 

was used as the basis for these calculations, corresponding to approximately 7.14 g of bulk 

recombinant protein assuming a RF of 0.7. The most significant cost savings were achieved 

by using plants harvested at 47 dps and excluding the oldest four leaves (Table III.4). This 

reduced production costs for DsRed by 23% and for 2G12 by 12%. The major benefit from 

this scheme was to reduce downstream processing costs by 45% for DsRed and 35% for 

2G12, which absorbed the moderate increase in upstream cultivation costs (Figure III.10 A 

and Table III.4). Reducing the number of harvested leaves per plant further did not achieve 

additional cost savings overall because downstream cost savings were offset by higher 

upstream costs. The exclusion of older leaves did not result in such significant savings when 

plants were harvested at 40 dps. The greatest impact was achieved by excluding only one leaf, 

the oldest, but this reduced the costs of producing DsRed only marginally (5%) whereas the 

costs of 2G12 production were not affected. These differences reflect the fact that younger 

plants produce higher levels of each protein per unit biomass so leaves cannot be discarded 

without also discarding significant amounts of the target product. Direct comparison of plants 

harvested at 40 and 47 dps revealed that production costs were lower for the young plants 

(45% for DsRed and 8% for 2G12 assuming the processing of all leaves) and this was without 

taking into account the shorter production cycle with younger plants, meaning that more 

batches can be processed each year. The cost function presented here can easily be adapted to 

other downstream unit operations by replacing the downstream cost factor (DCF) in Equation 

13 with alternatives [167]. 

 

Figure III.10: Process costs for the production of 5 g DsRed or 2G12 based on different harvest schemes 

and age at the infiltration stage (II.2.2, II.4.2 and III.1.1.6). 

A. The different cost positions accounting for the total production costs of DsRed in plants harvested 47 dps. B. 

Harvest schemes for the two recombinant proteins are compared in terms of production costs and age of the 

harvested plants. 
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Table III.4: Batch size and process costs according to harvest scheme. Calculations represent a process 

yielding 5 g of purified recombinant protein (7.14 g bulk antibody assuming an RF of 0.7). Amounts of 

recombinant protein per plant were calculated using Equation 12 taking into account the different harvest 

schemes. Upstream production, infiltration and downstream processing costs were calculated with 

Equation 13 using GCFA, ICA and DCF from Table III.3. 

Plant age 40 dps   47 dps 

Harvest 

scheme 
Top 5 Top 4 Top 3 Top 2   Top 8 Top 7 Top 6 Top 5 Top 4 Top 3 Top 2 

2G12 per 

plant [µg] 
1627 1474 1151 684 

 
2478 2431 2334 2051 1769 1224 696 

Required 

plants [-] 
4391 4847 6205 

1043

8  
2883 2938 3060 3483 4038 5838 

1026

8 

Biomass 

processed 

per plant [g] 

29 24 18 11 
 

66 59 51 41 30 20 11 

Biomass 

processed 

per batch 

[kg] 

128 116 110 117 
 

189 174 155 142 122 116 115 

Upstream 

costs [€] 

2491

5 

2750

3 

3520

7 

5922

9  

1635

9 

1667

0 

1736

5 

1976

4 

2291

5 

3312

6 

5826

0 

Infiltration 

costs [€] 
2103 2103 2103 2103 

 
2653 2653 2653 2653 2653 2653 2653 

Downstrea

m costs [€] 

2590

6 

2358

0 

2236

1 

2380

4 
  

3834

4 

3526

6 

3135

3 

2879

7 

2473

9 

2341

8 

2328

2 

Total costs 

[€] 

5292

3 

5318

5 

5967

0 

8513

5 
  

5735

6 

5458

9 

5137

1 

5121

3 

5030

7 

5919

7 

8419

6 

             
Plant age 40 dps   47 dps 

Harvest 

scheme 
Top 5 Top 4 Top 3 Top 2   Top 8 Top 7 Top 6 Top 5 Top 4 Top 3 Top 2 

DsRed per 

plant [µg] 
3041 2923 2523 1733 

 
2907 2887 2831 2669 2470 1894 1255 

Required 

plants [-] 
2349 2443 2831 4122 

 
2457 2474 2524 2676 2892 3771 5691 

Biomass 

processed 

per plant [g] 

29 24 18 11 
 

66 59 51 41 30 20 11 

Biomass 

processed 

per batch 

[kg] 

68 59 50 46 
 

161 147 128 109 87 75 64 

Upstream 

costs [€] 

1332

9 

1386

4 

1606

6 

2338

7  

1736

0 

1747

9 

1782

8 

1890

5 

2043

0 

2664

5 

4020

8 

Infiltration 

costs [€] 
2103 2103 2103 2103 

 
2653 2653 2653 2653 2653 2653 2653 

Downstrea

m costs [€] 

1385

9 

1188

7 

1020

4 
9399   

3268

2 

2969

9 

2585

4 

2212

3 

1771

4 

1512

8 

1290

5 

Total costs 

[€] 

2929

0 

2785

3 

2837

2 

3488

9 
  

5269

5 

4983

2 

4633

5 

4368

1 

4079

7 

4442

6 

5576

7 

III.1.3 Model implications for a production process 

The data presented here indicate that the degree of variation for transient protein expression in 

tobacco can be reduced to ~15%, which is in the same range as transgenic tobacco plants 

(unpublished data and [162]) and transient expression in N. benthamiana [66, 67]. There was 

significant inter-batch variation in protein yields, but this can be reduced by the careful 
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control of growth conditions (e.g. by cultivation in a phytotron) and by the use of larger batch 

sizes. Even with this amount of variation, it was possible to predict transient protein 

expression levels with reasonable accuracy using the concentration models presented here. 

According to these models, expression levels strongly depend on the cultivation temperature 

although the optimal temperature may need to be tailored for specific proteins and/or for 

proteins targeted to specific subcellular compartments [91]. The temperature dependence will 

be interesting to follow up in future experiments because the data suggest that yields could be 

increased by at least 10% using a temperature-optimization strategy. The volume and 

concentration models showed that transient protein expression levels declined as plants aged 

and generated more biomass, reflecting the greater potential for protein synthesis in young 

leaves. The yield model showed that the higher expression levels in young plants offset or 

even exceeded the benefits of more biomass in older plants, allowing young plants to be 

harvested for processing and allowing the production cycle to be shortened resulting in a 

higher overall annual output. This finding indicates that harvest times cannot be transferred 

between processes based on stable transformation and transient expression. The long-term 

accumulation of recombinant proteins in transgenic plants leads to higher overall yields, 

whereas in transient expression systems the best results are generated by taking advantage of 

young, rapidly-growing tissues with high levels of protein synthesis. The cost function 

highlighted the fact that young plants reduce downstream costs by 10–30% as specific protein 

expression is higher and less biomass needs to be processed. These cost savings can be 

increased by harvesting selected leaves. 

In addition to the process optimization described above, the data collected here can 

form the basis of a QbD concept to develop a cGMP-compliant process for the transient 

expression of biopharmaceutical proteins in plants. For example, critical process parameters 

such as temperature were identified and their impact on product quantity was determined. In 

the future, it will be necessary to determine the effects of different growth conditions and leaf 

parts on the quality of the protein product rather than focusing on the yield alone, allowing the 

definition of an operating space for a production process. The generic character of the 

approach will allow its use with other expression platforms. 
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III.2 Promoter and 5'UTR strength in transient expression 

The results presented in this section have been published as: 

1. Buyel JF, Kaever T, Buyel JJ, Fischer R. 2013. Predictive models for the 

accumulation of a fluorescent marker protein in tobacco leaves according to the 

promoter/5'UTR combination. Biotechnology and Bioengineering 110(2):471-82. 

III.2.1 Vectors 

Vectors were constructed as described in sections II.2.1 and II.2.4 as part of the bachelor 

thesis of Thomas Kaever [148]. For promoter and UTR testing, two constitutive promoters 

were used to drive the DsRed transgene: the double-enhanced Cauliflower mosaic virus 35S 

promoter (CaMV 35SS) as an example of a strong promoter [146], and the A. tumefaciens 

Ti-plasmid nopaline synthase (nos) promoter as an example of a weak promoter [147, 168]. 

Each promoter was combined with three different 5'UTRs, namely the Petroselinum hortense 

chalcone synthase (CHS) gene 5'UTR [169], the omega prime sequence from 

Tobacco mosaic virus (hereafter called ‘omega’ for simplicity) [170] and the 

Tobacco etch virus leader sequence (TL) [171] (Figure III.11). A forth construct was tested 

that consisted of the CHS 5'UTR followed by the leader peptide sequence of murine mAb24 

[172] codon optimized for tobacco (LPH). This sequence ensures that nascent polypeptides 

are targeted to the secretory pathway through the endoplasmic reticulum (ER). The DsRed 

coding sequence was identical in all vectors and was modified to contain C-terminal His6 and 

KDEL tags, the latter working in concert with the LPH sequence to ensure the protein 

accumulates in the ER rather than passing through the Golgi body for secretion to the apoplast 

[173]. Both tags were present in all constructs even when anticipated to provide no function, 

in order to minimize the differences in mRNA and protein sequences and therefore remove 

potential sources of variation. A reference gene was not used for normalization of DsRed 

expression because position effects require T-DNA integration and are therefore unlikely to 

influence transient expression [174]. There can also be interference between test and reference 

promoters in transient expression experiments [175]. 
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Figure III.11: Schematic representation of expression cassettes. 

The promoter/5'UTR elements of the eight different vectors are shown at the top (II.2.1 and II.2.4). Starting with 

vector So, the omega 5'UTR was replaced by one of the three other UTRs (CHS, CHS-LPH or TL). In a second 

step the CaMV 35SS promoter was replaced with the nos promoter in each of the four initial constructs, yielding 

a total of eight different promoter/5'UTR combinations. The lower panel shows the T-DNA map. 

III.2.2 Effects of promoter and 5'UTR 

III.2.2.1 The predictive model captures promoter/5'UTR-dependent differences 
in expression 

A model was established that accurately predicted the accumulation of DsRed in tobacco leaf 

extracts. The significance of the multiple linear regression model was confirmed using 

standard quality attributes such as r
2
 (Table III.5). The incubation time was the most 

important factor affecting the accumulation of DsRed, but leaf age and position on a leaf were 

also significant factors as discussed in section III.1.2.3. Seventeen factors and factor 
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interactions had a significant impact on DsRed expression (Table III.6). Letter duplets in this 

table indicate an interaction between two of the five model factors: A (position on leaf), B 

(incubation time), C (leaf age), D (promoter) and E (5'UTR). For example “BD” denotes an 

interaction between factor B (incubation time) and factor D (promoter). Accordingly, letter 

triplets indicate three-factor interactions. In this context, an interaction means that the effect 

of two factors, e.g. B (incubation time) and D (promoter), on the observed result (DsRed 

concentration), are interdependent. 

The model revealed that 11 of the 17 significant model terms (factors and interactions) 

involved the promoter, the 5'UTR or a combinatorial interaction between them (Table III.6). 

One consequence of these significant promoter/5'UTR interactions was that a given 5'UTR, 

although not considered strong by itself, might become a more important determinant of 

expression when combined with a certain promoter. For example the CHS 5'UTR achieved 

the highest DsRed accumulation when combined with the CaMV 35SS promoter but the 

lowest when combined with nos. The most significant interaction of promoter or 5'UTR 

involved the incubation time, e.g. BD and BE (Table III.6). The model therefore provides 

valuable information about transient protein expression patterns in tobacco leaves by making 

predictions based on interactions between factors that are often not considered in such 

experiments. The model is not mechanistic like some promoter models in prokaryotes [60], 

yeasts [61, 62] and Drosophila melanogaster embryos [63, 64] because the tobacco plant is 

too large and complex. However, it links promoter/5'UTR effects on protein accumulation 

with the spatiotemporal constraints of transient protein expression in whole plants. This will 

allow product yields in transient expression platforms to be estimated when concentration 

data from the model presented here are combined with the reported model for leaf mass or 

extract volumes described above (III.1). The model also reveals which leaves are most 

suitable for comparative experiments (in terms of expression levels and yields), which will 

help to standardize comparative tests. In contrast, previous studies have either focused on 

promoter analysis alone [69, 70] or have used cell suspension cultures to simplify the 

comparison [54, 56, 57, 71-73]. The temporal accumulation profiles of reporter proteins have 

only been studied in transgenic plants [74, 75, 77] and in some cases have not resolved 

differences among leaves of different ages [76]. 
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Table III.5: Parameters used to confirm the significance of the predictive model. 

Evaluation parameter Value 

r
2
 0.993 

Adjusted r
2
 0.987 

Predicted r
2
 0.976 

PRESS
1
 4.054 

Lack of Fit 0.267 

1
 Predicted residual sum of squares 

Table III.6: Factors included in the model to predict reporter protein expression. Factors involving the 

promoter and 5'UTR are highlighted in bold and italics, respectively. A p-value of 0.05 indicates a 

significance (alpha) level of 5%. 

Factor F-value p-value 

Model 182.124 < 0.0001 

A (position on leaf) 16.056 0.0001 

B (incubation time) 11128.220 < 0.0001 

C (leaf age) 215.390 < 0.0001 

D (promoter) 2324.292 < 0.0001 

E (5'UTR) 30.610 < 0.0001 

AC 3.382 0.0026 

BC 20.640 < 0.0001 

BD 224.509 < 0.0001 

BE 28.744 < 0.0001 

CD 4.108 0.0005 

CE 2.036 0.0093 

DE 15.730 < 0.0001 

B
2
 627.288 < 0.0001 

BCD 13.424 < 0.0001 

BCE 1.831 0.0230 

BDE 5.370 0.0017 

B
2
D 147.927 < 0.0001 

III.2.2.2 The optimal combination is the CaMV 35SS promoter and CHS 5'UTR, 
which achieved the highest level of DsRed accumulation within 8 days 

The CaMV 35SS promoter achieved an average 10-fold higher yield of DsRed than the nos 

promoter at both 5 and 8 dpi. The difference in DsRed accumulation also depended on which 

5'UTR was combined with the promoter (Figure III.12). A 110-fold difference in protein 

levels was reported previously, but each promoter was also linked to a significant amount of 

intrinsic 5'UTR sequence >50 bp in length [176]. In contrast, differences in accumulation can 

be attributed directly to the promoter because the residual intrinsic 5'UTRs were only 6 bp for 

the CaMV 35SS promoter and 21 bp for the nos promoter, whereas the promoter-independent 

5'UTRs tested here were up to 131 bp in length. Therefore, it was assumed that the 10-fold 
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difference in recombinant protein accumulation more closely reflects the differences in 

promoter activity. Some bias may remain in these results due to the short intrinsic 5'UTRs as 

well as differences based on interactions between the 5'UTRs and the 3'UTR. The difference 

between two promoters was greatest (12–14-fold) when the promoters were combined with 

the CHS 5'UTR and was less remarkable (4–7-fold) when the promoters were combined with 

the CHS-LPH 5'UTR. Averaged over all leaves in the plant, the CaMV 35SS promoter/CHS 

5'UTR combination achieved the highest DsRed yields at 5 and 8 dpi (Figure III.13 A and C 

and Figure III.14 A and C). Thus, the shortest 5'UTR with the lowest GC content (Figure II.1 

C) resulted in the highest accumulation of recombinant protein (Figure III.12) contrasting 

with a previous publication attributing higher expression levels to longer 5'UTRs [177]. 

 

Figure III.12: A. Comparison of CaMV 35SS and nos promoter activity in terms of DsRed accumulation 

over time in tobacco leaves (II.2.2 and II.4.2). 

Symbols indicate DsRed accumulation as a 35SS:nos ratio over all leaves in an individual plant at leaf position 

2.5. Error bars represent standard deviations calculated across all leaves. The large standard deviations at 5 and 8 

dpi were caused by DsRed accumulation varying significantly according to the age of the leaf. Abbreviations for 

5'UTRs: CHS – chalcone synthase; CHS-LPH – chalcone synthase with leader peptide; omega – TMV omega 

sequence; TL – TEV leader sequence. Data points are shifted by 0.1 or 0.3 dpi away from the actual x-axis value 

for clarity. B. DsRed accumulation in tobacco leaves can be inhibited by injecting Tris buffer (pH 10.0) after 

infiltration, although the impact is time-dependent. Symbols represent the ratio of DsRed content in leaves 

treated with Tris pH10 to controls treated with Tris pH 5.6. Error bars indicate standard deviation (n = 3). Effects 

caused by differences on the left and right hand side of a leaf (L/R control, dashed line) do not deviate 

significantly from unity. 

Others have shown that protein expression can vary significantly despite similar 

5'UTR lengths and numbers of transcripts [55]. However, the results presented here agree 

with previous reports stating that high protein expression levels are often associated with 

short 5'UTRs with a low GC content [178, 179]. A high GC content can result in stable 

mRNA secondary structures, hindering effective translation if the resulting Gibbs energy 

(G) is below –200 kJ mol
-1

 (–50 kcal mol
-1

) [180-182]. Data from the RNAfold webserver 

[145], indicated that only the TL 5'UTR combined with the 35SS promoter exhibited a folding 
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energy in this range (approximately –180 kJ mol
-1

), whereas all the other 5'UTRs combined 

with the CaMV 35SS or nos promoter showed weaker G values, all approximately –80 

kJ mol
-1

 (Table III.7). 

Table III.7: Gibbs energies of folding calculated for the 5' end of mRNAs including the 5'UTR and the 

first 50 bp of the DsRed coding region at 25°C. 

G [kJ mol
-1

] Promoter 

5'UTR 35SS nos 

CHS 63.55 92.66 

CHS-LPH 88.97 88.93 

Omega 65.60 94.71 

TL 179.62 126.69 

 

Figure III.13: Comparison of promoter/5'UTR combinations in terms of predicted DsRed content and 

accumulation rates over time in the fifth leaf of a tobacco plant at leaf position 2.5 (II.2.2, II.4.2 and 

II.5.2). 

A. and B. show DsRed content achieved by 5'UTRs combined with CaMV 35SS or nos respectively. 

Corresponding accumulation rates are shown in C. and D. Error bars indicate 95% confidence interval of the 

model prediction. Abbreviations for 5'UTRs: CHS – chalcone synthase; CHS-LPH – chalcone synthase with 

leader peptide; omega – TMV omega sequence; TL – TEV leader sequence. 

Accordingly, one would expect the CaMV 35SS-TL combination to achieve limited 

DsRed synthesis, but the observed expression levels were similar to those of the CaMV 35SS-

omega combination (Figure III.13 A and C and Figure III.14 A and C). This may reflect the 

presence of an internal ribosome entry site (IRES) in the TL 5'UTR [183], which mediates 
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cap-independent translational initiation thereby circumventing the need for the ribosome to 

pass though mRNA secondary structures before reaching the start codon [184, 185]. 

Interestingly, the differences in the folding energies among the 5'UTRs were smaller when 

expression was driven by the nos promoter. 

None of the constructs contained upstream AUG nucleotide triplets, so these were 

excluded as a possible reason for differences in the performance of the 5'UTRs [178, 180]. 

However, it is possible that the eight promoter/5'UTR constructs could generate mRNAs with 

different cis-acting elements that could either recruit different sets of translation factors, or the 

same factors with differing efficiency and stability, thus contributing to the different DsRed 

expression levels [186-188]. 

These results suggest that the sequence and structure of the 5'UTR are more important 

than its length in terms of the regulation of recombinant protein expression. Additional 

promoter/5'UTR combinations should be investigated in the future to quantify the effect of 

factors, such as folding energy, which influence the ‘strength’ of a 5'UTR. 

III.2.2.3 DsRed accumulation rates change over time and are dependent on the 
promoter, 5'UTR and leaf age 

During the first two days after agroinfiltration, less than 10 µg of recombinant protein per 

gram fresh biomass was detected in any of the tobacco leaves, regardless of the 

promoter/5'UTR combination (data not shown). This delayed onset of DsRed accumulation 

(Figure III.13 C and D) resembled the lag phase that occurs in cell cultures and probably 

reflects the initial transformation events that take place prior to protein synthesis, such as the 

transfer of T-DNA from A. tumefaciens into the tobacco cells and its subsequent import into 

the nucleus [189]. This assumption is supported by the finding that transient protein 

expression can be impaired at least within the first 20 h after agroinfiltration by injecting 50 

mM pH 10.0 Tris buffer into the apoplast to increase the pH (Figure III.12 B). Others have 

achieved similar results with different inhibition techniques [190, 191]. Measures that 

accelerate the accumulation of a recombinant protein during the lag phase may therefore help 

to improve the overall yield, e.g. optimized infiltration protocols, vir gene inducers that are 

more potent than acetosyringone or engineered VirD2 sequences that improve the efficiency 

of T-DNA import. 

After 5 dpi, most DsRed was detected in leaves 5–7 (Figure III.14 A and B) in 

agreement with the results presented in section III.1.2.3 and earlier studies using transgenic 

plants [56]. For combinations including the CaMV 35SS promoter and any of the three 

5'UTRs, the rate of DsRed accumulation rate peaked at 5 dpi in leaves 4–7 and declined 
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thereafter (Figure III.13 C). The accumulation rate continued to increase up to 8 dpi in the 

older leaves (1–3) and in the youngest leaf (8), but this was not sufficient to overcome the 

trend in the other leaves so the overall effect was to slow down protein accumulation. The 

flattening of DsRed accumulation after 5 dpi may reflect the onset of plant defense 

mechanisms such as gene silencing [101]. Viral silencing suppressors such as p19 from 

Tomato bushy stunt virus (TBSV) have been used successfully to counteract these defense 

mechanisms and ensure the high-level transient expression of recombinant proteins [192-194]. 

However, the use of silencing suppressors is limited to N. benthamiana because p19 from 

TBSV and other viruses elicits the hypersensitive response (HR) in N. tabacum, which offsets 

any benefits [195, 196]. Other suppressors have been discovered with similar activity to p19 

[197], and some such as p20 from Cucumber necrosis virus (CNV), do not elicit the HR in 

N. tabacum [196]. Hence, these suppressors may be used in future experiments to improve 

recombinant protein expression in tobacco. 

Alternatively, the decline in DsRed accumulation may reflect convergence towards 

steady-state equilibrium between synthesis and degradation [198, 199]. It is also possible that 

the model slightly emphasizes the degree of flattening due to the second-order polynomial fit 

of the impact of incubation time. As stated above, DsRed continued to accumulate at least up 

to 8 dpi in leaves 2 and 3 of the same plant, particularly those transformed with the CaMV 

35SS/CHS combination, leading to a more homogenous DsRed content across the different 

leaves (Figure III.13 C). Therefore, prolonging the incubation time may help to improve 

recombinant protein yields in older leaves that would otherwise increase downstream 

processing costs without increasing product recovery (section III.1.2.6). The higher DsRed 

accumulation rates at 5 dpi may also explain the variability of up to 40% reported for transient 

expression [66]. This is because small errors in sampling times (independent variable) of 

± 4 h will result in changes in protein concentration (dependent variable) of up to 20%. 

Sampling times should therefore be scheduled carefully when transient protein expression is 

used to investigate promoter/5'UTR properties. In this context, the prolonged incubation times 

may also help to improve batch-to-batch consistency in the production of biopharmaceutical 

proteins using transient expression systems. 

Unlike the plants discussed above, no flattening of DsRed accumulation was observed 

in plants transformed with nos promoter constructs over the same incubation periods. 

Furthermore, when comparing the three 5'UTRs (without a targeting sequence) their ranking 

changed in terms of activity from CHS>TL>omega during early expression to 

TL>CHS>omega at 8 dpi (Figure III.13 B and D and Figure III.14 B and D). The highest 
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DsRed levels were found in leaves 4–7, in contrast to earlier reports showing that the 

youngest leaves have the lowest expression levels [126, 127]. This difference between 

transgenic plants and transient expression can reflect the duration of the production cycle, i.e. 

in transgenic plants proteins accumulate during the entire growth period so older leaves have 

time to accumulate more protein (40–50 days in the case of tobacco variety Petit Havana 

SR1). In contrast, the transient expression production cycle lasts 5–10 days and the capacity 

of the protein biosynthesis machinery is more important than long-term accumulation, i.e. the 

rate of protein synthesis is higher in young, rapidly-growing leaves [66, 67, 164, 200]. 

 

Figure III.14: Predicted DsRed content in tobacco leaves (1 = oldest, 8 = youngest) over the time course of 

transient expression is dependent on the promoter/5'UTR combination (II.2.2, II.4.2 and II.5.2). 

Expression driven by CaMV 35SS is higher at 5 and 8 dpi (A and C respectively) compared to nos (B and C 

respectively). Error bars indicate 95% confidence interval of the predicted values. Abbreviations for 5'UTRs: 

CHS – chalcone synthase; CHS-LPH – chalcone synthase with leader peptide; omega – TMV omega sequence; 

TL – TEV leader sequence. 

III.2.2.4 ER localization increases the accumulation of DsRed over long 
incubation times and in combination with the nos promoter 

The combination of the CaMV 35SS promoter and the CHS-LPH 5'UTR (which includes an 

ER-targeting signal) reduced DsRed accumulation to ~60% of the level achieved without the 

targeting signal (CHS 5'UTR) by the 5 dpi time point (Figure III.14 A). There was also no 

flattening off in the accumulation of DsRed, in contrast to the plants transformed with CaMV 
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35SS constructs combined with any of the three 5'UTRs but lacking a targeting signal. Indeed, 

plants transformed with the CaMV 35SS/CHS-LPH combination continued to accumulate 

DsRed and reached parity in overall expression levels by 8 dpi (Figure III.13 A and Figure 

III.14 C). When combined with the nos promoter, CHS-LPH even exceeded the performance 

of CHS. 

Several factors may have delayed the accumulation of DsRed in the ER. First, mRNA 

stability might be affected by the LPH coding sequence, which may contain additional cis-

acting elements [201, 202] although no known elements were identified using the RegRNA 

webserver [203]. However, other mechanisms such as miRNA-mediated repression/decay 

could also be involved [204]. Second, the number of translation events that can be completed 

in a given time may be lower for the CHS-LPH 5'UTR because the leader peptide increases 

the length of the polypeptide by 8% and might therefore also increase the total synthesis time 

for each polypeptide. Third, the affinity of signal recognition particles (SRP) towards leader 

peptides depends on the sequence of the leader [205]. The 35SS/CHS-LPH signal peptide 

competes directly with endogenous signal peptides for SRPs, and only a fraction of the 

35SS/CHS-LPH leader peptide pool will bind to SRPs, dock to translocons in the ER 

membrane and finalize translation. This fraction will diminish if the 35SS/CHS-LPH leader 

has to compete with higher-affinity leader peptides such as those found on the 

immunoglobulin binding protein (BiP) [205]. The tobacco genome encodes several BiP 

proteins, all of which belong to the HSP70 family and are inducible by stress [206, 207]. 

Accordingly, they are likely to be activated by agroinfiltration and their synthesis and 

translocation into the ER may block leader peptides competing for the same SRPs. This is 

supported by the observation that DsRed accumulation driven by CHS-LPH is delayed 

compared to CHS without the leader peptide (Figure III.13 and Figure III.14). Finally, the 

strict quality control in the ER may reduce protein accumulation during the early expression 

phase by removing partially folded proteins [208]. The same mechanism may promote DsRed 

accumulation during longer incubation periods because proteins are more likely to be folded 

correctly. 

When combined with the nos promoter, the CHS-LPH 5'UTR resulted in the highest 

DsRed accumulation in leaves 2–8 at both 5 and 8 dpi (Figure III.14 B and D). A 2–4-fold 

increase in DsRed fluorescence compared to the other 5'UTRs was observed at the later time 

point, and the different accumulation rates among the 5'UTRs were more prominent at this 

time point when combined with the nos promoter (Figure III.13 D). DsRed fluorescence in 

different leaves varied most at 8 dpi, with up to 20-fold differences in concentration between 
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young and old leaves. ER targeting can thus be used to achieve high rates of DsRed 

accumulation during transient expression if the incubation times are prolonged to account for 

the extended lag phase and to take advantage of the lack of flattening, perhaps reflecting a 

different steady-state dynamic in the ER favoring protein synthesis and accumulation over 

degradation. It has been reported that ER targeting can increase recombinant protein 

accumulation by more than 10-fold in transgenic plants [209, 210] which may reflect the 

long-term effect of the maintained high accumulation rate that was observed in the short-term 

transient expression experiments described here. However, prolonged incubation times can 

also be disadvantageous if silencing is triggered by the expression of the recombinant protein, 

as discussed above. 

III.2.2.5 Different 5'UTRs form compatible pairs for stoichiometric protein 
expression when combined with the CaMV 35SS and nos promoters 

It is often necessary to produce more than one protein at the same time while maintaining a 

certain stoichiometry, e.g. for protein-protein interaction studies or the production of 

heteromeric recombinant proteins such as antibodies [211-214]. This can be difficult to 

achieve by transient expression because protein contents vary according to leaf age, 

incubation time, promoter and 5'UTRs as discussed above (Table III.6). For example, the 

ideal stoichiometric ratio of proteins for the expression of a secretory IgA (sIgA) is 4:4:1:1, 

representing the IgA light chain, IgA heavy chain, joining chain and secretory component. 

However, only 45–50% of the recombinant proteins assemble into the full-size sIgA when the 

same promoter/5'UTR is used for all proteins [215, 216]. This low yield may be caused by the 

relatively high concentrations of joining chain and secretory component, which saturate the 

corresponding binding sites on IgA molecules (2:2:1:1 ratio) thereby preventing the assembly 

of two IgA molecules with one molecule of joining chain and secretory component. 

Therefore, a pair of promoter/5'UTR combinations was identified that would support 

the most stable DsRed accumulation ratio in the different leaves of a tobacco plant and in the 

course of the incubation period. All 5'UTR pairs sharing the same promoter are compared in 

Figure III.15 A (e.g. 35SS/CHS:35SS/omega = CHS/omega) and 5'UTR pairs with different 

promoters are compared in Figure III.15 B (e.g. 35SS/CHS:nos/CHS = CHS/CHS). 

The lowest fluctuations in DsRed accumulation were observed when the omega and 

TL 5'UTRs were paired with the CaMV 35SS promoter (Figure III.15 A). DsRed 

accumulation was approximately 10% higher when the TL 5'UTR was used, in agreement 

with data from transgenic plants [209]. In combination with the nos promoter the most 

consistent DsRed accumulation profiles were achieved when comparing the CHS and omega 
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5'UTRs. DsRed accumulation was approximately 50% higher when the CHS 5'UTR was 

used. The ratio of TL and omega exhibited the least variability across all leaves for each 

individual time point during incubation but the value of the ratio steadily increased. When 

5'UTRs combined with different promoters were compared, DsRed accumulation ratios varied 

more than before according to the incubation time and leaf age, and the ratios at 2 dpi in 

particular were smaller compared to later time points (Figure III.15 B). This probably reflects 

the delayed onset of DsRed synthesis discussed above (sections III.2.2.3 and III.2.2.4). 

However, excluding the values for 2 dpi, the CaMV 35SS/CHS to nos/CHS, CaMV 

35SS/omega to nos/CHS and CaMV 35SS/omega to nos/omega comparisons resulted in 

acceptable variability of approximately 30% over time and in different leaves. These data 

suggest that recombinant proteins can be produced at specific ratios by transient expression in 

plants using different promoters, which provides a valuable toolkit for the investigation of 

protein interactions, the stoichiometry between signaling proteins in complexes and metabolic 

enzymes, and for the production of heteromeric proteins such as sIgA. 

 

Figure III.15: Comparison of DsRed content resulting from different promoter/5'UTR combinations 

(II.2.2, II.4.2 and II.5.2). 

A. Ratios of /5'UTR pairs with the same promoter (35SS – left of the dashed line; nos – right of the dashed line). 

B Ratios of 5'UTR pairs with different promoters. The 5'UTR in front of the slash was combined with the 35SS 

promoter whereas the 5'UTR after the slash was combined with the nos promoter. All columns represent 

averages over all leaves at position 2.5 and were calculated for the three incubation times. Error bars indicate the 

standard deviation of values averaged over all eight leaves of a plant. The ER-targeted construct was excluded 

from the comparison. Abbreviations for 5'UTRs: CHS – chalcone synthase; omega – TMV omega sequence; TL 

– TEV leader sequence. 

The extrapolation of data from reporter proteins to others can be error-prone, but when 

DsRed was co-expressed with a monoclonal antibody by agroinfiltration, the two proteins 

showed highly similar expression profiles, both in terms of the accumulation and the 

spatiotemporal distribution (III.1.2.3). The antibody concentration was about half that of the 

DsRed protein (a homotetramer), as expected for a heterotetramer assembling from the 
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products of two different transgenes. Future studies should compare DsRed genes coding for 

the same amino acid sequence but using different nucleotide sequences to determine how the 

coding sequence of the reporter might affect protein accumulation. Additionally, the 

promoters/5'UTRs presented here should be combined with other genes to confirm the 

transferability of the model to other proteins and to test whether the high-level co-expression 

of several recombinant proteins interferes with protein accumulation. 

III.2.3 Implications for the design of expression cassettes 

Factors that influence recombinant protein levels in plants include promoter choice, 5'UTR 

choice, post-infiltration incubation time, subcellular localization and leaf age. These have 

been investigated individually but this is the first study to look at combinations of these 

factors in a unified model. The model presented here is able to capture the effect of 

promoter/5'UTR combinations, and characteristics of the expression system such as 

incubation time or leaf age, on the accumulation of the reporter protein DsRed. The model 

successfully predicted that the CaMV35SS/CHS combination would achieve the highest 

DsRed yield in all leaves, and that incubation for more than 5 days after agroinfiltration 

would improve the reproducibility of the transient expression platform. The collected data 

provide strong evidence that two recombinant proteins could be transiently expressed at a 

specific ratio in all the leaves of a tobacco plant and over a period of 8 days by the rational 

choice of promoter/5'UTR combinations. In future models, further regulatory elements should 

be included, such as 5'UTR introns and 3'UTRs [56, 58, 209, 217, 218]. This will improve the 

understanding of the factors that affect transient protein expression in whole plants providing 

a powerful tool for the development of manufacturing processes for plant-derived 

pharmaceutical proteins. 

III.3 Transient expression of type III effectors 

The results presented in this section are being prepared for the following publication: 

1. Buyel JF, Buyel JJ, Haase C, Fischer R. Exploiting the potential of type III 

effectors from Pseudomonas syringae to enhance transient protein expression in 

plants. 

III.3.1 Vectors 

Vectors were constructed as described in sections II.2.1 and II.2.5. The nos promoter and 

omega 5'UTR were selected to prevent elevated TTE expression (III.2), and five TTEs were 

selected based on the broad coverage of different plant defense pathways (Figure I.1). 
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AvrPtoB interferes with PAMP recognition and the defense-related initiation of transcription 

[102, 115], whereas HopF2 and HopAO1 downregulate the MAPK cascade [119, 120]. HopI1 

was used to prevent salicylic acid synthesis [108] and AvrRpt2 was used to modulate auxin 

levels [117]. The genes encoding AvrPtoB, AvrRpt2, HopAO1 and HopI1 were cloned in the 

pAIX-2 expression vector by Claudia Haase as part of her Bachelors thesis. 

 

Figure III.16: Schematic representation of TTE genes in vector pAIX-2, which were used for single and 

multiple transient expression experiments in N. tabacum (II.2.2 and II.2.5). 

The HopF2 vector was constructed first, and the coding region replaced with the other four genes encoding 

AvrRpt2, HopAO1, HopI1 or AvrPtoB. The expression cassette comprised the nos promoter, omega 5’UTR and 

pAnos poly(A) signal. The lower panel shows the T-DNA map. 

III.3.2 Effects on plant tissue and defense responses 

III.3.2.1 Reactions to bacterial injection 

Before testing the impact of the five selected TTEs, the default sequence of defense responses 

elicited by the injection of bacteria was investigated. One response is the synthesis of proteins 

encoded by the introduced T-DNA (sections III.1 and III.2), but the plant also responds to the 

tissue damage caused by injection or infiltration and to the presence of the bacteria, which are 

likely to be recognized by pathogen receptors thus triggering the corresponding defense 

responses (I.6). Mechanical wounding occurs naturally when pests feed on leaves. Nicotiana 

species have evolved to induce the synthesis of the alkaloid nicotine under these 

circumstances so the leaves become unpalatable (hence the genus name). An increase in 

nicotine was detected 5 days after infiltration with A. tumefaciens (hereafter A+ for brevity) or 

mock infiltration medium without bacteria (Figure III.17 A arrow 1). The mock injection did 

not induce any other changes, whereas A+ also induced the synthesis of chlorogenic acid and 
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suppressed the synthesis of rutin (quercetin-3-O-rutinoside) (Figure III.17 A arrows 2 and 3 

respectively). The identity of these metabolites was confirmed by comparison to authentic 

standards (Figure III.17 B). Chlorogenic acid and rutin are known defense-related metabolites 

in other plant species [219]. A+ also induced the synthesis of several other metabolites whose 

identity is unknown (Figure III.17 A arrows labeled 4). The upregulation of toxic secondary 

metabolites during transient expression would be a matter of concern for the regulators and 

specific process steps to remove these substances might be required to satisfy safety demands 

when transient expression in tobacco is used for the production of biopharmaceutical proteins 

[220-222]. 

 

Figure III.17: Changes in the metabolic profile of tobacco leaves following injection with A. tumefaciens. 

A. FPLC chromatograms from untreated, mock treated and A. tumefaciens (A+) treated samples (II.2.5 and 

II.4.8). Elevated nicotine concentrations were found in mock and A+ samples (arrow 1), whereas the levels of 

chlorogenic acid (arrow 2), rutin (arrow 3) and diverse uncharacterized metabolites (arrows 4) were modulated 

specifically in the A+ samples. B. Authentic standards were used to identify the metabolites (Table II.5). 

Table III.8: Elution order of authentic standards used for identification of tobacco metabolites. 

Elution number
1
 Name of the substance 

1 4-Aminopyridine 

2 Nicotine 

3 Quinoline 

4 2,4-Dipyridyl 

5 Caffeic acid 

6 Chlorogenic acid 

7 Acetosyringone 

8 Rutin 

9 Cinnamic acid 

1
 Elution number according to Figure III.17 B. 
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Figure III.18: Callose deposits (white spots) in tobacco leaves observed by automated confocal microscopy 

(II.2.5, II.4.6 and II.4.7). 

A. Few callose deposits were observed in the untreated leaves and those detected were located close to veins. B. 

A+ samples contained many callose deposits, with intense staining close to the veins but also across the 

intercostal fields. 

 

Figure III.19: Callose deposits (white spots) in tobacco leaves investigated by fluorescence microscopy at 

different levels of magnification (II.2.5, II.4.6 and II.4.7, all micrographs in black-white pseudo-colors). 

A+C. As in Figure III.18, untreated samples contained few deposits. B+D. In A+ samples, the number and 

intensity of callose deposits increased significantly. 

As well as the metabolic changes in A+ samples, there was also a massive increase in 

callose deposits at 2 dpi (Figure III.18 B) which could be seen at different levels of 
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magnification (Figure III.19). Staining was concentrated along the leaf venation, perhaps 

indicating a sieving effect of these tissues on A. tumefaciens during injection. Only a few 

callose deposits were found in the untreated samples (Figure III.18 A and Figure III.19 A and 

C) or in the mock-treated samples (data not shown). They appeared close to veins, a natural 

site for callose deposition [223, 224]. These results suggested that the callose deposits in A+ 

samples represent a defense response, involving the strengthening of the plant cell wall (I.6). 

The attachment of bacteria to the plant cells and subsequent T-DNA transfer may therefore 

have been hampered, reducing the number of transfected cells and thus the final product yield, 

with an overall negative impact on process economy (I.5). 

 

Figure III.20: Influence of A. tumefaciens injection and effector expression (II.2.2, II.2.5 and II.4.3). 

A. Comparison of TSP in wild type (lanes 1+2), GFD transgenic plants (lane 3+4), A0 samples (lanes 5+6) and 

A+ samples (lanes 7+8). Only marginal differences were observed. The intensity of the 35-kDa band 

corresponding to DsRed was more intense in samples from transgenic plants (black arrow in lane 3) compared to 

A+. Two uncharacterized bands appeared in the A0 and A+ samples (arrows in lane 5). M – pre-stained protein 

ladder, M2 – unstained protein ladder. B. Deleterious effect of HopF2 on leaf tissue at 5 dpi depending on 

OD600nm of A. tumefaciens during injection. The severity of necrosis declines with decreasing OD600nm. 

The difference between A+ and controls was less striking when the TSP composition 

of leaf extracts was compared (Figure III.20 A). Two faint bands (~150 kDa and 23 kDa) 

were found in A0 extracts (leaves injected with A. tumefaciens carrying a control vector) and 

A+ extracts (Figure III.20 A lane 5+6 and 7+8 respectively, black arrows) in addition to those 

observed in untreated wild-type and transgenic controls (note that a ~35 kDa band also 

appeared in samples from transgenic plants, corresponding to recombinant DsRed). This was 

anticipated because the resolution of 1D SDS-PAGE is limited and a second dimension, such 

as isoelectric focusing (IEF), in combination with a more sensitive detection method such as 

fluorescence labeling, may be required to resolve differences among the samples. 

Furthermore, it is likely that many of the proteins involved in the defense reaction were 
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already present in the control samples and were activated by post-translational modification, 

e.g. phosphorylation in the case of MAPKs [122, 225, 226]. 

III.3.2.2 Altering reactions by the expression of effectors 

The plant defense responses discussed above may attract regulatory scrutiny when 

biopharmaceutical proteins are produced by transient expression in tobacco, therefore 

measures to counteract the responses should be considered. The co-expression of candidate 

TTE genes could be used to suppress the defense responses and potentially increase product 

yields (I.6). An initial characterization of transient TTE expression in tobacco was carried out 

by Claudia Haase as part of her Bachelors thesis, which showed that a bacterial OD600nm of 

0.5–1.0 caused necrotic lesions in the leaves indicating that a lower OD600nm is required even 

though the concentration of TTE proteins was below the detection limit of a western blot 

[149]. The OD600nm range was therefore expanded in this investigation to identify useful 

parameter values for each effector while avoiding necrosis (Table III.9). The degree of 

necrosis declined visibly as the OD600nm was reduced (Figure III.20 B). Conditions were 

identified for each effector that resulted in the absence of macroscopic necrosis (Table III.9) 

and the results were confirmed by microscopic analysis after Trypan blue staining (data not 

shown, II.4.5). Those OD600nm values were selected for subsequent co-expression experiments 

with pGFD, containing the coding sequences for DsRed and 2G12 (III.3.3). 

Table III.9: OD600nm ranges for A. tumefaciens carrying TTE expression cassettes injected into tobacco 

leaves. 

  OD600nm range 

Effector Necrotic potential Lower boundary Upper boundary 
Selected for co-

expression 

AvrPtoB ++ 0.0078 0.25 0.031 

AvrRpt2 +++ 0.0078 0.25 0.031 

HopAO1 + 0.031 0.25 0.125 

HopF2 +++ 0.0078 0.25 0.031 

HopI1 0 0.031 0.25 0.125 

At the selected OD600nm values, TTE expression had a significant impact on the 

metabolic profiles of the treated tobacco leaves. HopAO1 and HopI1 (Figure III.21 A) 

generated metabolic profiles similar to A+ (Figure III.20 A) but the concentration of rutin was 

lower in the TTE samples (Figure III.21 A, arrow 3). The metabolite pattern from AvrPtoB 

samples resembled A+ (Figure III.21 B), but AvrRpt2 and HopF2 induced the accumulation of 

several uncharacterized metabolites (Figure III.21 B, arrows labeled 4) which correlated well 

with the potential to induce necrosis (Table III.9). 
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Figure III.21: Impact of TTEs on the metabolic profiles of tobacco leaves after transient expression (II.2.2, 

II.2.5 and II.4.3). 

A. HopAO1 and HopI1 induced the accumulation of nicotine (arrow 1) and other metabolites (arrows 4) similar 

to pGFD and mock treatments (Figure III.20 A), but suppressed the production of rutin (arrow 3) while 

chlorogenic acid (arrow 2) was not significantly affected. The untreated control from Figure III.20 is also shown 

to estimate batch-dependent sample buffer differences. B. AvrPtoB produced a similar profile to HopAO1 and 

HopI1, whereas HopF2 and AvrRpt2 induced the accumulation of diverse uncharacterized substances (arrows 4). 

These data suggested that HopAO1, HopI1 and AvrPtoB are better candidates for 

co-expression experiments reflecting their inherent lower tendency to cause necrosis, thus 

avoiding yield losses due to reduced cell viability. 

III.3.3 Effects on co-expressed target proteins 

The co-expression of TTEs and pGFD using the OD600nm values shown in Table III.9 resulted 

in lower 2G12 and DsRed levels in most cases (Figure III.22). Only HopAO1, HopI1 and 

AvrPtoB had a positive impact on the expression of these proteins. The positive impact of 

HopAO1 was seen at both temperatures whereas that of AvrPtoB was only seen at 22°C, and 

the positive impact of HopI1 was only seen at 25°C and was restricted to 2G12. Negative 

effects of the TTEs were generally less severe at 22°C, and 2G12 expression generally 

suffered to a lesser degree than DsRed. This was attributed primarily to the lower yields of the 

TTEs at 22°C, which reduced necrosis and yield losses, and also to the fact that 2G12 is 

secreted and therefore protected from the proteases induced by cell death whereas DsRed in 

the chloroplasts is more likely to be degraded. This was supported by the finding that TTEs 

with the greatest necrotic potential (HopF2, AvrPtoB and AvrRpt2) had a more negative 

impact on target protein concentrations at elevated temperatures (Figure III.22 A and B). In 

turn this suggested that the OD600nm selected for HopI1 may be too low to induce a beneficial 

effect at 22°C because such an effect was only observed at 25°C, corresponding to a higher 

level of HopI1 expression. 
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Figure III.22: The impact of TTEs on co-expressed DsRed and 2G12 (II.2.2, II.2.5 and II.4.2). 

A. At 22°C, HopF2, HopAO1 and AvrPtoB boosted the accumulation of the target proteins, whereas HopI1 and 

AvrRpt2 had the opposite effect. B. At 25°C, only HopAO1 had a positive impact on both target proteins, and 

HopI1 selectively boosted the levels of 2G12. 

Additional experiments with different TTE OD600nm values were carried out at 25°C to 

confirm these findings. Reducing the OD600nm of HopF2, AvrPtoB and HopAO1 had a 

positive impact by increasing the accumulation or at least limiting the reduction of DsRed 

(Figure III.23 A). HopAO1 also boosted 2G12 levels (Figure III.23 B). Reducing the OD600nm 

for HopI1 caused the amount of 2G12 to decline, which is in agreement with the statement 

above that HopI1 OD600nm may be a limiting factor. 

 

Figure III.23: Impact of varying the OD600nm of TTEs on levels of co-expressed DsRed and 2G12 at 25°C 

(II.2.2, II.2.5 and II.4.2). 

A. Reducing the OD600nm of HopF2, AvrPtoB and HopAO1 had a beneficial impact on DsRed accumulation. B. 

Reducing the OD600nm of HopAO1 promoted 2G12 accumulation but reducing the OD600nm of HopI1 reduced the 

2G12 levels indicating that the OD600nm is a limiting factor for this TTE. 

These experiments were continued in the Bachelors thesis of Joschka Buyel [155], 

showing that despite the positive results presented here, (i) TTEs are not present at the time of 

bacterial injection because they are synthesized only after T-DNA transfer and are therefore 
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unable to achieve their full potential in the suppression of plant defense responses, and (ii) 

transient expression causes the TTEs to accumulate to harmful levels which ultimately offset 

any beneficial effect on recombinant protein expression. These drawbacks caused the limited 

beneficial impact of TTEs on the levels of co-expressed proteins observed in this 

investigation. Therefore, transgenic plants expressing TTE genes under the control of an 

inducible promoter will be developed to circumvent both of the shortcomings discussed 

above. The co-transfer of intact effector proteins together with the A. tumefaciens T-DNA 

may also resolve these challenges. In future experiments, co-transfer can be achieved by (i) 

expressing a fully functional TTSS in A. tumefaciens [110], or (ii) by fusing a type-IV 

secretion signal to the effector genes and thus using the same system for the effectors and 

T-DNA [227, 228]. 
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IV. Conclusion and scope 

IV.1  Process design and control for plant-derived bio-
pharmaceuticals 

The impact of genetic elements and cultivation parameters such as temperature on transient 

protein expression was quantified using the model host N. tabacum (III.1 and III.2). The 

resulting data will facilitate the development of GMP-compliant processes allowing the 

reproducible production of plant-derived biopharmaceuticals as well as the balanced 

expression of different target proteins. For example, strict temperature control and defined 

post-infiltration harvest times were found to be crucial for reproducible expression levels. In 

future experiments, the dependence of protein expression on (i) the coding sequence of the 

gene of interest and (ii) the amino acid sequence of the target protein should be investigated in 

more detail to gain a deeper understanding of factors that determine transient expression 

levels in plants [229, 230]. 

The use of P. syringae type III effectors was investigated as a strategy to boost 

transient protein expression by suppressing plant defense responses (III.3). These experiments 

suggested that if such effectors were delivered along with the T-DNA, using type IV specific 

recognition sequences, a significant increase in expression could be achieved which would 

make plant-based production platforms much more competitive [227, 228]. However, more 

recent data has indicated that DsRed expression levels are not affected by type-III effector 

proteins co-transferred with T-DNA. Thus, the plant defense responses triggered by the 

injection of A. tumefaciens during transient expression may not be a limiting factor. 

IV.2  The basis for a Quality-by-Design approach 

In addition to the data described in this thesis, the methodology is also particularly important. 

Previous studies have often focused only on single factors affecting the outcome of 

experiments, or neglected factor interactions if more than one parameter was studied [70, 71, 

231]. Therefore, valuable information was not recorded and resources were used inefficiently. 

In contrast, the DoE approach (used throughout this thesis) allowed the systematic and 

cost-effective analysis of design spaces, resulting in a more detailed understanding of the 

process steps under investigation. 

The DoE approach also allowed the development of predictive models forming the 

basis of a QbD approach by offering (i) a quantitative correlation between process parameters 

and the quality of certain process steps, and (ii) a benchmark to define the working space in 
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future processes [232-234]. The QbD approach seeks to determine process conditions that will 

result in reproducible product yields, purity and efficacy and thus a safe, high-quality drug in 

contrast to the quality by control approach in which quality is ensured by extensive testing of 

the final product [233, 235]. 

The models presented above also revealed which process parameters (factors) 

influenced the outcome/quality/performance of a specific process step and indicated their 

individual leverage. This will facilitate the setup of a failure mode and effects analysis 

(FMEA) including the assignment of severity, occurrence and detection probability and 

ultimately a risk priority number (RPN) to each relevant process parameter [232, 233, 236]. 

The ultimate goal should be a model describing the complete production and 

purification process by a (small) number of critical process parameters, linking process 

conditions to the critical quality attributes of the product and taking into account the specific 

properties of the product, e.g. pH stability. To achieve this goal, the models presented here 

can be combined with models covering different DSP steps that have been developed recently 

and described in an accompanying PhD project entitled “Manufacturing biopharmaceutical 

proteins in tobacco” [98]. Such a global model can then be used in a feedback setup where the 

impact of process parameters on product quality is determined in a first step, and then product 

quality data can be used to define the operation range for process parameters that result in the 

reliable production of a high-quality target protein. Such a fundamental understanding of a 

new process can help to convince regulatory authorities of the safety of plant-derived 

biopharmaceuticals and will elevate this technology to the level of established production 

platforms such as CHO cells. 
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V. Summary 

Interest in plant-derived biopharmaceuticals has increased over the last few years, and will 

continue to do so following the full regulatory approval of the first plant-derived 

pharmaceutical protein in May 2012. There have been several reports of biopharmaceutical 

proteins produced in intact plants by Agrobacterium-mediated transient expression. However, 

the variable expression levels in this system make it difficult to develop robust production 

processes that will achieve regulatory approval. The potential high downstream processing 

costs have raised questions about the economic viability of plant-based biopharmaceuticals. 

Both of these critical aspects have been addressed in this thesis. In the first part, parameters 

were identified that affected transient protein expression in tobacco plants. The quantitative 

impact of these parameters was determined and modeled using a design of experiments 

approach. The post-infiltration incubation temperature, plant and leaf age and incubation time 

were found to be major factors influencing protein yields and variation. Therefore, carefully 

controlling these parameters in future production processes will significantly reduce batch-to-

batch variability and will improve compliance with regulatory guidelines. In the second part 

the influence of genetic elements such as promoters on the spatiotemporal expression levels 

was determined and summarized in predictive models. These models indicated that 

recombinant gene expression is not only dependent on promoters and 5'UTRs but also on the 

interaction between these elements. Furthermore, the models implied that a rational 

combination of promoters and 5'UTRs can result in balanced levels of two or more 

recombinant proteins throughout the duration of transient expression in plants which can 

improve yields of complex targets such as sIgA. The last section of this thesis focuses on the 

effect that plant-bacteria interactions have on the yield of transiently expressed target proteins 

and investigated instruments that can alter these interactions. Additionally, the models 

developed in this thesis can serve as the basis for a QbD concept in future processes, helping 

to define, evaluate and control critical process parameters. 
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VII.3 Register of equipment 

Name Type/Use Manufacturer 
-20°C premium ......................... -20°C freezer .................................. Liebherr, Germany 

--- .............................................. phytotron ........................................ Ilka Zell, Germany 

0.2 and 0.45 µm filter ............... filter ................................................ Carl Roth GmbH, Germany 

1.5 and 2.0 mL tubes................. reaction tubes ................................. Sarstedt, Germany 

15 mL and 50 mL tubes ............ reaction tubes ................................. Greiner Bio-One, Austria 

2.0 mL cryotube ........................ cryo tube ......................................... Carl Roth GmbH, Germany 

2720 Thermal cycler ................. PCR cycler ..................................... Applied Biosystems, CA, USA 

96 half area flat bottom black ... 96 well plate ................................... Greiner Bio-One, Austria 

ÄKTA explorer ......................... chromatography device .................. GE Healthcare, UK 

Allegra 25R............................... centrifuge ....................................... BeckmanCoulter, CA, USA 

Aquarius ................................... deionized water supply device ....... membraPure, Germany 

Biophotometer .......................... photometer ..................................... Eppendorf, Germany 

BioWizard ................................. sterile bench ................................... Kojair, Finland 

BP 121 S ................................... scale ............................................... Sartorius, Germany 

BP 610 ...................................... scale ............................................... Sartorius, Germany 

Cellstar ...................................... 96 well plate ................................... Greiner Bio-One, Austria 

Centrifuge 5415D ..................... centrifuge ....................................... Eppendorf, Germany 

Commercial Blener ................... blender............................................ Warring, CT, USA 

Cond 315i ................................. conductometer ................................ WTW, Germany 

Forma -86C ULT freezer .......... -80°C freezer .................................. ThermoFisher, MA, USA 

Innova 4230 .............................. incubator/shaker ............................. New Brunswick Scientific, CT, USA 

KMO 2 basic ............................. stirrer .............................................. IKA, Germany 

LEICA DRM+DCF .................. microscope ..................................... Leica, Germany 

M-Power ................................... scale ............................................... Sartorius, Germany 

Mikro 220R............................... centrifuge ....................................... Hettich, Germany 

MiniGyroRocker SSM3 ............ rocker ............................................. Barloworld Scientific, UK 

MiniSubCell GT ....................... gel electrophoresis chamber ........... BioRad, CA, USA 

MiraCloth 1R ............................ filter tissue ...................................... Merck, Germany 

Multiporator .............................. electroporation device .................... Eppendorf, Germany 

N816 ......................................... vacuum pump ................................. KNF, Germany 

NanoDrop ND-1000 ................. spectrometer ................................... peqlab, Germany 

OPERA ..................................... automated microscope .................... PerkinElmer, MA, USA 

pH 340i ..................................... pH meter ......................................... WTW, Germany 

PowerPac300 ............................ DC source ....................................... BioRad, CA, USA 

PowerPacBasic ......................... DC source ....................................... BioRad, CA, USA 

Premium ................................... refrigerator ..................................... Liebherr, Germany 

PVDF membrane ...................... blotting membrane ......................... Millipore, MA, USA 

RTC basic ................................. stirrer .............................................. IKA, Germany 

RZR1 ........................................ stirrer .............................................. Heidolph, Germany 

SenTix 41 .................................. pH electrode ................................... WTW, Germany 

Slice200 .................................... cross-flow device ........................... Sartorius, Germany 

Synergy HT............................... 96-well spectrometer ...................... BioTek, VT, USA 

Thermomixer compact .............. temperature-controlled mixer ......... Eppendorf, Germany 

Type 6732-61 ............................ mixer .............................................. Jungheinrich, Germany 

Universal Hood II ..................... gel scanning device ........................ BioRad, CA, USA 

Varioklav .................................. autoclave ........................................ H+P, Germany 

Vortex-Genie 2 ......................... vortex ............................................. Scientific Industries, IL, USA 

Whatman paper ......................... blotting paper ................................. Whatman Inc., UK 

XCell sure lock ......................... electrophoresis chamber ................. Invitrogen, CA, USA 

XCell II ..................................... blot module .................................... Invitrogen, CA, USA 
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VII.4 List of chemicals 

Name Type/Use Manufacturer 
2,4-Dipyridyl ..................................FPLC standard .....................Sigma-Aldrich, MO, USA 

4-Aminopyridine ............................FPLC standard .....................Sigma-Aldrich, MO, USA 

Acetosyringone ...............................phytohormone .....................Duchefa, The Netherlands 

Aniline-blue ....................................dye .......................................Merck, Germany 

Ampicillin .......................................antibiotic..............................Carl Roth GmbH, Germany 

Caffeic acid  ...................................FPLC standard .....................Sigma-Aldrich, MO, USA 

Carbenicilin ....................................antibiotic..............................Duchefa, The Netherlands 

Chlorogenic acid.............................FPLC standard .....................Sigma-Aldrich, MO, USA 

Cinnamic acid .................................FPLC standard .....................Sigma-Aldrich, MO, USA 

Citric acid .......................................buffer ...................................Carl Roth GmbH, Germany 

Dipotassium hydrogen phosphate ...buffer component ................Carl Roth GmbH, Germany 

Disodium hydrogen phosphate .......buffer component ................Carl Roth GmbH, Germany 

EDTA .............................................buffer component ................Carl Roth GmbH, Germany 

Ethanol ...........................................solution component .............Carl Roth GmbH, Germany 

Ferty2Mega ....................................fertilizer ...............................Kammlott, Germany 

Goat -human H+L AP ..................antibody ...............................Dianova, Germany 

Goat -mouse Fc AP ......................antibody ...............................Jackson, UK 

Goat -rabbit H+L AP ...................antibody ...............................Jackson, UK 

Kanamycin .....................................antibiotic..............................Duchefa, The Netherlands 

Methanol .........................................solution component .............Carl Roth GmbH, Germany A 

Murashige & Skoog salts................solution component .............Duchefa, The Netherlands 

Nicotine ..........................................FPLC standard .....................Sigma-Aldrich, MO, USA 

Potassium chloride .........................buffer component ................Carl Roth GmbH, Germany 

Potassium dihydrogenphosphate ....buffer component ................Carl Roth GmbH, Germany 

Quinoline ........................................FPLC standard .....................Sigma-Aldrich, MO, USA 

Rabbit -DsRed ..............................antibody ...............................MBL, MA, USA 

Rabbit -His ...................................antibody ...............................Genscript, NJ, USA 

Rifampicin ......................................antibiotic..............................Duchefa, The Netherlands 

Rutin ...............................................FPLC standard .....................Sigma-Aldrich, MO, USA 

Sodium acetate ...............................buffer component ................Carl Roth GmbH, Germany 

Sodium chloride .............................buffer component ................Carl Roth GmbH, Germany 

Sodium dihydrogenphosphate ........buffer component ................Carl Roth GmbH, Germany 

Sodium disulfite .............................antioxidant ...........................Carl Roth GmbH, Germany 

Sodium hydroxide ..........................base .....................................Carl Roth GmbH, Germany 

Sucrose ...........................................buffer component ................Duchefa, The Netherlands 

Trifluoroacetic acid ........................acid ......................................Carl Roth GmbH, Germany 

Tris base .........................................buffer ...................................Carl Roth GmbH, Germany 

Tris-HCl .........................................buffer ...................................Carl Roth GmbH, Germany 

Trisodium phosphate ......................buffer ...................................Carl Roth GmbH, Germany 

Trypan blue ....................................dye .......................................Carl Roth GmbH, Germany 

Tween-20 ........................................non-ionic detergent ..............Carl Roth GmbH, Germany 
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VII.5 List of buffers 

Name Component Final concentration [mM] ([g L
-1

]) Comment 

2-fold infiltration medium Sucrose 300.0 (100.0) pH 5.6 

 
Glucose 20.0 (3.6) 

 

 
Murashige & Skoog salts --- (8.6) 

 

 
Acetosyringone 0.2 (0.04) 

 

    
AP Buffer Tris 100.0 (12.1) pH 9.6 

 
NaCl 100.0 (5.8) 

 

 
MgCl2 5.0 (0.48) 

 

    
Blotting Buffer Tris 25.0 (3.0) pH 8.2 

 
Glycine 192.0 (14.4) 

 

 
Methanol --- (160.0) 

 

    
Extraction Buffer A Na2HPO4 50 (7.1) pH 6.0-8.0 

 
NaCl 10-500* (0.6-28.9) 

 

 
NaS2O5 10 (1.9) optional 

    
Extraction Buffer B Trisodium citrate 50 (12.9) pH 4.0-6.0 

 
NaCl 10-500* (0.6-28.9) 

 

 
NaS2O5 10 (1.9) optional 

    
HBS-EP+ HEPES 10.0 (2.4) pH 7.4 

 
EDTA 3.0 (0.9) 

 

 
NaCl 150.0 (8.8) 

 

 
Tween-20 --- (0.5) 

 

    
Lysogeny broth (LB) Tryptone --- (10.0) pH 7.0 

 
Yeast extract --- (5.0) 

 

 
NaCl 170.0 (10.0) 

 

 
Agar --- (15.0) optional 

 
Ampicillin 0.13 (0.05) optional 

    
MES Buffer MES 50.0 (9.76) pH 7.3 

 
Tris 50 (6.05) 

 

 
SDS 3.5 (1.0) 

 
 EDTA 1.0 (0.3)  

    

PBS(-T) NaCl 137.0 (8.0) pH 7.4 

 
KCl 2.7 (0.2) 

 

 
Na2HPO4 10.1 (1.44) 

 

 
KH2PO4 1.7 (0.24) 

 

 
Tween-20 --- (1.0) optional 
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List of buffers continued    

Name Component Final concentration [mM] ([g L
-1

]) Comment 

Yeast extract broth Beef extract --- (5.0) pH 7.0 

(YEB) Yeast extract --- (1.0) 
 

 
Peptone --- (5.0) 

 

 
Sucrose 14.5 (5.0) 

 

 
MgSO4 2.0 (0.5) 

 

 
Agar --- (15.0) optional 

 
Carbenicillin 0.13 (0.05) optional 

 
Kanamycin 0.05 (0.025) optional 

 
Rifampicin 0.03 (0.025) optional 
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