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Preface

Interaction is a fundamental concept in computer science. Besides the interaction between
human users and computing systems, many computing systems are inherently interactive
themselves. The individual computers in a network, for example, interact with each other via
a given communication structure according to certain protocols. In a reactive system, one or
more computing devices, called controllers, interact with some kind of environment, trying
to guarantee a correct behavior of the system. Logic as one of the foundations of computer
science is intimately linked to interaction, demonstrated by various kinds of model checking
games. Moreover, semantics of alternating computing devices as well as several graph complexity
measures are characterized in terms of games.

Many of these interactive scenarios take place under certain forms of uncertainty. An
individual computer in a network, for example, does not necessarily know all the parameters of
the other members of the network or the past message transmissions in the joint computation.
The same holds for the controllers in reactive systems which often do not have full information
about all the internal states of the other components or the history of past events in the whole
system. Furthermore, model checking games for certain logics as well as several graph searching
games are games with partial information.

This work studies theoretical aspects of interaction under partial information and focuses
on controller synthesis for nonterminating reactive systems. Synthesis means that one tries to
construct, from a formal model of the system and some formal specification, implementations for
certain controllers which guarantee that all behaviors of the system meet the specification. This
is in contrast to verification where the whole system realization is given so that the interactive
aspect of the system is already implemented. While verification algorithms deal with successful
inidividual system runs (or trees of system runs, in the branching time paradigm), synthesis
deals with winning strategies in games.

The major starting point of this theory is the groundbreaking work of Alonso Church [54, 55]
where he introduced the Circuit Synthesis Problem, followed by many milestone results, including
the fundamental work of Büchi and Landweber [44], Rabin [177], Pnueli and Rosner [169, 170, 171]
as well as Kupferman and Vardi [127, 129]. Chapter 1 provides a detailed introduction to
controller synthesis for nonterminating reactive systems and winning strategies in games with
imperfect information in general, and outlines the main contributions of this work.

Related Research. Besides the particular models and algorithmic problems that are studied
here, there are a lot of other incarnations and facets of synthesis. Two important extensions
of the deterministic and discrete models that are used in this work are stochastic and hybrid
systems which incorporate probabilistic and continuous aspects, respectively.

In a stochastic system (cf. [62, 63]), the events in the system as well as the implementations
of the controllers may be probabilistic. In general, such an implementation can not guarantee
that all systems runs are correct. Rather, a possible goal might be to guarantee that almost all
system runs are correct, that means, the probability that a system run is correct is one. Variants
of the problem include nonzero probability or approaching a probability of one by a family of
implementations. Hybrid systems (cf. [5, 4]) take into account the fact that computing systems
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(especially embedded ones) often have continuous aspects which should not be discretized in
advance: Design and analysis of the systems should be in terms of real values and only then,
the controllers of the system are implemented by finite state devices and finite precision sensors.

All these extensions of Church’s basic setting – systems with partial information, stochastic
systems and hybrid systems – aim at making the models more applicable for real-life scenarios
and the goal is to develop (preferably fast) algorithmic solutions for synthesis over these models
as well as certain variants of verification and many other algorithmic problems.

Another area of research that is concernced with control and synthesis of computing sys-
tems is the control theory of discrete event systems which was introduced by Ramadge and
Wonham and is motivated by control theory rather than switching circuits and automata
theory [179, 186]. It uses somewhat different models and accentuates other aspects and concepts
than the theory of nonterminating reactive systems as it is considered in this work. However,
substantially, the two lines of research act in concert. See for example [8, 9] for some work which
is based on concepts from the control theory of discrete event systems but incorporates specifi-
cation formalisms and techniques which rely on automata theoretic methods for fixed-point logics.

Moreover, model checking games are also closely related to the research reported here. For
example, parity games with full information are the model checking games for the modal µ-
Calculus which in turn is intimately connected to the graph complexity measure of entanglement
(cf. Chapter 4). For a detailed discussion of the intimate connection between logic and games see
for example [98]. Beyond the connection between logic and games with full information, there are
also several logical systems that induce certain forms of imperfect information in their respective
model checking games, starting with the fundamental work of Hintikka and Sandu [110] on
independence-friendly first order logic.1 Another approach is the so-called dependence logic of
Väänänen [207]. Infinite model checking games with imperfect information go on stage when
fixed-point extensions of such logical systems are considered [40, 41].2

Other Aspects of Interaction. Aside from interaction in design and analysis of computing
systems, with logic and automata as conceptual and methodological core, there are a lot of other
aspects of interaction – especially interaction under partial information – that are important in
computer science. A diverse and inspiring compilation of several such aspects can be found in the
retrospective brochure [70] of the ESF Eurocores Programme Modelling Intelligent Interaction
(LogICCC). This quite interdisciplinary project had gathered scientists from various research
areas which are all somehow connected to logic and interaction. A distinguishing feature of the
project has been the analysis of human interaction and reasoning not only from the viewpoint
of computer sience (as users) but as a central issue that should be investigated logically and
philosophically as well.
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2It is probably not quite familiar, a fortiori expedient to note, that independence friendly fixed-point logic
captures Exptime. It is not known, however, whether independence friendly fixed point logic is strictly more
expressive than existential second order logic, hence leaving NP 6= Exptime to further research.
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Chapter 1

Introduction

A transformational system receives some input and after the computation is finished, it yields
an output. During the computation, the behavior of the system is completely determined by its
current configuration. In contrast, in a reactive system, the components of the system continu-
ously interact with each other. In each computation step of the system, certain components
receive inputs from other components and produce outputs which, in turn, may be inputs to
other components in the next step.

In the systems we consider, one or more computing devices, called controllers, interact
with some kind of environment and try to guarantee a correct behavior of the system. The
systems are nonterminating, that means, each run of the system is infinite. We assume that
each component of the system (including the environment) has a finite output alphabet, that is,
for each component there are only finitely many possible outputs (actions, events) which it can
produce during any step of a run of the system.

The controllers of the system cooperate, that means, they try to combine their different
information and controls over the system to achieve a correct behavior. This network of
computing devices is also called joint controller or simply controller of the system. On the
other hand, we do not make any a priori assumptions on the behavior of the environment, so all
possible inputs of the environment to the system have to be taken into account in each step.1 It
has turned out that a coherent and appealing way to view such scenarios is as games between
the controllers and an antagonistic environment.

1.1 Church’s Synthesis Problem
The ultimate goal of describing such situations by formal models is to be able to construct,
from a given model and some suited formal specification of the correct system behaviors,
implementations for all controllers of the system which guarantee satisfaction of the specification.
In other words, we try to synthesize an implementation of the system controller, which is called
controller synthesis.2 That means, in the game model we try to find a joint winning strategy
for those players that represent the controllers. The coalition of these players is also called the
grand coalition. The major starting point of this theory is the groundbreaking work of Alonso
Church [54, 55] where he introduced the Circuit Synthesis Problem (1957):
Given a requirement which a circuit is to satisfy, we may suppose the requirement expressed
in some suitable logistic system which is an extension of restricted recursive arithmetic. The

1Such systems are sometimes also called open systems [169, 127]. Notice however, that all these terms and
notions concerning different kinds of computing systems are not defined precisely, nor is their use completely
standardized.

2Rather than just checking a system that has already been built against some specification, which is called
verification.
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α ∈ {0, 1}ω

β ∈ {0, 1}ω

L ⊆ {0, 1}ω × {0, 1}ω

α β

Figure 1.1: Church’s Synthesis Problem

synthesis problem is then to find recursion equivalences representing a circuit that satisfies the
given requirement (or alternatively, to determine that there is no such circuit). ([54], p.8-9)
In this scenario, in each computation step of the system, the switching circuit receives an input
bit from an infinite bit string and has to produce an output bit, so it is a nonterminating reactive
system with a single controller (with full information about the history of events in the system!),
see Figure 1.1. In our terminology, the problem can be stated as follows:
Given a formula ϕ of monadic second order logic of one successor, defining a language L ⊆
{0, 1}ω × {0, 1}ω, find a function σ : {0, 1}ω → {0, 1}ω which is computable by a finite state
automaton with output M such that (x, σ(x)) ∈ L for all x ∈ {0, 1}ω (or show, that there is no
such function).
Notice that the computability of σ by M means that the i-th bit of σ(x) is the output of M
after reading the first i bits of x. The first solution to Church’s synthesis problem was given
by Büchi and Landweber [44]. They reduced the problem to solving a Muller game on a finite
game graph and provided a solution of such games. In [177] Rabin gave an alternative proof
using tree automata. For a closer look at the history of controller synthesis for reactive systems
and, in particular, Church’s problem, we refer the reader to [204, 205].

1.2 Subsequent Development
After these fundamental results, for a while, research on synthesis focused on synthesis of
transformational programs [218, 138], using theorem proving techniques, and synthesis of closed
reactive systems [56, 139], where the key step is checking satisfiability of the specification. An
important foundation for synthesis of closed reactive systems has been the invention of temporal
logics for program specification like linear temporal logic [167] and computation tree logic [56].
At the end of the 1980s, the importance of open reactive system as in Church’s scenario has
been rediscovered [169, 1].

Since then, controller synthesis has been an active area of research and many extensions
as well as refinements of the problem have been addressed. For example, other specification
formalisms have been considered like temporal logics [169, 127] and context-free specification
[219, 128]. Moreover, the systems have been extended to systems with partial information
where the controller does not necessarily have full information about the events in the system
[171, 127]; to distributed systems which consist of an antagonistic environment and several
controllers, each of which has different information and control about the events in the system
[171, 80]; and to stochastic systems, where the environment as well as the controller may be
probabilistic [63, 53, 42]. In [64] and in [178], Church’s problem has been considered in more
general logical settings.

1.2.1 Partial Information
In the context of the theory of computing systems, the concept of partial information in games
can be traced back to the late 1970s. In 1978, Jones [117] considered a special case of reachability
games with partial information on finite graphs, so called blindfold games. In 1979, Reif [181]
considered general reachability games with partial information on finite graphs, see also [182].
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Also in 1979, Peterson and Reif [163] went beyond two-player games and considered multiplayer
reachability games on finite graphs with partial information.

However, these investigations were initially completely unrelated to synthesis of reactive
systems. They were motivated by recent results on the complexity of certain concrete combina-
torial games (like the so called Shannon switching game) and the work of Chandra, Kozen and
Stockmeyer [49, 48] on alternating computing devices. In particular, Reif generalized the concept
of alternating Turing machines to private alternating Turing machines, which correspond to
reachability games with partial information. In the same way, Peterson and Reif generalized
the computing model to multiple person alternating machines which correspond to multiplayer
reachability games with partial information.

Unlike alternating computing machines, the (multiplayer) blind and private alternating Turing
machines did not have much impact on computational complexity theory. One reason is that,
while alternation is a very natural completion of the fundamental concept of nondeterminism3,
partial information seems a bit arty and random in this context. Moreover, while many problems
have very natural solutions in terms of alternating computing devices, alternating Turing
machines with partial information are often quite intricate to build.

The great importance of partial information and multiple players in the context of synthesis
of reactive systems was noticed only later. In 1990, in their fundamental paper [171], Pnueli and
Rosner considered the problem of synthesizing distributed systems. They argued, that asking
only for single process implementations of controllers is too restrictive:
The limitation is that all the synthesis algorithms produce a program (strategy) for a single
module (processor) that receives all the inputs to the system and generates all the outputs. This
is particularly embarrassing in cases that the problem we set out to solve is meaningful only in
a distributed context, such as the mutual exclusion problem, and a centralized single module
solution does not seem very relevant. ([171], p.2)
Clearly, any system that has a distributed controller solution also has a single controller solution,
because the network of controllers can be assembles to a single controller, reading all the inputs
and producing all the outputs. However, it is often not appropriate to do this a priori, because
then we don’t have access to the internal (distributed) structure of the controller. In particular,
we cannot address the communication structure between the individual computing units which
might be necessary, for example, to fix a certain communication protocoll that the components
have to use to communicate. So, distributed system synthesis may yield solutions for more
complex systems where a single controller solution can not be technically realized.

In the distributed systems setting, partial information comes into play quite naturally, since
each two controllers which have exactly the same information about the events in the system can
easily be combined to a single controller. In particular, if all controllers have full information
about the events in the system, then the problem reduces to the synthesis problem for a single
controller with full information: the different powers that the individual controllers have over
the events in the system can be easily decomposed.

Subsequently, many authors have argued that, also in the single controller setting, studying
the extension of Church’s original problem to interaction under partial information is inevitable
for modeling realistic scenarios as well as a valuable contribution to the theory of computing
systems [221, 127, 52]. In particular, reactive systems are often embedded into more complex
systems like trains, cars or certain parts of a traffic control and the controllers of the system
acquire certain information using sensors with finite precision, which might make the information
imprecise (depending on the underlying discretization of the continuous parts of the system).
Moreover, the environment as well as the controllers of the system may encapsulate certain
variables which cannot be accessed by other components directly. These variables may be private
to the component or may only be broadcasted via some limited communication structure which
does not enable full transmission of the values.

3Notice that for machines on words, universality is the dual of nondeterminism.
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1.3 Setting
Our basic abstract model are infinite multiplayer games with partial information where the
grand coalition of n cooperating players 1, . . . , n plays against the environment player 0. So, if
we model a system with n controllers then, in the game, we have n+ 1 players. In each round
of the game, each player chooses an action from some predefined finite set. We consider only
non-stochastic games4, so the result is an infinite sequence of actions, called a play of the game.
A finite prefix of a play is called a history of the game. The infinite tree of all possible histories
is called the game tree. The players have partial information about the history in the game,
that is, at each point during a play of the game, a player may consider a set of histories to
have been actually played so far instead of just the actual history. As is common in classical
game theory [160] we call games with this kind of partial information games with imperfect
information, see also Chapter 2.

A strategy for player i is a function that takes the information about the history of a play
which player i has and provides the next action for player i to choose. The specification of the
system is the winning condition of the game, which in our setting is usually given as a set of
infinite plays of the game that represent those system behaviors which the controllers want to
ensure. This, of course, puts our investigation into the realm of linear time. We will, however,
make some remarks about branching time specifications. The specifications we consider here
range from simple reachability objectives to context-free specifications.

We consider two realizations of our basic abstract model. One model are game graphs with
partial information where the players move a token along the directed edges of the graph. The
information of a player about the positions of the game graph is given in terms of an equivalence
relation, called indistinguishability relation: equivalent positions are indistinguishable for that
player. Unless explicitly mentioned otherwise, we consider only finite game graphs. Notice
that this does not limit our investigation entirely to finite state systems because context-free
specifications induce an infinite state space.5 However, a large part of our results does concern
finite state systems.

The second model are distributed systems, which define a set of players, also called processes,
and the information flow between these processes by means of a directed graph, also called
architecture. The edges of the graph are called channels and each process has exactly the
information available which is sent to him via channels of the architecture. The players of
the grand coalition are called controllers and we speak of the strategy problem for distributed
system as controller problem.6 Moreover, we usually keep the term specification for the winning
condition.

Unless explicitly mentioned otherwise, the information that a player has about a finite history
in the resulting game with imperfect information is defined in terms of synchronous observability
in both models,7 see Chapter 2. Notice that both realizations provide finite presentations.

It is important to make clear, that these models have, in a sense, the same expressive power,
that means, each instance of our basic abstract model that can be represented in one model
can also be represented in the other model. However, the representation of certain parameters
is quite different in the models so if we want to analyze the impact of a certain parameter on
decidability and complexity of the synthesis problem, one of the models may be more suited
than the other one.

4We suggest, however, that knowing and understating certain phenomena in stochastic games with partial
information is essential for a comprehensive understanding of partial information. In any case, the investigation
of stochastic systems is clearly also a very natural and important extension of Church’s synthesis problem and a
highly successful and active area of research. We refer the reader to [50, 206].

5In fact, games on finite graphs with deterministic context-free winning condition can also be viewed as games
on infinite game graphs with regular winning condition, cf. Section 2.2.2.

6Notice that this is a somewhat inaccurate terminology. Rather, we would have to speak of the controller
realizability problem. However, since the term of controller problem is short and common, we stick to it.

7In particular, the players have perfect recall.
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For example, if we consider games played on graphs we can immediately distinguish instances
according to the complexity of the game graph with respect to certain graph complexity measures.
Architectures do not provide an explicit game graph but the structure provided by the graph
has to be encoded in the winning condition. Hence, we cannot immediately distinguish instances
with respect to graph complexity. On the other hand, in a distributed systems, the information
flow between the processes is explicitly given by means of a communication graph. It has turned
out that there are elegant characterizations of decidable architectures (communication graphs)
according to certain patterns of information flow [80]. Games on graphs do not provide an
explicit communication structure but the information flow between the players has to be encoded
in the indistinguishability relations. So we cannot directly distinguish instances with respect to
patterns of information flow. We will discuss the two models and their relationship in Chapter 2.

1.4 Outline and Main Contributions
As we have mentioned, we focus on the strategy problem, that is, given a game with imperfect
information, does the grand coalition of cooperating players have a joint winning strategy? An
important characteristic of this problem in our non-stochastic setting is that we can always
assume that the environment has full information about the whole system. We will discuss
this in Chapter 2. The main aspect of our investigation will be decidability and complexity of
the strategy problem. Notice that this problem is different from Church’s problem in that a
winning strategy for a (single) controller is only a solution to Church’s problem if we can also
construct an implementation of the strategy by some kind of computation device. The strategy
problem as we have formulated here asks for any winning strategy for the grand coalition which,
in particular, might be some nonrecursive function.

Of course, once we know that a joint winning strategy exists we would like to be able to
synthesize an implementation of such a strategy by some kind of computing device which is
called strategy synthesis. We will see that our decision procedures also imply techniques for
synthesizing winning strategies which do not require significantly more computational effort
than the solution of the decision problem. Depending on the specification formalisms, the
implementations are given by finite state automata or pushdown automata.

As it turns out, the strategy problem for games with imperfect information is computationally
hard. For games on finite graphs it is undecidable for three players [163, 171] and still Exptime-
hard for two players [181], even for very simple regular objectives like reachability and safety. For
deterministic context-free specifications the problem is already undecidable for two players [163].
However, restricting the possible ways of information flow between the players, the amount of
uncertainty that a player may have or to which extend the winning condition may involve facts
that the players cannot observe, leads to relevant decidable, and even tractable, subcases of the
problem. We conduct a detailed analysis of several such subcases along this kind of parameters
which concern partial information and information flow in the game.

Aside from decidability and tractability of certain subcases of the general strategy problem,
we are also interested in the question in which cases we can apply a specific method, usually
referred to as knowledge tracking. Knowledge tracking means that we construct, from a certain
game structure G with partial information, a new structure Tr(G), consisting of epistemic states,
which comprises all the possible states of knowledge that the players of the grand coalition may
have during some play of G. Moreover, the structure should reflect how moves in plays of G
cause transitions between these knowledge states. So the result of such a knowledge tracking
construction is a game with full information such that strategies can be translated from the
original game to the new game and vice versa. Since this yields an explicit representation of the
possible states of knowledge of the players and the dynamics of this knowledge, analyzing the
possibilities and limitations of knowledge tracking is of independent interest and meaningful
also in cases which are already known to be decidable by automata based methods.
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We will structure our analysis along the relevant parameters of games with imperfect
information and their representation in our models: (1) the number of (cooperating) players;
(2) the complexity of the winning condition, where we have to distinguish between (2.1) the
expressive power and (2.2) the extent to which the winning condition may involve facts that the
players cannot observe. Moreover, (3) the complexity of information flow between the players
which involves, for example, the structure of the communication graph in distributed systems or
the size of the equivalence classes which are induced by the indistinguishability relations in game
graphs with partial information and, finally, also in the context of game graphs with partial
information (4) the complexity of the game graph with respect to graph complexity measures.

In Chapter 2 we introduce and discuss the models that we consider here. In particular,
we compare the models of game graphs with partial information and distributed systems and
we introduce relevant notions like winning conditions and finite state strategies. Chapter 3 is
devoted to a review of basic methods for solving strategy problems under partial information.
We discuss how alternating tree automata can be applied to synthesis under partial information
and we study their close relationship to partial information in general. Moreover, we introduce
the concept of knowledge tracking for two-player games and we present certain extensions and
unifications of known solutions.

Chapter 4 is concerned with two-player games (1) on finite game graphs with partial
information and observable parity conditions (2). We study the influence of the complexity of
the game graphs (4) on the complexity of the strategy problem for such games. From Reif’s
fundamental work [181, 182] it can be easily obtained that this problem is Exptime-complete.
On the other hand, the strategy problem for parity games with full information is known to
be in NP∩ co-NP due to positional determinacy of parity games with full information [75] and
it is a major open problem in the theory of synthesis and, especially, verification whether the
problem is in Ptime, cf. [118]. However, it has been shown that the problem can be solved in
polynomial time on classes of graphs that have a bounded complexity with respect to several
graph complexity measures such as tree-width [156], DAG-width [24] or entanglement [26].

We show that these results do not carry over to games with imperfect information. More
precisely, we prove that the strategy problem is Exptime-hard even for reachability games
with imperfect information on graphs of DAG-width at most three. Moreover, the problem is
still Pspace-hard on acyclic graphs. A natural restriction of the general case is to bound the
size of the equivalence classes of positions (3) induced by the indistinguishability relation for
player 1. That means, the amount of uncertainty that player 1 may have about the positions of
the game graph is fixed, independently of the size of the game graph. We prove that in this case,
the strategy problem for two-player games with observable parity conditions can be solved in
polynomial time on graphs of bounded DAG-width. For this, we introduce a new measure dwr
of graph complexity which is characterized by a graph searching game with multiple robbers
that have the capability to jump to each other. Our main technical result about this new graph
complexity measure is that if k cops monotonously capture a single robber on a directed graph G
then k · r cops monotonously capture r jumping robbers on G.

After this intensive analysis of two-player games culminating in a Ptime-result for a rather
restricted case of the strategy problem, we turn to more general settings. Chapter 5 and
Chapter 6 are devoted to the strategy problem for games with an arbitrary number of players.
As we have mentioned, this problem is undecidable in general, even for three players and regular
specifications.8 However, in the setting of distributed systems where a communication graph
is given explicitly, restricting the possible ways of information flow between the processes has
led to relevant decidable subcases [171, 129] and, ultimately, a complete characterization of the
decidable architectures by means of patterns of information flow [80].

8In [163] undecidability has already been proved even for reachability condition but for a model with
asynchronous observability. A first result for synchronous observability has been given in [171], showing that the
problem is undecidable for LTL-specifications.
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This however, was done for the case of arbitrary (regular and branching time) specifications.
In Chapter 5, we also restrict the extent to which the specifications may involve facts that the
processes cannot observe (2.2). More precisely, we consider locally decomposable specifications,
that means, specifications which are obtained (by conjunction) from a collection of local spec-
ifications for the individual processes, each of which involves only facts that the particular
process can observe. In [137], a complete characterization of the decidable architectures has been
provided for locally decomposable specification, but only for acyclic architecture and regular
specifications. Our main result in Chapter 5 is an extension of the characterization to the case
of architectures which may contain cycles and to context-free specifications.

So far, our view of the uncertainties and communication of the players in a game was rather
pragmatic and focused on strategic powers. In Chapter 6 we discuss the epistemic context of
our models and, in particular, we turn to the task of developing methods for representing the
possible states of mind of the players explicitly. We first provide a broad discussion of knowledge
and cooperation in infinite games, in particular, synthesis from epistemic specifications and
strategic dependencies. We have a look at the epistemic temporal logic ETL and we prove that
any winning condition that can be defined in ETL using both, synchronous and asynchronous,
knowledge operators is, in fact, ω-regular. This generalizes the decidability of ETL model
checking to asynchronous observability and has also significant consequences on the decidability
of synthesis from ETL specifications.

The main result is a knowledge tracking construction for game graphs with partial information
and an arbitrary number of players. Moreover, the construction can handle arbitrary winning
conditions. The result of the construction is a game graph with full information which is, however,
an infinite tree with epistemic models as nodes. To obtain a less extensive representation of
the game graph, we identify nodes of the tree that are homomorphic equivalent. We prove that
for the case of observable winning conditions (2.2) this quotient construction is sound, which
yields a semi-decision procedure for the strategy problem for such games. Moreover, we show
that decidability of the strategy problem for hierarchical games [171, 129] can be obtained as a
special case of our construction for observable winning conditions and we extend this result to
deterministic context-free specifications.
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Chapter 2

Modeling Interaction under
Partial Information

In this chapter we introduce and discuss the models for interaction under partial information
that we will work with and we present a detailed discussion of several special cases of finitely
presented winning conditions that we add to the model in the second step. All these winning
conditions are context-free languages.

In Section 2.1 we set up the basic framework of games with imperfect information and the
two concrete instantiations, game graphs with partial information and distributed systems. We
also demonstrate some basic properties that concern, for example, position based strategies in
games on graphs and focused strategies in distributed systems. Later on, such properties will
be used quite frequently, but rather implicitly. In both these models, imperfect information is
defined via synchronous observability. In Section 2.1.4 we briefly discuss more general notions of
imperfect information, in particular asynchronous observability. Section 2.1.5 provides some
basic definitions concerning finite state devices as memory structures which are needed to make
clear what kind of strategy implementations we are looking for.

Section 2.2 is devoted to winning conditions. We discuss ω-regular winning conditions
(Section 2.2.1), in particular parity conditions, and the corresponding automata models, as
well as context-free specifications (Section 2.2.2). We present all the tools that we will need to
deal with these winning conditions in the context of synthesis under partial information. In
Section 2.2.3 we introduce the concept of observability which is not about expressiveness but
restricts the extent to which a winning conditions may involve facts that the players cannot
observe. This concept is of central importance for us: The main results of this work are on
observable and locally decomposable winning conditions.

In Section 2.3 we compare game graphs with partial information and distributed systems.

Basic Notation. The set of natural numbers is denoted by N or sometimes, if we use it as an
ordinal number, by ω. For a natural number k ∈ N, let [k] denote the set {0, ..., k − 1}. The
boolean alphabet is denoted by B and we shall use the notation B = {⊥,>} as well as B = {0, 1}.
For a set X, the power set of X is denoted by 2X . If ∼⊆ X ×X is an equivalence relation and
x ∈ X, the equivalence class of x is denoted by [x]∼. The set of equivalences classes induced
by ∼ on X is denoted X/∼ or [X]∼. We omit the subscripted equivalence relation as long as
no confusion arises. For any function f , the domain of f is denoted dom(f). If f : X → Y and
g : Y → Z, the composition f ◦ g : X → Z is defined by (f ◦ g)(x) = g(f(x)). Moreover, for
X ′ ⊆ X we denote f(X ′) = {f(x) |x ∈ X ′}.

For a Cartesian product X = X0×. . .×Xn−1 and I ⊆ [n] we denote XI =
∏
i∈I Xi. Moreover,

for I, I ′ ⊆ [n], PrI(x) = (xi)i∈I∩I′ for an element x ∈ XI′ , PrI(α) = PrI(α0)PrI(α1) . . . for a
word α ∈ X∗ ∪Xω and PrI(L) = {PrI(α) |α ∈ L} for a language L ⊆ X∗ ∪Xω. Notice that
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we apply a projection operator PrI to tuples x ∈ XI′ which do not necessarily contain all the
components from XI , that is I ⊆ I ′ does not necessarily hold. To improve readability, we often
do not refer to an explicit ordering of the components of a Cartesian product and simply write
PrXI instead of PrI . If X has certain identical components, this is ambiguous, but it will be
clear from the context to which components we project.

For an alphabet Σ, Σ∗ denotes the set of all finite words [k] → Σ over Σ and Σω denotes
the set of all infinite words ω → Σ over Σ. Finite words are usually denoted u, v, w with
u = a0a1 . . . al−1 and infinite words are denoted α, β, γ with α = a0a1a2 . . .. If we refer to a
word which may be either finite or infinite we use the notation for infinite words. For some
words α, β ∈ Σ∗ ∪ Σω with α = a0a1a2 . . . and some j ∈ N, we denote the (j + 1)-th letter aj of
α also by αj or α(j) and we write α<j or α(<j) for the prefix α0 . . . αj−1 consisting of the first
j letters of α. Notice that α(<j) is the empty word, denoted ε. If α = a0a1 . . . al−1 ∈ Σ∗ we
denote |α| := l and by first(α) = a0 and last(α) = al−1 we denote the first and last letter of α,
respectively. Moreover, by α−j := α(< |α| − j) we denote the word which is obtained from α by
pruning the last j letters. We write α v β if α is a prefix of β, that is, if β(< |α|) = α. For a set
X and a word α ∈ Xω, we denote Inf(α) = {a ∈ X |αi = a for infinitely many i}.

If α ∈ Σω and β ∈ Γω, α_β ∈ (Σ× Γ)ω denotes the ω-word with (α_β)i = (αi, βi) for all
i ∈ N. For finite words u ∈ Σ∗ and v ∈ Γ∗, the word u_v is defined analogously but, if |u| 6= |v|,
we have to fill up one component with a default symbol that we denote ]. So if |u| = |v| then
u_v is a word from (Σ× Γ)∗ and if |u| 6= |v| then u_v is a word from ((Σ ∪ {]})× (Γ ∪ {]}))∗.

For a function σ : Σ∗ → Σ′, we define the finite iteration σ∗ : Σ∗ → (Σ′)∗ of σ by σ∗(u) =
σ(u<0) . . . σ(u<|u|) and the ω-iteration σω : Σω → (Σ′)ω of σ by σω(α) = σ(α<0)σ(α<1) . . ..
Notice that |σ∗(u)| = |u|+ 1. The ω-language which is generated by σ over a language Lin ⊆ Σω
of (infinite) input words is σω(Lin) = {σω(α) |α ∈ Lin} ⊆ (Σ′)ω. Moreover, the ∗-language
generated by σ over Lin is σ∗(Lin) = {σ∗(u) |u v α for some α ∈ Lin}. Notice that we have
σ∗(Lin) = {v ∈ (Σ′)∗ | v v β for some β ∈ σω(Lin)}.

2.1 Game Graphs and Distributed Systems
To start with, recall Church’s synthesis problem and the representation in Figure 1.1. There, we
have a single controller that successively receives input bits from the environment and reacts, in
each step, by sending an output bit. So this representation of Church’s scenario already specifies
a distributed system: we have two processes and two channels, as depicted in the figure. Of
course, in a setting with only a single controller with full information, we never have to mention
the architecture explicitly. On the other hand, as we have mentioned, the solution of Church’s
problem provided by Büchi and Landweber uses a reduction of this problem to a Muller game,
played on a finite game graph which is basically the transition graph of a deterministic Muller
automaton that recognizes the monadic second order specification of the system.

Partial information came into play in [181] where John H. Reif used games with partial
information for his work on generalizations of Chandra and Stockmeyer’s alternating Turing
machines. Reif called these games games of incomplete information.1 In classical game theory,
however, this term is used for games in which a player may be uncertain about the possible
strategies and objectives of the other players. There is still no canonic terminology for partial
information in the theory of computing systems, but games with imperfect information or games
with partial observation seem to be widely acknowledged for the kind of games we consider here,
where the players have partial information about the history of past events in the game.

We introduce games with imperfect information as a basic abstract model that encompasses
many settings of interaction under partial information considered in the theory of computing
systems. We start with a casual description of games with imperfect information in extensive
form, that is, games played on infinite trees where the players have partial information about

1In [127], Kupferman and Vardi also called the synthesis problem for single controller systems but with
possibly hidden channels from the environment synthesis with incomplete information.
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the current position in the tree. We will use this, however, merely as a common framework
for the models of game graphs with partial information and distributed systems, allowing for
a comprehensive exposition of fundamental notions and characteristics such as the strategy
problem and determinacy. All our constructions and results explicitly refer to one of these
particular models and we will always highlight the view of interaction under partial information
as suggested by this model.

2.1.1 Extensive Games with Imperfect Information
An extensive game with imperfect information has the form

T =
(
T, (∼i)i∈[n+1],W

)
where T is a game tree, that is, T is a tree with edges labeled by elements from a set A, also
called actions. We assume that each edge is labeled by exactly one action and that, for each
node t ∈ T in the tree and each action a ∈ A there is at most one a-successor t′ of t. Moreover,
an action a ∈ A is compounded of individual actions of the players, i.e., a = (a0, . . . , an) where
action ai is chosen by player i. A maximal (labeled) path π = t0a1t1 . . . through T is called a
play of T . We refer to the occurrence of an action and the subsequent transition to the next level
of the game tree also as an event. Hence, a play is a sequence of events starting from the root
of T . We consider infinite games, so we assume that each play of T is infinite. A finite prefix π
of a play is called a history of T . Notice that each history of T corresponds uniquely to a node
of the game tree T , so we shall not distinguish between histories and nodes of T . Moreover, for
i ∈ [n+ 1], ∼i⊆ T × T is an equivalence relation and W is a set of plays of T . The set W is
the winning condition for the grand coalition of players 1, . . . , n that means, the plays in W are
those which are won by this grand coalition, all other plays are won by the opponent player 0.

The equivalence relation ∼i defines the imperfect information of player i, that means, any
two histories s, t ∈ T with t ∼i s are indistinguishable for player i (and any s, t ∈ T with t 6∼i s
are distinguishable for player i). The indistinguishability of certain histories means that player i
has exactly the same information about all those histories, hence an ∼i-equivalence class of
histories is also called an information set of player i. So whenever the game is in some node
t ∈ T , player i does not necessarily know that history t has been played but he considers exactly
the histories s ∈ [t]∼i possible to have been actually played.

A game T is called a game with perfect or full information, if the following two conditions
are fulfilled. First ∼i= idT for all i ∈ [n + 1], that is, each player can distinguish any two
histories. And second, the game is turn-based, that means, for each history t ∈ T there is a
unique player to move at t. Clearly this can be realized in the model presented here by making,
at each node t ∈ T , the actions of all but one player trivial, that is, they can only choose a
default action ⊥. This second postulation is necessary since the concurrent moves in our model
implicitly incorporate imperfect information into the game: if two players 0 and 1 are to move
simultaneously, then we could equivalently let first make player 0 his move and then let player 1
make his move while hiding the previous move of player 0 from player 1.

For games with full information, we omit the indistinguishability relations in the description
and denote such a game as T = (T,W ). Moreover, notice that since we consider the players
1, . . . , n as forming a grand coalition of cooperating players, under the assumption of full
information, the players 1, . . . , n can be simulated by a single player which has full information.
We will use this observation implicitly, so we assume that games with full information are
always two-player games.2 Such games are also called Gale-Stewart games as a tribute to the
seminal work [90] where infinite games of perfect information have been studied in the context
of topological properties of the winning sets W .

2Notice, however, that in other settings where, for example, each player 0, . . . , n has his own objective and
we ask for a Nash-equilibrium, the multiplayer case is clearly richer than the two-player setting, also under the
assumption of full information, see for example [101].
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Remark. Notice that the definition of an extensive game with imperfect information in classical
game theory somewhat differs from ours [124, 160]. The main differences are of course due to the
fact that the situation which the game is supposed to model is different: The games there are
usually finite and, rather than having a coalition of cooperating players playing against a single
antagonist, each player has his own objective. There are also differences in the presentation.
In particular, the games are generally turn-based and the indistinguishability relation ∼i of
player i is only defined on those histories where it is player i’s turn. While for defining imperfect
information in the game tree this is sufficient, in models where imperfect information is defined
in terms of observability of moves, ∼i is intrinsically defined on all histories. This will become
apparent in a turn-based variant of the model of game graphs with partial information.

Strategies. The imperfect information of the players comes into effect in the actual course of
decision making: In each round of the game, being in some node t ∈ T , each player i chooses
an individual action ai which is available to him in t, that means, there is a compound action
a ∈ A such that there is some edge from t labeled by a and Pri(a) = ai. The resulting collection
of individual actions defines a compound action a and the game proceeds to the a-successor
of t. (We assume that this is always possible, that means, if a0, . . . , an are available to players
0, . . . , n at node t, then t has an a-successor.) We assume that any player always knows which
actions are available to him in the current situation: For all i, whenever t ∼i s, the same actions
are available to player i in t and in s.

Now the connection between imperfect information and the decisions of the players is that,
for deciding on his next move, a player can not use any information on the history that is not
available to him. This restricts the possible strategies of a player to those which are based on
the information of that player, that means, constant over equivalence classes of histories: A
strategy for player i is an Ai-labeling of T , that means, a function

σi : T → Ai,

such that for all histories t ∈ T :

(S1) σi(t) is an action which is available to player i in t

(S2) for all histories s ∼i t we have σi(s) = σi(t).

Notice that in our setting, strategies are deterministic and hence, a strategy for player i
completely determines the behavior of player i in the game. Condition (1) ensures that a strategy
prescribes a legal behavior for each possible situation in the game. Condition (2) ensures that
the strategy does not use any information which is not available to player i.

A history π = t0a1t1 . . . altl in T is consistent with a strategy σi for player i if for all
0 ≤ j ≤ l − 1,

Pri(aj+1) = σi(tj),

that means, the action chosen by player i in the joint action aj+1 is exactly the action that
is prescribed by the strategy σi in node tj . A play is consistent with σi if all its histories are
consistent with σi. We call a history which is consistent with a strategy σi also a σi-history,
analogously for plays.

A joint strategy (or simply a strategy) for the grand coalition is a collection

σ = (σ1, . . . , σn)

of individual strategies for the members of the grand coalition. Or, equivalently, it is a function

σ : T →
n∏
i=1

Ai
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such that PrAi(σ) : T → Ai fulfills conditions (S1) and (S2) for all i. A history (play) is
consistent with a joint strategy σ if it is consistent with each individual strategy. A strategy
σ for the grand coalition is a winning strategy for T if each σ-play of T is won by the grand
coalition, that is, contained in W .

Clearly, for the winning property of a strategy σ the value of σ is important only on those
histories, which are (inductively) already consistent with the strategy. Accordingly, as far as
winning strategies are concerned, the conditions (S1) and (S2) could also be restricted to histories
which are consistent with σ. Although we are mainly interested in winning strategies here,
we still prefer to have a strategy defining a value on all possible histories as this is sometimes
more convenient. Nevertheless, when we construct a winning strategy it is clearly sufficient
to define the value only on histories which are already consistent with this strategy: We can
always assume that the value of the strategy on all other histories is arbitrary (but constant
over equivalence classes!).

The Strategy Problem. As we have mentioned, we are mainly interested in the strategy
problem for games with imperfect information:
Given a game T with imperfect information, does the grand coalition have a joint winning
strategy for T ?
Of course, for an algorithmic treatment of this question, we need finite presentations of extensive
games with imperfect information. Game graphs with partial information and distributed
systems provide such a finite presentation.

We have already suggested that partial information of player 0 is irrelevant here which is
due to the fact that partial information comes into effect only in the notion of a strategy and
strategies of player 0 are not involved in this formalization of the strategy problem.

One might consider that as a shortcoming of the formalization and think of the following
formulation as being more appropriate:
Given a game T with imperfect information, does the grand coalition have a joint strategy σ
which is winning against all strategies of player 0, that means, for all strategies σ0 of player 0,
all plays which are consistent with σ and σ0 are won by the grand coalition?
Of course, this formulation implicitly assumes, that we build a controller against some envi-
ronment which follows a predefined but unknown strategy. However, it is not hard to see that
under the assumption that player 0 always knows the number of his own past moves in the
game (which, in the setting with simultaneous moves, means that he always knows the number
of total past moves in the game), these two formulations are equivalent:

Proposition 2.1. If, for all s, t ∈ T , t ∼0 s implies that t and s are on the same level of T ,
then the grand coalition has a winning strategy for T if, and only if, the grand coalition has a
strategy for T which is winning against all strategies of player 0.

Proof. Clearly, if the grand coalition has a winning strategy σ, then σ is also winning against
all strategies of player 0. If, on the other hand, the grand coalition has a strategy σ which is
winning against all strategies of player 0, then for any play π which is consistent with σ, it is
easy to construct a strategy σ0 for player 0 such that π is consistent with σ0: For any history t of
π we define σ0(t) to be player 0’s next action in the play π. (Notice that due to the assumption
that player 0 always knows the number of his past moves there are no two different histories of
π which are indistinguishable for player 0.) For all histories s in T which are not prefixes of
π we can define σ0(s) arbitrarily but constant on ∼0-equivalence classes of histories, which is
clearly possible.

In the settings we study, the property that a player knows the number of moves that he
has made previously, will always be granted and we shall only consider the strategy problem
as stated above. Nevertheless, we like to mention that we could obtain nontrivial variants of
the problem which would also involve the information of player 0 if we didn’t ask for strategies
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for the grand coalition which are winning against all strategies of player 0 but only against
strategies which can be implemented by certain kinds of computing devices. However, in our
investigation we do not restrict the possible strategies of the players a priori.

Proposition 2.1 also demonstrates that, as long as the strategy problem is concerned,
concurrent moves are noncritical, also for games with full information: We can first let the
players of the grand coalition make their joint move and then let player 0 make his move and
there is no need to hide the previous move of the grand coalition from player 0. However,
concurrent games are not determined in general, even for reachability conditions.

Determinacy and Imperfect Information. One of the most important and fundamental
notions for games is that of determinacy: A game is called determined if either the grand
coalition has a joint winning strategy σ = (σ1, . . . , σn), or, if they do not, player 0 has a winning
strategy σ0. A fundamental result of Martin [140] states that any full information two-player
game T = (T,W ) where W is a Borel set is determined. We do not define Borel sets formally,
since we will not be concerned with them here. We note, however, that Borel sets subsume many
important classes of omega-languages such as regular and deterministic context-free languages
which we will consider as winning conditions.

On the other hand, Martin’s Theorem does not hold for games with imperfect information.
In fact, it is obvious that determinacy already fails in concurrent two-player games with reacha-
bility conditions where the players only make one concurrent move. Conveniently, meaningful
considerations of the strategy problem as stated above are not subject to determinacy, since we
are merely interested in winning strategies for the grand coalition and do not care about the
existence of winning strategies for player 0. However, the failure of determinacy in games with
imperfect information is clearly one of the most important characteristics of interaction under
partial information and should be kept in mind whenever partial information comes into play.

Also notice that determinacy plays an important role in the theory of finite automata on
infinite trees that we will use for solving games with imperfect information, see Section 3.1.

2.1.2 Game Graphs with Partial Information
A game graph with partial information and n+ 1 players has the form

G =
(
V, δ, (∼Vi )i=1,...,n, (∼Ai )i=1,...,n

)
• V is a finite set of positions
• δ : dom(δ) ⊆ V × A → V is the move function where A =

∏
i∈[n+1]Ai is the set of joint

actions a = (a0, . . . , an) of the players
• for i ∈ {1, . . . , n}, ∼Vi ⊆ V × V and ∼Ai ⊆ A×A are equivalence relations.

We usually require that the graph is non-terminating, that means, act(v) 6= ∅ for all v ∈ V
where act(v) = {a ∈ A | (v, a) ∈ dom(δ)}. As before, we also assume that all the players 1, . . . , n
always know which actions they have available, that is, if u, v ∈ V with u ∼Vi v then acti(u) =
acti(v) where acti(v) := {ai ∈ Ai | there is some a ∈ act(v) such that Pri(a) = ai}. Moreover,
any compound action that can be chosen by the players is actually available, that is, if ai ∈ acti(v)
for i ∈ [n+ 1] then (a0, a1, . . . , an) ∈ act(v). Hence, act(v) = act0(v)× act1(v)× . . .× actn(v).
We emphasize, however, that these assumptions are just technical simplifications which help to
streamline the presentation. For providing examples it is sometimes more convenient to drop
them, so we shall not be too strict about these assumptions.

Again, for game graphs with full information, that means, turn-based games with ∼Vi = idV
and ∼Ai = idA for all i ∈ [n + 1], we omit the indistinguishability relations in the description
and assume that the grand coalition consists of a single player. Consequently, we denote such a
game graph as G = (V, δ).
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Notice that this model also provides partial information of the players about the actions of
the game graph. This model is flexible enough, to encompass all settings of games on graphs
that we shall be concerned with in this work. For the sake of a clear and simple presentation
we will, however, in most concrete settings, consider only restricted versions of the model. In
particular, having partial information on the actions as well is convenient for providing certain
examples which mostly concerns Chapter 4 where we consider mainly two-player games. We
will discuss several properties of this model as well as certain special cases after we have defined
the relevant notions like plays and strategies.

Plays, Strategies and Winning Conditions. In each round of the game, being in position v,
each player chooses an action ai ∈ Ai and the game proceeds to δ(v, (a0, a1, . . . , an)). In this
way, an infinite sequence of positions and actions is established which is called a play of the game:
A play in G is an infinite sequence π = v0a1v1a2v2 . . . ∈ V (AV)ω such that vj+1 = δ(vj , aj+1)
for all j ∈ N. We denote the set of all plays by Π. A history in G is a finite prefix π ∈ V (AV)∗
of a play in G. Notice that a history is a word over the alphabet V ∪AV. However, given such a
history π = v0a1v1 . . . alvl, by last(π) we denote vl instead of alvl.

A strategy for player i ∈ {1, . . . , n} is a function

σi : V (AV)∗ → Ai

such that for all histories π = v0a1v1 . . . alvl and ρ = w0b1w1 . . . blwl the following holds:
(S1) σi(π) ∈ acti(vl)
(S2) if vj ∼Vi wj and aj ∼Ai bj for all j then σi(ρ) = σi(π).

Condition (S2) states that a strategy for player i must yield the same value on any two
histories of the same length, in which all positions and actions are indistinguishable for player i.
So a strategy for player i is based on exactly the information which player i has about the
positions and actions in a play, if we assume synchronous observability of events: In each round
of the game, each player observes a certain part of the current event that is visible to him which,
in the model used here, is exactly the equivalence class of this event. In particular, each round
of the game is noticed by each player i, even if the game proceeds from a position u to a position
v such that u ∼Vi v, which constitutes a situation where player i does not observe any part of
the change to the current position in the game graph. So in a sense the game comes with a
shared clock to which all players have access.

To make the information that player i has in this model more explicit, we also denote such a
strategy as a function

σi : [V ]i([V ]i[A]i])∗ → Ai

taking sequences of equivalence classes of positions and actions as inputs. For a history
π = v0a1v1 . . . alvl, we call [v0]i[a1]i[v1]i . . . [al]i[vl]i also the local view of player i on π or the
local history of player i. It is obvious how to get one from one representation of a strategy to the
other.3 However, for the representation σi : [V ]i([V ]i[A]i])∗ → Ai, condition (S2) is redundant!

A history π = v0a1v1 . . . alvl is consistent with a strategy σi for player i if we have PrAi(aj) =
σ(π(<j)) for j = 1, . . . , l. A play is consistent with σi if all its histories are. A joint strategy or
simply a strategy for the grand coalition is a tuple σ = (σ1, . . . , σn) where each σi is a strategy
for player i. A history is consistent with σ if it is consistent with each individual strategy σi.

A winning condition is a set W ⊆ Π of plays in G. A joint strategy σ for the grand coalition
is winning for W from a position v0 ∈ V if each play π = v0a1v1 . . . ∈ Π which is consistent
with σ is won by the grand coalition, that is, belongs to W . The set Win, called the winning
region of the grand coalition in G, consists of all vertices v ∈ V such that the grand coalition
has a winning strategy from v for W .

3Notice, however, that when it comes to actually implementing strategies, the correspondence between the
two representations is not so straightforward anymore.

21



Initial Positions and Extensive Games. It will be comfortable for certain constructions
and proofs, to consider only winning strategies from a fixed initial position v0. To see that this
is sufficient, also in the presence of partial information, we argue that we can always assume that
all players of the grand coalition know the initial position v0. First notice that for a strategy σ
the question whether σ is winning from a set U ⊆ V of initial positions is independent of the
value of σ on histories which start in some position from V \U . So it suffices to require condition
(S2) only for histories which start from some position in U and hence we can assume that any
player of the grand coalition knows that the initial position is in U .4 Now we can add some
new position v0 /∈ V to the game graph such that [v0]∼V

i
is a singleton for all i ∈ {1, . . . , n} and

from which the environment can choose secretly any position from U . That means, player 0 has
actions au, u ∈ U available at v0 with au ∼Ai au′ for all u, u′ ∈ U , and the players of the grand
coalition have only the trivial action ⊥ available at v0. Then the grand coalition has a joint
strategy that is winning from all positions in U if, and only if, the grand coalition has a joint
strategy that is winning from v0.

Now, a game graph with partial information together with some winning condition W defines
an extensive game with imperfect information T = TG,W . The game tree T of T simply consists
of all histories in G with action labels defined in the obvious way. As we have just seen, we
can restrict our attention to histories and plays from a fixed initial position which is known to
all players, so we consider games T = TG,W,v0 for a given v0 ∈ V . The game tree of T then
consists of all histories which start in v0 and has as root the node v0. Each infinite path in T
corresponds uniquely to a play in G so we shall identify plays and histories in T with those in G.

Imperfect information of player i in T is given by the equivalence relation ∼∗i⊆ T × T
which is defined according to the synchronous observability described above: For two histories
π = v0a1v1 . . . alvl and ρ = w0b1w1 . . . blwl,

π ∼∗i ρ, if and only if vj ∼Vi wj and aj ∼Ai bj for all j

Although the game tree of T is infinite, we call T a game on a finite graph since the possible
plays as well as the imperfect information in this game are determined by the game graph G.

Notice that T is not a game of perfect recall in the classical sense (cf. [124, 160]) as long as
we don’t require that a player can distinguish any two of his actions. In G this amounts to the
claim that for any i = 1, . . . , n and all a, b ∈ A such that Pri(a) 6= Pri(b) we have a 6∼Ai b. We do
not make this assumption generally (in fact we will consider settings where this does not hold)
but emphasize that in our non-stochastic setting this is merely a technical issue: We can always
make all the actions of a player distinguishable for him without affecting the possible strategies
of this player. The reason is that even though a player may not remember his own past actions,
he has to consider only plays that are consistent with the strategy that he follows: If player i is
in a situation (after some σi-history π has been played) where he does not know whether in
some previous situation (after ρ @ π) he has chosen action a or action b (ρav v π and ρ′bw v π′
for some π′ ∼∗i π or vice versa) then he can look up his strategy σi and if it prescribes to choose
a in this previous situation (ρav v π) then player i can dismiss the possibility that he might
have chosen b (because σi(ρ) = σi(ρ′) and so π′ is not consistent with σi).

Moreover, notice that a player always remembers anything that he actually has observed
previously which also is an interesting notion of perfect recall. (Formally, if π, ρ are histories in
T with π 6∼∗i ρ and π′ and ρ′ are any extensions of π and ρ, respectively, then π′ 6∼∗i ρ′.)

The Strategy Problem. Having these notions at hand, we are now ready to state the strategy
problem for game graphs with partial information:
Given a game graph with partial information G, a finite presentation of a winning condition W
and some initial position v0, does the grand coalition have a joint winning strategy for (G,W, v0)?

4Notice, however, that this does not mean that we make any assumptions on the equivalence relations ∼V
i .
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Of course, a winning strategy for the grand coalition for (G,W, v0) is the same as a winning
strategy for the grand coalition for T = TG,W,v0 . So this problem is in fact a special case of the
strategy problem for games with imperfect information, the strategy problem for games with
imperfect information on finite graphs.

As we have shown, under the assumption that player 0 always knows the number of his
own past moves, this problem is equivalent to the problem of finding a strategy for the grand
coalition which is winning against all strategies of player 0. Clearly, ∼∗0 fulfills this assumption
so in this setting, we only consider the above formulation of the strategy problem.

Two-Player Games. We now present and discuss a restricted two-player version of game
graphs with partial information that we will use in Section 3.5 and Chapter 4. Two-player games
are played by player 0 (environment) against player 1 (controller), so the model of game graphs
with partial information reduces to the form

G = (V, δ,∼V ,∼A)

where ∼V =∼V1 and ∼A=∼A1 . The indistinguishability relation ∼∗1 of player 1 on histories is
denoted ∼∗ accordingly. Moreover, for two-player games we usually assume that they are
turn-based, that is, for each position one of the players has only a default action ⊥ available.
We denote the set of positions from which player 0 has only the action ⊥ available by V1 and
V0 := V \ V1. For convenience, we denote actions (a,⊥) and (⊥, a) simply by a and we define
Ai =

⋃
{act(v) | v ∈ Vi}, that is, Ai is the set of actions which are available at some position of

player i. (We do not require A0 and A1 to be disjoint.) Of course, in order to be able to play
the game properly, player 1 needs to know when it is his turn, so we assume that whenever
v ∼V w we have v, w ∈ V1 or v, w /∈ V1. Furthermore, in this setting we usually do assume that
player 1 can distinguish any two of his own actions, that is, for all a, b ∈ A1 with a 6= b we have
a 6∼A b. It is useful to observe that under this assumption, for any strategy σ of player 1 and
any two histories π and ρ in G with π ∼∗ ρ we have that π is consistent with σ if, and only if, ρ
is consistent with σ. Notice that this restricted version of game graphs also encompasses the
full information case for which we have assumed that only two players are present and the game
is turn-based.

Nondeterministic game graphs. In our investigation it will sometimes be convenient to
consider nondeterministic game graphs, that is, game graphs G = (V, δ, (∼Vi )i, (∼Ai )i) where the
move function has the form δ : dom(δ) ⊆ V × A → 2V . We describe such a nondeterministic
move function also as a move relation ∆ ⊆ V × A × V . All notions like plays and strategies
are defined just as before. Clearly, nondeterministic games are not determined in general, even
under full information and for simple winning conditions like reachability.

However, the strategy problem asks for a joint winning strategy for the grand coalition and
a strategy σ = (σ1, . . . , σn) for the grand coalition is a winning strategy if each play that is
consistent with σ is won by grand coalition Hence, in the context of the strategy problem, we
can assume that player 0 has control over the nondeterministic choices in the game which can
also easily be implemented into the game graph.

That is, given a game graph G and a winning condition W , we can construct a deterministic
game graph Gd with V d ⊇ V and a winning condition W d such that for each v ∈ V , the grand
coalition has a winning strategy for (G,W, v) if, and only if, the grand coalition has a winning
strategy for (Gd,W d, v): We add intermediate positions to the game such that from any position
v, with action a ∈ act(v), the game proceeds to position (v, a). Then from such a position,
player 0 chooses some next position v′ ∈ δ(v, a) by choosing the action v′. Each player of the
grand coalition has just the action ⊥ available in an intermediate position (v, a). Moreover, we
let all new positions as well as all new actions that we add to the game graph be indistinguishable
for each player of the grand coalition. Formally:
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Gd := (V ∪ V ×A, δd, (∼V,di )i, (∼A,di )i)

• δd(v, a) = (v, a) for all v ∈ V and all a ∈ A
• act0(v, a) = {v′ ∈ V | (v, a, v′) ∈ ∆} and acti(v, a) = {⊥} for i = 1, . . . , n
• δd((v, a), (v′,⊥, . . . ,⊥)) = v′ for (v, a, v′) ∈ ∆.
• v ∼V,di w :⇐⇒ v ∼Vi w and a ∼A,di b :⇐⇒ a ∼Ai b

• (v,⊥, . . . ,⊥) ∼A,di (w,⊥, . . . ,⊥) for all v, w ∈ V and (v, a) ∼V,di (w, b)
Moreover, a play πd of Gd is in W ′ if and only if the play π in G, which is obtained from πd

by deleting all positions and actions, which do not belong to V and A, respectively, is in W .
We will use this observation for the constructions that we present in Section 3.5 and in

Chapter 6 where nondeterministic game graphs provide a convenient intermediate step in
the construction. There, however, we will apply the determinization construction only to
game graphs which have already full information (and, consequently, have only two players).
Now observe that the construction of Gd as described above yields a game graph with partial
information, even if G is a game graph with full information. Hence, in case we start with a
game graph G with full information we use a simplified version of the construction where any
two new positions (v, a) and (w, b) as well as any two new actions (v,⊥, . . . ,⊥), (w,⊥, . . . ,⊥)
are distinguishable for player 1. Since player 1 has full information in G, this simplification is
obviously sound and the result Gd is then also a game graph with full information.

Position Based Strategies. Infinite games on (finite) graphs with full information have a
long tradition in the theory of automata theory and synthesis of nonterminating reactive system,
see also Section 2.2. In this context, such a game is often given by a graph of the form G = (V,E)
where E ⊆ V ×V , that is, the edges are not labeled. A strategy for player i picks a next position
for each history where it is player i’s turn, that means, it is a function σi : V ∗Vi → V such
that (v, σ(πv)) ∈ E for each πv ∈ V ∗Vi. Recall that Vi denotes the set of positions where it is
player i’s turn. However, in the context of partial information we have to impose consistency
requirements on strategies which guarantee that a strategy for a player does not use information
which is not available to that player. A coherent and transparent way to do so is to introduce
actions to the model and let strategies for a player choose an action instead of a direct successor
of the current position. As we shall see, knowledge tracking constructions may require the
potential to let winning conditions depend on the actions as well, even if the winning condition
of the original game depends only on the positions of the game graphs.

Nevertheless, we are particularly interested in winning conditions and strategies which are
only based on the sequence of positions in plays and histories, respectively. In particular, to be
able to use results on infinite games on graphs of the form G = (V,E) with full information in a
black box fashion, we have to make sure that for game graphs G = (V, δ) with full information,
we can always migrate to the position based setting.

Let G = (V, δ,∼V ,∼A) be a game graph with partial information and let W be a winning
condition for G. We consider only the two-player case here. W is called position based if for all
plays π = v0a1v1 . . . and ρ = w0b1w1 . . . in G with vj = wj for all i we have π ∈W if, and only
if ρ ∈ W . A strategy σ : V (AV)∗ → A1 for player 1 is called position based if for all histories
π = v0a1v1 . . . alvl and ρ = w0b1w1 . . . blwl in with vj = wj for all j we have σ(π) = σ(ρ).

One obvious possibility to get to a purely position based setting is to construct a new game
graph G×A where the set of positions is V ×A and (v, a) ∼V (w, b) if v ∼V w and a ∼A b. That
is, the action that was chosen in the last step is always encoded in the current position and
hence, winning conditions and strategies can clearly be expressed in terms of the positions of
the game graphs. However, this requires a transformation of the game graph and involves a
blow-up of the set of positions, so it would be desirable to figure out certain scenarios where we
can get to a purely position based setting easier.
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Figure 2.1: Observation based winning conditions do not imply position based winning strategies.

To this end, we first observe that a strategy σ for player 1 never needs to depend on his
own actions, even if the winning condition does. The reason is the same as for the assumption
that player 1 does not need to observe his own actions: Player 1 needs to concern himself only
with histories which are consistent with the strategy σ with which he complies. So whenever
player 1 encounters a sequence of his own past actions that is different from the one that he
gets by looking up σ, he can behave haphazardly. To make this more precise, consider some
σ-history π = v0a1v1 . . . alvl with vl ∈ V1 and consider another history ρ = w0b1w1 . . . blwl such
that wj ∼V vj for all j and moreover bj ∼A bj for all j with vj ∈ V0. Then either bj = aj for
all j with vj ∈ V1 or ρ is not consistent with σ. Clearly, if ρ is not consistent with σ then we
can redefine σ on ρ arbitrarily, so in particular we can set σ(ρ) = σ(π). The strategy σ which
is obtained in this way depends only on the sequence of positions and the sequence of actions
chosen by player 0 in a history.

On the other hand, a strategy σ for player 1 needs to depend on the actions of player 0 in
general. This is quite obvious, if the winning condition depends on these actions. But under
partial information, this is also the case if the winning condition is position based since the
observations about the action may yield information about the events in the game which is not
contained in the positions. In Figure 2.1 we give an example of a (turn based) two-player game
with a reachability winning condition where player 1 has a winning strategy but he does not
have one which is position based. Notice that this requirement is weaker than stipulating that
player 1 has a winning strategy which is only based on the information about the positions
which he observes. Also notice that the winning condition of the game depends only on the
observations about the positions that player 1 makes.

In the picture, diamond positions belong to player 0 while round positions belong to player 1.
Dotted lines indicate the indistinguishabilities of player 1 and the goal for player 1 is to reach
the position goal.

However, in games with full information, position based strategies suffice to win for position
based winning conditions. In fact, from a game graph G = (V, δ) and a position based winning
condition W ⊆ V (AV )ω we can easily construct a game graph Gp = (V,E) and a winning
condition W p ⊆ V ω such that winning strategies for player 1 (and in fact also for player 0)
are preserved: we just delete the actions from the edges and from the sequences in W and
let the players choose successor positions instead of actions. Although the correctness of the
construction is intuitively quite evident, we like to give a detailed proof. The reason is that
this proof gives an easy example of a kind of reasoning that we shall use quite often when we
transfer winning strategies between games.

Proposition 2.2. Player 1 has a winning strategy for (G,W, v0) if and only if he has a winning
strategy for (Gp,W p, v0).

25



Proof. First, if player i has a winning strategy for (Gp,W p, v0) then he obviously has a winning
strategy for (G,W, v0). Now let σ be a winning strategy for player 1 for (G,W, v0). By induction
on the length of sequences π ∈ V ∗ we define a strategy σp : V ∗V1 → V for player 1 for
(Gp,W p, v0) and at the same time, with each history πp = v0v1 . . . vl ∈ V ∗ in Gp (with l ≥ 1)
that is consistent with σp we associate a sequence ζ(σp) = a1 . . . al of actions such that the
following conditions hold.
(1) π = v0a1v1 . . . alvl is a σ-history in G
(2) if ρp v πp then ζ(ρp) v ζ(πp).

First, consider πp = v0. If v0 ∈ V1 then we define σp(πp) := v for the uniquely determined
v ∈ V with δ(v0, σ(v0)) = v and with πpv we associate the sequence ζ(πpv) = σ(v0). If v0 /∈ V1
then with any history πpv1 ∈ V ∗ in Gp we associate the sequence ζ(πpv1) = a1 for some a1 ∈ A
such that δ(v0, a1) = v1. By construction, conditions (1) and (2) are fulfilled.

Now consider any σp-history πp = v0v1 . . . vl ∈ V ∗ with l ≥ 1 in Gp and assume that
ζ(πp) = a1, . . . , al has been constructed. Let π = v0a1v1 . . . alvl. If vl ∈ V1 then we define
σp(πp) := v for the uniquely determined v ∈ V with δ(vl, σ(π)) = v and with πv we associate
the sequence ζ(πv) = a1, . . . , al, σ(π). If v1 /∈ V1 then with any history πpvl+1 ∈ V ∗ in Gp we
associate the sequence ζ(πpvl+1) = a1, . . . , al, al+1 for some al+1 ∈ A such that δ(vl, al+1) = vl+1.

Now we have to show that σp is a winning strategy for (Gp,W p, v0), so consider any σp-play
πp = v0v1v2 . . . in Gp. By condition (2) we obtain a sequence ζ(πp) = a1a2 . . . such that
π = v0a1v1a2v2 . . . is a σ-history in G and since σ is a winning strategy for (G,W, v0), π ∈W .
But since W is position based, the construction of W p yields πp ∈W p.

Of course in a symmetric setting where we are also interested in strategies for player 0
(like for example, determinacy results for games with full information), all these notions and
observations apply to player 0 completely analogously. Notice that this result also holds for
infinite game graphs.

2.1.3 Distributed Systems
A distributed system with n+ 1 processes has the form

D = (A, (Σc)c∈C) , with A = (C, r, w)

• C is a finite set (of channels)
• r : C → [n+ 1] assigns to each channel a unique process which reads it
• w : C → [n+ 1] assigns to each channel a unique process which writes to it
• (Σc)c∈C is a collection of finite alphabets, one for each channel.

The structure A is also called the architecture or communication graph of the system and the
alphabets Σc assign finite sets of signals that can be sent along the channels c ∈ C. We denote
the set {0, 1, . . . , n} of processes also as P = {p0, p1, . . . , pn}. As before, p0 = penv represents
the environment of the system and the processes Pcon = {p1, . . . , pn} form the grand coalition
of players which represent the controllers.5

Hence, A is a directed graph with vertices p1, . . . , pn and edges c ∈ C where each c is an edge
from vertex w(c) to vertex r(c). If such an edge c exists we say that w(c) sends information
to r(c). If w(c) = p ∈ Pcon then we assume that w(c) 6= p, that means, no controller can
send information to itself. (So in the communication graph we do not have selfloops except,
possibly, on the environment penv.) Notice that A has multiedges, that is, a process may send
information to another process via multiple channels. However, such multiple channels can
always be simulated by a single channel, so whenever this is more convenient, we assume w.l.o.g.
that there is at most one such channel. For p ∈ P we define

5As is common, in the context of distributed systems we shall usually stick to the term processes for the
players and controllers for the members of the grand coalition.
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• Op := {c ∈ C |w(c) = p}
• Ip := {c ∈ C | r(c) = p}

that is, Op and Ip are the sets of input and output channels of process p respectively. Moreover,
• Hpenv = Openv ∩ Ipenv

• Rpenv = Openv \Hpenv

Channels c ∈ Openv of the environment penv are also called external input channels, Hpenv ⊆ Openv

are called hidden input channels, that is, they cannot be read by any of the controllers, and
Rpenv ⊆ Openv are called readable input channels. The channels c ∈ C with w(c) ∈ Pcon and
r(c) ∈ Pcon are internal communication channels and for p ∈ Pcon, the channels c ∈ Op with
r(c) = penv are the external output channels of controller p.

As before, the information of the environment about the events in the system is irrelevant,
that is, we can assume that process penv has full information. So the channels from processes
p ∈ Pcon to penv are actually futile, that is, we could equivalently let those channels be selfloops
or channels which do not have a particular destination. However, having channels that actually
transmit information to the environment resembles physical systems more closely and is also
convenient for certain definitions in the context of distributed systems.

Finally, we assume Op 6= ∅ for all p ∈ Pcon, that is, each controller has at least one output
channel. Notice that with this assumption, the set of processes is uniquely determined by
the architecture A. Although this assumption seems quite natural (an idle controller seems
rather redundant), it still is a restriction in that controllers without output channels might
increase the expressiveness of locally decomposable specification, without making the architectures
undecidable. This concept will be introduced in Section 2.2 and in Chapter 5 we will also discuss
the issue of processes without output channels in the context of such specifications.

Runs, Strategies and Specifications. For a process p ∈ P , the output alphabet of p is

Σpout :=
∏
c∈Op

Σc

and for penv we also define Σhid :=
∏
c∈Hpenv

Σc and Σread :=
∏
c∈Rpenv

Σc as the hidden and
the readable output alphabet, respectively. Σout :=

∏
p∈Pcon

Σpout is the joint output alphabet of
the controllers. For a controller, p ∈ Pcon, the input alphabet of p is

Σpin :=
∏
c∈Ip

Σc

and if Ip = ∅ then we define Σp
in := {|} instead of the empty set.6 The reason is that the

information of a process is given in terms of synchronous observability, so in each step, any
process receives some input signal and if Ip = ∅ this signal is just a tick | of the shared clock
telling the process that a step of the system has been performed. The (local) alphabet of a
controller p ∈ Pcon is Σp = Σpin × Σpout and the (global) system alphabet is

ΣD =
∏
c∈C

Σc =
n∏
i=0

Σpiout.

At each (discrete) point in time j ∈ N, each process p sends a signal αc(j) ∈ Σc to each of his
output channels c ∈ Op. Together, these signals define the action αp(j) ∈ Σpout of process p at
step j. In this way, an infinite sequence α ∈ (ΣD)ω is built, called a system run of D. A history
of D is a finite prefix w ∈ (ΣD)∗ of a run. Such a run is composed of the sequences of actions of
the individual processes: α = βp0

_βp1
_ . . ._ βpn where βpi ∈ (Σpi

out)ω for i = 0, 1, . . . , n. The
6Notice that the input alphabet of penv is not relevant
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local run of a controller p ∈ Pcon is αp_βp, where the local input history αp = PrΣpin(α) ∈ (Σpin)ω
of p contains exactly the information about the history of events that this controller observes.

A strategy for a controller p ∈ Pcon takes the local input history of controller p and yields a
next action of p, that means, it is a function

σp : (Σpin)∗ → Σpout.

Notice that we could represent a strategy for p also as a function σp : (ΣD)∗ → Σout which
fulfills the consistency condition
(S2) σ(u) = σ(u′) for all u, u′ ∈ (ΣD)∗ with PrΣpin(u) = PrΣpin(u′)
(Condition (S1) is redundant for distributed systems.) We will sometimes make use of this
representation but usually prefer to have a strategy for process p read only the signals which
are actual inputs to process p.

A local history up
_vp of process p is consistent with σ if vp(i) = σ(up(< i)) for all i =

0, . . . , |up| − 1. A local run αp
_βp of p is consistent with σ if all its histories are. A joint

strategy for the grand coalition is a collection σ = (σp1 , . . . , σpn) of individual strategies for
the controllers. A system run α ∈ (ΣD)ω is consistent with σ if the local run PrΣp(α) of any
p ∈ Pcon is consistent with σp.

A system specification for D is a language L ⊆ (ΣD)ω consisting of those system runs which
the controllers p1, . . . , pn want to ensure.

For a language Lpin ⊆ (Σpin)ω, a strategy σp for a controller p ∈ Pcon is locally winning on Lpin
if each local run αp

_βp ∈ (Σp)ω of process p with αp ∈ Lpin which is consistent with σp is in
Lp := PrΣp(L). (Lp is also called the local specification of p.) This means that, for each input
sequence of the given input language Lin, the corresponding local run of process p determined
by σp must occur in some system run which is in L. The strategy is called locally winning if it
is locally winning on Lpin = (Σpin)ω. A joint strategy σ for the grand coalition is winning if any
system run which is consistent with σ is in L.

Notice that a collection (σp1 , . . . , σpn) of local winning strategies is not necessarily a joint
winning strategy for the grand coalition which is obvious if there are hidden channels from the
environment since they are not accounted for in any of the local winning conditions Lp. But
even in the absence of hidden channels from the environment, although each σp guarantees that
process p creates only local runs which are correct from his local view on L, not all arbitrary
compositions of these local behaviors of the individual processes are necessarily in L. Moreover,
if conversely, σ = (σp1 , . . . , σpn) is a joint winning strategy for the grand coalition then an
individual strategy σp is not necessarily locally winning. That is, it is not locally winning on all
possible inputs for process p but merely on those inputs that it receives from other processes
and the outputs of the other controllers are constrained by their own local strategies.

It is now plain to obtain a game T = TD,L with imperfect information from a distributed
system D and a specification L: The game tree of T consists of all finite histories w ∈ (Σp)∗
of runs of D and the actions of the players in the game tree are their actions in D. Of course,
imperfect information again is given in terms of synchronous observability, that is, here we also
use the indistinguishability relation ∼∗i that we have defined in Section 2.1.2: for w,w′ ∈ (Σp)∗
we have w ∼i w′ if PrΣpiin

(w) = PrΣpiin
(w′), that means, if the local input histories of process pi

in w and in w′ are the same.

Remark. Aside from each controller having at least one output channel, another restriction of
our setting is the absence of broadcast channels, that is, channels for which there is a single process
that writes to them but which can be read by several processes. In principle, such channels can
be simulated in our setting by requiring in the specifications for certain channels that the same
signals is written to them in each step. Technically, however, this is a substantial difference.
First, this involves reachability conditions in the case of broadcast channels from the environment
but safety conditions in the case of broadcast channels from the controllers, so neither safety
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conditions nor reachability conditions are necessarily preserved by this construction. Moreover,
in the case of broadcast channel from the environment, the construction does not preserve
locally decomposability of the specification in general, cf. Section 2.2.3 and Chapter 5. Finally,
we are usually interested in characterizations of decidability of architectures just by means of
their graph structure without incorporating specifications. In particular, the characterization in
Chapter 5 is not valid in the presence of broadcast channels.7 We do not pursue this further.

The Controller Problem. As we have mentioned, in the context of distributed systems, we
speak of the strategy problem also as the controller problem:
Given a distributed system D and a specification L, does the grand coalition Pcon of controllers
have a joint winning strategy?

For a fixed architecture A, the controller problem for A asks, given a specification L, whether
the grand coalition Pcon of controllers has a joint winning strategy. We say that A is decidable
for a class L of specifications if the controller problem for A is decidable for all L ∈ L. Notice
that an architecture does not specify a labeling. However, we shall be a bit sloppy about the
terms distributed systems and architectures. In particular, when considering an architecture A
and some specification, we implicitly assume a labeling of the architecture.

Subarchitectures, Informdness and Pipelines. In the following, let A = (C, r, w) be an
architecture with n + 1 processes. A is called connected if any two controllers are connected
via some (not necessarily directed) path that does not go through penv, that is, contains only
vertices from Pcon. In other words, the set Pcon induces a connected subgraph of A.

A subarchitecture is a subgraph A′ of A which contains penv such that A′ is an architecture,
that means, each controller has at least one output channel. For a set Q ⊆ Pcon, if the subgraph
A′ of A induced by the vertices Q ∪ {penv} is an architecture then we denote A′ =: A(Q)
and we call A(Q) the subarchitecture of A induced by Q. A connected component of A is a
maximal connected subarchitecture A′ of A, that is, A′ is connected and there is no connected
subarchitecture of A that strictly contains A′.

A process p ∈ Pcon is called reachable if there is a directed path from penv to p. Process p
is better informed than p′ ∈ Pcon \ {p} if p is reachable and each directed path from penv to p′
goes through p. If p is better informed than p′ we write p < p′.8 Processes p and p′ are called
equally informed if each directed path from penv to p′ goes through p and vice versa. Notice
that in our setting without broadcast channels, two processes can only be equally informed if
they coincide or if both of them are not reachable. If p < p′ or p and p′ are equally informed,
then we write p ≤ p′. (So ≤ is not necessarily antisymmetric.) If p 6≤ p′ and p′ 6≤ p, we also say
that p and p′ are incomparably informed. The set {p, p′} is called information fork, cf. [80].

A is called pipeline with backward channels if
• {p1} ⊆ r(Op0) ⊆ {p0, p1} and
• {pi+1} ⊆ r(Opi) ⊆ {pj | 0 ≤ j ≤ i+ 1} for all i ∈ {1, . . . , n− 1}.

That is, the environment sends information only to p1 and each process pi sends information to
pi+1 and possibly to other processes pj but only if j < i, see Figure 2.2. A channel c ∈ Opi with
r(c) = pj is called backward channel if 0 < j < i and it is called forward channel if j = i+ 1.
Moreover, A is called a two-flanked pipeline with backward-channels if {p1, pn} ⊆ r(Op0) ⊆
{p0, p1, pn} and {pi+1} ⊆ r(Opi) ⊆ {pj | 0 ≤ j ≤ i+ 1} for all i ∈ {1, . . . , n− 1}, see Figure 2.2.
We call A a (two-flanked) pipeline, if A has no backward channels.

7Notice that, while Chapter 5 we use the specification to actually eliminate feedback channels, this construction
does not eliminate the broadcasting requirement from the architecture.

8This notation may seem counterintuitive, but notice that in terms of equivalence relations, p < p′ implies
∼∗p⊆∼∗p′ . Moreover, in terms on the communication graph, on each path starting in penv which contains p and
p′, the first occurrence of p is before the first occurrence of p′.
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penv p1 p2 p3 p4 penv p1 p2 p3

Figure 2.2: Pipeline and two-flanked pipeline with backward-channels

So the only difference between a pipeline (with backward channels) and a two-flanked pipeline
(with backward channels) is the additional channel from the environment to process pn. In
particular, while in pipelines (with backward channels) the set of controllers can be ordered
linearly according to informdness (p1 ≤ p2 ≤ . . . ≤ pn), in two-flanked pipelines (with backward
channels) process pn and any process pi with i ∈ {1, . . . , n− 1} form an information fork.

Feedback Channels and Joint Strategies. A strategy for a controller p is a function
σ : (Σpin)∗ → Σpout, so it reads the sequence of all the inputs that p receives and yields an output
of p. However, intuitively it is quite clear that if we consider a joint strategy σ = (σ1, . . . , σn)
for the grand coalition, then a strategy σi for controller pi does not need to actually read the
inputs that pi receives from processes pj that are less informed than pi (pi ≤ pj): Any paths
from penv to any such controller pj leads through pi and so, given this fixed joint strategy, pi can
deduce the outputs of all the processes pj ≥ pi from the inputs that it receives from processes
that are not less informed than itself.9

To prove this formally, we need some notation. For p ∈ Pcon, we define

Fp := {c ∈ Ip |w(c) ≥ p},

that means, Fp contains the input channels of p which originate in a process that is less
informed than p (or equally informed). We call such channels feedback channels. We also define
Sp := Ip \Fp and we call c ∈ Sp the significant input channels of p. The corresponding alphabets
are denoted Σpfb and Σpsig If Fp = ∅, then Σpfb := ∅ and if Sp = ∅ then Σpsig = {|}.

Moreover, we define
• P≥p := {p′ ∈ Pcon | p′ ≥ p} and

• Σ≥pout :=
∏
p′∈P≥p Σp

′

out

Notice that while there may be channels from arbitrary processes in P≥p to processes outside
P≥p, there are no channels from processes outside P≥p to processes in P≥p \{p}. So any process
p′ ∈ P≥p \ {p} receives all its inputs from processes p′′ ∈ P≥p, hence Σp

′

in is included in Σ≥pout.
A focused strategy for process p is a strategy that reads only the significant input of process p,

that means, it is a function
τ : (Σpsig)∗ → Σpout.

A tuple τ = (τ1, . . . , τn) of focused strategies for the controllers is called a joint focused strategy
for the grand coalition. Notions like consistency and focused winning strategy are defined as
for strategies before. The following lemma makes precise what we mean by saying that pi can
deduce the outputs of all the processes pj ≥ pi from his own inputs and the joint strategy. We
will use this observation to construct, from an arbitrary given winning strategy for the grand
coalition, a focused winning strategy.

Lemma 2.3. Let σ be a joint winning strategy for the grand coalition and let p ∈ Pcon. Then
for all u ∈ (Σpsig)∗ there is exactly one v ∈ (Σ≥pout)∗ such that u_v is consistent with σ.

9Notice that this is not the case if we consider a local strategy for process pi individually since then the inputs
that pi receives from other controller are unconstrained.
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Proof. We show this by induction on the length of u. For u = ε this is trivial, so let u = u′a
for some u′ ∈ (Σpsig)∗ and some a ∈ Σpsig be a sequence of significant inputs for p. By induction
hypothesis, there is some sequence v′ ∈ (Σ≥pout)∗ of joint outputs of all processes in P≥p such
that u′_v′ is consistent with σ. We define b ∈ Σ≥pout as follows. For any process p′ ∈ P≥p \ {p},
we define

• PrΣp
′

out
(b) = σp′(PrΣp

′
in

(v′)) and we define

• PrΣpout
(b) = σp(u′_PrΣpin(v′)).

As we have mentioned, Σp′

in is included in Σ≥pout. By definition, u_v with v := v′b is consistent
with σ.

Now let w = w′c ∈ (Σ≥pout)∗ such that u_w is consistent with σ. Then u′
_
w′ is consistent

with σ and so, by induction hypothesis, w′ = v′. Moreover, as u_w is consistent with σ we get

PrΣp
′

out
(c) = σp′(PrΣp

′
in

(w′)) = σp′(PrΣp
′

in
(v′)) = PrΣp

′
out

(b)

for all p′ ∈ P≥p and

PrΣpout
(c) = σp(u′_PrΣpin(w′)) = σp(u′_PrΣpin(v′)) = PrΣpout

(b).

Since b, c ∈ Σ≥pout this demonstrates that b = c and so v = w.

Proposition 2.4. There is a winning strategy for the grand coalition if, and only if, there is a
focused winning strategy for the grand coalition.

Proof. The if-direction is obvious: If τ = (τ1, . . . , τn) is a focused winning strategy for the
grand coalition then the joint strategy σ = (σ1, . . . , σn) for the grand coalition defined by
σi(u) = τi(PrΣpisig

(u)) is obviously a winning strategy. Now let conversely σ = (σ1, . . . , σn) be a
winning strategy for the grand coalition. We define the focused strategy τ = (τ1, . . . , τn) for
the grand coalition as follows. For i ∈ {1, . . . , n} and u ∈ (Σpisig)∗ let v ∈ Σ≥piout be the uniquely
determined joint output of all processes in P≥i such that u_v is consistent with σ according to
Lemma 2.3. We define

τi(u) = σi(u_PrΣpiin
(v)).

To prove that τ is winning, consider any system run α ∈ (ΣD)ω which is consistent with τ .
By induction on k we show that α<k is consistent with σ. For k = 0 this is trivial so let k > 0 and
let α<k = α<k−1a for some a ∈ ΣD. Now consider any i ∈ {1, . . . , n} and let u := PrΣpisig

(α<k−1),
that means, u is the significant input that pi receives during α<k−1.

Since α is consistent with τ we have PrΣpiout
(a) = τi(u) and by definition of τi we have τi(u) =

σi(u_v) for the uniquely determined v ∈ Σ≥piout such that u_v is consistent with σ. Since α<k
is consistent with σ by induction hypothesis, u_PrΣ≥pout

(α<k−1) is consistent with σ and hence,
PrΣ≥pout

(α<k−1) = v. Therefore, PrΣpiout
(a) = σi(u_v) = σi(PrΣpisig

(α<k−1)_PrΣ≥pout
(α<k−1)) =

σi(PrΣpiin
(α<k−1), so α<k is consistent with σi.

Since i has been chosen arbitrarily, α is consistent with σ which is a winning strategy so α is
won by the grand coalition. Therefore, τ is a winning strategy as well.

Notice that Lemma 2.3 does not only imply the equivalence between winning strategies
and focused winning strategies, but it also shows that a controller p could take the role of all
processes p′ ∈ P≥p by means of an extended strategy: An extended strategy for process p is a
function

σ≥p : (Σpin)∗ → Σ≥pout.

(Analogously, an extended focused strategy for p is a function σ≥p : (Σpsig)∗ → Σ≥pout.) Of course,
too much information may be used by such a strategy σ≥p when it chooses an action of a process
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p′ ≥ p. To prohibit this abuse of information, we need to require consistency conditions like
(S2) on an extended strategy, one for each process p′ > p:

(S2)p′ PrΣp
′

in
(σ∗≥p(u−1)) = PrΣp

′
in

(σ∗≥p(v−1)) =⇒ PrΣp
′

out
(σ≥p(u)) = PrΣp

′
out

(σ≥p(v)).

For process p we don’t have to require such a consistency condition since for a function
σ≥p : (Σpin)→ Σ≥pout, the projection PrΣpout

(σ≥p) is a strategy for p. If, on the other hand, p′ is a
process which is less informed than p then both, the input and the out output of p′, are included
in the extended output of p. Since p′ may make his decision only dependent on the history of
events up to the previous step, we have to require that the output of p′ in each step depends
only on the extended output of p that it produces up to the previous step.

We conclude these observations with a remark on joint strategies. So far, a joint strategy
for the controllers has been described as a tuple of strategies. This is not quite appropriate
though for solutions of controller problems using tree automata since there, we view strategies
as trees and a tuple of trees is not a tree per se. Instead, we resort to the representation from
Section 2.1.1 where we have mentioned that a joint strategy for the grand coalition can be
viewed as a function σ : T →

∏n
i=1Ai such that PrAi(σ) fulfills the consistency condition (S2)

for all i = 1, . . . , n. So a strategy for the grand coalition {p1, . . . , pn} in D would be a function
σ : (ΣD)∗ → Σout such that PrΣpiout

(σ) fulfills (S2) for all i = 1, . . . , n. We will discuss the tree
representation of such a function and its consequences in Chapter 3.

Here, we like to comment on the fact that using the observations presented above, a joint
strategy for the grand coalition for D can also be viewed as a function σ : Σ∗read → Σout that
reads only the (readable) inputs from the environment and fulfills the consistency condition
(S2)p for all p ∈ Pcon. We can obtain this representation by introducing a virtual controller pvir
which receives all readable inputs from the environment directly and has only the task of routing
the information to the corresponding processes. Then an extended strategy of this process is a
function σ : Σ∗read → (Σ≥pvir

out )∗ that generates the outputs of all controllers and fulfills condition
(S2)p for all p > pvir, that is, for all p ∈ Pcon. This representation will also be useful for decision
procedures based on tree automata, cf. Chapter 3 and Chapter 5.

2.1.4 Beyond Synchronous Observability
For game graphs with partial information and distributed systems, we have defined strategies for
the grand coalition with respect to synchronous observability, that is, in each step, every member
of the grand coalition receives a certain observation about the current event in the system.
These observations are predefined by the system: In game graphs with partial information,
player i receives the observation [aj ]i[vj ]i while in a distributed system a controller p receives
the observation PrΣpin(α(j)). So every player always takes notice of each move and also, a player
never forgets anything that he has observed.

On the other, in extensive games with imperfect information, the information of the players is
given by arbitrary equivalence relations ∼i. These equivalence relation may cut through different
levels of the game tree, they may hide certain moves from the players completely and they may
also make the players forget certain facts that they previously knew. In this section we discuss
some general possibilities to represent equivalence relation that define the partial information of
the players in a game in a finite way. Notice that even if the set of nodes of the game tree is
finitely presented like in the case of game graphs or distributed systems, an equivalence relation
on this set may still be a complicated object: The set ∼i⊆ V (AV)∗×V (AV)∗ may not be regular
or not even finitely presentable.

The notion of synchronous observability is a particular way to obtain such a finite represen-
tation, where all we have to define on the model are the observations of the players about the
events – the observability is specified implicitly. Of course, this is not just some artificial way
to impose finiteness on the equivalence relations. Synchronous observability is a very natural
and meaningful way to define the information of the players in a game that encompasses many
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real life scenarios. But it is a special case of several more general concepts that can be used to
define equivalence relations like automata and logical formulas.

We consider these two possibilities and we will analyze which formalisms are sufficient to
define synchronous observability. We shall also briefly discuss the decision problems that result
from using these more general concepts. We just mention some basic results and we do not go
into technical details here. Moreover, as far as game graphs G = (V, δ, (∼Vi ), (∼Ai )) with partial
information are concerned, we restrict to the case where ∼Ai = A×A for all i, that is, the actions
are completely invisible for the players of the grand coalition. This section is based on work
presented in [172].

Automata. There are several ways how a finite automaton can recognize a relation R ⊆
Σ∗×Γ∗. Here we consider relations that are componentwise recognizable, automatic and rational,
respectively. Componentwise recognizable relations are those that can be recognized by a finite
automaton that reads, for a given pair (u, v) ∈ Σ∗ × Γ∗, the word u]v. A relation is automatic
if there is a finite automaton over the alphabet (Σ ∪ {]})× (Γ ∪ {]}) that reads the word u_v.
Finally, a relation is called rational if it can be recognized by an asynchronous automaton that
is allowed to read in one component while not reading in the other component. It is easy to see
that any componentwise recognizable relation is also automatic and that any automatic relation
is also rational. The converse statements are, however, not true.

Clearly, none of these automata models is guaranteed to recognize equivalence relations, so
the corresponding decision problem for games with imperfect information has to be restricted to
those automata that recognize equivalence relations. More precisely, we consider the following
decision problem:
Given a game graph G = (V, δ) and automata A1, . . . ,An, such that for each i the relation
L(Ai) is an equivalence relation, does the grand coalition have a joint winning strategy?

Of course, a joint winning strategy is now a tuple σ = (σ1, . . . , σn) such that each σi is a
∼i-strategy where ∼i= L(Ai). Of course, L(Ai) is not uniquely determined by the automaton
Ai, but also depends on the recognition mode. However, once the relations ∼i are fixed, the
question for ∼i-strategies does not depend on the way in which the relation ∼i is recognized. A
∼i-strategy for player i is the obvious generalization of a usual strategy, that is, it has to satisfy
σi(π) ∈ acti(last(π)) for all π and σi(π) = σi(ρ) for all π ∼i ρ. Notice that we do not need the
equivalence relations ∼Vi and ∼Ai anymore.

The following proposition states that the usual strategy problem as introduced before is in
fact a special case of this decision problem, but only if we consider at least automatic relations.

Proposition 2.5. The relation ∼∗⊆ V (AV)∗ × V (AV)∗ is automatic but not componentwise
recognizable, for any given equivalence relation ∼V .

The first part of the proposition is trivial. In fact, ∼∗ can be recognized by an automaton
with only two states. On the other hand, to see that ∼∗ is not componentwise recognizable,
independent of the equivalence relation∼V , the usual pumping argument can be applied. This can
be also seen, however, from the more general statement that for any componentwise recognizable
equivalence relation ∼⊆ Σ∗ × Σ∗, the index |Σ∗/∼ | of ∼ if finite. To see this, consider a
deterministic finite automaton recognizing ∼ and define, for each pair of states (p, q) of the
automaton such that q is accepting, the set Xp,q := {u ∈ Σ | δ∗(qin, u) = p and δ∗(qin, u]u) = q}.
It is easy to see that the sets Xp,q form a partition of Σ∗ and that each two words u, v ∈ Xp,q

are equivalent. Hence, |Σ∗/∼ | ≤ |Q|2 where Q is the set of states of the automaton.
Although the relation ∼∗ is not componentwise recognizable, componentwise recognizable

equivalence relation may still be interesting for certain applications. In particular, this includes
the case of relations that are defined in the following way: Consider a deterministic finite
automaton A over the alphabet V ∪ AV and for two histories π and ρ, let π ∼ ρ if, after
reading π and ρ, respectively, A is in the same state. Clearly, the relation ∼ is componentwise
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recognizable: A corresponding automaton A′ just needs to simulate A on π, memorize the
current state and then simulate A on ρ.

Clearly, such an equivalence relation is not about observability at all. Instead, the automaton
A can be seen as a device that predetermines the way in which a controller processes the history
of events in the system. It does not, however, specify a controller, since it does not determine
the actions of the controller. But it prescribes the way in which the controller processes the
information that it receives, which, in this case, is the full history of events. This is interesting
for applications where the computing device that is supposed to serve as a controller is already
given and the task is to program an appropriate output function.

It is not hard to see that for this special case, the strategy problem for games on finite
graphs with an arbitrary number of players is decidable for ω-regular winning conditions, cf.
Section 2.2. If we have a game graph with a parity winning condition then we can proceed as
follows: We guess, for each automaton Ai, i = 1, . . . , n a labeling of the states of Ai which,
essentially, yields a strategy automaton for player i, cf. Section 3.5.2. Then we can take the
product of the game graph and the resulting strategy automata which results in a game graph
where only player 0 makes actual moves. It is easy to verify whether player 0 wins this game.
We do not go into the details of this construction. For the general notion of the product of an
automaton and a game graph, see Section 2.2.

On the other hand, for automatic relations, the strategy problem is undecidable, even for
two-player games with safety winning conditions. To see this, we use the fact that for three-player
games on finite graphs with partial information the strategy problem is undecidable for safety
conditions, cf. Section 3.2. We restrict to turn-based game graphs for which this also holds.

This case can then be easily simulated by two-player games if we use automatic relations
to define the information of player 1: Given a turn-based game graph G = (V, δ, (∼Vi )) with
partial information and three players, we keep the game graph H = (V, δ) as it is, but now, all
positions V G1 ∪ V G2 of player 1G and player 2G belong to player 1H. Moreover, we define the
relation ∼H1 as follows: π ∼H1 ρ if last(π), last(ρ) ∈ V G1 and π ∼∗1 ρ or if last(π), last(ρ) ∈ V H2
and π ∼∗2 ρ. That is, if player 1H is supposed to make a move of player 1G then he also has the
view of player 1G and accordingly for player 2G .10

Notice that the relation ∼H1 imposes a strong form of imperfect recall on player 1H: When
playing as player 1G , he forgets all the information that he has acquired while playing as player 2G
and vice versa. Clearly, player 1H has a winning strategy for (H,W, v0) if, and only if, the grand
coalition has a joint winning strategy for (G,W, v0). Moreover, since the relations ∼∗1 and ∼∗2 are
both automatic it is easy to see that ∼H1 is automatic as well (going through nondeterministic
automata and using determinization). This reduction is obviously effective, so the strategy
problem for two-player games on finite graphs with safety winning conditions is undecidable.

Logics. Another way to define equivalence relations ∼⊆ V (AV)∗ × V (AV)∗ are logical systems
like first order logic and monadic second order logic. In this case we have to refer to some
structure which the formulas should talk about.11 Of course, the definability of a relation
depends highly on the chosen structure.

Here, we choose a possibility that is close to finite automata. For a game graph G = (V, δ),
we consider the structure TG = (V (AV)∗, E, (Pv)v∈V ) which is the game tree defined by G where
E ⊆ V (AV)∗ × V (AV)∗ is the edge relation of TG , that is, (π, ρ) ∈ E if ρ = πav for some
av ∈ AV. Moreover, we can access the last position of a history: π ∈ Pv if last(π) = v.

We say that an equivalence relation ∼⊆ V (AV)∗×V (AV)∗ is definable in a logic L if there is
a formula ϕ(x, y) ∈ L over the signature {E, (Pv)v∈V } such that for all π, ρ ∈ V (AV)∗ we have
TG |= ϕ(π, ρ) if, and only if, π ∼ ρ. Notice that as before, a relation R ⊆ V (AV)∗ × V (AV)∗
defined by a formula ϕ(x, y) is not guaranteed to be an equivalence relation. The corresponding
strategy problem is defined in the same way as for automata recognizable relations, that is,

10This argument was suggested to the author by  Lukasz Kaiser in personal communication.
11Like in the case of ω-words, where the formulas of S1S talk about a structure (N,+1, (Pa)a∈Σ).
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restricted to those formulas that define in fact an equivalence relation.

Theorem 2.6. The relation ∼∗⊆ V (AV)∗×V (AV)∗ is definable in LFP but in general it is not
definable in MSO.

Here, LFP denotes least fixed point logic and MSO denotes monadic second order logic.
Definability in LFP is straight forward: We just write down the definition of ∼∗ inductively as
π ∼∗ ρ if π, ρ ∈ V and π ∼V ρ or π = π′av, ρ = ρ′bw, v ∼V w and π′ ∼∗ ρ′. So with the same
argumentation as for automatic relation we can now see that for equivalence relations defined in
(the alternation-free fragment of) LFP, the strategy problem is undecidable.

Non-definability in MSO can be seen as follows. Consider the (one-player) game graph
G = (V, δ,∼V ,∼A) with partial information defined as follows.

• V = V0 = {ε, 0, 1} and A = {a, b}
• δ(ε, a) = δ(0, a) = δ(1, a) = 0
• δ(ε, b) = δ(0, b) = δ(1, b) = 1
• 0 ∼V 1 and a ∼A b

The structure TG is the full, infinite binary tree with two additional predicates that indicate
whether the current node is the 0-child or the 1-child of its unique parent node. Now assume
that there is a formula ϕ(x, y) such that for all π, ρ ∈ V (AV)∗ × V (AV)∗ we have TG |= ϕ(π, ρ)
if, and only if, π ∼∗ ρ. Obviously, π ∼∗ ρ holds if, and only if, |π| = |ρ|, so ϕ defines the equal
level predicate on TG .

Having this formula, it is not hard to construct an S2S-formula ψ(x, y), that is, a formula of
the second order logic of two successors, that defines the equal level predicate on the infinite
binary tree: Formulas of S2S use the successor functions S0 and S1 with Sj(u) = uj and it is
easy to define the edge relation E as well as the predicates P0 and P1 on the infinite binary tree,
using S0 and S1. Furthermore, ψ can be used to define the set of Σ-labeled infinite binary trees
(for an arbitrary alphabet Σ) such that the labeling is constant on each level. However, this set
of trees cannot be recognized by a tree automaton and so, by Rabin’s Theorem, it cannot be
defined in S2S, cf. Section 3.1. This is a contradiction, so the formulas ϕ cannot exist.

Asynchronous Observability. As we have mentioned, unless explicitly mentioned otherwise,
we consider only games with imperfect information which is defined via synchronous observability.
In particular, we will not consider strategy problems under imperfect information defined via
equivalence relations that are given by automata or logical formulas here any further. We would
like to comment on another particular case besides synchronous observability, namely that of
asynchronous observability.

As we have mentioned, synchronous observability implies the existence of an underlying shared
clock that can be accessed by all components of the system. If the system under consideration
is not adapted to synchronization, that is, cannot be reasonably timed by a global signal, this
assumption is not adequate, cf. [170, 173]. Asynchronous systems, where we do not require
the existence of such a common clock, are suited for such settings. However, the notion of
asynchronous observability is not as canonical as that of synchronous observability:
in a synchronous system, each agent i knows what time it is; ([78], p.135)

More precisely, a player i in an extensive game with imperfect information has a synchronous
view, if any two histories which are indistinguishable for player i are on the same level of the
game tree. Otherwise, player i has an asynchronous view. So a player with asynchronous view
does not know what time it is but it is also not clear what knowledge he does have about the
time.

Now, asynchronous observability is a special case of asynchronous imperfect information
where the information of the players is defined in terms of observations that they make just
as in the case of synchronous observability. However, not all players receive an observation in
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each step. The decision which processes receive observations in which step is usually made by a
scheduler, see for example [170, 194]. Such a scheduler can be formalized as an external strategy
σS that takes a history of a run and yields a set of processes that are scheduled to read and a
set of processes that are scheduled to write. Clearly, there are still lots of varieties of this setting.
We could consider nondeterministic scheduler that allow several (or maybe even all) possible
schedulings, we could require that a process is scheduled to write whenever it is scheduled to
read or that each process is scheduled to write in each step and so on. Some work on synthesis
of controllers with asynchronous observability can be found in [170, 221, 194].12

Here we consider another very special case of asynchronous observability. Consider a turn-
based game on a finite graph, that means, we have a partition V =

⋃
i Vi of the positions where

v ∈ Vi means that it is player i’s turn. This determines a scheduler for the writing players: the
(unique) player that is scheduled to write is the one whose turn it is. Moreover, we define that
a process is scheduled to read whenever something happens in the game that he actually can
observe. (Intuitively, if some variables of the system are modified to which the player has at
least partial access.) Essentially, this is the most basic case of asynchronous observability: It is
the same as the synchronous case, except that we remove the shared clock so that a player does
receive a simulated tick whenever something happens that he cannot observe at all. This case
has been considered in [173] and, similarly, in [47] in the context of timed games.

In other words, this case is obtained from the synchronous case by simply hiding all private
moves of the other players from a player i. Where a private move of the players [n] \ {i} is
a move v →a w such that v /∈ Vi and v ∼Vi w. So, given a game graph G = (V, δ, (∼Vi )), an
asynchronous strategy for player i σ takes a history and yields a next action for player i as
before, but now has to satisfy the following condition:

(←−S2) if π←−∼∗i ρ then σ(π) = σ(ρ)

where π←−∼∗i ρ if ←−π ∼∗i ←−ρ and ←−π if obtained from π by contracting each maximal sequence
w0b1w1 . . . blwl of private moves of the players [n] \ {i} in π to w0.

Notice that, originally, we have defined ∼∗i as an equivalence relation on histories in G and,
clearly, ←−π is not a history in G in general. However, in this regard, we shall treat ←−π as though
it was a history in G.

As to the question of recognizability and definability of ←−∼∗ we have similar results as for the
synchronous case: ←−∼∗ is definable in LFP but not in MSO. As to the latter statement, we just
have to modify the game graph so that now, 0 and 1 are both positions of player 1 while ε is still
a position of player 0. Moreover, ←−∼∗ is not componentwise recognizable, but now, this depends
on ∼V . In a game graph where all positions belong to player 0 and are indistinguishable for
player 1, any two histories as equivalent with respect to←−∼∗ and so the relation is componentwise
recognizable. However, in general it is not. But now, it is also not automatic in general. This is
also obvious due to the asynchronous nature of←−∼∗, so we have to invoke asynchronous automata
to recognize ←−∼∗ in general: For any ∼V , the relation ←−∼∗ is rational.

We do not consider asynchronous observability in detail but we shall make some remarks. In
particular, in Section 3.5.4 we adapt Reif’s powerset construction to this case.

2.1.5 Memory Structures
So far, a strategy for a player i has just been a function σ that takes a finite history of a play
and yields a next action for player i. The postulation that a strategy for player i uses only
information which is actually available to player i has been asserted by a consistency condition
with respect to the indistinguishability relation ∼i of player i or by simply restricting the input

12As it turns out, synthesis of controllers with asynchronous observability is even harder as in the corresponding
synchronous case: Finkbeiner and Schewe [194] proved that for both, synthesis under full schedulers and scheduler
independent synthesis, the strategy problem is undecidable as soon as we consider distributed systems with more
than one controller.

36



of the strategy to the part of the history that player i can observe. In any case, a strategy has
been an infinite object.

A solution of the controller synthesis problem, however, requires an implementation of the
strategy by some kind of computing device. In this section we define finite state strategies,
that is, strategies that can be implemented by finite state automata. In Chapter 5 we consider
also strategies that are implemented by pushdown automata. Since it resembles physical
implementations of strategies more closely, we consider as implementations finite state automata
which read only the part of a history which is observable for player i.13 That is, the automata
have as alphabet the set [V ]∼V

i
[A]∼A

i
, in the case of game graphs with partial information and

the set Σpi
in in the case of distributed systems. In the following, let G = (V,A, δ, (∼Vi )i, (∼Ai )i)

be a game graph with partial information and let D = (A, (Σc)c∈C) be a distributed system.
A finite memory structure for player i for G has the form

M = (M, δin, δup)

where M is a finite set of states, δin : V →M is the memory initializing and δup : M× [A]i[V ]i →
M is the memory update function. (Notice that we have assumed that each player of the grand
coalition knows the initial position.) The state δ∗(π) ofM after some history π = v0a1v1 . . . alvl
is defined as follows:

δ∗(v0) = δin(v0)
δ∗(π) = δup(δ∗(v0a1v1 . . . al−1vl−1), [al][vl]), if l > 0.

A memory strategy for player i with memory M is a function σi : M × [V ]i → Ai such that
for all histories π = v0a1v1 . . . alvl in G we have σi(δ∗(π, [vl])) ∈ act(vl). A play π = v0a1v1 . . .
is compatible with σi, if for all j ∈ N we have

Pri(aj+1) = σi(δ∗(π), [vj ]).

A memory strategy with memory M for some finite memory structure M is also called a finite
state strategy. A strategy is called memoryless or positional if it can be implemented by a
memory structure with a single memory state.

A finite memory structure for process p = pi for D is basically the same as a memory
structure for player i for G. However, we do not have an initializing function but a fixed initial
state min ∈M so the structure has the form M = (M,min, δup) where the update function δup
is now a function δup : M × Σp

in →M . Moreover, δ∗(u), for u = a0a1 . . . al ∈ (Σp
in)∗ is defined

by δ∗(ε) = min and δ∗(u) = δup(δ∗(a0a1 . . . al−1), al) for l > 1. Since we do not have a notion of
a current position in a game graph, we also re-define the notion of a memory strategy slightly:
A memory strategy for process i with memory M is a function σp : M → Σpout and a local run
βp
_αp ∈ (Σpin × Σpout)ω is consistent with σp if αp(j) = σp(δ∗(βp(<j))) for all j ∈ N.
Notice that with this definition, a memoryless strategy is always trivial in that it yields the

same action in each round. To see that this is appropriate, consider a distributed system with
a single controller p1 and without hidden input channels (which constitutes a game with full
information) and with a parity specification given by a deterministic parity automaton A (see
Section 2.2). Then in general, process p1 needs to use at least the current state of A for his
strategy, which is, he has a positional strategy in terms of the states of A. Also notice that this
definition of a finite state strategy coincides with our claim of computability of a strategy by a
finite state machine with output since the strategy σp can be seen as the output function of M.

2.2 Winning Conditions
So far, a winning condition has just been any subset of the set of plays in a game with imperfect
information. In this section we consider certain special cases of winning conditions, according to

13As we have mentioned, the correspondence to strategies that take the whole history but just satisfy consistency
constraint (S2) is not as straightforward here as it is when implementations are neglected.
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their expressive power and the extent to which they may involve facts, that the players cannot
observe. In particular, for an algorithmic treatment of the strategy problem we need not only a
finite representation of the game itself, like given by game graphs with partial information and
architectures, but we also have to consider winning conditions that admit a finite representation.

As we have already mentioned in the introduction, the definition of a winning condition as
a set of plays puts our investigation into the realm of linear time: A linear time specification
determines for each given infinite play whether it is a good play or not, and we require that
all plays that are compatible with a winning strategy are good. In contrast, a branching time
specification does not specify a set of good plays but it defines a set of good trees: A joint
winning strategy for the grand coalition is required to be a good tree, that is, it must be a model
of the branching time specification. (Or, rather, the corresponding constrained game tree which
is, however, essentially the same.) Examples of branching time specifications are computation
tree logic CTL, the modal µ-Calculus and, as non-logical formalism, automata on infinite trees.
In [6], the even stronger formalism of alternating time temporal logic ATL has been introduced.
It has been suggested as a natural specification language for open reactive systems, where the
paradigm is to incorporate strategic reasoning directly into the logic. We do not consider this
here any further.

Notice that the linear time setting and the branching time setting are in fact inherently
different. Consider, for example, a CTL-formula ϕ, defining a set of Σ-labeled X-trees for a
given finite set X and a given alphabet Σ. Then, in general, there is no set W ⊆ Σ∗ such that
a tree t satisfies ϕ if, and only if, all infinite paths through t are in W . In particular, in the
branching time framework, we can also require the existence of certain paths in a given tree
which is obviously not possible in the linear time framework.

The advantages and disadvantages of linear and branching time specifications have been
subject to many discussions, see for example the fundamental study [131], the subsequent
discussions [73, 168] and the more recent paper [214] with many further pointers to the literature.
In this work we focus on linear time specifications. We will, however, provide certain remarks
on branching time specifications as well, using the tree automata framework from Section 3.1 as
specification formalism.

Throughout this section, let

G = (V, δ, (∼Vi )i, (∼Ai )i) and D = (A, (Σc)c∈C)

denote a game graph with partial information and n+ 1 players and a distributed system with
n controllers and architecture A = (C,w, r), respectively.

2.2.1 ω-Regular Winning Conditions
Omega-regular winning conditions can be represented as languages, accepted by ω-automata or,
more directly, by means of a coloring col : V → [k] of the positions of the game graph (for some
k ∈ N), in case a game graph is given explicitly.

To the latter setting, full effect has been given by the seminal work of McNaughton [142] on
infinite games on finite game graphs with full information, followed by fundamental studies in
[202, 222]. See also [100] for a comprehensive exposition. The most well studied special case
are parity games with special attention on algorithmic aspects, see [118, 158, 113].14 Parity
conditions on finite game graphs are also a core issue in our study and we start the exposition
of winning conditions with parity games.

Parity Games. A parity condition on G is given by a coloring col : V → [k] for some natural
number k ∈ N. A play π = v0a1v1 . . . ∈ Π is won by the grand coalition if min(Inf(col(π))) is

14The great interest in algorithmic properties of parity games is partly due to the fact that the strategy
problem for parity games is polynomial time equivalent to the emptiness problem for tree automata and the
model checking problem for the modal µ-calculus, see e.g. [100].

38



even, where col(π) = col(v0)col(v1) . . .. That means, the grand coalition wins a play according
to the parity condition defined by col, if the least color which is seen infinitely often during
the play is even. Notice that a parity conditions depends only on the sequence of positions
in a play and not on the actions. A parity game with imperfect information is a game with
imperfect information played on a finite game graph G where the winning condition W is a
parity condition on G, so it is represented as (G, col). Notice that the winning condition W of a
parity game is position based.

The parity condition first appeared in [149] in form of the Rabin Chain Condition and later,
independently, in [75] as the parity condition. Since then, parity games with full information
have been extensively studied and many deep and useful results are available, especially on
algorithmic aspects. Here we collect some of the fundamental results which are relevant to our
work.

It can be shown that sets of plays in a game graph which are given by a parity condition are
Borel sets and hence, by Martin’s Theorem, parity games with full information are determined.
Even more, they enjoy the much stronger property of uniform memoryless determinacy, that
means, each player i ∈ {0, 1} has a memoryless winning strategy which is winning from any
vertex in his winning region. Positional determinacy was first proved by Emerson and Jutla
[75] and, independently, by Mostowski [150]. McNaughton [142] gave a constructive proof of
uniform memoryless determinacy.

This also yields that the strategy problem for parity games with full information is in
NP∩ co-NP, since a memoryless strategy (for either player!) can be guessed and verification of
the winning property can easily be performed in polynomial time. However, this still gives an
algorithm with running time exponential in the number of positions of the game graph. Up to
date it is not known whether parity games with full information can be solved in polynomial
time while, as is well known, the question whether they are NP-hard is also open since this
would imply NP = co-NP. As we have already suggested, proving that parity games with full
information can be solved in polynomial time would be a major contribution to the theory of
verification and synthesis.

There are, however, better algorithms for solving the strategy problem for parity games
with full information (and constructing uniform memoryless winning strategies for both players
on their winning regions) that have a worst case time complexity which is polynomial in the
number of vertices of the game graph and only exponential in the number k of colors, see for
example [118]. We can summarize these results as follows.

Theorem 2.7. [75, 150, 142], see also [118]
Parity games with full information are uniformly determined with memoryless strategies and
the winning regions as well as uniform memoryless winning strategies for both players can be
constructed in time O(nk).

We already know that the determinacy result does not carry over to parity games with
imperfect information. Moreover, memoryless strategies are not sufficient for winning in games
with imperfect information, already for reachability conditions. In Section 3.5.2 we will show
that even exponentially large memory is needed in general.

An important subclass of parity games are those with two colors, called Büchi games. Usually,
we consider Büchi conditions given by a set R ⊆ V where a play π is won by the grand coalition
if the set R is visited infinitely often during π.

The simplest winning conditions that we consider are reachability and safety conditions. A
reachability condition on G is given by a set R ⊆ V of vertices, at least one of which the grant
coalition wants to reach. So a play π in G is won by the grand coalition if some vertex from R
occurs in π. The safety condition given by R is the dual of the reachability condition, that is, a
play π is won by the grand coalition if each vertex that occurs in π is in R.

Reachability and safety games are not direct special cases of parity games but can be easily
seen as special cases using simple modifications of the game graph, both for game graphs with
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full information as well as those with partial information.15 In particular, reachability and safety
games are uniformly determined with memoryless strategies.

Muller conditions. Another well-studied case of ω-regular winning conditions are Muller
conditions, introduced by Muller in [151] in the context of ω-automata. We do not consider
Muller conditions a priori but use them as a tool in certain constructions and, due to their great
significance in the theory of games on graphs as well as ω-automata, we like to comment on
them. A Muller condition is given by a set F ⊆ 2V , and a play π is won by the grand coalition if
Inf(π) ∈ F . Many representations of Muller conditions have been considered and the complexity
of the corresponding strategy problem has been investigated, cf. [113], one of the most thriving
being Zie lonka’s split trees [222]. Notice that Muller games with explicitly represented F can be
solved in polynomial time [111].

Muller games on finite graphs with full information are not determined with memoryless
strategies in general but determined with finite state strategies [102], see also [142, 202]. The
memory structure that is used to implement winning strategies in these games is called latest
appearance record (LAR). In [71], a lower bound on the memory which is needed to win in Muller
games with full information has been proved which essentially matches the upper bound provided
by the LAR-memory. By taking the product of the given game graph and the LAR-memory
structure and defining an appropriate coloring, Muller games can be reduced to parity games,
see [202]. (Thomas terms this construction as supplying sufficient memory in the game graphs,
cf. [203],p.55.)

The resulting game graph will, however, be exponentially larger in general since for a given
Muller condition over V , the LAR-memory has |V |! states.

ω-Automata. While for game graphs with full information it is more convenient and direct to
consider ω-regular winning conditions represented by a coloring of the positions of the game
graph, for distributed systems as well as for game graphs with partial information, this is
not always appropriate. In particular, a distributed system does not provide a game graph
with vertices to color. Moreover, non-observable winning condition (see Section 2.2.3) require
automata methods with transformations like determinization involved, even if the original
winning condition is in fact given by means of a coloring of the game graph. Hence, we also
consider ω-regular winning conditions represented by ω-automata.

We consider ω-automata with Büchi acceptance condition and those with parity acceptance
condition. Notice that we obtain these automata also as a natural restriction of both, the
tree automata from Section 3.1 as well as the pushdown automata that we shall define below.
However, due to their conceptual simplicity and their outstanding importance for the theory
of ω-automata, we still like to give an explicit definition of nondeterministic Büchi and parity
automata as well as their deterministic versions. Notice that the term Büchi automaton usually
means nondeterministic Büchi automata, while for parity automata, the deterministic model is
the standard concept. This is mainly due to the fact that, while deterministic Büchi automata
are strictly weaker in expressive power than nondeterministic ones, deterministic parity automata
are equally expressive as the nondeterministic version. For the alternating version of parity
automata, we refer to tree automata. Notice, however, that ω-automata on words have several
properties that are not enjoyed by automata on infinite trees. For example, nondeterministic
parity tree automata are strictly more expressive than deterministic parity tree automata.

A nondeterministic ω-automaton has the form

A = (Σ, Q, qin, δ, acc).

• Σ is the finite input alphabet
• Q is the finite set of states and qin ∈ Q is the initial state
15We just need this fact to make clear that certain upper bounds which we prove for parity games also hold for

reachability and safety games.
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• δ : Q× Σ→ 2Q is the transition function
• acc ⊆ Qω is the acceptance component

A run of A on α ∈ Σω is a sequence ρ = q0q1 . . . ∈ Qω of states such that, q0 = qin and, for all
j ∈ N, qj+1 ∈ δ(qj , αj). The run is accepting if Inf(ρ) ∈ acc. The automaton accepts α if there
is an accepting run of A on α. The set

L(A) = {α ∈ Σω | A accepts α}

is called the language recognized by A or simply the language of A.
A is called Büchi automaton if acc is a Büchi condition, that means, the automaton

has the form A = (Σ, Q, qin, δ, F ) where F ⊆ Q is a set of final states. A run ρ ∈ Qω is
accepting if Inf(ρ) ∩ F 6= ∅, that is, at least one state from F is seen infinitely often. A is
called parity automaton if acc is a parity conditions, that means, the automaton has the form
A = (Σ, Q, qin, δ, col) where col : Q → [k] is a coloring of the states of A. A run ρ ∈ Qω is
accepting if min(Inf(col(ρ))) is even, that is, the least color which is seen infinitely often during
ρ is even. A is called deterministic if for all (v, a) ∈ Q× Σ we have |δ(v, a)| = 1, that is, δ is a
function Q× Σ→ Q.

The model of Büchi automata was introduced by Büchi in [43] where he showed that an
ω-language is recognizable by such an automaton if, and only if, it is definable in the monadic
second order logic of one successor S1S. Since emptiness of Büchi automata is decidable quite
easily this yields that satisfiability for S1S is decidable which also implies that the monadic
second order theory of (N,+1, <, 0) is decidable. For in-depth treatments of the intimate
connections between logics and automata, we refer the reader to [100] and [83].

Nondeterministic Büchi automata and deterministic parity automata have the same expressive
power: they both recognize exactly the ω-regular languages (whichever characterization of these
languages one would like to start with as a definition). On the other hand, deterministic
Büchi automata don’t recognize all regular languages, that is, they are strictly less expressive
than nondeterministic Büchi automata. A determinization method for Büchi-automata was
first proved by McNaughton in [141] using deterministic automata Muller automata. (In fact,
McNaughton used a special case of Muller acceptance conditions that is equivalent to the pairs
acceptance condition, cf. Section 3.1.1.) The resulting deterministic Muller automata can then
be translated into an equivalent deterministic parity automaton using the LAR-memory structure
that is also used to reduce Muller games to parity games, see for example [100]. Simulating a
parity automaton by a nondeterministic Büchi-automaton is fairly simple, which establishes the
expressive equivalence of the automata models. Notice that since deterministic parity automata
can be easily complemented (complementing a parity condition can be done by just shifting
the colors by one), this also implies the complementation theorem for nondeterministic Büchi
automata which has first been proved by Büchi in [43].

During the last decades, a large number of determinization and complementation constructions
for Büchi automata have been suggested which use different acceptance conditions and provide
better complexity results for the resulting automata, most notably the work of Safra [187]
where he provided an essentially optimal translation of nondeterministic Büchi automata with
n states to deterministic Rabin automata with 2O(n log(n)) states and O(n) pairs. Optimality
of this construction was proved in [133, 134]. A deterministic Rabin automata with m states
and r pairs can be translated into a deterministic parity automaton with m · 2r log(r) states and
O(r) colors using the so called index appearance record [188, 45, 133] and hence, the original
nondeterministic Büchi automaton can be translated into an equivalent deterministic parity
automaton with 2O(n log(n)) states and O(n) colors as well.

Theorem 2.8. [187], see also [133]
(1) A nondeterministic Büchi automaton with n states can be translated into a deterministic

parity automaton with 2O(n log(n)) states and O(n) colors.
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(2) A nondeterministic parity automaton with n states and k colors can be translated into a
nondeterministic Büchi automaton with O(n · k) states.

We also like to draw the reader’s attention to the work of Muller and Schupp [154] who
provided a different construction for determinization of ω-automata, see also the historical
remarks in Section 3.1.2. Of the more recent papers on determinization and complementation of
Büchi automata we like to mention the work of Piterman [165] and Schewe [192, 193] which
provide very good complexity results.

Now an ω-automaton A representing a winning condition for G is considered as an automaton
over the alphabet V ∪AV and the winning condition is

W = {π ∈ Π |π ∈ L(A)}.

So while the automaton may, for example, accept sequences from V ω or sequences from V (AV )ω
which are not plays, we are only interested in the plays in L(A).

Given a game graph G and a deterministic parity automaton A representing an ω-regular
winning condition for G, we construct a parity game as follows:

G ×A =
(
V ×Q, (Ai)i,∆×, (∼V×Qi )i, (∼Ai )i, col×

)
• ∆× = {((v, p), a, (w, δ(p, aw))) | (v, a, w) ∈ ∆}
• (v, p) ∼V×Qi (w, q) :⇐⇒ v ∼Vi w

• col×(v, p) = col(p).
So the game G ×A is played on the synchronous product of the game graph G and the transition
graph of A and we hide the states of the automaton from all players of the grand coalition.
This is clearly necessary since in the game on G, the players cannot observe the states of
A as well.16 The parity winning condition on the positions of the new game graph is given
in terms of the states of the parity automaton. Notice that while the winning condition W
defined by the deterministic parity automaton A is not necessarily position based, the winning
condition of G ×A defined by col is position based. The correctness of the construction is proved
straightforwardly.

Proposition 2.9. For any initial position v0 ∈ V , the grand coalition has a winning strategy for
(G,A, v0) if, and only if, the grand coalition has a winning strategy for (G×A, col×, (v0, δ(qin, v0)).

Now assume G is a game graph with full information, so G is a two-player game graph of the
form G = (V, V0, δ). Then solving the strategy problem for G with winning condition given by A
goes like: pick your favorite algorithm for solving parity games and apply it to the parity game
graph (G × A, col×).

We have to be careful though, since as with the determinization construction for nondeter-
ministic game graphs in Section 2.1.2, the construction described above yields a game graph
with partial information, even if started with a game graph with full information. However, in
this case, player 1 can deduce the complete history of states of A from the history of events
in G which he fully observes. Hence, there is no harm done in making the states of A visible
for player 1 in G × A. With this simplification, G × A is a game graph with full information
whenever G is.

Moreover, by the memoryless determinacy of parity games, if player 1 has a winning strategy
for (G×A, col×, (v0, δ(qin, v0)) for some initial position v0 ∈ V then he has a memoryless winning
strategy σ1 : V1 ×Q→ A for (G ×A, col×, (v0, δ(qin, v0)) which is provided by the algorithm in

16In fact, after some history π has been played, a player i considers a set of states of A possible, which are
exactly those states that are reached when A reads some history ρ ∼∗i π. The same can be inferred by player i in
G ×A. However, no information about the states of A is given explicitly to the players of the grand coalition.
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charge of solving the strategy problem. Notice that V1 ×Q are the positions in G ×A where it
it player 1’s turn. Now obviously, σ1 is a memory winning strategy σ′1 for player 1 for (G,A, v0)
with memoryM = A: We just define M := Q, δin(v) := δ(qin, v0) and δup = δ. So implementing
a winning strategy for (G,A, v0) is included in strategy synthesis for (G × A, col, (v0, δ(qin, v0)).

Remark. Notice that the construction does not work in general, if A is a nondeterministic
automaton. First, in this case, the product game graph G ×A would also be nondeterministic.
Now, the determinization Gd as defined in Section 2.1.2 cannot be applied here, since the
acceptance condition of A only requires the existence of an accepting run. The solution here is
obvious: we give player 1 control over the nondeterministic choices. However, this does not work
either since player 1 can make his choices in the game defined by G × A dependent on the finite
prefix of a run of A that he has encountered so far which of course increases his capabilities as
compared to the game defined by (G,A).

In [108], a class of nondeterministic automata has been provided for which such a product
construction can be applied, so called good for games automata. Moreover, it has been proved
that any Büchi automaton can be transformed into an equivalent good for games parity au-
tomaton. Although this transformation also yields an automaton that is, in the worst case,
exponentially larger than the original Büchi automaton, it has certain advantages for actual
implementations due to its simplicity and the possibility of an incremental approach. Here we
shall stick to the product with deterministic automata.

Furthermore, we can also easily construct, for a parity game (G, col), a deterministic parity
automaton A, recognizing the parity condition defined by col. So, parity game graphs and game
graphs with an ω-regular winning condition defined by a deterministic parity automaton are
virtually the same.

However, dealing with both these representations does require a careful handling of notions
like memoryless strategies and parameters such as complexity of the game graph and number
of positions. Moreover, in the context of partial information, some extra care is necessary.
On the other hand, if the ω-regular winning condition is not given by a deterministic parity
automaton but, say, by a nondeterministic Büchi automaton or an LTL-formula then considerable
computational effort has to be put into obtaining such a convenient presentation.

For distributed systems, the situation is essentially the same. Given a distributed system
D, an ω-automaton A, defining the specification of the system has now the input alphabet ΣD.
And, since any sequence α ∈ (ΣD)ω constitutes a run of the system, the language L(A) is the
specification of the system. Now assume that A is a deterministic parity automaton. Then
we can apply the construction from above and obtain a parity game on a finite game graph
with partial information which is, in the case of games with full information, basically just
the transition graph of A (reminisce about the remark on the original solution of Büchi and
Landweber for Church’s problem). Moreover, as we have seen above, if player 1 has a winning
strategy for this game, then he has a memoryless winning strategy from which we can directly
obtain a memory winning strategy with memory A (that is, a strategy which is positional in
the states of the automaton defining the winning condition).

In the case of arbitrary distributed systems, of course, we have to incorporate the partial
information of the processes into the game. For this, consider the game graph GD with partial
information which is obtained by using the translation of a distributed system to a game graph
from Section 2.3. Then the product GD × A as above yields the desired parity game graph
with partial information. Notice that the game graph GD is a complete graph, so the transition
structure of A will not be restrained by applying this product.

This reduction offers an interesting angle for looking at the controller problem for distributed
systems and, especially, Church’s problem where we have only a single process with full
information. Though, we like to emphasize once more, that for the constructions and proofs
that we conduct on the model of distributed systems, the reduction to game graphs will not be
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of importance. This, in particular, is due to the loss of the explicit communication structure
that we encounter when translating distributed systems to game graphs.

2.2.2 Context-free Winning Conditions
The most expressive concrete class of languages that we consider as winning conditions are
context-free languages. Contextfree languages are those recognizable by parity pushdown
automata, that is, parity automata which additionally have access to a stack memory. We use
this as a definition and we give only a brief overview over the aspects of context-free languages
that are important for us here. For characterizations of this class using, for example, grammars
and for an elaborate survey of properties of context-free languages, we refer to [57, 58].

Unlike for finite ω-automata, deterministic parity pushdown automata are strictly less
expressive than nondeterministic ones. We call languages accepted by deterministic parity
pushdown automata also deterministic context-free languages which consequently form a proper
subclass of context-free languages. We consider general context-free languages only very briefly
since as winning conditions for games, they are too expressive: Games on finite graphs with full
information are undecidable for context-free languages, which can be proved using undecidability
of the universality problem for context-free languages [81]. On the other hand, games on finite
graphs with full information are decidable for deterministic context-free winning conditions [219].
We will study this case thoroughly for games with imperfect information and multiple players.

Pushdown Automata. A pushdown automaton has the form

P = (Q,Σ,Γ, qin, δ,⊥, acc)

• Q is the finite set of states with initial state qin

• Σ is the input alphabet
• Γ is the stack alphabet with bottom stack symbol ⊥ ∈ Γ
• acc ⊆ Qω is the acceptance condition

Moreover,
δ : Q× Γ⊥ × Σε → 2Q×Γ≤2

⊥

is the transition function where Σε = Σ ∪ {ε} and, analogously, Γ⊥ = Γ ∪ {⊥}.
So the transition function takes the current state q ∈ Q, the current top symbol A ∈ Γ⊥

of the stack contents (which may be the bottom symbol ⊥) and, potentially, the next input
symbol a ∈ Σ and yields a set δ(q, A, a) (or δ(q, A, ε)) of possible transitions to a next state
q′ ∈ Q and a sequence of stack symbols γ ∈ Γ≤2

⊥ of length at most two which is to replace the
top stack symbol A. Transitions of the form δ(q, A, ε) are called ε-transitions. If performing
an ε-transition, P can change the state and perform a stack operation, but does not read the
next letter of the input word. For some stack operation defined by γ ∈ Γ≤2, if γ = ε it deletes
the top symbol from the stack and is called pop-operation, if γ = B, it replaces the top stack
symbol A by the symbol B and is called a swap-operation and if γ = AB, it adds the symbol B
on top of the current stack contents and is called a push-operation. Notice that by definition,
the stack symbol ⊥ cannot be written to the stack and we assume that it can neither be deleted
from the stack: if (q′, γ) ∈ δ(q,⊥, a) then γ ∈ Γ≤1⊥.

The automaton P is called deterministic if, for all (q, A, a) ∈ Q×Γ⊥×Σ we have |δ(q, A, a)|+
|δ(q, A, ε| ≤ 1. The automaton is called a 1-counter automaton if |Γ| = 1. The automaton is
called a realtime automaton if it contains no ε-transitions, that is, the transition function has
the form δ : Q× Γ⊥ × Σ→ 2Q×Γ≤2

⊥ .
A configuration of P is a tuple C = (q, γ) ∈ Q× Γ∗⊥. The transition relation 7− between

configurations of P is defined in terms of the transition function of P: for a ∈ Σε we have
(q, Aγ) a7− (q′, γ′γ) if (q′, γ′) ∈ δ(q, A, a). A run of P on α ∈ Σω is a sequence ρ = C0C1 . . . of
configurations of P such that:
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• C0 is the initial configuration (qin,⊥)

• for all j ∈ N we have Cj
βj7−− Cj+1

where either β = β0β1 . . . = α or β is some finite prefix of α. Notice that the latter case
corresponds to a run which ends with an infinite sequence of ε-transitions. The run is called
complete, if β = α.

The run ρ is accepting, if it is complete and PrQ(ρ) ∈ acc. Notice that acceptance depends
only on the states and not on the stack contents. P accepts a word α ∈ Σω if there is an
accepting run of P on α and the language recognized by P is L(P) = {α ∈ Σω |α accepts α}.
We consider here only parity pushdown automata, that is, the automaton comes with a coloring
col : Q→ [k] for some k ∈ N and acc is defined via the parity condition given by col: An infinite
state sequence ζ ∈ Qω is in acc if min colInf(ζ) is even.

A language L ⊆ Σω is called (deterministic) context-free (D)CF, if there is a (deterministic)
parity pushdown automaton P with L(P) = L. A language is called (deterministic) realtime
context-free (D)RCF, if it can be recognized by a (deterministic) realtime pushdown automaton.
The classes of (deterministic) (realtime) 1-counter (D)(R)1-C languages is defined analogously.

We have already mentioned that the class of context-free languages is strictly larger than the
class of deterministic context-free languages. Moreover, while the class of realtime context-free
languages is equal to the the class of context-free languages, the class of deterministic realtime
context-free languages is strictly included in the class of deterministic context-free languages. In
particular, ε-transitions cannot be removed from deterministic parity pushdown automata in
general. The aforementioned inclusions as well as some other well-known (strict) inclusions of
classes of context-free languages can be summarized as follows:

• DR1-C ( DRCF ( DCF ( RCF = CF
• DR1-C ( D1-C ( DCF

Continuity Property. A pushdown automaton P is said to have the continuity property if
each run of P on some input word is complete. Although ε-transitions cannot be removed from
deterministic parity pushdown automata, infinite ε-runs can be removed. That means, for any
deterministic parity pushdown automaton P there exists an equivalent deterministic parity
pushdown automaton P ′ such that for each input word α, the unique run of P ′ on α is complete,
that is, P ′ has the continuity property [59]. Hence, w.l.o.g. we consider only deterministic parity
pushdown automata which have the continuity property.

Games with Contextfree Winning Conditions. Consider a game graph G with partial
information and a context-free winning condition W , that is, W is defined by a parity pushdown
automaton A, cf. Section 2.2.1. Now if A is deterministic, the product G ×A can be constructed
in the same way as described in Section 2.2.1. The result is an infinite parity game graph with
partial information and in this case, not only the state of the automaton but also the current
contents of the stack has to be hidden from the players of the grand coalition. As before, for
game graphs G = (V, δ) with full information, a simplified version of the construction yields a
game graph G × A with full information where the players do observe the state and the stack
contents. The corresponding parity game with full information is memoryless determined.

However, this construction can not be used to infer decidability of the strategy problem and
constructibility of winning strategies as we could easily do for the case of ω-regular winning
conditions. The reason is twofold. First, the game graph G×A is infinite, so the usual algorithms
for solving parity games cannot be applied. Moreover, a positional strategy for player 1 for
(G × A, col) yields a pushdown strategy which depends on the complete stack contents. This
is of course undesirable since it is still an infinite representation of the strategy: too much
information is needed to implement the strategy in this way.

The first solution for games on finite graphs with deterministic context-free winning condi-
tions has been given in [219] where Walukiewicz proved that the strategy problem for parity
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games on configuration graphs of (possibly nondeterministic!) pushdown automata (where
the parity condition depends only on the state of the automaton) is decidable (in exponential
time) and, if player 1 has a winning strategy then he has a pushdown strategy which can be
constructed effectively. Where pushdown strategy means now a strategy that is implemented by
a deterministic pushdown automaton and which depends only on the state of the automaton and
the top stack symbol. Notice, however, that this does not imply that the strategy problem for
games on finite graphs with arbitrary context-free specifications is decidable (we have already
mentioned that, in fact, it is undecidable), since for a nondeterministic pushdown automaton
the product construction G ×A is not sound. (The reason is exactly the same as for nondeter-
ministic ω-automata, see Section 2.2.1.) An alternative solution has been given in [128] using
the alternating two-way tree automata of Vardi [213]. Refinements of this solution for various
subclasses of deterministic context-free languages have been studies in [85], see also [178].

2.2.3 Observability
In Section 2.2.1 and Section 2.2.2 we have considered restrictions of the winning conditions
with respect to expressive power, that is, we have restricted which classes of sets W of plays we
consider in principle as winning conditions. Notice that these classes are defined independently
of a concrete game graph and, in particular, independently of the information of the players.
On the contrary, in this section, we consider restrictions of winning conditions with respect to
the information of the players, that is, we restrict the extent to which a winning condition may
involve facts that some or all of the players do not observe.

A winning condition W ⊆ V (AV )ω for G is called observable for player i ∈ {1, . . . , n} if it
depends only on the observations that player i makes about the positions in the game graph: If
π = v0a1v1 . . . and ρ = w0b1w1 . . . in G with vj ∼Vi wj for all j then

π ∈W ⇐⇒ ρ ∈W.

Such a winning condition can also also be represented as a set W ⊆ [V ]i([A]i[V ]i)ω. A winning
condition W is called observably decomposable, if there are winning conditions Wi, i = 1, . . . , n
such that Wi is observable for player i and W =

⋂
iWi. A winning condition W is called

observable if it is observable for all players i = 1, . . . , n of the grand coalition.

Remark. In general, a less restrictive notion of observable winning condition would be to
require, that the winning condition may depend on the information about the position and the
information about the actions which a player observes. This would give a more direct reflection
of the actual observability in the game. However, as we have already mentioned in Section 2.3,
although in some of our construction we have to deal with wining conditions that may depend
on the actions in a play as well, we are particularly interested in winning conditions which do
not involve the actions in a play a priori.

Notice that a winning condition that only depends on the observations that a player i makes
about the position and actions in the game and which is position based as well, is not necessarily
observable for player i in the sense defined above, that means, it is not necessarily completely
determined by the observations that player i makes about the positions in the game. Consider
for example the game G = (V, δ,∼V ,∼A) with

• V = {v0, v1, v2, v3},
• δ(v0, ai) = vi for i = 1, 2, 3
• a1 ∼A a2 and v1 ∼V v2 ∼V v3

Moreover, let W = {v0a1v1, v0a2v2}. Then clearly, W is completely determined by the positions
that occur in a play and at the same time, W is also completely determined by the observations
that player 1 makes about the positions and actions in a play. However, in v0a2v2 and v0a3v3,
player 1 makes the same observations about the positions but v0v2v2 ∈ W while v0a3v3 /∈ W .
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So W is not observable for player 1 in the sense defined above.

In the context of architectures, a winning condition which is observable for a controller p
is usually called a local specification of process p and is represented as a language L ⊆ (Σp)ω
consisting of those local runs which process p wants to ensure. A specification for the whole
system LDp ⊆ (ΣD)ω which is local for controller pi is then given, symbolically, as

LDp = Lp × (ΣD \ Σpi)ω.

That means, LDp contains exactly those system runs α ∈ (ΣD)ω such that PrΣp(α) ∈ Lp. A
specification L ⊆ (ΣD)ω is locally decomposable, if there are local specifications Lp ⊆ (Σp)ω for
the controllers p ∈ Pcon such that

L =
⋂
p

LDp .

That means, L consists of exactly those system runs α ∈ (ΣD)ω such that, for all controllers
p ∈ Pcon we have PrΣp(α) ∈ Lp. A system specification L is called local, if it is local for each
controller.

Notice that in the definition of local decomposability we can always choose

Lp = PrΣp(L)

for each p ∈ Pcon. Conversely, if we define a collection (Lp1 , . . . , Lpn) of local specification for
the controllers from an arbitrary system specification L by simply setting Lp := PrΣp(L) for
p ∈ Pcon then L(Lp1 , . . . , Lpn) :=

⋂
p L
D
p is a locally decomposable by definition. However, in

general we have
L(Lp1 , . . . , Lpn) ) L.

The same is true, of course, for winning conditions for game graphs as well.
Also notice that a joint strategy σ = (σp1 , . . . , σpn) which is composed of local winning

strategies, is a winning strategy for (D, L), if L is locally decomposable (contrary to the general
case of arbitrary L, see Section 2.1.3). This is the key feature for the easier decidability of
distributed systems with locally decomposable specifications that we shall explore in Chapter 5.

The converse, however, is still not true: If σ = (σp1 , . . . , σpn) is a joint winning strategy for
the grand coalition for a (D, L), where L is locally decomposable, then an individual strategy
σp is not necessarily locally winning as the input sequences that p may receive from other
controllers q in the system runs which are constrained by σ, are constrained by their individual
strategies σq. This is the reason why the problem does not reduce to solving n individual
single controller problems for the local specifications Lpi , i = 1, . . . , n. In fact, the controller
problem for locally decomposable regular specifications still becomes undecidable quickly, if the
architectures become a little more complex, see Chapter 5.

Remark. A very important observation about observability concerns the difference between
observable winning conditions in games on graphs and local specifications in distributed systems.
In our model of distributed systems where we do not have broadcast channels, a local system
specification L is always trivial, that is, L = ∅ or L = (ΣD)ω, as soon as we have at least two
controllers p 6= p′ in the system. This is clear, since if a system specification is completely
determined by the local run of p and at the same time it is completely determined by the local
run of p′ and those two local runs share no common portion, then L is trivial. On the other hand,
in games on graphs, the local views of two different players may share a common portion (so in
a sense, in games on graphs we do have the feature of broadcasting), hence observable winning
conditions are not trivial for multiple players. In fact, the strategy problem for three-player
games on finite graphs with observable safety conditions is undecidable, see Chapter 6.

Moreover, for distributed systems with only a single controller and local specifications, the
controller problem directly reduces to Church’s problem: The only difference are the possible
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hidden channels from the environment, but since a local system specification does not involve
these channels at all, we can simply ignore them. Again, for games on graphs, the situation is
quite different. While two-player reachability games on finite graphs with full information can
be solved in polynomial time, two-player games on finite graphs with partial information and
with observable reachability conditions are Exptime-hard.

Intuitively, the reason is that the additional structure provided by the game graph has to
be incorporated in the strategy for player 1, while the course of event through the game graph
is not observable for player 1 unless the game is one of full information. So the player has to
keep track of the possible histories of events that he considers possible during a play of the
game. Similarly, in a distributed system, a controller has to keep track of the possible histories
of transitions through an automaton defining the winning condition that he considers possible –
this, however, is only nontrivial in case the winning condition involves facts that the controller
cannot observe. In a game graph, this is clearly the case due to the equivalence relations ∼V
and ∼A which are defined explicitly on the positions and actions of the graph. So in a game on
a graph, the specification has always a non-observable part which is the game graph itself.

Also for games with multiple players, the game graph provides the structure that makes
the strategy problem for observable winning conditions highly undecidable. It is an inherently
global structure (a transition in the game graph concerns all the players as their local view is
determined by it) and the players have to keep track of their uncertainties about the events in
the game graph as well as the uncertainties of the other players. We make this more precise
in Section 2.3 where we translate games on graphs into architectures and we shall see that
local decomposability of winning conditions is not preserved by this construction. (In fact,
there cannot be a reasonable translation of game graphs into architectures which preserves local
decomposability of winning conditions since while any distributed system with at most two
controllers is decidable for locally decomposable regular winning conditions, see Chapter 5, three
player games on graphs are undecidable even for observable safety conditions.)

The idea to resolve these uncertainties of the players about the course of events in the game
graph and to represent them explicitly leads to the knowledge tracking constructions that we
present in Section 3.5 and in Chapter 6.

Observable Parity Conditions. We are particularly interested in parity games with imperfect
information and observable winning condition. That means, we consider parity games (G, col)
such that the winning condition W which is defined by col is observable. However, in such cases
where the parity condition is given explicitly by a coloring of the game graph, we would like to
have a formulation of observability just in terms of the coloring function: we call the coloring col
observable for player i if for all v, w ∈ V with v ∼Vi w we have coli(v) = coli(w). The coloring
is called observable, if it observable for all players i = 1, . . . , n. Notice that the observability of
the parity condition W defined by col does not imply the observability of col. Nevertheless, we
only consider observable parity conditions given by an observable coloring.

An interesting observation about winning conditions defined by a coloring of a game graph
G with partial information is that for reachability as well as safety winning conditions we can
always assume that they are observable. More precisely, given a game graph G with partial
information and a set R ⊆ V defining a reachability condition on G we can construct (in linear
time) a game graph G′ with V ′ = V such that R is observable on Go and such that, for any
v0 ∈ V , the grand coalition has a winning strategy for (G, R, v0) if and only if the grand coalition
has a winning strategy for (Go, R, v0).

The construction is really quite trivial, we just redefine ∼Vi to ∼V,oi for any player i = 1, . . . , n
so that v 6∼V,oi r for all r ∈ R and all v ∈ V (and u ∼V,0i v iff u ∼Vi v for all u, v ∈ V \R). Notice
that any player i can define his strategy on a history π = v0a1v1 . . . alvl such that vj ∈ R for
some j arbitrarily, since the play is already won by the grand coalition. Hence, we can assume
just as well that any such history is distinguishable for player i from any other history.

Intuitively, the (nonobservable) structure of the game graph (which is really the core of
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Figure 2.3: Distributed system defined from a game graph with partial information

a reachability condition) comprises the complexity of the nonobservability of the reachability
condition. The same construction can be applied to safety conditions on G, given by a set S ⊆ V .
Then we apply the construction as above with the set R := V \ S. On the other hand, for Büchi
conditions this construction does not work anymore. Moreover, if we have a game graph with
partial information and a winning condition that is given by a deterministic reachability (or
safety) automaton, then this construction cannot be applied directly as well, neither to the game
graph nor to the automaton. We have to take the product of the game graph and the automaton
first, cf. Section 2.2.1.

2.3 Game Graphs vs. Distributed Systems
We now turn to the task of comparing game graphs and distributed systems. We will see that,
in principle, it is not hard to translate game graphs with partial information into distributed
systems and vice versa. On the other hand, the representation of the elements of interactive
situations like possible moves, uncertainties and communication is quite different in the two
models. In a sense, different parameters are implemented at different layers of the models
and become more visible when we translate one model into the other. This, however, also
requires extensive usage of certain resources like graph structure or communication channels. In
particular, our translation of a game graph into a distributed system also involves the specification
of the distributed system, even if we only want to translate the game graph, regardless of a
winning condition. The reason is that the game graph already specifies certain behaviors of the
system, see also the remarks in Section 2.2.3. We will discuss this more concretely after we have
seen how the translations work.

Game Graphs to Distributed Systems. Let G = (V, δ, (∼i),W ) be a game graph with
partial information and n+ 1 players. To streamline the presentation we consider only the case
where the actions are completely invisible for all players, that is, ∼Ai = A×A for all i ∈ {1, . . . , n}
and we also restrict to position based winning condition W ⊆ V ω. It is easy to see how the
construction can be adapted to the slightly more general case without these restrictions but it
makes the notation less readable.

We define the distributed system D = D(G) = (A, (Σc)c∈C) with n + 1 processes and
A = (C, r, w) as follows. A schematic presentation of D is shown in Figure 2.3.

• C = {c0} ∪ {cV } ∪ {c0i | i = 1, . . . , n} ∪ {ci | i = 1, . . . , n}
• r(c0) = w(c0) = p0 and Σc0 = A0

• r(cV ) = w(cV ) = p0 and ΣcV = V

• w(c0i) = p0, r(c0i) = pi and Σc0i = {[v]∼V
i
| v ∈ V } for i = 1, . . . , n

• w(ci) = pi, r(ci) = p0 and Σci = Ai for i = 1, . . . , n.
Now consider the set S ⊆ (ΣD)ω consisting of exactly those sequences α which violate one

of the following conditions for some j ∈ N:
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(G1) α(j) = (a0, v, [v]1, . . . , [v]n, a1, . . . , an)
(G2) if α(j) = (a0, v, [v]1, . . . , [v]n, a1, . . . , an) then v = δ(v′, (a0, a1, . . . , an)) where v′ = v0 if

j = 0 and v′ = PrV (α(j − 1)) if j > 0
Moreover, from a winning condition W ⊆ V ω for G we obtain a specification L(W ) = {α ∈

(ΣD)ω | v0PrV (α) ∈W} for D(G).
The idea behind this construction is the following. In the game played on the graph G,

in each step, being in position v′, each player i chooses an action ai and the next position is
v = δ(v′, (a0, a1, . . . , an)). So choosing the action ai is a local move of player i but the transition
from v′ to v is a global move which somehow connects all the moves of the players. In a
distributed system, in each step, each process pi chooses an action bi which yields a joint action
b = (b0, b1, . . . , bn), but b does not induce a global transition per se. Global transitions come
into play only when we consider a specification for the system: consider a regular specification
L ⊆ (ΣD)ω and a deterministic parity automaton A with L(A) = L. Then a joint action b
triggers a transition of A from the current state q′ to the state q = δA(q′, b) which is a global
transition that connects the individual moves of the processes. Hence, we encode the global
transition structure provided by the game graph into the specification of the system.

Moreover, the game graph does not only define the possible moves in the game but also the
information that the players receive during each move of the game. This information, however,
is not represented in terms of signals that the players send to each other as in distributed
systems but by means of a certain visible portion of the current (global) position of the game:
the equivalence class [v]i. To simulate the global transition structure provided by the graph
and the way in which the information of the players is based on the states of this structure we
proceed as follows: The environment (which has full information!) chooses not only its own
local action a0 but also serves as a provider for the transition structure by choosing the global
position v of the game and for the information of the players by sending to each player i the
information [v]i that this player has about the position v.

The global state is chosen by penv privately by sending it to the channel cV and the information
[v]i is sent to process pi through channel c01. Moreover, any controller pi chooses its actions ai
privately by sending them to the external output channel ci. To make sure that the system runs
of D in fact correspond to plays in G we have to require two properties: First, penv must send
the correct equivalence class [v]i to c0i whenever it sends position v to cV . Second, v must be
consistent with the joint action (a0, a1, . . . , an) and the previous position (which, in the first
move, is some initial position v0). This is ensured by the conditions (G1) and (G2): Any play
that violates (G1) or (G2) for some j ∈ N is won by the controllers.

Notice that in order to be able to satisfy the graph specification S, the environment has
to forecast, in each step, the actions of all the controllers. Hence, winning strategies for
penv are obviously not necessarily preserved by the construction. On the other hand, since a
winning strategy for the grand coalition has to be winning against all possible behaviors of
the environment, it has to be winning in particular against those behaviors of the environment
where it forecasts these actions correctly. Using these insights it is not hard to see that winning
strategies for the grand coalition are preserved:

Proposition 2.10. For any winning condition W ⊆ V ω, the grand coalition has a joint winning
strategy for (G,W, v0) if, and only if, the grand coalition has a joint winning strategy for
(D(G), L(W ) ∪ S).

Notice that D(G) can be constructed from G in polynomial time. Moreover, if W is
regular then so is L(W ) ∪ S. In fact, S can be recognized by a deterministic reachability
automaton A with state set V and the following transitions (being in state u and reading letter
(a0, v, [w1]1, . . . , [w1]n, a1, . . . , an)):

• u→ v if [wi]i = [v] for all i and δ(u, (a0, a1, . . . , an)) = v

• u→ >, else.
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The only accepting state of A is >. Essentially, the transition structure of A is just the graph
structure of G.

Moreover, if W is given by a deterministic ω-automaton B, the construction of a deterministic
parity automaton B′ recognizing L(W ) ∪ S is particularly easy as the language B can be easily
relativized to the language of a deterministic reachability automaton A. For this, we just run
the two automata in parallel and we let the new automaton go into a distinct accepting state
(colored with 0 and having only selfloops as transitions) as soon as an accepting state of A is seen.
If we don’t encounter an accepting state of A, then the run is accepting if the run of B is accepting.

By construction, the architecture A always has information forks, independent of the game
graph G. In fact, all the processes p1, . . . , pn are pairwise incomparably informed. Hence, for
arbitrary regular specifications the architecture A is undecidable. On the other hand, this does
not imply the undecidability of the following problem: given a winning condition W for G, does
the grand coalition have a winning strategy for (D(G), L(W ) ∪ S)? Dependent on the game
graph G, S may be a set that makes the specification L(W )∪S very simple. However, automata
based methods for solving controller problems for distributed systems cannot take advantage
of this possibility since they always rely on a fixed ordering of the processes with respect to
informdness [171, 129, 80].

Therefore, so far there is no way known of getting even started with automata based methods,
even if L(W ) ∪ S might be trivial. The method presented in Chapter 6 works on game graphs
and, although the algorithm does not terminate on all instances, it takes arbitrary instances as
input, independent of the informdness of players, and it can take advantage of simplicity of the
game graphs.

Clearly, in general it is unavoidable to have information forks in D(G) because otherwise
we could translate undecidable instances of the strategy problem for game graphs with partial
information into decidable instances of the controller problem for distributed systems. Intuitively
this is also clear since if, in the game graph G, two players have incomparable information about
the positions of the game graph, this information has to be brought somehow to the processes in
D(G) from some process which serves as a provider for the global position v which, in general,
can only be the environment.

However, if in the game graph a player i is better informed than player j, that is, ∼i⊆∼j ,
then the information [v]j has not to be brought to pj directly by penv but can be channeled
through pi: the process pi receives [v]i and sends [v]j to pj . Using this refined construction, the
(partial) ordering of the processes with respect to informdness in G is preserved and, in particular,
game graphs with hierarchical information, that means ∼1⊆ . . . ⊆∼n, can be translated into
distributed systems with pipeline architectures.

In Section 2.2.3 we have already hinted at the fact that locally decomposable specification
can, in general, not be preserved by a translation from game graphs to distributed systems
since any distributed system with at most three processes is decidable for locally decomposable
regular specifications while games on graphs are undecidable for three players and observable
reachability winning conditions. In particular, L(W ) ∪ S cannot be locally decomposable in
general, even if W is observable. Intuitively, the reason is the global nature of the transition
structure provided by the game graph which has been revealed very distinctly in the above
construction. In fact, S itself is not locally decomposable in general.

Distributed Systems to Game Graphs. Let D = (A, (Σc)c∈C) be a distributed system with
n+1 processes and architecture A = (C, r, w). We define the game graph G = G(D) = (V, δ, (∼i)i)
with partial information and n+ 1 players as follows. Notice that the actions are completely
invisible for all players.

• V = {v0} ] ΣD and Ai = Σpiout for i ∈ [n+ 1]
• δ(v, (a0, a1, . . . , an)) = (a0, a1, . . . , an) for all v ∈ V
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• v ∼i w if PrΣpiin
(v) = PrΣpiin

(w)

Moreover, from a specification L ⊆ (ΣD)ω we obtain a winning condition W (L) ⊆ V ω for G
very directly: W (L) = {v0α |α ∈ L}.

Notice that the translation from a distributed system to a game graph with partial information
is much simpler than the converse construction which is of course again related to the game
graph: a distributed system does not provide any a priori structure on the transitions in system
runs. In fact, the actions on the edges of (V, δ) are completely determined by the positions and
the corresponding unlabeled graph (V,E) is a complete graph.

On the other hand, if L is regular then we can take the product of G(D) and a deterministic
parity automaton A recognizing L as described in Section 2.2.1 to obtain a game on a potentially
more restricted graph. In particular, if we translate a game graph into a distributed system
and then apply the converse translation, by taking the product G(D)×A, intuitively, we can
(partially) restore the original graph structure.

It is easy to see, that this construction in fact preserves winning strategies for the grand
coalition.

Proposition 2.11. For any specification L, the grand coalition has a winning strategy for (D, L)
if, and only if, the grand coalition has a winning strategy for (G(D),W (L), v0).

Again, G(D) can be constructed in polynomial time from D.
Just as before, the informdness of the processes is not necessarily preserved by the construction.

In particular, distributed systems with pipeline architectures are not translated into hierarchical
games. To see the reason for this, consider some pipeline Dp with at least two controllers p1
and p2. Controller p1 is better informed than p2, in fact, any information that is sent from the
environment to some controller, is sent to p1. On the other hand, p1 cannot observe the actions
chosen by p2 so in the game graph G(Dp), player 1 and player 2 are incomparably informed.
(The actions chosen by p2 are invisible for player 1 in G(Dp) and hence, since clearly ∼2 6⊆∼1,
the game G(Dp) is not hierarchical.) Nevertheless, as we have demonstrated in Section 2.1.3,
once p1 and p2 have committed themselves to a joint strategy, p1 can deduce the actions of p2
since they are uniquely determined by its own actions and the strategy that p2 uses.

In order to preserve the informdness of the processes we have to modify the construction so
that, whenever process p is better informed than process p′, we make the actions of p′ observable
for the player corresponding to p in G(D) explicitly. Also notice that, in the representation
of external output channels that we have chosen here, a player does not even observe his
own actions, so we also have to make, for each process p, the actions of p observable for the
corresponding player in G(D).

Remark. As we have mentioned, the translation of game graphs with partial information into
distributed systems can be easily adapted to the slightly more general case of game graphs
which have arbitrary observabilities for the players of the grand coalition on both, the positions
and the actions and where also not necessarily position based winning conditions are allowed.
On the other hand, for the converse direction, the general case offers a different possibility to
translate distributed systems into game graphs with partial information: We could then let the
game graph G(D) have only a single position {v} = V and the same set of actions as before but
with appropriately adjusted observabilities. Of course, in this case the winning condition has to
depend highly on the actions.
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Chapter 3

Solving Interaction under Partial
Information

In this chapter, we review fundamental methods for solving interaction under partial information
or, more precisely, strategy problems for games on finite graphs with partial information and
distributed systems.

In Section 3.1 we introduce and discuss the essential concept of alternating automata on
infinite trees which is at the heart of many powerful and elegant solutions for synthesis under
partial information. Section 3.1.1 is devoted to the definitions and basic results that are
important for wielding tree automata safely, like closure properties and decidability of the
emptiness problem. In Section 3.1.2 we demonstrate how alternation can be removed from
parity tree automata which is among the core issues for the solution methods that we present
in Section 3.2 as well as the proofs of our results in Chapter 5. We also introduce and discuss
pushdown tree automata (Section 3.1.3) that we shall use in Chapter 5 as well. While alternation
cannot be removed from such automata in general, the most central aspect here is that the
emptiness problem is still decidable for nondeterministic automata.

The presentation in Section 3.2 ranges from the groundbreaking works of Rabin [177] and
Pnueli and Rosner [169, 171] on synthesis for single controller systems and pipelines to the full
characterization of all decidable architectures in [80]. Section 3.2.1 focuses on the significance
of the concept of alternation for dealing with partial information in synthesis. Moreover, in
Section 3.2.2, we accentuate the connection between partial information and the concept of
alternation in tree automata by showing that games with imperfect information are the semantic
games for alternating tree automata in a very natural way. We also present some results on the
computational complexity of strategy problems in Section 3.3.

In Section 3.4 we prove a very tight undecidability result for strategy problems under partial
information with deterministic context-free winning condition. This sharpens and extends a
result by Peterson and Reif [163] and serves as a preparation for the exposition in Chapter 5.
While the result from Section 3.4 shows that there are no non-trivial decidable subcases of the
strategy problem for distributed systems with arbitrary deterministic context-free specifications,
in Chapter 5 we shall see that this is not true for locally decomposable specifications.

Finally, we present the powerset construction for two-player games on finite graphs with
partial information. This method has originally been used by Reif in [181] for reachability games.
We present the basic method and we show how it can be extended to more general classes of
(two-player) games. We also discuss its connection to the concept of knowledge tracking. In
Section 3.5.2 we demonstrate how finite state implementations of strategies can be obtained
from the powerset construction and we also prove a matching lower bound on the number of
states.

In Section 3.5.3 we discuss an optimized version of the powerset construction for observable
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parity conditions that has been developed in [66, 52, 22] and which shows a substantially
improved performance in benchmarks. However, its worst case running time is exponential and
it seems hard to find large classes of game graphs on which the method runs in polynomial time.
The powerset construction also forms the basis for a solution method presented in Chapter 4
which, in contrast, yields a positive polynomial time upper bound for game graphs with bounded
complexity (with respect to appropriate measures) but under the additional restriction of
bounded partial information. Moreover, the powerset construction is a preparation for the
construction in Chapter 6.

We conclude the exposition of the powerset construction and related concepts with an exten-
sion to the case of imperfect information defined via asynchronous observability as introduced
in Section 2.1.4.

3.1 Trees and Tree Automata
Infinite games with with imperfect, as well as with perfect, information, are intimately linked to
infinite trees. The notion of a tree itself is among the most fundamental concepts in computer
science. Depending on the application at hand, the definition of a tree may vary considerably:
trees may be finite or infinite, have bounded or unbounded branching degree, may be labeled
with elements from finite alphabets or from infinite data domains and so on.

We use trees to represent sets of possible infinite runs of nonterminating systems where, in
each step, some event is performed which is composed of moves of the individual components
of the system, each of which is chosen from a predefined, finite set of actions. The tree of all
such runs is then an infinite tree with a maximum finite branching degree which represents all
possible behaviors of the system and the game played on the tree captures the interaction of
the environment and the controllers of the system. A strategy for some player in this game is
a labeling of the game tree with actions from the finite set of actions of this player which, of
course, has to fulfill certain conditions, see Section 2.1.1.

Now obviously, there is nothing substantial about the representation of a strategy σ for
player i as a labeled tree t : T → Ai: it is just another name for the same (infinite!) object.
But it is the possibility to use finite automata on infinite trees to recognize sets of trees that
represent strategies which makes this view so appealing. In this section we introduce the relevant
notions like trees and tree automata. We also present some constructions and fundamental
results which support the usage of tree automata for solving games with imperfect information.
Elaborate surveys can be found, for example, in [200, 203, 100]. As an expedient compilation of
surveys and recent research papers we recommend [83].

As mentioned before, to represent strategies in our setting, trees will have a maximum finite
branching degree and labels from finite alphabets: For a set X, an X-tree is a prefix-closed set
T ⊆ X∗. T is called full if T = X∗. The set X will be finite most of the time. For a finite
alphabet Σ, a Σ-labeled X-tree is a function t : T → Σ. The tree t is called full, if T is full. The
set of all (full) Σ-labeled X-trees is denoted XΣ. Unless explicitly stated otherwise we consider
only full trees (and ignore certain branches of the tree that we are not interested in). Notice
that regular tree languages (cf. Section 3.1.1) can easily be relativized to full trees since a tree
automaton can check in a deterministic fashion that a given tree is full. However, we will use
tree that are not full and where the set X is infinite, for example, when we consider subtrees
and to define the notion of a run of an alternating automaton on a given tree.

A path through T is an ω-word α ∈ Xω such that, for all j ∈ N we have α<j ∈ T (notice that
for a full tree this is trivial). By t(α) ∈ Σω we denote the labeling of α, that is, t(α)j = t(α<j).
Since we usually do not refer to the tree T explicitly, we allow ourselves to be a bit sloppy about
this notation. We sometimes call a path α through T a path through t, but we also refer to the
ω-word t(α) ∈ Σω as a path through t. It will be clear from the context whether we refer to
ω-word from Xω or from Σω.

Now, for games with imperfect information on finite graphs, a strategy for player i can be
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viewed as an Ai-labeled VA-tree t : (VA)∗ → Ai which fulfills the conditions (S1) and (S2). We
can also view a strategy for player i as an Ai-labeled [V ]∼V

i
[A]∼A

i
-tree for which the consistency

condition (S2) is redundant, cf. Section 2.1.2. This view is particularly appealing as the set
of all Ai-labeled VA-trees which fulfill conditions (S1) and (S2) as stated in Section 2.1.2, is
not regular : While it is easy for a tree automaton to check that a given tree fulfills condition
(S1) for all nodes which correspond to histories in G, the consistency condition (S2) cannot
be checked by a tree automaton. In fact, if it could be, then the strategy problem would be
decidable for arbitrary games with imperfect information on finite graphs with omega-regular
winning conditions. We will return to this issue later.

We will use tree automata mainly to solve controller problems for distributed systems. For
a distributed system D = (A, (Σc)c∈C), a strategy for a process p is a Σp

out-labeled Σp
in-tree.

However, a joint strategy σ for the grand coalition should now not be noted as just a tuple
σ = (σ1, . . . , σn) since a tuple of trees is not a tree per se. Instead we use the representation as
a function σ : (ΣD)∗ →

∏n
i=1 Σpiout such that PrΣpiout

(σ) fulfills the consistency condition (S2) for
each i. Such a strategy can then be represented as a

∏n
i=1Ai-labeled ΣD-tree or, as we have

demonstrated in Section 2.1.3, as a
∏n
i=1 Σpiout-labeled Σpenv

out -tree since once the controllers have
commited themselves to a joint strategy, the outputs of all controllers are completely determined
by the inputs that they receive from the environment. Remind that in this case, the consistency
conditions require not only that certain labels are uniform over certain branches of the tree but
also that certain labels are uniform over certain sequences of labels of the branches. We shall
keep this observation in mind since it is useful for automata based methods to solve controller
problems for distributed systems.

Finite automata on infinite trees were introduced by Rabin in [176] where he used Muller
acceptance on the states of the automaton as well as acceptance conditions given by deterministic
ω-automata. Notice that as for winning conditions for games, these two representations of
acceptance conditions are essentially equivalent: Consider an alternating parity tree automaton
A and a deterministic ω-automaton B over Σ = Q with, say, parity acceptance condition which
defines the acceptance component acc of A. Then we obtain an alternating parity tree automaton
A′ with L(A′) = L(A) via the synchronized product A′ = A× B and a corresponding coloring
col× just as for game graphs. Moreover, if A is nondeterministic (deterministic) then A′ is
nondeterministic (deterministic).

Rabin proved that a language of infinite trees is recognizable by such an automaton if, and
only if, it is definable in the monadic second order logic of two successors S2S. He also showed
decidability of the emptiness problem which yields that satisfiability for S2S is decidable. (This
implies that the monadic theory of the infinite binary is decidable.) Notice that this result is
analog to Büchi’s result for S1S, see Section 2.2.1, and the references [100] and [83].

Rabin used nondeterministic tree automata for which the key step in the construction is
complementation (the same also holds for Büchi’s construction for Büchi automata). In [127],
Kupferman and Vardi suggested that alternation is a suitable and useful mechanism for dealing
with partial information and this concept has been applied successfully to several cases of
synthesis under partial information, quite beyond the scope of [127]. While in [127] the main
contribution has been the use of alternation to deal with branching time specification in the
context of partial information, in [137] the power of alternation has been used in a different
way to deal with local linear specifications for possible more complex architectures. Moreover,
alternation also yields elegant and coherent solutions synthesis under partial information for
global linear specifications.1

Alternating computing devices have first been introduced in [49], see also [48] where al-
ternating Turing machines, pushdown automata and finite automata on finite words have
been considered. Alternating automata on infinite objects first occurred in [147] where it has

1This apparent connection between alternating tree automata and strategy problems under partial information
has been accentuated in [172, 164] where it has been observed that two-player games with imperfect information
correspond directly to universal tree automata and can also be used to deal with alternation, cf. Section 3.2.

55



been shown that alternating Büchi automata (i.e., on infinite words) can be translated into
nondeterministic Büchi automata with an exponential blow up of the state space.

More precisely, if the original automaton has n states, then the resulting automaton has at
most 3n states. (Very recently it has been shown that this bound it essentially optimal [38].)
The construction in [147] can also be extended to Büchi automata on infinite trees which
demonstrates that an alternating Büchi tree automata with n states can be transformed into a
nondeterministic Büchi tree automaton with at mos 3n states.

To use tree automata to deal with arbitrary ω-regular winning condition, we need the more
general model of alternating parity tree automata. Notice that alternating parity tree automata
are strictly more expressive than alternating Büchi tree automata. On the other hand, in
contrast to the case of ω-automata, the classes of trees that are recognizable by deterministic
parity tree automata and nondeterministic Büchi automata, respectively, are incomparable, see
our collections of results that we provide in the following sections.

Alternating automata on infinite trees have been introduced by Muller and Schupp [152, 153]
where they considered several types of acceptance conditions which encompass all regular types
of acceptance condition. While, by now, there are several definitions of alternating tree automata
around, we will use the one given by Muller and Schupp which has been used successfully for
the solution of strategy problems under partial information, cf. [127, 137, 80].

3.1.1 Tree Automata
An alternating tree automaton over Σ-labeled X-trees has the form

A = (Σ, Q, qin, δ, acc)

where Σ is the alphabet of labels, Q is the finite set of states, qin ∈ Q is the initial state
and δ : Q × Σ → B+(X × Q) is the transition function where B+(X × Q) denotes the set of
all positive Boolean formulas over propositional variables from X × Q, and acc ⊆ Qω is the
acceptance condition. As usual, for Boolean formulas we assume that ∧ takes precedence over ∨
and that the empty conjunction is a tautology and the empty disjunction is unsatisfiable. We
also usually assume that the formulas from B+(X × Q) are given in disjunctive normalform
and we denote such formulas ϕ in DNF also as sets ϕ = {ψ0, . . . , ψl−1} of conjuncts and we
denote the conjuncts ψ also as sets ψ ⊆ X ×Q of propositional variables. This is convenient
as it allows to use the notation ψ ∈ ϕ and (x, q) ∈ ψ unambiguously. Moreover, we use the
notation Dir = {↓x |x ∈ X} to emphasize the character of the elements x ∈ X as directions to
which the automaton proceeds.

An alternating parity tree automaton comes with a coloring col : Q→[ k] for some k ∈ N
instead of acc and acc ⊆ Qω is then defined via the parity condition given by col: A sequence
π = q0q1q2 . . . ∈ Qω (with q0 = qin) is in acc if min Infcol(π) is even. We also consider alternating
Muller tree automata which are the same as alternating parity tree automata but the coloring
function col is replaced by a collection F ⊆ 2Q of sets of states which define the acceptance
condition acc via the Muller condition: A sequence π = q0q1q2 . . . is in acc if Inf(π) ∈ F .
Analogously, we define Büchi, reachability and safety automata that come with a designated
state set F ⊆ Q defining acc as described in Section 2.2.

The behavior of the automaton on some Σ-labeled X-tree t : X∗ → Σ is given by the
notion of a run. A run of A on t is a not necessarily full Σr-labeled N-tree ρ : T → Σr, where
Σr = X∗ ×Q such that the following conditions hold.

(1) ε ∈ T and ρ(ε) = (ε, qin)
(2) if v ∈ T with ρ(v) = (u, q) and ϕ = δ(q, t(u)) then there is some conjunct ψ = {(↓x0

, q0), . . . , (↓xl−1 , ql−1)} ⊆ Dir×Q in (the DNF of) ϕ such that for j ∈ [l], v has a successor
v · j with ρ(v · j) = (u · xj , qj).
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So a typical run of A goes like: Start at the root ε of t in the initial state qin and look at
ϕ = δ(qin, t(ε). Choose (nondeterminism) a conjunct ψ = {(↓x0 , q0), . . . , (↓xl−1 , ql−1)} from ϕ
and then, proceed with all (universality) possibilities given by ψ. That means, the automaton
sends a copy with state q0 to direction x0, a copy with state q1 to direction x1 and so on. Then
each copy goes on like this individually, that is, the copy corresponding to (↓xj , qj) looks at
ϕ = δ(qj , t(xj)) and makes the next step as before.

The crux of universality is that several of the directions xj may be identical, so that the
automaton may send several different copies into the same direction. Hence, different nodes
v 6= v′ in the run ρ may correspond to the same node PrX∗(v) = PrX∗(v′) in t which is the
reason why a run is a tree over a possibly larger set of directions than X. Notice though, that
using the infinite set N as directions of a run is an overapproximation: Clearly, X×Q is sufficient
if we disallow useless conjunctions like (q, j) ∧ (q, j) in the transition function. Nevertheless, we
shall usually stick to the definition using N as directions. For a node v ∈ T in the run ρ with
ρ(v) = (u, q), we call u the X∗-component of ρ(v) and q the Q-component of ρ(v). Moreover,
we sometimes refer to the last symbol u(|u| − 1) of u as the X-component of ρ(v).

The run is called accepting if each infinite path π through ρ is accepting. More precisely,
for all infinite paths α through T the sequence of Q-components in ρ(π) is accepting, that is,
PrQ(ρ(π)) ∈ acc. The automaton A accepts a tree t if there exists an accepting run of A on t.
The language recognized by A is L(A) = {t ∈ XΣ | A accepts t}. We call a language T ⊆ XΣ
regular if there is a nondeterministic parity tree automaton A with L(A) = T .

Notice that in the definition of a run, we have not excluded the possibility that the automaton
sends copies into certain directions x (with some state q) that are not required by the conjunct
ψ. Since the notion of acceptance asks for the existence of an accepting run, there is obviously
no harm done by allowing the automaton to send more copies than required by the transition
function. However, sometimes it is more convenient not to have such useless branches in a given
run, so we usually assume that a run is minimal in the sense that it is build strictly according to
the transition function. That means, we consider runs which satisfy the following new condition
(2) instead of the old condition (2):

(2) if v ∈ T with ρ(v) = (u, q) and ϕ = δ(q, t(u)) then there is some conjunct ψ = {(↓x0

, q0), . . . , (↓xl−1 , ql−1)} ⊆ Dir×Q in ϕ such that the set of successors of v in T is {v · j | j =
0, . . . , l − 1} and ρ(v · j) = (u · xj , qj).

Now assume w.l.o.g. that X = [d] for some d ∈ N. The automaton A is called universal, if
for all q ∈ Q and all a ∈ Σ we have |δ(q, a)| = 1, that means, the formula ϕ = δ(q, a) consists of
a single conjunct ϕ = (↓x0 , q0) ∧ . . . ∧ (↓xl−1 , ql−1). The automaton A is called nondeterministic
if, for all q ∈ Q and all a ∈ Σ, δ(q, a) has the form

m−1∨
j=0

(↓0, qj0) ∧ . . . ∧ (↓d−1, q
j
d−1)

for some m ∈ N. The automaton is called deterministic if it is universal and nondeterministic,
that is, for all q ∈ Q and all a ∈ Σ, δ(q, a) has the form as for nondeterministic automata and,
additionally, we have m = 1. We call the attribute of being deterministic, nondeterministic,
universal or (strictly) alternating the alternation mode of the automaton.

We represent the transition function of a nondeterministic tree automaton also as a relation
∆ ⊆ Q×Σ×Qd and for a deterministic tree automaton as a function δ : Q×Σ→ Qd. Moreover,
if A is nondeterministic, a run of A on a Σ-labeled X-tree t : X∗ → Σ can be viewed as a
Q-labeled Xtree ρ : X∗ → Q with (ρ(u), t(u), ρ(u · 0), . . . , ρ(u · (d− 1))) ∈ ∆ for all u ∈ X∗.

We like to note that sometimes, the definition of nondeterministic and deterministic automata
is somewhat relaxed by allowing the automaton to send copies only to some directions instead
of all directions. This, however, is only a technical difference: since a run is accepting if all
infinite paths through the run are accepting according to acc, we can always make the transition
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structure of the automaton complete with respect to the set Dir of directions, by introducing a
default accepting state which is sent to all directions to which the automaton doesn’t send a
copy. In fact, when constructing tree automata, we allow ourselves to use the relaxed version of
deterministic and nondeterministic automata.

Notice that both, deterministic and universal tree automaton, have a uniquely determined
run on each given input tree t. However, while a deterministic automaton sends, in each step
of this uniquely determined run, exactly one copy into each direction of the tree, a universal
automaton may send several copies into the same direction. A nondeterministic automaton, on
the other hand, can choose, in each step of a run, from at most m different conjuncts but once a
conjunct is chosen, the automaton sends exactly one copy into each direction.

Remark. As it turns out, on trees, the possibility to have several different runs is a stronger
gain than being able to send several copies into the same direction: while universal parity
tree automata are equally expressive as the deterministic model, nondeterministic parity tree
automata are strictly more powerful, cf. Section 3.1.2. On the other hand, on words, the
situation is quite different: Alternating and deterministic parity ω-automata have the same
expressive power. The same holds for Muller automata and, while deterministic Büchi automata
are strictly less expressive than nondeterministic Büchi automata, the nondeterministic and
universal model have the same expressive power.

The difference here is of course that on trees, a nondeterministic automaton is still somehow
alternating, that is, it has ∨ and ∧ in the transition formulas δ(q, a). Clearly, this asymmetry
between nondeterministic and universal automata is implied by the objects on which the au-
tomata operate – to exploit the branching character of a tree, an automaton should be able,
during any step of a run, to proceed to each direction of the tree simultaneously.

Before we go into the more sophisticated results about tree automata we state some well-
known properties that give a bit of a conception of their expressive power. We write down a
short proof just to get started with tree automata. For an ω-language L ⊆ Σω and some finite
set X, by T (L,X), we denote the set of all Σ-labeled X-trees t such that all paths through t
are in L. Moreover, consider the following tree languages:

• T∃b = {t ∈ B{a,b} | t(u) = b for some u ∈ B∗}
• Tt0=t1 = {t ∈ B{a,b} | t(0u) = t(1u) for all u ∈ B∗}
• T|b|<ω = {t ∈ B{a,b} | each path of t has only finitely many letters b}

Proposition 3.1. (1) If L ⊆ Σω is a regular ω-language then T (L,X) can be recognized by a
deterministic parity tree automaton.

(2) The language T∃b is recognizable by a nondeterministic reachability automaton but not
recognizable by any deterministic tree automaton.

(3) The language Tt0=t1 is not recognizable by any tree automaton.
(4) The language T|b|<ω is recognizable by a deterministic parity automaton but not recognizable

by a nondeterministic Büchi automaton.

Proof. Proposition (1) is obvious: We just construct a deterministic tree automaton for T (L,X)
where the acceptance condition acc is given by a deterministic ω-automaton recognizing L
and, as we have already mentioned, the synchronized product gives a deterministic parity
tree automaton recognizing T (L,X). For proposition (2), the first part is again obvious: A
nondeterministic reachability automaton just guesses a path on which it expects to find a letter
b and sends F -states into all other branches of the tree. On the path that is checks it stays in a
state Q \ F as long as it does not see a letter b but as soon as it does, from this point on it only
sends F -states to all directions.

For the second part of (2), assume that A = ({a, b}, Q, qin, δ, acc) is a deterministic tree
automaton such that L(A) = T∃b and consider the tree ta : B∗ → {a, b} with ta(u) = a for all
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u ∈ B∗. Since t /∈ T∃b, the unique run ρa of A on ta is not accepting, that means, there is at
least one path π in ρa such that ρa(π) /∈ acc. Now let the first transition in ρa be (qin, a, q0, q1)
for some q0, q1 ∈ Q. W.l.o.g., we assume that the path π goes through the subtree of ρ rooted
in 0, that is, π(0) = ε and π(1) = 0. We define the tree t : B∗ → Σ by t(1) = b and t(u) = a for
all u ∈ B∗ \ {1}. Then the unique run ρ of A on t starts with the transition (qin, a, q0, q1) as well
and the subtree t0 of t rooted in 0 coincides with the subtree t0a of ta rooted in 0. (Formally, t0
is the tree t0 : 0X∗ → Σ with t0(0u) = t(0u) for all u ∈ X∗.) Therefore, the subtree of the run ρ
rooted in 0 coincides with the subtree of the run ρa rooted in 0. Hence, the path π goes through
ρ as well and so, ρ is not accepting. But since t ∈ T∃b this is a contradiction to L(A) = T∃b.

To prove (3), assume there is some tree automaton A = ({a, b}, Q, qin, δ, acc) such that
L(A) = Tt0=t1 and consider the language T = {tl | l ∈ N}, where for l ∈ N, tl is defined by
tl(u) = a for all u ∈ X∗ with |x| ≤ l and tl(u) = b for all u ∈ X∗ with |u| > l. Clearly,
T ⊆ Tt0=t1 so for each t ∈ T there exists an accepting run ρt of A on t. Consider, for each
t ∈ T , a conjunct ψt ∈ B+(X ×Q) such that the first transition in ρt is specified by ψt. More
precisely, if the root (qin, ε) of ρt has successors labeled with (j0, q0), . . . , (jl, ql) ∈ {0, 1} ×Q,
then ψt = (↓j0 , q0) ∧ . . . ∧ (↓jl , ql). Let ∆T = {ψt | t ∈ T }. Since T is infinite while ∆T is finite,
there are trees t0, t1 ∈ T with t0 6= t1 and ψ := ψt0 = ψt1 . Now let the tree t : B∗ → {a, b} be
defined by t(ε) = a, t(0u) = t0(0u) and t(1u) = t1(1u) and consider the run ρ of A on t which
is defined as follows. The first transition of ρ is ψ and then, for each literal (↓j , q) in ψ, the
subtree of ρ rooted in (j, q) is the subtree of ρt0 rooted in (j, q) if j = 0 and it is the subtree of
ρt1 rooted in (j, q), if j = 1. Since ψ = ψt0 = ψt1 , ρ is indeed a run of A on t and since both,
ρt0 and ρt1 , are accepting, ρ is accepting as well. But t /∈ Tt0=t1 which is a contradiction to out
assumption that L(A) = Tt0=t1 .

Finally, the first part of proposition (4) is again obvious: A deterministic parity automaton
A recognizing T|b|<ω uses colors 1 and 2 and it takes color 2 whenever it encounters a letter a
and color 1 whenever it encounters a letter b. For a given tree t ∈ B{a,b}, the least color seen
infinitely often is 2 on each path of the uniquely determined run of A if, and only if, each path
of t contains only finitely many letters b. For a proof of the second part of proposition (4) see,
for example, [100]. (The result has originally been proved by Rabin, cf. [177, 100].)

Closure Properties. An important aspect of any automaton model is closure of the languages
that can be recognized by these automata under certain operations like union, intersection and
projection. This is especially important for applications to logic: Intersection, complementation
and projection correspond to conjunction, negation and existential quantification, respectively.
Closure under union and intersection are both easy to prove for nondeterministic as well as
for alternating tree automata. On the other hand, while closure under projection is easy
for nondeterministic tree automata but hard for alternating tree automata, for closure under
complement it is the other way round. Deterministic (and, hence, universal) tree automata are
closed under intersection, but in general not closed under any other operation. These properties
are well-known. We give short proofs which fortify the understanding of tree automata and help
to comprehend the different branching modes. In the following, let X and Y be finite sets of
directions and let Σ and Γ be finite alphabets.

Proposition 3.2. Nondeterministic and alternating parity tree automata are closed under union
and intersection. Deterministic parity tree automata are closed under intersection but not union.

Proof. Let Aj = (Σ, Qj , qjin, δj , colj), j = 1, 2 be alternating parity tree automata. We describe
the construction of the parity tree automaton A = (Σ, Q, qin, δ, acc) recognizing the union
(intersection) of L(A1) and L(A2) informally. First, in both cases, Q is the disjoint union of Q1

and Q2 together with a fresh initial state qin and we define col(q) = colj(q), where q ∈ Qj and
col(qin) = 0. (In fact, the color of qin is insignificant as qin will occur in each run of A exactly
once.) Moreover, δ(q, a) = δj(q, a) for all q 6= qin, where q ∈ Qj .
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Now, for the automaton A tackling the union of L(A1) and L(A2) we define δ(qin, a) =
δ1(q1

in, a) ∨ δ2(q2
in, a) for a ∈ Σ. So at the beginning of a run, the automaton A decides whether

to perform a run of A1 or a run of A2: Since we take the disjoint union of Q1 and Q2, once the
automaton has chosen δj(qjin, a) for some j ∈ {1, 2}, it performs a run of Aj . So A accepts a
given input tree t if, and only if, there is an accepting run of A1 on t or there is an accepting run
of A2 on t. Hence, L(A) = L(A1)∪L(A2). Notice that if A1 and A2 are both nondeterministic,
then so is A. On the other hand, A is not necessarily deterministic, even if A1 and A2 both are.

For the automaton that is intended to recognize the intersection of L(A1) and L(A2) we
define δ(qin, a) = δ1(q1

in, a) ∧ δ2(q2
in, a) for a ∈ Σ. So the automaton A simulates a run of A1

and a run of A2 in parallel: Since we take the disjoint union the two runs are completely
independent of each other and each path through either one of these runs has to be accepting.
So A accepts a given input tree t if, and only if, there is an accepting run of A1 on t and there is
an accepting run of A2 on t. Hence, L(A) = L(A1)∩L(A2). Now, however, A is not necessarily
nondeterministic, even if A1 and A2 both are.

To see that deterministic parity tree automata are not closed under union, consider the
{a, b}-labeled B-trees ta with ta(u) = a for all u ∈ B∗ and tb with tb(ε) = a and tb(u) = b for
all u ∈ B∗ \ {ε}. The languages {ta} and {tb} can be recognized by deterministic parity tree
automata but the language {ta, tb} cannot be recognized by any deterministic tree automaton:
Consider the uniquely determined runs ρa and ρb of a given deterministic tree automaton A on
ta and on tb, respectively and consider the tree t which is obtained by replacing the subtree of
ta rooted in 1 by the subtree of tb rooted in 1. Then the run ρ of A on t is also obtained by
replacing the subtree of ρa rooted in 1 by the subtree of ρb rooted in 1. Hence, since both ρa
and ρb are accepting, the run ρ is accepting. Since t /∈ {ta, tb} we have L(A) 6= {ta, tb}.

In Section 3.1.2 we will see that any alternating parity tree automaton can be translated into
an equivalent nondeterministic parity tree automaton. Hence, the construction above shows,
nevertheless, that nondeterministic parity tree automata are closed under intersection. Though,
the construction for removing alternation from parity tree automata is complicated and there
is a much simpler way of constructing an automaton A recognizing the intersection of L(A1)
and L(A2) if A1 and A2 are nondeterministic, which is also standard for other automaton
models: the synchronous product A = A1 × A2. The state set of A is Q = Q1 × Q2 and the
acceptance condition acc consists of those sequences α ∈ Qω such that PrQ1(α) ∈ acc1 and
PrQ2(α) ∈ acc2. During a run, the automaton A simulates A1 and A2 in parallel and accepts,
if both automata accept. Clearly, if there is an accepting run of A1 on a given input tree t
and an accepting run of A2 on t then this run can be easily combined to an accepting run
of A. Conversely, since A1 and A2 are both nondeterministic automata, an accepting run
of A on t can also directly be decomposed into individual accepting runs of A1 and A2 on
t. Hence, L(A) = L(A1) ∩ L(A2). This is no longer true, if A1 or A2 is not nondeterminis-
tic. We discuss the reason for this at the end of this section. Moreover, if A1 and A2 are
both deterministic, then A is deterministic as well. Notice, however, that acc is not a parity
condition per se. What we do is, we first consider the Muller acceptance condition given by
F = {F ⊆ Q1 ×Q2 | min colj(PrQj (F ))) is even for j ∈ {1, 2}}. It is not hard to see that this
acceptance condition is precisely acc. Then we can turn the resulting nondeterministic Muller
tree automaton into an equivalent nondeterministic parity tree automaton.

Now we consider closure under projection for nondeterministic automata. For alternating
tree automata, closure under projection then follows from the results described in Section 3.1.2.
Let ι : Σ → Γ be some function. The operator Prι : XΣ → XΓ yields, for a Σ-labeled X-tree
t, the Γ-labeled X-tree t′ = Prι(t) with t′(x) = ι(t(x)). A particularly interesting special case
of projection is given by alphabets Σ of the form Σ = Σ1 × Σ2 and functions ι : Σ→ Σ1. We
denote the corresponding projection operator Prι also by PrΣ1 . For a Σ1-labeled X-tree t1 we
call a Σ2-labeled tree t2 also a Σ2-annotation to t1 and we call the product tree t1 × t2 with
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t1 × t2(u) = (t1(u), t2(u)) a Σ1-labeled Σ2-annotated X-tree. Hence, for A ⊆ XΣ we have

PrΣ1(T ) = {t1 ∈ XΣ1 | there is a Σ2 − annotation t2 of t1 such that t1 × t2 ∈ T }.

Proposition 3.3. Nondeterministic tree automata are closed under projection but deterministic
tree automata are not.

Proof. Let A = (Σ, Q, qin,∆, acc) be a nondeterministic tree automaton over Σ-labeled [d]-
trees and let ι : Σ → Γ be a function. We define the automaton A′ = (Γ, Q, qin,∆′, acc) by
∆′ = {(q, ι(a), q0, . . . , qd−1) | (q, a, q0, . . . , qd−1) ∈ ∆}. (Or, using the notation of the transitions
as formulas, δ′(q, a) =

∨
b∈Σ,ι(b)=a δ(q, b)). Notice that in the case of a projection operator PrΣ1 ,

∆′ is obtained from ∆ by deleting the Σ2-component from the label of each transition.
Clearly, if s ∈ Prι(L(A), that is, s is obtained from a Σ-labeled [d]-tree t ∈ L(A) by applying

the function ι to the labels of t, then we obtain an accepting run of A′ on s from an accepting
run of A on t by applying the function ι to the labels of the transition that are used in the
run. Hence, s ∈ L(A′). Now let conversely s ∈ L(A′) and consider a run ρ : [d]∗ → Q of A′ on
s. Then, for each u ∈ [d]∗, there is a transition ζ(u) = (q, b, q0, . . . , qd−1) ∈ ∆′ with q = ρ(u),
b = s(u) and ql = ρ(u · l) for l ∈ [d]. By construction of A′, b = ι(au) for some au ∈ Σ such
that (q, au, q0, . . . , qd−1) ∈ ∆. So if we define the Σ-labeled [d]-tree t by t(u) = au, then ρ is an
accepting run of A on t which yields t ∈ L(A). Since by definition, ι(au) = s(u) for all u ∈ [d]∗
we have Prι(t) = s and hence s ∈ Prι(L(A).

To see that deterministic tree automata are not closed under projection, instead of providing
a concrete example language, we refer to the construction for removal of alternation from
Section 3.1.2 which translates an alternating parity tree automaton into a nondeterministic
parity tree automaton. A careful examination of this construction reveals that the only source of
nondeterminism is a projection step. So if deterministic parity tree automata were closed under
projection, then any alternating parity tree automaton could be translated into an equivalent
deterministic parity tree automaton which, according to Proposition 3.1, is not possible.

Here, the constructions that are performed on the given automaton to obtain an automaton
recognizing the projection of the original language are trivial. In particular, the resulting automa-
ton has the same size as the original automaton and also uses the same acceptance condition acc.
Moreover, if A is nondeterministic, then A′ is nondeterministic and, if A is deterministic and ι is
injective, then so is A′. However, if ι is not injective, the latter statement does not hold anymore.

We also need the more special operation of widening. The operator wideY : XΣ → (X × Y )Σ
yields, for a Σ-labeled X-tree t, the Σ-labeled X × Y -tree t′ = wideY (t) with t′(x, y) := t(x).

However, we do not prove closure under widening. In fact, tree automata are not closed
under widening which can be proved with a similar reasoning as in the proof that Tt0=t1 cannot
be recognized by any tree automaton. It is also interesting to notice that if tree automata were
closed under widening, then the strategy uniformity condition (S2) could also be checked by
tree automata. We discuss this in further detail in Section 3.2. The property that does hold for
tree automata and the widening operator has been the key step in the solution of the strategy
problem for branching time specifications in [127] and is formulated in the following proposition.
We provide a proof of this result in Section 3.2.

Proposition 3.4. [127] For any alternating parity tree automaton A over Σ-labeled X×Y -trees
there is an alternating parity tree automaton narrowY (A) over Σ-labeled X-trees such that
t ∈ L(narrowY (A)) if, and only if, wideY (t) ∈ L(A). Moreover, narrowY (A) has the same size
as A and uses the same acceptance condition.

The same result can also be proved for the x-ray operator. We will use the x-ray operator
only rather implicit, but like to state it as a general principle to keep in mind. The operator
xray : XΣ → XΣ×X yields, for Σ-labeled X-tree t, the Σ×X-labeled X-tree t′ = xray(t) with
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t′(x) = (t(x), x(|x| − 1)). (For the root x = ε, x(|x| − 1) is some designated element from X,
called the root direction.) In this case, the proof is even much easier than in the case of the
widening. The new automaton B, while sending a copy to some direction, keeps the direction in
the state to which it switches. In this way, it can simulate the given automaton A directly, by
feeding it’s states into the transition function of A. The acceptance condition of B is essentially
just the acceptance condition of A. However, the size of B now depends on the size of the set X.

Emptiness of Tree Automata. The most important property of finite automata on infinite
trees is the decidability of the emptiness problem, that is, it is decidable whether L(A) = ∅
for a given alternating parity tree automaton A. The emptiness problem for nondeterministic
tree automata with Muller or pairs acceptance condition has been solved by Rabin [176, 177]
where he used the decidability of the problem to prove decidability of the monadic theory of the
infinite binary tree and to provide an alternative solution of Church’s problem.

The pairs condition is given by a collection ((E1, F1), ..., (El, Fl)) of pairs Ej , Fj ⊆ Q which
define the acceptance condition acc as follows: a sequence π ∈ Qω of states is in acc if for some
j we have Inf(π)∩Ej = ∅ and Inf(π)∩Fj 6= ∅. This acceptance condition (or winning condition,
in the context of games) was introduced by Rabin in [177] and is now called Rabin condition.
In [149], Mostowski considered the parity condition in form of the Rabin chain condition, that is,
Rabin conditions with E1 ⊆ F1 ⊆ . . . ⊆ El ⊆ Fl. It is not hard to see that the parity conditions
correspond in fact precisely to the Rabin chain conditions.

Subsequently, several improved algorithms for the emptiness problem have been developed of
which we like to mention the work of Emerson and Jutla [74] as well as Pnueli and Rosner [169]
who have provided algorithms for solving the nonemptiness problem for Rabin tree automata
with a time complexity exponential in the number of Rabin pairs but only polynomial in the
number of states. In [74] it was also shown that the problem is NP-complete in general, while
Pnueli and Rosner [169] used their algorithm to obtain a solution of Church’s problem for LTL
specifications which has doubly exponential time complexity in the length of the specification. So
in particular, the emptiness problem for parity tree automata can be solved in time exponential
in the number of colors but polynomial in the number of states.

Theorem 3.5. [176, 74, 169], see also [100]
The emptiness problem for nondeterministic Rabin tree automata is decidable and can be solved

in time exponential in the number of Rabin pairs and polynomial in the number of states of the
given automaton.

For nondeterministic parity tree automata, however, more can be said, using a simple
reduction of the nonemptiness problem to the strategy problem for parity games with full
information. The construction is well known, see for example [203, 222]. As it is quite helpful
for the understanding of tree automata, we provide a brief presentation of the construction.
This also serves as a preparation of the more general construction for universal and alternating
tree automata that we discuss in Section 3.2.

Let A = (Σ, Q, qin,∆, col) be a nondeterministic parity tree automaton where ∆ ⊆ Q×Σ×Qd
for some d ∈ N and col : Q → [k] for some k ∈ N. We define the parity game graph
G(A) = (V, V0, E, col) (with E ⊆ V × V ) as follows:

• V = ∆ ∪Q and V0 = ∆
• E consists of the following moves:

– q → (q, a, q0, . . . , qd−1)) for (q, a, q0, . . . , qd−1) ∈ ∆
– (q, a, q0, . . . , qd−1)→ qj for (q, a, q0, . . . , qd−1) ∈ ∆ and j ∈ [k]

• col(v) = col(PrQ(v)) for v ∈ V .
So player 1 resolves the nondeterministic choices and, by doing so, implicitly also constructs

a tree t ∈ XΣ: the labels of t are the labels of the transitions chosen by player 1. Player 0,
on the other hand, resolves the directions in the tree and a play π is won by player 1 if the
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corresponding infinite state sequence PrQ(π) ∈ Qω is accepting. Hence, a winning strategy for
player 1 from the initial position qin guarantees the existence of a tree and a run on that tree
such that all possible paths π ∈ Qω through that run are accepting and vice versa.

Proposition 3.6. L(A) 6= ∅ if and only if player 1 has a winning strategy for G(A) from qin.

Obviously, the size of the game graph G(A) is linear in the size of A and since the strategy
problem for parity games with full information is in NP∩ co-NP, the same holds for the emptiness
problem for nondeterministic parity tree automata. Moreover, the problem can be solved in
time O((|Q|+ |∆|)k).

Now, if player 1 has a winning strategy, then he also has a positional winning strategy, since
G(A) is a parity game graph. From such a positional winning strategy for player 1 for G(A)
from qin we can construct a finite automaton with output, which generates some tree that is
accepted by A. More precisely, there is a finite automaton B = (X,QB, δB, qBin, τB) with output
function τB : QB → Σ and state set QB = Q such that the Σ-labeled X-tree tB : X∗ → Σ which
is obtained by unfolding the transition graph of B (i.e., tB(u) = τB((δB)∗(u)) for u ∈ X∗) is in
L(A). Trees which are generated by finite automata in this way are called regular. This result
has first been proved by Rabin in [177] for the case of Rabin tree automata.

Theorem 3.7. [177] If L(A) 6= ∅ then L(A) contains a regular tree.

Proof. Let σ : Q→ ∆ be a positional winning strategy for player 1 for G(A) from qin and consider
some q ∈ QB = Q with σ(q) = (q, a, q0, . . . , qd−1). We define τ(q) = a and δB(q, l) = ql. By
construction of tB, the tree is regular and by definition of the game G(A) we have tB ∈ L(A).

Notice that, since we can construct σ from A in time O((|Q|+ |∆|)k), the regular tree tB
can be constructed in time O((|Q|+ |∆|)k) as well.

Also notice that the finite automaton B closely resembles our definition of a finite memory
structure which is not coincidental. In fact, Rabin’s approach to Church’s problem [177] can
be paraphrased as follows. A strategy σ : B∗ → B for the controller in Church’s setting is a
B-labeled B-tree tσ. Now for a given linear specification ϕ written in monadic second order
logic, construct a deterministic Rabin ω-automaton S such that L(S) = L(ϕ) ⊆ Bω. From this
automaton, one can easily construct a finite Rabin tree automaton A (even a deterministic
one) such that A accepts a tree tσ ∈ BB if, and only if, all paths through tσ which are compat-
ible with the labeling (all plays which are compatible with σ) are in L(S) (won by the controller).

This very simple and direct mutual reducibility reveals that nondeterministic tree automata
and two-player games with full information are essentially quite the same. Nondeterministic
tree automata have been used successfully for the solution of synthesis problems under full
information [169, 1, 211, 221]. In [221], also certain cases of synthesis under partial information
have been solved using nondeterministic tree automata for linear specifications. There, however,
certain constructions have to be carried out a priori that essentially reduce the strategy problem
under partial information to one under full information, cf. Sections 3.2 and 3.5.

On the other hand, as we have mentioned, in [127] Kupferman and Vardi have suggested that
alternation is a proper concept to deal with partial information, in particular in the branching
time setting. There, the difficulty of reducing the strategy problem under partial information to
one under full information is shifted to the nonemptiness problem for alternating tree automata.
However, for this problem, a straightforward and efficient game approach like for nondeterministic
tree automata is not available. In fact, the emptiness problem is Exptime-hard for alternating
automata with very simple acceptance condition like Büchi and even reachability acceptance
condition. (Reachability acceptance conditions for tree automata are defined analogously to
reachability winning conditions for infinite games on finite graphs.) The Exptime-hardness
follows from the fact that already the universality problem for nondeterministic automata
on finite trees is Exptime-hard [197]. (We will see later that, by a very direct and natural
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reduction from two-player reachability games with imperfect information on finite graphs, even
the emptiness problem for universal tree automata with reachability acceptance condition can
be shown to beExptime-hard.2)

The reason why the straightforward game approach for nondeterministic tree automata
fails in the case of arbitrary alternating automata is that in the emptiness game as we have
described it, played on an alternating tree automaton, player 1 could make the labeling of the
tree dependent on the branches of the run which now do not correspond to the branches of
an input tree. We will discuss this in Section 3.2. Hence, deciding emptiness for alternating
tree automata is usually done by translating an alternating tree automaton into an equivalent
nondeterministic tree automaton. Before we review the basic ideas of alternation removal for
tree automata, we like to make some comments.

First, at this point we should anticipate that in Section 3.2 we will argue that, in fact, there
is a straightforward game approach to the nonemptiness of alternating tree automata which,
however, leads to games with imperfect information. While this accentuates the statement
from [127] and offers a coherent perspective on the connection between alternating tree automata
and synthesis under partial information, it does not help for the algorithmic solution of the
emptiness problem as games with imperfect information are hard to solve as well.

Moreover, we like to mention the work [130] where an alternative approach has been developed
to check emptiness of alternating tree automata. The key feature is to avoid removal of alternation
and instead, reduce an alternating parity tree automaton to a nondeterministic Büchi tree
automaton. The worst case complexity of this construction is essentially the same as for the
method using removal of alternation. However, the potential advantage of the construction
in [127] is that it is more transparent and simpler to implement than the usual constructions
for removing alternation from parity tree automata and that it can be decomposed into several
smaller steps which are all amenable to optimization.

Though, we are interested in alternation removal not only as a method for testing emptiness
of a single given alternating tree automata. We also need to test emptiness of the intersection
of a nondeterministic parity tree automaton A1 and a nondeterministic parity pushdown tree
automaton A2, see Section 3.1.3. For this, we cannot take the disjoint union as described
in Proposition 3.2 since this would yield an alternating parity pushdown tree automaton:
alternating parity pushdown tree automata are strictly more expressive than nondeterministic
ones and the emptiness problem for those automata is even undecidable. Our solution here is to
apply a slightly advanced version of the usual product construction to A1 and A2.

However, as we have already mentioned in the proof of Proposition 3.2, for this product
construction to be sound, A1 and A2 have to be both nondeterministic. This fact is completely
independent of A2 being a pushdown tree automaton: To see why the construction fails if
we apply it directly to alternating tree automata A1 and A2, consider a run of the resulting
product automaton A. Some branches in this run correspond to universal choices of A1 and
some branches correspond to universal choices of A2. In this joint run, however, A1 can also
make it’s nondeterministic choices dependent on the branches which are induced by universal
choices of A2 and vice versa!

At this point, we should anticipate some detail from Section 3.1.2 where we will show that,
in fact, for any given input tree t which is in the language of some alternating parity tree
automaton, there is also a run of this automaton on t in which the nondeterministic choices do
not depend on the particular universal branch of the automaton but only on the current node in
the tree t and the current state of the automaton. However, for an alternating automaton, there
are still several possible states in which the automaton can be at a given node of the tree t.
And, in the case of the product automaton A, this state is composed of the individual states of
the automata A1 and A2. Hence, the automaton A1 can still make it’s nondeterministic choices

2Notice that due to the asymmetry of the nondeterministic and the universal alternation mode, this does not
immediately follow from the Exptime-hardness of the universality problem for nondeterministic reachability tree
automata.
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depend on information that is immanent to the automaton A2 and vice versa.
The same problem arises for projection. The nondeterministic automaton that we have

constructed in the proof of Proposition 3.3 implicitly guesses a Σ-labeling for the Γ-labeled
[d]-tree on which it runs by nondeterministically choosing transitions with Γ-labels for which
there are corresponding Σ-labels. Now if we apply the construction directly to an alternating
automaton then the nondeterministic choices of the automaton and, hence, the labels that it
guesses can depend on the state of the automaton which is not uniquely determined for a given
node of the input tree.

The solution is to remove alternation from the automata that are involved a priori, that is,
to construct equivalent nondeterministic tree automata, and to apply the operation (intersection,
projection) afterwards. The problem about the construction in [130] is that the nondeterministic
Büchi tree automaton B that is constructed from a given alternating parity tree automaton A is
not necessarily equivalent to A, that is, in general we have L(B) 6= L(A). We have L(B) 6= ∅ if,
and only if, L(A) 6= ∅ which is clearly sufficient for checking emptiness, but not for constructing
an automaton that recognizes the intersection of two languages.

These observations are particularly interesting in the context of interaction under partial
information. Dependence and independence of nondeterministic choices in runs of tree automata
on universal branches of the run which are not apparent in the given input tree are intimately
linked to dependence and independence of strategies on certain information in interactive
situations as we consider them here. We discuss this in Section 3.2 and in Chapter 5.

3.1.2 Removal of Alternation
The main aspect of this section is removal of alternation from parity tree automata: we show how
to translate an arbitrary alternating parity tree automaton into an equivalent nondeterministic
parity tree automaton. We present only the main ideas of the construction.

The two main ingredients for removing alternation from parity tree automata are determiniza-
tion of ω-automata and memoryless determinacy of parity games. Having these tools at hand,
we can proceed as follows: Given an alternating parity tree automaton A = (Σ, Q, qin, δ, col)
with col : Q→ [k] over Σ-labeled X-trees, consider the membership game (or semantic game)
G(A, t) of A on any given tree t ∈ XΣ. This game is defined similar to the emptiness game
but now, the tree t is given in advance and a winning strategy for player 1 is a witness that
t ∈ L(A). Obviously, with the tree t fixed, the game can be played on alternating automata as
well: Player 1 resolves the nondeterministic choices and player 0 resolves the universal choices.
More precisely, in a given node u of the tree t and state q of the automaton, player 1 chooses
a conjunct ψ from ϕ = δ(q, t(u)) and player 0 chooses a literal (q′, j) from ψ. Then the game
proceeds to node uj and state q′. In this way, the players form a path through the run of A on
t and player 1 wins if this run is accepting. It is not hard to see that, in fact, player 1 has a
winning strategy for G(A, t) if, and only if, t ∈ L(A).

So the game graph of G(A, t) consists of positions (u, q), where u ∈ X∗ and q ∈ Q and the
initial position is always (ε, qin). (Notice that for a complete description of all moves in the
game graph, we would have to have also positions (u, ψ), where ψ is a conjunct from δ(t(u), q).
Moreover, if δ(t(u), q) is not given in DNF, several alternating moves of the players might be
necessary until a literal (q′, j) is reached. Here, w.l.o.g., we shall stick to our more compact
representation.) Since t is infinite, this game graph is infinite and, in general, it is not possible
to play this game on a finite graph, since t may not admit a finite presentation. On the other
hand, the game graph is not a tree: A position (u, q) may be reached via several different
sequences of states (which correspond to different branches of the run ρ of A on t which player 1
is constructing). Notice, though, that the graph is acyclic.

Now in order to remove alternation from A, we have to construct a nondeterministic parity
tree automaton B over Σ-labeled X-trees, which takes a tree t and checks, whether player 1
has a winning strategy for G(A, t). There are to main problems that we encounter when trying
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to accomplish this task. First, when running over branches u = x0x1x2 . . . of t, there may be
several paths through the game graph of G(A, t) which correspond to u and which have to be
traced simultaneously. The idea to solve this problem is very similar to the solution presented
in Section 2.2.1 for (not necessarily observable) ω-regular winning conditions: We construct a
universal parity ω-automaton C that runs over a branch of t and universally branches over all
possible plays π in G(A, t) that correspond to this branch. At the same time, C checks that
those are all won by player 1. This is where we use our first tool, determinization of ω-automata:
For a tree automaton to be able to simulate C on all branches, C must be deterministic.

Of course, only those plays should be checked by C, that are compatible with some strategy
of player 1. However, of this strategy, the tree automaton B is in charge, that is, B should guess
such a strategy. To deal with this situation, we first extend the labeling of the input trees by
certain information, specifying a strategy for player 1, thereby providing the automaton C access
to the strategy. Now, there we face the second main difficulty: A strategy for player 1 is in
general a complicated object – it may depend on the complete sequence of states of A by which
a position (u, q) in the game graph is reached (that means, it depends on the branch of the
run). So we cannot incorporate enough information into the labels of an input tree to encode
arbitrary strategies for player 1.

But since A is a parity tree automaton, G(A, t) is a parity game (with full information) and
hence we can put our second tool into effect which yields that memoryless strategies suffice
to win in parity games with full information. Such a memoryless strategy for player 1 for the
game G(A, t) depends only on the current position (u, q) in the game graph (that is, it is now
independent of the particular branch of the run!) and yields, for any such position, one of the
conjuncts of δ(t(u), q). Now, this information can be easily annotated to the labels of t: For
each node u ∈ X∗, we extend the label t(u) of u by a function σu : Q→ B+(X ×Q) such that
σu(q) is a conjunct of δ(t(u), q) for all q ∈ Q.

Now, having all these conceptions at hand, we can accomplish the construction as suggested
above. First, we construct a universal parity ω-automaton C that runs over words α ∈ (X ×Σ×
Γ)ω, where Γ denotes the set of all functions σ : Q→ B+(X ×Q). This automaton checks that
all sequences of states that correspond to PrX×Σ(α) and are consistent with the memoryless
strategy for player 1 specified by PrΓ(α) are in acc.

This automaton can then be turned into a deterministic parity ω-automaton using deter-
minization of Büchi ω-automata as follows: complement C by taking the dual automaton C̃ of C
(as defined below) which is a nondeterministic parity ω-automaton recognizing the complement
of L(C). Then, simulate C̃ by a nondeterministic Büchi automaton and translate this automaton
into an equivalent deterministic parity automaton. Finally, complement this automaton by
complementing the parity acceptance condition which yields a deterministic parity automaton
D such that L(D) = L(C). Notice that complementation of deterministic as well as alternating
parity automata does not increase the size of the automaton. Hence, using Theorem 2.8, D can
be seen to have at most 2O(|Q|·k)·log(|Q|·k) states and O(|Q| · k) colors.

Now we construct a nondeterministic tree automaton B′ that runs over Σ×Γ-labeled X-trees,
and simulates D on all branches. So B′ accepts a tree s ∈ XΣ×Γ, if the Γ-annotations to the
labels define a positional winning strategy for player 1 for G(A, t), where t is obtained from s by
deleting these Γ-annotations. Since D is a parity ω-automaton, B′ is a parity tree automaton.

Finally, we use the fact that nondeterministic tree-automata are closed under projection: By
deleting the Γ-components from the labels in the transitions of B′, we obtain a nondeterministic
parity tree automaton B that accepts a Σ-labeled X-tree t if, and only if, there exists a Γ-
annotation of t such that the resulting tree s ∈ XΣ×Γ is in L(B′), cf. Proposition 3.3. So B
accepts a tree t ∈ XΣ if, and only if, there exists a winning strategy for player 1 for G(A, t) and
hence, L(B) = L(A).

Historical Remarks. The membership game has first been described by Gurevich and
Harrington in their seminal work [102] for nondeterministic Muller tree automata (where they
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used the famous names of automaton and pathfinder for player 0 and player 1, respectively)
and has later been adapted to alternating tree automata by Muller and Schupp [152, 153].
Gurevich and Harrington gave an alternative prove of Rabin’s result that nondeterministic
tree automata can be effectively complemented, using a similar kind of reasoning as we have
used above. However, since they used Muller tree automata, they could not proceed via
memoryless determinacy but they proved that Muller games are determined with finite memory
(LAR) strategies.3 (In fact, although we didn’t use this in our argumentation, determinacy
was important in the proof of Gurevich and Harrington since for complementation, one has to
construct a nondeterministic automaton that accepts a given tree t if, and only if, player 1 does
not have a winning strategy for G(A, t) for which they used that this is equivalent to player 0
having a winning strategy for G(A, t).) Clearly, finite memory determinacy is enough to be able
to annotate strategies to the labels of the input trees.

In their famous paper [75], Emerson and Jutla also gave a proof of Rabin’s theorem. They
showed that alternating tree automata and the modal µ-calculus (which is closed under negation
by definition) are equally expressive and they proved that alternation can be removed from
tree automata, using the argumentation presented above. (In fact, their proof of memoryless
determinacy of parity games comes from this work.) Emerson and Jutla argued that, implicitly,
the concept of alternation had also been used in earlier proofs of Rabin’s theorem, in particular
in [102]. To be able to comprehend this claim, consider the definition of a dual automaton as
given below. Complementing a nondeterministic automaton A can be done by dualization which
leads to an alternating tree automaton B. Knowing this fact and the construction for removing
alternation as described above, the constructions in the various proofs of Rabin’s theorem can
be seen as constructions for removing alternation from B. However, in contrast to Gurevich
and Harrington, Emerson and Jutla used alternating tree automata (introduced by Muller and
Schupp in [152, 153]) explicitly and formulated the removal of alternation as a separate theorem.

In [154], Muller and Schupp gave an alternative construction for removal of alternation which
neither relies on previous constructions for determinization of ω-automata nor on known results
on finite memory determinacy of games. In fact, their construction includes new proofs for
such results. In particular, as Vardi and Wilke state, it has an alternative construction for
determinization of ω-automata built-in ([83],p.661-662). Muller and Schupp were also the first
to consider the special case of universal automata explicitly. The interesting new techniques
and the coherent exposition together with proper complexity results and treatment of special
cases makes this paper a highly cited milestone in the theory of alternating automata.

Removal of Universality. Consider the special case where A is universal, that is, each formula
δ(q, a) is a conjunction of literals. In this case, player 1 does not make any real moves in the game
G(A, t) for a given tree t ∈ XΣ, so a positional (or, in fact, any) strategy for player 1 is always
trivial. Hence, the Γ-annotations of the Σ-labeled X-trees are futile and can be ignored. Moreover
notice that the parity tree automaton B′ which simulates the deterministic parity ω-automaton
D on all branches of a given tree XΣ can do this deterministically and since we don’t have
Γ-annotations, the projection step does not apply. Therefore, the nondeterministic parity tree
automaton B with L(B) = L(A) is actually deterministic. Hence, the construction above yields,
as a special case, that universal parity tree automata and deterministic parity tree automata are
equally expressive. This result has first been formulated explicitly by Muller and Schupp [154]. So
removal of universality from parity tree automata is basically just determinization of ω-automata.
Hence, solving the emptiness problem for such automata essentially reduces to determinizing an
ω-automaton and solving a parity game with full information on a finite graph.

Complementing Alternating Automata. Rabin [176] proved that nondeterministic Muller
tree automata can be effectively complemented which is a deep result that also relies on

3It should be noted that Gurevich and Harrington themselves refer to a manuscript sent to them by Büchi
which apparently contains the first proof of this fact, cf. [102].
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determinization of ω-automata. On the other hand, an alternating Muller tree automaton
A = (Σ, Q, qin, δ,F) can be complemented quite easily by taking the dual automaton Ã of A
which is obtained from A by dualizing the transition function δ to δ̃ and complementing the
acceptance condition acc to Qω \ acc. Dualizing the transition function means that we exchange
∧ with ∨ in the formulas δ(q, a) ∈ B+(Q×X). Moreover, the complement of a Muller condition
is again a Muller condition (with F̃ = 2Q \ F). Likewise, the complement of a parity condition
is also again a parity condition (with a shift of the coloring by one) and so the reasoning here
applies to parity conditions just as well.

Now it is easy to see that the semantic game G(Ã, t) for a given Σ-labeled X-tree t is obtained
from the game G(A, t) also by dualizing the game to G̃(A, t), that is, by swapping ownership of
the vertices in the game and by complementing the winning condition. Notice that technically,
this construction is only sound if we do not assume that the transition formulas of an alternating
tree automaton are in DNF: If the formulas δ(q, a) are in DNF then the formulas δ̃(q, a) are in
CNF and G(Ã, t) = G̃(A, t) holds in general only if we consider the game G(Ã) as being played
directly on the formulas δ̃(q, a) without transforming them into DNF. So for now, we drop the
assumption. Notice that then, for a given position (u, q) ∈ X∗ ×Q of the game G(A, t), player 0
and player 1 may have to take several turns until a literal of δ(t(u), q) is reached.

Now it is easy to see that in the game G̃(A, t) = G(Ã, t) player 0 has a winning strategy if,
and only if, player 1 has a winning strategy in G(A, t) and so, since Muller games as well as
parity games are determined, player 0 has a winning strategy for G(Ã, t) if, and only if, player 1
does not have a winning strategy for G(A, t). Since player 1 has a winning strategy for G(Ã, t)
if, and only if, t ∈ L(A), it follows that L(Ã) = XΣ \ L(A).

This complementation construction for alternating tree automata has first been described
by Muller and Schupp [152, 153]. In a sense, this shows that alternating tree automata are
the natural logical completion of the existential fragment of the automaton model to the full
automaton model where both existential and universal branches are possible and allowed to
alternate in an arbitrary fashion. As we have argued, this enables easy negation by dualization
and allows a smoother explanation of the proofs of Rabin’s theorem by making the implicit use
of alternation explicit, cf. [75]. On the other hand, on trees, the concept is not as coherent as it
is on words. While alternating Turing machines and alternating automata on words have the
property that the dual of a nondeterministic automaton is always a universal automaton (and
vice versa) this is no longer true for automata on trees. As we have mentioned, nondeterministic
tree automata are also alternating in that they can send copies to all directions of the tree.
Consequently, the dual of a nondeterministic automaton is a (seriously) alternating automaton in
general. On the other hand, the dual of a universal automaton is a nondeterministic automaton
(a special one that sends, in each step of a run, a copy to at most one direction).

After this brief exposition of some fundamental aspects of finite automata on infinite trees we
assemble some main statements which help to apprehend the expressive power of tree automata
and which can be used as tools for solving synthesis problems under partial information.

Theorem 3.8. [75, 154], see also [100]
Let A = (Σ, Q, qin, δ, acc) be an alternating tree automaton.

(1) If A is a parity automaton with col : Q→ [k], one can construct a nondeterministic parity
tree automaton B with at most 2O(|Q|·k·log(|Q|·k) states and at most O(|Q| · k) colors such
that L(A) = L(B). If A is universal, then B is deterministic.

(2) If A is a Muller automaton with F ⊆ 2Q, one can construct an alternating parity automaton
with at most |Q| · |Q|! states and at most 2 · |Q| colors. The same holds for deterministic,
universal and nondeterministic automata.

(3) Alternating parity tree automata are closed under complement. This does neither hold for
deterministic parity automata nor for alternating Büchi automata.
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(4) Alternating parity tree automata are strictly more expressive than alternating Büchi tree
automata. On the other hand, deterministic parity tree automata and nondeterministic
Büchi tree automata are incomparable.

Proof. We have proven (1) in the exposition above. For (2), we use the LAR-construction just
as for games and ω-automata. (Or, to use the known construction more directly, take a Muller
ω-automaton recognizing acc, turn it into an equivalent parity ω-automaton C and then take
the synchronous product of A and C.) Notice that the construction does not affect the type
of the automaton. As to (3), complementation of alternating parity tree automata has been
described above. To see that the class of deterministically parity (Büchi) recognizable tree
languages is not closed under complementation, consider the language T∃b (see Section 3.1.1.
The complement of T∃b consists only of the constant tree ta with ta(u) = a for all u ∈ B∗ so it is
clearly recognizable by a deterministic parity (Büchi and, in fact, even reachability) automaton,
while by Proposition 3.1, the complement of L is not recognizable by any deterministic tree
automaton.

To prove proposition (4), consider the tree language T|b|<ω. By Proposition 3.1 this language
can be recognized by a deterministic parity tree automaton but not by a nondeterministic Büchi
automaton. As we have mentioned, alternating Büchi tree automata can be translated into
nondeterministic Büchi tree automata, so T|b|<ω is not recognizable by an alternating Büchi
tree automaton as well. Hence, there is a language that is recognizable by a deterministic
parity tree automaton but not recognizable by an alternating Büchi automaton. This proves one
direction of the second part of the statement, and, since alternating parity tree automata are a
generalization of alternating Büchi tree automata, it also proves the first part of the statement.
On the other hand, again by Proposition 3.1, T∃b is a tree language that is recognizable by a
nondeterministic reachability automaton, and hence also by a nondeterministic Büchi automaton,
but not recognizable by any deterministic tree automaton which proves the other direction of
the second part of the statement.

3.1.3 Pushdown Tree Automata
An alternating pushdown tree automaton over Σ-labeled X-trees has the form

A = (Σ,Γ, Q, qin, δ,⊥, acc)

where Σ, Q 3 qin and acc are as before, cf. Section 3.1.1.
Moreover, Γ is the finite stack alphabet, ⊥ /∈ Γ is the initial stack symbol and δ is the

transition function which now also depends on the top stack symbol and performs a stack
operation during each transition. As for pushdown ω-automata we assume that a stack operation
increases the height of the stack by at most one. Furthermore, since we will use pushdown tree
automata to deal with context-free winning conditions in games, the automata should be able to
simulate (deterministic) pushdown ω-automata along all paths of a given input tree, hence, they
need also ε-transitions. Notice that an alternating pushdown automaton could be defined in
such a way that it has the possibility to send certain copies to successors and certain other copies
via ε-transitions to the current node. However, for simplicity we restrict the use of ε-transitions
in that an alternating pushdown automaton has to decide whether it takes an ε-transition or
a transition that sends copies to successors and, if it takes an ε-transition, then it is required
to send exactly one state. Clearly this restricted use of ε-transitions is sufficient to simulate
deterministic pushdown ω-automata. So the transition function δ is the union δ = δ↓ ∪ δ	 with

• δ↓ : Q× Γ⊥ × Σ→ B+(X ×Q× Γ≤2
⊥ )

• δ	 : Q× Γ⊥ → 2Q×Γ≤2
⊥ .

Similar as for pushdown ω-automata, we write δ also as δ : Q× Γ⊥ × Σε → B+(X ×Q×
Γ≤2
⊥ ) ∪ 2Q×Γ≤2

⊥ . All the basic definitions and observations concerning the set B+(X ×Q× Γ≤2
⊥
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of positive Boolean formulas over variables from X ×Q× Γ≤2
⊥ carry over from Section 3.1.1. As

for pushdown ω-automata we assume that the initial stack symbol ⊥ can neither be deleted
from nor written to the pushdown stack. That is, if ϕ ∈ δ(q,⊥, a) and (↓x, q′, γ) is a literal in ϕ,
then γ ∈ Γ≤1⊥, and analogously for ε-transitions δ(q,⊥, ε).

A run of A on a Σ-labeled X-tree t : X∗ → Σ is a not necessarily full Σr-labeled N-tree
ρ : T → Σr with Σr = X∗ ×Q× Γ∗⊥ such that the following conditions hold.
(1) ε ∈ T and ρ(ε) = (ε, qin,⊥)
(2) if v ∈ T with ρ(v) = (u, q, Aγ) then one of the following conditions holds:

(2.1) there is a unique successor v · 0 of v in T such that ρ(v · 0) = (u, q′, γ′γ) for some
(q′, γ′) ∈ δ(q, A, ε).

(2.2) the set of successors of v in T is {v · j | j ∈ [l]} for some l ∈ N such that for all j ∈ [l]
we have ρ(v · j) = (u · xj , qj , γjγ) where ψ = {(x0, q0, γ0), . . . , (xl−1, ql−1, γl−1)} ⊆
X ×Q× Γ⊥ is a conjunct in ϕ = δ(q, A, t(u)).

The run is called complete if there is no infinite path v0, v1 . . . of nodes in T with vj v vj+1
for all j such that there is some u ∈ X∗ with PrX∗(vj) = u for some u ∈ X∗ for all j. As for
pushdown automata on words, this excludes the possibility of infinite sequences of ε-transitions.
A pushdown tree automaton A is said to have the continuity property, if each run of A on some
input tree is complete. Remind that, w.l.o.g., we consider only deterministic parity pushdown
ω-automata which have the continuity property, hence, for our concerns pushdown tree automata
which have the continuity property suffice as well. So from now on we assume that a pushdown
tree automaton has the continuity property.

The run is called accepting if, for each infinite path π through ρ, we have PrQ(π) ∈ acc.
(Notice that the run is complete by the assumption that A has the continuity property.) So the
acceptance of a run depends only on the sequence of states and not on the stack contents. As
before we consider parity pushdown tree automata and Muller pushdown tree automata where
acc is defined via a parity condition given by col : Q → [k] and a Muller condition given by
F ⊆ 2Q, respectively. As before, A accepts a tree t ∈ XΣ if there is an accepting run of A on t
and L(A) = {t ∈ XΣ | A accepts t}.

Now assume w.l.o.g. that X = [d] for some d ∈ N. The automaton A is called nondetermin-
istic if, for all (q,A, a), δ(q, A, a) has the form

m−1∨
j=0

(↓0, qj0, γ
j
0) ∧ . . . ∧ (↓d−1, q

j
d−1, γ

j
d−1)

for some m ∈ N. Notice that nondeterminism is a restriction to the function δ↓ only while δ	 has
the same format as for alternating pushdown automata. This is, of course, due to the fact that
we have already started with alternating pushdown automata that can use ε-transitions only in
a restricted way. The automaton A is called universal, if for all (q, A, a) ∈ Q× Γ⊥ × Σ we have
|δ(q, A, a)|+ |δ(q,A, ε)| ≤ 1. The automaton is called deterministic if it is both, nondeterministic
and universal.

We represent the transition function δ of a nondeterministic tree automaton also as a relation
∆ = ∆↓ ∪∆	 with ∆↓ ⊆ Q× Γ⊥ × Σ× (2Q × Γ≤2

⊥ )d and ∆ ⊆ Q× Γ⊥ × (2Q × Γ≤2
⊥ ). However,

due to the ε-transitions, a run of a nondeterministic automaton can now not be viewed as a
Q× Γ∗⊥-labeled X-tree. Moreover, while for a run ρ of an alternating tree automaton on some
Σ-labeled X-tree t, all nodes of ρ that correspond to the same node u ∈ X∗ of t are on the
same level of ρ, this does not hold anymore for pushdown tree automata, even for deterministic
ones. On the other hand, for a run ρ of a nondeterministic pushdown tree automaton on some
Σ-labeled X-tree t, it holds that if two nodes v1 and v2 in ρ correspond to the same node u ∈ X∗
of t, then v1 and v2 are not on the same level of ρ.

Notice that for nondeterministic pushdown tree automata, the assumption that transitions
to successor and ε-transitions cannot be mixed is indispensable. If a nondeterministic pushdown
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tree automaton could perform a transition to successors and, at the same time, also perform an
ε-transition, then it could easily simulate an alternating tree automaton: It could send a copy
to each successor and at the same time perform an ε-transition. Then it could use the copy that
was sent by the ε-transition, to send another copy to each successor and so on. Also notice that
for a nondeterministic pushdown tree automaton A, the assumption that a run ρ : T → Σr of
A on some Σ-labeled X-tree t is complete is equivalent to the assumption that for all u ∈ X∗
there exists some v ∈ T such that PrX∗(ρ(v)) = u.

In the same way as for pushdown ω-automata we define 1-counter and realtime pushdown
tree automata: A is called 1-counter automaton if |Γ| = 1 and it is called realtime automaton
if it does not contain any epsilon transitions, that is, δ = δ↓. As for ω-languages we define
(deterministic) context-free, 1-counter and realtime tree languages.

Properties of Pushdown Tree Automata. We will not discuss the properties of pushdown
tree automata in detail, but we make some general remarks and collect some facts which are
important to us. A very simple observation is that, just as deterministic parity tree automata,
deterministic parity pushdown tree automata can simulate deterministic parity pushdown ω-
automata along the paths of a given tree. However, a nondeterministic parity pushdown tree
automaton can not simulate a nondeterministic parity pushdown ω-automaton along the paths of
a given tree in general. Remind that nondeterministic parity pushdown ω-automata are strictly
more expressive than deterministic ones. In fact, it can be seen that there are context-free
languages L ⊆ Σω such that the set of all Σ-labeled Σ-trees t with π ∈ L for any path π in t
is not a context-free tree language. This can be shown, for example, by a reduction from the
universality problem for nondeterministic context-free ω-languages, which is undecidable [81].

The most important property of pushdown tree automata is that the emptiness problem
for nondeterministic parity pushdown tree automata is decidable in exponential time. It has
been shown in [106] that the nonemptiness problem for nondeterministic Büchi pushdown tree
automata can be solved in triple exponential time and in [125] this has been improved to parity
acceptance and single exponential time:

Theorem 3.9. [125] The emptiness problem for nondeterministic parity pushdown tree automata
can be solved in exponential time.

On the other hand, in general, the emptiness problem for alternating parity pushdown tree
automata is undecidable, even if we consider only universal automata. This follows directly
from the aforementioned fact that the universality problem for nondeterministic ω-languages
is undecidable: To recognize arbitrary context-free ω-languages we don’t need ε-transitions
(cf. Section 2.2.2) and the dual of a nondeterministic realtime parity pushdown ω-automaton is
a universal realtime parity pushdown ω-automaton.

For arbitrary alternating automata undecidability of the emptiness problem can also be seen
from the fact that the emptiness problem for the intersection of context-free languages of finite
words is already undecidable. Intuitively, solving the emptiness problem for the intersection
of two context-free languages makes it necessary to let two finite state devices, each of which
has access to a separate stack memory, run in parallel over the same object, which somehow
establishes a connection between the devices. This is quite reminiscent of pushdown machines
with two stack memories which can, in turn, simulate Turing machines and hence have an
undecidable emptiness problem. Now an alternating tree automaton can easily simulate two given
tree automata in parallel, recognizing the intersection of the given languages, cf. Proposition 3.2.

This also demonstrates that there is no effective translation of universal parity pushdown
tree automata to nondeterministic parity pushdown tree automata. In fact, the expressive power
of universal and nondeterministic parity pushdown tree automata is incomparable and hence,
alternating parity pushdown tree automata are strictly more expressive than the nondeterministic
model. Moreover, while nondeterministic parity pushdown tree automata are closed under
union, they are neither closed under complement nor under intersection. We have described
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the problem with intersection already above. Moreover, if the automata were closed under
complement, then we could, for any universal automaton, take the dual of that automaton,
which is a nondeterministic parity pushdown tree automaton and then we could complement this
automaton and obtain a nondeterministic parity pushdown tree automaton which is equivalent
to the given universal automaton. This however, is not possible in general.

A property that does hold is that the intersection of a regular tree language and a context-free
tree language is again a context-free tree language and hence, the emptiness problem for the
intersection of nondeterministic parity tree automata and nondeterministic parity pushdown tree
automata is decidable. The rest of this section contains the corresponding product construction.

Let A = (Σ, QA, qAin, δA, colA) be a nondeterministic parity tree automaton and let B =
(Σ,Γ,⊥, QB, qBin, δB, colB) be a nondeterministic parity pushdown tree automaton, which both run
on Σ-labeled [d]-trees for some d ∈ N. Notice that due to the ε-transitions, a direct synchronous
product as in Proposition 3.2 cannot be applied. Instead, while B performs ε-transitions, A
has to be kept waiting. This product has a weak form of asynchronism with one component
idling from time to time while the other component performs certain steps but still, the two
components are always in the same location of the tree.

Also notice that with the parity acceptance condition we run into a similar problem as for
the product of two nondeterministic parity tree automata: The accepting sequences of states of
the product automaton cannot be directly defined by a parity condition using the colorings of
the given automata. Hence, we again take a detour through Muller pushdown tree automata. It
is clear that the LAR-construction works here as well, so we can transform the automaton into
a nondeterministic parity pushdown tree automaton.

A× B = (Σ,Γ,⊥, Q, qin, δ,F)}

• Q = QA ×QB and qin = (qAin, qBin)
• F consists of those subsets F of Q such that min{colA(PrQA(q)) | q ∈ F} is even and

min{colB(PrQB(q)) | q ∈ F} is even
• for all (p, q) ∈ Q, all a ∈ Σ and all A ∈ Γ⊥ we define

δ((p, q), a, A) =
∨

[ψA∈δA(p,a)]

∨
ψB∈δB(q,a,A)]

∧
j∈[d]

(↓j , (pj , qj), γj)

where (↓j , pj) ∈ ψA and (↓j , qj , γj) ∈ ψB

• for all (p, q) ∈ Q and all A ∈ Γ⊥ we define

δ((p, q), A, ε) = {((p, q′), γ) | (q′, γ) ∈ δB(q,A)}

Proposition 3.10. L(A× B) = L(A) ∩ L(B).

Proof. First, since B has the continuity property (and A has no ε-transitions), it is easy to see
that A× B has the continuity property as well.

Let t be an Σ-labeled [d]-tree. First, assume that t ∈ L(A) ∩ L(B), that means, there is an
accepting run ρA : X∗ → QA of A on t and an accepting run ρB : T → X∗ ×QB × Γ∗⊥ of B
on t, where T ⊆ N∗. We define ρ : T → X∗ × (QA ×QB)× Γ∗⊥ by ρ(v) = (u, (p, q), γ) where
(u, q, γ) = ρB(v) and p = ρA(u). It is easy to see that, by definition of A× B, ρ is an accepting
run of A× B on t which yields t ∈ L(A× B).

Now let conversely t ∈ L(A×B), that means, there is an accepting run ρ : T → X∗×Q×Γ∗⊥
of A × B on t, where T ⊆ N∗. First observe that if v, v′ ∈ T (with |v| ≤ |v′|) such that
ρ(v) = (u, (p, q), γ) and ρ(v′) = (u, (p′, q′), γ′) then, by definition of A × B, v v v′ and v′ is
reached in ρ from v by a sequence of ε-transitions of A× B. Hence, v′ = v0∗ and p′ = p.

We define ρA : X∗ → QA by ρA(u) = PrQA(ρ(v)) for some v ∈ T such that PrX∗(ρ(v)) = u.
As we have just shown, p is independent of the particular choice of v. To see that ρA is in
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fact a run of A on t, consider some u ∈ X∗ with ρA(u) = p and consider some v ∈ T with
PrX∗(ρ(v)) = u. Since B has the continuity property, ρ is complete, so there is a maximal m ∈ N
such that PrX∗(ρ(v0m)) = u. Let w := v0m and ρ(w) = (u, (p, q), γ). The set of successors of
w := v0m in T is {w · j | j ∈ [d]} such that for all j ∈ [d] we have ρ(w · j) = (u · j, (pj , qj), γjγ)
where ψ = {(↓j , (pj , qj), γj) | j ∈ [d]} is a conjunct in ϕ = δ((p, q), A, t(u)). By definition of δ,
{(↓j , pj) | j ∈ [d]} is a conjunct in ϕA = δA(p, t(u)). Therefore, ρA is a run of A on t. Now
consider any path π through X∗. Then there is a unique path π′ in T such that π is obtained
from π′ by projecting ρ(π′) to the X∗-component and contracting all multiple occurrences
of nodes u ∈ X∗ to a single occurrence. Then we have Inf(ρA(π)) = Inf(PrQA(ρ(π′))) and
since ρ is accepting this yields that Inf(ρA(π)) ∈ F which, by definition of F means that
min col(Inf(ρA(π))) is even. So ρA is accepting and hence, t ∈ L(A).

Moreover, for v ∈ T we define ρB(v) = (u, q, γ) where ρ(v) = (u, (p, q), γ) for some p. Since
ρ : T → X∗ × (QA ×QB) × Γ∗⊥ is an accepting run of A× B, the definition of A× B easily
yields that ρB : T → X∗ ×QB × Γ∗⊥ is an accepting run of B on t. (Notice that, in particular,
ρ and ρB are defined over the same tree T ⊆ N∗.) Hence, t ∈ L(B).

3.2 Tree Automata and Partial Information
We have already hinted at the intimate connection between alternating tree automata and
interaction under partial information in Section 3.1. This was explicitly suggested by Kupferman
and Vardi [127] and is underpinned by various successful applications of this concept to synthesis
under partial information [127, 129, 137, 80]. Some intuitive evidence on the connection between
tree automata and partial information has also been given in Section 3.1.1 where we have
argued why constructions like product of automata and projection cannot be applied directly to
alternating (or, in fact, even universal) automata. In this Section, we study the relation between
alternating tree automata and interaction under partial information more closely. We present
basic solutions of strategy problems under partial information which use universal or general
alternating tree automata in an elegant way and we discuss how the emptiness problem for such
automata can in turn be reduced to the strategy problem for games with imperfect information.

To start with, let us review how tree automata can be used to solve games with full
information and linear specifications. For this, consider Church’s setting, where we have the
environment p0 and a single controller p1, which communicate via a channel c01 from p0 to p1
and, additionally, p1 has an external output channel. The alphabets on the channels are both
the boolean alphabet B. Formally, this defines the distributed system

D1 = (A, (Σc)c∈C)

with A = (C, r, w) where
• C = {01, 1}
• w(01) = p0 and r(01) = p1

• w(1) = p1 and r(1) = p0

Moreover, Σc = B for all channels c ∈ C.
Now consider some regular specification L ⊆ (ΣD1). A strategy for p1 is a Σ1-labeled Σ01-tree

t : Σ∗01 → Σ1, cf. Section 3.1. The strategy is winning if it is satisfies the following condition:

(W) each α = α01
_α1 ∈ (ΣD1)ω which is consistent with t is in L.

Notice that we could represent a strategy for p1 also in the same way as we represent
joint strategies for the grand coalition (which now consists only of p1), that is, as Σ1-labeled
(ΣD1)∗-trees t : (ΣD1)∗ → Σ1. Since ΣD1 = Σ01 × Σ1 and p1 can always deduce his own actions
from his strategy and the sequence of signals it has received via c01, there is no harm done
in providing p1 with this additional information in the tree representation of a strategy. On
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the other hand, since the branches of such a strategy t which correspond to histories that are
consistent with the strategy are uniquely determined by the labeling of the tree we can skip all
other branches and we prefer to use the more evident representation of a strategy as a Σ01-tree.

The key observation for solving the controller problem for D1 with tree automata is that

Twin = {t ∈ BB | t is a winning strategy for p1}

is a regular tree language. Twin can even be recognized by a deterministic parity tree automaton:
Construct a deterministic parity automaton B = (B × B, Q, qin, δ, col) with L(B) = L. Then
construct a deterministic parity tree automaton A which simulates B on all α ∈ (ΣD1)ω that
are consistent with the given input tree t. More precisely, A = (B, Q, qin, δ

A, col) has transitions
δ(q, b) = (↓0, δ(q, (0, b))) ∧ (↓1, δ(q, (1, b))) for all q ∈ Q and all b ∈ B. So A always feeds both
directions 0 and 1 into the automaton B which are the possible actions of p0 in this situation,
but as corresponding signal from Σ1 it takes the label of the current node which is the action
chosen by p1 in this situation, according to the strategy t. So L(A) = Twin and therefore, p1
has a winning strategy for (D1, L) if, and only if, L(A) 6= ∅. We already know that the latter
problem is decidable and if L(A) 6= ∅ then we can construct a regular tree t ∈ L(A) which yields
a finite state implementation of a winning strategy for p1. As we have already mentioned in
Section 3.1, this approach to Church’s problem was originally presented by Rabin [177].

Notice that while the alphabet of the automaton B recognizing L is B×B, the labeling alpha-
bet of the tree automaton A is B. Clearly, the automaton B needs to access both components of a
system run of D1 to be able to recognize the specification of D1 which it can only do via the input
alphabet. On the other hand, the tree automaton A has implicit access to the Σp1

in -component
of the system runs via the directions of the tree which we have used to simulate B on the
system runs along the paths of a given input tree t. In a sense, we have made implicit use of
the x-ray operator, cf. Section 3.1.1. We will do this frequently in our tree automata constructions.

Now consider a simple extension of D1 to an interactive scenario where p1 has partial
information: Let the distributed system D1,h be obtained from D1 by adding a hidden channel
c0 of the environment to C, that is, C = {0, 01, 1} and w(0) = r(0) = p0 and we define
Σ0 = B. All the other components are as before. Now consider again some (regular) specification
L ⊆ (ΣD1,h)ω. A strategy for p1 is, just as before, Σ1-labeled Σ01-tree t : Σ∗01 → Σ1 and the
strategy is winning, if it satisfies the following condition:
(W) each α = α0

_α01
_α1 ∈ (ΣD1,h)ω which is consistent with t is in L.

Now, if we try to solve the controller problem for D1,h just as for the system D1 we run into
a problem: A deterministic automaton which runs over a Σ1-labeled Σ01-tree t cannot check the
condition (W) since it has no access to the Σ0-component of the system runs α. The automaton
that we have constructed above had access to the Σ01-component of the system runs via the
directions of the input tree. In the representation of a strategy of p1 for D1,h as a Σ1-labeled
Σ01-tree, though, the Σ0-directions are not present. However, we can also represent a strategy
for p1 for D1,h as a Σ1-labeled Σ0 × Σ01-tree t : (Σ0 × Σ01)∗ → Σ1. Now this tree contains the
Σ0-components of a system run as directions and a deterministic tree automaton running over
t could check condition (W). On the other hand, a Σ1-labeled Σ0 × Σ01-tree has to fulfill the
consistency condition (S2) in order to actually represent a strategy for p1, cf. Section 2.1. As
we have mentioned before, (S2) cannot be checked by a tree automaton, that is, the set of all
Σ1-labeled Σ0 × Σ01-trees that satisfy condition (S2) is not regular, cf. Section 3.1.

Intuitively, this is clear once we know that the set Tt0=t1 as defined in Section 3.1 is not
regular. However, since this observation is one of the most essential aspects of synthesis
under partial information, we give a short explicit proof sketch. To simplify the reasoning
let us redefine Σ01 from B to the single element alphabet {|}. A strategy for p1 can then
be described as a function σ : Σ∗0 → B which satisfies condition (S2). That is, σ takes the
sequence of hidden signals of the environment p0 as input but at the same time it has to be
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independent of the particular sequence of signals it reads. Hence, the value of σ only depends
on the length of the input. In other words, the set of all Σ1-labeled Σ0-trees which satisfy
condition (S2) (that is, which are strategies of p1), is just the set of all B-labeled B-trees t such
that the labeling of t is constant on each level. Now, it is not hard to see that the language
Tt(u)=t(|u|) = {t ∈ BB | t(u) = t(v) for all u, v ∈ B∗ with |u| = |v|} is not recognizable by any
tree automaton. (The proof is essentially the same as for the set Tt0=t1 : A nondeterministic tree
automaton A that accepts all trees in Tt(u)=t(|u|) accepts in particular the tree t0 with t0(u) = 0
for all u ∈ B∗ and the tree t1 with t1(ε) = 0 and t1(u) = 1 for all u ∈ B∗ \ {ε}. Now if ρj is an
accepting run of A on tj for j = 0, 1, by combining the subtree of ρ0 which is rooted in 0 and the
subtree of ρ1 which is rooted in 1 we obtain an accepting run of A on the tree t01 with t01(u) = 1
for u ∈ 1B∗ and t01(u) = 0 for u ∈ B∗ \ 1B∗. Since t01 /∈ Tt(u)=t(|u|), L(A) 6= Tt(u)=t(|u|).)

Clearly, regularity of (S2) depends on the system at hand. If, for example, the output
alphabet of p1 is {|} then (S2) becomes trivial. Moreover, even if (S2) is not regular, the question
whether (W)∧ (S2) is regular still depends on the condition (W) which is parametrized by L. If
L is empty, then clearly the set of all trees which satisfy (W) and (S2) is empty as well and hence,
(W) ∧ (S2) is regular. On the other hand, if L = (Σ0 × Σ01 × Σ1)ω then (W) ∧ (S2) ≡ (S2).

So the approach to solve the controller problem for D1,h by constructing a tree automaton
that runs over Σ1-labeled Σ0 × Σ01-trees and checks that the input tree is a winning strategy
for p1 does not work either. Since for a Σ1-labeled Σ01-tree we know at least that it always
represents a strategy for p1, let us reconsider this representation. Remind that the problem
there is that a tree automaton running over such a tree cannot check condition (W) since it does
not have access to the Σ0-components. The key observation needed to overcome this problem is
that the following condition is equivalent to (W):

(W∀α0) if α01
_α1 ∈ (Σ01 × Σ1)ω with α1(j) = t(α01(<j)) for all j ∈ N then

α0
_α01

_α1 ∈ L for all α0 ∈ Σω0 .

The reason for the equivalence of (W) and (W∀α0) is that the sequences α0 ∈ Σ0 are not
involved in the requirement that a system run α = α0

_α01
_α1 is consistent with t: Neither

does the strategy depend on α0 nor is α0 constrained by the strategy. Now (W∀α0) can easily
be rephrased as condition (W), by shifting the universal quantification over the sequences α0 to
the definition of the language L∀α0 = {α_01α1 |α0

_α01
_α1 ∈ L for all α0}.

(W) if α01
_α1 ∈ (Σ01 × Σ1)ω with α1(j) = σ(α01(<j)) for all j ∈ N then α0

_α01
_α1 ∈ L∀α0

Now (W) is the condition in terms of the distributed system D1 but with the modified speci-
fication L∀α0 . Assume that B is a deterministic parity automaton recognizing L. Then we can
construct a deterministic parity automaton B∀α0 recognizing L∀α0 as follows: First, we construct
a nondeterministic parity automaton C which, while running over a word α01

_α1 ∈ (Σ01×Σ1)ω,
B∀α0 guesses a sequence α0 ∈ Σω

0 and checks that B does not accept the corresponding word
α0

_α01
_α1. (By simulating B on this word but using the complementary parity acceptance

condition.) Then we can determinize and complement C to obtain B∀α0 . Having constructed
B∀α0 , we can solve the controller problem for (D1,h, L) by solving the controller problem for
(D1, L∀α0) just as before.

This solution is due to Wong-Toi and Dill [221]. Notice that it uses only deterministic tree
automata and nondeterministic ω-automata.

Theorem 3.11. [221] The controller problem for D1,h is decidable for regular specifications.

However, the universal quantification over the sequences α0 in (W∀α0) can also be directly
simulated by a universal tree automaton: Consider some deterministic parity automaton B
recognizing L. Then we can construct a universal parity tree automaton A that (universally)
branches over the possible input signals from Σ0 while running over the paths of the given
input tree t : Σ∗01 → Σ1 and simulates B on all resulting paths. That is, A spans the Σ1-labeled
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Σ0×Σ01-tree wideΣ0(t) = t′ : (Σ0×Σ01)∗ → Σ1 with t′(u) = t(PrΣ01(u)) and checks that t′ is a
winning strategy for p1 just like the deterministic automaton for solving the controller problem
for D1 as above. Hence, t ∈ L(A) if, and only if, t is a winning strategy for p1 for (D1,h, L).

Then we can translate A into an equivalent deterministic parity tree automaton A′ as
described in Section 3.1. Once we have constructed A′, the controller problem for (D1,h, L) can
be solved by checking nonemptiness of A′ and, if L(A′) 6= ∅, then we can construct a regular
tree t ∈ L(A′) which yields a finite memory strategy for p1 for D1,h just as in the case of D1.

Notice that, on the technical level, this approach is really just the same as the approach
of Wong-Toi and Dill. As we have seen, removing universality from the tree automaton A
amounts exactly to determinization of a nondeterministic parity automaton which is the dual
of a universal parity automaton that runs over the universal branches of A in parallel – this
nondeterministic automaton is essentially the automaton C as defined above. In a sense, while
the universal automaton A directly checks that a given strategy t is winning with respect
to Tr(L) by using universal branching to simulate B on the paths of the tree wideΣ0(t), the
approach of Wong-Toi and Dill is more modular and constructs an automaton recognizing L∀α0

explicitly. This shifts the determinization of C to a more visible layer of the construction.
These observations also show that reducing the strategy problem for regular two-player

games with imperfect information to parity games with full information, essentially just amounts
to determinization of ω-automata.

3.2.1 Alternating Tree Automata Solutions
Wong-Toi and Dill also extended their solution to several other, more general cases which,
however, are all restricted to a single controller and linear time specifications. On the other
hand, the more direct tree automata approach using universality as an integral part is at the
heart of many powerful and elegant solutions for more sophisticated synthesis problems involving
multiple controllers, branching time specifications and locally decomposable specifications, see
for example [127, 129, 137, 80]. In this section, we discuss some of the main ideas of these
advanced constructions.

Branching Time Specifications. In [127], Kupferman and Vardi considered the controller
problem for distributed systems with a single controller and branching time specifications written
in CTL [56] and its extension CTL∗ [73]. We do not introduce these logics here but instead, we
use tree automata as specification formalism which encompasses all specifications expressible
in CTL∗ [77, 72, 20] (and even the modal µ-Calculus [75]). So consider the distributed system
D1,h as described above and let S = (Σ1, Q, qin, δ, col) be an alternating parity tree automaton
defining the branching time specification for D1,h. We consider the following variant of the
controller problem for D1,h: is there a strategy t : (Σ0 × Σ01)∗ → Σ1 for p1 such that t ∈ L(S)?

Notice that here, we again use the representation of strategies for p1 as Σ0 × Σ01-trees. The
reason is that a branching time specification should also be able to address the Σ0-component
of the system runs which it cannot do if it talks about Σ1-labeled Σ01-trees. Now, since the
branching time specification defines a set of good trees that a winning strategy is required to be
in, strategies for p1 have to represented as Σ0 × Σ01-trees as well.

While for the system D1 with no hidden channels from the environment, the controller
problem for branching time specifications could be solved directly by checking emptiness of
S, this is not the case for D1,h: A tree t ∈ L(S) is not necessarily a strategy for p1 since it
might not satisfy the consistency condition (S2). As we already know, in general there is no
tree automaton recognizing S ∩ (S2). Notice that since the condition (S2) is not regular, the
set TwideΣ0

= {wideΣ0(t) | t ∈ (Σ01)Σ1} is not regular as well since TwideΣ0
= T(S2) = {t′ ∈

(Σ0 × Σ01)Σ1 | t′ satisfies (S2) }. This substantiates the remark from Section 3.1: The class of
regular tree languages is not closed under widening.

To solve the controller problem for D1,h and L(S) we present a solution given by Kupferman
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and Vardi in [127].4 It can be viewed as an extension of the solution of the controller problem
for the system D1,h for linear time specifications to branching time specifications.

To see how this can be done, remind that we have noted that the universal tree automaton
A as constructed above, while running over an input tree t : Σ01 → Σ1, uses its universal power
to span the tree t′ = wideΣ0(t) and simulate the deterministic parity automaton B on all paths
of t′. Now the important point is that an alternating parity tree automaton can also simulate
the tree automaton S on the tree t′ while running over the input tree t instead of the automaton
B. That means, while TwideΣ0

is not regular, the set

narrow(L(S)) := {t ∈ (Σ01)Σ1 |wideΣ0(t) ∈ L(S)}

is regular. This set can be seen as the analog to the set L∀α0 in the case where L is a linear
time specification.

Notice that the regularity of narrow(L(S)) exactly amounts to the claim of Proposition 3.4
that for a given alternating parity tree automaton AX×Y over Σ-labeled X × Y -trees we can
construct an alternating parity tree automaton narrowY (AX×Y ) over Σ-labeled X trees such
that narrowY (AX×Y ) accepts a tree t if, and only if, AX×Y accepts wideY (t).

To see how this automaton can be obtained, let the automaton to be constructed again be
called A. The transition δA(q, a1) of A for a given state q ∈ QA and a label a1 ∈ Σ1 is obtained
from the transition δS(q, a1) of S by replacing each literal (↓(a0,a01), q) ∈ (Σ0 ×Σ01)×Q by the
literal (↓a01 , q). So, when δS(q, a1) contains a conjunct∧

a=(a0,a01)∈Σ0×Σ01

∧
q∈Qa(↓a, q)

then δA(q, a1) contains the conjunct∧
a=(a0,a01)∈Σ0×Σ01

∧
q∈Qa(↓a01 , q).

So, for a given direction a01 ∈ Σ01, the automaton A sends all the states q ∈
⋃
a0∈Σ0

Q(a0,a01)
that S sends to some direction (a0, a01) to the direction a01. In this way, A simulates S on
wideΣ0(t) for a given input tree t ∈ (Σ01)Σ1 . Clearly, this construction introduces additional
universality.

To see that L(A) = narrow(L(S)) it is sufficient to note that a run ρA of A on a given input
tree t ∈ (Σ01)Σ1 corresponds to a run ρS of S on wideΣ0(t) and, moreover, ρA is accepting if,
and only if, ρS is accepting. To make this concept more evident, it is convenient to incorporate
the directions a0 ∈ Σ0, over which the automaton A universally branches, explicitly into the
state space of A. In this way, the correspondence between the runs ρA and ρS can be established
directly via the labels of ρA which makes the proof more transparent. So the state space QA is
QS × Σ0 and δA((q, b0), a1) for a given state (q, b0) ∈ QA and a label a1 ∈ Σ1 is obtained from
δS(q, a1) by replacing each literal (↓(a0,a01), q) ∈ (Σ0 × Σ01)×Q by (↓a01 , (q, a0)).

We conclude that in fact L(A) = narrow(L(S)), that means, the automaton A accepts a
Σ1-labeled Σ01-tree which represents a strategy for p1 in D1,h if, and only if, S accepts the
Σ1-labeled Σ0 × Σ01-tree wideΣ0(t) which represents the same strategy of p1. Hence, L(A) 6= ∅
if, and only if, p1 has a strategy D1,h whose representation as a Σ0 × Σ01-tree is in L(S). If
L(A) 6= ∅, as usual, a regular tree in L(A) yields a finite state implementation of a strategy for
p1. This solves the controller problem for D1,h with branching time specifications.
Theorem 3.12. [127] The branching time controller problem for D1,h is decidable for regular
tree languages.

Multiple Controllers. Distributed systems as we consider them here have first been studied
by Pnueli and Rosner in[171]. They considered, among others, the system

D2 = (A, (Σc)c∈C)

with A = ({01, 02, 1, 2}, r, w) where
4An earlier version of this paper appeared as [126].
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• w(0i) = p0 and r(0i) = pi

• w(i) = pi and r(i) =0

Moreover, Σc = B for all c ∈ C. They showed that D2 is undecidable for LTL-specifications.5
Originally, Pnueli and Rosner used more general alphabets but by encoding each element of the
larger alphabets as a bit sequence, the proof can be adapted to binary alphabets. The proof can
also be slightly refined so that the specification can be recognized by a safety automaton.6

Theorem 3.13. [163, 171] The controller problem for D2 is undecidable for safety specifications.

Now let L ⊆ (ΣD2)ω be a specification for D2. To analyze why the approach for the system
D1,h cannot be extended to D2, first notice that due to the different information that p1 and
p2 have about the system D2, the definition of L∀α0 as given for D1,h does not apply here
directly. Now consider the following naive approach to generalize the definition of L∀α0 to D2:
We construct specifications L1 and L2, where Li is defined with respect to the information of
pi, that is, it consists of those α01

_α1 ∈ (Σ01 × Σ1)ω such that for all α02
_α2 ∈ (Σ02 × Σ1)ω

we have α01
_α02

_α1
_α2 ∈ L and L2 analogously. Then we solve, for i = 1, 2, the controller

problem for pi with respect to Li.
In fact, this approach is partially correct: If a strategy σ = (σ1, σ2) can be synthesized in this

way then σ is actually a winning strategy for the controllers for (D2, L). The converse, however,
is clearly not true: The requirement that for each sequence α01

_α1 which is consistent with
σ1 we have α01

_α02
_α1

_α2 ∈ L for all α02
_α2 ∈ (Σ02 × Σ1)ω is too strong since for a run

α = α01
_α02

_α1
_α2 we require merely that α ∈ L, if α is consistent with the joint strategy

σ. So the sequences α02
_α2 that occur in such runs are constrained by σ2 and the sequences

α01
_α1 are constrained by σ1.
Due to this mutual dependency it is quite intricate to reduce controller problems for

distributed systems with multiple controllers to controller problems with full information in
a direct way like for D1,h. In Chapter 6 we present a construction that takes into account
the different information of p1 and p2 and also incorporates strategic dependencies. Clearly,
since the controller problem for D2 is undecidable, there cannot be an effective reduction to a
controller problem with full information which works in general. In fact, our construction does
not always yield a finite result, cf. Section 3.5 and Chapter 6. Here we review how the controller
problem can be solved for systems with pipeline architectures and regular specifications.

Consider a pipeline with n+ 1 processes

Dn,p = (A, (Σc)c∈C).

W.l.o.g. we assume that from a process pi with i < n, there is exactly one channel to pi+1.
Additionally, the environment has a hidden channel and each process pi has an external output
channel. There are no other channels in the architecture A. We denote A = (C, r, w) as follows.

• C = {c0, c0,h} ∪ {ci, ci,e | i = 1, . . . , n− 1} ∪ {cn,e}
• w(ci) = pi, r(ci) = pi+1 and w(c0,h) = r(c0,h) = 0
• w(ci,e) = pi and r(ci,e) = p0

Moreover, assume Σc = B for all c ∈ C and for a controller pi let us denote
• Σi :=

∏
c∈Opi∩Ipi+1

Σc

• Σ≥iout := Σ≥pi(=
∏n
j=i Σpjout) (Notice that Σout = Σ≥1

out)

5Peterson and Reif showed already in [163] that the strategy problem for three-player games on finite graphs
with partial information is undecidable for reachability conditions. However, they used a model with a certain
kind of asynchronous observability.

6We provide a detailed proof in Chapter 5.
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As we have demonstrated in Section 2.1.3, a joint strategy σ = (σ1, . . . , σn) for the controllers
can be represented as a Σout-labeled Σ0-tree t : Σ∗0 → Σout since given the fixed strategy σ,
the sequence of signals that p0 sends to the controllers uniquely determines the output of all
controllers. In the case of the pipeline, the underlying information flow is linear which makes
it particularly simple, to trace how the outputs are determined: In the first step, the action
of each process pi, i = 1, . . . , n is uniquely determined by σi. In the second step, the action of
process p1 is σ1(a), where a is the signal chosen by p0 in the first step, the action of process p2
is σ2(σ1(a)) and so on. In the third step, the action of process p1 is σ1(ab), where b is the signal
chosen by p0 in the second step, the action of process p2 is σ2(σ1(a)σ1(ab)) and so on. In this
way, the actions of all processes p1, . . . , pn are determined in each step.

Now let L ⊆ (ΣDn,p)ω be a regular specification for Dn,p and let B be a deterministic parity
automaton with L(B) = L. We already know how to construct a universal parity tree automaton
A1 that runs over a tree t : Σ∗0 → Σout and checks that all path through wideΣ0,h(t) are in L by
simulating B along these paths. This takes care of the hidden channel c0,h from p0.

Moreover, we know how to transform A1 into an equivalent deterministic parity tree automa-
ton A′1. But we also know that no tree automaton can check that t is in fact a strategy, because
for this to be true, for each i = 2, . . . , n the tree t has to fulfill the consistency condition (S2)pi .
For the case of the pipeline Dn,p, these conditions have the following form:

(S2)i PrΣi−1(t∗(u−1)) = PrΣi−1(t∗(v−1)) =⇒ PrΣpiout
(t(u)) = PrΣpiout

(t(v)).

Now given a tree t : Σ∗0 → Σout which fulfills condition (S2)i we can define a strategy
ti : Σ∗i−1 → Σpiout = Σi×Σi,e for pi as follows: First, ti(ε) = PrΣpiout

(t(ε)). Moreover, for v ∈ Σ+
i−1

let ti(v) = PrΣpiout
(t(ua)) for some ua ∈ Σ∗0 such that PrΣi−1(t∗(u)) = v. Since t fulfills condition

(S2)i, this definition is independent of the particular u and a.
Since the condition (S2) is not regular, the conditions (S2)i are clearly not regular in general

as well. Notice however, that we have not required a condition (S2)1. In fact, PrΣp1
out

(t) is
a strategy for p1 for any tree t : Σ∗0 → Σout. The reason for this is that p1 is the uniquely
determined best informed process in the system Dn,p, that is, p1 reads all the signals from Σ0
that the environment sends to the controllers directly.

This is already the most important step towards a solution of the controller problem for Dn,p:
An extended strategy for p1 is here a joint strategy σ≥1 : Σ∗0 → Σout for the grand coalition.
Likewise, any controller pi can take the role of all processes pi, . . . , pn by playing an extended
strategy t≥i : Σ∗i−1 → Σ≥iout. As we have mentioned, by playing an extended strategy t≥i, pi can
abuse the information on which it bases its decisions, that means, t≥i does not necessarily fulfill
the consistency conditions (S2)j for j > i. The solution to the controller problem for (Dn,p, L)
is an iterative construction of alternating parity tree automata A1, . . . ,An (with A1 already
given) that successively eliminates this abuse of information. That means, for i ≥ 2, Ai is an
automaton over Σ≥iout-labeled Σi−1-trees such that t ∈ L(Ai) if, and only if:

There is a Σ≥i−1
out -labeled Σi−2-tree s such that

• s is in L(Ai−1) and fulfills (S2)i
• si = t, where si is the extended strategy si : Σ∗i−i → Σ≥iout for process pi, determined by s

By induction, L(An) 6= ∅ if, and only if, there is a tree t ∈ L(A1) such that t fulfills (S2)i for
all i = 2, . . . , n. Clearly, there is a joint winning for the controllers for (Dn,p, L) if, and only if,
there is a tree with these properties, that means, if, and only if, L(An) 6= ∅.

We do not give all details of the construction here but we merely describe the automaton
A2 informally, which is sufficient to understand the general principle behind the construction.
To see how A2 works, let us start at the root of some input tree t : Σ∗1 → Σ≥2

out. There, the
automaton nondeterministically guesses an element (a, b) ∈ Σ1×Σ1,e which is the action chosen
by p1 in the first step according to some strategy that A2 is guessing. Then the automaton
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universally branches over all elements c1, . . . , cr ∈ Σ0 (r = |Σ0|), which are the possible signals
send by p0 to p1 in the first step, and proceeds to copies (↓a, c1), . . . , (↓a, cr). Analogously, being
at any node (u,w) ∈ Σ∗1 × Σ∗0 of the run, A2 again guesses an element (a, b) ∈ Σpi

out, branches
universally over all cj , and proceeds to copies (↓a, c1), . . . , (↓a, cr). In this way, A2 guesses a
Σpiout-labeled Σ0-tree t′ : Σ∗0 → Σpiout which is a strategy for p1. Moreover, via the labels of t we
immediately obtain a Σ≥1

out-labeled Σ0-tree s from t′: The Σ≥2
out-label of ε is t(ε), the Σ≥2

out-label
of any node cj is t(a0) and so on. By construction, s satisfies (S2)2 and the strategy s2 for p2
which is determined by s2 coincides with t.

In order to guarantee that also s ∈ L(A1) holds, we simulate the equivalent deterministic
parity tree automaton A′1 (over Σout = Σ≥1

out-labeled Σ0-trees) on s which A2 guesses. To see how
this is done, let us again start from the top of t. Remind that A2 guesses a (a, b) ∈ Σ1 × Σ1,e,
branches over all c1, . . . , cr ∈ Σ0 and proceeds to copies (↓a, c1), . . . , (↓a, cr). In order to
simulate A′1, we keep the state q of A′1 in the state of A2 and we look at the transition
δA
′
1(q, s(ε)) = δA

′
1(q, ((a, b), t(ε))) which tells us, for each direction cj in s, the state of A′1.

Analogously, in any node (u,w) of the run, A2 again guesses a (a, b) ∈ Σp1
out, branches over all

cj , and proceeds to copies (↓a, c1), . . . , (↓a, cr). Hence, take again the state q of A′1 and look at
δA
′
1(q, s(u)) = δA

′
1(q, ((a, b), t(u))).

Notice that the way in which we use the concept of alternation here differs considerably
from the way in which we have used the concept of universality for spanning the Σ-labeled
X × Y -tree wideY (t) over a Σ-labeled X-tree t: There we have send all the possible Y -elements
into all X-directions of the tree and we have kept the labels from the tree t completely. In
particular, simulating a given tree automaton A on wideY (t) while running over t introduces
only additional universality but no additional nondeterminism. Using this observation it’s easy
to see that this can be done safely, even if A is alternating. Here the situation is different: A2
branches universally over the Σ0-elements but sends them all to the same Σ1-direction which
the automaton guesses nondeterministically. In this way, the tree s is not really spanned over t
but somehow superimposed.7

Now consider what would happen if we simulated the universal parity tree automaton A1
directly on the tree s. This automaton universally branches over the possible hidden inputs from
Σ0,h in each step. So when we simulate A1 on s, a branch in the run does not correspond to a
node u ∈ Σ∗0 of s anymore but to a node (u, v) ∈ (Σ0×Σ0,h)∗ of wideΣ0,h(s) and the automaton
A2 can make its nondeterministic choices dependent on v. But the nondeterministic choices of
A2 guess a strategy of p1 which has to be independent of v. Notice that, as we already know,
the nondeterministic choices of A2 can be made independent of the particular branch of the run
by using a positional strategy for player 1 for the semantic game G(A2, t). But nevertheless, the
choices still depend on the particular node of t and the state of the automaton. But the state of
A2 also contains the state of A1 and since A1 simulates the specification B along the paths of
wideΣ0,h(s), the state of A1 contains the state of B from which one can still infer information
about the sequence v.

However, since the automaton A′1 is deterministic, it can be seen that we have in fact
t ∈ L(A2) if, and only if, there is a tree s ∈ L(A1) such that s satisfies condition (S2)2 and the
strategy s2 coincides with t. Clearly, since A2 is not just universal but alternating, there is no
equivalent deterministic parity tree automaton in general. However, from our explanation above
it is clear that it suffices to have an equivalent nondeterministic automaton A′2 to be able to
construct the automaton A3 in the very same way as we have constructed A2.

We have already noted that once the iteration is finished and we have accomplished the
construction of An, it holds that L(An) 6= ∅ if, and only if, there is a t ∈ L(A1) that fulfills
(S2)i for i = 2, . . . , n. This settles the decidability of the controller problem for (Dn,p, L): To
decide whether there is a winning strategy for the controllers for (Dn,p, L) we transform An into
an equivalent nondeterministic parity tree automaton and check whether L(An) 6= ∅.

7Clearly, terms like spanning and superimposing have no precise definition but they seem meaningful for
distinguishing the different ways in which we have used the concept of alternation.
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Implementation of Strategies. Once we know that L(An) 6= ∅ we would like to synthesize a
winning strategy for the controllers. This, however, is not as simple as for D1,h: A regular tree
tn in L(An) does not directly provide a finite state implementation of a joint winning strategy
for the controllers but merely a finite state implementation of a strategy for pn, but, with the
additional property that there exists a regular tree tn−1 ∈ L(An−1) such that tn−1 satisfies
condition (S2)n and (tn−1)n = tn. So in order to actually synthesize a joint winning strategy for
the controllers, we have to proceed iteratively again by going backwards through the inductive
construction of the automata A1, . . . ,An.

Clearly, in the second step of this iteration it is not sufficient to check just the emptiness
of the nondeterministic automaton A′n−1 and to construct a regular tree in L(An−1) but we
have to make sure that we get hold of a regular tree tn−1 ∈ L(An−1) such that (tn−1)n = tn.
To guarantee this, we don’t just play the usual emptiness game G(A′n−1) but we play the game
G(A′n−1, tn) which is relativized to the tree tn and which is obtained by taking the product of
the game graph G(A′n−1) and a finite automaton Bn that generates tn.

More precisely, the game graph G(A′n−1, tn) has positions (q, p) for player 1 and positions
(q, ((a, b), c), q1, . . . , qs, p) for player 0 where s = |Σn−2| and (q, ((a, b), c), q1, . . . , qs) is a transition
of A′n−1, p is a state of Bn and c = τBn(p). (Notice that A′n−1 runs over Σn−1 × Σn−1,e × Σn-
labeled Σn−2-trees.) The initial position is (qin, pin) from which player 1 can move to any
position (qin, ((a, b), τBn(pin)), q1, . . . , qs, pin). From this position, player 0 can move to any
position (qj , δBn(pin, a)) and so on. So we also feed the Σn−1-label chosen by player 1 into the
transition function of Bn. In this way, player 1 constructs a Σn−1×Σn−1,e×Σn)-labeled Σn−2-tree
tn−1 ∈ L(A′n−1) where the Σn-component of the labels is determined by the corresponding label
of tn at the node which is given by the sequence of Σn−1-labels of tn−1 – that means (tn−1)n = tn.

The first solution for the controller problem for (Dn,p, L) has been given by Pnueli and Rosner
in [171]. They used only nondeterministic tree automata and branching time logics, exploiting
their well-known equivalence to nondeterministic tree automata. In [129] Kupferman and Vardi
extended the solution of Pnueli and Rosner to certain more general classes of architectures and
to branching time specifications using alternating tree automata. Clearly, the solution presented
above works for branching time specifications as well.

In [80], Finkbeiner and Schewe used similar constructions for their decision procedures
but extended them to a somewhat more general setting where broadcast channels are allowed,
cf. Section 2.1.3. Finkbeiner and Schewe also considered so called white box processes, that is, the
architectures may have certain processes which already have an implementation by means of a
finite state device.8 Finkbeiner and Schewe showed that any architecture without an information
fork (cf. Section 2.1.3) is decidable for regular and for branching time specifications written in
the modal µ-calculus. The proof proceeds via certain architecture manipulations which allow
to transform any given information fork free architecture into one which has the shape of a
pipeline. So essentially, the decision procedure that we have presented above is sufficient for
deciding the controller problem for any distributed system with a decidable architecture.

Finkbeiner and Schewe also proved that the information fork criterion is necessary for
decidability of a given architecture for both, regular and branching time specification. To prove
that any architecture with an information fork is undecidable for regular specifications, the
original proof of Pnueli and Rosner for the architecture D2. has to be refined in two directions.
First, one has to deal with arbitrary information forks instead of just the simple on in the
architecture D2. Second, one has to deal with the fact that the two processes in the given
information fork do not necessarily have external output channels but it may be that all their

8In fact, they showed that white boxes can be eliminated. Essentially each white box can be simulated by an
appropriate black box and the behaviors which are prescribed by the implementation of the white box can be
added to the specification. However, for modeling an actual system, white boxes may be comfortable as they
allow to incorporate partial system designs into the architecture, rather than the specification, cf. [80].
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outputs are read by the other process. The proof in [80] can again be strengthened to safety
conditions, so we obtain the following result.

Theorem 3.14. [171, 129, 80]
(1) If A has an information fork, A is undecidable for safety and CTL specifications.
(2) If A does not have an information fork, it is decidable for regular and CTL∗ specifications.

3.2.2 Emptiness Games for Alternating Tree Automata
In Section 3.1 we have described the emptiness game for nondeterministic tree automata. We
have also mentioned that the game cannot be directly generalized to alternating tree automata.
We could easily incorporate the alternating transition structure of the automaton into the game
just as we have done this for the semantic game but the problem is that then, player 1 can
make his choices of transitions dependent on the particular branch of the run. This is ok, as
long as the input tree is fixed (the nondeterministic choices of the automaton may depend on
these particular branches) but it does not work if the input tree is to be constructed by means
of these choices (the labels of the input tree must not depend on these particular branches).

Consider alternating parity tree automaton on Σ-labeled [d]-trees

A = (Σ, Q, qin, δ, col).

Universal Tree Automata. If A is universal, there is an easy way to fix the problem described
above by introducing partial information to the emptiness game. For this, we slightly modify
the positions of player 1 so that they have the form (q, x) where q ∈ Q and x ∈ [d]. From such
a position, player 1 can move (with action a) to any position (q, x, a) of player 0 with a ∈ Σ.
Then, for δ(q, a) = (↓x1 , q1) ∧ . . . ∧ (↓xs , qs), player 0 can move (with action j) from (q, x, a) to
any position (qj , xj). Player 1 has partial information about the positions and actions in the
game: Of a position (q, x) or (q, x, a) he observes only x, that is v ∼V w if Pr[d](v) = Pr[d](w).
Moreover, for any two actions j and j′ of player 0 we have j ∼A j′. So a strategy for player 1 in
the emptiness game G(A) is essentially a function σ : [d]∗ → Σ, that is, it is a Σ-labeled [d]-tree
and obviously, σ is a winning strategy for player 1 if, and only if, σ ∈ L(A).

This yields a linear time reduction of the emptiness problem for universal parity tree automata
to the strategy problem for two-player parity games with imperfect information on finite graphs.
Since we already have a linear time reduction in the other direction, this demonstrates that the
problems are linear time equivalent (by means of simple and natural reductions). However, so
far we have no way of making use of this fact in either one of the directions: For both problems,
the known solutions involve determinization of ω-automata and solving a parity game with full
information on a finite graph, see also Section 3.5.

Alternating Tree Automata. For an arbitrary alternating tree automata A, however, this
solution does still not work: The nondeterministic choices depend on the particular branch
of the run and not just on the branch u ∈ [d]∗ of the input tree. (In fact, as we know, they
depend only on the state of the automaton, but this information is not available for player 1
either.) Hence, in the game G(A), player 1 does not have sufficient information for choosing the
transitions of the automaton so we have to extend the game G(A) further.

In [172] it has been suggested to split player 1 into two players, one choosing the labels of
the input tree and having partial information just like player 1 before and the other choosing
the transitions of the automaton. The necessary modifications of the game as described above
are straightforward. This is still a linear time reduction but now, we obtain a game with three
players where one player has partial information.

This can be seen as a special case of a pipelines with two processes where we have no hidden
channels from the environment and the regular specification is given by a deterministic parity
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automaton. If we inspect the solution for the system Dn,p, we observe that in this special
case, the construction starts with a deterministic parity tree automaton A1 and requires only
a single application of the construction of an alternating parity tree automaton A2. This tree
automaton can be seen as running over strategies for p2 (the process with partial information)
while guessing a strategy for p1 (the process with full information). Since we don’t need any
removal of alternating during the construction it is not hard to see that A2 can be constructed
in linear time. So again, the nonemptiness problem for alternating parity tree automata and the
strategy problem for three-player parity games with imperfect information on finite graphs are
linear time equivalent in a very natural way.

For the reduction of the emptiness problem of alternating parity tree automata to games
with imperfect information, another solution has been suggested in [164] which involves only
two-player games but needs exponential time. The idea is that player 1 chooses the labels of the
input tree as before and at the same time, being in node u ∈ [d]∗ of the input tree, chooses a
positional strategy σu : Q→ B+([d]×Q) such that σu(q) is a conjunct in δ(t(u), q), where t(u)
is the label of t at u that player 1 has chosen. (So player 1 chooses the labels of the Γ-annotated
Σ-labeled [d]-tree as described in Section 3.1.2.)

More precisely, player 1 has the same information as in the game above and can move
(with action (a, σ) from a position (q, x) to any position of the form (q, x, a, σ) with a ∈ Σ and
σ : Q→ B+([d]×Q). Then, if σ(δ(q, a)) = (↓x1 , q1) ∧ . . . ∧ (↓xs , qs), player 0 can move (with
action j) from (q, x, a, σ) to any position (qj , xj). Since the number of functions Q→ B+([d]×Q)
is exponential in the size of A, this is an exponential time reduction which, essentially, reduces
the problem of removing alternation from an arbitrary alternating parity tree automaton to
removing universality from a universal parity tree automaton. Notice that the correctness of this
construction heavily relies on positional determinacy of parity games with full information just
in the way as we have used them for removal of alternation from tree automata, cf. Section 3.1.2.

In a nutshell, these reductions fortify and conclude our exposition of the intimate connection
between alternating tree automata and interaction under partial information. We have seen
several solutions of strategy problems under partial information using alternating tree automata
in a powerful and elegant way. In Chapter 5, we shall explore the potential of these methods
further.

3.3 Complexity
In Section 3.2, we were only concerned with decidability of strategy problems but we did neither
consider the time or space bounds of the decision procedures that we have presented nor the
inherent computational complexity of the problems. Now we give a brief overview over some
fundamental complexity results on strategy problems under partial information.

One of the most fundamental results on the complexity of strategy problems has been given
in Theorem 2.7: The strategy problem for parity games with full information is in NP∩ co-NP
and can be solved in time exponential in the number of colors but polynomial in the number of
positions of the game graph. However, the problem is not known to be NP-complete and the
question whether the problem can be solved by an algorithms whose overall time complexity is
polynomial is one of the major open questions in the theory of verification and synthesis. We
have discussed this issue briefly in Section 2.2 and we will return to it in Chapter 4.

The complexity of parity games is especially important since any ω-regular language can be
recognized by a deterministic parity automaton. Clearly, the size of this automaton depends on
the original representation of the language. If it is given by a nondeterministic Büchi automaton,
then the number of states is exponential but the number of colors is only polynomial. The same
holds for deterministic Muller automaton. On the other hand, for a given LTL-specification,
the size of the automaton is doubly exponential and the number of colors is exponential in the
length of the formula. Even worse, if the language is given by an S1S-formula, the size of the
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parity automaton is not elementary in general. We provide basic complexity results for some of
the most fundamental such cases. We try and proceed in historical order.

Remark. Notice that we can always derive lower bounds for strategy problems from the
satisfiability problem (emptiness problem, respectively) of the given specification formalism: For
branching time specifications we have already noted that the controller problem with respect to
the system D1 as defined in Section 3.2 is the satisfiability problem for the given specification.
Moreover, for linear specifications, the satisfiability problem is a very special case of the controller
problem: if we consider the system D1,− which is obtained from the system D1 by deleting the
channel c01 from the environment to the controller, then a winning strategy for p1 is just a
linear model for the given specification.

D1 and S1S. The first fundamental solution to synthesis of reactive systems has been given by
Büchi and Landweber [44]. They started from an S1S-formula, translated it into an equivalent
nondeterministic Büchi automaton and used McNaughton’s result [141] (which they called the
fundamental lemma on ω-automata) to translate this automaton into an equivalent deterministic
Muller automaton B. Then they solved the controller problem for the system D1 with the
specification given by B, which is essentially just the Muller game played on the transition graph
of B. The translation of S1S-formulas into Büchi automata is due to Büchi [43]. The complexity
of this translation, however, is not elementary, which is accompanied by a matching lower bound
according to Meyer [145].

Theorem 3.15. [44, 145] The controller problem for D1 is nonelementary recursive with respect
to specifications written in S1S.

D1 and LTL. In [169], Pnueli and Rosner proved that for linear temporal logic LTL [167], the
controller problem for D1 can be solved in doubly exponential time. They used a translation of
LTL-formulas into nondeterministic Büchi automaton of size exponential in the length of the
formula [77, 216], see also [212]. Using Theorem 2.8 and Theorem 2.7 it can then be seen that
the controller problem for D1 for LTL-specifications can be solved in time doubly exponential in
the size of the formula. From the satisfiability problem for LTL we only get a Pspace lower
bound, but in [170], Pnueli and Rosner proved a matching 2-Exptime lower bound for the
controller problem for D1 with LTL specifications.9

Theorem 3.16. [169, 170] The controller problem for D1 is complete for 2-Exptime with
respect to specifications written in linear temporal logic.

D1,h and CTL*. The previous two results deal with controller problems under full information
with linear specifications. In [127], Kupferman and Vardi extended these solutions to both,
partial information and branching time specifications. As we have mentioned in the introduction,
strategy problems under partial information are usually harder to solve than those under full
information. However, for all the specification languages considered in [127], this is not the case.
Even more, for CTL and CTL∗, the controller problem for D1,h has the same complexity as
the satisfiability problem for these logics. Intuitively, the reason that the controller problem
for D1 is not harder than satisfiability in the branching time setting is that branching time
specifications talk about trees.10 So, in a sense, they already comprise the interaction between
the environment and the controller implicitly. In fact, modulo some technical details of the
representation of strategies as trees, the branching time controller problem for the system D1 is
the satisfiability problem for branching time specifications.

9In this paper, Pnueli and Rosner consider in fact mostly asynchronous systems. The 2 Exptime-hardness of
the controller problem, however, is proved out for synchronous systems.

10In general, branching time specifications talk about transition systems, but due to the tree model property,
we can restrict our attention to trees.
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Theorem 3.17. [127] The controller problem for D1,h is Exptime-complete for CTL specifica-
tions and 2-Exptime-complete for CTL∗ and LTL specifications.

The lower bounds for CTL and CTL∗ follow immediately from those for the satisfiability
problems, the lower bound for LTL follows from that for D1. To see why we obtain the same
upper bound as for D1, let us first consider CTL∗.

In [20] it is shown that by using alternating tree automata one can save an exponential in the
translation of CTL∗ to tree automata, cf. [127]. Now, in the case of the system D1,h, to deal with
partial information, an application of the widening operator is enough. But the construction of
the automaton narrowY (A) can be applied directly to an alternating tree automaton A and does
not increase the size of the automaton. (While applied to a given nondeterministic automaton it
yields an alternating automaton, entailing an exponential blow up of the size!) So the alternation
capability of the automaton comprises both, the complexity caused by the branching time
specification and the the complexity caused by partial information, at the same time. Hence, we
have to apply the translation into an equivalent nondeterministic tree automaton only once and
end up with a total complexity that is doubly exponential in the length of the CTL∗ formula.

Now, for a given LTL formula ϕ, the controller problem for (D, ϕ) is equivalent to the
controller problem (D,∀ϕ) (notice that ∀ϕ ∈ CTL∗), so the same complexity holds for LTL. On
the other hand, for the case of CTL, to obtain a total complexity that is only exponential in the
length of the formula, the construction has to be modified seriously, cf. [127]. Details can be
found in [126].

D1,h and ω-Automata. Now we consider the case where the specification is already given by
a deterministic parity automaton B. In the case of D1, solving the controller problem amounts
to solving a parity game with full information on a finite graph: The controller problem for
(D1, L(B)) can be reduced to the emptiness problem for a deterministic parity tree automaton
A which simulates B along the paths of a tree. In particular, A has the same set of states
and the same coloring as B. Now solving the emptiness problem for A means to solve a parity
game with full information on a finite graph.11 So the controller problem for (D1, L(B)) is in
NP∩ co-NP and can be solved in time polynomial in the number of states of B and exponential
in the number of colors of B.

For the system D1,h solving the controller problem means solving the emptiness problem for
a universal parity tree automaton A that simulates B along the paths of a tree which it spans
over the input tree. Again, A has the same set of states and coloring as B, but now, checking
emptiness of A requires time that is exponential in both, the number of states and the number
of colors of B.

The construction of A can also be easily adapted to the case of game graphs with partial
information. (For this, the automaton only has to make sure, that it checks only paths
which actually correspond to plays on the game graph.) Moreover, Reif has shown that the
strategy problem for games on finite graphs with partial information is Exptime-hard, even for
reachability and safety conditions [181, 182]. As we have mentioned, for reachability conditions
we can always assume that they are observable. Hence, we obtain the following result.

Theorem 3.18. [182, 221] The strategy problem for games with imperfect information on
finite graphs and two players can be solved in exponential time for parity conditions and is
Exptime-hard for observable reachability conditions.

Notice that the precise running times of the algorithms for the system D1,h (and (D1 as
well) clearly depend on the size of the alphabet ΣD1,h . In the case of logical specifications like
LTL-formulas, this can be bound by 2O(|ϕ|) since we can restrict our attention to those signals
that are actually addressed in the specification. (Which are, however, exponentially many in

11Another way of viewing the controller problem for (D1, L(B)) as a parity game with full information on a
finite graph is to use the reduction to games on graphs from Section 2.3.
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the length of the formula, since LTL-formulas address atomic propositions from a set Prop
and in the reactive system, the processes choose actions which are sets a ∈ 2Prop of atomic
propositions.) In the case of a deterministic parity automaton recognizing the specification,
the size of ΣD1,h is bounded by the number of transitions of B. So the construction of the tree
automaton A can be done in time linear in the size of B and hence, the overall complexity is in
fact exponential in the size of B.

Remark. We have already suggested that the emptiness problem for universal parity tree
automata can be shown to be Exptime-hard by a natural reduction of the strategy problem for
two-player parity games with imperfect information. This can now be seen in fact using the
previous theorem even for reachability conditions: We have seen how to reduce the strategy
problem for two-player reachability games with imperfect information on finite graphs to the
emptiness problem of universal reachability tree automata in linear time. Since the former
problem is Exptime-hard the same holds for the latter.

So far, the only complexity beyond doubly exponential time was that of the controller
problem for D1 where the specification is written in S1S which is due to the fact that S1S is
nonelementary more succinct than automata. Monadic second order logic, however, is rarely used
to specify systems in practice. The good news is that for the practically appealing formalism of
CTL as well as for parity games with imperfect information, the complexity is only exponential,
which is the best we can hope for strategy problems under partial information in general, since
they always imply a certain form of nondeterminism.

Dn,p and LTL. For multiple controllers, the situation is much worse. Apart from the result
that most architectures are in fact undecidable, pipelines have a nonelementary complexity,
already for simple specifications like LTL: Given a pipeline Dn,p with n controllers and an LTL
specification ϕ, solving the controller problem for (Dn,p, ϕ), asymptotically, takes time at least
expn(|ϕ|), where

exp1(k) = 2k and expn+1(k) = 2expn(k).

This nonelementary lower bound has been proven in [163] and in [171], Pnueli and Rosner have
restated the result in terms of distributed systems.12

Theorem 3.19. [163, 171] The controller problem for Dn,p is n-Exptime-hard for LTL speci-
fications.

So while for games with only two players, an important task is to find special cases of the
strategy problem which can be solved more efficiently for games with multiple players, the
focus is usually on characterizing decidable subcases. We tackle the first challenge in Chapter 4.
Contributions to the second issue are presented in Chapter 5 and Chapter 6.

3.4 Context-free Specifications
In Chapter 5 we prove certain decidability results for distributed systems where the specifications
may be deterministic context-free but are required to be locally decomposable. In fact, we show
that in the decomposition of the specification, at most one of the individual specifications may be
context-free. Here we show that for arbitrary (that means, not necessarily locally decomposable)
deterministic context-free specifications most controller problems are undecidable. For the case
of the system D1,h this has already been shown in [163].13 We prove that even for deterministic

12It should be mentioned that the lower bound of expn(|ϕ|) is a prudent estimation: It holds for the stark,
straight pipeline regardless of details like hidden channels from the environment that can be easily overlooked.

13Their proof of this result does not use the asynchronous observability of their model.
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realtime 1-counter specifications and any nontrivial extension of the system D1, the controller
problem is not even recursively enumerable.

For the proof we use the fact that the non-halting problem for 2-register machines is not
recursively enumerable. Since we use this problem also for our undecidability proofs for locally
decomposable specifications in Chapter 5, let us fix some notation for 2-register machines.

A 2-register machine R consists of a sequence I0, . . . , Ik−1, Ik of instructions where Ik = stop
and for any j ∈ [k], Ij is one of the following instructions:

• inc(Rι) or dec(Rι) where ι ∈ {1, 2}
• if Rι = 0 goto l where ι ∈ {1, 2} and l ∈ [k + 1].

So R has two registers for storing natural numbers and may, in each step increase or decrease
either one of the registers. The machine starts with instruction I0 and after performing an
increase or a decrease operation in instruction Ij , the machine just jumps to the next instruction
Ij+1. Moreover, the machine has conditional jumps, depending on whether or not register 1
(register 2, respectively) is empty.

A configuration of R has the form C = (l, x1, x2) where x1, x2 ∈ N, so it contains the
current instruction number and the current contents of the two registers. If C ′ = (l′, x′1, x′2)
is the successor configuration of a configuration C of R then we write C 7− C ′. Moreover, if
C ′′ = (l′′, x′′1 , x′′2) then we write C ι7− C ′′ if l′′ = l′ and x′′ι = x′ι, that means, C ′′ is the successor
configuration of C with respect to the instruction number and the contents of register ι (but
not necessarily with respect to the other register).

It is well known that the question whether the unique computation of a given 2-register
machine when started with empty registers is finite (halting problem) is not decidable. However,
the problem is recursively enumerable and so the question whether this unique computation of
a given 2-register is infinite (non-halting problem) is not recursively enumerable.

Theorem 3.20. The controller problem for a given architecture A with |Pcon| ≥ 1 is decidable
for DR1-C specifications if, and only if, one of the following two conditions holds.
(1) Op0 = ∅
(2) Hp0 = ∅ and |Pcon| = 1.

Moreover, if the problem is decidable then it is decidable for arbitrary DCF specifications. If it
is undecidable then it is not recursively enumerable.

Proof. First we show the if-direction. If condition (1) holds, then the controller problem for
A is just the emptiness problem for the given specification which is decidable for DR1-C
specifications. If, on the other hand, condition (2) holds, then the controller problem for A for
an arbitrary deterministic context-free specification can be reduced to solving a parity game
with full information on a pushdown graph which is decidable [219] (cf. Section 2.2.2).

Now we turn to the only-if-direction, so assume that conditions (1) and (2) do not hold,
that is, Op0 6= ∅ and first let Hp0 6= ∅. Moreover, let p1 ∈ Pcon be some controller, c0 some
hidden channel of penv and let c1 be an external output channel of p1. Now let R be a 2-register
machine as described above.

The idea for the reduction is as follows. Process p1 has the task of writing the unique
computation of R when started on the empty registers to the channel c1 configuration by
configuration. That is, in each macro step, it writes the number of some instruction, two
sequences of symbols representing the contents of the registers and then proceeds again with
the number of some instruction. To make sure that this sequence of configurations is indeed
the computation of R when started on the empty registers, we code the initial configuration
into the specification and we also give p0 the possibility to check one of the registers at some
unique point in time secretly as follows. Process p1 has three symbols 0, 1, 2 at its disposal for
its hidden channel c0. If p0 writes 0 then this means that it does not want to check any of the
registers and if it sends ι ∈ {1, 2}, then this means that it wants to check register ι. So when p0
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writes ι to c0, then this triggers the deterministic pushdown automaton (that recognizes the
specification of the system) to store the contents of register ι that p1 writes for the current
configuration (in the current macro step) and then check that the contents of this register that
p1 writes for the next configuration is built according to the instruction of R that p1 has chosen
at the beginning of the previous macro step (which can be stored in the state space of the
automaton). We exclude the possibility for p1 to write the instruction number k, so that when
the computation of R is finite, at some point, p1 will make a mistake.

More precisely, we define the system D = (A, (Σc)c∈C) by Σc0 = {0, 1, 2} and Σc1 =
[k] ∪ {A1, A2} where A1 and A2 are distinct symbols which are used to represent the contents
of the registers. We silence all other channels c ∈ C in the architecture by defining Σc = {|}.
(Notice that we do this in particular for all possible channels from p0 to p1.) The specification
L ⊆ (Σc0 ×Σc1)ω is defined as follows: α0

_α1 ∈ (Σc0 ×Σc1)ω is in L, if the following conditions
hold.

(1) α1 has the form C0C1 . . . where Cj ∈ [k] · {A1}∗ · {A2}∗ for each j

(2) C0 = 0εε
(3) if there exists a r ∈ N with α0(r) ∈ {1, 2} then consider the smallest such r and the smallest

s ≥ r with α1(s) ∈ [k], and let α1 = α1(<s)CC ′γ.
Then C

α0(r)7− C ′.

So condition (1) ensures that p1 really writes a configuration of R in each macro step while
condition (2) restricts the first configuration to the initial configuration of R when started on
empty registers. Clearly, conditions (1) and (2) are regular. Moreover, condition (3) implements
the possibility of p0 to check the correctness of the construction that p1 provides: Upon the first
occurrence of a symbol ι ∈ {1, 2} in α0, we consider the next two configurations C and C ′ that
p1 constructs. (Notice that if α0(0) ∈ {1, 2}, that is, p0 wants to check register α0(0) right at
the beginning of the construction, then we consider the first and the second configuration that p1
constructs.) Since we check the correctness of the construction for C and C ′ only with respect
to one of the registers, it is not hard to see that condition (3) is in fact DR1-C recognizable.

If R does not halt when started on empty registers then writing the unique run of R with
initially empty registers is clearly a winning strategy for p1 for (D, L). Now let conversely be
σ1 a winning strategy for p1 for (D, L). Notice that except the channel c0, all channels from
p0 are silenced and so σ1 is a function {|}∗ → Σc1 . That means, there is an ασ1 ∈ (Σc1)ω
such that for all α0 ∈ Σω

c0 , the system run α0
_α1 is consistent with σ1. Moreover, since σ1

is a winning strategy, each such system runs satisfies conditions (1) – (3). In particular, ασ1

satisfies conditions (1) and (2), that is, ασ1 = C0C1 . . . where Cj ∈ [k] · {A1}∗{A2}∗ for each j
and C0 = 0εε. If Cj 7− Cj+1 for all j ∈ N then clearly R does not halt when started on empty
registers.

Now assume that Cj 67− Cj+1 for some j ∈ N and consider the smallest such j. Then we have
Cj 6

17 − Cj+1 or Cj 6
27 − Cj+1. In the first case set ι = 1 and in the second case let ι = 2. Now

define ασ0 = 0|C0...Cj−1| ι 0ω. As we have observed, ασ0
_ασ1 is consistent with σ1. However, the

smallest r ∈ N with α0(r) ∈ {1, 2} is r = |C0 . . . Cj−1| and the smallest s ≥ r with α1(s) ∈ [k] is
s = r. Moreover, α(<s)CC ′γ = C0 . . . Cj−1CjCj+1γ and since Cj 6

ι7− Cj+1, ασ0
_ασ1 does not

satisfy condition (3) which contradicts the fact that σ1 is a winning strategy.
Now consider the case Hp0 = ∅ but Op0 6= ∅ and |Pcon| ≥ 2. Let p1, p2 ∈ Pcon such that p0

sends information to p2. We simulate the proof given above as follows. Process p1 takes the
same role as before and the function of p2 is only to receive the information that p0 has sent to
channel c0 in the proof given above. Process p1 cannot see this information and so the proof
works just as before.

Remark. Notice that the specification L constructed in the proof can even be recognized by a
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deterministic realtime 1-counter automaton that merely uses a reachability acceptance condition.

Consider the system D1,h. We have reduced the controller problem for (D1,h, L) with regular
L to the emptiness problem for universal parity tree automata. In the very same way we can
reduce the controller problem for (D1,h, L) with deterministic context-free L to the nonemptiness
problem for universal parity pushdown tree automata. This gives an alternative proof of the fact
that the nonemptiness problem for universal parity pushdown tree automata is undecidable and
it also demonstrates that this holds even for universal realtime parity 1-counter tree automata.

3.5 Powerset Construction
In [182], Reif presented a powerset construction for solving the strategy problem for two-player
games on finite graphs G with partial information by turning them into two-player games on
finite graphs 2G with full information.14 This game graph can be viewed as a compressed
representation of the possible states of knowledge of player 1 during plays of the original game
and the dynamics of this knowledge. In this sense, it is a succinct version of a knowledge tracking
construction, as mentioned in the introduction.

Historically, this method precedes the automata based methods for solving controller problems
that we have presented in the previous section but was presented in a quite different context
of Turing machines. Reif aimed at generalizing the theory of alternating computing devices
initiated by Chandra, Kozen and Stockmeyer [49, 48], which correspond to two-player games
with full information. The private alternating machines of Reif correspond to two-player games
with imperfect information.15 Therefore, the method was originally restricted to games with
winning conditions that correspond to the acceptance condition of Turing machines, that is,
reachability conditions.16

Due to this quite different research context and the small class of winning condition to
which the method was applied in [182], it was not very popular in the theory of synthesis under
partial information. Although certain ideas from [182] and [163] have been adopted in the work
of Pnueli and Rosner [171] as well as Kupferman and Vardi [129] on controller problems for
distributed systems, strong results for games with expressive classes of winning conditions and
multiple players have been obtained using tree automata, cf. Section 3.2.

On the other hand, the method of Reif can be easily generalized to two-player games with
arbitrary observable winning conditions and for games on graphs, observable winning conditions
form a non-trivial and relevant special case which still has a high complexity: The strategy
problem for two-player games on finite game graphs with observable reachability conditions
is Exptime-hard [181], see also Sections 2.2.3 and 3.3. More recently, there has been ample
research in how Reif’s method can be used to obtain more efficient solutions for this special case.

A popular approach is the antichains method that has first been proposed in [66] for safety
games and has been extended to games with observable parity conditions in [52]. This method
yields an algorithm that has still an exponential running time in the worst case, but outperforms
the algorithm that results from explicitly carrying out the powerset construction in practical
benchmarks.17 We will discuss the antichains approach briefly in Section 3.5.3.

In contrast, in Chapter 4, we utilize the powerset construction to provide an algorithm that
runs in polynomial time on certain classes of graphs, even in the worst case. More precisely, we

14In [181], Reif already presented an algorithm which uses the same idea. It was only in [182] though that Reif
made this view as powerset construction explicit.

15In [163], Peterson and Reif generalized this concept further to games with multiple players.
16Notice that for Turing machines that have only finite computations, the winning condition for the existential

player can also be represented as safety conditions.
17There are also classes of games where the result of the powerset construction has exponential size but the

antichains algorithm needs only polynomial time to solve the strategy problem for these games. However, no
general criteria are known which would guarantee that the algorithm runs in polynomial time.
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prove that on two-player game graphs with bounded partial information and bounded DAG-
width, the strategy problem can be solved in polynomial time for observable parity conditions.
This gives a general criterion that guarantees that the strategy problem is in Ptime and the
corresponding classes of games still form a relevant special case. On the other hand, the efficiency
of this method relies on these structural restrictions and it may be much worse on other classes
of game graphs, in particular compared to the antichains approach.

In this section, we describe the powerset construction of Reif and we demonstrate how it can
be generalized not only to observable winning conditions but to arbitrary winning conditions.
We also adapt the construction to a certain case of asynchronous observability and we show
that in both cases, ω-regular winning conditions are effectively preserved by this construction.
This section is partially based on work presented in [172, 173].18

3.5.1 Generalized Construction
We start with the original powerset construction for two-player reachability games with imperfect
information on finite graphs.19 So, let G = (V, δ, (∼V ), (∼A)) be a game graph with partial
information and two players and let R ⊆ V be a set defining a reachability condition on G. We
make the usual assumptions on G, in particular, we assume that G is turn based and player 1
always knows when it is his turn (for all u ∈ V , [u] ⊆ Vi for some i ∈ {0, 1}). Moreover, player 1
always knows which actions are available to him (u ∼V v =⇒ act1(u) = act1(v)) and he can
distinguish any two of his own actions (a, b ∈ A1 =⇒ a 6∼A b).20

First, reconsider the solution of the controller problem for the system D1,h from Section 3.2
for a regular specification L ⊆ (ΣD1,h)ω represented by a deterministic parity automaton B.
There we have defined the specification L∀α0 ⊆ ΣD1 that reduced the controller problem for
D1,h to one for the system D1. Remind that the specification L∀α0 requires, for a given run
α01

_α1 ∈ ΣD1 that for all hidden sequences α0 ∈ Σω0 we have α0
_α01

_α1 ∈ L.
This construction can be seen as introducing nondeterminism to the automaton B that

corresponds to the partial information of p1: A history u01
_u1 induces a set of runs of B

each of which corresponds to a particular hidden history u0 that p1 cannot observe. We
have then constructed a deterministic parity automaton B∀α0 recognizing L∀α0 which involves
determinization of ω-automata. However, if B is a reachability automaton, then for this
determinization, the usual powerset construction is sufficient.21

This yields a reduction of the controller problem for D1,h for reachability specification to the
controller problem for D1 that only involves a simple powerset construction. Now the reduction
of game graphs with partial information to distributed systems from Section 2.3 preserves
reachability conditions, so we can solve the strategy problem for (G, R) using this translation.

Reif’s construction, on the other hand, can be seen as a direct implementation of this
construction on the given game graph, where partial information is defined by the equivalence
relations ∼V and ∼A. Having the foregoing considerations in mind, it is now comprehensible
how the game graph 2G should be defined. We denote 2G = (2V ,∆) and the positions of player 0
are 2V0 . Moreover,

(u, a, v) ∈ ∆ :⇐⇒ v = Post[a](v) ∩ [v] for some v ∈ v.

18Certain technical proofs that are omitted here can be found in [172] and in the full version of [173], currently
available at www.logic.rwth-aachen.de.

19Reif’s model is in fact a somewhat restricted special case of our game graphs with partial information.
However, the adaption to our more general model is straightforward.

20As we have mentioned, these properties are just technical simplifications. We can assume them w.l.o.g., but
the powerset construction could also easily be adapted to cover cases in which they do not hold.

21Notice that we have to assume a certain normalform where the accepting states have as outgoing transition
only a selfloops with all possible input letters on it. This corresponds to the assumption that a reachability
condition is observable. Since we use these observations only as an intuition for the powerset construction, we
don’t go into details.
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The definition of the Post-operator is as usual: For U ⊆ V and B ⊆ A,

PostB(U) = {v ∈ V | ∃u ∈ U ∃ b ∈ B : δ(u, b) = v}.

We also denote 2G as G = (V ,∆). Notice that 2G is a nondeterministic game graph with
full information. In Section 2.1.2 we have seen how we can easily construct an equivalent
deterministic game graph with full information.

Now, to appreciate the term of knowledge tracking that we have mentioned at the beginning
of this section, for a history π ∈ v0(AV)∗ in G, let us define

Tr(π) = {ρ ∼∗ π | ρ ∈ v0(AV)∗ is a history in G}.

So Tr(π) is an explicit representation of the knowledge of player 1 after the history π has
been played. 22 However, {Tr(π) |π ∈ v0(AV)∗ is a history in G} is obviously infinite. We
approximate this representation by identifying sets Tr(π) and Tr(ρ) if π and ρ induce the same
set of positions that player 1 considers possible after playing π and ρ, respectively. We denote
this set as follows:

core(Tr(π)) = {last(ρ) | ρ ∈ Tr(π)}.

For readability we also abbreviate core(Tr(π)) by V (π). It is easy to see that V (v0) = {v0}
and, for any history πav ∈ v0(AV)+ in G, the following holds.

Proposition 3.21. V (πav) = Post[a](V (π)) ∩ [v].

So, by induction, any position in 2G that is reachable from {v0} has the form core(Tr(π))
for some history π ∈ v0(AV)∗ in G and the edges in ∆ reflect how moves in plays of G cause
transitions between these states.

Remark. Notice that core(Tr(π)) = core(Tr(π)) does not imply π = ρ. (This is trivial because
only histories of equal length can be equivalent. But in general, also for histories of equal length,
this implication does not hold.) However, we will see that player 1 has a winning strategy for
(G, R, v0) if, and only if, he has a winning strategy for (2G , 2R, {v0}). Since 2G is a game graph
with full information, in this sense, the representation of Tr(π) by core(Tr(π)) as defined above
is in fact adequate for two-player games. In particular, since positional strategies suffice to
win in reachability games with full information, whenever player 1 has a winning strategy for
(G, R, v0) he also has one that depends only on core(Tr(π)) instead of Tr(π). It is crucial to
mention, however, that for games with multiple players, this is not the case! We will discuss
this in Chapter 6.

Now a history π = w0b1w1 . . . blwl in G induces a set of histories in G which we denote Π(π)
and which can be described as follows:

A history π = v0a1v1 . . . alvl is in Π(π) if vj ∈ wj and aj ∼A bj .

A fundamental property of the powerset construction is that for each history π in G, the set
Π(π) is nonempty. The proof is straightforward by induction, using Proposition 3.21.

Proposition 3.22. Let vl ∈ wl.
(1) There is a history π ∈ Π(π) such that last(π) = vl

(2) For each history π ∈ (π) we have V (π(≤ j)) = wj.
22Notice that we have relativized the definition to histories that start in v0 which reflects the assumption that

player 1 knows the initial position, cf. Section 2.1.2.
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Winning Conditions. So far, we have only defined the powerset game graph 2G but we
did not define the winning condition for this new game. We have started with an arbitrary
reachability condition but, as we have noted in Section 2.2.3 we can assume, w.l.o.g., that R
is observable for player 1, that is, for each u ⊆ [v] for some v ∈ V we have either u ∈ 2R or
u ∈ 2V \R. Now once we have this assumption, we can derive the definition of the winning
condition from the powerset construction for reachability automata. Notice, however, that for
the construction of a deterministic reachability automaton recognizing L∀α0 we either have to
start with a universal automaton or to finish the construction with a complementation step.
So while for the determinization of a nondeterministic reachability automaton we define the
accepting states to be those that contain an accepting state of the original automaton, here
the winning states for player 1 are those that consist entirely of winning states from R, that is,
R = 2R.

Now, it is not hard to see that this definition can be easily extended to observable parity
conditions. If col : V → [k] is an observable coloring of G then we can define the coloring
col : 2V → [k] as follows. For any u ∈ 2V we define col(u) := col(u) for some u ∈ u. So if u ⊆ [v]
for some v ∈ V then this is independent of the chosen u. If, on the other hand, u is not a subset
of some equivalence class, then the color of u does not matter since u is not reachable in 2G
from the initial position {v0}.

For non-observable parity conditions, however, it is not clear how to define a coloring on
2G in terms of the coloring on G in such a direct way. Instead, for non-observable winning
conditions, we define the winning condition for 2G in a similar way as the winning condition
L∀α0 . However, due to the underlying game graph and the way in which partial information is
defined on the graph, the definition is a little more involved than in the case of L∀α0 : In the
same way as for histories, a play π = w0b1w1b2w2 . . . in 2G induces a set of plays in G which we
also denote as Π(π) and which is defined accordingly:

A play π = v0a1v1a2v2 . . . is in Π(π) if vj ∈ wj and aj ∼A bj for all j.
Now, analogously to the definition of L∀α0 , a play π can be defined as being winning for

player 1 if for all plays π ∈ Π(π) are won by player 1. Remind that in the system D1,h, the
hidden sequences α0 are generated by p0. Similarly, the uncertainties of player 1 in the game
played on G are generated by the moves of player 0. So, given a winning condition W ⊆ Π for
player 1 for G, we define the winning condition W ⊆ Π by

π ∈W :⇐⇒ Π(π) ⊆W.

Notice that W is not position based. This is clearly unavoidable if W is not position based.
But even if W is position based, in general we can not define a position based winning condition
on 2G such that winning strategies of player 1 are preserved. Intuitively this is quite clear:23

The actions of player 0 may carry information that is important for player 1 to win the game
but which he cannot infer from the observations that he makes about the positions. Now, if we
re-define Π(π) by omitting the condition on the actions (of player 0), this would be essentially
the same as hiding the information about the actions from player 1 since we would require
that player 1 wins certain plays uniformly (by choosing the same actions) that he actually can
distinguish. On the other hand, the dependence of the winning condition on the actions of
player 1 guarantees that for a play π that is consistent with some strategy for player 1 for 2G ,
all plays in Π(π) are also consistent with some corresponding strategy of player 1 for G.24 So by
omitting the condition on the actions of player 1 in definition of Π(π) would require player 1 to
win certain plays that are not consistent with his winning strategy for G.

Figure 3.1 shows a game graph G with partial information and with a position based winning
condition where the winning condition W for 2G depends on the actions of player 0 and of

23For the technical details, see the proof of Proposition 3.26.
24Notice that we have assumed that player 1 can distinguish all his actions, so aj ∼A bj implies aj = bj .

Without this assumption, we would have to require in the definition of Π(π) explicitly aj = bj if vj−1 ∈ V1.
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Figure 3.1: W = {0l1l2l3, 0r1r2r3, 0l1r2l3, 0r1l2r3} is position based but W depends on actions

player 1. Player 1 clearly has a winning strategy for G from 0: He can simply choose action a
when it is his turn. On the other hand, in the definition of W as given above, dependence on
actions is crucial since otherwise, W would be empty, leaving player 1 out in the cold.

Notice that the example from Figure 2.1 does not show this: There the winning condition W is
position based and so, while player 1 does not have a position based winning strategy for (G,W ),
he does have one for (2G ,W ). The reason is that the information about the actions of player 0
is included in the sets that we obtain in the powerset construction: While Post[a1](0) = {1, 2},
we have Post[a3](v0) = {2, 3}. This, however, is sufficient only because the W is observable.

In fact, this observation generalizes to arbitrary observable winning conditions: If W is
observable, then W is position based. To show this we first prove that for a play π in 2G we
have Π(π) 6= ∅. Since G is finite, this follows from Proposition 3.22 using König’s Lemma.

Proposition 3.23. For each play π in 2G, the set Π(π) is not empty.

Proof. Let π = w0b1w1b2w2 . . . with w0 = {v0}. We define a tree ζ(π) as follows. The l-th level
of ζ(π) consists of all finite histories π ∈ Π(π(< l + 1)). In particular, the root of ζ(π) is v0
and, for a history ρ = πav for some a ∈ A and some v ∈ V , the unique predecessor of ρ in ζ(π)
is π. By Proposition 3.22, each level of ζ(π) is nonempty and since G is finite, ζ(π) is finitely
branching. Therefore, by Königs Lemma, ζ(π) contains an infinite path π = v0a1v1a2v2 . . .
which is a play in G and, by construction of ζ(π), is contained in Π(π).

Now, for a play π = v0a1v1a2v2 . . . we define the sequence obs(π) = [v0][v1][v2] . . . of
equivalence classes that player 1 observes during the play π and for a play π = w0b1w1 . . . in 2G
we define obs(π) = obs(π) for some π ∈ Π(π). Moreover, let obs(W ) := {obs(π) |π ∈W}.

Proposition 3.24. If W is observable, then W = {π ∈ Π | obs(π) ∈ obs(W )}.

In particular, if W is observable, then W is position based. Moreover, this observation
demonstrates, that observable parity conditions are included in the general definition of W as a
special case: If W is a parity condition defined by an observable coloring col : V → [k] then W
coincides with the winning condition defined by col.

Now, the powerset construction yields for a game graph G and an arbitrary winning condition
W ⊆ Π a new game graph G and a corresponding winning condition W ⊆ Π such that winning
strategies for player 1 are preserved. However, we still have to show that if the winning condition
W is in fact regular, then W is regular as well. For this, assume that W is given by a deterministic
parity automaton B = (Σ, Q, qin, δ

B, col) with Σ = V ∪ AV, that is, W = {π ∈ Π |π ∈ L(B)}.
Notice that this includes the case of parity games with non-observable coloring.
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The idea for the automaton B = (Σ, Q, qin, δ
B, col) with Σ = V ∪AV defining W is the same

for the automaton B∀α0 recognizing L∀α0 : It runs on a play π = w0b1w1b2w2 . . . ∈ Π, universally
branches over all plays π = v0a1v1a2v2 . . . ∈ Π(π) and at the same time simulates B on these
plays π. The requirement that only sequences which are actually plays in G should be checked,
as well as the conditions defining Π(π), can obviously be implemented into an automaton.

Formally, we define B as follows. Notice that we consider only plays π in G that start in the
initial position v0 = {v0}.

• Q = {qin} ∪Q× V , col(qin) = col(qin) and col(q, v) = col(q)
• δB(qin, v0) = (δB(qin, v0), v0)

Moreover, for (q, v) ∈ Q and aw ∈ AV,

δB((q, v), bw) =
∧

[a∼Ab]

∧
[w∈Posta(v)∩w]

(δB(q, aw), w).

So B always stores the position v that has been chosen for the current branch which, in the
first step, is only v0. Then, reading bw, the automaton B branches over all actions a ∼A b and
over all a-successors w ∈ w of v. Notice that, for each action a ∼A b there is at most one such
a-successor w of v that is contained in w. At the same time, B simulates B on the plays that it
generates in this way and so it is not hard to see that a play π ∈ Π is in L(B) if, and only if,
Π(π) ⊆ L(B), that means, π ∈W .

Proposition 3.25. W = {π ∈ Π |π ∈ L(B)}.

So, regular winning conditions are effectively preserved by the powerset construction, using
the general definition of W as presented above. Using this, we can solve a parity game with
imperfect information on a finite graph by performing the powerset construction, constructing
B and taking the product parity game graph (G × B, col×, ({v0}, δB(qin, {v0}), qin)) with full
information. Then, some algorithm for parity games with full information can be applied.

Finally, we consider context-free specifications. As we know, arbitrary context-free specifica-
tions are too strong for games, so we restrict to deterministic ones. However, as we have seen
in Section 3.4, they are still too strong for two-player games with imperfect information. The
construction that we have presented for regular specifications fails for deterministic context-free
specifications, because the definition of W requires a quantification over certain plays in G
and so it inevitably introduces nondeterminism. Therefore, W is not necessarily deterministic
context-free, even if W is. Hence, the generalized powerset construction reduces a game with
imperfect information and deterministic context-free specification to a game with full information
and nondeterministic context-free specification, which is not decidable in general.

On the other hand, if W is defined by a deterministic pushdown automaton P over the al-
phabet [V ]∼V 25, that is, W = {π ∈ Π | obs(π) ∈ L(P)}, then the strategy problem for (G,W ) is
decidable: By Proposition 3.24, W = {π ∈ Π | obs(π) ∈ L(P), so W is deterministic context-free.

So far, we have only claimed that the powerset construction in fact preserves winning
strategies for player 1. We conclude this section with a proof of this fact and some remarks on
infinite game graphs.

Proposition 3.26. Player 1 has a winning strategy for (G,W, v0) if, and only if, he has a
winning strategy for (G,W , {v0}).

Proof. Let first σ be a winning strategy for player 1 for (G,W, v0). We construct the strategy σ
for player 1 for (G,W , {v0}) as follows. For a history π in G from w0 = {v0} with last(π) ∈ V 1,
let π ∈ Π(π) and define σ(π) := σ(π). Notice that the definition of σ(π) is independent of the
particular history π.

25Analogously to parity conditions defined by an observable coloring
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Now consider a play π = w0b1w1b2w2 . . . in G from w0 = {v0} that is consistent with σ.
Let π = v0a1v1a2v2 . . . ∈ Π(π) and let j > 0 such that vj−1 ∈ V1. Then π(<j) ∈ Π(π(<j)),
so by definition of σ we have σ(π(< j)) = σ(π(< j)) = bj . Moreover, the definition of Π(π)
yields bj ∼A aj and, as player 1 can distinguish any two of his actions, bj = aj . Therefore, π is
consistent with σ. (Notice that for this argumentation it is crucial that Π(π) depends on the
actions in π!) Since σ is a winning strategy, Π(π) ⊆W , so π ∈W .

Now let, conversely, σ be a winning strategy for player 1 for (G,W , {v0}). To construct the
strategy σ for player 1 for (G,W, v0), we first fix a subgraph H of G that fulfills the following
condition: For each edge (u, a, v) in G, there is exactly one b ∈ [a] such that (u, b, v) is an edge
in H. (That is, we delete from each edge in G all but one equivalent actions.) Now, for a history
π = v0a1v1 . . . alvl in G with vl ∈ V1, let wj := V (π(≤ j)) for j ∈ {0, . . . , l}. (Notice that
w0 = {v0}.) Then there are uniquely determined actions bj ∼A aj such that π = w0b1w1 . . . blwl
is a history in H. Define σ(π) = σ(π). Notice that by Proposition 3.22 (2), if π ∼∗ ρ, then
π = ρ and so σ(π) = σ(ρ).

Now consider a play π = v0a1v1a2v2 . . . in G that is consistent with σ. As before, if
wj = V (π(≤ j)) for j ∈ N then there are uniquely determined actions bj ∼A aj such that
π = w0b1w1b2w2 . . . is a play in H. Now let j > 0 such that wj−1 ∈ V 1. By definition of σ we
have σ(π(<j)) = σ(π(<j)) = aj . Moreover, bj ∼A aj and, since player 1 can distinguish any
two of his actions, bj = aj . Therefore, π is consistent with σ and since σ is a winning strategy
we obtain Π(π) ⊆W . Moreover, by construction of π, we have π ∈ Π(π), so π ∈W .

Notice that the construction of the subgraph H in the proof makes sure that σ does not
distinguish between actions of player 0 that are actually indistinguishable for player 1: In
G, player 1 observes any action of player 0, so σ can depend on these actions, even if they
indistinguishable for player 1 in G. On the other hand, if player 0 chooses some action a to
go from position u to v, the definition of W guarantees that he can choose any action b ∈ [a]
instead just as well. So deleting equivalent actions from the edges in G does not limit the powers
of player 0 but makes sure that we construct σ with respect to fixed reference actions of player 0.
This also demonstrates that if player 1 has a winning strategy for (G,W , {v0}), then he has one
which does distinguish between equivalent actions.

Infinite Game Graphs. Proposition 3.26 holds also for infinite game graphs, so the generalized
definition of W extends Reif’s powerset construction to both, non-observable winning conditions
and arbitrary game graphs.

On the other hand, the proof of Proposition 3.24 requires a game graph that is at least
finitely branching. In fact, it is easy to see that there are infinite game graphs with observable
winning condition such that the canonical definition of a winning condition for 2G by means
of observations does not work (for an example, see [172]). Moreover, in the case of infinitely
branching game graphs, observable winning conditions do not even guarantee that W is position
based.

A particularly interesting case of infinite game graphs is that of graphs generated by push-
down automata, cf. Section 2.2.2. However, since the strategy problem is undecidable for games
with imperfect information on finite graphs and specifications defined by deterministic pushdown
automata with reachability acceptance, the strategy problem for two-player reachability games
with imperfect information on graphs generated by pushdown automata is undecidable as well.
So while the generalized powerset construction demonstrates that such games can be turned into
games with full information in principle, there is no possibility to obtain an effective presentation
of the powerset graph in this case.

Now, Reif’s powerset construction offers a method to solve games with imperfect information
on finite graphs. There are, however, two drawbacks. First, if the winning condition is not
observable, then already for simple Büchi conditions, determinization of ω-automata is needed.
So instead of performing the powerset construction and determinization separately, we could
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also translate the game graph into a distributed systems which merges the winning condition
and the structure of the game graph into the specification. Then, the powerset construction is
included in the determinization step. Essentially, the complexity will be the same. It is, however,
somehow appealing to have a direct method that does not go via this translation as well.

Second, even if the winning condition is observable, in general the powerset construction
requires to construct a graph that is exponentially larger than the original graph. However,
no automata theoretic methods are needed in this case, so when studying solution methods
for the strategy problem for parity games with imperfect information and observable coloring,
we can focus on the powerset construction. The challenge here is to find optimized versions of
the powerset construction as well as subclasses of parity games with imperfect information for
which the strategy problem can be solved more efficiently. Remind that for two-player games
with imperfect information on finite graphs the strategy problem is Exptime-hard, even for
observable reachability condition.

In Section 3.5.3, we discuss a construction that avoids the explicit construction of the whole
powerset graph in advance. Instead, it proceeds by evaluating formulas of the modal µ-Calculus
on the powerset graph and uses and optimized representation of the sets of positions. Moreover,
in Chapter 4 we analyze the complexity of the strategy problem for parity games with imperfect
information on graphs of bounded complexity and, in particular, the performance of methods
that are derived from the powerset construction.

3.5.2 Implementation of Strategies
We have seen how the powerset construction can be used to solved the strategy problem for
parity games with imperfect information on finite graphs. As usual, once we know that a winning
strategy for player 1 exists, we would also like to be able to construct an implementation of
such a strategy (from the information that the algorithm generates).

First, we consider the case of games with observable parity winning conditions, so let
G = (V, V0, δ,∼V ,∼A) be a game graph with partial information and let col : V → [k] be an
observable coloring. Moreover, let v0 ∈ V be some initial position such that player 1 has a
winning strategy for (G, col, v0). Then player 1 has a winning strategy for (G, col, {v0}) and since
G is a game graph with full information, player 1 has a positional winning strategy σ : 2V1 → A1
for (G, col, v0). Now this strategy can also be viewed as a memory strategy σ for G, where the
memory structure is, essentially, the game graph G.

More precisely, we define the memory structure M = (M, δin, δup) as follows. The set of
states is M = 2V and the initializing function yields, for some position v ∈ V the initial state
δin(v) = {v}. The update function is defined according to the transitions in G:

δup(u, [a][v]) := Post[a](u) ∩ [v].

Moreover, we define the memory strategy σ : M → A1 by σ(u) := σ(u), if u ⊆ V1, and if u ⊆ V0
then σ(u) is an arbitrary action from A1.

According to Proposition 3.21, we have δ∗([π]) = V (π) for all histories π ∈ v0(AV)∗ in G.
Using this, similarly as in the proof of Proposition 3.26, one can show that for any play in G
that is consistent with σ, the corresponding play in G as constructed in the proof, is consistent
with σ and so, σ is a winning strategy for player 1 for (G, col, v0). (Notice that the proof is even
simpler since σ is a positional strategy and so in particular, it does not depend on the actions in
a history.)

In the case of a parity condition that is not necessarily observable, we first construct a deter-
ministic parity automaton B = (Σ, Q, qin, δ, col) over the alphabet [V]∪A[V], defining the winning
condition W and then we take the product parity game graph (G×B, col×, ({v0}, δB(qin, {v0}))).
For the game played on this graph, player 1 has again a positional winning strategy σ, but
now, this strategy depends not only on the positions u ∈ 2V of G, but also on the state of
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the automaton B. Hence, we have to adapt the definition of M accordingly: M = 2V × Q,
δin(v) = ({v}, δB(qin, {v})) and

δup((u, q), [a][v]) := (v, δB(q, bv))

for some b ∈ [a], where v = Post[a](u) ∩ [v]. As before, the memory strategy σ : M → A1 is
defined by σ(u, q) := σ(u, q), if u ⊆ V1, and if u ⊆ V0 then σ(u, q) is an arbitrary action from
A1.

So for parity game graphs with observable coloring, if player 1 has a winning strategy from
some position v0, then he also has a finite memory winning strategy that uses at most 2|V | many
memory states.26 In the remainder of this section we demonstrate, that this bound is essentially
optimal, even for safety games.

For m ∈ N, consider the game graph Gm = (Vm, δm,∼Vm,∼Am), where:
V 0
m = {v0} ∪ {v0

j , v
1
j | j = 1, . . . ,m}

V 1
m = {w0

j , w
1
j | j = 1, . . . ,m} ∪ {waste,haven}

A = {↓1, . . . , ↓m} ∪ {¬1, . . . ,¬m} ∪ {?, !,	}.
The transitions of Gm are defined as follows:

v0
↓j−→ v0

j

v0
j

¬j−→ v1
j , v1

j

¬j−→ v0
j and vιj

¬l−→ vιj for l 6= j

vιj
?−→ wιj

w0
j

¬j−→ w1
j , w1

j

¬j−→ waste and wιj
¬l−→ wιj for l 6= j

w0
j

!−→ waste and w1
j

!−→ haven

waste 	−→ waste and haven 	−→ haven
Finally, the indistinguishabilities of player 1 are:
↓1∼A ↓2∼A . . . ∼A ↓m
vιj ∼V vκl for all j, l ∈ {1, . . . ,m} and all ι, κ ∈ {0, 1}
wιj ∼V wκl for all j, l ∈ {1, . . . ,m} and all ι, κ ∈ {0, 1}

Moreover, we define the safety condition Sm = Vm \ {waste} on Gm. The game graph G2 is
depicted in Figure 3.2. Diamond positions belong to player 0 while round positions belong to
player 1. Dotted lines indicate the indistinguishabilities of player 1. The selfloops at waste and
haven are omitted.

So after the first move of player 0 from v0, player 1 will consider exactly the set {v0
1 , . . . , v

0
m}

of positions possible which can be seen as the digital number 0 . . . 0. Then, by applying ¬j ,
player 0 can change the position v0

j in this set to v1
j and vice versa, that is, he can flip the j-th

bit in the digital number. Therefore, the sets that player 0 can generate correspond to all digital
numbers with m bits. Then, having generated some digital number {vι11 , . . . , vιmm }, player 0 can
apply the action ? which gives control to player 1. Now player 1 can flip the j-th bit from 0 to
1 by using also the action ¬j , but by trying to flip a bit that already has the value 1, he will
lose. Additionally, player 1 will also lose, if he plays the action ! when being in some position
w0
j that corresponds to a bit with value 0. Hence, to apply the action ! safely and reach the

position haven, player 1 must first generate the digital number 1 . . . 1. But in order to be sure
that he does not try to flip a bit that already has the value 1, he must exactly know the digital
number that player 0 has created. Since there are 2m such digital number, any finite memory
strategy for player 1 will have at least 2m memory states.

26For parity game graphs with not necessarily observable coloring, the construction above shows that exponential
memory is sufficient as well, but 2|V | states will not be enough in general.
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Figure 3.2: The game graph G2. Player 1 needs at least 4 memory states.

Proposition 3.27. Player 1 has a memory winning strategy for (Gm, Sm, v0) that uses at most
2m memory states but he does not have one that uses less than 2m memory states.

Proof. It is easy to see that player 1 has a memory winning strategy for (Gm, Sm, v0) that uses
at most 2m memory states: If player 0 never plays the action ? then the game will stay in the
safe positions vιj forever, so player 1 wins the game. If player 0 plays action ? after a finite
number of steps, then he has generated a digital number ι1 . . . ιm (V (π) = {wι11 , . . . , wιmm }) and
player 1 chooses actions ¬j for exactly those bits j which are 0 (w0

j ∈ V (π)). Thereafter he
knows that the game is in position w1

j for some j ∈ {1, . . . ,m}, so he can safely choose action !
and reach position haven.

Now let M = (M, δin, δup) be a memory structure for player 1 with |M | < 2m and assume
there is a winning strategy σ : M × [V1]→ A1 for player 1 with memoryM. It is easy to see that
for all tuples (ι1, . . . , ιm) ∈ {0, 1}m there is some σ-history π such that V (π) = {wι11 , . . . , wιmm }.
(Notice that any history π in which ? does not occur is consistent with σ as all positions in
π belong to player 0.) Since there are 2m such tuples but less than 2m memory states in M ,
there are σ-histories π, ρ in Gn with V (π) = {wι11 , . . . , wιmm } and V (ρ) = {wκ1

1 , . . . , wκmm } for
some tuples ι = (ι1, . . . , ιm) 6= (κ1, . . . , κm) = κ ∈ {0, 1}m such that δ∗(π) = δ∗(ρ).

Consider the (unique) extensions πa1v1a2v2 . . . and ρb1w1b2w2 . . . of π and ρ to σ-plays. For
l ∈ N, define the history πl = πa1v1 . . . alvl and for any l with l = 0 or vl /∈ {waste,haven}, let
Z(πl) = {j ∈ {1, . . . ,m} |w0

j ∈ V (πl)} be the bits in the digital number interpretation of V (πl)
which are 0. The histories ρl and sets Z(ρl) are defined analogously. Notice that ι 6= κ implies
Z(π) 6= Z(ρ). Since all positions wιj are indistinguishable for player 1 it is easy to see that
a1 = b1 and, for all l ≥ 1 with vl, wl /∈ {waste,haven}, we have δ∗(πl) = δ∗(ρl) and al+1 = bl+1.

First we show that there is some l ∈ N with al+1 = !. Otherwise, a1 = ¬j for some j
and for all l ≥ 1 with vl /∈ {waste,haven} we also have al+1 = ¬j for some j. Moreover, if
j ∈ Z(πl), then Z(πl+1) = Z(πl) \ {j} and vl+1 /∈ {waste,haven}, so there is some l ∈ N with
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vl /∈ {waste,haven} such that j /∈ Z(πl). This means w0
j /∈ V (πl) and so w1

j ∈ V (πl). But then
σ cannot be winning: w1

j ∈ V (πl) means that there is some history ϑ ∼∗ πl with last(ϑ) = w1
j .

Since πl is consistent with σ and ϑ ∼∗ πl, ϑ is consistent with σ as well. (Notice that player 1
can distinguish any two of his actions.) After ϑ has been played, player 1 chooses the action
σ(δ∗(ϑ), [last(ϑ)]) = σ(δ∗(πl), [last(πl)]) = al+1 = ¬j , so the unique extension of ϑ to a σ-play
is lost by player 1 since δ(w1

j ,¬j) = waste. This contradicts our assumption that σ is a winning
strategy, so there is some l ∈ N with al+1 = !. Analogously, there is some l′ ∈ N with bl′+1 = !.

Now consider the (unique) l, l′ ∈ N such that al+1 = ! and bl′+1 = !. W.l.o.g., assume l ≤ l′.
Then vl, wl /∈ {waste,haven} as the action ! is not available in either one of these positions. As
we have noticed, this yields ak = bk for k = 1, . . . , l + 1. Therefore, al+1 = bl+1 = !. Moreover,
since Z(π) 6= Z(ρ) and ak = bk ∈ {¬1, . . . ,¬m} for k = 1, . . . , l, we also have Z(πl) 6= Z(ρl), so
at least one of these sets is not empty. If Z(πl) 6= ∅, then σ cannot be winning: Z(πl) 6= ∅ yields
a history ϑ ∼∗ πl such that last(ϑ) = w0

j for some j. As before, ϑ is consistent with σ. After
history ϑ, player 1 chooses action σ(δ∗(ϑ), [last(ϑ)]) = σ(δ∗(πl), [last(πl)]) = al+1 = !, so the
unique extension of ϑ to a σ-play is lost by player 1 because δ(w0

j , !) = waste. If Z(ρl) 6= ∅, then
completely analogously, σ cannot be winning as well. This contradicts our assumption that σ is
a winning strategy, so there cannot be a memory winning strategy for player 1 for (Gm, Sm, v0)
that uses less than 2m memory states.

Notice that the number of positions and actions in the game graph Gm are linear in m.
Moreover, Gm also contains linearly many edges, but the 3m selfloops in the graph are each
labeled with exactly m−1 actions. Therefore, the lower bound is subexponential in the total size
|G| of the game graph: the number of memory states needed to implement a winning strategy
for player 1 is at least 2

√
|G|/c for some c. However, it is a clear and tight lower bound of 2|V |/5,

for game graphs with linearly many actions and (unlabeled) edges. In this sense, the upper
bound of 2|V | is essentially optimal for safety games.

On the other hand, the construction cannot be directly applied to reachability conditions:
The reachability condition Rm = {haven} is not equivalent to the safety condition Sm because
player 0 can stay in the positions vιj forever. To use reachability conditions we would have to
change the game graphs so that player 0 can make at most m moves before giving control to
player 1 (which is sufficient to generate any digital number with m bits from 0 . . . 0). But this
causes a blow up of the set of positions, yielding a 2

√
|V |/c lower bound.

In [172] a construction has been presented that also yields a 2
√
|V |/c lower bound for

reachability games but uses exponentially many actions. This can be avoided by using the fact
that any permutation is a product of certain transpositions which, however, causes a blow up of
the set of positions, yielding a 2 3

√
|V | lower bound. A tight inspection of the construction may

give a 2
√
|V |/c lower bound for the case of linearly many actions, and a 2|V |/c lower bound for

the case of exponentially many actions. Whether the tight lower bound for safety games can be
established for reachability games is not quite clear.

It is also interesting to note that the game graphs in [172] are different in that player 1
does not consider exactly m positions possible in each step (until a special position is reached)
and has to turn this set into one which allows for a safe execution of some winning action.
Instead, player 1 removes in each step (at most) one element from the set of positions that he
considers possible and he can only safely execute a winning action in a situation where this set
is a singleton. Moreover, the interaction between player 0 and player 1 is also different: While in
the games on Gm, player 0 makes an arbitrary number of moves (m are sufficient) but then gives
control to player 1 for the rest of the game, in the games used in [172], the players alternate at
least m times before player 1 gets a chance to win.

Another lower bound for reachability games has been obtained in [22]. The exact bound
has not been calculated, but it is clearly superpolynomial.27 A distinct feature of the game

27The number of positions of the game graphs Hm from [22] is the sum of the first m prime numbers, while
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graphs presented in [22] is that player 0 only makes a single move right at the beginning and
that all the actions of player 0 are indistinguishable for player 1. We could also modify the
game graphs Gm so that all actions of player 0 are indistinguishable for player 1 by encoding
the actions of player 0 into the positions of the graph, cf. Section 2.1.2. This, however, would
induce quadratically many positions, so the lower bound would be 2

√
|V |/c as well. For game

graphs that satisfy this special condition, it is also not quite clear whether a 2|V |/c lower bound
holds, even for safety conditions.

3.5.3 Antichains
Throughout this section, we consider only observable parity conditions. We give merely some
intuition and main ideas of the antichains approach. For details we refer to [66, 52, 22].

In [66], the following approach to solve reachability and safety games with imperfect infor-
mation on finite graphs G = (V, δ, (∼V ), (∼A) has been suggested:28 Instead of constructing the
whole powerset graph 2G in advance, one performs the usual fixed point computation on 2G ,
that iterates the controllable predecessor operator CPre : 2(2V ) → 2(2V ) with

CPre(X) = {v ∈ 2V0 | Post(v) ⊆ X} ∪ {v ∈ 2V1 | Post(v) ∩X 6= ∅}.

So CPre(X) contains exactly those positions in 2G from which player 1 can force the game
into X in a single step. Clearly, CPre is a monotone operator. So, for a reachability winning
condition given by a set R ⊆ V of winning positions, to compute the winning region of player 1
in 2G we can start with 2R ⊆ 2V and then apply the controllable predecessor operator until we
reach a fixed point.

This computation obviously does not require access to the whole game graph in advance:
We start with 2R and we compute only as much of the graph structure of 2G as is needed
in each iteration of CPre. Although this avoids the computation of parts of the game graph
that are irrelevant for determining the winning region of player 1, the representation of those
parts that are relevant is still extensive. The important observation is now, that each set X of
positions that occurs during the fixed point computation on 2G is downward closed with respect
to inclusion, that is, if v ∈ X then u ∈ X for all u ⊆ v. (For X = 2R this is obvious and if X is
downward closed, then CPre(X) can be easily shown to be downward closed as well.)

Therefore, the set X is uniquely determined by the set of maximal elements with respect to
⊆, that is, we can represent X by the set

dXe = {v ∈ X | there is no u ∈ X such that v ( u}.

Now such a set dXe forms an antichain in the lattice (2(2V ),⊆) of subsets. The basic idea for
the antichains method is now to compute the fixed point of CPre on the lattice of antichains of
(2(2V ),⊆) instead of (2(2V ),⊆) directly. In this way, the sets that occur during the computation
are potentially smaller than the sets during the computation using the extensive representation
of sets of positions. It can be shown that there are classes of safety games with imperfect
information such that performing the powerset construction explicitly requires exponential time
while the antichains method runs in polynomial time [66].

These classes, though, are rather particular and there seem to be no comprehensive charac-
teristics known that would guarantee that the antichains methods needs only polynomial time
to solve the strategy problem for the corresponding class of games with imperfect information.
However, in actual benchmarks, the antichains method usually shows a quite advanced perfor-
mance, so for problems whose solution forms a part of certain toolboxes like standard automata
construction, the antichains method may be a good alternative, if applicable.
the number of states needed to implement a winning strategy for player 1 is the product of these numbers.

28In fact, in [66], the approach has been described only for safety conditions but the adaption the reachability
conditions is straightforward.
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In fact, in [65], this approach has been used to develop an improved method for solving
the universality problem for nondeterministic automata A on finite words. This problem can
be easily reduced to the strategy problem for two-player reachability games with imperfect
information: Player 1 tries to find a word u ∈ Σ∗ that is not in the language of A, while player 0
tries to find an accepting run of A on the word that player 1 constructs.

In each step, player 1 chooses a letter a from Σ and player 0 chooses an a-transition from
the current state. Player 1 also has a special action ⊥ that he can choose to indicate the end
of the word. This action leads from accepting states of A to a state vfail which is losing for
player 1 and it leads from rejecting states of A to a state vgoal which is winning for player 0.
So R = {vgoal}. The states of the automaton are invisible for player 1, that means, all states
form a single ∼V -equivalence class. In this way, player 1 observes only the number of steps
(and his own actions, which is irrelevant as we know), so strategies for player 1 are functions
σ : N→ Σ ∪ {⊥} which correspond to finite words u. It is not hard to see that a strategy is in
fact winning if, and only if, u /∈ L(A). Experimental results on this solution of the universality
problem show that it often outperforms the standard powerset construction.

In [52], the solution has been extended to parity winning conditions. For this, one uses
the fact that the winning region of player 1 in a parity game with full information can be
defined in the modal µ-calculus [75]. More precisely, given a parity game graph (G, col) with
full information, we can construct a formula ϕ ∈ Lµ(V0, V1, P1, . . . , Pk) where col(V ) ⊆ [k] such
that for all v ∈ V we have G, v |= ϕ if, and only if, player 1 has a winning strategy for (G, col, v).

Essentially, evaluating the formula ϕ on G is also done by iteratively computing fixed points
of CPre, but now, we have to compute several nested greatest and smallest fixed points. To
see that this computation can be performed on the lattice of antichains as well, one has to
demonstrate that intersection, union and taking fixed points of monotone operators preserve
downward closedness of the sets X ⊆ 2V too. (Notice that complement does not preserve
downward closedness, but for the formula ϕ, negation is not needed.)

These results provide the equipment to apply the antichains method to the strategy problem
for parity games. On the other hand, since the antichains algorithm does not construct the
powerset graph 2G explicitly, it is not directly clear how to obtain an implementation of a
strategy for player 1 from a positive answer of the algorithm. Of course it could be possible
that whenever the antichains method generates only sets of polynomial size, then we can also
find a succinct representation of a winning strategy that needs only polynomially many states
as well. However, in [22] it has been shown that there is a class of game graphs Gn with partial
information and reachability winning condition such that each game graph has size polynomial
in n and, while the fixed point computed by the antichains algorithm also has size polynomial in
n, any winning strategy for player 1 for Gn has size at least exponential in n, cf. Section 3.5.2.

Intuitively, this demonstrates that the information generated by the antichains algorithm
during a computation is not sufficient in general, to extract winning strategies. Hence, there
can be no simple patch of the algorithm that upgrades it to a strategy constructing version
but still retains its performance as it is. Nevertheless, in [22], an antichains method has been
presented that is capable of constructing finite state implementations of winning strategies,
which is a serious extension of the antichains approach as described before. In [23], a prototype
implementation of this algorithm has been presented.

Summing up, the antichains method in its general form, is an optimized implementation
of the powerset construction that avoids an explicit construction of the whole game graph in
advance and represents the sets of positions more succinctly. Experimental results show a quite
improved performance compared to more direct implementations. A shortcoming of the method
is that so far there are no sufficient conditions known that would guarantee that the method
runs in polynomial time on certain (preferably large) classes of games. One of the core issues
about the method for both, adequate experimental performance and theoretical analysis, is
the implementation of the controllable predecessor operator on the lattice of antichains. This
operator forms an integral part of the method and influences its performance crucially [22].
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Some remarks on this can also be found in [172].

3.5.4 Asynchronous Observability
We conclude the presentation of the powerset construction and related concepts with a little
side trip to games with imperfect information on finite game graphs, where the information of
the players is given in terms of asynchronous observability. As we have mentioned, there are
several results on certain cases of asynchronous observability, cf. Section 2.1.4.

Here we demonstrate how the powerset construction can be adapted to the asynchronous
case defined by the equivalence relation←−∼∗ as introduced in Section 2.1.4. Remind that π←−∼∗ρ if
←−π ∼∗ ←−ρ where←−π is obtained from π by contracting each maximal sequence vjaj+1vj+1 . . . akvk
of private moves of player 0 in π to vj . That is, π and ρ are indistinguishable for player 1 in the
asynchronous case just as in the synchronous case, if we additionally hide all private moves of
player 0 completely from player 1. Some basic mechanisms that we use for this adaption of the
powerset construction are similar to those presented in [221, 194, 47].

As we have mentioned, the method of knowledge tracking, that is, constructing an explicit
representation of the possible states of knowledge of player 1 during plays of the original game
and the dynamics of this knowledge, is of independent interest, beyond the mere task of strategy
synthesis, see also Chapter 6. In the following, let G = (V, δ,∼V ,∼A) be a game graph with
partial information.

To see how the powerset construction should be defined for the case of games with imperfect
information defined by asynchronous observability, reconsider the set

Tr(π) = {ρ ∼∗ π | ρ ∈ v0(AV)∗ is a history in G}.

Analogously, we can define the set
←−Tr(π) = {ρ←−∼∗ π | ρ ∈ v0(AV)∗ is a history in G}.

The core-operator is then defined just as before, that is, core(←−Tr(π)) = {last(ρ) | ρ ∈ ←−Tr(π)}. We
abbreviate core(←−Tr(π)) by ←−V (π).

Notice that for any history π in G, we have ←−Tr(π) = ←−Tr(←−π ). Clearly, ←−π is not a history
in G in general, but in this context we treat ←−π as though it was a history in G. So ←−Tr(←−π ) =
{ρ←−∼∗←−π | . . .} = {ρ←−∼∗ π | . . .} =←−Tr(π). Therefore, ←−V (π) =←−V (←−π ) for all π.

To compute the sets ←−V (π) iteratively as we have done for the sets V (π) we have to take into
account the private moves of player 0. For this we define, for a set U ⊆ V of positions, the set
Reachp(U) ⊆ U of all positions that can be reached from some position in U by a (possibly
empty) sequence of private moves of player 0. Notice that if U ⊆ V1 then Reachp(U) = U . It is
easy to see that ←−V (v0) = Reachp({v0}).

Moreover, for a set U ⊆ V , an action a and a position w ∈ Posta(U), we define U [aw] to be
U , if U ⊆ V0 and w ∼V v for some v ∈ U and we define U [aw] to be Reachp(Post[a](U) ∩ [w]),
otherwise. These definitions reflect the fact that player 1 does not notice the private moves of
player 0 but as soon as a non-private move is performed, player 1 has to take all subsequently
possible private moves of player 0 into account at once. Having this in mind, it is easy to prove
that for any history πav ∈ v0(AV)+ in G the following holds.

Proposition 3.28. ←−V (πav) =←−V (π)[av].

Now, the powerset graph for G, which we denote G̃ = (Ṽ , ∆̃) in the asynchronous case, is
defined accordingly: Clearly, Ṽ = 2V and Ṽ0 = 2V0 . Moreover,

(ṽ, a, w̃) ∈ ∆̃ :⇐⇒ w̃ = ṽ[aw] for some w ∈ w̃.
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Again, an important property for the correctness of this construction is that each history
π̃ = w̃0b1w̃1 . . . blw̃l in G̃ induces at least one history in G. In the asynchronous case, the set←−Π(π̃) of histories induced by π̃, can be described as:

A history π = v0a1v1 . . . arvr is in ←−Π(π̃) if ←−π ∈ Π(π̃).

In the asynchronous case, however, ←−Π(π̃) 6= ∅ holds in general only if there are no selfloops
of player 0 in π̃: Selfloops of player 0 in π̃ correspond to private moves of player 0 in G, but in
←−π , all such moves are erased. In fact, sequences of selfloops that player 0 plays during a play π̃
may make it impossible to construct a corresponding play in G directly, since there may be no
appropriate sequences of private moves of player 0 that can be plugged in at these points of the
play.29 However, the definition of the winning condition will guarantee that we can restrict to
plays (and therefore histories) in which player 0 does not play any such sequences of selfloops.

Proposition 3.29. Assume that w̃j 6= w̃j+1 if w̃j ∈ Ṽ0 and let vr ∈ w̃l.

(1) There is a history π ∈ ←−Π(π̃) such that last(π) = vr.

(2) For each history π ∈ ←−Π(π̃) we have ←−V (←−π (≤ j)) = w̃j.

To see how to define an appropriate winning condition W̃ for G̃ from a winning condition
W ⊆ Π for G, reconsider the definition of the winning condition W for G. There, for a play π to
be won by player 1 we have required that any play π ∈ Π(π) is won by player 1. Here we use
exactly the same definition but of course we have to adapt the definition of Π(π), taking into
account the private moves of player 0 just as for finite histories.

For this, let ←−π be obtained from a play π in G by contracting each maximal finite sequence
vjaj+1vj+1 . . . akvk of private moves of player 0 in π to vj . That means, all finite sequences of
private moves are erased but if π ends with some infinite sequence of private moves, then ←−π
ends with the same infinite sequence of private moves. Given a play π̃ = w̃0b1w̃1b2w̃2 . . . in G̃

the set ←−Π(π̃) is defined accordingly and, using this set, the winning condition W̃ is defined as
before:

A play π in G is in ←−Π(π̃) if ←−π ∈ Π(π̃)

π̃ ∈ W̃ :⇐⇒ ←−Π(π̃) ⊆W

Notice that the⇐-direction of the definition of W̃ guarantees that any play in which player 0
plays a selfloop that is not part of an infinite sequence of selfloops, is lost by player 0. On
the other hand, player 0 does not need to play any such selfloops because the ⇒-direction of
the definition of W̃ ensures that for any position w̃j ∈ Ṽ0 in π̃, all possible finite sequences of
private moves of player 0 in G that travel through w̃j are taken into account. Hence, player 0
needs to play selfloops only if he wants to play an infinite sequence of selfloops that corresponds
to an infinite sequence of private moves in G. So we can restrict to plays in which player 0 does
not play any useless selfloops and apply Proposition 3.29 to any history that is relevant.

The proof that with this definition of W̃ , winning strategies of player 1 are actually preserved,
is pretty much the same as in the synchronous case. The finite sequences of selfloops of player 0
have already been taken care of, so essentially the only difference is that we have to pay some
attention to the infinite sequences of selfloops, which correspond to infinite sequences of private
moves.

Proposition 3.30. Player 1 has a winning ←−∼∗-strategy for (G,W, v0) if, and only if, he has a
winning strategy for (G̃, W̃ ,

←−
V (v0)).

29Notice that this is true also for positions w̃ ∈ Ṽ0 that actually do induce loops in G, if player 0 proceeds to
some position w̃′ 6= w̃ later on in the play. These selfloops in G̃, however, cannot be simply removed because
player 0 needs them to be able to simulate infinite sequences of private moves in G.
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Omega-Regular Winning Conditions. Now we want to show that just as in the synchronous
case, ω-regular winning conditions are effectively preserved by the construction. So assume that
W is ω-regular. Here we do not, however, construct a universal parity automaton defining W̃
from a deterministic parity automaton defining W but we go through the complement Π \W
and use nondeterministic Büchi automata which makes it somehow easier to deal with the
sequences of private moves of player 0. So assume that Π \W is defined by a nondeterministic
Büchi automaton C = (Σ, Q, qin,∆C , F ). (Notice that from a deterministic parity automaton
defining W we can easily obtain such an automaton C of size polynomial in the size of the
original automaton by complementation and simulation.)

The main idea for the automaton C̃ = (Σ̃, Q̃, q̃in,∆C̃ , F̃ ) defining Π̃ \ W̃ is now the dual as
in the synchronous case: While reading a play π̃, C̃ guesses a play π ∈ ←−Π(π̃) and at the same
time simulates C on this play. From C̃ we can then construct a deterministic parity automaton
defining W̃ in the usual way. We restrict to plays that do not end with an infinite sequence of
selfloops of player 0. We comment on the general case after we have seen how the automaton
works but we do not want to incorporate this into the definition.

Formally, we define C̃ as follows. Clearly, Σ̃ = Ṽ ∪AṼ and, moreover, Q̃ = {q̃in}∪Q×V ×{0, 1}
and F̃ = {(q, v, ι) | q ∈ F} ∪ {(q, v, 1) | q ∈ Q}. Given (p, v, ι) ∈ Q × V × {0, 1}, the possible
transitions from this state are:

((p, v, ι), bw̃, (q, w, κ)) ∈ ∆C̃ :⇐⇒
there is a history v1a2v2 . . . alvl in G such that:

1. l = 1, if w̃ ∈ Ṽ1 and v 6∼V v1 if w̃ ∈ Ṽ0

2. there is some a ∼A b with δ(v, a) = v1

3. vj ∈ w̃ for all 1 ≤ j ≤ l and vl = w

4. there are q1, . . . , ql−1 ∈ Q with
4.1 (p, av1, q1), (q1, a2v2, q2), . . . , (ql−1, alvl, q) ∈ ∆C

4.2 if κ = 1 then qj ∈ F for some 1 ≤ j ≤ l − 1.

The possible transitions (q̃in, w̃0, (q, w, κ)) from the initial state q̃in are defined accordingly
but due to the longish formulation we do not write them down.

So C̃ always stores the position v that is has chosen from the previous set w̃ which, in the
first step, is some v ∈ Reachp({v0}). Then, reading bw̃, the automaton guesses a finite sequence
of private moves of player 0 starting from some [b]-successor of v (2), that travels through w̃
and ends in some position w (3). This sequence must be, of course, empty if w̃ ∈ Ṽ1 and it must
be maximal within the play that C̃ guesses if w̃ ∈ Ṽ0 (1).

At the same time, C is simulated on the play that is generated in this way by the requirement
that for this finite sequence of private moves of player 0, there is a corresponding finite run of C
that ties in with the previous run prefix ending in p and ends in q (4.1). Moreover, since we do
not visit the states from this finite run explicitly, we use a flag κ ∈ {0, 1} to indicate, whether
during this finite run some accepting state has been visited (4.2). If all these requirements are
fulfilled, then we move on to state (q, w, κ).

Now it is not hard to see how to handle the general case: The automaton guesses whether
the play will end in an infinite sequence of selfloops of player 0 and it guesses a position s ∈ N
where this sequence starts. For all positions ≥ s, the sequence v1a2b2 . . . alvl in the definition
of ∆C̃ has to fulfill l = 1 in each step, that is, also if w̃ ∈ Ṽ0. The other conditions remain
unchanged. Since C̃ always memorizes a position v from the position w̃ that is has read in the
last step, it can check for consecutive identical position by testing v ∈ w̃ for the position w̃
that it reads in the current step. If C̃ encounters two different positions after position s, then it
immediately rejects.

Finally, let B̃ be a deterministic parity automaton such that L(B̃) recognizes the complement
of L(C̃) (given the automaton C̃ for the general case).
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Proposition 3.31. W̃ = {π̃ ∈ Π̃ | π̃ ∈ L(B̃)}.

To see that this construction is in fact effective we have to show that 1. - 4. are decidable.

Proposition 3.32. Given t = ((p, v, ι), bw̃, (q, w, κ)), we can decide whether t ∈ ∆C̃?

Proof. We construct a nondeterministic finite automaton Bfin over V ∪AV accepting precisely
those words which are finite histories in G such that conditions 1. - 3. hold. Now let Cfin be
the product automaton of Bfin and the nondeterministic finite automaton Afin, obtained from
B, by defining all states to be accepting and augmenting B by a state to remember whether
some state in F has been seen if κ = 1. Then Cfin accepts precisely those words which are finite
histories in G such that conditions 1. - 4. hold. So t ∈ ∆C̃ if, and only if, L(Cfin) 6= ∅.

Observable Winning Conditions. Finally we consider observable winning conditions. Of
course, in the asynchronous case, the observations that player 1 makes during a play π have
to be defined using ←−π , that is, we set ←−obs(π) := obs(←−π ). The winning condition W is called
observable in the asynchronous case if for each two plays π and ρ in G with ←−obs(π) =←−obs(ρ) we
have π ∈W if, and only if, ρ ∈W . In other words, W = {π ∈ Π | obs(π) ∈ obs(W )}.

Notice that in a play π, player 1 will never make two consecutive identical observations [v][v]
with v ∈ V0. So, to define whether a play π̃ is won by player 1 just by means of the observations
of player 1, we have to hide selfloops of player 0 in π̃ as well: Let ←−̃π be obtained from π̃ by
contracting each maximal finite sequence ṽa1ṽ . . . alṽ of selfloops of player 0 in π̃ to ṽ. Again, if
π̃ ends with an infinite sequence of selfloops then ←−̃π ends with the same sequence of selfloops.
Now let accordingly ←−obs(π̃) := obs(←−̃π ) and consider {π̃ ∈ Π̃ |←−obs(π̃) ∈ ←−obs(W )}.

In general, this condition will not be equal to W̃ and, in fact, not adequate for G̃. The
reason is that player 0 can still play an infinite sequence of selfloops on a position w̃ that does
not induce a cycle in G. Such a play will be won by player 0, because there is no play in
G that induces the same sequence of observations. Notice, however, that the only way how
player 0 can take advantage of these selfloops is by abusing them in this way: A finite sequence
of selfloops w̃a1w̃ . . . alw̃ does not influence the winner of the play. So we can deal with this
problem by simply deleting all selfloops from any position w̃ ∈ Ṽ0 that does not induce a cycle
in G. (Which is a very simple transformation of the graph G̃.) Call the resulting graph Ĝ and
consider {π̂ ∈ Π̂ |←−obs(π̂) ∈ ←−obs(W )}.

Again, in general there are plays π̂ with π̂ ∈ W̃ but ←−obs(π̂) /∈ ←−obs(W ). The reason is that
W̃ stipulates that any play where player 0 plays a selfloop is won by player 1 which is clearly
not the case for the winning condition described above since the observations of player 1 in π̂

are the same as in ←−π̂ . To see that the condition is adequate for G̃ nevertheless, let us define
Ŵ := {π̂ ∈ Π̂ |←−π̂ ∈ W̃}. (Notice that Ŵ = {π̂ ∈ Π̂ |←−Π(←−π̂ ) ⊆ W}.) It is easy to see that
player 1 has a winning strategy for (G̃, W̃ ,

←−
V (v0)) if, and only if, he has a winning strategy for

(Ĝ, Ŵ ,
←−
V (v0)) and, moreover, if W is ω-regular then so is Ŵ . But now,

{π̂ ∈ Π̂ |←−obs(π̂) ∈ ←−obs(W )} = Ŵ .

For plays that do not end in an infinite sequence of selfloops, this can be shown just as in
the synchronous case, using König’s Lemma. Plays that do, have to be considered separately,
as usual. That is, for the modified powerset construction yielding (Ĝ, Ŵ ,

←−
V (v0)), observable

winning conditions can be easily treated as a special case. Finally, consider an observable
coloring col : V → [k] of G and a set X ⊆ [k]ω defining W = {π ∈ Π | col(π) ∈ X}. Then for
W to be actually observable in the asynchronous case, in general, the set X has to be stutter
closed30, that is, invariant under extending and contracting finite sequences of identical colors.

30Clearly, W can be observable if X is not stutter closed because the possible private moves of player 0 are
constrained by the game graph. Stutter closedness is, however, a convenient sufficient condition for observability.
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In this case Ŵ coincides with the winning condition defined by ĉol : V̂ → [k] with ĉol(v̂) = col(v)
for some v ∈ v̂. Notice that if X is defined by a parity condition, then X is stutter closed.

We have seen that, essentially, all techniques that we have presented for the synchronous case
can also be applied to the asynchronous case, albeit with some greater technical effort. There
are two small exceptions, tough, that we like to mention. First, the example from Section 3.5.2
showing the 2|V |/5 lower bound on the number of states does obviously not work in this way for
the asynchronous case: All moves of player 0 in the gadget that allows him to create the digital
number are private moves, so this whole gadget collapses to a single position when we apply
the powerset construction. It is easy to adapt the example to the asynchronous case similar
as it can be adapted to reachability conditions by taking m distinct copies of the gadget and
letting player 0 move from copy to copy. But in this way, we obtain a 2

√
|V |/c lower bound for

the asynchronous case which can also be obtained from the examples in [22] and [172].
Second, in the synchronous case, from a given S1S formula defining a winning condition W

for G, we can easily construct an S1S-formula defining the winning condition W for G, see for
example [172]. On the other hand, the sequences of private moves of player 0 make it much
more intricate to construct such a formula in the asynchronous case. Clearly, the formula can be
obtained from the automaton B̃ but this gives a formula of length nonelementary in the length
of the original formula. It is not clear, whether this blow up is avoidable.

Direct Reduction. We conclude the discussion of the asynchronous case with a short remark
on a more direct solution for the strategy problem by reducing it to the synchronous case. This
can be done by adding edges to the game graph G which allow player 0 to skip the sequences
of private moves that he makes and instead go directly to any position that he could reach by
such a sequence of private moves and one subsequent non-private move. In turn, we can let
player 1 observe all moves of player 0, so we end up with a game with imperfect information
and synchronous observability.

Clearly, a single move that player 0 makes in this game corresponds now in general to a set of
sequences of moves in the original game, so we have to adapt the winning condition accordingly.
Roughly speaking, a play π′ in the new game is in W ′ if for all plays π in G with ←−π = π′ we
have π ∈W . Similarly as for W̃ it can be shown that W ′ is ω-regular if W is. Moreover, if W
is observable then, essentially, we have W ′ = {π′ |

←−
π′ =←−π for some π ∈W}. In fact, if W is a

parity condition with an observable coloring col, then W ′ is also a parity condition given by col.
This provides a reduction of the asynchronous strategy problem to the synchronous strategy

problem which preserves ω-regular winning condition and observable parity conditions. In
particular, for the case of observable parity conditions, the reduction can be performed in
polynomial time. On the other hand, it should be emphasized that, while the construction
preserves winning strategies for player 1, it does not preserve the dynamics of the knowledge of
player 1 in the game.
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Chapter 4

Parity Games on Simple Graphs

The question whether the strategy problem for parity games on finite game graphs with full
information can be solved in polynomial time is one of the major open questions in the theory
of verification and synthesis of finite state systems.

Parity games are the model checking games for the modal µ-calculus [76, 199], a fixed point
extension of propositional modal logic [122], which subsumes many linear and branching time
specification formalisms, in particular CTL∗ [61, 33], which in turn encompasses LTL, as well as
the popular dynamic logic PDL, introduced in [82]. As we have seen in Section 3.1, parity games
with full information can also be used to decide the emptiness problem for nondeterministic
parity tree automata and constructing a regular tree for each given nonempty regular tree
language. Moreover, parity conditions are capable of expressing all ω-regular winning conditions
in such a way that the resulting games are always positionally determined, cf. Section 2.2. 1

During the last 15 years, much research on finding a polynomial time algorithm for parity
games with full information has been done, see for example [118, 157, 113], and [119, 189, 190]
for recent (optimized) variants of algorithms presented in [142, 222, 118]. However, so far no
polynomial time algorithm for solving the problem is known. In fact, very recently it has been
shown that one of the most prominent candidates for polynomial time algorithm – the strategy
improvement method of Vöge and Jurdziński – requires an exponential number of iterations in
general [87]. This result also holds for several variants of the algorithm like that of Schewe [190].2

The essential algorithmic facts which are known about parity games with full information
in general are formulated in Theorem 2.7: The strategy problem for parity games with full
information is in NP∩ co-NP and can be solved in time O(|V |k) where k is the number of colors.
Moreover, the algorithm presented in [119] yields a subexponential lower bound of |V |O(

√
|V |).

On the other hand, it has been shown that for graphs of bounded complexity, parity games
can often be solved in polynomial time. More precisely, on classes of graphs with bounded
tree-width [156], DAG-width [24, 25] and entanglement [26], parity games with full information
can be solved in polynomial time.3 There are also several other classes of graphs for which
this holds, like for example graphs of bounded Kelly-width [115] or clique width [159] and also
certain classes of graphs that are not defined in terms of bounded graph complexity. However,
we consider only classes of graphs defined by boundedness of certain graph complexity measures
and we focus on tree-width, DAG-width and entanglement.

1In fact, parity conditions are the only possibility for this.
2It is interesting to note that this work of Friedmann [87] has been the starting point for a number of other

lower bound constructions including subexponential lower bounds for several pivoting rules for simplex algorithms
that are used to solve linear programs [88, 89].

3Nevertheless, although parity games can be solved in polynomial time on these classes of graphs, a close
analysis of the counterexamples of Friedmann reveals that they have bounded complexity as well [46]. Hence, the
strategy improvement algorithm does not work in polynomial time on graphs of bounded complexity.
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The natural question arises, whether these result for parity games with full information
can be transferred (at least partially) to games with imperfect information. In this chapter we
conduct a detailed analysis of the influence of graph complexity on the computational complexity
of the strategy problem for parity games with imperfect information on finite graphs with two
players and observable coloring. We will see that in general, bounding the graph complexity
does not decrease the complexity of this problem. However, if we additionally bound the size of
the equivalence classes of positions in the game graphs, certain Ptime results can be obtained.
For this, we build on the powerset construction from Section 3.5. The basic idea is to transform
a parity game graph with partial information into one with full information using the powerset
construction and prove that the transformation preserves boundedness of the graph complexity.
Then the Ptime results on parity games with full information can be applied.

Notice that the powerset construction in the presented form works only for game graphs
with two players. The more general construction from Chapter 6 may give a starting point to
deal with the case of multiple players, but we do not pursue this here. Furthermore, as we
have seen, for dealing with non-observable parity conditions, determinization of ω-automata is
needed which goes beyond the usual powerset construction, and we have to use the product
construction from Section 2.2.1 which is also delicate in the context of graph complexity. It may
be possible to transfer some of our positive results to the non-observable case as well, but this
requires a substantial investigation of the constructions. We do not consider this here either.

In Section 4.2 we start with the general case, where the size of the equivalence classes
of positions may be unbounded. We first demonstrate that the approach using the powerset
construction as described above is bound to fail in this case. More precisely (and even worse),
we show that the powerset construction may yield graphs of exponential complexity (and hence
exponential size) when applied to graphs of bounded complexity. Furthermore, the first main
result of this chapter states that, indeed, any approach to exploit the simplicity of the graphs is
bound to fail: The strategy problem for parity games with imperfect information is Exptime-
hard on graphs of entanglement at most two and DAG-width at most three. Moreover, on
graphs of entanglement zero and DAG-width one the problem is still Pspace-hard.4

In Section 4.3, we consider game graphs with bounded partial information, that means, for a
given class of game graphs, we have a fixed r such that each equivalence class of positions has
size at most r. In this case, the powerset construction yields graphs which are only polynomially
larger. Hence, parity games on graphs with bounded partial information and a fixed number of
priorities can be solved in polynomial time for arbitrarily complex graphs.

However, for parity games with arbitrarily many priorities this is not clear (and equivalent
to the problem for games with full information). What remains to prove in order to show that
parity games on graphs with bounded partial information can be solved in polynomial time
if the graph complexity is bounded is that applying the powerset construction to such game
graphs preserves boundedness of the graph complexity. We will see that, while for tree-width
and entanglement this is not the case, the powerset construction does preserve boundedness of
directed path-width. Hence, the strategy problem for parity games on graphs with bounded
partial information and bounded directed path-width can be solved in polynomial time.

On the other hand, boundedness of directed path-width is a very restrictive assumption:
Intuitively this amounts to the assumption that the game graphs are only boundedly different
from directed paths, which are very simple graphs. However, a close analysis of the reasons why
the powerset construction does preserve boundedness of directed path-width reveals a possibility
to transfer this result to DAG-width: The graph searching games that characterize directed
path-width are also games of partial information in that the robber is invisible for the cops, see
Section 4.1. As it turns out, this allows for a particularly easy translation of cops’ strategies from
the original to the powerset graph. In a sense, the partial information in the graph searching
game captures the uncertainties of player 1 which are explicitly represented in the powerset

4In fact, these results hold even for reachability conditions.
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graph. Now, to be able to translate strategies for the cop player from the original graph to
the powerset graph, in the case of bounded partial information, it is not necessary to have a
completely invisible robber. In fact, if r is the maximal size of the subsets in the powerset graph,
a robber which may be on at most r possible vertices at each point, is sufficient.

To exploit these observations, we use a concept of graph searching in Section 4.4, where
the cops do not try to capture a single directed robber on the graph but several robbers simul-
taneously. The main technical result is that to capture r directed robbers simultaneously on
the graph, k · r cops are sufficient, if k cops are sufficient to capture a single directed robber.5
This result allows us then to translate cops’ strategies for the DAG-width game on the original
game graph to the powerset game graph, using only boundedly many cops, with the multiple
robbers game as a whistle-stop. Finally, this implies the second main result of this chapter: The
strategy problem for parity games on graphs with bounded partial information and bounded
DAG-width can be solved in polynomial time.

This chapter is based on [174, 175].

4.1 Graph Complexity

Graph complexity measures were originally defined for undirected graphs. The most prominent
measure for undirected trees is that of tree-width which has first been considered in [103]. Later
on, Robertson and Seymour have introduced the concept independently [184] in the course of
their famous graph minor project, eventually resulting in the graph minor theorem (also known
as Robertson-Seymour Theorem), which is one of the deepest results of graph theory: The minor
relation is a well-quasi ordering on the class of all undirected finite graphs. Or, equivalently,
each infinite class of undirected finite graphs contains two graphs of which one is a minor of the
other. The entire graph minor project appeared as a series of papers tagged with Graph minors
and consecutive numbers, starting with I. The final proof of the graph minor theorem appears in
Graph Minors. XX. Wagner’s Conjecture [185], a nice introductory course can be found in [67].

In [184], tree-width has been defined in the form as it is probably best known, using the notion
of a tree decompositions of a graph. This concept is also of great importance for algorithmic
graph theory, since decomposability can be used to develop dynamic programs for decision
problems on graphs, see for example [7]. Tree-width has been particularly successful in this
respect and is by now a central notion in algorithmic graph theory.

A tree decomposition anatomizes the given graph into (possibly quite complex) parts that
are only sparsely related in a certain sense and which, altogether, form a tree. The general
idea is now, roughly speaking, to solve the problem on the individual parts and combine the
partial solution in a bottom up manner along the tree. The point here is, that on classes of
graphs where all the individual parts have bounded size, that is to say, the graphs have bounded
tree-width, then the solution of the problem on the individual parts also takes only a fixed
amount of time. So if there is a way to combine the partial solutions efficiently, then the whole
problem can be solved efficiently as well.

This approach has been shown to be applicable to a large number of decision problems on
graphs which are NP-hard, including all MSO-definable graph properties [60]. For an overview
we refer to [35]. On the other hand, in general, game graphs do not have a symmetric edge
relation and obviously, the direction of the edges is of vital importance for the notion of (winning)
strategies. Still, we can measure the complexity of a directed graph using tree-width as well, by
simply taking the tree-width of the symmetric closure of the graph. It has been shown in [156],
that the strategy problem for parity games with full information can be solved in polynomial
time on classes of graphs with bounded tree-width.

5We like to anticipate that the central issue here is that of monotonicity, cf. Section 4.1.
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However, this assumption is very strong: There are acyclic graphs of arbitrarily large tree-
width, so it is expedient to look for complexity measures that take into account the whole
structure of a directed graph – in particular, the direction of the edges. One of the earliest
and most popular approaches is directed tree-width, defined in [116].6 Although certain fixed
parameter tractability results (in the sense described above) have been proved for classes of graphs
with bounded directed tree-width [116], the measure has also certain undesirable properties [2]
and is somehow difficult to handle, see also [157]. In particular, the game characterization of
directed tree-width is somehow inconvenient, especially for our concerns. We will make some
remarks on this later on. Whether the strategy problem for parity games with full information
can be solved in polynomial time on graphs of bounded directed tree-width is still open.

During the last decade, much research has been done on the development of complexity
measures for directed graphs that are more appropriate for applications in games and logic,
especially parity games and the modal µ-calculus [21, 157]. The properties and special merits of
the different measures are still subject to intensive research, see for example [114, 123, 91] and
also [25, 27] for recent articles reviewing and sharpening much previous research. Although we
focus here on complexity measures for directed graphs, especially DAG-width, due to its central
significance in the structure theory of finite graphs we start our presentation of the different
measures with tree-width. This will also serve as a preparation for the definition of DAG-width
which is a particularly natural generalization of tree-width in terms of the game characterization
that we shall mostly work with. We will also briefly consider tree-width later on where we
demonstrate the high potential of the powerset construction to create graph structure if the
direction of the edges is neglected. The corresponding result for tree-width will also prelude the
main result from Section 4.4 on DAG-width. First, we review some very basic notions about
graphs that we need to make quite precise in the context of graph complexity.

Graphs. We consider graphs G = (V,E) where E ⊆ V × V , so graphs are directed, possibly
with selfloops but without multiedges. G is called undirected if E is symmetric. The symmetric
closure of G is the graph Gsym = (V,Esym) with (u, v) ∈ Esym if (u, v) ∈ E or (v, u) ∈ E.

For u, v ∈ V , a path in G from u to v is a sequence u = u0, u1, . . . , ul = v such that
(uj , uj+1) ∈ E for j ∈ [l]. For a set X ⊆ V , the subgraph (X,E ∩X ×X) of G is called the
subgraph induced by the vertices X and is denoted G ∩X. The subgraph G ∩ (V \X) induced
by the vertices V \X is denoted G−X. Moreover, for a set Y ⊆ V , ReachG(Y ) denotes the set
of vertices u ∈ V that are reachable in G from Y , that means, there is some v ∈ Y such that
there is a (possibly empty) path from v to u in G. (Hence, Y ⊆ ReachG(Y ).)

G is called strongly connected if, for all u, v ∈ V , there is a path from u to v in G. G is called
connected if Gsym is strongly connected. A set U ⊆ V is called (strongly) connected if G ∩ U is.
A strongly connected component of G is a maximal strongly connected set U ⊆ V and for a
vertex v ∈ V and a set U ⊆ V , by CU (v) we denote the (unique) strongly connected component
C of G−U such that v ∈ C. Let SCC denote the set of all strongly connected components of G.
The graph B(G) = (SCC, Escc) where (X,Y ) ∈ Escc if there is some u ∈ X and some v ∈ Y
with (u, v) ∈ E is a directed acyclic graph (DAG), called the block graph of G.

We sometimes identify a graph G with its set of vertices, allowing notation like u ∈ G and
G−H, where H is the subgraph of G induced by U . (Notice that G−H is not well-defined if
H is not an induced subgraph, so there is no danger of confusing the notation.)

Selfloops and Terminal Positions. As we have mentioned above, we allow directed graphs
G = (V,E) to contain selfloops (u, u) ∈ E. Usually, in the context of graph complexity, selfloops
are discarded because they bring along certain undesirable technical properties. For example,
in the presence of selfloops, graphs of DAG-width one are not necessarily acyclic in a strict
sense but may have arbitrary selfloops. This simplification can usually be justified very easily,

6Notice that there exists an addendum to this paper, currently available at
http://people.math.gatech.edu/~thomas/PAP/.
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because for many graph properties and graph theoretic decision problems, selfloops can be
neglected or replaced by small gadgets in a generic way. For example, Hamilton cycle is invariant
under deleting and adding selfloops. Moreover, if we consider the strategy problem for parity
games with full information, we can simply replace any selfloop (u, u) in the game graph by an
undirected edge (u, ũ) to a new vertex ũ that belongs to the same player and is colored with the
same color as u. Moreover, ũ does not have any other edges. Notice that a player needs to play
a selfloop in a parity game with full information only if he intends to stay on the vertex forever.

On the other hand, for game graphs with partial information, this is not true: The execution
of a selfloop during a play may reveal and conceal information about the possible positions to
and from player 1, respectively. See for example the game graphs constructed in Section 3.5.2
and also the corresponding class in [172]. Therefore, selfloops are more weighty in games with
imperfect information and can have a material impact on the result of the powerset construction.

Nevertheless, it is possible, though technically more costly, to replace selfloops in game
graphs with partial information by small gadgets: We have to make the positions u and v
indistinguishable for player 1 and mount all edges from u on v as well. More precisely, consider
a game graph G = (V, δ,∼V ,∼A) with partial information, let u ∈ V such that there is a selfloop
on u and let Au,	 = {a | δ(u, a) = u} be the set of all action-labels on this selfloop. We add a
new vertex ũ to V and we define u ∼V ũ, that is, we put ũ in the equivalence class of u, and we
re-define δ(u, a) = ũ for all a ∈ Au,	. Moreover, for any vertex v and action a with δ(u, a) = v
we set δ(ũ, a) = v as well. In particular, we have an undirected edge between u and ũ.

Unfortunately, the impact of this construction on the structure of the game graph is less
transparent than in the case of game graphs with full information where we just add an undirected
edge to a a vertex that is, apart from that edge, isolated. With respect to directed edges, ũ
is still only sparsely integrated into the game graph. However, if the direction of the edges
is neglected then ũ is intertwined more strongly with the rest of the graph. Indeed, avoiding
selfloops makes formally defining and reasoning about such classes of game graphs technically
often much more involved. Hence, we prefer to keep selfloops.

Nevertheless, essentially, all our results can be proved also for the case where we discard
selfloops. (Using the construction described above or slight improvements, adapted to the
particular game graphs.) We briefly go over the differences: The precise bound from Section 3.5.2
is slightly different: We obtain a lower bound of roughly 2|V |/8 on the size of memory needed
to implement winning strategies in safety games with imperfect information on finite game
graphs with partial information and without selfloops. Moreover, the game graphs used in
Proposition 4.8 have tree-width at most three instead of two and the same holds for the game
graphs used in Proposition 4.7. All other results remain unchanged. In particular, we like to
emphasize that the main results are not affected by this issue. Theorems 4.11, 4.12 and 4.13
hold as stated, if we disallow selfloops. (Notice that then, Theorem 4.12 could be formulated in
terms of DAG-width one instead of acyclic graphs.) Moreover, the result in Theorem 4.20 is
also clearly invariant under disallowing selfloops.

Another issue that arises in the context of structural complexity of graphs is that of terminal
positions. For example, a DAG in the strict sense, does not have any cycles so it inevitably
contains terminal positions. Terminal positions, however, incur finite plays and the kind of
winning conditions that we have defined so far does not determine the winner of a finite play.
Usually we assume that game graphs are non-terminating so that finite plays are not possible.
But throughout this chapter we do allow terminal positions in game graphs and we assume that
the set of these positions is divided into those where player 0 has won and those where player 1
has won. Clearly, this can also be modeled by game graphs which are non-terminating using
a parity (or even reachability) condition: We can put selfloops on the terminal positions and
color positions where player i has won with color 1−i. (In fact, in the context of reachability
conditions we consider the terminal positions where player 1 has won as part of the reachability
set R.) However, to be able to refer to trees and acyclic graphs in the usual (strict) sense, we
allow terminal positions explicitly.
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4.1.1 Tree-Width
A tree-decomposition of an undirected graph G = (V,E) is a pair (T,X ), where T is a tree and
X : T → 2V is a function such that the following conditions hold.

(T1) V =
⋃
{X (t) | t ∈ T}.

(T2) For each edge (u, v) ∈ E there is some t ∈ T such that {u, v} ⊆ X (t).
(T3) For all v ∈ V , the set {t ∈ T | v ∈ X (t)} induces a connected subtree of T .

So each edge of G has to be contained in some of the bags X (t). Furthermore, if for t1, t2 ∈ T ,
a node v ∈ V occurs in the bag of t1 and t2, then it occurs in each bag along the unique
path from t1 to t2 in T . The width of (T,X ) is the maximal size of a bag occurring in the
decomposition, minus one: width(T,X ) = maxt∈T |X (t)|−1. The tree-width of G, denoted
tw(G), is the minimum width of all possible tree-decompositions of G. So, intuitively, the
tree-width measures how close an undirected graph is to a (undirected) tree. (The −1 is to
make trees have tree-width one.)

Interfaces. Now we can also make more precise what we mean by saying that the individual
parts (bags) are only sparsely related within the given graph: Consider some designated node
t0 of T as the fixed root of the tree. We define the partial order � on T by t � s if the
unique path from s to t0 contains t. Moreover, for a node t, the subtree of T rooted in t is
Tt� := {s ∈ T | t � s}. Now we set X (t �) :=

⋃
{X (s) | t � s} and X (t ≺) := X (t �) \ X (t).

Now assume that T,X ) is a tree-decomposition and t a node of T .
Then the only vertices in X (t �) that are adjacent to vertices in V \ X (t �) are those

belonging to X (t). To see this, consider any edge (u, v) ∈ E with u ∈ X (t �) and v ∈ V \X (t �).
Then u ∈ X (s) for some t � s and according to condition (T2), {u, v} is contained in a bag X (s′)
for some node s′ ∈ T . Since v /∈ X (t �) we have t 6� s′ and so, by condition (T3), u ∈ X (t). So
the subgraphs G ∩ X (t ≺) and G−X (t �) are only related via the interface X (t)!7

Cops and Robber Games. The tree-width of an undirected graph G = (V,E) can be
characterized in terms of a game: There are two players, a cop player and a robber player. The
robber player moves a robber token along the edges of G at unlimited speed. The cop player
has a number cops at his disposal and he may place these cops on the vertices of G arbitrarily.
When the cop player chooses a new set U of positions to be occupied by the cops, the robber
player may move his token along any path on which there is no position that has been previously
occupied by a cop and is also occupied by a cop according to U . The goal of the cop player is to
land a cop on the robber, the robber player’s goal is to elude capture. We also speak of the cops
and the robber as autonomous entities, allowing terms like cops’ moves or robber’s position.

Formally, cops’ positions are of the form (U, v) where the cops occupy the set U and the
robber is on vertex v. The cops can move to any position (U,U ′, v), indicating the set U ′ as the
positions that will be occupied next. We say that the cops U \ U ′ are taken from the graph, the
cops U ′ \U are placed on the graph and the cops U ∩U ′ stay put. In turn, robber’s positions are
of the form (U,U ′, v) and the robber can move to any position (U ′, w) with w ∈ ReachG−U∩U ′(v).
Positions (U ′, w) with w ∈ U ′ are the terminal positions of the game graph where the robber is
captured and the cops have won. All infinite plays are won by the robber.

The particular property of the robber’s move is that he can run at the moment, where
the cops U \ U ′ are already removed from the graph but the cops U ′ \ U have not yet been
placed on the graph (we say that they are about to land). So he can use any path that
avoids U ∩ U ′. Additionally, we have a unique initial position ⊥, where it is the robber’s
turn and from which he can go to any position (∅, v). So a play in the game has the form
π = (U0, v0)((U0, U1), v0)(U1, v1) . . . where U0 = ∅ and the initial position ⊥ is usually omitted.

7We refer to this kind of property also as separator property and it is precisely this kind of property that
allows to use such decompositions for dynamic programs.
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Notice that the condition that w is reachable from v in G−U ∩ U ′ is equivalent to v and w
being in the same connected component of G−U ∩ U ′ (since G is undirected). Moreover, as the
robber can run at unlimited speed, the particular position of the robber within the connected
component of G−U is not important, so we could describe positions of the cops and robber
game also as (U,U ′, C) and (U,C), where C is a connected component of G−U . However, for
our purposes it is often more convenient to refer to the exact position of the robber.

The game is played by two players on a finite graph of exponential size 2O(|V |). The k cops
and robber game is played on the same graph, restricted to positions (U,U ′, v) with |U |, |U ′| ≤ k.
Hence, this game graph has polynomial size. Remind that a play in the game is won by the
robber if it is infinite and won by the cops if it is finite. So, essentially, cops and robber games are
reachability games (with full information), which implies that they are positionally determined
and can be solved in time linear in the size of the game graph.

Monotonicity. Now the games that we are actually interested in are monotone cops and robber
games, which are played on the same game graph but the winning condition is modified: A play
is monotone if the robber can never return to a position that has previously been unavailable
for him. Formally, a play is monotone if for all positions (U,U ′, v) we have ReachG−U∩U ′(v) ⊆
ReachG−U (v). A finite play in the monotone cops and robber game is won by the cops only if it is
monotone. This can be formulated as a winning condition that is a conjunction of a reachability
and a safety condition for the cop player, so these games are also positionally determined.
Moreover, a strategy σ for the cops is called monotone, if any play which is consistent with σ is
monotone. So monotone winning strategies for the cops are precisely the winning strategies for
the cops for the monotone cops and robber game. If the cop player wins the (monotone) k cops
and robber game on G then we also say that k cops (monotonously) capture the robber on G.

The definition of monotonicity that we have given here is also called robber-monotonicity.
On the other hand, cop-monotonicity is defined by the requirement that no vertex is visited
twice by the cops. (Notice that we do not distinguish between the individual cops.) Formally,
a play π = (U0, v0)((U0, U1), v0)(U1, v1) . . . is cop-monotone, if for all j and all v ∈ Uj \ Uj+1
we have v /∈ Ul for all l > j. However, it is easy to see that whenever the cops have a winning
strategy that is robber-monotone or cop-monotone, they also have a winning strategy that is
both. So in this sense, the notion of monotonicity is canonical.

In fact, a strategy for the cops that is cop-monotone is also robber-monotone. To see this,
notice that a play is monotone if it never reaches a position (U,U ′, v) such that there is some
w ∈ U \ U ′ and some u ∈ ReachU (v) such that (u,w) ∈ E. (In other words, if it never reaches
a position such that (U \ U ′) ∩ ReachG−U∩U ′(v) 6= ∅.) That means, a play is monotone if the
robber can never reach a position from which a cop is just leaving. (Clearly this is necessary for
monotonicity but also, if the robber can reach a position that was unavailable for him previously
then he must travel through such a position u.) Using this, robber-monotonicity follows directly
from cop-monotonicity. In our proofs, we use this formulation of robber-monotonicity.

To see that a robber-monotone winning strategy can be made cop-monotone as well, consider
a robber-monotone winning strategy σ for k cops and assume that at some point during some
σ-play a cop is placed on a vertex u that is not reachable for the robber, that is, u ∈ U ′ \ U but
u /∈ ReachG−U∩U ′(v). It is easy to see that if we just omit placing a cop on u, then the resulting
strategy will be winning and, moreover, this transformation also preserves robber-monotonicity
of σ. Hence, there is a robber-monotone winning strategy for k cops that never places a cop at
a vertex that is unavailable for the robber. But this strategy is also cop-monotone: Since the
strategy is robber-monotone, a cop can be taken from a vertex only if that vertex is already
unavailable for the robber – but then it will never be re-occupied. Notice that the condition
that cops are only placed in the area which is still reachable for the robber is equivalent to the
requirement that cops are only placed inside the connected component of the robber! We shall
keep this observation in mind, because the failure of this latter property for directed graphs will
be important for us later.
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Characterizations of Tree-Width. In [198], the following characterization has been shown.

Theorem 4.1. [198] The following statements are equivalent for any undirected graph G:
(1) G has tree-width at most k−1.
(2) k cops monotonously capture a robber on G.
(3) k cops capture a robber on G.

So by using the implications (3) to (1) and then (1) to (2) we see that, in fact, monotone
winning strategies suffice to win k cops and robber games, that is, if k cops capture a robber
on G, then k cops capture a robber on G monotonously. We also say that tree-width has
monotonicity cost 0 or simply is monotone.

Clearly, the implication from (2) to (3) is trivial. To obtain a monotone strategy from a
tree-decomposition is also not too hard: Given a tree-decomposition T of width k−1 of a graph
G, then k cops play along T as follows: As before, we fix some root t0 of T . The cops occupy
b0 = X (t0), so the robber will be in a bag X (t) for some t0 6= t. Now consider the unique
successor t1 of t0 with t1 � t. Then the set X (t1 �) is a trap for the robber: He could go to
vertices outside X (t1 �) only via X (t0) (using conditions (T2) and (T3) as above), but these
vertices are occupied by cops. Now consider the cops’ move from X (t0) to X (t1) (in particular,
the cops on X (t0) ∩ X (t1) stay put) and consider some edge (u, v) ∈ E with u ∈ X (t1 �)
and v ∈ X (t0). Then, by (T2), {u, v} is contained in some bag X (s). Moreover, by (T3), if
t1 � s then v ∈ X (t1) and if t1 6� s then u ∈ X (t0) which demonstrates that the move from
X (t0) to X (t1) is robber-monotone. So in this way the robber is chased down the tree T in a
robber-monotone way and, eventually, captured in a leaf of T .

The more difficult part of the theorem is the implication from (3) to (1). Assume that σ is a
(positional) winning strategy for k cops on G (which depends only on the connected component
of the robber). Let the vertices of T be of the form (U,C) where U ⊆ V and C is a connected
component of G−U and there is an edge between (U,C) and (U ′, C ′) if (U,C)→ (U ′, C ′) is a
move in the k cops and robber on G that is compatible with σ. That means, given the position
(U,C), the cops move to U ′ according to σ and subsequently, the robber has the possibility to
run to the connected component C ′.

Since σ is a winning strategy for the cop player, there are no cycles in T . Now if we define the
bag of a node (U,C) by X (U,C) = U then conditions (T1) and (T2) hold. (Notice that, since
all edges are undirected, the robber may bum around at any given set {u, v} with (u, v) ∈ E, as
long as not both, u and v, are occupied by cops at the same time. So, for each edge (u, v) ∈ E
there is some (U,C) such that {u, v} ⊆ U .) However, condition (T3) does not hold in general.8

For this implication, Seymour and Thomas used the concept of a screen:9 For an undirected
graph G = (V,E), two sets U1, U2 ⊆ V are called touching, if U1 ∩U2 6= ∅ or if there are u1 ∈ U1
and u2 ∈ U2 such that (u1, u2) ∈ E. A set U ⊆ V covers a set U ⊆ 2V , if for each U ′ ∈ U we
have U ′ ∩ U 6= ∅. A screen in G is a set of connected, mutually touching subsets of V . The
minimum size of all sets covering a screen is called its thickness. The main theorem of [198],
which also yields the implication from (3) to (1), is called tree-width duality theorem. A simpler
proof has been given in [14].

Theorem 4.2. [198] (Tree-width Duality Theorem) An undirected graph has a screen of thickness
at least k if and only if it has tree-width at least k−1.

Notice that the theorem gives in fact a dual characterization of tree-width: A tree-decompo-
sition of width at most k−1 does not exist if a screen of thickness at least k does exist. (Seymour

8Notice that even if σ was monotone, a tree-decomposition could not be obtained in this way because T
is undirected, while plays of a game are inherently directed and the monotonicity condition holds only in the
direction in which the plays proceed.

9Screens are also often called bramble in the literature.
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and Thomas called it min-max theorem.) Clearly, this is a most valuable tool for showing lower
bounds on the tree-width of certain classes of graphs. This has also been used on the algorithmic
side where the task is to compute lower bounds for the tree-width of a given graph [37].10

We use the tree-width duality theorem to demonstrate a basic property of partial grids. It is
well known that the full undirected grid Gm has tree-width m, where Gm = ([m] × [m], Em)
with edges

(j, l)←→ (j+1, l) for j ∈ {0, . . . ,m−2} and l ∈ [m]
(j, l)←→ (j, l+1) for j ∈ [m] and l ∈ {0, . . . ,m−2}

For h, v ∈ [m], we call Hh := [m] × {h} a row or horizontal level of Gm and analogously,
Vv := {v} × [m] is called a column or vertical level of Gm. Moreover, we define Ch,v = Hh ∪ Vv,
that is, Ch,v is a cross in Gn. Now consider the set C = {Ch,v |h, v ∈ [m]}, consisting of all
possible crosses in Gm It is not hard to see that C is in fact a screen in Gm. Moreover, for any
set U ⊆ [m] × [m] with |U | < m we can find a cross Ch,v such that Ch,v ∩ U = ∅, so C has
thickness at least m. Using the tree-width duality theorem this shows that tw(Gm) ≥ m−1.

In fact, as we have mentioned, tw(Gm) = m. It is quite easy to see that m+1 cops can
capture a robber on Gm, so tw(Gm) ≤ m. To show that tw(Gm) ≥ m, one has to use a slightly
more elaborate screen consisting of pruned crosses and additional columns and rows (see for
example [37]). Although we don’t need either one of these results – tw(Gm) ≥ m−1 is quite
sufficient for our concerns – we prefer to specify the tree-width of Gm exactly as tw(Gm) = m.)

We also need a corresponding result for the following less common class of partial grids: For
even m ∈ N, let G 1

2 ,m
= ([m]× [m], E 1

2 ,m
) with (j, h)↔ (j+1, h) as before and (v, j)↔ (v, j+1)

if v and j are both odd or both even. So G 1
2 ,m

is obtained from Gm by deleting, on each even
vertical level Vv, every even edge (v, j) ↔ (v, j+1), j = 0, 2, . . . ,m and, on each odd vertical
level Vv, every odd vertical edge (v, j)↔ (v, j+1), j = 1, 3, . . . ,m−1.

Proposition 4.3. tw(G 1
2 ,m

) = m/2.

Proof. The proof given above for Gm can be adapted to G 1
2 ,m

easily: For all even h, v ∈ [m],
define the double row H2

h := [m]× {h, h+1} and the double column V 2
v := {v, v+1} × [m]. This

yields the double crosses C2
h,v = H2

h ∪ V 2
v as before, for h and v both even. As before, it is not

hard to see that the set C2 = {C2
h,v |h, v even } is a screen in Gm, 12 . Moreover, for any set U

of vertices in G 1
2 ,m

with |U | < m/2, we can find at least one C2
h,v for certain even h, v ∈ [m]

such that U ∩ C2
h,v = ∅, so C2 has thickness at least m/2. Hence, by Theorem 4.2, we obtain

tw(G 1
2 ,m

) ≥ m/2−1. The precise complexity of tw(G 1
2 ,m

) = m/2 can again be shown by a
refinement of this proof.

We like to note that tw(G 1
2 ,m

) ≥ m/2 can also be obtained as a corollary of the corresponding
result for Gm/2, using the concept of minors: It is not hard to see that, in fact, Gm/2 is a minor
of G 1

2 ,m
and it is well known that the tree width of a minor of a graph is at most the tree-width

of the graph itself, see for example [67]. Hence, tw(G 1
2 ,m

) ≥ tw(Gm/2) = m/2.

4.1.2 Complexity Measures for Directed Graphs
It is widely accepted that tree-width is a good measure for the complexity of an undirected
graph. Tree-width is well understood, has several nice properties like monotonicity and a
characterization by screens, and many hard problems are known to be solvable on classes of
graphs with bounded tree-width.

On the other hand, for the complexity of graphs with respect to directed edges, there is is
no canonical notion which would have proven similar significance as tree-width and it is most
controversial what would be a good measure for the complexity of a directed graph. We will

10For more information on computing the tree-width of a graph we refer to [36].
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mostly work with the characterizations of measures by cops and robber games and, in this
respect, DAG-width is particularly nice.

DAG-width. DAG-width has been introduced independently in [158] and [24] and it has been
characterized via the monotone cops and directed robber game. In fact, this game is exactly
the same as the (monotone) cops and robber game as described above for tree-width with the
only exception that the robber has to respect the direction of the edges which is a particularly
straightforward and intelligible generalization of the game to directed graphs.

All definitions and observations carry over from the cops and robber games to the cops and
directed robber games without any changes. We define the DAG-width of a graph G = (V,E),
denoted dw(G), to be the minimal number k ∈ N such that k cops monotonously capture a
directed robber on G.11 Notice that for any undirected graph G we have tw(G) = dw(G)− 1
and moreover, the graphs of DAG-width one are those where all cycles are selfloops.

Just as for the cops and (undirected) robber game, if the cop player has a winning strategy
for the k cops and directed robber game which is robber-monotone or cop-monotone, then he
also has a a winning strategy for the k cops and directed robber game which is both. In the
following, we usually call the directed robber simply robber and speak of the cops and robber
game on G. We will make the distinction explicit only when necessary.

It has been shown [158, 24] that DAG-width gives rise to a decomposition of directed graphs,
similar to the tree-decomposition of undirected graphs. Where now, the decomposition is not an
undirected tree, but a directed acyclic graph.

To define this notion of decomposition formally, for a directed acyclic graph G = (V,E),
let � denote the transitive and reflexive closure of E. (Which is analog to the partial order
� defined above for trees.) Clearly, � is a partial ordering on V . We say that a set U ⊆ V
guards a set W ⊆ V if for each edge (w, v) ∈ E with w ∈ W and v /∈ W we have v ∈ U . A
DAG-decomposition of a directed graph G = (V,E) is a pair (D,X ), where D is a directed
acyclic graph and X : D → P(V ) is a function such that the following conditions hold.

•
⋃
{X (d) | d ∈ D} = V

• If d � e � f then X (d) ∩ X (f) ⊆ X (e).
• If (d, e) is an edge in D, then X (d) ∩ X (e) guards X (e �) \ X (d). Moreover, any root is

guarded by the empty set.

We define the width of (D,X ) as max{|X (d)| | d ∈ D}.

Theorem 4.4. [158, 24] A graph has DAG-width at most k if, and only if, it has a DAG
decomposition of width at most k.

Given a DAG-decomposition (D,X ) of width k we can play along D with k cops, just as we
have played along the tree of a tree-decomposition. Only now, we have to start at one of the
roots of D and play in the direction that is determined by the edges of D. The properties of the
decomposition guarantee that the strategy is monotone and winning. Moreover, since now the
edges of D do have a direction, the converse is more immediate as well, cf. [158, 24].

However, the correspondence between DAG-decompositions and arbitrary winning strategies
for the cops fails in this case! In [123] it has been shown that there are graphs Gm, m ∈ N
such that 3m−1 cops capture a robber on Gm but dw(Gm) = 4m−2. Hence, DAG-width
has monotonicity cost at least m−1. Of course this is an inconvenient property, because to
prove upper bounds on DAG-width we have to use monotone strategies or construct DAG-
decompositions explicitly which is often quite complicated (or at least a tedious exercise).

On the other hand, whether DAG-width has bounded monotonicity cost is still open. Where
bounded means the existence of a function κ : N → N such that whenever k cops capture a
robber on a graph G then k+κ(k) cops monotonously capture a robber on G. This would give a

11In [158, 24], DAG-width has been defined via DAG-decompositions. However, we like to start with the game.
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bound on the monotonicity cost that does not depend on the graph, so in particular, if for a class
of graphs the number of cops needed to capture a robber is bounded, then DAG-width would
be bounded as well. In [25] it has been conjectured that DAG-width has linear monotonicity
cost, that is, there is such a function κ ∈ O(k).

Moreover, in [24] (see also [25]) it has been shown that the properties of DAG decompositions
are sufficient in order for DAG-decompositions to be used for the construction of dynamic
algorithms for parity games with full information:

Theorem 4.5. [24] The strategy problem for parity games with full information can be solved
in polynomial time for classes of graphs with bounded DAG-width.

This is the most important algorithmic aspect about DAG-width for our work. We do not
discuss the corresponding algorithm here but merely use this result as a black box. Since all
game graphs to which we shall apply this result result from applying the powerset construction
to some game graph with partial information, it might be interesting to see whether the method
could be optimize for such powerset graphs, cf. Section 3.5.3. However, we do not consider this.

Normal Forms of Winning Strategies. A possible step towards proving that DAG-width
has bounded monotonicity cost would be to prove certain normal forms of winning strategies for
the cops which are weaker than monotone winning strategies but still have some nice properties
that could be used to transform them into monotone winning strategies. Where by normal form
we mean that any (monotone) winning strategy for the cops can be translated into a (monotone)
winning strategy of this form using only boundedly many additional cops (that is, κ(k) many, as
defined above). However, as it turns out, winning strategies for the cops on directed graphs are
quite resistant to normal forms.

Among the very few normal forms that are known for cops’ winning strategies on directed
graphs are the following simple ones:
(1) They need to depend only on the strongly connected connected component of the robber

and not on his precise position.
(2) They do not need to move more than one cop per move (so in particular they don’t need

to remove and place cops in the same move).
(3) If monotone, they do not need to place cops on positions that are not reachable for the

robber.
None of these normal forms require any additional cops. However, while the normal form (2)

is quite useful for developing dynamic algorithms on DAG-decompositions12, neither (1) nor (2)
have been very helpful yet towards the monotonicity problem and neither will they do us any
good during this work.

We will use (3) in the proof of our main technical result in Section 4.4. The proof of (3) is
as trivial as for tree-width: Just omit placing cops that would be placed on vertices that are
not reachable for the robber. Since the strategy is monotone, the robber will never be able to
reach any of those positions later on. On the other hand, as we have mentioned, for undirected
graphs, the area that is reachable for the robber coincides with his connected component. So for
undirected graphs, property (3) guarantees that a monotone strategy for the cops needs to place
cops only inside the connected component of the robber. This normal form, however, does not
hold for strongly connected components in directed graphs! We will show that there is a class
of graphs Gm, m ∈ N such that three robbers can capture a robber on Gm monotonously for
any m, but at least m+1 cops are needed to capture a robber componentwisely on Gm (even
non-monotonously), that means, the cops are only allowed to be placed inside the strongly
connected component of the robber.

12Normal form (2) corresponds to nice DAG decompositions [24] – the analogue of nice tree decompositions,
yielding the same normal form for cops’ strategies on undirected graphs.
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Figure 4.1: dw(Gm) = 4, but m cops are needed to capture a robber componentwisely.

Before we prove this result, let us comment on some consequences. There are certain
indications that it might be easier to transform cops’ winning strategies into monotone ones if
they are indeed restricted to place cops only inside the strongly connected component of the
robber, see also the example in [123]. It would also be interesting to analyze the resulting notion
as a graph complexity measure itself. However, our result on componentwise capturing a robber
shows that this would not help to prove bounded monotonicity cost for DAG-width. Moreover,
if this normal form existed, at least for monotone winning strategies, then the main result from
Section 4.4 would be much easier to proof. We will have a closer look at this issue in Section 4.4.

For m ∈ N, consider the full, undirected tree Tm of degree and depth m, that is, Tm has
nodes {1, . . . ,m}≤m and, for any u ∈ {1, . . . ,m}<m and any j ∈ {1, . . . ,m}, there is an edge
from u to u · j and from u · j to u. Moreover, let T ↑m be obtained from Tm by directing any edge
in Tm to the root. Assume that T ↑m has vertices {1, . . . ,m}≤m so that Tm and T ↑m are disjoint
and for any node u = u0 . . . ul in Tm, let u = u0 . . . ul denote the corresponding node in T ↑m.
Notice that if we speak of a prefix u v v of a node v in the tree Tm we refer to the usual prefix
relation on words and not to the edge relation of the tree. (Analogously for nodes u v v in T ↑m.)
Now let Gm consist of the union of Tm and T ↑m together with the following additional directed
edges:

• u −→ u for any u
• u −→ u−1 for any u 6= ε.

The shape of the graphs Gm is delineated in Figure 4.1. It is easy to see that dw(Gm) = 3 for
any m ∈ N: The cops can start by occupying ε and ε and then chase the robber in a top-down
manner, eventually capturing him in a leaf. This is monotone, if the cops bear in mind that
they always have to occupy vj, then take the cop from v and put it on vj. Only then, the cop
from v can be taken as well. On the other hand, unboundedly many cops are needed to capture
a robber componentwisely on the graphs Gm, m ∈ N.

Proposition 4.6. At least m cops are needed to capture a robber on Gm if cops may be placed
only inside the strongly connected component of the robber.

Proof. Let l < m and consider any position (U, v) of the l cops and robber game on Gm where
it is the cops’ move. So the set of vertices occupied by cops is U and the robber is on vertex v in
Tm. We define Pre(v) := {u ∈ Tm |u v v} as the set of all prefixes of v (in Tm) and, accordingly,
Pre(v) as the set of all prefixes of v (in T ↑m). Now assume that the following invariants hold.
(1) Any strict prefix u ∈ Pre(v) \ {v} of v in Tm is occupied by a cop.
(2) Any prefix u ∈ Pre(v) of the corresponding vertex v in T ↑m is cop-free.
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We show that for any subsequent move of the cops, the robber can answer this move in such a
way that, afterwards, the invariants (1) and (2) hold again. Clearly, the initial cops’ position
where the robber occupies the root ε of Tm and no cops are placed on the graph yet fulfills the
invariants. Moreover, the conditions (1) and (2) together ensure that the robber is not captured,
so by playing in this way, the robber will escape l componentwise hunters.

Consider any next move (U, v)→ (U,U ′, v). It is easy to see that due to condition (1), none of
the prefixes u ∈ Pre(v) is in the strongly connected component CU (v) of the robber in G−U . So,
since the cops are playing componentwisely and, by condition (2), all these ancestors u ∈ Pre(v)
are cop-free according to U , they are also cop-free according to U ′, that is, Pre(v) ∩ U ′ = ∅.

For the move of the robber we distinguish two cases. First, if a cop has been taken from
some of the vertices Pre(v), that means, there is a strict prefix u v v with u /∈ U ′, then the
robber runs to the v-minimal such u via the cop-free path v → v → v−1 → . . .→ u→ u. Due
to the choice of u and the fact that Pre(v) ∩ U ′ = ∅, conditions (1) and (2) both hold after this
move of the robber.

Second, if no cop has been taken from any vertex Pre(v) then, due to condition (1) and the
fact that there are at most l cops, we have |v| ≤ l < m, so the robber is not in a leaf. Now, if
v /∈ U ′ then the robber just stays on v which guarantees that conditions (1) and (2) hold after
the move. (Recall that we have already demonstrated that Pre(v) ∩ U ′ = ∅.) If, on the other
hand, v ∈ U ′ then at least one the m > l many subtrees below v must be cop-free, so there is
some j ∈ {1, . . . ,m} such that the whole subtree rooted in v · j is cop-free. The robber now
moves to v · j which again ensures that conditions (1) and (2) hold.

Remark. So far we have only talked about normal form for cops’ strategies. Remind that the
proof of monotonicity of tree-width goes through a normal form of strategies for the robber: If
k cops cannot capture a robber monotonously then, by determinacy, the robber has a strategy
that is winning against all monotone strategies for k cops. But then, Theorem 4.2 yields a
screen of thickness at least k which, in turn, can be used as a strategy for the robber which is
then strong enough to win against any strategy of k cops. However, normal forms of strategies
for the robber are few and far between as well. In [113], a discussion on notions like screens
for directed graph can be found. Notice, however, that for the notion of D-haven as suggested
there, the correspondence to robber’s strategies that can defeat any monotone strategy of the
cops remains unclear. A normal form for robber’s strategies that we will use later one is that
the robber needs to actually run in his move only if he wants to go to a position that would be
unavailable for him after the cops have landed. (We call such strategies prudent.) However, this
normal form is again rather straightforward.

Directed Path-width. We also consider directed path-width, which is a more restrictive
measure than DAG-width. The directed path-width of a graph G, denoted dpw(G), can be
characterized as the minimal number k such that k+1 cops monotonously capture a directed
invisible robber on G. So the cops and robber games for directed path-width are games of
imperfect information where the cops have partial information about the past moves of the
robber. In fact, all the cops know about the moves of the robber is what they can deduce from
their own actions and the edge relation of the graph (since the robber is still bound to run along
directed edges). We will see that this makes analyzing the directed path-width of powerset
graphs.

Formally, the cops and directed invisible robber game is played on the game graph with
partial information that is obtained from the game graph of the cops and directed (visible)
robber game by setting (U, v) ∼Vcops (U ′, v′) if U = U ′.13 So, as we have mentioned, the cops
knowledge about the possible positions of the robber is limited to what they can deduce from
their own actions and the edge relation of the graph, that means, all they know is that the

13Actions can be defined on the game graph in the obvious way: Arobber = V and Acops = 2V .
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robber is not on some position of the graph which has already been searched and has henceforth
been blocked for the robber.14 But this also implies that the actual move of the robber does not
really matter, because independently to which position he moves, the cops consider any position
to which the robber can move possible to be his actual next position. Therefore, this game can
also be viewed as a solitaire game played only by the cops. The positions in the corresponding
game graph are of the form (U,R), where R ⊆ V is a set of positions such that for any move of
the cops from (U,R) to (U ′, R′) we have R′ = ReachG−U∩U ′(R) \ U ′. (Notice that such a set
R is not necessarily a strongly connected component of G−U but merely a union of (weakly)
connected components of G−U .)

Strategies can be translated from one representation of the game graph to the other in the
obvious way. Notice that, while the original game is a game with imperfect information and the
cops need memory to capture the robber (namely, the sets R), the new representation yields
a game with full information which is positionally determined.15 Now, given a (positional)
strategy σ for the cops, we obtain a unique play of the game (in this new representation of
the game graph) which is compatible which σ: πσ = (U0 = ∅, R0 = V )(U1, R1)(U2, R2) . . . with
Uj+1 = σ(Uj , Rj) and Rj+1 = ReachG−Uj∩Uj+1(Rj) \ Uj+1. We will use this representation in
Section 4.3 which is inessential for the argumentation, but technically convenient.

Obviously, dw(G)−1 ≤ dpw(G).16 So in particular, the strategy problem for parity games
with full information is in Ptime for graphs of bounded directed path-width. On the other hand,
directed path-width is not bounded by DAG-width, that is, there are classes of (directed) graphs
with bounded DAG-width and unbounded directed path-width. For example, in [120] is has
been shown that any complete undirected ternary tree of depth m has (undirected) path-width
exactly m. (Notice that, for any undirected graph, its directed path-width equals its path-width.)
In fact, bounded directed path-width is a very strong assumption, so it is often desirable to
generalize results for bounded directed path-width to bounded DAG-width. Observe, however,
that any directed acyclic graph has directed path-width zero! (A single cop can capture an
invisible robber on an acyclic graph by searching the graph systematically, for instance, in a
breadth-first order level by level.)

In contrast to DAG-width, directed path-width is monotone: In [11] it has been shown that
directed path-width has monotonicity cost at most 1 and in [112] it has been noted that, in
fact, the additional cop is not necessary.17 Our proof that the powerset construction preserves
boundedness of directed path-width does not rely on monotonicity which, however, can be
used to give a simpler (though less insightful) proof of this result. We will comment on this in
Section 4.3.

Entanglement. Entanglement was introduced in [26] where it has been shown that the
structural complexity of a finite graph determining the number of fixed point variables needed
to describe the graph up to bisimulation in the µ-calculus can be characterized by a cops and
robber game. The basic concept is the same as for other complexity measures, but the particular
rules are quite distinct.

Initially, the robber chooses an arbitrary vertex of the graph. Then, in each round, the cop
player may remain idle or place a cop on a vertex v, but only if v is the current location of the
robber. In either case, the robber must go from his current position v to a position w, which
is cop-free, along an edge (v, w) ∈ E. If the robber cannot move, he loses. So, as before, we
have cops’ positions (U, v) and robber’s positions (U,U ′, v). From (U, v), the cops can move
to (U,U ′, v) if U ′ = U (the cops remain idle) or U ′ = U ∪ {v} (a fresh cop is placed on v) or

14In the terminology of games with imperfect information this is a blindfold game.
15Essentially, this representation of the cops and directed invisible robber game can be obtained by applying

the powerset construction to the original game graph and then choosing a succinct representation of the positions.
16Notice that directed path-width has again an offset of one, so in this case, unfortunately, directed paths have

directed path-width zero, instead of one.
17Notice that for (undirected) path-width the monotonicity result was known already much earlier, see [120,

34, 132].
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U ′ = (U \ {u}) ∪ {v} (the cop from u is moved to v). From (U,U ′, v) the robber can move to
(U ′, w) if (v, w) ∈ E and w /∈ U ′. The entanglement of a graph G, denoted ent(G) is the minimal
number k such that k cops win the entanglement game on G. Notice that, quite contrary to the
other measures, entanglement is not defined by way of monotone strategies.

As we have mentioned, the source of these particular rules is the variable hierarchy of the
modal µ-calculus. Graphs of arbitrarily large entanglement form an integral part of the proof
that this hierarchy is, indeed, strict [28, 32, 29]. 18

In [26] it has also been shown that the strategy problem for parity games with full information
can be solved in polynomial time on graphs of bounded entanglement. This, however, has not
been done by means of a decomposition as in the case of tree-width and DAG-width. Quite
contrary, in general, no decomposition is known that would correspond to entanglement. In [99],
a decomposition has been constructed for graphs of entanglement two, but this particular
decompositions fails already for graphs of entanglement three.19 The proof of the Ptime result
for parity games on graphs of bounded entanglement directly exploits the game definition of
entanglement. Roughly speaking, it proceeds by combining the players in the parity game
with the players in the entanglement game in an appropriate way which allows to detect, in an
interactive way, whether a cycle has been reached during a play of the parity game.
Entanglement is a quite interesting notion as suggested, especially, by its connection to both, the
descriptive as well as the computational complexity of parity games and the modal µ-calculus.
Moreover, due to the remarkable rules of the game, it plays a special role as a complexity
measure in the structure theory of directed graphs. The precise relation between entanglement
and several other complexity measures for directed graphs is still unclear. At least it seems as
though entanglement is a rather restrictive measure. In particular, there exist classes of graphs
with tree-width three but unbounded entanglement. For an in-depth treatment of entanglement
and a state-of-the-art survey see [27].

We conclude our discussion of entanglement with a proof of the result that DAG-width is
not bounded by entanglement, originally proved in [26]. We use, however, a different (yet very
similar) class of graphs that is specifically suited to show that the powerset construction does
not preserve boundedness of entanglement which we prove in Section 4.3.

For any even m ∈ N, consider the full undirected binary tree Tm,2 of depth m with nodes
{0, 1}≤m and, for all u ∈ {0, 1}<m and j ∈ B, an edge from u to u · j and from u · j to u.
Moreover, let Tm,2 be a disjoint copy of Tm,2 with nodes {0, 1}≤m. For any u = u1 . . . ul in Tm,2,
by u = u1 . . . ul we denote the corresponding node in Tm,2. Remind that v denotes the prefix
relation on words.

Now, let Gm consist of the union of Tm,2 and Tm,2 together with additional edges u→ u and
u → u for all u ∈ {0, 1}≤m. So each node u in Tm,2 is connected to its copy u in Tm,2 via an
undirected edge. The shape of the graphs Gm is depicted in Figure 4.3. It is easy to see that
dw(Gm) = 3 for all m ∈ N.

Proposition 4.7. ent(Gm) ≥ m/2−1.

Proof. We describe how the robber can escape any number l < m/2−1 of cops. For this, assume
that the robber is in some leaf v ∈ {0, 1}m of Tm,2 such that the unique path in Tm,2 from its
duplicate node v ∈ {0, 1}m to the root ε is cop-free. (In particular, v and ε are cop-free.) Since
v has m strict prefixes in Tm,2 but only l ≤ m/2−1 cops are available, there is at least one strict
prefix u. v v such that for the unique predecessor u. v u. of u. in Tm,2 the following holds:

• The square {u., u., u., u.} in Gm with right lower corner u. is cop-free.
18Notice that logics like CTL∗ and PDL can all be embedded into the two-variable fragment of the µ-calculus.

They also do not exploit the full power of the alternation hierarchy which, nevertheless, has been shown to be
strict [39].

19The structure of graphs of a certain entanglement was first analyzed for undirected graphs of entanglement
two [13] as well as entanglement three [12].
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• There is a cop-free path P = u. → . . . → w in Tm,2 to a leaf w ∈ {0, 1}m such that the
duplicate path P = u. → . . .→ w in Tm,2 is cop-free as well.

We describe a sequence of moves for the robber to perform, independently of the moves that
the cops might perform inbetween. Remind that, in each step, at most one cop can be actually
moved which is then placed on the current position of the robber. The robber steps over from v
to the vertex v in the other tree and from there he climbs up the unique path to u.. Then the
robber switches trees again, moving from u. to u., and he moves up to u.. Finally, from u., the
robber strolls all the way down the cop-free path P to the leaf w of Tm,2.

Now, the unique path in Tm,2 from w to the root ε is composed of the path P from w to u.
and the path from u. to ε. Since the path from u. to ε is contained in the path from v to ε,
both these paths were cop-free when the robber was in v. Moreover, during the sequence of
moves that we have just described, the robber did not enter any node of either one of these
paths. So, the unique path in Tm,2 from w to the root ε is still cop-free. Hence, by starting in
0m and following the intended strategy, the robber will always be able to maintain this invariant
and escape l cops.

Directed Tree-width and Kelly-width. We have mentioned two other complexity measures
for directed graphs, directed tree-width and Kelly-width. We will not use these measures, but
since they are both interesting (though less intuitive) generalizations of tree-width, we give a
short description of these measures. We will make some further comments about difficulties
that arise when using these measures in the context of the powerset construction in Section 4.3.

The directed tree-width of a graph G, denoted dtw(G), has been introduced in [116] by
means of so called arboreal decompositions where the underlying structure of the decomposition
is a directed tree. It has been shown that directed tree-width is in fact useful in that it is
less restrictive for directed graphs than tree-width and still, several interesting combinatorial
problems which are computationally hard in general, can be solved efficiently on classes of
graphs with bounded directed tree-width, see [116].

However, the definition of directed tree-width is a little intricate and, in particular, the
corresponding cops and robber games involve a condition which makes them somehow less
intuitive than the games for DAG-width: They are played like the directed cops and robber games
but, additionally, the robber is not allowed to leave his strongly connected component. So for
any position (U,U ′, v), the robber may run only to a vertex w if v and w are in the same strongly
connected component of G−(U ∩U ′). Let us call such a robber a homebody. These games do not
exactly characterize the measure. Rather, the situation is as follows [116]: If dtw(G) < k, then
k cops capture a directed homebody on G. Conversely, if k cops capture a directed homebody
on G then dtw(G) ≤ 3k+1. Notice that this immediately yields dtw(G) ≤ 3 · dw(G)+1 for any
graph G. It has also been shown [116, 2] that directed tree-width is not monotone and, unlike
DAG-width, cop-monotonicity and robber-monotonicity do not coincide.

It seems, in fact, as though directed tree-width was somewhat difficult to handle. In
particular, no polynomial time algorithm for solving the strategy problem for parity games with
full information on graphs of bounded directed tree-width is known.20 Therefore, even if we
could prove that the powerset construction preserves boundedness of directed tree-width on
graphs of bounded partial information this would still not demonstrate that the strategy problem
for parity games on graphs with bounded partial information can be solved in polynomial time
(which makes it less worthwhile to try hard).

Kelly-width has been defined by Hunter and Kreutzer in [115] on the basis of various
characterizations of tree-width like partial k-trees and elimination orderings. They proved that
their generalizations of these notions to directed graphs are again all equivalent which suggests
that the resulting graph complexity measure might be a natural and robust generalization of

20In [158], Obdrzálek suggests that for this particular problem, directed tree-width appears to be particularly
cumbersome.
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tree-width to undirected trees. Hunter and Kreutzer called this measure Kelly-width. They also
demonstrated that this measure can again be characterized in terms of a cops and robber games
which is, however, again less intuitive than the usual cops and directed robber game. In the cops
and directed invisible inert robber game (Kelly-game, for short) the robber is also invisible for
the cops but this time, he is also inert, which means that he can only leave his current position
when a cop is about to land at this position.

Notice that these two conditions are antithetic in that being inert is a restriction for the
robber and not seeing the robber is a restriction for the cops. Notice that if we removed inertness
from the robber, we would obtain directed path-width. The Kelly-game can also be represented
as a solitaire game with positions (U,R) analogously to directed path-width where, this time, if
the cops move from U to U ′ we have R′ = (R ∪ ReachG−U∩U ′(R ∩ U ′)) \ U ′, cf. [115]. It has
been shown in [115] that the strategy problem for parity games with full information can be
solved in polynomial time on graphs of bounded Kelly-width. Since the precise relation between
Kelly-width and DAG-width is unknown it would be interesting to know whether the powerset
construction preserves Kelly-width on graphs with bounded partial information.

4.2 Unbounded Partial Information
We start our investigation of parity games with imperfect information on graphs of bounded
complexity with the case of unbounded partial information, that means, we consider arbitrary
game graphs G = (V, δ,∼V ,∼A) with partial information where we have no restrictions on ∼V
(or ∼A). In particular, ∼V -equivalence classes may be arbitrarily large. The main result of this
section is that the strategy problem for parity games with imperfect information on graphs of
bounded complexity is, essentially, as hard as the general problem on arbitrary graphs. So in a
sense, the intrinsic complexity caused by partial information is very high, even on simple graphs.

Let us approach this by reviewing how we would solve the strategy problem for parity games
with full information on simple graphs. If the complexity of the graphs with respect to, say,
DAG-width is bounded by k, then we start by computing a DAG-decomposition of a given
graph, which takes only polynomial time, if k is fixed. Then we compute certain partial solutions
of the strategy problem on the individual bags and combine them in a bottom-up manner along
the DAG. Of course, the fully developed solution is much more sophisticated as suggested by
this rough description, cf. [25].21 In particular, the fragmentary solutions on the bags are not
completely independent of each other because they do not yet take into account how the game
may proceed outside the bags. The point is, however, that the dependencies between the partial
solution are smooth enough so that they can be handled efficiently, cf. [25].

For parity games with imperfect information, the situation is quite different. Here, the bags
have much stronger dependencies on each other: Since strategies for player 1 have to satisfy the
consistency condition (S2), the actions that player 1 should choose in a bag X (d) may depend
on the decisions in the other bags. Moreover, as we know, imperfect information also entails
that strategies for player 1 are not positional, so when we are in some bag X (d), the actions
that player 1 should choose may depend on how the positions in X (d) have been reached – in
general via positions from other bags. So the partial information on the game graphs inhibits a
direct dynamic approach!

On the other hand, we know an approach to turn a game graph with partial information
effectively into one with full information: The powerset construction. The strategy problem for
the game played on this new game graph can then again be solved using the dynamic approach.
The drawback is, of course, that the new game graph is exponentially larger than the original one
in general. But we might hope that if the complexity of the original game graph is low, then the
powerset construction will yield a game graph that has low complexity again and, additionally, is
also only polynomially large. Our first result, however, leaves us truly disenchanted: There are

21An invaluable tool to reduce some of the merely technical problems are so called nice DAG-decompositions,
cf. [25], which have particularly easy interfaces between the bags.
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game graphs Gm with partial information and χ(Gm) ≤ 2 for any measure χ ∈ {tw,dw,dpw, ent}
such that the powerset graphs 2Gm have DAG-width exponential in the number of positions of
Gm.

The definition of χ(G) for a game graph G = (V, δ,∼V ,∼A) with partial information is
straightforward: We set χ(G) = χ(G) where G is the underlying graph structure of G, that is,
the directed graph G = (V,E) with

E = {(u, v) ∈ V × V | δ(u, a) = v for some a ∈ act(u)}.

To prove that the powerset construction may blow up the complexity of the graphs exponen-
tially in their size, we reuse the game graphs from Section 3.5.2 showing the exponential lower
bound on the size of the memory. Here, we need only the gadget allowing player 0 to generate
the digital numbers, that is, the subgraph induced by the positions of player 0, cf. Figure 3.2.
Moreover, we double the number of digits which is inessential for the result but technically
convenient. Formally, we have Gm = (Vm, δm, (∼Vm), (∼Am)), where:

Vm = V 1
m = {v0} ∪ {v0

j , v
1
j | j = 1, . . . , 2m}

A = {↓1, . . . , ↓2m} ∪ {¬1, . . . ,¬2m}.

v0
↓j−→ v0

j

v0
j

¬j−→ v1
j , v1

j

¬j−→ v0
j and vιj

¬l−→ vιj for l 6= j

It is easy to see that χ(Gm) ≤ 2 for all χ ∈ {tw,dw,dpw, ent}. To prove dw(2Gm) ≥ 2m we
demonstrate that 2Gm contains a subgraph H that is isomorphic to the full undirected grid G2m

of size 2m × 2m. Obviously, the DAG-width of a subgraph is not greater than the DAG-width of
the whole graph and since DAG-width and tree-width coincide on undirected graphs, the result
follows from tw(G2m) ≥ 2m. We denote any set

{vι11 , . . . , vιmm , vκ1
m+1, . . . , v

κm
2m} ⊆ {v0

j , v
1
j | j = 1, . . . , 2m}

by the unique corresponding digital number (ι1, . . . , ιm, κ1, . . . , κm) ∈ {0, 1}2m.

Proposition 4.8. dw(2Gm) ≥ 2m.

Proof. The graph 2Gm contains the position {v0} with (unique) successor (0, . . . , 0, 0, . . . , 0).
From there, player 0 can generate any digital number (ι1, . . . , ιm, 0, . . . , 0) by successively flipping
exactly one of the first m bits in each step, using the actions ¬j for j ∈ {1, . . . ,m}. This will
generate the, say, top horizontal level of the grid-subgraph H. Notice that player 0 can reverse
any flip-operation so that, indeed, any two digital numbers that differ by exactly one bit are
connected via an undirected edge. Likewise, successively flipping the last m bits generates the
elements (0, . . . , 0, κ1, . . . , κm) of the leftmost vertical level.

In the very same way, given any fixed (κ1, . . . , κm), from (0, . . . , 0, κ1, . . . , κm), player 0 can
create any vertex (ι1, . . . , ιm, κ1, . . . , κm) on the (ι1, . . . , ιm)-th vertical level of H by successively
applying the actions ¬j for j ∈ {1, . . . ,m} in the same sequence as before. Again, any two
successive elements will be connected by an undirected edge. Analogously for the (κ1, . . . , κm)-th
horizontal level. All these levels together form the full undirected 2m × 2m-grid H.

Notice that, similar as for the memory lower bound from Section 3.5.2, for the exact lower
bound of 2m we use the equivalence relation ∼A on actions as well. However, similar as there,
we could implement the actions into the positions of the game graph, see also Section 2.1.2, and
obtain a 2

√
|V |/c lower bound for the case where all actions of player 0 are indistinguishable for

player 1.

Proposition 4.8 demonstrates that the powerset construction is not the right method to
exploit simplicity of the game graphs if partial information is unbounded. The natural question
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is whether there is any possibility to do so. Again, we will answer this question negatively even
for very simple graphs.

First, let us note that on directed trees, the strategy problem for parity games with imperfect
information can actually be solved more easily. More precisely, we consider trees with a
unique root and all edges directed away from this root. Notice that on directed trees, parity
conditions are just reachability conditions. However, on arbitrary graphs, the strategy problem
for reachability games with imperfect information is already Exptime-hard.

Now, if we perform the powerset construction on such a tree we again obtain a tree where
the vertices on each level form a partition of the vertices on the same level of the original tree.
This new tree can be computed in polynomial time in a top-down fashion and has at most as
many positions as the original tree. So the strategy problem for reachability (and hence, parity)
games, played on directed trees can be solved in polynomial time. We will see that as soon
as we consider arbitrary acyclic graphs which are not necessary trees, the problem is already
Pspace-hard.

4.2.1 Lower Bounds on the Computational Complexity
To prove lower bounds on the computational complexity of strategy problems for parity games
with imperfect information on graphs of bounded complexity we use alternating Turing machines.
Those machines were introduced by Chandra, Kozen and Stockmeyer [49, 48] and have quickly
become standard in the theory of computational complexity, see for example [161, 217]. In [49, 48]
the relation between alternating and standard complexity classes has been studied. The following
result is important for us.

Theorem 4.9. [49, 48] APspace = Exptime and APtime = Pspace.

We also use the following well-known result that allows us to restrict to alternating Turing
machines with a single tape. For a proof see for example [217].

Proposition 4.10.
(1) For all L ∈ Aspace(S(n)) with S(n) ≥ n there is an alternating Turing machine with a

single tape and space bound S(n) which accepts L.
(2) For all L ∈ Atime(T (n)) with T (n) ≥ n there is an alternating Turing machine with a

single tape and time bound O(T 2(n)) which accepts L.

Now let us fix our notation for such machines. An alternating Turing machine has the form

M = (Σ,Γ, Q, qin, δ)

where Σ is the input alphabet and Γ ⊇ Σ is the tape alphabet. Moreover, Q is the finite set
of states, qin ∈ Q is the initial state and δ : Q× Γ→ 2Q×Γ×{l,r} is the transition function. So,
when the machine is in some state q ∈ Q and reads symbol a ∈ Γ on the tape, then for any
(p, b, ι) ∈ δ(q, a), the computation may proceed as follows: change the state to p ∈ Q, write
b ∈ Γ to the tape (thereby deleting a) and move the head into direction ι ∈ {l(eft), r(ight)}

So far, M is just a nondeterministic Turing machine. An alternating Turing machine has as
distinguishing feature a partition Q = Q∀ ∪Q∃ ∪Q+ ∪Q− of the set of states into universal,
existential, accepting and rejecting states. Given an input u ∈ Σ∗, we obtain a computation tree
TCin(u) whose nodes are configurations of M on u. The root of TCin(u) is the initial configuration
Cin(u) = (qin, u, 0) of M on input u and the successors of a node C in TCin(u) are the successor
configurations C 7−C ′ of C according to δ.

We define the semantics of M in terms of a game, played on TCin(u). There are two players,
the universal player 0, also called ∀, and the existential player 1, also called ∃. Universal
configurations are the positions of player ∀ and existential configurations belong to player ∃.
Accepting and rejecting configurations do not have any successors, and the goal of player ∃ is to
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reach an accepting configuration. The machine M accepts input u if player ∃ has a winning
strategy for this game from the initial position Cin(u). As usual, the language recognized by M
is L(M) = {u ∈ Σ∗ |M accepts u}.

The main result of this section is that the strategy problem for reachability games with
imperfect information is Exptime-hard on graphs of DAG-width at most three. Our main
technical tools for the proof are Theorem 4.9 and Proposition 4.10 which demonstrate that for
any language L ∈ Exptime, there is an alternating Turing machine M with a single tape and
space bound ms for some s ≥ 1 that recognizes L. We use this to show that L can be reduced
to the strategy problem for reachability games with imperfect information in polynomial time,
using graphs of DAG-width at most three.

So consider an arbitrary L ∈ Exptime and let M be an alternating Turing machine M with
a single tape and space bound ms for some s ≥ 1 that recognizes L. The main idea for the proof
is the same as for the original proof by Reif [182] for the general case without any restrictions on
the structural complexity of the game graphs, see also [52, 172]. We describe this idea before we
provide a full technical proof of our result. Along the way we also describe some further technical
tools. We first restrict to the case where M is deterministic, that is, each configuration of M
has exactly one successor configuration. We will explain how the construction can be adapted
to the general case after we have completed the technical proof for deterministic machines.

Let Θ = Γ ∪Q× Γ. Then a configuration of M can be described as a word

C = w0 . . . wj−1(q, wj)wj+1 . . . wl−1 ∈ Θ∗

where w0 . . . wl−1 is the tape contents, q is the current state and j is the position of the head on
the tape. Since M has space bound ms with s ≥ 1, we can assume w.l.o.g. that |C| = ms for
all configurations C of M on inputs of length m. (We use a representation of the tape which
has a priori the maximum length occurring during a computation on inputs of length m.)

A very important observation for the proof is that the successor relation between config-
urations of M can be verified locally. More precisely, for a configuration C of M and some
0 ≤ j ≤ ms−1 the symbol number j of the successor configuration C ′ = Next(C) of C only
depends on the symbols number j−1, j and j+1 of C. So there is a function κ : (Θ⊥)3 → Θ
such that for any configuration C of M and any 0 ≤ j ≤ ms−1 we have

C ′j = κ(Cj−1CjCj+1)

where Θ⊥ = Θ ∪ {⊥} and we set Cj−1 = ⊥ if j = 0 and Cj+1 = ⊥ if j = ms−1.

Now consider any input u = u0 . . . um−1 ∈ Σ∗ of length m. We describe a reachability game
with imperfect information such that player 1 has a winning strategy if, and only if, u ∈ L. The
task of player 1 in this game is to construct the (unique) run of M on u symbol by symbol, that
is, in each step, player 1 chooses a symbol from Θ and whenever he has completed a word C ∈ Θ∗
of length |u|s, the next configuration starts. The initial configuration will be implemented into
the game graph entirely and will be skipped in the construction.

On the other hand, player 0 tries to detect an error in the construction that player 1 performs.
For this he may, at any point during the play, jot down the current position j ∈ {0, . . . , |u|s−1}
within the present configuration as well as the symbols number j−1,j and j+1 chosen by player 1.
If he does so we say, figuratively speaking, that player 0 turns red (at position j of the present
configuration). Then, while player 1 constructs the next configuration, player 0 may check
the symbol number j chosen by player 1 to be correct according to the symbols which he has
memorized, using the function κ. If this symbol proves incorrect, player 1 loses. Moreover, as
soon as player 1 writes a terminal configuration that is accepting, he wins.

So far we did not use the possibility to impose partial information on player 1 and, indeed,
the construction is not correct in the stated form: If player 1 may notice when player 0 turns red,
then he can cheat by adapting his construction locally (customized to the particular point when
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player 0 turns red) and keep the actual flaw in the construction away from player 0. So we have
to hide the information when player 0 turns red from player 1. We do this by defining partial
information on the game graph: The part of a position in which player 0 stores the position j
and the three corresponding symbols chosen by player 1 is invisible for player 1. So player 0
makes his notes in private and hence, player 1 will be completely unaware when player 0 turns
red.

Now the reduction is correct and can also be computed in polynomial time [182]. Our task is
now to show that this game can be played on simple graphs. For this, an important refinement
of the idea described above is to restrict player 0 so that he may turn red only once and, if he
turns red but fails to detect and error in the next configuration that player 1 constructs, he
loses. To see that this is sufficient, notice that player 0 knows the strategy that player 1 is using.
Clearly, whenever player 1 uses a strategy that indeed writes down a run of M , then player 0
will not be able to detect a flaw, no matter how often he turns red. However, if player 0 uses a
strategy σ that does not construct a run of M , player 0 can deduce the first moment when the
construction fails from σ and turn red just in time to detect the failure.22

The idea is now that the construction of a configuration can be performed on a DAG D with
a single root and with 2 ·ms levels where the players alternate from level to level. To enable
player 1 to construct a whole sequence of configurations, we have to add also back-edges from
the last level of the DAG to the unique root. The game takes place on this DAG as long as
player 0 has not yet decided to turn red. If player 0 turns red at position l with corresponding
symbols θ = θ1θ2θ3 then, without player 1 noticing it, the game switches to a disjoint copy Dθ

l

of D where l and θ are fixed. (So we have ms · |Θ|3 copies of D.) Since player 0 may turn red
only once, there need not be any edges from Dθ

l to nodes outside this DAG. (Which makes this
restriction significant: If the DAGs were mutually connected, the graph complexity would be
higher.) Moreover, since player 0 loses if he turns red spuriously, at level 2l of Dθ

l a winner will
be declared, so we shall delete all edges from level 2l to level 2l+1 in Dθ

l . It is not hard to see
that the whole game graph has DAG-width at most two. Notice that we are still in the case
where M is deterministic. We will see, however, that handling arbitrary alternating machines
increases the graph complexity by at most one.

Theorem 4.11. The strategy problem for reachability games with imperfect information is
Exptime-hard on graphs of DAG-width at most three.

Proof. Let L ⊆ Σ∗ be any language in Exptime and let M = (Σ,Γ, Q, qin, δ) be an alternating
Turing machine with a single tape and space bound ms for some s ≥ 1 that recognizes L. First
we assume that M is deterministic. Let Θ = Γ∪Q×Γ, Θ⊥ = Θ∪{⊥} and let κ : (Θ⊥)3 → Θ be
a function that can be used to check the successor relation between configurations of M locally.

Now consider any u = u0 . . . um−1 ∈ Σ∗. We construct a game graph Gu = (V, δ,∼V ,∼A)
with partial information, using the idea described above, such that player 1 has a winning
strategy if from initial position v0 ∈ V if, and only if, u ∈ L. We start with a formal description
of the game graph and we demonstrate that the reduction is correct. Then we have a close look
at the structural properties of the game graph and, finally, we describe how the construction
can be adapted to the case where M is not necessarily deterministic.

Set of Positions

V = {v0} ∪ {0, 1} ×Θ⊥ × [ms]× (Q ∪ {⊥})× ({E} ∪ [ms])×Θ3
⊥,

So a position is either the initial position v0 or has the form (i, θ, j, q, l, θ1θ2θ3) where
i ∈ {0, 1} the player whose turn it is and θ ∈ Θ is the symbol written by player 1 in the last

22Intuitively, even though he knows that player 0 will be able to turn red only once, player 1 can still not find
a good time to cheat: he is too intimidated by the power of player 0 to turn red secretly at any time. (We also
call this the threat of being observed without observing it.)
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step. Moreover, j ∈ [ms] is the current position within the present configuration and, if q 6= ⊥
then q ∈ Q is the last state that has been chosen by player 1 during the construction of the
present configuration. Finally, the last two entries are used by player 0 to jot down the relevant
information whenever he decides to turn red (so these last two components of a position will
be hidden from player 1): If l 6=E then l ∈ [ms] is the position at which player 0 has decided
to turn red and θ1θ2θ3 ∈ Θ3 are the corresponding symbols number l−1,l and l+1 chosen by
player 1 at this point. Recall that we let symbol number l−1 of a configuration be ⊥ if l = 0 and
analogously for symbol number l+1, if l = ms−1. The initial position v0 belongs to player 0.
We now describe the moves that are available in the game.

Initial Moves of Player 0

(1) v0
�−−−−−−→ (1,⊥, 0,⊥,E,⊥⊥⊥)

(2) v0
(l,θ1θ2θ3)−−−−−−→ (1,⊥, 0,⊥, l, θ1θ2θ3)

for l ∈ [ms], where θ1θ2θ3 are symbols l−1, l and l+1 of Cin(u)
As we have mentioned, Cin(u) will not be constructed by player 1 but is implemented into

the game graph. So if player 0 wants to check the first configuration that player 1 constructs
(the intended second configuration in the run of M on u) then he notes down position l within
Cin(u) and the corresponding symbols θ1θ2θ2 without having seen them. The moves (2) serve
this purpose. If player 0 does not want to turn red at the beginning then he uses move (1),
going to position (1,⊥, 0,⊥,E,⊥3) where no information yet memorized yet.

Moves of Player 1

(3) (0, θ, j, q,E, θ1θ2θ)
θ′−−−−−−→ (1, θ′, j, q′,E, θ2θθ

′)
for θ′ ∈ Θ, where q′ = PrQ(θ′) if θ′ ∈ Q× Γ and q′ = q else.

(4) (0, θ, j, q, l, θ1θ2θ3) θ′−−−−−−→ (1, θ′, j, q′, l, θ1θ2θ3)
for l ∈ [ms] and θ′ ∈ Θ where q′ = PrQ(θ′) if θ′ ∈ Q× Γ and q′ = q else.

Moves (3) take place as long player 0 has not turned red yet: Then the sequence of symbols
chosen by player 1 which is currently stored (as θ1θ2θ3 with θ3 = θ) is updated according to the
latest symbol θ′. However, if player 0 has turned red at position l ∈ [ms] then the information
θ1θ2θ3 is noted down and does not change anymore. (Notice, however, that player 1 will not be
able to distinguish these two situation since he sees only (0, θ, j, q).)

Moves of Player 0

(5) (0, θ, j, q,E, θ1θ2θ)
�−−−−−−→ (1, θ, j+1, q,E, θ1θ2θ)

for j < ms−1

(0, θ,ms−1, q,E, θ1θ2θ)
�−−−−−−→ (1,⊥, 0,⊥,E,⊥⊥⊥)

(6) (0, θ, j, q,E, θ1θ2θ)
�−−−−−−→ (1, θ, j+1, q, l, θ1θ2θ)

for 1 ≤ j < ms−1 where l = j−1

(0, θ,ms−1, q,E, θ1θ2θ)
�−−−−−−→ (1,⊥, 0,⊥,ms−2, θ1θ2θ)

(0, θ,ms−1, q,E, θ1θ2θ)
�−−−−−−→ (1,⊥, 0,⊥,ms−1, θ2θ⊥)

(7) (0, θ, j, q, l, θ1θ2θ3) �−−−−−−→ (1, θ, j+1, q, l, θ1θ2θ3)
for l ∈ [ms] and j < l
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(0, θ,ms−1, q, l, θ1θ2θ3) �−−−−−−→ (1,⊥, 0,⊥, l, θ1θ2θ3)
for l < ms−1

Moves (5) - (6) are performed by player 0 in a situation where he has not turned red yet and,
when player 0 performs move (5), then he has decided not to turn red in the current move as
well. In performing move (6), on the other hand, player 0 turns red. There, we are in a situation
where player 1 has written symbol j of the current configuration and has turned control over to
player 0 so that he can decide whether to turn red or not.

If he does that means he wants to check symbol l = j−1 in the next configuration. (Notice
that in order to check symbol j−1 in the next configuration, player 0 needs symbol j of the
present configuration!) So he jots down l = j−1 and the last three symbols θ1θ2θ, provided by
player 1.

The second extra move in case (6) is needed to cover the special case where player 0 wants to
check the last symbol in the next configuration. In this case, there is no symbol ms, so player 0
jots down l = ms−1 and adds an extra ⊥ to the sequence of symbols that he memorizes.

Finally, in a situation where he has already turned red, player 0 can make moves (7), similar
to (5), but only if l 6= j: At a position (0, θ, j, q, l, θ1θ2θ3) with l = j, a winner will be declared
and, since player 1 has a reachability objective, we have to make sure that if player 1 is the
loser, he will not get a second chance to reach a position that is winning for him. Moreover,
when player 0 has turned red and he initializes the next configuration by moving to a position
with j = 0, the symbols θ1θ2θ3 will, of course, not be reset.

Partial Information

(i, θ, j, q, l, θ1θ2θ3) ∼V (i, θ, j, q, l′, θ′1θ′2θ′3)

So, as we have mentioned, player 1 observes the first four components of a position but is
completely oblivious of the last two entries. So he can see whose turn it is, the last symbol he
has chosen, the current position within the present configuration and also the last state that he
has chosen, but he does not notice when player 0 turns red and memorizes the information l
and θ1θ2θ3. Moreover, player 1 can distinguish any two of his own actions but all actions of
player 0 are indistinguishable for him.

Reachability Objective
(A) (0, θ,ms−1, q,E, θ1θ2θ) with q ∈ Q+

(B) (0, θ, j, q, l, θ1θ2θ3) with l = j and θ = κ(θ1θ2θ3).
If player 1 reaches a position (A) then he has constructed an accepting configuration without

being controlled, that means, player 0 has not turned red. In he reaches a position (B) then
player 0 has turned red but has failed to detect a flaw in the construction of player 1. Notice
that, since player 1 does not explicitly construct Cin(u), to make this sound we have to assume,
w.l.o.g., that qin is neither accepting not rejecting.

Correctness The correctness of the reduction can be shown with similar arguments as in the
proof of Theorem 3.20: Clearly, if u ∈ L then player 1 has a winning strategy: He just plays the
unique run of M on u, eventually reaching an accepting state or seeing player 0 embarrassing
himself by trying to detect an error in the flawless construction.

Now let, conversely, σ be a winning strategy for player 1 for Gu from v0 and consider the
unique play π that results from σ when player 0 plays the action � in each step. This play
gives rise to a unique (infinite) sequence C = C1C2 . . . of words Cj ∈ Θms . Since σ is a winning
strategy, there must be some t ∈ N such that Ct is an accepting configuration. Let t be minimal
with this property, let C0 := Cin(u) and assume that C0 . . . Ct is not the unique run of M on
u. (Remind that we have assumed that C0 is neither accepting nor rejecting.) Then there is
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some 0 < s ≤ t such that C0 7− . . . 7− Cs−1 but Cs−1 67− Cs. Let l ∈ N be minimal such that
the symbol number l of Cs is incorrect, that is, (Cs)j = Cj for j < l but (Cs)l 6= Cl, where
Cs−1 7− C.

Now consider the play ρ obtained from π as follows. At position j = l+1 during the
construction of Cs−1 (or directly at the initial position v0, if s = 1), player 0 replaces his action
� by � (or by (l, (C0)l−1(C0)l(C0)l+1), respectively). Except for this change, player 0 and
player 1 choose exactly the same actions in ρ as they do in π. Therefore, by construction, we
have ρ ∼∗ π, so the play ρ is consistent with σ as well and since σ is a winning strategy, ρ is
won by player 1. However, by definition of Gu, this play ρ will end up in a position

(0, (Cs)l, j, q, l, (Cs−1)l−1(Cs−1)l(Cs−1)l+1)

with j = l. Since (Cs)l 6= Cl, player 1 loses at this position – a contradiction. So C0 . . . Ct is the
unique run of M on u and since Ct is accepting, u ∈ L(M).

Structural Complexity Let Gu denote the graph structure of Gu. We show that dw(Gu) ≤ 2.
Notice that we are still in the case where M is deterministic.

Let DE denote the subgraph of Gu induced by the vertices of the form (i, θ, j, q,E, θ).
Then DE is an augmented DAG of height 2 · ms with edges from any non-bottom level
only to the level below and with additional back-edges from the bottom-level 2ms to the
root r(E) = (1,⊥, 0,⊥,E,⊥⊥⊥). Moreover, for any fixed (l, θ) ∈ [ms] × Θ3

⊥, let Dθ
l denote

the subgraph of Gu induced by the positions of the form (i, θ, j, q, l, θ). Such a graph is an
augmented DAG of the same shape, that means, it has height 2 ·ms, edges from any non-bottom
level only to the level below and additional back-edges from the bottom level to the root
r(l, θ) = (1,⊥, 0,⊥, l, θ). Furthermore, the edges from level 2(l+1) to level 2(l+1)+1 of Dθ

l are
deleted (if l = ms−1, then the back-edges to the root are deleted). It is easy to see that the
union of DE together with v0 and the subgraphs Dθ

l induces the whole graph Gu.
To see how these constituent parts of Gu are connected among each other, let us review how

the game is played on Gu. From the initial position v0, the game may proceed to the root r(E)
or to some root r(l, θ) for appropriate θ (determined by Cin(u)). This entails exactly ms+1
outgoing edges from v0, but v0 has no ingoing edges. As long as player 0 has not yet decided to
turn red, the game takes place in DE. Notice that the only vertex in Gu that is outside DE
and from which there is an edge leading to DE is the initial position v0.

Now, if player 0 turns red in DE at level 2(l+1) with 1 ≤ l ≤ ms−2, and θ ∈ Θ3
⊥ are the

symbols that are currently stored, then the game proceeds to Dθ
l−1. So there are directed edges

from level 2(l+1) of DE to level 2(l+1)+1 of Dθ
l−1. Analogously, there are directed edges from

level 2ms of DE to the root of Dθ
ms−2 as well as the root of Dθ

ms−1 for any θ. On the other
hand, a subgraph Dθ

l does not have any edges to vertices outside this subgraph.
It is now obvious how two cops can capture a directed robber on Gu: Occupy v0, then free

v0. Since v0 has no ingoing edges, the robber is expelled from there. Now occupy the root r(E)
of DE. If the robber is in DE, chase him down this subgraph with the second cop. (Otherwise,
the robber is in some Dθ

l , where we will capture him in the next step.) Eventually, the robber
will escape to some subgraph Dθ

l . There, a single cop is sufficient to chase the robber to level
2(l+1) where he is captured because at this level, there are only terminal vertices.

General Case To adapt the construction to the general case where M is not necessarily
deterministic, the task is to handle multiple successor configurations and the fact that control
over the successor relation is distributed among two players, ∀ and ∃. An important tool is
again the locality of the successor relation, that means, for a configuration C of M , a position
0 ≤ j ≤ ms−1 and ν ∈ [d] symbol j of the ν-th successor configuration C ′ = Nextν(C) of C only
depends on symbols j−1, j and j+1 of C. (We assume w.l.o.g. that each configuration of M
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that is neither accepting nor rejecting has exactly d successor configurations for an appropriate
d ∈ N.) So for each ν ∈ [d] there is a function κν that can be used to check the ν-th successor
relation of M locally.

The idea is again the same as in [182]: In the game described above, player 0 simulates
player ∀ and player 1 simulates player ∃. So before player 1 starts to construct a configuration,
depending on whether the last configuration was existential or universal, either player 0 or player 1
determine a ν ∈ [d] meaning that player 1 must construct the ν-th successor configuration of
the previous one. This information will be of course disclosed to player 1 and the correctness of
the construction must then also be checked using κν .

We implement this into the game graph Gu as follows. Let DE and Dθ
l for (l, θ) ∈ [ms]×Θ3

be the subgraphs of the game graph as defined above. Of each such subgraph we take d disjoint
copies DE,ν and Dθ

l,ν , ν ∈ [d], and we add distinct positions ∃,∀ and ∃θl ,∀θl to the game graph,
where any two ∃-positions as well as any two ∀-positions are indistinguishable for player 1.

From ∀, player 0 can go to the root rν(E) = (1, ν,⊥, 0,⊥,E,⊥3) of DE,ν for any ν ∈ [d]
and from ∃, player 1 can go to any such root. Analogously, from ∀θl , player 0 can go to the
root rν(l, θ) = (1, ν,⊥, 0,⊥, l, θ) of Dθ

l,ν for any ν ∈ [d] and from ∃θl , player 1 can go to any such
root. Moreover, if the initial configuration is existential, then all edges from v0 are redirected to
the corresponding ∃-nodes and if it is universal, these edges are redirected to the corresponding
∀-nodes. Finally, any back-edge from a node (0, ν, θ,ms−1, q,E, θ) at the bottom level of DE,ν

to the root is redirected to ∃ if q is existential and to ∀, if q is universal. (Edges from positions
with q ∈ Q+ ∪Q− can be redirected to either ∃ or ∀, or even be deleted.) Analogously for the
subgraphs Dθ

l,ν .
Finally, the reachability condition is modified so that in a subgraph Dθ

l,ν , we check θ = κν(θ)
with respect to the particular ν. (Recall that ν is observable for player 1.) Conceptually, it is
not hard to see that the reduction is still correct, having the arguments for the deterministic
case in mind. Moreover, it is also still computable in polynomial time. Structurally, the game
graph is not much more complicated either: Instead of occupying the root r(E) of DE with a
single cop, we now occupy the vertices ∃ and ∀ at the same time using two cops, which has the
same impact on the scope of the robber. For chasing the robber, a single additional cop is still
sufficient, so we have dw(Gu) ≤ 3.

Remark. To avoid any confusion about the graph structure Gu, notice that there is a bunch
of positions in Gu that are not reachable from v0 (in fact, more than |V |/2 positions are not
reachable from v0). For instance, positions of the form (1, θ, j, q,E, θ) with j ≤ 2 and ⊥ /∈ θ
are not reachable from v0 because as long as player 0 has not turned red yet, the construction
of a configuration always starts in (1,⊥, 0,⊥,E,⊥3). Analogously, any position of the form
(i, θ, j, q, l, θ) with l = 0 and ⊥ /∈ θ is not reachable from v0 and positions of form (i, θ, j, q, l,⊥3)
are also not reachable. Even more, any position (0, θ, j, q, ξ, θ) where j is even is not reachable.
So looking, for example, at DE, this graph looks in fact like a rectangle, rather than a pyramid,
has several roots and contains, on each level, positions of both players. However, since the game
on Gu is played from the fixed initial position v0, all positions that are not reachable from v0
are irrelevant. So we can simply ignore them and identify Gu with the subgraph induced by
those positions that are reachable from v0.

Theorem 4.11 demonstrates that the intrinsic complexity caused by partial information
is very high, even for quite simple graphs. Next we show that even on acyclic graphs, the
strategy problem for reachability games with imperfect information is still Pspace-hard which
substantiates this statement. Remind that we presume a partition of the leaves into positions
where player 0 has won and those, where player 1 has won. Since we also prove Pspace-
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membership, in this case we can do at least slightly better than for arbitrary graphs. 23

Theorem 4.12. The strategy problem for reachability games with imperfect information is
Pspace-hard on acyclic graphs.

Proof. We start with Pspace-membership. Let G = (V, δ,∼V ,∼A) be an acyclic game graph
with partial information, let R ⊆ V be a reachability objective on G and let v0 ∈ V . Consider
the powerset graph 2G = (V ,∆) and let u0 → u1 → . . .→ ul be any path in 2G . According to
Proposition 3.22, there is a path u0 → u1 → . . . → ul in G such that uj ∈ uj for all j, so we
have l ≤ |V |. In particular, 2G is acyclic.

The strategy problem for (G, R, v0) can be solved by an alternating algorithm, performing
an on-the-fly powerset construction, starting from {v0}: Given a position v ∈ V , we proceed
to some successor u of v where u is chosen universally, if v is a position of player 0 and u is
chosen existentially, if v is a position of player 1. If the computation arrives at a position v
with v ⊆ R, it accepts. If the computation arrives at a terminal position v, then it stops and
accepts if v ⊆ R, otherwise it rejects. The construction of a successor u of v can obviously
be done in polynomial time. Moreover, as we have shown above, the number of steps until
a terminal position is reached is at most |V |, so the algorithm has a polynomial time bound.
Using Theorem 4.9, we get Pspace-membership.

Let, conversely, L ⊆ Σ∗ be any language in Pspace. According to Theorem 4.9 and
Proposition 4.10, there is an alternating Turing machine M = (Σ,Γ, Q, qin, δ) with a single tape
and time bound ms for some s ∈ N that recognizes L. To keep the notation simpler, we restrict
to the case where M is deterministic. The changes that are necessary to handle the general case
are exactly the same as in the proof of Theorem 4.11. Since M has time bound ms and only
one tape, M has space bound ms as well. Hence, we can describe configurations of M in the
same way as in the proof of Theorem 4.11. Let Θ, Θ⊥ and κ : (Θ⊥)3 → Θ be as there.

Now consider any u = u0 . . . um−1 ∈ Σ∗. Conceptually, we carry out the same construction
as in the proof of Theorem 4.11. The essential technical difference is that from positions
(0, θ,ms−1, q,E, θ) at the bottom-level of DE, instead of having back-edges to the root r(E)
we have edges to the root of a new copy of DE. And analogously for the subgraphs Dθ

l for
(l, θ) ∈ [ms]×Θ3

⊥. In this way, the game graph will be acyclic by definition!
Since M has time bound ms, if some input u is accepted by M , then player 1 can prove this

by constructing at most ms configurations. So we can bound the number of these copies by ms,
that means, we have ms copies DE,µ and Dθ

l,µ, µ ∈ [ms] of the subgraphs DE and Dθ
l,µ. The

edges from v0 go to the first copies DE,0 and Dθ
l,0 as before. From positions at the bottom level

of DE,µ we have edges to the root r(E, µ+1) of DE,µ+1 and analogously for the graphs Dθ
l,µ.

Moreover, the edges from level 2(l+1) of DE,µ go to level 2(l+1)+1 of the subgraphs Dθ
E,µ as

before, for any µ ∈ [ms].
So in total we have ms copies Dµ, µ ∈ [ms] of the whole subgraph D induced by DE and

the subgraphs Dθ
l , where we start at v0 from which we can go to the first copy D0 just as we

could go to D before. The overall size of the game graph is still polynomial in |u|. A winner
will now be declared only at leaves of the DAG, that is, at terminal positions. (Notice that
such positions do not only occur in the ms-th copy of D, but in any subgraph Dθ

l,µ.) At such
positions, player 1 has won if the position belongs to the reachability set R as defined in the
proof of Theorem 4.11, at all other terminal positions, player 0 has won. The correctness of the
construction is immediate, since winning strategies carry over between the game constructed in
the proof of Theorem 4.11 and the timeout-version constructed here in the obvious way. As we
have mentioned, the game graph is acyclic which concludes the proof.

23This result has been proved independently in [51]. There, for the Pspace-hardness, a direct reduction from
QBF is given while we prove this by adapting the proof of Theorem 4.11.
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Notice that this does not completely settle the complexity of the strategy problem for
reachability games with imperfect information on graphs of DAG-width at most one, because
such graphs may contain arbitrary selfloops. Obviously, having selfloops at the leaves of an
acyclic graph does not hurt the construction as given in the proof. Moreover, it is easy to show
that the powerset graph of any graph of DAG-width at most one does not have cycles containing
more than one vertex either (using again Proposition 3.22). On the other hand, the length of
a path is not necessarily bounded by |V |, even if selfloops are not repeated: Consider a game
graph G = ([n], δ,∼V ,∼A) with A = {←,→, ↓,	} where

• δ(0,←) = 1, δ(0,→) = n and δ(0,	) = 0
• δ(j, ↓) = j + 1 for j = 1, . . . , n− 2 and δ(n, ↓) = 1
• ← ∼A 	 and 0 ∼V 1 ∼V . . . ∼V n− 1

In 2G we have a path

{0} → {0, 1} → . . .→ {0, 1, . . . , n−1} → {n} → {1} → {2} → . . .→ {n}

of length 2n. So the argumentation as in the proof of Theorem 4.12 can not be applied directly.
Moreover, since Theorem 4.11 yields Exptime-hardness only for the strategy problem for

reachability games with imperfect information on graphs of DAG-width at most three, the same
problem for graphs of DAG-width at most two is still open. So it is not clear whether imperfect
information causes an exponential blow up of the time complexity of the strategy problem for
reachability games on game graphs of DAG-width at most three. We prove this for a slightly
more complicated type of winning condition.

Let G = (V, δ,∼V ,∼A) be a game graph with partial information. We consider a winning
condition that we call sequence forcing condition and which generalizes reachability conditions:
A sequence forcing condition for G is given by a coloring col : V → [c] for some c ∈ N and a set
S ⊆ [c]l of sequences of length l for some l ∈ N. An infinite play π in G is won by player 1 if there
is a sequence of positions v1 · vl that occurs in π and satisfies col(v1) . . . col(vl) ∈ S. As before,
the winner of a finite play (ending in a terminal position) is determined by the corresponding
partition of the terminal positions.

Sequence forcing games are determined, but obviously positional winning strategies do not
suffice in general: To implement a winning strategy for player 1, we need a memory that
stores the last l positions that have occurred. If l is fixed, the size of this memory structure
is polynomial in the size of G. On the game graph which is obtained by taking the product of
the memory structure and the game graph, the sequence forcing condition is then just a simple
reachability condition, so, for fixed l, sequence forcing games can be reduced to reachability
games in polynomial time. In particular the strategy problem for sequence forcing games with
full information can be solved in polynomial time for fixed l. On the other hand, the next
theorem shows that the strategy problem for sequence forcing games with imperfect information
is Exptime-hard, even for l = 3.

Theorem 4.13. The strategy problem for sequence forcing games with imperfect information
and l = 3 is Exptime-hard on graphs of DAG-width at most two.

Proof. Let L ⊆ Σ∗ be any language in Exptime and let M = (Σ,Γ, Q, qin, δ) be an alternating
Turing machine with a single tape and space bound ms for some s ≥ 1 that recognizes L and
has branching degree d for an appropriate d ∈ N. Let Θ, Θ⊥ and the functions κν : (Θ⊥)3 → Θ
for ν ∈ [d] be as in the proof of Theorem 4.11 for the general case, where M is not necessarily
deterministic. Now consider any u = u0 . . . um−1 ∈ Σ∗ and let Gu = (V, δ,∼V ,∼A) be the game
graph with partial information as constructed there (again, for the general case).

We modify Gu as follows. We introduce new positions ♦ and ♦θl for (l, θ) ∈ [ms]×Θ3 which
belong to player 0 and are all indistinguishable for player 1. Moreover, we redirect any edge
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that leads to ∃ or ∀ to the vertex ♦ and analogously, we redirect any edge that leads to ∃θl or
∀θl to ♦θl . Moreover, from ♦, player 0 can go to ∃ or to ∀ and likewise for ♦θl . Finally, we delete
all outgoing edges from any position (0, θ,ms−1, q,E, θ) at the bottom level of DE, where q is
either accepting or rejecting. So any position in Gu where a winner can be declared immediately
is now a terminal position.

Now we define a sequence forcing winning condition Gu instead of the reachability condition
R constructed in the proof of Theorem 4.11: We use the colors {0, 1} and we start by coloring
v0 with 1. All ♦-positions as well as all ∀-positions get color 0 and all ∃-positions get color 1.
(Where by ♦-position we refer to any position of the form ♦ or ♦θl , likewise for ∃-positions
and ∀-positions.) Moreover, any position (i, θ,ms−1, q, ξ, θ) at the bottom-level of one of the
subgraphs DE and Dθ

l is colored with 1, if q is universal and the position is colored with 0,
if q is existential. Finally, all positions that have not been colored yet get color 1. The set of
sequences that player 1 wants to force is {000}.

Clearly, the whole construction can be carried out in polynomial time. Moreover, the
correctness can be proved with essentially the same arguments as before. The only difference
is that now, we have to take into account the fact that from a position at the bottom level of
one of the subgraphs DE and Dθ

l with an existential state, the game does not automatically
proceed to the corresponding ∃-positions: Player 0 might go to the corresponding ∀-position.
But, in this case, he loses because he has played the sequence 000. Moreover, this is also the
only possibility how this sequence can occur during any play of the game. Hence, player 0 will
lose if, and only if, he tries to cheat at this point or if a terminal position is reached where he is
declared the loser.

Notice that, although the Ptime-reduction from sequence forcing games (with fixed l) to
reachability games does work for games with imperfect information as well, this cannot be
directly used to strengthen Theorem 4.13 to reachability games: Taking the product of the
original game graph and the memory structure may increase the DAG-width of the game graph!

In total, this analysis yields a fairly tight picture of the complexity of the strategy problem
for games with imperfect information played on graphs of bounded DAG-width, but with
unbounded partial information. We conclude this section with some remarks on other measures
than DAG-width as well as other winning conditions, in particular, parity and safety conditions
and on further restrictions of the game graphs that one might consider.

Other Measures. We start with a look at other measures. We will see that, while Theorem 4.11
does hold for directed path-width and entanglement, the particular bound proved there is still
open for tree-width. In the following, we consider only the graphs Gu as constructed in the proof
of Theorem 4.11 (for the general case). It is not hard to see that, as for DAG-width, the graphs
G′u from the proof of Theorem 4.13 satisfy χ(G′u) = χ(Gu)−1 for any χ ∈ {tw,dpw, ent}.

We start with directed path-width and we show dpw(Gu) ≤ 2. Remind that directed path-
width and DAG-width differ by one due to the definition. To capture an invisible directed
robber on Gu, we use exactly the same search strategy as in the proof of Theorem 4.11, except
that we do not chase the robber down the subgraphs DE and Dθ

l , respectively, by placing a
cop on the robber in each step which we can’t, but by conquering the levels systematically, in a
breadth-first fashion (cf. Section 4.1). For this, a single cop is sufficient as well.

For entanglement, the scheme is also the same, but we have to take into account the fact
that we can place a cop only on the current vertex of the robber. Therefore, we cannot obstruct
the two vertices ∃ and ∀ in Gu at once but we first place a cop on the vertex through which the
robber enters DE (if he does) and if he enters this subgraph a second time, we obstruct the
other vertex. Chasing the robber is not necessary in the case of entanglement because in the
entanglement game, the robber has to move in each step. So, once ∃ and ∀ are blocked, the
robber is actually captured Therefore, ent(Gu) ≤ 2.
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The most fiddly case is that of tree-width, as the robber can move along edges in any
direction. So, in particular, chasing the robber down the subgraphs DE and Dθ

l , respectively,
cannot be done with a single cop. Rather, we have to use 2 · b(E) cops, where b(E) is the
breadth of DE. (Notice that the breadth b(l, θ) of the subgraphs Dθ

l satisfies b(l, θ) ≤ b(E).)
Having that many cops, we can safely chase the robber down DE (and Dθ

l ) by occupying two
successive levels completely in each step and gradually moving the cops from the upper one of
these two levels to the next unoccupied level. Notice that, for each l, θ, exactly one level of
Dθ
l is connected to exactly one level of DE. Hence, if the robber goes from DE to one of the

DAGs Dθ
l , we can guarantee that the robber does not go back to DE with b(E) many cops

and we still have b(E) cops at our disposal to occupy the corresponding level in Dθ
l . Then, we

can take all the cops from DE and continue to chase the robber down Dθ
l . Additionally, we

need one cop to keep v0 occupied the whole time and we also need two more cops to occupy the
nodes ∃, ∀ and ∃θl ,∀θl , respectively. So tw(Gu) ≤ 2b(E)+2.

Now, b(E) = |Θ|3 · |Q| and both these values depend only on the Turing machine M but not
on the input u. It also not hard to modify the construction so that keeping track of the state
q is not necessary so that we obtain an upper bound of tw(Gu) ≤ 2|Θ|3 + 2. (Essentially, we
just delete the Q-component from the positions and, in turn, we make any position (i, θ, l,E, θ)
where θ = (q, γ) with q ∈ Q+ ∪Q− a terminal position where player 1 has won if q ∈ Q+ and
otherwise, player 0 has won. ) However, since |Q| is also contained in |Θ|, this is not really
important. The point is that we can conclude: The strategy problem for reachability games
with imperfect information is Exptime-hard on graphs of tree-width at most k; Where k is the
minimal number such that there is an Exptime-complete language L which can be recognized
by an alternating Turing-machine with polynomial space bound that satisfies 2|Θ|3+2 ≤ k. On
the other hand, we do not know any better bounds. In particular, it is quite conceivable that on
graphs of tree-width at most two, the strategy problem for reachability games with imperfect
information can be solved in polynomial time.

Finally, let us note that dpw(Gu) ≤ 2 implies that the graphs Gu also have Kelly-width at
most two and directed tree-width at most seven. We do not examine these bounds closer.

Winning Conditions. We have formulated Theorem 4.11 and Theorem 4.12 for reachability
conditions. However, reachability conditions can be easily reduced to parity conditions. In
this case, we color all positions where player 1 has not won yet with color 1 and we delete all
outgoing edges from positions in DE, where the state q is accepting, and make them winning
for player 1. Moreover, in the context of Theorem 4.11 where we do not consider necessarily
acyclic graphs, we can also easily get rid of the terminal positions and obtain a pure parity
condition: We simply add selfloops to all terminal positions and color them with 1−i, if they are
winning for player i. Even more, if we don’t like selfloops, we can add, for each terminal position
u, an undirected edge to a position ũ and color both positions with the appropriate color. In
this case, the DAG-width (or any other measure) of the game graph will not be affected by this
construction.

Notice, though, that the parity condition defined in this way is not observable. On the other
hand, it is also still a reachability condition defined by the reachability set R ⊆ V . As we have
already observed (cf. Section 2.2.3), we can turn a reachability condition into an observable one
by simply making all positions in R distinguishable for player 1 from all other positions. In this
way, the coloring as defined above will also be observable. Moreover, the coloring as defined in
the proof of Theorem 4.13 already is observable. To replace, additionally, terminal positions
by selfloops (or undirected edges), and still preserve observability, we first have to make the
positions where player 0 has won distinguishable for him from all other positions just as for the
reachability condition. Then we can color all positions where player i has won with color 1−i,
thereby obtaining an observable (pure) sequence condition with two colors and the same set of
sequences that player 1 wants to force as before.
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Furthermore, the result also holds for (observable) safety winning conditions. To show
this, we have to go back to alternating Turing machines. It is not hard to see, that for any
alternating Turing machine M with a single tape and space bound ms for some s ≥ 1, there is an
alternating Turing machine N with a single tape and space bound ms such that L(N) = L(M)
and, additionally, N has time bound 2O(ms), cf. [48]. So in particular, any possible run of N is
finite. Hence, we can make all positions in Gu where player 1 has not lost yet safe for player 1.
Moreover, as before, we delete all outgoing edges from positions in DE, where q is accepting,
and make them winning for player 1. (Or turn the edges into selfloops or undirected edges.) If
player 1 bums around safe positions in DE for more than 2O(ms) steps, then he has written at
least one configuration that contains a flaw (with respect to 7−), so player 0 can make him lose.

Altogether, the hardness results from Theorem 4.11 and Theorem 4.12 hold for observable
parity, reachability and safety winning conditions. On the other hand, the result from Theo-
rem 4.13 holds for observable sequence conditions but is still open for any winning condition
that allows positional winning strategies.

Remarks. As we have mentioned, the results that we have proved in this section demonstrate
that the intrinsic (computational) complexity caused by partial information is very high, even for
simple graphs. Due to the fundamental character of this statement, it is expedient to consider
certain other aspects and parameters of our setting, and have a look at their impact on the
complexity of the strategy problem. We shall see that the computational hardness of the strategy
problem also withstands certain other natural restrictions of the setting.

A very important aspect is the size of the equivalence classes of positions. Indeed, the
impact of this parameter on the complexity of the strategy problem is quite strong: If we
bound the size of equivalence classes of positions, the strategy problem for parity games with
imperfect information and a fixed number of colors can be solved in polynomial time. Moreover,
in Section 4.3 we prove that the problem can be solved in polynomial time for arbitrarily many
colors on graphs of bounded DAG-width. On the other hand, the size of the equivalence classes of
actions is much less important: All hardness-results also hold if we bound the size of equivalence
classes of actions to a maximum of two. Even more, we can assume that player 0 has exactly
two actions available in total.

To see how this improvement can be obtained, let 0 and 1 be two distinct actions which
are indistinguishable for player 1 and replace the actions � and � by 0 and 1, respectively.
Unboundedly many actions of player 0 (which are all indistinguishable for player 1) occur at
the initial position v0, allowing player 0 to check the initial configuration. To avoid this, we
replace v0 by a binary directed tree with root v0 in which any two positions belong to player 0
and are indistinguishable for player 1. At any node of the tree, player 0 has 0 and 1 available.
The leaves of the tree are positions � and (l, θ1θ2θ3), corresponding to the actions that player 0
could choose at v0. At any such position a, player 0 then just needs the single action 0, leading
to δ(v0, a). Notice that any action available at v0 can be uniquely identified by a bit-sequence
of length O(log(ms)), so the tree has polynomial size. (Notice that this construction can also be
applied to the game graphs in the proofs of Proposition 3.27 and Proposition 4.8, demonstrating
a lower bound of 2

√
|V |/c in both cases.)

Moreover, the game graphs constructed in the hardness-proofs have the property that each
edge is labeled by exactly one action. Also, as we have mentioned before, the results still hold
as stated, if we discard selfloops: We can use either terminal positions or directed edges at
the leaves. Another natural restriction of the game graph would be that they are strongly
connected. This is not the case, but it is very simple to modify the construction in such a way
that the graph is strongly connected but only slightly more complex: We just add a position
♦ to the game graph that belongs to player 1 and is colored with 0 and which is connected
via an undirected edge with each position where it is player 0’s turn. Clearly, the resulting
graph is strongly connected and the correctness of the construction is not harmed, because
whenever player 0 decides to go to ♦, he immediately loses. Moreover, the DAG-width (and any
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other measure) are obviously increased by at most one. Hence, Theorem 4.11 holds at least for
strongly connected game graphs of DAG-width at most four.

Finally, let us note that the hardness results also hold for asynchronous observability, cf.
Section 2.1.4 and Section 3.5.4): Since in the game graphs constructed in the proofs, there are
no private moves of player 0, the strategy problem and the asynchronous strategy problem
coincide for all these graphs.

4.3 Bounded Partial Information
In Section 4.2 we have seen that the intrinsic complexity caused by partial information is very
high, even on simple graphs. We have also seen that this complexity withstands several further
restrictions like bounded size of equivalence classes of actions. On the other hand, if we bound
the size of the equivalence classes of positions, then the powerset construction clearly yields a
graph that has only polynomial size (independent of the size of equivalence classes of actions).
In this Section we consider the case of equivalence classes of positions which have only bounded
size. We also simply call this bounded partial information.

The main approach that we take is the following: For a class of parity game graphs G with
bounded partial information, the powerset graphs 2G have polynomial size, so the strategy
problem on the class of powerset graphs can be solved in polynomial time, if the graph complexity
is bounded with respect to some χ ∈ {tw,dw,dpw, ent}. Hence, to show that the strategy
problem for parity games played on game graphs with bounded partial information and bounded
complexity with respect to some χ is in Ptime, it suffices to prove that the powerset construction
preserves boundedness of χ.

Our first results, however, are negative: For tree-width and for entanglement this is not
the case. For tree-width, of course, this is not surprising, because tree-width measures the
complexity of the underlying undirected graph: If we perform the powerset construction and
then simply neglect the direction of the edges of the powerset graph then much graph structure
can be created. For entanglement, on the other hand, the reason is that the measure is too
delicate: If we replace each node in a full undirected (binary) tree of depth 2m by an undirected
edge, then the entanglement jumps from two to at least m− 1, cf. Proposition 4.7. Such small
gadgets, however, can be created from appropriate graphs by applying the powerset construction.

As it turns out, for our concerns, DAG-width is a much more appropriate measure. We
start by showing that strategies for the cops and directed robber game can be translated from a
game graph with bounded partial information to its powerset graph using a concept that we
call concurrent graph searching. However, our straightforward translation does not preserve
monotonicity. We will analyze this problem and prove, as an intermediate step, that the powerset
construction preserves boundedness of directed path-width. Refining this approach leads us to
the concept of graph searching with multiple robbers which we can, finally, use to demonstrate
that, indeed, boundedness of DAG-width is preserved by the powerset construction. From this
we obtain the main result of this section: The strategy problem for parity games on game graphs
with bounded partial information and bounded DAG-width can be solved in polynomial time.24

The main technical result about the concept of graph searching with multiple robbers that we
need for this is proved in Section 4.4.

Tree-width. First, we construct a class of game graphs with bounded partial information and
bounded measure χ for any χ ∈ {tw,dw,dpw, ent} which are, essentially, turned into partial
grids by the powerset construction. These partial grids have already been shown to have large
tree-width, cf. Section 4.1.

For any even m ∈ N, consider the game graph Gm = (Vm, δm,∼Vm,∼Am) defined as follows.

24We will see that, while the negative results on tree-width and entanglement hold also for small equivalence
classes of actions, this positive results holds for arbitrarily large equivalence classes of actions.
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(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

· ·

(0, 2) (1, 2) (2, 2) (3, 2)

· ·

(0, 3) (1, 3) (2, 3) (3, 3)

· ·

Figure 4.2: Abstract shape of G4 (without v0) and a subgraph of its powerset graph.

• Vm = {v0} ∪ [m]× [m] and Am = {aj,l | j, l ∈ [m]} ∪ {→,←}

• v0
aj,l−→ (j, l) for all j, l ∈ [m]

• (j, h) →←→ (j + 1, h) for h ∈ [m] and j ∈ [m−1].
• (j, h) ∼Vm (j, h+ 1) and aj,h ∼Am aj,h+1

for all j ∈ [m] and h ∈ [m−1] with different parity
Notice that in Gm, any equivalence class (of positions as well as of actions) has size at most
two. Structurally, Gn is an undirected grid with all vertical edges deleted, together with the
initial node v0 that has a directed edge to each vertex in the graph. Clearly, χ(Gm) ≤ 2 for all
χ ∈ {tw,dw,dpw, ent}. (Notice that Gn can also be seen as a disjoint union of m undirected
paths of length m, together with v0 and the directed edges from there.)

Now consider the powerset graph Gm, cf. Figure 4.2. We describe only a subgraph of
Gm that contains enough structure to prove large tree-width. First, the graph contains an
isomorphic copy of Gm, where each vertex (i, j) is replaced by {(i, j)}. Additionally, for all
j ∈ [m] and h ∈ [m−1] which have a different parity we have a vertex {(j, h), (j, h+ 1)} from
which there is a directed ←-edge to (j−1, h) and a directed ←-edge to (j−1, h+ 1). Clearly,
tw(Gsym

m ) = tw(Gm), and it is easy to see that tw(Gsym
m ) ≥ tw(Gm, 12 ) where Gsym

m denotes the
symmetric closure of Gm and Gm, 12 denotes the partial grid as defined in Section 4.1. (For
example, by contracting each path {(j−1, h)} −− {(j, h), (j, h+1)} −− {(j−1, h+1)} to a single
edge {(j−1, h)} −− {(j−1, h+ 1)} we can see that Gsym

m is a minor (in fact, even a topological
one) of Gm, 12 .) We have shown there that tw(Gm, 12 ) ≥ m/2, so tw(Gm) ≥ m/2 as well.

Proposition 4.14. Boundedness of tree-width is not preserved.

Notice that the game graphs Gm can also easily be made undirected by simply adding edges
(j, l) aj,l−→ v0 for all j, l. This does not affect the tree-width of Gm but merely increases its
DAG-width and entanglement from two to three. Moreover, the tree-width of the resulting
powerset graph is at least m/2 as well.

Entanglement. Now we turn to entanglement. We construct a class of game graphs with
bounded partial information and bounded measure χ for any χ ∈ {tw,dw, ent} which are,
essentially, turned into the double binary trees from Section 4.1 by the powerset construction
that we have shown to have large entanglement. For some particular notation that we use here,
we refer to the construction provided there.

For any even m ∈ N consider the game graph Gm = (Vm, δm,∼Vm,∼Am) defined as follows.
• Vm = {0, 1}≤m ∪ {0, 1}≤m ∪ {0̃, 1̃}≤m and Am = {0, 1,→,	}

• u
	−→ u u

0←→ u0 u
1←→ u1

u
0←→ u0 u

1←→ u0 for all u ∈ {0, 1}≤m−1
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Figure 4.3: Abstract shape of G2 and its powerset graph.

• u
→←→ ũ and ũ

→−→ u for all u ∈ {0, 1}≤m.
• u ∼Vm u for all u ∈ {0, 1}≤m

So Gm is obtained from the double binary tree defined in Section 4.1 by adding selfloops to any
u ∈ {0, 1}≤m and by making any vertex u equivalent to its duplicate vertex u, cf. Figure 4.3.
(All actions can be made distinguishable in this case.) Moreover, we paste an additional vertex
ũ on each edge that connects a vertex u with its duplicate u. The important point is now that
from such a vertex we have an undirected edge connecting it with u but only a directed edge
from ũ to u and no back-edge. So, whenever the robber in the entanglement game decides to
move over to the copy Tm,2 of the binary tree Tm,2, he cannot leave this copy anymore. So
on the whole graph, two cops can win the entanglement game by playing a strategy for the
full undirected binary tree until the robber decides to go to the other copy and then apply the
strategy there. Hence, ent(Gm) ≤ 2 and, obviously, tw(Gm) = dw(Gm) = 2.

Now consider the powerset graph Gm, cf. Figure 4.3. This graph is essentially an isomorphic
copy of Gm, where each vertex u and ũ is replaced by {u} and {ũ}, respectively. Moreover, u is
replaced by {u, u}. Additionally, we direct the edge between {u} and {ũ} towards {ũ} and we
make the edge between {ũ} and {u, u} undirected. Finally, and most importantly, we have a
back-edge from {u, u} to {u}. It is now very easy to see that the entanglement of Gm is at least
as large as that of the double binary tree from Proposition 4.7, that means, tw(Gm) ≥ m/2− 1.

Proposition 4.15. Boundedness of entanglement is not preserved.

4.3.1 DAG-width and Concurrent Graph Searching
After these two negative results, we now turn to analyzing DAG-width. In the following, let

G = (V, δ,∼V ,∼A)

denote a game graph with partial information and let

(V ,∆) = G = 2G = (2V ,∆)

denote the corresponding powerset game graph with full information.
First we demonstrate that if k cops capture a robber on the graph G, then k · r · 2r−1 cops

capture a robber on 2G . This result holds, in fact, also for r = |V |, that means, for the case
of unbounded partial information. On the other hand, if r is unbounded, then k · r · 2r−1 is
unbounded as well.

To see an example of how the robber can move on a powerset graph, consider the game
graph G and its powerset graph in Figure 4.4. To catch a robber on G with two cops, we place a
cop on v1 and on v2 because they form a clique. Then the robber can go to v3 or to v4. In the
first case, we take the cop from v2 and put it on v3, in the second case we take the cop from v1
and put it on v4. On the powerset graph, however, after we have put cops on {v1} and on {v2},
the robber goes to {v3, v4}. In order to catch the robber, neither the cop from {v1} nor from
{v2} can be taken because now, {v1}, {v2} and {v3, v4} form a clique. The reason is that if the
robber goes from {v1} to {v3, v4} then this corresponds to two possible plays in the original
game: The one where the robber goes from v1 to v3 and the one where he goes from v1 to v4.

139



0

1 2

3 4

{0}

{1} {2}

{3, 4}

−→

←−

Figure 4.4: Concurrent Graph Searching

This example suggests that, to be sure to catch the robber on 2G , we have to trace all
plays in the cops and robber game on G that are induced by a particular play in the cops and
robber game on 2G , that means, which correspond to the possible positions of the robber. Since
the positions in 2G have size at most r, at each point, there are at most r different vertices
where the robber might be, so we have to trace at most r different plays. Clearly, for each
such play, we have to allocate an individual team of cops. We call this concurrent graph searching.

The idea for the strategy translation is as follows. We translate the moves of the cops from
G to 2G and the moves of the robber in the opposite direction. Consider positions in games on
both graphs. When the robber makes a move on 2G to a vertex {v1, . . . , vl} we consider l plays
in the game on G where he moves to v1, v2,. . . , vl. For each of these moves, the strategy for
the cops for the game on G supplies an answer, moving the cops from U to U ′. All these moves
are translated into a move in which the cops occupy precisely the vertices of 2G that include a
vertex from some U ′. These moves of the cop player on 2G can be realized with k · r · 2r−1 cops
and guarantee that moves of the robber can always be translated back to the game on G. The
key argument for this reverse translation is that, by Proposition 3.22, for any path

u0 → u1 → . . .→ uµ

in 2G and for any uµ ∈ uµ, there is a path

u0 → u1 → . . .→ uµ

in G such that uλ ∈ uλ for any λ ∈ {0, . . . , µ}.

Proposition 4.16. If k cops capture a robber on G then k · r · 2r−1 cops capture a robber on 2G.

Proof. Let σ be a winning strategy for the cop player for the k cops and robber game on G. We
define the strategy σ for the cop player for the cops and robber game on G = 2G by induction
on the length of histories

π = (U0, v0)(U0, U1, v0)(U1, v1) . . . (U l, vl)

where it is the cops’ turn. At the same time, with each such history that is consistent with σ,
we associate a finite set ζ(π) that consists of histories

π = (U0, v0)(U0, U1, v0)(U1, v1) . . . (Ul, vl)

in the k cops and robber game on G such that the following conditions hold. To formulate the
conditions, let Uζ(π) denote the union of all the sets Ul of vertices occupied by cops in one of
these histories and let Rζ(π) denote the set of all the vertices vl occupied by the robber in one
of these histories.

140



(1) Each history in ζ(π) is consistent with σ

(2) vl = Rζ(π)

(3) v ∈ U l ⇐⇒ v ∩ Uζ(π) 6= ∅
(4) if π v ρ then ζ(π) v ζ(ρ)

Notice that ζ(π) can be viewed as a tree which has ⊥ as root and all the histories π as leaves.
We maintain this view of ζ(π) as a tree but by writing π ∈ ζ(π) we still refer to the leaves only.
ζ(π) v ζ(ρ) means that if ζ(π) has depth d then ζ(ρ) has depth e ≥ d and, up to level d, the
two trees coincide.

First, with any history π = (∅, v) we associate the tree ζ(π) that consists of all histories
π = (∅, v) with v ∈ v. Now consider any history π = (U0, v0)(U0, U1, v0)(U1, v1) . . . (U l, vl) that
is consistent with σ such that ζ(π) is constructed and satisfies (1) - (4). We define σ(π) = U l+1
by v ∈ U l+1 if there is some π ∈ ζ(π) such that v ∩ Ul+1 6= ∅ where Ul+1 = σ(π).

Now consider any possible next move of the robber from vl to vl+1. We show how this move
can be translated back into several moves of the robber in the cops and robber game on G, using
only the current positions of the robber in the histories that we have traced. Since the robber
has moved from vl to vl+1 in the cops and robber game on G, there is a path

vl = w0 → w1 → . . .→ wµ = vl+1

in G−U l ∩ U l+1. Let vl+1 ∈ vl+1. According to Proposition 3.22, there is a path

vl = w0 → w1 → . . .→ wµ = vl+1

in G with wj ∈ wj for all 0 ≤ j ≤ µ. So vl ∈ vl and by (2) this yields vl ∈ Rζ(π), so there is some
history π ∈ ζ(π) that ends in a position (Ul, vl). Let π′ = π(Ul, Ul+1, vl) with Ul+1 = σ(π). Since
vl+1 /∈ U l+1 and wj /∈ U l ∩ U l+1, by (3) and the definition of U l+1 it follows that vl+1 /∈ Ul+1
and wj /∈ Ul ∩ Ul+1 for 0 ≤ j ≤ µ.

Therefore, vl+1 ∈ ReachG−Ul∩σ(Ul)(vl) \ Ul+1 which demonstrates that, given the history
π′, the robber can move from vl to vl+1 in the cops and splitting robbers game on G. Hence,
ρ := π(Ul, Ul+1, vl)(Ul+1, vl+1) is a history in the cops and robber game on G and with ρ =
π(U l, U l+1, vl)(U l+1, vl+1) we associate the tree ζ(ρ) that consists of such histories ρ extended
in this way from histories in ζ(π), such that all vl+1 ∈ vl+1 are covered. (Notice that not all
histories in ζ(π) are actually extended in this way because not all those histories are necessary
to cover the possible robber’s positions in vl+1. Feckless histories die out.) (1) - (4) all hold by
construction.

Now assume that σ is not a winning strategy for the cop player. Then there is an infinite
play π in the cops and robber game on G that is consistent with σ. Using (4) we obtain an
infinite tree ζ(π) with ζ(π(≤ l)) � ζ(π) for all l ∈ N. Clearly, ζ(π) is finitely branching so,
by König’s Lemma, there is some infinite path π through ζ(π). Since, using (1), π is a play
in the k cops and robber game on G which is consistent with σ this contradicts the premise
that σ is a winning strategy for the cop player in this game. Finally, for any σ-history π with
last(π) = (U, v), by (3) we have |U | ≤ |Uζ(π)| · 2r−1. Moreover, |Uζ(π)| ≤ k · |ζ(π)| and, by (2)
and the construction of ζ(π), |ζ(π)| ≤ |Uζ(π)| = |v| ≤ r. Hence, |U | ≤ k · r · 2r−1.

The proof of Proposition 4.16 shows that for a very plain (yet sensible) strategy for the
cops on 2G , moves of the robber can always be translated back to the graph G. This suggests
that, in the case of bounded partial information, the effects of the powerset construction on the
graph structure are containable, if we measure the structural complexity of a graph in terms of
DAG-width.

Remark. For directed path-width and Kelly-width, this is not quite clear. We do not know any
examples that would show unbounded growth of these measures when the powerset construction
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v0

x1 x2 x3 x4

y1 y2 y3 y4

{v0}

{x1} {x2} {x3} {x4}

{v0, y1} {v0, y2} {v0, y3} {v0, y4}

Figure 4.5: The game graph G4 and its powerset graph G
4
v0

from v0.

is applied, but the strategy translation as described above cannot be directly applied to the
games that characterize these measures. The problem is that, given the translation of the moves
of the cops that we have defined, there is not such a nice correspondence between the moves
of the robber on G and on 2G : If a directed homebody moves from some v to v′ then v and v′

must be in the same strongly connected component of 2G − U ∩ U ′. But that does not imply
in general that for any v′ ∈ v′ there is some v ∈ v that is in the same connected component of
G− U ∩ U ′ (for the appropriate U and U ′). Moreover, for Kelly-width, the problem is that an
inert robber can move from v to v′ only if a cop is placed on v. But this does not necessarily
mean that each v ∈ v is occupied by a cop in some play: This need only be the case for at least
one v. We do not consider this here further.

On the other hand, if the partial information is unbounded, then the rather small effects of
the powerset construction may be accumulated. To make this a little more precise consider, for
m ∈ N, the graph Gm = (Vm, δm,∼Vm,∼Am), defined as follows.25

• Vm = {v0, x1, . . . , xm, y1, . . . , ym} and Am = {a1, . . . , am, ↑, ↓}

• v0
aj−→ xj xj

↑−→ v0 xj
↓−→ yj

• v0 ∼Vm yj

The graph G4 and its powerset graph are delineated in Figure 4.5. Clearly, χ(Gm) ≤ 2 for all
χ ∈ {tw,dpw,dw, ent}. However, although 2Gm has no more positions than Gm has and, even
more, any position in 2Gm has size at most two, we have χ(Gm) ≥ m for all χ ∈ {tw,dpw,dw, ent}!
(Notice that even to capture a robber nonmonotonously on 2Gm , at least m cops are needed.)
The reason is that the node v0, which is highly connected with the rest of the graph, is contained
in unboundedly many positions in 2Gm . In this sense, v0 accumulates the small effects of the
powerset construction on the graph structure so that, in total, Gm has large complexity.26

In particular, this example reveals that the requirement that the positions in the powerset
graph 2G have size at most r (which also implies that the powerset graph has polynomial size
in total) is not sufficient for proving Proposition 4.16. On the other hand, it is not quite clear
whether to prove Proposition 4.16, it is sufficient to assume merely that each position from G is
contained in at most r positions in 2G (while the positions in 2G may have arbitrary size). This
implies that the powerset graph has polynomial size in total as well, but clearly, the approach
used in the proof given above cannot be readily applied: There, we have a second factor that
potentially causes a need for unboundedly many cops: The number of plays that we trace
simultaneously, which is also r. We will not pursue this question here further.

Instead, we shall stick to the assumption of bounded partial information and return to the fact
that even under this assumption, Proposition 4.16 in the stated form is not a big help in proving

25This example is taken from [172].
26Examples like that in Proposition 4.8 show that these accumulation effects can multiply: If unboundedly

many positions from G are contained in unboundedly many positions from 2G , then the graph complexity can
become exponential.
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Figure 4.6: Monotone strategy is translated to a non-monotone one.

that the strategy problem for parity games with bounded partial information can be solved in
polynomial time on graphs of bounded DAG-width: We were not able to prove that our strategy
translation preserves monotonicity and since it is unclear whether DAG-width has bounded
monotonicity cost, Proposition 4.16 does not yield that dw(2G) ≤ k · r · 2r−1. However, we will
see that this is really not a matter of structural complexity of the graph but of strategic reasoning.

Let us start by having a look at some concrete example where the strategy translation in the
proof of Proposition 4.16 fails to preserve monotonicity. Consider the game graph G with partial
information as depicted in Figure 4.6. We describe a (partial) monotone winning strategy σ for
three cops, assuming the robber starts in v0. First, put a cop on v0. If the robber goes to v1
then put a cop on v1, take the cop away and put it on v2. If the robber goes to v3, place a cop
on v5. If the robber answers this move by going to v4, take the cop from v0 and put it on v4.
Then place a third cop successively on v1, v2, v3. Now consider the translation σ of σ to 2G
from the proof of Proposition 4.16. Assume the robber starts, analogously, in {v0}. Then we
put a cop on this position and, if the robber moves to {v1, v3}, we place a cop on {v1, v3} due to
the possibility that the robber might be on v1 and we place a cop on {v5} due to the possibility
that he might be on v3. Now consider the move of the robber to {v2, v4}. Then the cop from
{v1, v3} will be taken because the cop from v1 is taken in the play where the robber initially
fled to v1 and the vertex v3 is still cop-free in the play where the robber initially fled to v3. At
this moment, {v1, v3} will be available for the robber again, so the strategy is not monotone.

On the other hand, the there are several possibilities to change the strategy σ, so that the
resulting strategy is a monotone winning strategy for two cops on G and the translated strategy
σ is monotone as well. For example, if we don’t free position v1 after we have expelled the
robber from there but, instead, take the cop from v0 to occupy v2, then the position {v1, v3}
would still be occupied by a cop, after the robber has moved to {v2, v4}. Moreover, if we placed
three cop on v3, v4, v5 immediately if the robber goes to one of those positions then the described
nonmonotonicity would also not arise. However, starting from an arbitrary monotone winning
strategy for three cops does include, in particular, strategies which make such moves that are,
for someone who looks at them from the outside, unreasonable but still fulfill anything that we
can expect from a monotone winning strategy.

Let us analyze the generic reason why this kind of nonmonotonicity arises. When the robber
moved to {v1, v3}, we traced two plays in the original cops and robber game: A play π where
the robber moves from v0 to v1 and a play ρ, he moves to v3. Then we place a cop on {v1, v3}
in the game on 2G but we do this merely due to the play π, where a cop is placed on v1. Then,
when the robber moves to {v2, v4}, in the play π he moves to v2, so the cop from v1 is removed.
But at this point, in the game on 2G we remove the cop from {v1, v3} and this position is still
available for the robber, because according to the play ρ, he might also be on vertex v4. So the
two plays that we trace simultaneously interfere with each other.

In general, these interferences are unavoidable because the actions of a strategy for the cops
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may depend on the position of the robber in the graph. (Or at least, on his strongly connected
component, which wouldn’t make any difference in the example above.) A natural and very nice
way to deal with this problem would be to prove, that there is a normal form for cops’ winning
strategies which guarantees that such interferences do not appear. More precisely:

? Is there a normal form for monotone cops’ winning strategies, such that the translation as
described in the proof of Proposition 4.16 is monotone?

Remind that by normal form we mean that an appropriate (monotone) winning strategy would use
only κ(k) more cops than a given arbitrary one. However, we do not know whether this holds. We
make a first approach to solve the interference problem by restricting the graph structure further.

Since the problem about preserving monotonicity when translating strategies is that a robber
can cause nonmonotonicity in another play, it would be helpful to assume that any vertex that
can be reached by one of the robbers can also be reached by the robbers in all the other plays.
Then, if a robber would cause nonmonotonicity in a play, the robber that actually belongs to
this play would cause nonmonotonicity as well which would contradict monotonicity of the
original winning strategy. A simple way to guarantee this is to assume that all any equivalence
class of positions are strongly connected and to adapt the original monotone winning strategy σ
for k cops on G so that it is compatible with equivalence classes: For any σ-position (U, v) of the
cop and directed robber game and any vertex u, either [u] ⊆ U or [u] ∩ U = ∅. This adaption
can be easily done, using at most r · k cops: We just occupy the whole set [u] as long as at least
one u ∈ [u] is occupied according to σ and, as soon as this is not the case anymore, we remove
all cops from [u].

Now, consider the strategy σ from the proof of Proposition 4.16 and assume at some point
during a σ-play in the cops and robber game on 2G nonmonotonicity occurs. That means, the
cops move from (U, v) to (U,U ′, v) and the robber can reach some u ∈ U \ U ′ in G− U ∩ U ′.
Then, using Proposition 3.22 similar as in the proof of Proposition 4.16, there is some robber
v ∈ v that can reach some u ∈ U \ U ′ in G− U ∩ U ′, where the sets U and U ′ belong to some
play π that we have traced. This play also has a robber, say at w, and, since [v] is strongly
connected and completely cop-free, the robber at w can reach v in G− U ∩ U ′ and from there,
cause nonmonotonicity in π – a contradiction.

Proposition 4.17. If dw(G) ≤ k and each equivalence class of positions is strongly connected,
then dw(2G) ≤ k · r2 · 2r−1.

Clearly, the quadratic overhead that we get is negligible compared to the exponential factor
that we already have. On the other hand, having strongly connected equivalence classes is a very
restrictive assumption. This might be appropriate for some very special situations where, for
example, the partial information of player 1 concerns only certain private variables of player 0
that he can change arbitrarily without giving control to player 1. For most scenarios, however,
this assumption is completely ill-suited.

Instead, we look for an assumption which also guarantees that no malign interferences between
different plays occur and which can be expressed merely in terms of structural complexity of the
game graph. Here, the concept of directed path-width comes into play. We know that the cops’
actions in this game do not depend on what the robber does because they don’t see him. So it’s
quite reasonable that the interferences as described above do not occur in this case so that a
strategy translation similar to that in the proof of Proposition 4.16 will be actually monotone.
For this, recall the representation of the cops and invisible robber by means of positions (U,R),
where R is the set of all vertices in the graph on which the robber might still be. Since the cops
and robber game that we are interested in is played on the powerset graph of G, this powerset
representation of the cops and invisible robber game will be most convenient.27

27Also notice that this game is a solitaire game, so we do not even have to consider multiple plays that are
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Proposition 4.18. If dpw(G) ≤ k then dpw(2G) ≤ (k + 1) · 2r−1.

Proof. Let σ be a monotone winning strategy for (k + 1) cops for the cops and invisible robber
game on G and let

π = (U0, R0)(U1, R1) . . . (Us, Rs)

be the unique play in the game that is consistent with σ. Notice that Rj 6= ∅ for j < s and
Rs = ∅. We construct a monotone play

π = (U0, R0)(U1, R1) . . . (Us, Rs)

in the (k+ 1) ·2r−1 cops and invisible robber game on G = 2G with Rs = ∅. A monotone winning
strategy σ for (k+1) ·2r−1 cops for this game can then be directly obtained from π. (That is, we
construct a monotone winning strategy σ for (k+ 1) · 2r−1 cops for the cops and invisible robber
game on G by constructing the unique monotone, finite play that is consistent with σ.) Remind
that the play π has to satisfy U0 = ∅, R0 = V and Rj+1 = ReachG−Uj∩Uj+1

(Rj) \ U j+1.
We construct histories πl = (U0, R0) . . . (U l, Rl), l ≤ s, in the cops and invisible robber game

on G such that the following conditions holds.
(1)

⋃
Rl ⊆ Rl

(2) u ∈ U l ⇐⇒ u ∩ Ul 6= ∅
Notice that from Rs = ∅ and (1) it follows that Rs = ∅. So once the play π is constructed such
that (1) holds, π is won by the cops.

The history π0 = (U0, R0) = (∅, V ) is uniquely determined. Now let the history πl =
(U0, R0) . . . (U l, Rl) with l < s be constructed such that (1) and (2) are satisfied. We set
U l+1 = {v ∈ V | v ∩ Ul+1 6= ∅} and Rl+1 := ReachG−U l∩U l+1

(Rl) \ U l+1. With these definitions,
πl+1 = πl(U l+1, Rl+1) is a history in the cops and invisible robber game on G by construction.
Moreover, (2) also holds by definition. To prove that (1) holds as well, we have to demonstrate
that all possible (implicit) moves of the robber in the game on G can be translated back to the
game on G. This can be shown by the same arguments as in the proof of Proposition 4.16 (using
Proposition 3.22, condition (1) for Rl and condition (2) for U l as well as the definition of U l+1.)

Let us show that the cops’ move from (U l, Rl) to (U l, U l+1, Rl) is monotone. Assume,
towards a contradiction, that there is some u ∈ U l \ U l+1 such that u is reachable from Rl in
G − U l ∩ U l+1. So there is a path

v = v0 → v1 → . . .→ vµ = u

in G − U l ∩ U l+1 from some v ∈ Rl to u. Since u ∈ U l, by condition (2), there is some u ∈ u
with u ∈ Ul and as u /∈ U l+1, condition (2) yields u /∈ Ul+1. According to Proposition 3.22,
there is some path

v = v0 → v1 → . . .→ uµ = u

in G such that vj ∈ vj for all 0 ≤ j ≤ µ. Since vj /∈ U l ∩ U l+1, by condition (2) it follows that
vj /∈ Ul ∩Ul+1 for 0 ≤ j ≤ µ. Moreover, by condition (1) we have v ⊆ Rl, so v ∈ Rl. In total we
have u ∈ Ul \ Ul+1 and u is reachable from v ∈ Rl in G− Ul ∩ Ul+1. Therefore, the cops’ move
from (Ul, Rl) to (Ul, Ul+1, Rl) in π is not monotone, which is a contradiction.

So, from π we obtain a monotone winning strategy for the cop player for the cops and
invisible robber game on G and it is easy to see that at most (k + 1) · 2r−1 cops are used.

Remind that, in fact, the proof of monotonicity was redundant because directed path-width
is known to be monotone. However, as we have mentioned, we are interested in the reason why
the translation described in the proof above preserves monotonicity. We have already suggested

consistent with a given monotone winning strategy for the cops but only a single play. This makes the proof
indeed somewhat easier but is not necessary for avoiding interferences, cf. Proposition 4.19.
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the main reason before: If the robber could, at some point, from any v on which he might
currently be, reach a position u from which a cop is just leaving, then there is some robber v ∈ v
that could reach a position u ∈ u from which a cop is just leaving in the original game. In the
case of Proposition 4.16, the problem was that v and u might belong to different plays that we
are tracing and since the original strategy may make different decisions in these plays, we were
not able to deduce non-monotonicity of the strategy. Here, the original strategy makes the same
decision in all such plays, so non-monotonicity follows.

However, as bounded directed path-width is too restrictive, we are mainly interested in using
this insight to transfer the result to DAG-width. To see how we can do this, recall that the fact
that for directed path-width we have to trace only a single play is the imperfect information in
the cops and robber game. The cops do not see the robber, so their actions may not depend
on the position v ∈ v that the robber occupies. So in a sense, the partial information in the
cops and robber game comprises the partial information on the game graph. However, since
the robber in the game is completely invisible but positions in the powerset graph have size
at most r, this is an overapproximation: A robber that might be on r possible vertices at any
point would be sufficient.

As we have mentioned before, the powerset representation of the game graph is more suited
for our concerns. In fact, the condition of the robber being on at most r possible vertices can also
be expressed most naturally in terms of the sets R in this representation: We parametrize the
powerset game graph with a bound r ∈ N on the size of R. This leads, in a very natural way, to
the concept of graph searching with multiple visible robbers: The k cops and r directed robbers
game has cops’ positions (U,R) and robbers’ positions (U,U ′, R) where U and U ′ are as before
and R ⊆ V . The moves of the cops are also as in the usual game, while the robbers’ moves are
now from (U,U ′, R) to any (U ′, R′) such that R′ ⊆ ReachG−U∩U ′(R) \ U ′ and |R′| ≤ r. So, in
any move, the robbers can decide which r many of all the possible positions they want to occupy
without any further restrictions. In particular, this also includes the possibility to take robbers
from certain positions of the graph away and split robbers at other positions into several copies.
These robbers need not even be in the same connected component of G− U ∩ U ′ at this point,
so in a sense, the robbers can jump in the graph, but not in an arbitrary fashion (which would
it make impossible to catch them with less than |V | cops) but only to other robbers that are
currently in the graph. Since we do not distinguish between individual robbers but merely have
a set R of vertices currently occupied by robbers, the moves of the robbers are, indeed, described
more adequately by the concept of splitting. However, to highlight this additional power of the
robbers (over mere movements along edges), we sometimes use the term of jumping.

We will discuss the properties of this game in greater detail in Section 4.4. It is, however,
clear that we need this particular rule to obtain a game that corresponds to the cops and (single)
directed robber game played on the powerset graph 2G . Proposition 4.19 states that, if the
partial information is bounded by r, then a strategy for k(r) cops that guarantees to capture
r robbers simultaneously in a monotone way on G can be used to construct a strategy for
k(r) · 2r−1 cops that guarantees to capture a directed robber on 2G monotonously. Of course, to
be able to infer from this that the powerset construction preserves boundedness of DAG-width,
we have to show that if DAG-width is bounded, then for any fixed r, k(r) is bounded as well.
This is our main result in Section 4.4:

k(r) ≤ k · r

We will discuss related work on graph searching with multiple robbers for undirected graphs
as well as the particular difficulties that arise in the directed case there. We conclude this
section with showing that this result can in fact be used to prove that the powerset construction
preserves boundedness of DAG-width. Notice that in this case, we do not have just a single play
that is consistent with a given strategy for the cops because the cops can see the robbers. On
the other hand, for any given play in the cops and robber game on 2G , we have exactly one play
in the cops and multiple robbers game on G that corresponds to it. Therefore, no interferences
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can occur.

Proposition 4.19. dw(2G) ≤ k(r) · 2r−1.

Proof. Let σ be a monotone winning strategy for the cop player for the k(r) cops and r splitting
robbers game on G. We define a strategy σ for the cop player for the cops and robber game on
G = 2G inductively on the length of histories

π = (U0, v0)(U0, U1, v0)(U1, v1) . . . (U l, vl)

where it is the cops’ turn. At the same time, with each such history that is consistent with σ,
we associate a history

ζ(π) = (U0, R0)(U0, U1, R0)(U1, R1) . . . (Ul, Rl)

in the k(r) cops and r splitting robbers game on G such that the following conditions hold.
(1) ζ(π) is consistent with σ

(2) Rl = vl

(3) u ∈ U l ⇐⇒ u ∩ Ul 6= ∅
(4) If π v ρ then ζ(π) v ζ(ρ)

First, with any history π = (∅, v) we associate the history ζ(π) = (∅, v). Now consider any
history π = (U0, v0)(U0, U1, v0)(U1, v1) . . . (U l, vl) that is consistent with σ such that ζ(π) is
constructed and satisfies (1) - (4). Let σ(ζ(π)) = (Ul, Ul+1, Rl) and define σ(π) := U l+1 =
{u ∈ V |u ∩ Ul+1 6= ∅}. With the same argument as in the proof of Proposition 4.18 (using
Proposition 3.22, condition (2) for vl and condition (3) for U l as well as the definition of U l+1)
it can be shown that the cops’ move from U l to U l+1 is monotone.

Now consider any possible next move of the robber from vl to vl+1. With the same
arguments as in the proof of Proposition 4.16 (using Proposition 3.22, condition (2) for vl
and condition (3) for U l as well as the definition of U l+1) it can be shown that this move
can be translated back to the cops and splitting robbers game on G. That means, the robber
can move from Rl to vl+1 and with ρ = π(U l, U l+1, vl)(U l+1, vl+1) we associate the history
ζ(ρ) = ζ(π)(Ul, Ul+1, Rl)(Ul+1, vl+1). Clearly, (1) – (4) all hold.

Obviously, σ is a winning strategy for the cops: Given an infinite σ-play π in the cops
and robber game on G, conditions (1) and (4) immediately yield an infinite σ-play ζ(π) in the
k(r) cops and r splitting robber game on G – a contradiction. Moreover, by construction, σ
uses at most k(r) · 2r−1 cops and since all moves according to σ are monotone it follows that
dw(G) ≤ k(r) · 2r−1.

Theorem 4.20. Boundedness of DAG-width is preserved.

Proof. Proposition 4.19 and Theorem 4.22.

So, for a given parity game graph G = (V, δ,∼V ,∼A) with equivalence classes of size at
most r and DAG-width at most k, we can apply the powerset construction to obtain a parity
game graph G = (V,∆) with full information which has size at most 2r · |V | and DAG-width at
most k · r · 2r−1. The last step that is needed to be able to apply the algorithm developed in [24],
it to transform G into a purely position based, deterministic game graph H = (V,E), where the
players choose successor positions instead of actions, cf. Section 2.1.2. For this, we just have to
turn G into a deterministic game graph Gd = (V d, δd). As we have shown in Section 2.1.2, a
purely position based game graph is then obtain by simply deleting the actions from the edges
which clearly does not affect the complexity of the game graph and can therefore be neglected.
We have described a determinization construction in Section 2.1.2, so it remains to convince
ourselves that the construction is nonhazardous in terms of DAG-width. In fact, this is easy to
see, we just give a short description.
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Let σ be a monotone winning strategy for dw(G) cops on G. If the game on Gd is in a
position (U, v), to be able to make the next move according to σ, the only problem is that we
do not necessarily have v ∈ V (if v ∈ V , then the cops just move to σ(U, v)). If v /∈ V then
v = (w, a) with w ∈ V (recall that V d = V ∪ V × A) and we distinguish two cases. If w /∈ U ,
then the cops can assume that the robber is on w (notice that ReachG−U (v) ⊆ ReachG−U (w))
and move to σ(U,w). If w ∈ U , then either |U | < k or there is at least one u ∈ U such that
u /∈ ReachG−(U\{u})(v). (Otherwise, no cop could be moved without causing nonmonotonicity,
but the robber is not caught yet.) We place such a free cop on v, then remove the cop from v
(and put it back to where it came from). Since v is only reachable from w which is occupied by
a cop, this move is monotone. If the robber is not caught yet, then he runs along some path
v → w′ → . . . for some w′ ∈ V with (w, a,w′) ∈ ∆ and the cops move to σ(U,w′). In this way,
any play π on Gd that is consistent with this modified strategy, essentially coincides with a
play on G that is consistent with σ (and where the robber has always less or equal positions
available). Thus, π is monotone and won by the cops, so dw(G) cops monotonously capture a
robber on Gd. Hence, dw(Gd) ≤ k · r · 2r−1.
Corollary 4.21. The strategy problem for parity games on graphs with bounded partial infor-
mation and bounded DAG-width can be solved in polynomial time.

4.4 Graph Searching with Multiple Robbers
This section is devoted to the following theorem. Throughout this section, let G = (V,E) be a
directed graph.
Theorem 4.22. dwr(G) ≤ r · dw(G).

The number dwr(G) is the least k(r) ∈ N such that k(r) cops monotonously capture r directed
splitting robbers on G. We have already briefly introduced our concept of graph searching with
multiple robbers in Section 4.3. We start with a detailed presentation of these games and some
basic properties. In particular, we discuss the moves that the robbers can make in the game and
the corresponding concept of monotonicity. In the second step, we present two simple normal
forms for robbers’ strategies, that are useful for the proof, and for analyzing graph searching
with multiple robbers in general.

We approach the proof of Theorem 4.22 with the simpler cases of undirected graphs and
robbers that do not jump, respectively. We will see that, in fact, much easier proofs of Theo-
rem 4.22 can be given for these cases. We then discuss the main difficulties that arise in the
general case of directed graphs and robbers that can jump and we give a rough blueprint of how
we are going to solve these difficulties in the proof that we present at the end of this section.
Before we begin, we make some general remarks about the concept of graph searching with
multiple robbers and about related work on this topic.

First, from the definition of dwr(G) it is quite clear that we have the following:

dw(G) = dw1(G) ≤ dw2(G) ≤ . . . ≤ dw|V |(G) = dpw(G)

Hence, the r-DAG-width is both, a refinement of directed path-width and a generalization of
DAG-width. Clearly, we could have tackled the problem of concurrent graph searching also from
this end, replacing several plays with a single robber by a single play with multiple robbers
directly, instead of going through invisible robbers. However, in the context of game graphs
with partial information, this detour via invisible robbers is a very natural approach.

Graph searching with multiple robbers has also been considered in [183] for undirected graphs
and robbers that can only move along edges but not jump.28 While Theorem 4.22 is quite easy

28The authors also consider mixed search (rather than node search as we consider it here): cops can also slide
along edges. This, however, is insignificant.
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to prove for undirected graphs, even for jumping robbers, in [183] it has been shown that the
result can be improved in their setting: For an undirected graph G, if k cops monotonously
capture a robber on G then O(log(r) · k) cops monotonously capture r non-jumping robbers on
G. On the other hand, as to directed graphs, we rather think that the bound from Theorem 4.22
is, essentially, optimal, even for non-jumping robbers.

Moreover, in [183], it has been shown that graph searching with non-jumping robbers on
undirected graphs is not monotone. In fact, if we allow cops to play nonmonotone strategies
without further restrictions, it is clear that they need less cops to capture non-jumping robbers:
They can capture the robbers sequentially rather than concurrently using merely k cops. On
the other hand, for jumping robbers, the situation is quite different: Such a straightforward
sequential search strategy will not suffice, even if we allow nonmonotone cops’ strategies, because
once a robber is captured, he may still jump to other robbers. It is not quite clear, indeed,
whether actually more cops are needed to capture multiple jumping robbers simultaneously, if
monotonicity is required. While for dw1 = dw this is the case [123], for dw|V | = dpw, this is not
the case [11, 112]. In particular, the example constructed in [123] does not work anymore for dw2:
For any of their graphs Gm we have dw2(Gm) = dw(Gm), but to capture two jumping robbers
simultaneously and nonmonotonously on Gm, we also need dw(Gm) many cops. Nevertheless,
we conjecture that for any fixed r ∈ N, dwr is not monotone.

From the above, it is quite clear that jumping increases the power of the robbers against
nonmonotone cops: Additional cops are necessary to capture jumping robbers instead of purely
running ones. However, it is not clear, neither for directed nor for undirected graphs, whether
jumping actually increases the power of the robbers against monotone cops. At any rate,
the most general case where we consider directed graphs and jumping robbers appears to be
exceptionally cumbersome. We do not know whether the rather intricate strategic reasoning
from the proof of Theorem 4.22 can be avoided. However, we demonstrate that if we have at
least undirected graphs or non-jumping robbers, much easier proofs can be obtained. We will
explain why these approaches fail in the general case and discuss the underlying properties of
jumping robbers on directed graphs that are crucial for concurrent graph searching.

The paper [183] also provides a lower bound of min{dpw(G), blog(r)c+ 1}+ 1 on the number
of cops needed to capture r robbers monotonously on any undirected tree. This lower bound
clearly holds for our setting as well, demonstrating that Theorem 4.22 is not trivial in that
dwr(G) cannot be bounded in terms of dw(G) only, independent of r. Moreover, the dwr(G)-
hierarchy between DAG-width and directed path-width described above does not collapse.

Another version of concurrent graph searching or, as it is called there, nondeterministic
graph searching, has been considered in [84], also for undirected graphs. There, instead of having
multiple robbers, we have a single invisible robber again, but the cops can query the position
of the robbers q times for some q ∈ N. This also induces a hierarchy between path-width and
tree-width (in their setting of undirected graphs), but this time, pw = tw0(G) ≥ tw1(G) ≥ . . . ≥
tw|V |(G) = tw(G). (Notice that |V | queries are sufficient if we play a strategy that decreases
the set of vertices available for the robber by at least one in each step.) In [84] a corresponding
notion of graph decomposition has been provided (which is unknown for graph searching with
multiple robbers) and also a lower bound has been demonstrated.

4.4.1 Cops and Directed Splitting Robbers
As we have mentioned, cops and directed splitting robbers games can be obtained by a very
simple restriction of the powerset representation of the game graphs on which the cops and
invisible robber games are played. There we have cops’ positions (U,R) and robber’s positions
(U,U ′, R) with U,R ⊆ V and, if the robber moves from (U,U ′, R) to (U ′, R′) then

R′ = ReachG−U∩U ′(R) \ U ′.
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Cops and directed splitting robbers games are played on a parametrized version of these game
graphs where in each such move, the robber player can choose any R′′ ⊆ R′ with |R′′| ≤ r. That
means, positions (U,R) and (U,U ′, R) have to satisfy |R| ≤ r and, while the cops’ moves are as
before, the robber can move from (U,U ′, R) to any (U ′, R′) with

R′ ⊆ ReachG−U∩U ′(R) \ U ′.

The terminal positions of the game graphs are cops’ positions (U,R) with R = ∅. At these
positions, all robbers are captured and the cops have won. As before, any infinite play is won by
the robber player.

We have also mentioned the fact that these games can be viewed as a generalization of
DAG-width which is obtained by allowing several robbers instead of just a single one. However,
the above parametrization of the game graphs for the directed path-width game leads to splitting
robbers in a very natural way: The transition from R to R′ as defined above, in particular,
allows for the possibility that several robbers run from a robber b ∈ R to positions in R′ that
are not reachable from any other robber b′ ∈ R \ {b}. So in a sense, the robber b splits into
several copies while certain other robbers b′ ∈ R are simply taken away from the graph which
can be seen as splitting into zero copies. We have also used the term of jumping to highlight this
particular feature more distinctly, but since we do not distinguish between individual robbers
we will never be interested in which robber jumps to which other one. So we shall stick to the
view of the robber b splitting into several (possibly zero) copies.

On the other hand, starting from DAG-width it might seem more appropriate to restrict the
robbers so that they can only run along directed edges from their current position but not split
into several copies. This, however, is not sufficient for our concerns: In the cops and robber
game on the powerset graph, if the robber moves from some position v to a position w then
each w ∈ v is reachable from some v ∈ w. However, the function f : w → v with f(w) = v
for some such v is neither injective nor surjective in general. Which is why, in the proof of
Proposition 4.16, some of the plays that we trace die out while others are split into several plays.
So, for Proposition 4.19 we need splitting robbers.

In this sense, the detour through directed path-width and the powerset representation of the
game graphs has led to the right concept of graph searching with multiple robbers in a very
natural way.

Monotonicity. The notion of monotonicity in these games is the straightforward generalization
of monotonicity in the cops and single robber games: A play π in the cops and splitting robbers
game is monotone if for all positions (U,U ′, R) we have ReachG−U∩U ′(R) ⊆ ReachG−U (R),
that is, the area that is reachable from all the robbers in total may never increase. As
before, this is equivalent to the requirement that no robber can ever reach a position from
which a cop is just leaving, that means, the play never reaches a position (U,U ′, R) such that
(U \U ′)∩ReachG−U∩U ′(R) 6= ∅. So a robber may never reconquer a vertex that way previously
unavailable for the robbers. Notice that in our context with splitting robbers it does not make
sense to consider the seemingly weaker notion where a robber may not reconquer a vertex that
was previously unavailable for him. However, even in the games with merely running robbers,
the two intuitions of monotonicity lead to the same definition: If a robber reconquers a vertex
that was previously unavailable for him then he can reach a vertex from which a cop is just
leaving but this vertex was unavailable for all the robbers.

Again, this notion of monotonicity is what would be called robber-monotonicity. The notion of
cop-monotonicity is defined as before and as for tree-width and DAG-width, robber-monotonicity
and cop-monotonicity coincide which can be shown with the same arguments as there. (In the
sense that whenever k cops have a winning strategy to capture r robbers that is robber-monotone
or cop-monotone then they also have one that is both.)

Strategy Normal Forms. To outsource at least some of the merely technical difficulties in
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the proof of Theorem 4.22, we prove two plain normal forms for robbers’ strategies separately:
Isolating strategies and prudent strategies. Moreover, as we have already mentioned, it is easy to
see that if k cops have a (positional) monotone winning strategy then k cops have a (positional)
monotone winning strategy that never places cops outside the area that is reachable for the
robber. We call such strategies thrifty. Formally, a strategy for the cops is thrifty, if for any
move (U, r)→σ (U,U ′, r) according to σ, any vertex in U ′ \ U is reachable for the robber:

(U, r)→σ (U,U ′, r) ⇒ U ′ \ U ⊆ ReachG−U (r).

Notice that in the proof of Theorem 4.22 we start with a strategy for k cops for the cops and
single robber game so it is sufficient for us to have this normal form for cops’ strategies against
a single robber. Nevertheless, the normalform obviously holds for several robbers as well.

We have already mentioned prudent strategies for single robber in Section 4.1: A strategy
for the robber is prudent if he moves only to positions that would otherwise be unavailable
for him after the cops have landed. Formally, the moves (U,U ′, b)→ (U ′, b′) of the robber are
restricted by the requirement that b′ /∈ ReachG−U ′(b). The generalization to multiple splitting
robbers is straightforward: A strategy for the robber player for the cops and r splitting robbers
game is called prudent if for each move (U,U ′, R)→σ (U ′, R′) that is consistent with σ any new
robber b ∈ R′ \R is not reachable from R in G− U ′:

(U,U ′, R)→σ (U ′, R′) ⇒ (R′ \R) ∩ ReachG−U ′(R) = ∅.

Notice that, in particular, this restricts a robber b ∈ R to move only if at least one cop is placed
in the area that is reachable for him. However, even if this is the case, all emissaries of b must
go to positions that would be unavailable for b after the cops have landed. Intuitively it is quite
clear that this is not a serious restriction of the robbers: Moving from a vertex b to another
vertex b′ that is still reachable from b in G− U ′ can never be better for the robber because he
can still go from b to b′ in a later move. (While it might be possible that he cannot return from
b′ to b in a later move.)

Isolating strategies, on the other hand, are particular to games with multiple robbers. A
strategy for the robber player for the cops and r splitting robbers game is called isolating if
it splits robbers only into instances that are topologically incomparable. More precisely, for
any position →σ (U,R) that is consistent with σ, any two robbers from R are topologically
incomparable in G− U :

→σ (U,R) ⇒ For all b, b′ ∈ R : b′ /∈ ReachG−U (b).

In particular, b and b′ are not in the same strongly connected component of G − U . Again,
intuitively, it is quite clear that restricting the cops to isolating strategy does not restrict their
competitive capacity: If there are two robbers b, b′ ∈ R such that b′ ∈ ReachG−U (b) then in
fact, b′ is redundant because without the robber b′ the robbers still have the same scope. More
precisely, ReachG−U (R \ {b′}) = ReachG−U (R). So the robbers can simply remove b′ from the
graph and at a point where b and b′ would become topologically incomparable, they split b into
two copies that move to the appropriate positions.

It should be mentioned that both these normalforms are not a substantial contribution to
the proof of Theorem 4.22. In the proof we will see that, conceptually, it is rather easy to deal
with topologically comparable robbers as well as with non-prudent robbers, when designing
cops’ strategies. Technically, however, this makes it much more expensive to describe a winning
strategy, particularly in the proof of Theorem 4.22. Moreover, assuming that the robbers play
an isolating prudent strategy makes it easier to comprehend and analyze the dynamics in the
cops and splitting robber game.

Proposition 4.23. If k cops have a monotone strategy that is winning against all isolating
prudent strategies for r robbers then they have a monotone winning strategy against r robbers.
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Proof. Let σ be a monotone strategy for k cops that is winning against all isolating prudent
strategies for r robbers. We construct the strategy σ̃ for k cops by induction on the length of
histories

π = (U0, R0)(U0, U1, R1) . . . (Ul, Rl)

where it is the cops’ turn and at the same time, with each such history that is consistent with σ̃
we associate a history

ζ(π) = (U0, R̃0)(U0, U1, R̃1) . . . (Ul, R̃l)

such that the following conditions hold.
(1) ζ(π) is consistent with σ

(2) ζ(π) is consistent with some isolating prudent strategy for r robbers
(3) ReachG−Ul(Rl) ⊆ ReachG−Ul(R̃l)
(4) If π v ρ then ζ(π) v ζ(ρ)

First, with any history π = (∅, R) we associate the history ζ(π) = (∅,min∅(R)) where minU (R)
consists of the topologically minimal elements in R with respect to reachability in G− U , that
is,

minU (R) = {b ∈ R | there is no b′ ∈ R \ {b} with b ∈ ReachG−U (b′)}.

Now consider any history π = (U0, R0)(U0, U1, R1) . . . (Ul, Rl) that is consistent with σ̃ such
that ζ(π) is constructed and satisfies (1) - (4). We define Ul+1 = σ̃(π) := σ(ζ(π)).

Since σ is monotone, the move from (Ul, R̃l) to (Ul, Ul+1, R̃l) is monotone, that means, Ul \
Ul+1∩ReachG−Ul∩Ul+1(R̃l) = ∅. Moreover, due to (3), we have ReachG−Ul(Rl) ⊆ ReachG−Ul(R̃l),
so ReachG−Ul∩Ul+1(Rl) ⊆

ReachG−Ul∩Ul+1(ReachG−Ul(Rl)) ⊆ ReachG−Ul∩Ul+1(ReachG−Ul(R̃l)) ⊆

ReachG−Ul∩Ul+1(ReachG−Ul∩Ul+1(R̃l)) =

ReachG−Ul∩Ul+1(R̃l). Therefore, Ul \Ul+1 ∩ReachG−Ul∩Ul+1(R̃l) = ∅, so the move from (Ul, Rl)
to (Ul, Ul+1, Rl) is also monotone.

Now consider any possible next move of the robber from (Ul, Ul+1, Rl) to (Ul+1, Rl+1). First,
for any b′ ∈ Rl+1 ∩ ReachG−Ul+1(R̃l) choose some b ∈ R̃l such that b′ ∈ ReachG−Ul+1(b) and
let R consist of all these b. Moreover, let R′ := Rl+1 \ ReachG−Ul+1(R̃l) and let R̃l+1 :=
minUl+1(R ∪ R′). Obviously, |R̃l+1| ≤ |R ∪ R′| ≤ |Rl+1| ≤ r. Moreover, for each b ∈ R̃l+1,
either b ∈ R′ which implies b ∈ Rl+1 ⊆ ReachG−Ul∩Ul+1(Rl) \ Ul+1 and, as we have seen above,
ReachG−Ul∩Ul+1(Rl) ⊆ ReachG−Ul∩Ul+1(R̃l), so b ∈ ReachG−Ul∩Ul+1(R̃l)\Ul+1. Or b ∈ R which
implies b ∈ R̃l and ReachG−Ul+1(b) 6= ∅, so we have b ∈ ReachG−Ul∩Ul+1(R̃l) \ Ul+1 as well.
Hence, R̃l+1 ⊆ ReachG−Ul∩Ul+1(R̃l) \ Ul+1.

Therefore, going from (Ul, Ul+1, R̃l) to (Ul+1, R̃l+1) is a legal move for the robbers and with
ρ = π(Ul, Ul+1, Rl)(Ul+1, Rl+1) we associate ζ(ρ) = ζ(π)(Ul, Ul+1, R̃l)(Ul+1, R̃l+1). (1) and (4)
obviously hold by construction. Moreover, by definition, R ∪R′ does not contain any vertices
that are reachable from R̃l in G− Ul+1 and, additionally, R̃l+1 ⊆ R ∪R′ does not contain any
topologically comparable robbers. Hence, going from (Ul, Ul+1, R̃l) to (Ul+1, R̃l+1) is an isolating
prudent move for the robbers which demonstrates (2). Finally, Rl+1 ⊆ ReachG−Ul+1(R∪R′) and
thus ReachG−Ul+1(Rl+1) ⊆ ReachG−Ul+1(R∪R′) = ReachG−Ul+1(minUl+1(R∪R′)) which shows
that (3) holds as well. (Notice that, in general, whenever U = U ′, we have ReachG−U (W ) =
ReachG−U (minU ′(W )), while this is not necessarily the case if U 6= U ′.)

Now consider any play π = (U0, R0)(U0, U1, R0)(U1, R1) . . . that is consistent with σ̃. By
(4) we obtain a play ζ(π) = (U0, R̃0)(U0, U1, R̃0)(U1, R̃1) . . . which, by (1) and (2), is consistent
with σ and with also with some isolating prudent strategy for r robbers. Since σ is winning
against all isolating prudent strategies for r robbers, ζ(π) is won by the cops which means that
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it is finite and ends in a position (Ul, R̃l) with R̃l = ∅. Therefore, by (3), Rl = ∅, so π is won by
the cops as well. Since we have already shown that any move according to σ̃ is monotone and,
obviously, σ̃ uses at most k cops, the proof is done.

Notice that, to transform the strategy σ into a winning strategy σ̃, we did not use the
assumption of monotonicity. In fact, if we just skip monotonicity, the proof of Proposition 4.23
yields that if k cops have a strategy that is winning against all isolating prudent strategies for
r robbers, then k cops have a winning strategy against r robbers. Moreover, independently of
monotonicity, if σ is a positional strategy, then so is σ̃.

Also notice that, contrary to our announcement, Proposition 4.23 does not directly yield
a normal form for robbers’ strategies. Indeed, in the proof of Theorem 4.22, we start from a
monotone winning strategy for k cops against a single robber and we construct a monotone
strategy for k · r cops that is winning against all isolating prudent strategies for r robbers, so
Proposition 4.23 is more helpful in the stated form. Clearly, Proposition 4.23 would not be
harder to prove if it was formulated to yield a respective normal form for robbers’ strategies. But
then, to apply it in the proof of Theorem 4.22 we had to use determinacy. Since determinacy is
a rather intense property, we like to avoid it if it is not necessary.

Finally, it should be mentioned that, while prudent strategies are also sufficient for robbers
that cannot split, isolating strategies are obviously not: If a bunch of non-splitting robbers has
to use an isolating strategy on a graph that is strongly connected, then they have to start with
a single robber but since they cannot split, the robber will remain a lone wolf throughout the
game. Therefore, the cops just play their strategy against a single robber. Of course, one could
think of adaptions of the rules of the game in order to make isolating strategies non-trivial like,
for example, allowing the robbers to split, but once a robber is on the graph, he cannot be taken
away and as soon as he is captured, he cannot be re-used. This, however, will not be of any
further relevance to us.

4.4.2 Undirected Graphs and Non-Splitting Robbers
As we have mentioned, we approach the proof of Theorem 4.22 by considering the simpler
cases of undirected graphs and non-splitting robbers, respectively. While we discuss the case
of non-splitting robbers on directed graphs only briefly, we give a more detailed proof for the
case of splitting robbers on undirected graphs. The main scheme and some of the patterns and
constructs from the proof also form the foundation for the proof of Theorem 4.22. However,
there are certain essential properties of the concept of splitting robbers on directed graphs that
inhibit a direct adaption of the proof to the directed case. Likewise, it seems not possible to
transfer the proof for non-splitting robbers on directed graphs readily to the case of splitting
robbers. We will discuss these properties and outline how we solve the resulting problems in the
proof of Theorem 4.22.

Let G = (V,E) be an undirected graph and assume that k cops have a thrifty monotone
winning strategy σ against a single robber. The very basic idea to catch r splitting robbers
simultaneously (and monotonously) is as follows. We assume that the robbers play an isolating
prudent strategy. As long as there is only a single robber on G, we play according to σ. As
soon as the robbers split into several copies, they are topologically incomparable. But since
G is undirected, this also means that the areas available for the different robbers are pairwise
disjoint! So, as σ is thrifty, we can play against the individual robbers completely independently,
according to the given strategy σ. As soon as a robber b splits once again, the several emissaries
have to move in such a fashion that afterwards, they are completely separated in the current
graph as well. So we can continue to play the play that we have played so far against b, against
all these different robbers completely independently.

Proposition 4.24. dwr(G) ≤ r · dw(G) for any undirected graph G.
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Proof. Let σ be a thrifty monotone winning strategy for k cops against a single robber. We
construct a monotone strategy ⊗rσ that is winning against all isolating prudent strategies for
r robbers which is sufficient by Proposition 4.23. We define the strategy as a memory strategy

⊗rσ :M× (2V × 2V )→ 2V

which takes current memory state ζ and position (U,R) and yields a next set of vertices U ′ to
be occupied by cops. The memory states have the form

ζ = {ρ1, . . . , ρs}

with s ≤ r, where each ρj is a history in the k cops and single robber game on G that ends in a
cops’ position last(ρj) = (Wj , bj). During the construction, we maintain the following invariants
on the memory states and the corresponding positions, that means, we construct the strategy
⊗rσ and the memory update function δup in such a way, that for each memory state ζ and each
position (U,R) which are consistent with ⊗rσ and δup, the following conditions hold.
(Cons) Any history ρj is consistent with σ

(Robs) The bj are pairwise distinct and R = {b1, . . . , bs}
(Cops) U ⊇

⋃s
j=1Wj and |U | ≤ r · k

(Area) ReachG−U (bj) = ReachG−Wj (bj)
Notice that the property which allows us to actually play against the several robbers independently
is (Area): For robber bj the situation is just like he was alone on the graph and history ρj has
been played against him. Of course, he can split and spawn several copies, but in this case, all
these copies have to move in such a way that the robbers will be separated again afterwards.
Also notice that the inclusion ⊆ in (Area) is trivial by (Cops).

First, for any move⊥ → (∅, R) of the robbers to a set R = {b1, . . . , bs}, we set δup(⊥, (∅, R)) =
{(∅, b1), . . . , (∅, bs)}. (Remind that we consider plays here from a predetermined initial position
⊥ and we use ⊥ also as the unique initial memory state.) Now consider some position (U,R)
where it is the cops’ turn and some memory state ζ = {ρ1, . . . , ρl} such that all the invariants
hold. We define the next move of the cops in such a way, that they play only against robber
bs. We could, completely analogously, play against all robbers b1, . . . , bs simultaneously, but it
might help to picture the dynamics in the game more clearly if we play only against a single
robber at each time.

Let W ′s := σ(ρs). We define

U ′ = ⊗rσ(ζ, (U,R)) :=
s−1⋃
j=1

Wj ∪W ′s.

Using monotonicity of σ and (Area), we have

ReachG−U∩U ′(bs) ⊆ ReachG−Ws∩W ′s(bs) = ReachG−Ws
(bs) = ReachG−U (bs).

Moreover, since for any j < s we have Wj ⊆ U ∩ U ′ it follows by (Area) that

ReachG−U∩U ′(bj) ⊆ ReachG−Wj (bj) = ReachG−U (bj).

Therefore, the move (U,R)→ (U,U ′, R) is monotone.
Now consider any possible next move (U,U ′, R)→ (U ′, R′) of the robbers. Notice that since

the robbers use an isolating prudent strategy, for any j < s we either have bj ∈ R′ or there is no
b ∈ R′ with b ∈ ReachG−U∩U ′(bj), that means, the robber bj has either remained motionless
or he has been taken from the graph. As a consequence, any robber b ∈ R′ \ {b1, . . . , bs}
has been spawned from bs. We define the new memory state ζ ′ = δup(ζ, (U ′, R′)) as follows.
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Consider any robber b ∈ R′ \ {b1, . . . , bs−1}. Then b ∈ ReachG−U∩U ′(bs) ⊆ ReachG−Ws∩W ′s(bs),
so ρ = ρs(Ws,W

′
s, bs)(W ′s, b) is a history in the cops and single robber game on G and, by

construction, ρ is consistent with σ. The memory state ζ ′ is obtained from ζ by two operations.
First, we add such histories ρ extended in this way from ρs, such that all b ∈ R′ \ {1, . . . , s− 1}
are covered. Notice that the set of all these histories is empty if the robbers’ answer to the cops’
move is to simply remove bs from the graph without spawning any copies from it. (Which, in
particular, is the case if bs is captured.) Second, we delete, for any j ≤ s with bj /∈ R the history
ρj . Let

ζ ′ = {ρ′1, . . . , ρ′s′} with last(ρ′j) = (W ′j , b′j).

Now we have to show that all invariants hold. We have already seen that (Cons) holds for
all newly inserted histories and it holds by induction for all ρj with j < s that are still in ζ ′.
Moreover, (Robs) and (Cops) hold by definition of U ′ and ζ ′. To prove (Area), first consider
any bj with j < s and bj ∈ R′ and let bj belong to history number j′ in ζ ′. As the robbers play
an isolating strategy and G is undirected, we have ReachG−U (bj) ∩ReachG−U (bs) = ∅ and since
σ is thrifty, using (Area) we obtain U ′ \ U = W ′s \Ws ⊆ ReachG−Ws

(bs) = ReachG−U (bs),
so ReachG−U (bj) ∩ (U ′ \ U) = ∅. Hence, ReachG−U ′(bj) ⊇ ReachG−U (bj) = ReachG−Wj

(bj) =
ReachG−W ′

j′
(b′j′).

Now consider any robber b ∈ R′ \ {b1, . . . , bs−1} and let b belong to history number j
in ζ ′ and assume that there is some u ∈ U ′ ∩ ReachG−W ′

j
(b) = U ′ ∩ ReachG−W ′s(b). First

assume that u ∈ U . Due to monotonicity of σ we have ReachG−W ′s(b) ⊆ ReachG−Ws(bs), so
u ∈ U ∩ReachG−Ws(bs) which contradicts (Area). Therefore, u ∈ U ′ \U = W ′s \Ws and hence,
u ∈W ′s∩ReachG−W ′s(b) which also is a contradiction. We conclude that U ′∩ReachG−W ′s(b) = ∅
which yields that ReachG−W ′

j
(b′j) = ReachG−W ′s(b) ⊆ ReachG−U ′(b).

Since we obtain the maximum number r · k of cops that are used immediately from (Cops),
it only remains to show that ⊗rσ is actually winning for the cops. Consider any play π =
(U0, R0)(U0, U1, R1)(U1, R2) . . . that is consistent with ⊗rσ. It suffices to show that for all λ ∈ N
with Rλ 6= ∅, there is some γ > λ with ReachG−Uγ (Rγ) ( ReachG−Uλ(Rλ). If this is not the
case, then, since ⊗rσ is monotone, there is a λ ∈ N such that Rλ 6= ∅ and ReachG−Uγ (Rγ) =
ReachG−Uλ(Rλ) for all γ > λ. Since the robbers follow a prudent strategy, they do not move
after round λ, that is, Rγ = Rλ for all γ > λ. By (Robs) it follows that ζλ 6= ∅, where
ζλ = {ρ1, . . . , ρs} denotes the memory state at round λ. According to the definition of ⊗rσ
the cops play, in each round γ > λ, against the robber bs ∈ R according to σ. But since ⊗rσ
never places a cop inside ReachG−U (R) ⊇ ReachG−U (bs) after round λ, by (Area) it follows
that σ never places a cop inside ReachG−Ws

(bs). Therefore, the unique extension of ρs to the
σ-play where the robber makes himself comfortable on bs forever, is won by the robber – this
contradicts the premise that σ is a winning strategy.

It should be mentioned that the reason why the invariant (Cops) requires only ⊇ instead of
= is merely that, after a move of the cops, some of the histories ρj are deleted from ζ. However,
we cannot instantly take the corresponding cops in U away from the graph, because it is not
the cops’ turn. Instead, these cops will be taken from the graph during the next cops’ move
implicitly, where we define U only with respect to the histories that are still in ζ. Invariant
(Area) guarantees that no harm is done by this. Of course, there are other technical possibilities
to deal with this, but modifying (Cops) in this way seems to be the easiest. With regard to
the proof of Theorem 4.22, however, one should keep in mind that the intention behind (Cops)
is actually to have exactly the cops from the individual histories on the graph.

Let us discuss why the proof of Proposition 4.24 fails for directed graphs. We have already
highlighted the argument where we have actually used that G is undirected: We were able to
infer ReachG−U (bj) ∩ ReachG−U (bs) = ∅ for all j < s from the fact that the robbers use an
isolating strategy. So, as long as the strategy σ is thrifty, we can play against the robber bs
without placing any cops inside the reachability areas of other robbers. This is not the case
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of directed graphs! Even if any two robbers bj , bj′ are topologically incomparable, they may
share a common area that is reachable for them and the strategy σ may prescribe to place cops
inside this area against these robbers. Of course, these placements are made outside the strongly
connected component of bj in G−Wj but, as we have seen in Section 4.1, this is unavoidable in
general!

Now, the problem that arises here is the following: Assume we place cops against a robber
bj on vertices that are also reachable from another robber bj′ . When we continue to play
against bj according to the given winning strategy σ, then at some point, σ may prescribe to
take these cops from the graph away. Since σ is monotone, the robber bj will not be able to
cause nonmonotonicity at any of these vertices. However, σ does not guarantee that bj′ (which
corresponds to a different σ-play!) cannot cause nonmonotonicity. So, in the game against
multiple robbers, nonmonotonicity may occur if we follow σ strictly.

On the other hand, it might be possible that monotone winning strategies for the cops can be
turned into a normalform such that this problem does not occur. However, such a normalform
would be very similar to the one that we have mulled over after the proof of Proposition 4.16 and
as we have mentioned there, we do not any such normalform. The point here is that the multiple
robbers scenario allows us to tackle this problem at a level where the interferences are present
more directly. Before we show how this problem can be actually solved in this scenario, let us
consider the case of non-splitting robber which also helps to clarify the particular properties
and difficulties of the general case. However, the techniques used here will not be of much help
for the general case, so we give only a brief sketch of the proof.

Proposition 4.25. dwr(G) ≤ r · dw(G) for non-splitting robbers.

Proof. (Sketch) We proof this by induction on r, simultaneously for all graphs G. The case
r = 1 is trivial, so let r > 1 and let σ be a monotone winning strategy for dw(G) cops against a
single robber on G. As we have mentioned, we cannot assume that the robbers play an isolating
strategy but it helps to assume that σ depends only on the strongly connected component of
the robber instead of his precise position. Then we can treat all robbers that are in the same
strongly connected component of G− U as a single robber, that is, we assume that all those
robbers actually are on the same vertex. We describe a monotone winning strategy for r · dw(G)
cops against r non-splitting robbers on G.

We start as follows. Given a position (U,R) in the game, as long as all robbers are on the
same vertex u, we just play according to σ. Now assume that, at a position (U,R), some robbers
have separated and consider the topologically minimal vertex u in G− U that is occupied by a
robber. Moreover, let G̃ denote the strongly connected component of G− U with u ∈ G̃. Since
some robbers have split up, there are at most r − 1 robbers in G̃, so by induction hypothesis,
(r−1) ·dw(G̃) ≤ (r−1) ·dw(G) cops have a monotone winning strategy σ̃ against all the robbers
that are in G̃. We proceed as follows.

We play according to σ̃ on G̃ using at most r · k cops and while we do this, the at most k
cops that occupy the vertices in U stand idle. Since we have chosen G̃ as a topologically minimal
strongly connected component in G− U and, moreover, the robbers cannot split, no robbers
from outside G̃ will be able to reach G̃. So we can be sure that after a finite number of steps, G̃
will be conquered by the cops, that means, all robbers from G̃ are either captured or have left
the component and are now on vertices outside G̃. At this point, we simply remove all cops
except those on U from the graph. Notice that σ̃ is a winning strategy for the cops on G̃, so by
playing σ̃ on G̃ no cops are placed anywhere outside of G̃. Moreover, by topological minimality
of G̃ in G− U , taking all cops except those in U from the graph is a monotone move.

Now we continue to proceed as before: As long as all robbers are on the same vertex, we
play according to σ and as soon as they split up, we repeat the procedure above. It is obvious
that, in this way, finally all robbers are captured and as we have already seen, all moves are
monotone. Since we have used only r · k cops in total, the proof is completed.

In this case, it is rather obvious why the proof can not be readily adapted to the general
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case where the robbers can split: As soon as the robbers from outside G̃ are taken from the
graph and used to split up the robbers inside G̃ into r many robbers, we cannot continue to
play σ̃ on G̃ like this because it is a strategy against at most r − 1 robbers. On the other hand,
if we try to play on G̃ according to σ like before, then we run into the same problem that we
have described above: σ may prescribe to place cops on vertices outside of G̃ which may still be
reachable from robbers that are not in G̃.

4.4.3 General Case
Let G = (V,E) be a graph and let σ be a thrifty monotone winning strategy for k cops against
a single robber on G.29

We construct a monotone strategy 	rσ for r · k cops that is winning against all isolating
prudent strategies for r splitting robbers and then use Proposition 4.23. As in the proof of
Proposition 4.24, we describe 	rσ as a memory strategy

	rσ :M× (2V × 2V )→ 2V .

We first give a brief description of the proof. In particular, we introduce and explain the memory
states and the associated invariants that we will maintain, which follow the same scheme as in
the proof of Proposition 4.24 but are much less straightforward.

To catch r splitting robbers on G simultaneously and monotonously, we also apply the
concept of concurrent graph searching of which we have used different incarnations in the proofs
of Proposition 4.16 and Proposition 4.24. That means, we consider up to r different σ-histories
ρ1, . . . , ρs such that all robbers in R are covered by the robbers in these histories. So, we also
have the invariant (Cons):

(Cons) Any history ρi is consistent with σ.

Our previous applications of concurrent graph searching have been rather straightforward:
In Proposition 4.16 we just neglected monotonicity, while in the setting of Proposition 4.24,
the individual robbers where completely separated from each other so that no interferences did
occur. However, it is helpful to keep the basic scheme of the proof of Proposition 4.24 in mind.

Remind what the situation is like in the directed case: To guarantee monotonicity, we cannot
just follow the strategy σ directly in each play, because it is possible that we place cops against
a robber b on vertices that are also reachable from another robber b′. When we continue to
play against b according to σ, then at some point, σ may prescribe to take these cops from the
graph away. Since σ is monotone, b cannot cause nonmonotonicity but b′ may still be able to
reach these vertices. So, in the game against multiple robbers, nonmonotonicity may occur if we
follow σ strictly.

The leading idea of our solution is to omit placing cops on such vertices. Of course, it is
immediately clear that this will not work either, but we start from this basic approach and we
will refine it until it works. An obvious problem that occurs is the following: If we omit placing
certain cops against a robber, then this robber may cause nonmonotonicity by going through
these vertices because monotonicity of σ relies on the fact that these cops are placed. Moreover,
by going through one of these vertices where cops have been omitted, the robber may cause a
situation that is not consistent with σ. That means, the strategy σ will not have a good answer
to this situation, so we do not know how to use σ to go on in the game against r robbers.

The most important step towards solving these problems is to linearize the σ-histories
ρ1, . . . , ρs that we maintain, that means, we write the memory states as sequences ρ1, . . . , ρs
and we have an additional invariant (Lin):

(Lin) ρ1 @ ρ2 @ . . . @ ρs.

29Just to simplify the notation a little, we sometimes use σ as positional strategy. For the argumentation,
however, this is completely dispensable.
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We maintain this by, primarily, always playing against the robber bs from the latest history ρs
(which is now an important feature of the proof rather than a technical simplification) and we
place cops only on vertices that are not reachable from earlier robbers, that is, robbers from
earlier histories ρj with j < s. Therefore, by prudence, only robbers that are spawned from bs
will respond to such a move and we will ensure two properties:
(1) for any of these robbers that moves in such a way that his position is not consistent with

ρs, it is consistent with some earlier history ρi, i < s

(2) any vertex where bs could cause non-monotonicity due to cops that we have omitted, is
still occupied by a cop from some earlier history ρi, i < s

Notice that (2) is quite contrary to (Area) from the proof of Proposition 4.24: (Area)
guaranteed us that the area available to an individual robber is completely determined by the
cops from his own history, while condition (2) directly implies that this area will be restricted
by cops from other histories as well. It will be important, however, that this is only the case for
cops from earlier histories.

Since the assignment of the robbers from R to the histories ρ1, . . . , ρs is here not as canonical
as in the proof of Proposition 4.24 but has to be hand-picked, it is more convenient not to have
an individual history for each robber. Rather, for each i < s, we do not store the last move
of the robber in ρi and we associate with ρi a set Ri ⊆ R of robbers that can be consistently
attached to ρi. That means, for any b ∈ Ri, extending the history ρi by the move of the robber
to the vertex b still yields a σ-history. So we add the components Ri to the elements of the
memory states and maintain the following invariant:

(Robs) The sets Ri are pairwise disjoint and R =
s⋃
i=1

Ri.

Now, as to the relationship between the cops in the histories ρi and the cops U in the game
against r robbers, we have to be particularly careful. We have mentioned that we avoid to
place cops that are still reachable from earlier robbers, so we will not have U =

⋃s
i=1Wi but

rather U =
⋃s
i=1 Ui for sets Ui ⊆Wi, where Wi \ Ui are the vertices where we have omitted to

place cops. However, the set of exactly those vertices that are reachable from earlier robbers
is, in a sense, too dynamic: If certain robbers are taken from the graph, some vertices that
have been omitted previously might then not be reachable from earlier robbers anymore, in
which case they should be occupied by cops immediately. But placing these cops in such a
situation does not correspond to a σ-move in general, so if (later) robbers respond to this move,
their new position might not be consistent with any of our σ-histories. Instead, we add another
component to the elements of the memory states: For each i < s, we have a set Oi of vertices
that must be omitted due to the history ρi, and we will maintain two additional invariants
which, in particular, guarantee the properties (1) and (2) as formulated above. The invariant
for the cops’ vertices is now clear:

(Cops) U =
s⋃
i=1

(
Wi \Oi−1) where Oi =

i⋃
j=1

Oj .

So, a memory state is now a sequence

ζ = (ρ1, R1, O1), . . . , (ρs−1, Rs−1, Os−1), ρs.

where the ρi are as before, and Ri, Oi are sets of vertices of G. Clearly, for ρs we don’t have a set
Os and, moreover, as we pursue only one robber at a time, at most the robber bs is associated
with ρs. The invariants (Robs) and (Cops) establish the connection between what actually
happens on the graph while playing against r robbers and the σ-histories which we maintain in
the memory state. The technically most difficult part of the proof is now to define and maintain
appropriate invariants for the sets Oi.
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To see how the sets Oi will be defined, let us denote last(ρi) = (W−1
i ,Wi, bi), and assume

that a new history ρs+1 arises which we have to maintain, that means, we have played against
the latest robber bs according to σ and subsequently, bs has split into several copies Rs. Then
we store ρs and associate all but one of the new robber copies from Rs with ρs, which is clearly
consistently possible. The distinguished robber copy b ∈ Rs which we do not associate with ρs
is the one which we pursue further. The set Os of vertices which we attach to ρs is precisely the
set of vertices reachable by the robbers associated with ρs, but in the graph G−Ws. Essentially,
the reason is that the set Ws is less dynamic than the set U of vertices actually occupied by
cops in the game against r robbers, which makes it easier to handle the set Os.

Notice that, since σ is monotone, reachability in G −Ws is the same as if we added all
cops from earlier histories (which have also been placed in ρs previously due to (Lin), but have
already been taken from the graph). Moreover, when we add a new history due to robbers that
have split, it will always be the latest history, so there are no cops from later histories that
would have to be considered. This indicates that Os = ReachG−Ws

(Rs \ {b}) is not too bad a
choice. However, this set is still too dynamic to maintain equality in every move (for the reason
explained above). However, what we actually need here is that Rs \ {b} ⊆ Os and, moreover,
that Os is closed under reachability in G−Ws. Then, if a robber from Rs \ {b} leaves the set
Os, we can be sure that he uses a vertex that we have omitted due to an earlier history so that
the set Os =

⋃s
i=1Oi forms a trap for the robber in the (actual) graph G− U . This makes it

possible to guarantee condition (1) as formulated above. Hence, we use these as the constitutive
properties of the set Os and maintain them as invariant:

(Omit) For all i ∈ {1, . . . , s− 1}, Ri ⊆ Oi = ReachG−Wi(Oi).

Finally, to guarantee that any robber which we have associated with ρs is in fact consistent with
ρs, we add the following invariant:

(Ext) For all i ∈ {1, . . . , s− 1}, Oi ⊆ ReachG−W−1
i

(bi).

Now, assume that for some history ρi all the robbers from Ri associated with ρi move and
have to be associated with other histories, so there are no robbers left that can be consistently
associated with ρi, that is, Ri = ∅. In this case, if we would just continue playing against the
latest history, we might end up with more than r histories in total, because the robbers that
were previously in Ri may now be used to split the latest robber into several copies. Clearly, we
have to avoid this to be sure to keep to our budget of r · k cops.

Instead, in this case, we continue to play the history ρi, that means, we extend ρi to ρ̃i, by
the next move according to σ. To determine this move, we need the current history ρi and
the next vertex b̃i of the robber. Notice that b̃i is not necessarily occupied by a robber in the
game against r robbers, but the information about the next vertex b̃i of the robber can be
determined from the next history ρi+1: b̃i is the unique vertex such that there is a suffix of ρi+1
with ρi+1 = ρi(Wi, b̃i)η. Notice, on the other hand, that playing against a robber from Ri+1
which is associated with ρi+1 would not necessarily preserves linearity of the histories that we
maintain.

Clearly, to maintain (Omit) and (Ext), we have to update the set Oi. In particular, we have
to ensure, that it is still a subset of the area ReachG−Wi

(b̃i) available to b̃i in the graph G−Wi,
before the cops move to σ(Wi, b̃i). For this, we simply intersect the set Oi with ReachG−Wi

(b̃i)
and remove all vertices from σ(Wi, b̃i). In the more technical part of the proof we will see
that, since σ is monotone, this also guarantees that (Omit) holds again. Now, dependent on
the response of the robbers, afterwards there may be robbers associated with ρ̃i again. If not,
then we extend ρ̃i by another move, and so on, until some robbers are associated with the
current history or we reach the next history, that is, ρ̃i = ρi+1. In that case, (ρ̃i, ∅, Õi) and
(ρi+1, Ri+1, Oi+1) are merged. Again, the details of this will be presented in the technical proof.

It is helpful to notice the following: If we continue earlier histories ρi like we have just
described, then we possibly fill certain gaps, by which we mean that we place cops on vertices
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that have been omitted in later histories ρj , j > i. On the other hand, the update of Oi excludes
only vertices from σ(Wi, b̃i) and vertices not in σ(Wi, b̃i) which are also not reachable from
b̃i in G−Wi. But on those vertices, by monotonicity and thriftiness, no cop is placed in any
extension of ρi. So, all the gaps that can be filled in later histories, are filled while we continue
ρi. Therefore, when playing any history ρj , j ≤ s, we will never place cops on vertices that have
previously been omitted while playing ρj !

Altogether, it can be shown that by following this strategy (under the assumption that the
robbers use an isolating prudent strategy) all robbers are finally caught. Notice that in the
description above, we did not mention this assumption on the robbers’ strategy and in fact,
prudence is utilized only in the more technical part of the proof and is not essential for the
strategy 	rσ. On the other hand, the strategy 	rσ as given above relies on the assumption
that any two different robbers are topologically incomparable: If bs and a robber b from, say,
Rs−1 were topologically comparable, then any vertex that is reachable for bs would also be
reachable from b, so we would not place any cops against bs. (Notice, however, that this is
clearly just a matter of description of the strategy and not a conceptual issue, cf. the proof of
Proposition 4.23.)

Assuming an isolating strategy for the robbers guarantees that such a situation cannot occur.
However, since the sets Oi are not simply the sets of vertices that are reachable from earlier
robbers but just fulfill certain properties formulated as (Omit) and (Ext), we have to maintain
the appropriate property as an additional invariant. Conveniently, this one can be considered
separately, as it can be proved from the other invariants but is not further intertwined with
them.

(Progress) For i ∈ {2, . . . , s− 1}, Ri ∩Oi−1 = ∅ and bs /∈ Os−1.

Notice that since σ is winning, if the robber does not move, it will finally prescribe to place
a cop on the vertex currently occupied by the robber. (Progress) tells us that we will not omit
this cop-placement so, as long as the robbers use a prudent strategy, it guarantees progress of
the strategy 	rσ against r robbers.

Now we provide a technical proof of Theorem 4.22 that follows the description above. In
particular, we start from a thrifty monotone winning strategy σ for k cops against a single
robber and we construct a monotone strategy 	rσ for r · k cops that is winning against all
isolating prudent strategy for at most r splitting robbers. First, let us assemble all the invariants
that we have introduced above, along with some further notation that we need.

We define the memory strategy

	rσ : (2V × 2V )×M → 2V

with memory states
ζ = (ρ1, R1, O1), . . . , (ρs−1, Rs−1, Os−1), ρs

where ρs is a history of the cops and (single) robber game on G. Moreover, for i ∈ {1, . . . , s− 1},
ρi is a history of the cops and (single) robber game on G which ends in a robbers’ position and Ri,
Oi are subsets of V . We construct the strategy 	rσ and the memory such that, for any memory
state ζ = (ρ1, R1, O1), . . . , (ρs−1, Rs−1, Os−1), ρs and any position (U−1, U,R) (where U−1 = U ,
if (U−1, U,R) is a cops’ position) which are consistent with 	rσ, the following invariants hold.
To describe them, let

• last(ρi) = (W−1
i ,Wi, bi), for i ∈ {1, . . . , s− 1}

• last(ρs) ∈ {(Ws, bs), (W−1
s ,Ws, bs)}

• Xi =
⋃i
j=1Xj for X ∈ {O,W,U,R}

• Ui = Wi \Oi−1 for i ∈ {1, . . . , s}
• R>i =

⋃s−1
j=i+1Rj ∪ {bs} for i ∈ {1, . . . , s− 1}
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b ∈ Oiv

P

G− U i

P ′

G−Wj

w ∈ Oj

Figure 4.7: v ∈ ReachG−Wj
(Oj) implies v ∈ Oj by (Omit)

• Rs = {bs}, if bs ∈ R and Rs = ∅, else.

Invariants.

(Cons) Any history from ζ is consistent with σ.
(Lin) ρ1 @ ρ2 @ . . . @ ρs.
(Robs) The sets Ri are pairwise disjoint and R =

⋃s
i=1Ri.

(Cops) U =
⋃s
i=1 Ui.

(Omit) For all i ∈ {1, . . . , s− 1}, Ri ⊆ Oi = ReachG−Wi
(Oi).

(Ext) For all i ∈ {1, . . . , s− 1}, Oi ⊆ ReachG−W−1
i

(bi).

In addition to (Cops), our construction also relies on the property that, if (U−1, U,R) is a
cops’ position and bs ∈ R, then last(ρs) = (Ws, bs). However, this is merely a technical detail,
so we do not treat this as an invariant explicitly. It will always be clear from the construction
that this holds.

Basic Implications. We start with some properties that can be easily derived from the
invariants and which we will use frequently in the proof.

The first part of (Omit) together with (Cons) and (Ext) guarantees that each robber that is
associated with ρi is also consistent with ρi which is formulated more precisely in the following
lemma.

Lemma 4.26. For all b ∈ Ri, ρi · (Wi, b) is a σ-history.

Proof. By (Omit), b ∈ Oi so, by (Ext), b is reachable from bi in G−W−1
i and as ρi is a σ-history

according to (Cons), ρi · (Wi, b) is a σ-history as well.

Given the (simple but essential) property from Lemma 4.26, the following lemma can be
easily obtained from monotonicity of σ, using (Cons) and (Lin). It is important to observe this
as it ensures that the sets Wj of vertices occupied by cops according to earlier histories ρj , j < i
do not affect the set Oi.

Lemma 4.27. ReachG−Wi
(b) = ReachG−W i(b) for all b ∈ Ri.

Proof. Let b ∈ Ri and assume that ReachG−Wi
(b) ⊆ ReachG−W i(b) doe not hold. Then there

must be some vertex u ∈ W i−1 \Wi such that u ∈ ReachG−Wi
(b). Now for j ∈ {1, . . . , i− 1}

with u ∈Wj we have ρj @ ρi due to (Lin). Moreover, by Lemma 4.26, ρi · (Wi, bi) is consistent
with σ. But as ρj is consistent with σ as well due to (Cons), ReachG−Wi(b)∩Wj 6= ∅ contradicts
monotonicity of σ.
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The following lemma is one of the key arguments for monotonicity and can be derived from
(Omit) without using other invariants. We have already mentioned this very important idea in
the description above: (Omit) guarantees that Oi is closed under reachability in G−Wi. So,
when a robber is in Oi and leaves the set in the graph G− U i then he has to use a vertex that
we have omitted due to some earlier history, that is, a vertex from the set Oi−1. Hence, Oi is a
trap for the robbers in G− U i, and thus in G− U .

Lemma 4.28. ReachG−Ui(Oi) ⊆ Oi.

Proof. Let v ∈ ReachG−Ui(Oi) and let P be a path from some b ∈ Oi to v in the graph G−U i,
cf. Figure 4.7. If v ∈ ReachG−Wi

(Oi), by (Omit) we immediately have v ∈ Oi ⊆ Oi, so assume
that v /∈ ReachG−Wi

(Oi). Then there must be some vertex from Wi that lies on P and we
consider the minimal l ≤ i such that P ∩Wl 6= ∅ and some vertex w ∈ P ∩Wl. Since P is
a path in G − U i we have P ∩ U i = ∅, so we obtain w /∈ U i ⊇ Ul and, by definition of Ul,
this yields w ∈ Ol−1. (Notice that w ∈ Wl \ Ul yields l > 1!) Let j < l with w ∈ Oj . Due
to minimality of l we have P ∩Wj = ∅ and since w ∈ P , the vertex v is reachable from w
in G via some subpath P ′ ⊆ P . So v ∈ ReachG−Wj

(w) ⊆ ReachG−Wj
(Oj) and by (Omit),

ReachG−Wj
(Oj) = Oj ⊆ Oi.

Notice that with the same arguments we can show that ReachG−U (Os−1) = Os−1 which
demonstrates the following: If bs ∈ R, then clearly the robber bs may have vertices available in
G− U that do not belong to Os−1 but, as soon as he runs into Os−1, he is also trapped there.

Finally, the fact that the reachability area of a robber is not restricted by cops from later
robbers can be easily obtained from Lemma 4.28.

Lemma 4.29. ReachG−Ui(b) = ReachG−U (b) for all b ∈ Ri.

Initial Move. To simplify the first step a little, let us assume, that the graph G is strongly
connected, so the robbers do not split in the first move. That is, the first move is of the form
⊥ → (∅, {b}) for some b ∈ V and the associated memory state is ζ = (∅, b). All invariants are
obviously satisfied.

Now consider some game position (U,R) where it is the cops player’s turn and some memory
state ζ such that all invariants are satisfied. We will define the cops next move according to
(U,R) and ζ and then we consider any possible answer of the robbers just like in the proof of
Proposition 4.24. However, to disentangle the rather technical proof of the invariants, we make
a memory update after the cops move as well as after the robbers move and we prove that the
invariants hold in both cases separately.

Move of the Cops. In the following, we define the new set

U ′ = 	rσ((U,R), ζ)

of vertices occupied by cops and the new memory state

ζ ′ = (ρ′1, R′1, O′1), . . . , (ρ′s′−1, R
′
s′−1, O

′
s−1), ρ′s′ .

Case I: bs /∈ R
That means, the latest robber which we had chosen to play against has been either caught or
has returned to an earlier situation. Hence, if s = 1, all the robbers are caught and the cops
have won. Otherwise, we set U ′ = Us−1, that means we remove all the cops from the latest
history. For the memory update, we distinguish two cases:
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• Rs−1 = ∅:
ζ → ζ ′: delete ρs;

replace (ρs−1, Rs−1, Os−1) by ρs−1 · (Ws−1, bs).
Notice that Rs−1 = ∅ implies that ρs−1 could in fact also be deleted but to make the proof
of the invariants somewhat easier, we don’t delete several histories at the same time. So we
delete only ρs and we extend ρs−1 by (Ws−1, bs), adding information about a (consistent)
last robber’s move. After that, ρs−1 · (Ws−1, bs) is the new latest history and since the
robbers use a prudent strategy, they will not react to this cops’ move. So after the next
cops’ move, this history will also be deleted.

• Rs−1 6= ∅:
Choose some robber b ∈ Rs−1 and define

Õs−1 := ReachG−Ws−1(Rs−1 \ {b}).

ζ → ζ ′: replace (ρs−1, Rs−1, Os−1) by (ρs−1, Rs−1 \ {b}, Õs−1);
replace ρs by ρs−1 · (Ws−1, b).

So we select one of the robbers from Rs−1 that we want to pursue next and we extend the
history ρs−1 by this robbers’ move (Ws−1, b). Moreover, with the history ρs−1 we associate
the remaining Rs−1 \ {b}. Consequently, we also have to define a new set Os−1 which
should now contain only vertices reachable from the robbers in Rs−1 \ {b} (in the graph
G−Ws−1).

Case II: bs ∈ R.

Case II.1: There is some i ∈ {1, . . . , s− 1} such that Ri = ∅.
As explained in the description above, in this case we do not play against the latest robber, as
this might be critical to the total number of cops we use. Instead, we continue to play ρi, or
rather, to make the choice definite, the latest one of all histories which have no robbers associated
with them. For this, consider the next robbers’ move according to ρi+1 (notice that i < s) which
is given by the unique vertex b̃i such that there is a suffix η of ρi+1 with ρi+1 = ρi(Wi, b̃i)η.
Now we distinguish three more cases.

(a) ρi+1 = ρi · (Wi, b̃i) = ρs

We set U ′ := U and define the memory update as follows:
ζ → ζ ′: delete (ρi, Ri, Oi)
Since extending ρi by one move of the robber already yields the latest history and there
are no robbers associated with ρi = ρs−1, the history can be deleted. Notice that in this
case, Ws−1 = Ws.

Otherwise, we set
• W̃i := σ(Wi, b̃i) and
• U ′ :=

⋃
j 6=i Uj ∪ (W̃i \Oi−1).

So, in the game against r robbers we make the next move according to σ, given the history
ρi · (Wi, b̃i), but we omit all the vertices from Oi−1. Cops from other histories than ρi are left
unchanged. To define the memory update, we make the following definitions and distinguish
two other cases.

• Õi = (Oi ∩ ReachG−Wi
(b̃i)) \ W̃i and

• ρ̃i = ρi · (Wi, b̃i) · (Wi, W̃i, b̃i)

The update of the set Oi to Õi is as explained in the description above: only vertices which
are in the reachability area of b̃i in G−Wi represent robber positions which can be consistently
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associated with ρ̃i. Notice that if we associate certain robbers with the history ρ̃i then their
reachability area in G−W̃i is also a subset of ReachG−Wi

(b̃i) due to monotonicity of σ. Moreover,
the set Õi should clearly not prescribe to exclude vertices from placing cops that are already
occupied by cops according to ρ̃i, so we remove W̃i.

(b) ρ̃i 6= ρi+1.
ζ → ζ ′: Replace (ρi, Ri, Oi) by (ρ̃i, Ri, Õi)

(c) ρ̃i = ρi+1.
ζ → ζ ′: replace (ρi+1, Ri+1, Oi+1) by (ρi+1, Ri+1, Oi+1 ∪ Õi);

remove (ρi, Ri, Oi)
Clearly, if we reach the next history, then we do not maintain both histories further. So
we delete ρ̃i but we have to take into account the set Õi that ρ̃i brings along. (Clearly,
Õi 6⊆ Oi+1 in general due to different robbers which originally induced these sets.) So, we
join the sets to obtain the new set of vertices which ρi+1 now induces to be excluded from
placing cops.

Case II.2: For all i ∈ {1, . . . , s− 1} we have Ri 6= ∅.
We set

• W̃s = σ(Ws, bs) and
• U ′ :=

⋃
j<s Uj ∪ (W̃s \Os−1).

So, in the game against r robbers we make the next move according to σ, given the history
ρs, but we omit all the vertices from Os−1. Cops from other histories than ρs are left unchanged.
The memory update is defined as follows: ζ → ζ ′: replace ρs by ρs · (Ws, W̃s, bs)

Now we prove that the move of the cops from U to U ′ is monotone.

Lemma 4.30. (U \ U ′) ∩ ReachG−(U∩U ′)(R) = ∅.

Proof. First consider Case I. Then U ′ = Us−1 so, by (Cops), U \ U ′ ⊆ Us and Us−1 ⊆ U ∩ U ′.
Moreover, by (Robs), R =

⋃s−1
i=1 Ri. Therefore, by Lemma 4.28, we have ReachG−(U∩U ′)(R) ⊆

Os−1 and since Os−1 ∩ Us = ∅ this yields ReachG−(U∩U ′)(R) ∩ Us = ∅.
Now consider Case II.1. In Subcase (a) the cops don’t move, so the move is monotone.

Otherwise we have U ′ =
⋃
j 6=i Uj ∪ Ũi. Assume that this move is not monotone, that means,

there is some v ∈ U \U ′ with v ∈ ReachG−(U∩U ′)(R). Notice that, by definition of U ′ and (Cops),
v ∈ Ui \ Ũi. We distinguish, which robbers can reach v. Robbers from earlier histories than ρi,
that means, from the set Ri−1, are treated as in Case I: By (Cops) we have U i−1 ⊆ U ∩ U ′ so
using Lemma 4.28 we obtain ReachG−(U∩U ′)(Ri−1) ⊆ Oi−1 and since Oi−1 ∩ Ui = ∅ we have
v /∈ ReachG−(U∩U ′)(Ri−1). So, as Ri = ∅, we have v ∈ ReachG−(U∩U ′)(R>i), that means, some
robber from a later history than ρi is the villain.

Essentially, the argument for the robbers from R>i is the following: Due to (Lin) and (Cons),
robbers from R>i are associated with σ-histories which extend the history ρi. Hence, as σ is
monotone, b̃i can still reach the robbers from R>i. So if one of them could reach v, so could
bi, which contradicts monotonicity of σ. The tricky part is that for this last argument we have
to transfer reachability statements between the graphs G− U ∩ U ′ and G−Wi ∩ W̃i which is
similar as in the proof of Lemma 4.28, involving the sets Oj . Let us detail this a little.

First, we show that v /∈ ReachG−(Wi∩W̃i)(R
>i). For l ∈ {i+ 1, . . . , s} and b ∈ Rl, by (Lin)

and our case distinction, the history ρi · (Wi, b̃i) is a strict prefix of the history ρl · (Wl, b) (of
the history ρl, if l = s). Moreover, by Lemma 4.26, both these histories are consistent with
σ so, by monotonicity of σ, any robber b ∈ R>i is reachable from b̃i in G −Wi and hence in
G− (Wi ∩ W̃i). Therefore, if v ∈ ReachG−(Wi∩W̃i)(R

>i) then v ∈ ReachG−(Wi∩W̃i)(b̃i). But as
v ∈ Ui ⊆Wi this contradicts monotonicity of σ.
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Now consider some path P from R>i to the vertex v ∈ Ui \ Ũi in the graph G− (U ∩ U ′).
Since v /∈ ReachG−(Wi∩W̃i)(R

>i), there is a vertex from Wi ∩ W̃i that lies on P and we consider
the minimal l ≤ i with P ∩ Ŵl 6= ∅ where we set Ŵj = Wj for j < i and Ŵi = Wi ∩ W̃i,
likewise Ûj . Now let w ∈ P ∩ Ŵl. First, as w ∈ P we have w /∈ U ∩ U ′ so (Cops) and the
definition of U ′ yield w /∈ Ûl. Therefore, w ∈ Ŵl \ Ûl and, using the definition of Ul (Ũl, if
l = i), we obtain w ∈ Ol−1, that means, w ∈ Oj for some j < l. Due to the minimal choice of
l we have P ∩ Ŵj = P ∩Wj = ∅, so v is reachable from w in G −Wj via some path P ′ ⊆ P .
Moreover, using (Omit), ReachG−Wj (w) ⊆ ReachG−Wj (Oj) = Oj ⊆ Oi−1 but as Oi−1 ∩ Ui = ∅
this contradicts v ∈ Ui.

Finally, consider Case II.2. For robbers other than bs the same arguments as in Case I, using
(Robs) and Lemma 4.28, show that they cannot cause non-monotonicity. The argument for bs is
the same as in Case II.1.

Notice that condition (2) from the description above is guaranteed implicitly: The cops U i−1

from earlier histories guarantee that Oi−1 is, indeed, a trap for the robbers. If we removed cops
from Wi \ W̃i that are still in U i−1 from the graph as well then this would not necessarily be
the case and non-monotonicity could occur. In this sense, the cops from U i−1 guard the critical
vertices.

Now we turn to the invariants. We first give a separate lemma for (Robs), (Lin), (Cons) and
(Ext) which we prove rather briefly as they can be obtained easily from the induction hypothesis,
using the definition of the cops’ move.

Lemma 4.31. (Robs), (Lin), (Cons) and (Ext) are preserved by the cops’ move.

Proof. (Robs) follows by induction hypothesis. Moreover, (Lin) is obviously preserved in Case I,
Case II.1 (a) and (c) and in Case II.2. In Case II.1 (b) we have to show that ρ̃i @ ρi+1. First
notice that ρi · (Wi, b̃i) @ ρi+1 as ρi+1 = ρi · (Wi, b̃i)η. Furthermore, first(η) = (Wi, W̃i, b̃i) as
ρi+1 is consistent with σ according to (Cons) and W̃i = σ(Wi, b̃i). Hence, ρ̃i @ ρi+1.

For (Cons), first consider Case I. If Rs−1 = ∅, then ρ′s′ = ρs−1 · (Ws−1, bs) and we have
last(ρs) ∈ {(W−1

s ,Ws, bs), (Ws, bs)} and ρs−1 @ ρs and due to (Cons) both are σ-histories.
Since σ is monotone, bs is reachable from bs−1 in G− (W−1

s−1 ∩Ws−1), so ρs−1 · (Ws−1, bs) is a
σ-history as well. If Rs−1 6= ∅ then ρs−1 · (Ws−1, b) is consistent with σ for any b ∈ Rs−1 due to
Lemma 4.26. In Case II.1 (a) and (b), (Cons) follows by induction hypothesis. In Case II.1 (b),
(Cons) follows from (Lin) as ρ′s′ = ρs is consistent with σ and ρ̃i @ ρs. Finally, in Case II.2, ρs
is consistent with σ due to (Cons) and W ′s = σ(Ws, bs), so ρ′s′ = ρ′s is also a σ-history.

To prove (Ext) first notice that in Case I, if Rs−1 = ∅ (Ext) follows by induction hypoth-
esis. Moreover, if Rs−1 6= ∅, then we have s′ = s and, by Lemma 4.26, for any b′ ∈ Rs−1
the history ρs−1(Ws−1, b

′) is consistent with σ which is monotone. So ReachG−Ws−1(b′) ⊆
ReachG−W−1

s−1
(bs−1) for all b′ ∈ Rs−1 and therefore, O′s−1 = Õs−1 = ReachG−Ws−1(Rs−1) ⊆

ReachG−W−1
s−1

(bs−1). In Case II, (Ext) follows easily from the induction hypothesis. (Notice
that in Case II.1(c) we have Wi = W−1

i+1 and b̃i = bi+1.)

For the remaining two invariants (Omit) and (Cops) we have two separate lemmata. The
most interesting cases in the proofs are Case II.1(b) and Case II.1(c). The crucial point here is
the new set Õi. First, we have to show that this set is closed under reachability in the graph
G− W̃i which is illustrated in Figure 4.8. Moreover, as we have mentioned in the description
above, we have to show that all gaps that can be filled in later histories ρj , j > i, according to
the new set Õi ⊆ Oi are already filled in the cops’ move by which we extend the history ρi. (So
that, when playing a history ρj , j ≤ s, we will never place cops on vertices that have previously
been omitted while playing ρj .)

Lemma 4.32. (Omit) is preserved by the cops’ move.
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u ∈ Õib̃i

G−Wi

v Wi \ W̃i

G− W̃i

 : σ monotone

Figure 4.8: Õi is closed under reachability in G− W̃i

Proof. In Case I, if Rs−1 = ∅, (Omit) follows by induction hypothesis, so let Rs−1 6= ∅. By
definition, s′ = s, W ′s−1 = Ws−1 and O′s−1 = Õs−1 = ReachG−Ws−1(Rs−1 \ {b}), so O′s−1 is
closed under reachability in G−Ws−1. Moreover, by (Omit), Rs−1 ⊆ ReachG−Ws−1(Os−1). In
particular, Rs−1∩Ws−1 = ∅ which directly yields Rs−1\{b} ⊆ ReachG−Ws−1(Rs−1\{b}) = O′s−1.

Now consider Case II.1. In Case (a), (Omit) follows by induction hypothesis. In Case (b),
R′i = Ri = ∅ ⊆ O′i, so we have to show O′i = ReachG−W ′

i
(O′i). Since O′i = Õi and Õi ∩ W̃i = ∅,

we clearly have Õi ⊆ ReachG−W̃i
(Õi). The crucial point is now to show that Õi is closed under

reachability in G− W̃i which relies on monotonicity of σ: Essentially, Õi is the intersection of
two sets which are closed under reachability in G −Wi (removing vertices from W̃i does not
affect reachability in G− W̃i) and moving the cops from Wi to W̃i is the next move of σ against
the robber b̃i which is monotone. Let us be a bit more precise.

Let v ∈ ReachG−W̃i
(Õi). In particular, v /∈ W̃i. Now let u ∈ Õi ⊆ Oi such that v is

reachable from u in G − W̃i. By definition of Õi we have u ∈ ReachG−Wi(b̃i), so there is a
path P from b̃i to v via u in G − (Wi ∩ W̃i), cf. Figure 4.8. By (Cons), ρi is consistent with
σ and W̃i = σ(Wi, b̃i) so, by monotonicity of σ, P is also a path in G −Wi. (Notice that
Wi ∩ P ⊆ ReachG−Wi∩W̃i

(b̃i).) Therefore, v ∈ ReachG−Wi
(u) which yields v ∈ ReachG−Wi

(Oi)
and v ∈ ReachG−Wi(b̃i). Moreover, by (Omit), we have ReachG−Wi(Oi) = Oi, so v ∈ Oi ∩
ReachG−Wi

(b̃i) and as v /∈ W̃i we obtain v ∈ Õi.
In Case (c), by (Omit), we have R′i = Ri+1 ⊆ Oi+1 ⊆ O′i. Moreover, as in Case (b), Õi

is closed under reachability in G − W̃i and as ρ̃i = ρi+1 we have W̃i = Wi+1 = W ′i . By
(Omit), Oi+1 is closed under reachability in G−Wi+1, so the union Oi+1 ∪ Õi is closed under
reachability in G −Wi+1 = G −W ′i as well. Finally, in Case II.2, (Omit) follows again by
induction hypothesis.

Lemma 4.33. (Cops) is preserved by the cops’ move.

Proof. We have to show that U ′ =
⋃s′
j=1 U

′
j . (Recall that U ′j = W ′j \ (Oj−1)′.) In Case I,

Case II.1 (a) and Case II.2, this can easily be proved using the induction hypothesis and the
definition of U ′. (Notice that in Case II.1 (a) we have Us ⊆ Us−1.) Now consider Case II (b).
Then s′ = s and O′j = Oj for j 6= i and O′i = Õi ⊆ Oi, so Uj ⊆ U ′j for j ≥ i. Moreover,
W ′j = Wj for j < i which implies U ′j = Uj for j < i. Hence, U ′ ⊆

⋃s
j=1 U

′
j and it remains to

show U ′ ⊇
⋃s
j=1 U

′
j .

So assume that there is some v ∈ (
⋃s
j=1 U

′
j) \ U ′. Since U ′i ⊆ U ′ there is some j > i with

v ∈ U ′j and as v /∈ U ′ ⊇ Uj we have v ∈Wj \ (Oj−1)′ but v ∈ Oj−1. Since O′l = Ol for l 6= i this
yields v ∈ Oi \O′i = Oi \ Õi and so v ∈ W̃i or v /∈ ReachG−Wi

(b̃i). Moreover, v /∈ U ′ ⊇ W̃i \Oi−1

and as v /∈ (Oj−1)′ ⊇ Oi−1 it follows that v /∈ W̃i, so v /∈ ReachG−Wi
(b̃i).

Now let ρ = ρ̂(W−1,W, b) be the shortest prefix of ρj such that v ∈ W . Notice that such
a prefix exists because v ∈ Wj . Due to (Cons), ρ̃i and ρ are both consistent with σ which is
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monotone, so since v /∈ W̃i we have ρ̃i @ ρ. Having this and the fact that v /∈ ReachG−Wi
(b̃i),

monotonicity of σ also yields v /∈ ReachG−W−1(b). But this is a contradiction to the fact that σ
is thrifty.

Finally, in Case (c), we have s′ = s− 1 as we delete the i-th element of ζ, that is, we have
a shift of indices. Accounting for this, (Cops) can be proved with the same arguments as in
Case (b).

Now, before we consider the robbers’ next move we make a preparation: Any robber that is
still in some set O′i after their move can be consistently associated with some history due to
(Ext). On the other hand, there may also be robbers that are not in any set O′i afterwards, and
the only way to capture them is to assign them to the latest history. However, for this to be
consistently possible, we need that any such robber is in ReachG−Ws(bs), so we have to show
ReachG−U (R)\ReachG−Ws(bs) ⊆ (Os′−1)′∪U ′. (Notice that ReachG−U (R) = ReachG−U∩U ′(R)
as the move U → U ′ is monotone.)

Notice that in fact we need this property only for Cases II.1(a), II.1(b) and II.2 of the cops
move: In the other cases, we don’t place any additional cops on the graph so by prudence, the
robbers will not move. So in the proof we consider only these cases but since in the other cases
we have ReachG−U (R) = ReachG−U ′(R), it is easy to see that the property holds in all cases.

The reason why we prove this before we consider the next move of the robbers is that this
property involves only objects that we already have at hand and is completely independent
of the actual move that the robbers perform. Moreover, it helps to clear the picture of the
dynamics of the possible robbers’ moves.

Clearly, ReachG−U (R) \ ReachG−Ws(bs) ⊆ Os−1 can be shown with the usual arguments as
in Lemma 4.28 and Lemma 4.30. The more elaborate part is to show that this inclusion also
survives the update of the sets Oi that we have performed (while we consider reachability in the
graph G−U before the cops’ move). So what we really have to make sure is that in Case II.1(b)
and (c) of the cops’ move, no robber that moves into the set Oi in the graph G−U slips away,
that means, any such robber is also in Õi.

Lemma 4.34. ReachG−U (R) \ ReachG−Ws
(bs) ⊆ (Os′−1)′ ∪ U ′.

Proof. Let d ∈ ReachG−U (b)\ReachG−Ws(bs) for some b ∈ R and let l ≤ s with b ∈ Rl according
to (Robs). If d ∈ U ′ then we’re done, so assume d /∈ U ′. Now let P be a path from b to d in
G−U . First, from Lemma 4.28 it follows that if l < s then d ∈ Ol. If, on the other hand, b = bs
then d is reachable from bs in G−U but not in G−Ws, so P goes through Os−1 and Os−1 is a
trap for the robbers in G− U , as usual. Let j ≤ min{l, s− 1} be minimal such that d ∈ Oj .

To show that d is also in (Os′−1)′ we distinguish the moves that the cops may have made. As
we have mentioned, we consider only the Cases II.1(b) and (c) and II.2. Moreover, if Oj = O′j ,
which in particular holds in Case II.2, then d ∈ O′j ⊆ (Os′−1). Now assume that Oj 6= O′j , so we
are in Case II.1(b) or (c). By definition, for all m < i, we have Om = O′m, so j ≥ i. Moreover,
for all m > i, Om = O′m (Case (b)) or Om ⊆ O′m−1 (Case (c)), so either d ∈ (Os′−1)′ or j ≤ i.
The remaining case is j = i. Notice that this implies j < l as either l = s and j ≤ s− 1 or l < s
and j ≤ l and since Rj = Ri = ∅ and b ∈ Rl 6= ∅ we have j 6= l. We now show that d ∈ Õj
which implies d ∈ (Os′−1)′ by definition of (Os′−1)′.

By definition, Õj = (Oj ∩ReachG−Wj
(b̃j)) \ W̃j . Now, since d /∈ U ′, if d ∈ W̃j then d ∈ Oj−1

which contradicts the minimality of j. Hence, d /∈ W̃j and it remains to prove d ∈ ReachG−Wj (b̃j).
Essentially, the reason is as follows. As i = j < l, the robber b ∈ Rl has reacted to the move by
which we have extended the earlier history ρi @ ρl and since σ is monotone, this was possible
only using vertices from Ol−1. However, due to the choice of j, b did not use vertices from Oj−1,
so b can reach vertex d in the graph G −Wj . Therefore, b̃j can reach vertex d in the graph
G−Wj as well, cf. Figure 4.9. We give some more details.

First notice that since j < l, due to (Lin) we have ρ̃j v ρl. So as, according to (Cons),
both histories are consistent with σ, which is monotone, bl is reachable from b̃j in G −Wj .
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d ∈ Oj b ∈ Rl

blb̃j

G−Wj

P

G−Wj

G−Wj

O j−1

 : j minimal

Figure 4.9: If i = j < l, the robber b̃j can still reach d in the graph G−Wj via b.

Now, if l < s then, by (Ext), b ∈ Rl is reachable from bl in G−W−1
l . So, by σ-consistency of

ρj v ρl and monotonicity of σ, b is reachable from bl in G−Wj . If, on the other hand, l = s,
then b = bs = bl, so b ∈ ReachG−Wj

(bl) is trivial. Moreover, by (Cops) Uj ⊆ U , so vertex d

is reachable from b in G − Uj via P . Hence, if d is not reachable from b̃j in G −Wj , there
is some vertex from Oj−1 on the path P which contradicts the minimality of j. Therefore,
d ∈ ReachG−Wj (b̃j).

Notice that the reasoning in the last part of the proof works only as long as j < l because
this yields ρ̃j v ρl. If j = l, that is, b ∈ Rl = Rj = Ri 6= ∅ then we do not necessarily have
ρ̃j v ρl, so d /∈ ReachG−Wj (b̃j) is possible. Hence, if we continue to play histories (other than
the latest one) that have still robbers assigned to them, we might let some robbers slip away!

Move of the Robbers. Now let (U−1, U,R) be a position where it is the robbers’ turn and let

ζ =
(
(ρ1, R1, O1), . . . , (ρs−1, Rs−1, Os−1), ρs

)
be the current memory state such that all invariants are satisfied.

Notice that after the move of the cops as described above, from U to U ′, and the memory
update, from ζ to ζ ′ we make a renaming (U,U ′, R) =: (U−1, U,R) and ζ ′ =: ζ. This helps to
partially encapsulate the previous work and focus on the invariants as formulated for (U−1, U,R)
and ζ. Nevertheless, we will be needing the memory state before the move of the cops, which we
denote by ζ:

ζ = ((ρ1, R1, O1), . . . , (ρs−1, Rs−1, Os−1), ρs)
This is necessary, in particular, to be able to apply Lemma 4.34.

Now consider any possible response R→ R′ of the robbers, that is, R′ is the set of vertices
occupied by robbers after their move. If R′ = R we do not update the memory. This happens
in particular in Case I and Case II.1 (a) of the cops’ move: there, we do not place additional
cops on the graph so, by prudence, R′ = R. We neglect these cases. So in the following, assume
that R′ 6= R. Notice that, in particular, we have bs ∈ R.

We assign every robber from R′ to some unique history ρi, i = 1, . . . , s which yields, for any
i ∈ {1, . . . , s} the new set R̃i. So consider some robber b ∈ R′. If b ∈ Os−1 then let

i = min{j ∈ {1, . . . , s− 1} | b ∈ Oj}

and assign b to ρi. Otherwise, assign b to ρs.
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The reason why we assign a robber b to the minimal history ρi such that b ∈ Oi is that
otherwise the strategy ⊗rf would not necessarily be winning: If a robber b ∈ Oi ∩Oi−1 becomes
the latest robber then we play against this robber according to the strategy σ, but we omit
vertices from Oi−1. Hence, when σ prescribes to place a cop on b, we omit this move, so we
would never catch b if he just stands idle.

The crucial point about the memory update after the move of the robbers is that our
assignment of robbers to histories is meaningful in the sense that a robber which has been
assigned to a certain history is also consistent with this history according to f . For the robbers
assigned to histories ρi with i < s this follows easily from the fact that R̃i ⊆ Oi, similar as in
Lemma 4.26. For the robbers in R̃s, however, we need Lemma 4.34 which yields that each such
robbers can be reached from bs = bs in the graph G−W s so that prolonging the longest history
by a move from bs to some robber from R̃s yields again a σ-history.

Now we define the new memory state

ζ ′ = ((ρ′1, R′1, O′1), . . . , (ρ′s′−1, R
′
s′−1, O

′
s′−1), ρ′s′).

For the update we distinguish certain cases according to the number of robbers that have
been assigned to ρs and according to whether the last position of ρs is a cops’ or a robbers’
position. First, to simplify the case distinction, we prove that if the cops did not play against
the latest robber in their last move then at most the robber bs (which is then identical to bs) is
associated with ρs. For this, we use prudence.

Lemma 4.35. If ρs ends with a cops’ position then R̃s ⊆ {bs}.

Proof. Assume that ρs ends with a cops’ position, that means, ρs = ρ̂s(Ws, bs). So the last
move of the cops was not as in Case II.2 and hence (as we neglect Case I and Case II.1 (a))
Ws = W s. So, by Lemma 4.34, R̃s ⊆ ReachG−W s

(bs) = ReachG−Ws(bs) and by Lemma 4.27 we
have ReachG−Ws

(bs) = ReachG−W s(bs). Therefore, R̃s ⊆ ReachG−W s(bs) ⊆ ReachG−U (bs) and
since bs ∈ R, R̃s 6⊆ {bs} contradicts the assumption that the robbers use a prudent strategy.

Now we need to distinguish only two cases: Either, the cops have played against the latest
robber bs in their last move and |R̃s| ≥ 1 (so at least one robber from R′ can still be consistently
associated with ρs). Or this is not the case, that is, either the cops have not played against the
latest robber or they have played against him and he has either been caught or he has returned
to an earlier situation. However, these remaining cases can be treated identically.

Case 1: ρs ends with a robbers’ position and |R̃s| ≥ 1.
So the cops have played against the latest robber bs in their last move and he has split into
several copies. (Notice that in the proof of Lemma 4.34 we have seen that each robber b ∈ R′
that is spawned from a robber in Rs−1 is in Os−1.)
We choose some b ∈ R̃s, define Õs = ReachG−Ws

(R̃s \ {b}) and set

ζ ′ =
(
(ρ1, R̃1, O1), . . . , (ρs−1, R̃s−1, Os−1), (ρs, R̃s \ {b}, Õs), ρs · (Ws, b)

)
.

Notice that this memory update is analog to Case I of the cops’ move (where Rs−1 6= ∅):
We choose one of the robbers b ∈ R̃s to be the new latest one which is pursued further, and we
add a new history which extends ρs by the robbers’ move from bs to b. Moreover, with ρs we
associate the remaining robbers and we define a new set O′s′−1 which contains the area available
for the robbers R̃s \ {b} in G−Ws. (Notice that if |R̃s| = 1 then R̃s \ {b} = ∅ and O′s = ∅, so
in fact, ρs does not have to be maintained anymore. However, this will be taken care of during
the next move of the cops.)

Case 2: ρs ends with a position of the cop player or |R̃s| = 0.
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So, either the cops have not played against the latest robber in their last move or they have,
and he has either been caught or he has returned to an earlier situation. In the first case,
Lemma 4.35 tells us that R̃s ⊆ {bs} and bs is accounted for in ρs. If, in the other case, the
greatest robber has returned to an earlier situation then he is accounted for there and if he is
caught, then he is clearly also accounted for. Therefore, we simply define

ζ ′ =
(
(ρ1, R̃1, O1), . . . , (ρs−1, R̃s−1, Os−1), ρs

)
.

Now we prove that after the move of the robbers, all invariants that we have formulated still
hold. As we have already mentioned, the crucial point about the memory update after the
robbers’ move is that the assignment of robbers to histories is meaningful, that means, that
invariants (Ext) (in Case 1 for the s− 1-th element of ζ ′, in particular) and (Cons) (in Case 1
and Case 2 for the s-th element of ζ ′, in particular) still hold. However, the main argument for
this is given in Lemma 4.34 so we shall be quite brief.

Lemma 4.36. All invariants are preserved by the robbers’ move.

Proof. (Robs), (Lin) and (Cops) are obvious. To prove (Omit), first notice that for i =
1, . . . , s − 1 ≥ s′ − 2, we have O′i = Oi and ρ′i = ρi, so for O′1, . . . , Os′−2 closeness under
reachability in G−W ′i follows directly from (Omit) for ζ. Moreover, R′i = R̃i ⊆ Oi = O′i holds
by definition of the sets R̃i for i = 1, . . . , s− 1. In particular, in Case 2 there is nothing to show,
so consider Case 1. There we have s′ = s + 1 and O′s′−1 = O′s = Õs = ReachG−Ws

(R̃s \ {b})
so O′s is obviously closed under reachability in G−Ws = G−W ′s′−1. It remains to show that
R′s′−1 ⊆ O′s′−1. For this, notice that Ws ∩ (R̃s \ {b}) = ∅: If v ∈ Ws ∩ (R̃s \ {b}) then v /∈ U
so, according to (Cops), v /∈ Us and hence v ∈ Os−1 which contradicts v ∈ R̃s. Therefore,
R′s′−1 = R̃s \ {b} ⊆ Õs = O′s′−1.

Now we show (Ext). First, by (Ext) for ζ we have Oi ⊆ ReachG−W−1
i

(bi) for all i = 1, . . . , s−1
and as O′i = Oi and ρ′i = ρi for i = 1, . . . , s− 1, (Ext) follows for ζ ′ for i = 1, . . . , s− 1 ≥ s′ − 2.
In particular, in Case 2, there is nothing to show, so consider Case 1. There we have ρ′s′−1 = ρs
and W−1

s = W s and bs = bs. So, since R̃s ⊆ ReachG−U−1(R)\ (Os−1∪U) holds by construction
of R̃s, Lemma 4.34 yields

R̃s ⊆ ReachG−W s
(bs) = ReachG−W−1

s
(bs).

Moreover, by definition, O′s′−1 = Õs = ReachG−Ws(R̃s \ {b}). So, if v ∈ O′s′−1, then v is
reachable from some b̂ ∈ R̃s \ {b} in G−Ws and as R̃s ⊆ ReachG−W−1

s
(bs), b̂ is reachable from

bs in G−W−1
s . Thus, v is reachable from bs in G− (W−1

s ∩Ws) and as ρs = ρ̂(W−1
s ,Ws, bs) is

consistent with σ by (Cons) for ζ and σ is monotone, we have v ∈ ReachG−W−1
s

(bs).
Finally, for (Cons), Case 2 is obvious. For Case 1, as ρs is consistent with σ by (Cons), it

suffices to show that b ∈ ReachG−W−1
s

(bs). As before, from R̃s ⊆ ReachG−U−1(R) \ (Os−1 ∪ U)
and Lemma 4.34 we obtain R̃s ⊆ ReachG−W s

(bs) and since bs = bs and W s = W−1
s , this follows

from b ∈ R̃s.

Showdown. Finally, we show that 	rσ uses in fact at most r · k cops and that, by playing
according to 	rσ, the cops finally capture all robbers. We have seen that 	rσ is a monotone
strategy, so this concludes the proof of Theorem 4.22.

To show that 	rσ uses at most r · k cops, first notice that by (Cops), the number of cops is
bounded by |

⋃s
i=1 Ui|. Moreover, by definition of Ui we have |

⋃s
i=1 Ui| ≤ |

⋃s
i=1Wi| and due to

(Cons), all Wi have size at most k. It remains to show that there are always at most r distinct
sets Wi.
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Lemma 4.37. For all (U,R) and ζ which are consistent with 	rσ we have |ζ| ≤ r + 1 and if
|ζ| = r + 1 then Ws−1 = Ws.

Proof. We denote by ζ the memory state before the cops’ move and by ζ → ζ ′ → ζ ′′ we denote
the subsequent updates. We prove that if |ζ| = r + 1 then |ρs−1| = |ρs| − 1 which implies
Ws−1 = Ws. First notice that |ζ ′| ≤ |ζ| and |ζ ′′| ≤ |ζ ′|+ 1. Now, if |ζ| ≤ r and |ζ ′′| = r+ 1 then
we are in Case 1 of the robbers’ move and, by construction, we have |ρ′′s′′−1| = |ρ′′s′′ | − 1.

Now let |ζ| = r+ 1 and assume |ρs−1| = |ρs| − 1. In Case I of the cops’ move, we either have
Rs−1 = ∅ and |ζ ′| = r or Rs−1 6= ∅ and |ρ′s′−1| = |ρ′s′ | − 1. Moreover, since we do not place any
additional cops on the graph, the robbers do not move which yields ζ ′′ = ζ ′, so |ζ ′′| = r as well.

Now consider Case II of the cops’ move. As |R| ≤ r, from (Robs) it follows that Ri = ∅
for some i ∈ {1, . . . , s − 1} which implies that we are actually in Case II.1 of the cops’ move.
Moreover, if i = s − 1 then due to |ρs−1| = |ρs| − 1, extending ρi = ρs−1 by a move of the
robber yields ρs, so we are in Case II.1(a). There we have |ζ ′| = r and since we do not place any
additional cops on the graph, the robbers do not move which yields ζ ′′ = ζ ′, so |ζ ′′| = r as well.
Finally, assume that i < s− 1, so we are in Case II.1(b) or Case II.1(c) of the cops move. In
Case II.1(c) we have |ζ ′| = r and since, by Lemma 4.35, Case 1 of the robbers’ move is always
preceded by Case II.2 of the cops’ move, we are in Case 2 of the robbers’ move. Hence, |ζ ′′| = r
as well. In Case II.1(b), we have |ζ ′| = r + 1 and since i < s− 1 we also have |ρ′s′−1| = |ρ′s′ | − 1.
Again, by Lemma 4.35, we are in Case 2 of the robbers’ move which yields |ζ ′′| = r + 1 and
|ρ′′s′′−1| = |ρ′′s′′ | − 1.

To prove that 	rσ is winning, we use the following additional invariant.

(Progress) For i ∈ {2, . . . , s− 1}, Ri ∩Oi−1 = ∅ and bs /∈ Os−1.

As we have mentioned in the description above, since σ is winning, if the robber does not move,
σ will finally prescribe to place a cop on the vertex currently occupied by the robber. (Progress)
tells us that we will not omit this cop-placement so, as long as the robbers use a prudent strategy,
it guarantees progress of the strategy 	rσ against r robbers. Clearly, we also have to maintain
this same property also for all earlier histories since, if at some point bs is either caught or
returns to an earlier situation, one of the robbers associated with a history ρi for some i < s
becomes the latest one.

We prove (Progress) separately, because it only uses the other invariants but is not further
intertwined with them. Basically, (Progress) follows from the assumption that the robbers use
an isolating strategy. However, as the sets Oi are defined with respect to reachability in the
graphs G−Wi, we have to transfer this from G− U to the graphs G−Wi as usual.

Lemma 4.38. (Progress) is preserved by the cops’ move and the robbers’ move.

Proof. First consider the situation after the cops’ move. In Case I we have R′j = Rj and
Oj = O′j for j = 1, . . . , s− 2 and hence, R′j ∩ (Oj−1)′ = ∅ follows by (Progress) for ζ. Moreover,
if Rs−1 = ∅, then s′ = s − 1, so b′s′ = bs and Os

′−1 = Os−2 we which yields b′s′ /∈ (Os′−1)′ by
(Progress) for ζ.

If , on the other hand, Rs−1 6= ∅ then s′ = s and R′s−1 ⊆ Rs, so R′s−1 ∩ (Os−2)′ = ∅ and
b′s = b /∈ (Os−2)′ follows directly from (Os−2)′ = Os−2 and (Progress) for ζ. It remains to
show that b /∈ O′s−1 = Õs−1. Since the robbers use an isolating strategy, b /∈ ReachG−U (R′s−1)
and since Us ⊆ Us−1 we have U = Us−1. Moreover, Us−1 ⊆ W s−1 so ReachG−U (R′s−1) ⊇
ReachG−W s−1(R′s−1). Now, Lemma 4.27 yields ReachG−W s−1(R′s−1) = ReachG−Ws−1(R′s−1), so
b /∈ ReachG−Ws−1(R′s−1) = Õs−1. In Case II, (Progress) for ζ ′ follows easily from (Progress) for
ζ using the definition of the memory update. (Recall that Õi ⊆ Oi.)

Now consider the situation after the robbers’ move. In Case 2, (Progress) holds by the
minimal choice in the construction of the sets R̃i = R′i for i = 1, . . . , s. Moreover, in Case 1,
R′i ∩ (Oi−1)′ = ∅ holds for i = 1, . . . , s′ − 1 by construction of the sets R′i as well and b /∈
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(Os′−2)′ = Os−1 holds by construction of R̃s. It remains to show that b /∈ O′s′−1 = Õs. This
follows as in Case I of the robbers’ move, using Lemma 4.27 and the fact that the robbers play
an isolating strategy. (Notice that Õs = ReachG−Ws

(R̃s \ {b}) and U = Us.)

Lemma 4.39. 	rσ is winning.

Proof. We proceed similar as in the proof of Proposition 4.24, using monotonicity of 	rσ.
However, we have to take into account that the cops’ move is subdivided into several cases and
that (Area) is not available. Instead, we have (Progress).

Consider any 	rσ-play π = (U0, R0)(U0, U1, R1)(U1, R2) . . .. It suffices to show that for all
λ ∈ N with Rλ 6= ∅, there is some γ > λ such that ReachG−Uγ (Rγ) ( ReachG−Uλ(Rλ). If
this is not the case, then, since 	rσ is monotone, there is a λ ∈ N such that Rλ 6= ∅ and
ReachG−Uγ (Rγ) = ReachG−Uλ(Rλ) for all γ > λ. Since the robbers follow a prudent strategy,
they do not move after round λ, that is, Rγ = Rλ =: R for all γ > λ. By (Robs) it follows that
ζλ 6= ∅, where ζλ denotes the memory state at round λ.

First, there is some ξ ≥ λ such that in all rounds λ ≤ ν ≤ ξ, Case I or Case II.1 of the
cops’ move eventuates, while after round ξ, the cops’ move is always according to Case II.2. To
see this, notice that, as long as bs /∈ R or Ri = ∅ for some i, Case I or Case II.1 eventuates.
Moreover, in Case I, either the number s of histories in ζ or |Rs−1| decreases. and in Case II.1,
histories that are shorter than ρs are extended (which increases their length), or deleted if they
reach the next history (which decreases s). Since the robbers’ don’t move anymore, as long
as Case I or Case II.1 eventuates, none of the values s, |ρs| and |Rs−1| will increase, so the
existence of such a ξ follows.

So, in any round ν > ξ, we are in Case II.2 of the cops’ move where the cops play against the
robber bs = bs(ξ) ∈ R according to σ. Now consider the unique extension of ρs = ρs(ξ) to the
σ-play ρ where the robber just makes himself comfortable on bs. In any round ν > ξ, the strategy
	rσ does not place a cop inside ReachG−U(ν)(bs) and we have bs ∈ R ⊆ ReachG−U(ν)(R) and,
by (Progress), bs /∈ Os−1(ν) = Os−1(ξ). So, by definition of U(ν + 1), σ does not place a cop on
the vertex bs during ρ which yields that ρ is won by the robber – this contradicts the premise
that σ is a winning strategy.
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Chapter 5

Locally Decomposable
Specifications

In [80], it has been shown that an architecture is decidable for regular specifications if, and only
if, it does not contain an information fork. This gives a comprehensive yet simple criterion for
decidability that is just based on the graph structure of the architecture. Moreover, it shows
that the decidability of pipelines for regular specifications as proved in [171] is, essentially, the
best we can do for arbitrary regular specifications: Any architecture that does not contain
an information fork can be reduced to a pipeline by certain technical manipulations of the
architecture (and the given specification) [80].

However, although there are interesting problems that are based on pipeline architectures,
pipelines are rather simple and it would be desirable to be able to model scenarios that involve
more complicated communication structures, cf. [129]. As the result from [80] shows, for this we
have to restrict the specifications somehow. One possibility would be to restrict the expressive
power beneath regular specifications. On the other hand, most practical applications involve
at least safety and/or reachability specifications and, as it turns out, the undecidability result
from [80] does hold for safety conditions. In [94], external specifications have been considered
which relate only the external inputs and the external outputs of the system but do not involve
the internal communication channels. Clearly, this is a natural and relevant special case of the
general controller problem for distributed systems and it has been shown, that for this kind of
specifications, a larger class of architectures is decidable.

Although the specifications in [94] can talk only about a subset of all channels, they can
involve an arbitrary amount of information that the controllers cannot observe. Contrary to
this, we are interested in restricting the extent to which specifications may involve facts that the
controllers cannot observe. In Section 2.2.3, we have defined the concept of local specifications.
Local specifications address, indeed, only facts that all controllers can observe. However, as we
have already pointed out there, in a seriously distributed system, there are no such facts, so local
specifications are trivial for distributed systems. In [137], locally decomposable specifications have
been considered, which we have also defined in Section 2.2.3. Recall that locally decomposable
specifications can be decomposed into a collection of local specifications for the individual
controllers.

In [137], a complete characterization of the decidable architectures has been obtained as well,
but restricted to acyclic architectures: An acyclic architecture is decidable for locally decompos-
able regular specifications if, and only if, any connected component is a subarchitecture of a
two-flanked pipeline. We extend this characterization to architectures which may contain cycles1

1Notice that in the sense of our definition of an architecture, this means arbitrary architectures. However, as
we have mentioned in Section 2.1.3, our architectures still have certain shortcomings like no broadcast channels
and at least one output channel for each controller.
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and to specifications which are regular or context-free. Similar as in [80, 137], we characterize
the decidable architectures primarily along the complexity of information flow between the
processes, that means, structural patterns in the architecture. We do not, however, restrict the
possible architectures a priori. So, throughout this Chapter we consider distributed systems
with an arbitrary number of controllers and with (up to) context-free locally decomposable
specifications.

Notice that for not necessarily locally decomposable context-free specifications, Theorem 3.20
completely settles the controller problem: We have shown that even for DCR-1 specifications and
any nontrivial extension of the single controller system D1, the problem is not even recursively
enumerable. Moreover, it was already known that D1 is undecidable for nondeterministic context-
free specifications [81] and decidable for deterministic context-free specifications [219, 128].

For locally decomposable specifications it is important to notice the following difference
between the regular case and the context-free case: In Section 2.2.3 we have already noted
that if a specification is locally decomposable then a decomposition into local specifications
can be obtained by projection. Since regular languages are closed under projection, for a given
regular specification it is decidable whether it is locally decomposable and a decomposition into
a collection of local regular specifications can be computed.

For context-free specifications the situation is more involved. Although at least (a very
special) one of our decidable cases is extendable to nondeterministic context-free specifications,
the undecidability of D1 for these specifications shows that, in general, they are way too
expressive. So what we are really interested in are deterministic context-free specifications which
are not closed under projection. However, this is a language theoretic issue while our focus is on
the influence of the complexity of information flow in the system on decidability. So what we
do here is, we assume that a locally decomposable context-free specification L brings along a
decomposition L = (L1, . . . , Ln) into local specifications2, one for each controller, where each Li
is deterministic context-free. Of course, constraining some of the Li to be regular may have a
great influence on decidability and we will incorporate this into our characterization as well.

We prove the characterization in three steps. In Section 5.1 we start with basic decidability
results. We first review the solution from [137] (Section 5.1.1), in particular, the concept of
communication languages and their representation as trees. Moreover, we discuss the particular
problem that arises in the context of locally decomposable specifications when the architectures
may have cycles (Section 5.1.2) and we show how cycles can be partially removed in this case.
More precisely, we show that feedback channels (cf. Section 2.1.3) can be effectively removed from
any given architecture by a procedure that preserves local decomposability of the specifications.
After that, we have two basic decidable cases left: First, we show that pipelines are decidable
if each process p1, . . . , pn−1 has a regular specification (and only pn may have a deterministic
context-free one.) Moreover we show that a two flanked pipeline with backward channels is
decidable for regular specifications if it has only two controllers.

Section 5.2 provides matching undecidability results. In particular, we show that any pipeline
where some processes pi with 1 ≤ i ≤ n − 1 has a deterministic context-free specification is
undecidable and any two-flanked pipeline with more than two processes and some backward
channel from the last process is already undecidable for regular specifications. Moreover, any
architecture with two connected processes that have a deterministic context-free specification is
undecidable. In Section 5.3 we put these results together to get a complete characterization
of all decidable cases. In Section 5.4 we discuss the issue of synthesizing strategies, using the
methods that we have developed.

This chapter is based on [86].

2In fact, in [137] this was assumed as well but it didn’t make a real difference there.
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5.1 Decidability
Before we start developing algorithms for the decidable cases we like to comment on the solution
that we present here. As we have already mentioned in the introduction to this chapter, we
will demonstrate how to effectively remove backward channels from pipelines and (at least
partially) from two-flanked pipelines in the context of locally decomposable specifications. Using
this procedure we can reduce the controller problem for (two-flanked) pipelines with feedback
channels to the problem for (two-flanked) pipelines without any feedback channels. For regular
specifications, we can then directly apply the methods developed in [137]. The two remaining
cases will be solved in Section 5.1.3.

On the other hand, the solution presented in [86] is more complicated. In fact, it was
the authors’ belief then, that in the realm of locally decomposable specifications, feedback
channels could not be eliminated so easily. We discuss the particular problems with feedback
channels in the context of locally decomposable specifications (that have led to this belief) in
Section 5.1.2. Here, we present only the easier solution that proceeds by removing feedback
channels. Nevertheless, the solution presented in [86] yields a more direct and coherent method
for solving the controller problem for locally decomposable specification in the presence feedback
channels. In particular, this method may be interesting when it comes to actually synthesize
controllers. We discuss this issue in Section 5.4.

Throughout this section, let
Dn,p = (A, (Σc)c∈C)

be a pipeline with n + 1 processes. W.l.o.g. we assume that from a process pi, i < n, there
is exactly one channel to process pi+1. Additionally, each process pi has an external output
channel. There are no other channels in the architecture A. Notice that hidden channels from the
environment do not make any difference here because the specification is locally decomposable,
so we just ditch it.

We denote A = (C, r, w) as follows.
• C = {c0} ∪ {ci, ci,e | i = 1, . . . , n− 1} ∪ {cn,e}
• w(ci) = pi and r(ci) = pi+1

• w(ci,e) = pi and r(ci,e) = p0

We also assume that Σc = B for all c ∈ C and for a controller pi let us denote
• Σi :=

∏
c∈Opi∩Ipi+1

Σc

• Σ≥iout := Σ≥pi(=
∏n
j=i Σpjout)

Notice that Σout = Σ≥1
out. Moreover, let Dn,p2 be the corresponding two-flanked pipeline that is

obtained from Dn,p by adding a channel c0n from p0 to pn.

5.1.1 Communication Languages and Trees
The abstract reason why the controller problem for locally decomposable specifications L =
(L1, . . . , Ln) is easier to solve is that any joint strategy σ = (σ1, . . . , σn) that is composed of
local winning strategies for the individual processes is in fact a joint winning strategy for the
grand coalition. On the other hand, not any joint winning strategy is actually composed of local
winning strategies which is why the problem is still non-trivial, cf. Section 2.2.3.

However, to verify that a given joint strategy σ is winning, we can proceed more locally than
in the case of arbitrary specifications: Consider any controller i ∈ {1, . . . , n} and assume that
i receives its inputs from processes i1, . . . , ik. Then, essentially, it suffices to check that σi is
locally winning on Liin, where Liin ⊆ (Σiin)ω represents the possible inputs that pi might receive
from i1, . . . , ik, according to their local strategies. Such a language is called a communication
language as it represents sequences of signals which can be sent along certain communication
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channels in the given architecture. Of course, to determine Liin we need, in turn, the possible
inputs that i1, . . . , ik might receive from other processes. Likewise, the possible outputs of pi
have to be propagated to other processes. In general, this makes the problem still very difficult
and, as we will see, in most cases even undecidable.

Nevertheless, in [137], Madhusudan and Thiagarajan exploited this general concept to
show decidability of the controller problem for two-flanked pipelines in the case of locally
decomposable regular specifications, which is undecidable in general. In the following we
describe their approach.3 First, let us discuss why the approach described in Section 3.2.1
for plain pipelines fails in this case: Recall the solution for Dn,p that we have described in
Section 3.2.1: The first tree automaton A1 that we have constructed there checks, for a given
Σout-labeled Σ0-tree t : Σ∗0 → Σout, that the extended strategy σ≥1 for p1 which t represents is
winning. Then we check, iteratively, whether σ≥1 is composed of local strategies of the individual
controllers. As we have seen, for pipelines this approach goes smoothly, but for two-flanked
pipeline it fails: Since pn has an additional external input, an extended strategy for p1 cannot
include the decisions of pn. But then we have no assembly point where we could check that the
joint strategy for the grand coalition meets the whole global specification.

For local specifications, on the other hand, we don’t need such an assembly point. Instead,
the concept described above suggests the following approach: We compute, iteratively, sets of
output languages Liout ⊆ Σωi for the controllers pi such that each such Liout is possible according
to an input language Liin = Li−1

out (that we already have) and some local winning strategy σi of
process i. Recall that Σi is the alphabet that labels the channel from pi to pi+1. In particular,
Σn = ∅. The tricky point arises again in the last step, where we have to deal with controller pn:
Due to the additional input channel c0n, the language Lnin does not contain the whole input of
process pn. However, we also know the language of possible inputs via c0n which is simply Σωc0n ,
so we can proceed as follows: We check that there exists a language Lnin with Lnin = Ln−1

out for
some Ln−1

out and such that there is a strategy for pn that is locally winning on Lnin × Σωc0n .
The first important step towards a technical realization of this idea is now to represent the

communication languages Liin = Li−1
out adequately. Notice that we need to compute, for each

controller i, a set of such languages Liout and we need to check, for each such language, that there
exists a local winning strategy for pi that generates it over some given language Li−1

out . So, a
representation by ω-automata is inept. Instead, in [137], the representation of a communication
language as a tree has been used: Given an alphabet Σ, a B-labeled Σ-tree t represents the
ω-language

Lω(t) = {α ∈ Σω | t(α <k) = > for all k ∈ N}.

The corresponding language of finite words is L∗(t) = {u ∈ Σ∗ | t(u) = >}.
Now if such a tree t represents in fact a communication language, then the >-labeled nodes

of t form a nonempty subtree of t, containing the root of t, that is, t has the following properties:
(C1) t(ε) = >
(C2) if t(u) = ⊥, then t(ua) = ⊥ for all a ∈ Σ
(C3) if t(u) = >, then t(ua) = > for some a ∈ Σ

We call B-labeled Σ-trees which have the properties (C1) - (C3) communication trees over Σ
and we denote the set of all such trees by Tc(Σ). Notice that for any t ∈ Tc(Σ) we have

L∗(t) = {u ∈ Σ∗ |u v α for some α ∈ Lω(t)}.

That means, the corresponding language L∗(t) of finite words as defined above is precisely the
set of all finite prefixes of elements from Lω(t) which is not true in general if t /∈ Tc(Σ).

Proposition 5.1. For any alphabet Σ, Tc(Σ) is a regular tree language which can be recognized
by a deterministic safety tree automaton.

3A full technical exposition can be found in [135].
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Therefore, we can assume that all tree languages that we deal with are relativized to Tc(Σ)
so we consider as input trees only communication trees.

Now, using this concept of communication trees, the controller problem for Dn,p2 with locally
decomposable regular specifications can be solved as follows. We start with the controller p1.
Clearly, the input language of p1 is Σω01, so we don’t need to actually represent possible input
languages for p1 as communication trees. To represent the possible output languages we build
an alternating parity tree automaton A1 which runs over trees t ∈ Tc(Σ1) and checks that there
is some strategy σ1 for p1 that is locally winning on Σω

01 such that σω1 (Σω
01) ⊆ Lω(t). Recall

that, for Lin ⊆ Σω01,
σω1 (Lin) = {σω1 (α) |α ∈ Lin}.

Notice that we have stipulated merely σω(Σω01) ⊆ Lω(t) instead of equality. In fact, it seems
hard to design an automata solution that would facilitate equality at this point, cf. [137]. This
will become more apparent in the more technical description of the construction given below.
However, inclusion is enough: If the remaining processes p2, . . . , pn can handle Lω(t) as input
language then clearly they can handle any subset of Lω(t) as well.4 In particular, they can
handle σω(Lin), so it is no problem if we propagate any superset of σω(Lin) as well.

To see how A1 works, let us start at the root of t. The automaton nondeterministically
guesses an element (a, b) ∈ Σp1

out = Σ1 × Σ1,e which is the action chosen by p1 in the first step
according to the strategy σ that A1 is guessing. Then the automaton universally branches over
all elements c1, . . . , cr ∈ Σ01 (r = |Σ01|), which are the possible signals sent by p0 to p1 in the
first step, and proceeds to copies (↓a, c1), . . . , (↓a, cr). Now, being at any node (u,w) ∈ Σ∗1×Σ∗01
of the run, A1 first checks whether t(u) = ⊥. If this is the case then u /∈ L∗(t), to u should not
have been chosen as output of σ1 according to t. Therefore, A1 immediately rejects. Otherwise,
the automaton proceeds as before: It guesses an element (a, b) ∈ Σp1

out, branches universally over
all cj , and proceeds to copies (↓a, c1), . . . , (↓a, cr). So it guesses, for each possible input cj that
p1 might have received in this step, an answer of σ.

Additionally, A1 has to check the local specification L1 ⊆ Σ01 × Σp1
out. This is done by

simulating a deterministic parity automaton S1 with L(S1) = L1 during the run as usual. It is
not hard to see that L(A1) is as described above.

Now, in the next step it gets more involved because there, we also have to incorporate the
possible output languages of p1 that L(A1) represents. So we have to construct a tree automaton
A2 that runs over trees t ∈ Tc(Σ2) and checks that there is some strategy σ2 for p2 that is
locally winning on some language Lω(s) with s ∈ L(A1) such that σω2 (Lω(s)) ⊆ Lω(t). So, as
before, the automaton A2 has to simulate a deterministic parity automaton S2 with L(S2) = L2
and, additionally, A2 has to guess a tree s ∈ Tc(Σ1) and simulate the automaton A1 on s.

This is done as follows: A2 keeps track of the current state q of A1 and of the current label
ζ ∈ {⊥,>} of the tree s that A2 guesses. We start with the initial state qin of A1 and the label
ζ = >. Now, in any node (u,w) ∈ Σ∗2 × Σ∗1 of the run, A2 checks whether t(u) = ⊥ as before
and if this is the case, it immediately rejects. If not then A2 guesses some (a, b) ∈ Σ2 × Σ2,e as
before and, additionally, A2 guesses a subset X ⊆ Σ1 of possible signals from p1 and a transition
ϕ of A1 according to q and ζ. Moreover, if ζ = >, we have to require X 6= ∅.

Then, as before, A2 branches over all c1, . . . , cr ∈ Σ1 and proceeds to copies (↓a, c1), . . . , (↓a
, cr). Any such copy (↓a, cj) is equipped with a pair (p, ξ) where (↓cj , p) ∈ ϕ and ξ = > if cj ∈ X
and ξ = ⊥ if cj /∈ X. So, the next state of A1 is chosen according to (q, ζ) and then the choice
of successors of the current node in s that are labeled with > according to X is propagated to
the successor nodes in the run. Clearly, once we are in a situation where ζ = ⊥ we must restrain
the choice of X to X = ∅. Additionally, we have to take care of the fact that the simulation of
the specification automaton S2 must not proceed to copies (↓a, cj) with cj /∈ X because these
inputs are not possible according to s.

4Notice, however, that this kind of reasoning strongly relies on the fact that we consider linear time
specifications.
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Notice that before we construct A2, we turn A1 into a nondeterministic parity tree automaton.
The reason is similar as in Section 3.2.1: A run of A1 does not only contain information about
the signals from p1 but also about the particular signals from p0 to which they correspond.
Now, a strategy for p2 must not depend on these particular signals and turning A1 into a
nondeterministic automaton hides this information from p2.

The main argument for the correctness of this construction is that, in any run ρ of A2 on
some tree t ∈ Tc(Σ2) and for any w ∈ Σ∗1, there is exactly one node (u,w) in ρ that corresponds
to w (which, in fact, follows easily from the definition of A2). Moreover, any such node carries a
label ζ ∈ {⊥,>} so from ρ we can indeed extract a B-labeled Σ1-tree s and it is not hard to see
that s satisfies (C1) - (C3), so s ∈ Tc(Σ1). Moreover, since we have simulated A1 on s it follows
that s ∈ L(A1). So, from the Σ2-components of the nodes of ρ and the Σ2,e-actions that A2 has
guessed during the run, we obtain a strategy σ2 for p2 that is locally winning on Lω(s) such
that σω2 (Lω(s)) ⊆ Lω(t).

Notice that A2 has to verify two separate parity conditions at the same time, so we use a
Muller condition for A2 and afterwards, turn A2 into an equivalent nondeterministic parity tree
automata.

Now, up to process pn−1 we proceed by induction. To see what we’ve got after this, we
have to define the delay-composition σi| . . . |σj of a collection (σi, . . . , σj) of local strategies for
controllers pi � . . . � pj with i < j in some distributed system D. We do this by induction
on j − i. First, we set σi| . . . |σi = σi. Now let j − i ≥ 2 and let u ∈ (Σpisig)∗. We define

• σi| . . . |σj(ε) = σj(ε)
• σi| . . . |σj(u) = σj(PrΣ

pj
sig

((σi| . . . |σj−1)∗(u−1))) for u 6= ε.

So, intuitively, given an input u ∈ (Σpi
sig)∗, the word (σi| . . . |σj−1)∗(u) is what process j

actually gets to see of u, but starting only after i− 1 steps of routing.

Proposition 5.2. If α ∈ (ΣD)ω is a global system run which is consistent with σi, . . . , σj then
(σi| . . . |σj)(PrΣpisig

(α<k)) = σj(PrΣ
pj
sig

(α<k)) for all k ∈ N.

Using the delay-composition we can formulate the properties of the alternating parity tree
automaton An−1 over trees t ∈ Tc(Σn−1) that we have obtained in the last induction step: An−1
accepts such a tree t if, and only if, there exist local strategies σ1, . . . , σn−1 such that:
(1) σ1| . . . |σn−1 generates a language Ln−1

out ⊆ Lω(t) over Σω01

(2) Each strategy σi is locally winning on the language Liin ⊆ Σωi−1 generated by σ1| . . . |σi−1
over Σω01

However, due to the additional inputs that pn receives from p0, in the last step, we cannot
go on like this: Consider an automaton which runs over trees t ∈ Tc(Σn) that represent output
languages of pn (which now contain only external outputs). The automaton would have to check
that there exists a strategy σn for pn that is locally winning on Lω(s)× Σω0n for some language
Lω(s) with s ∈ L(An−1) such that σωn−1(Lω(s)) ⊆ Lω(t). To do so, the automaton needs to
guess the tree s and simultaneously incorporate the possible (in this case all) signals from Σ0n.
But this may cause interferences: An could guess the sets X ⊆ Σn−1 of possible signals from
pn−1 in dependence of the signals that pn has received from p0 which is, of course, fatal.

Instead, we proceed as follows: We construct an automaton An over trees t ∈ Tc(Σn−1) that
represent possible input languages for pn. Then we have to incorporate only the inputs from
p0n that pn receives via c0n. More precisely, given an input tree t ∈ Tc(Σn−1), An works as
follows. At the root of t, An nondeterministically guesses an action b ∈ Σpn

out = Σn,e. Then,
An universally branches over all (a1, c1), . . . , (ar, cs) ∈ Σn−1 × Σ0,n (r = |Σn−1|, s = |Σ0,n|)
and proceeds to copies (↓a1 , c1), . . . , (↓ar , cs). At the same time, An simulates a deterministic
parity automaton Sn with L(Sn) = Ln on the branches of the run. Now, being in any node
(u,w) ∈ Σ∗n−1 × Σ∗0,n of the run, if t(u) = ⊥ then An stops simulating Sn on this branch and
goes to some accepting state. The reason is that t(u) = ⊥ means that u /∈ L∗(t), so input u
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will not be generated by any collection of strategies σ1, . . . , σn−1 for p1, . . . , pn that correspond
to t according to (1) and (2) as above. The important point is that now these possible inputs
are not guessed by An but determined by the tree t so they will not depend on the additional
inputs that pn receives from p0.

So we have t ∈ L(An) if, and only if, there is a strategy σn for pn that is locally winning on
Lω(t)× Σω0,n. Therefore, t ∈ L(An−1) ∩ L(An) if, and only if, there are strategies σ1, . . . , σn−1
for p1, . . . , pn−1 such that (1) and (2) hold and there is a strategy σn for pn that is locally
winning on Ln−1

out × Σω
0,n. Since emptiness of L(An−1) ∩ L(An) is decidable, the desired result

follows.

Theorem 5.3. [137] The controller problem for Dn,p2 is decidable for locally decomposable
regular specifications.

To characterize the decidable acyclic architectures for locally decomposable regular specifi-
cations this result is the only serious extension of the known decidability results for arbitrary
regular specifications that one needs. Having this and the matching undecidability results [137],
one can show the following:

Theorem 5.4. [137] An acyclic architecture is decidable for locally decomposable regular specifi-
cations if, and only if, any connected component is a subarchitecture of a pipeline or a two-flanked
pipeline.

We extend this result to cyclic architectures and to locally decomposable specifications that
are composed of a collection of deterministic context-free specifications. For this, we need two
extensions of Theorem 5.3. Consider a locally decomposable specification L = (L1, . . . , Ln)
where each Lj is deterministic context-free. First, we show that any pipeline with backward
channels is decidable if each Lj with 1 ≤ j ≤ n−1 is regular and Ln is deterministic context-free.
Second, we show that any two-flanked pipeline with backward channels is decidable if each Lj
is regular and additionally, n = 2 or there are no backward channels from the last process pn.
In Section 5.2 we will see that, indeed, any nontrivial extension of any of these two cases is
again undecidable. In the next section we first demonstrate how to effectively remove feedback
channels from pipelines and two-flanked pipelines with backward channels using a procedure that
preserved local decomposability of the specification. This leaves us with two cases: Pipelines
where each Lj with 1 ≤ j ≤ n− 1 is regular and Ln is deterministic context-free and two-flanked
pipelines where each Lj is regular and additionally n = 2. These cases will be taken care of in
Section 5.1.3.

5.1.2 Removing Feedback Channels
The important point about feedback channels in the case of locally decomposable specifications
is that they may increase the access of the (global) specification to the global system behavior:
If, for example, we have a pipeline with n ≥ 5 processes and there is a backward channel from
process p5 to process p3 then this allows us to relate the input channel c2 of process p3 to the
output channel c6 of process p5. Clearly, this is not possible without backward channels. Due
to this increased access of the local specifications to the global system behavior, the approach
described above cannot be readily applied here: It is now not sufficient to check any individual
specification locally for each process but we would have to have an assembly point again as
described above for arbitrary specifications.

On the other hand, in Section 2.1.3 we have seen that the grand coalition has a winning
strategy if, and only if, it has a focused one (Proposition 2.4), that means, each individual
strategy only reads the significant input. In other words, given a joint strategy for the grand
coalition, the individual strategies for the processes pi need not to depend on the inputs that
are received via feedback channels because they can be deduced them from their own actions
and the strategies of the other processes. This allows us to eliminate all feedback channels from
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a given architecture by turning them into external output channels, so any architecture without
an information fork can be turned into a normalform that is acyclic [80]. In particular, we can
eliminate backward channels from pipelines.

However, since the specification may talk about these feedback channels, this transformation
affects the specification as well and it is obvious that, in general, it does not preserve local
decomposability. Nevertheless, it is not very difficult to extend this construction so that it works
for locally decomposable specifications as well. To describe the construction, consider a pipeline
Dn,pb with backward channels. So Dn,pb is obtained from the pipeline Dn,p by adding some set
B of backward channels, that is, each channel c ∈ B satisfies w(c) = i and r(c) = j for some
1 ≤ j < i ≤ n. We use notation as before where now, additionally, B ⊆ C. Notice that since we
consider a one-flanked pipeline, all backward channels are feedback channels. Moreover, consider
a locally decomposable specification L = (L1, . . . , Ln) where each Li is regular or deterministic
context-free.

Now consider some c ∈ B and let j < i such that w(c) = i and r(c) = j. Let D̃n,pb be
obtained from Dn,pb as follows. First, we re-define r̃(c) = p0, that is, c is now an external
output channel of pi. Moreover, we add new channels c̃l for l = j, . . . , i− 1 with w̃(c̃l) = pl and
r̃(c̃l) = l + 1 and we denote c̃i := c.

The specification L is modified to the new specification L̃ = (L̃1, . . . , L̃n) as follows. First,
for l ∈ {1, . . . , n} \ {j, . . . , i} we have L̃l = Ll. Moreover, for β_α ∈ (Σ̃pjin )ω × (Σ̃pjout)ω we have

β_α ∈ L̃j :⇐⇒ β_PrΣc̃l (α)_PrΣ
pj
out

(α) ∈ Lj .

So the specification of pj in D̃n,pb is the same as in Dn,pb with the new output channel c̃j of
pj in D̃n,pb corresponding to the input channel c of pj in Dn,pb. Finally, for j + 1 ≤ l ≤ i we
define

L̃l := {α ∈ (Σ̃pl)ω |PrΣpl (α) ∈ Ll} ∩ {α ∈ (Σ̃pl)ω |PrΣc̃l−1
(α) = PrΣc̃l (α)}.

So on the channels from Dn,pb, the specification L̃l coincides with the original specification
Ll and, additionally, we require that, in each step, pl writes the same signal to c̃l that it receives
via c̃l−1. Notice that all processes pj , . . . , pi choose these symbols simultaneously, so pl does not
see the signal from c̃l−1 before it writes it to c̃l. Instead, each process pl with j + 1 ≤ l ≤ i has
to predict the symbol that it will receive via c̃l−1. This, however, is possible (if and) only if all
processes pj , . . . , pi use a strategy for these new channels c̃l that pi could also use in the original
system Dn,pb for the channel c. In this way, the channel c is simulated on all the channels c̃l
simultaneously. In particular, it is simulated on c and on c̃j simultaneously which guarantees
that for all system runs that are won by the grand coalition, the specifications L and L̃ coincide
(up to some technical overhead).

Proposition 5.5. The grand coalition has a winning strategy for (Dn,pb, L) if, and only if, the
grand coalition has a winning strategy for (D̃n,pb, L̃).

Proof. First, assume that there is a joint winning strategy σ = (σ1, . . . , σn) for the grand
coalition for (Dn,pb, L). According to Proposition 2.4 we can assume that σ is focused, that
means, each individual strategy is a function σl : Σ∗l−1 → Σpl

out. We define a joint strategy
σ̃ = (σ̃1, . . . , σ̃n) for the grand coalition for D̃n,pb that consists of functions σ̃l : Σ∗l−1 → Σ̃plout. So
any individual strategy is independent of the inputs that it receives via any of the new channels
c̃l. (The actual strategy is then defined in the obvious way as PrΣl−1 ◦σ̃l.)

For each l ∈ {1, . . . , n} \ {j, . . . , i− 1} we simply set σ̃l = σl. For l ∈ {j, . . . , i}, we define

σ̃l(u) = σl(u)_PrΣc(σl| . . . |σi(u)).

So, on the original channels from Dn,pb, pl plays according to σl and on the channel c̃l pl
plays according to σi.
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To show that σ̃ is winning, consider some global system run α ∈ (ΣD̃n,pb)ω that is consistent
with σ̃ and let β = PrΣDn,pb (α) be the corresponding run of Dn,pb where we simply ignore
all the additional channels. First, for all 1 ≤ l ≤ n and any λ ∈ N we have PrΣplout

(β(λ)) =
PrΣplout

(PrΣ̃plout
(α(λ)) and since α is consistent with σ̃ it follows that

PrΣplout
(β(λ)) = PrΣplout

(σ̃l(PrΣl(α<λ))) = σl(PrΣl(β<λ)).

Therefore, β is consistent with σ and since σ is winning, β ∈ L which implies PrΣ̃pl (α) ∈ {γ ∈
Σ̃pl |PrΣpl (γ) ∈ Ll} for all l ∈ {1, . . . , n} \ {j}.

Moreover, since α is consistent with σ̃, for all l ∈ {j, . . . , i} and all λ ∈ N we have

PrΣc̃l (αλ) = PrΣc̃l (σ̃l(PrΣl−1(α<λ)) = PrΣc̃l (σl| . . . |σi(PrΣl−1(α<λ))).

Therefore, using Proposition 5.2, we get

PrΣc̃l (αλ) = PrΣc̃l (σi(PrΣi−1(α<λ))) = PrΣc(σi(PrΣi−1(α<λ))) = PrΣc(αλ).

In particular, we have PrΣc̃j (α) = PrΣc(α) which implies that also PrΣ̃pj (α) ∈ {γ ∈
Σ̃pj |PrΣpj (γ) ∈ Lj} holds, and we have

PrΣ̃pl (α) ∈ {γ ∈ (Σ̃pl)ω |PrΣc̃l−1
(γ) = PrΣc̃l (γ)}

for all l ∈ {j, . . . , i}. Hence, α ∈ L̃.
Now let σ̃ = (σ̃1, . . . , σ̃n) be a joint winning for the grand coalition for (D̃n,pb, L̃). As

before, we assume that σ̃ is focused.5 Notice that here this means that any individual strategy
σ̃l is a function σ̃l : Σ∗l → Σ̃plout if l /∈ {j, . . . , i} but if l ∈ {j, . . . , i} then it is a function
σ̃l : (Σl × Σc̃l−1)∗ → Σ̃plout. We construct a focused strategy σ = (σ1, . . . , σn) for the grand
coalition for Dn,pb as follows.

For all l ∈ {1, . . . , n} \ {j, . . . , i} we simply set σl = σ̃l and we set σj = σ̃j ◦ PrΣ
pj
out

, that is,
we project the additional channel c̃j out. For l ∈ {j + 1, . . . , i} we define σl inductively on the
length of the inputs u ∈ Σ∗l−1, and with each such input we associate a word wl(u) ∈ Σ|u|+1

c̃l−1
.

For u = ε we set σl(ε) = PrΣplout
(σ̃l(ε)) and wl(ε) = PrΣc̃l (σ̃l(ε)). Now let u 6= ε. Then

σl(u) = PrΣplout
(σ̃l(u_wl(u−1))) and wl(u) = PrΣc̃l (σ̃l(u

_wl(u−1))).

The point here is that the input which pl receives via c̃l−1 in D̃n,pb is not available for the
strategy σl in Dn,pb. However, since we know that all processes pk with k ∈ {j, . . . , i} write the
same signals into the channels c̃k according to σ̃ (otherwise, σ̃ could not be winning) we can
simply plug in the output that pl itself would have produced on channel c̃l so far in the system
D̃n,pb.6

Now consider any global system run α ∈ (ΣDn,pb)ω of Dn,pb that is consistent with σ

and let β ∈ (ΣD̃n,pb)ω be the unique system run of D̃n,pb with PrΣ0(β) = PrΣ0(α) that
is consistent with σ̃. Since σ̃ is winning, β is won by the grand coalition. By definition
of L̃ this implies PrΣc̃l−1

(β) = PrΣc̃l (β) for all l ∈ {j + 1, . . . , i}. In particular, we have
PrΣc̃j (β) = PrΣc(β) so by definition of L̃j it only remains to show that PrΣDn,pb (β) = PrΣDn,pb (α).
For l ∈ {1, . . . , n}\{j+1, . . . , i} it follows directly from the definitions, using the fact that α and
β are consistent with σ and σ̃, respectively, that PrΣplout

(β) = PrΣplout
(α). For l ∈ {j + 1, . . . , i}

we show, by induction on λ, that the following holds:
5For this direction, however, this is just a technical simplification while for the other direction it is essential

since we have deleted the feedback channel from pi to pj .
6Which is the more precise formulation of the fact that all processes pj , . . . , pi use a strategy for the new

channels c̃l that pi could also use in the original system Dn,pb for the channel c.
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(1) PrΣplout
(βλ) = PrΣplout

(αλ)
(2) wl(PrΣl−1(β<λ)) = PrΣc̃l−1

(β<λ+1)

The case λ = 0 follows directly from the definitions, so let λ > 0. First we show condition
(2). By definition we have

wl(PrΣl−1(β<λ)) = PrΣc̃l (σ̃l(PrΣl−1(β<λ)_wl(PrΣl−1(β<λ−1))))

so, by induction hypothesis for (2),

wl(PrΣl−1(β<λ)) = PrΣc̃l (σ̃l(PrΣl−1×Σc̃l−1
(β<λ))).

Therefore, since β is consistent with σ̃ and PrΣc̃l−1
(β) = PrΣc̃l (β), we obtain

wl(PrΣl−1(β<λ)) = PrΣc̃l (PrΣplout
(β<λ+1)) = PrΣc̃l−1

(β<λ+1).

Now, using (2) and the fact that β is consistent with σ̃, we obtain

PrΣplout
(βλ) = PrΣplout

(σ̃l(PrΣl−1(β<λ)_wl(PrΣl−1(β<λ−1))))

and by induction hypothesis for (1), this yields

PrΣplout
(βλ) = PrΣplout

(σ̃l(PrΣl−1(α<λ)_wl(PrΣl−1(α<λ−1)))) = σl(PrΣl−1(α<λ)).

Therefore, since α is consistent with σ, (1) holds as well.

Now, given a pipeline Dn,pb with backward channels and a locally decomposable specification
L = (L1, . . . , Ln) we can eliminate all backward channels from Dn,pb by iterating the procedure
described above. In the end, this yields a straight pipeline Db,pb without any backward channels
and a new specification L̃ which is again locally decomposable. Moreover, the decomposition
L̃ = (L̃1, . . . , L̃n) can be effectively constructed from (L1, . . . , Ln) and, for each i ∈ {1, . . . , n},
if Li is regular (deterministic context-free) then L̃i is regular (deterministic context-free).

In the same way, given a two-flanked pipeline Dn,p2b with backward channels and a locally
decomposable specification L = (L1, . . . , Ln), we can eliminate all backward channels from
Dn,p2b that do not originate in the last process pn. Clearly, the construction described above
relies on the fact that pj is better informed than pi and, indeed, backward channels from the
last process pn (which are not feedback channels!) cannot be removed in this way. In fact, any
two-flanked pipeline with more than two processes and at least one backward channel from the
last process is undecidable even if each Li is regular, cf. Section 5.2. However, all backward
channels from p2, . . . , pn−1 can be removed from Dn,p2n using the construction described above.

5.1.3 The Remaining Cases
As we have mentioned before, after we have removed all feedback channels using the procedure
described in the previous section, there are two cases left that we still have to prove decidable:

• Pipelines with specifications L = (L1, . . . , Ln) where each Li with i < n is regular and Ln
is regular or deterministic context-free

• Two-flanked pipelines with backward channels and two controllers p1 and p2 each of which
has a regular local specification Li

Pipelines. We start with the first case. Up to process pn−1 we use the method from [137] that
we have described in Section 5.1.1. As we have explained there, this yields an alternating parity
tree automaton An−1 over trees t ∈ Tc(Σn−1) which accepts such a tree t if, and only if, there
exist local strategies σ1, . . . , σn−1 such that:
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(1) σ1| . . . |σn−1 generates a language Ln−1
out ⊆ Lω(t) over Σω01

(2) Each strategy σi is locally winning on the language Liin ⊆ Σωi−1 generated by σ1| . . . |σi−1
over Σω01

Recall that to solve the strategy problem for two-flanked pipelines with completely regular
specifications, we had to account for the additional input from the environment. For this, we
have constructed an alternating parity tree automaton which essentially spanned the possible
inputs from the environment over the given B-labeled Σn−1-tree.

Here, on the other hand, we have a deterministic context-free specification Ln, so we cannot
solve the problem by constructing an alternating tree automaton: In order to check the local
specification Ln the tree automaton must be a parity pushdown tree automaton itself, but as we
already know from Section 3.1.3, the emptiness problem for alternating parity pushdown tree
automata is undecidable.7 However, since we consider only a straight pipeline, we do not have
any additional input channel from the environment, so there is no need to build an alternating
tree automaton here: We only have to guess the external outputs of pn which can be done by a
nondeterministic tree automaton. We formulate this step in the following lemma and then we
obtain the solution by turning the alternating parity tree automaton An−1 that we have already
have into a nondeterministic one and intersecting it with the nondeterministic parity pushdown
tree automaton An that we get out of the lemma.

Lemma 5.6. There is a nondeterministic parity pushdown tree automaton An over communi-
cation trees t ∈ Tc(Σn−1) that accepts such a tree if, and only if, there is a strategy σn for pn
that is locally winning on Lω(t).

Proof. Let P = (Σn−1×Σn,e,Γ, QP , qPin, δP , colP) be a deterministic parity pushdown automaton
with L(P) = Ln. Moreover, let Σn−1 = {a0, . . . , ar−1}. We construct the automaton An =
(B,Γ, Q, qin, δ, col) as follows. The idea is straightforward: In each step, An guesses an action
b ∈ Σn,e and proceeds to all directions a0, . . . , ar−1 ∈ Σn−1 and at the same time, the automaton
simulates P on all paths. However, as soon as An encounters a label ⊥ at some node u ∈ Σ∗n−1
then it stops simulating An and instead goes to some accepting state because the input u will
not be send by pn−1 according to t. Moreover, to simulate P , at any node u ∈ Σ∗n−1, An has to
process all the ε-transitions of P first and then proceed to the successors of u. Let us define the
automaton formally:

• Q = QP × Σn,e ∪ {qacc}
• qin = (qPin, b) for some b ∈ Σn,e
• col(q, b) = colP(q) and col(qacc) = 0
• δ(q, A,⊥) =

∧
[a∈Σn−1](↓a, qacc, A)

• δ(qacc, A, ζ) =
∧

[a∈Σn−1](↓a, qacc, A)

• for q = (qP , b) and δ(qP , A, ε) 6= ∅,

δ	(q, A) = (δP(qP , A, ε), b)

• for q = (qP , b) and δ(qP , A, ε) 6= ∅,

δ↓(q, A, ζ) =
∨

[b′∈Σn,e]

∧
a∈Σn−1

(↓a, (δP(qP , A, (a, b′)), b′))

Recall that since P is deterministic, |δP(qP , A, (a, b))|+ |δP(qP , A, ε)| ≤ 1 for all transitions
(qP , A, (a, b)) ∈ QP × Γ × (Σn−1 × Σn,e). In particular, for any (q, A) ∈ Q × Γ, if δ	(q,A)
contains some transition then δ(q, A, ζ) is empty for all ζ ∈ B.

7We will see in Section 5.2 that, indeed, any two-flanked pipeline with more than one controllers where at
least one controller has a deterministic context-free local specification is undecidable.
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Notice that the transition function δ does actually not use the Σn,e-component of Q. However,
incorporating these nondeterministic choices of An into the state space explicitly helps to extract
a strategy for pn from a given run of An:

Let ρ : T → Σ∗n−1 ×Q × Γ∗⊥ be a run of An on some given input tree t ∈ Tc(Σn−1). By
construction of An, for all u ∈ Σ∗n−1 with t(u) = >, there is some b ∈ Σn,e such that for all
a ∈ Σn−1 and all x ∈ T with PrΣ∗

n−1
(ρ(x)) = ua we have PrΣn,e(ρ(x)) = b.8 (Notice that any

two nodes x, x′ ∈ T with PrΣ∗
n−1

(ρ(x)) = PrΣ∗
n−1

(ρ(x′)) are connected via some ε-path in a
run of P.) So we can define a strategy for pn on L∗(t) by σn(u) = b for this particular b. (On
Σ∗n−1 \ L∗(t) we can define σn arbitrarily.) Now let α ∈ Lω(t)× (Σn,e)ω be any local run of pn
that is consistent with σn and consider the set of nodes x ∈ T with PrΣ∗

n−1
(ρ(x)) v PrΣn−1(α).

It is easy to see that all these nodes form an infinite path π through ρ and since α is consistent
with σn, the definition of σn yields PrΣn,e(π) = PrΣn,e(α). Therefore, PrΣn−1×Σn,e(π) = α.
Moreover, since PrΣn−1(α) ∈ Lω(t), any node x on π satisfies t(PrΣ∗

n−1
(ρ(x))) = >. So, by

definition of An, the sequence κ = PrQP×(Γ⊥)∗(π) is a run of P on PrΣn−1×Σn,e(π) = α and
since ρ is accepting, so is κ. Hence, α ∈ L(S) = Ln which shows that σn is locally winning on
Lω(t).

Now let σn : Σ∗n−1 → Σn,e be a strategy for pn that is locally winning on Lω(t). We construct
a run ρ of An on t inductively. We start with ρ(ε) = (ε, qin,⊥). Now let x ∈ N∗ be any node of
the run that has already been constructed and let ρ(x) = (u, q, γA). We construct successors x ·j
of x and we denote ρ(x ·j) = (uj , qj , γj). We distinguish the same cases as in the definition of the
transition function δ. If t(u) = ⊥ or q = qacc then the successors of x are x · j for j = 0, . . . , r− 1
and we define uj = u · aj , qj = qacc and γj = γA for all j. Now assume that t(u) = > and
q = (qP , b) ∈ QP × Σn,e. If δP(qP , A, ε) 6= ∅ then, since P is deterministic, there is exactly one
(pP , γ′) ∈ δP(qP , A, ε) and the only successor of x is x · 0 with u0 = u, q0 = (pP , b) and γ0 = γγ′.
Finally, if δP(qP , A, ε) = ∅ then the successors of x are x ·j for j = 0, . . . , r−1 and we define ρ(x)
as follows. First, uj = u · aj for all j. Moreover, let b′ = σn(u) and let j ∈ {0, . . . , r − 1}. Then
there is exactly one (pPj , γ′j) ∈ δP(qP , A, (a, b′)) and we define qj = (pPj , b′) and γj = γγ′j . By
definition of δ it is clear that ρ is, indeed, a run of An on t. Now similar as before, from a path π
through ρ we obtain a local run α ∈ (Σn−1×Σn,e)ω of pn. Moreover, if t(PrΣ∗

n−1
(ρ(x))) = > for

all nodes x on π, then PrΣn−1(α) = PrΣn−1(π) ∈ Lω(t) and, by construction of ρ, α is consistent
with σn. Hence, α ∈ Ln = L(S) which demonstrates that π ∈ acc. Since all other paths through
ρ are accepting by definition, ρ is accepting.

So, in total, we have that a tree t ∈ Tc(Σn−1) is in L(An−1)∩L(An) if, and only if, there are
local strategies σ1, . . . , σn such that σ1, . . . , σn−1 satisfy (1) and (2) and σn is locally winning on
Ln−1

out × Σω0,n. As we have seen in Section 3.1.3, we can effectively construct a nondeterministic
parity pushdown tree automaton A recognizing L(An−1) ∩ L(An). Moreover, by Theorem 3.9,
the emptiness problem for nondeterministic parity pushdown tree automata is decidable, which
gives us the desired result.
Theorem 5.7. The controller problem for pipelines with backward channels is decidable for
locally decomposable regular specifications L = (L1, . . . , Ln) where L1, . . . , Ln−1 are regular and
Ln is deterministic context-free.

Two-Flanked Pipelines. The remaining case for pipelines with backward channels was rather
easy to solve, given the construction from [137]: We just had to modify the last step in order
to deal with a deterministic context-free specification instead of an additional input channel
from the environment. The case that is left for two-flanked pipelines with backward channels is
that of two mutually connected controllers, each of which has its own input channel from the
environment. We denote this system as

Dwed = ({p0, p1, p2},Awed)
8Where by PrΣn,e (ρ(x)) we actually mean PrΣn,e (PrQ(ρ(x))), of course.
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with Awed = ({c01, c02, c12, c21}, r, w) where w(cij) = i and r(cij) = j. For better readability we
denote Γi = Σc0i and Σi = Σcij for i 6= 0. We omit the external output channels of p1 and p2
just for convenience. It is straightforward how to account for these channels in the proof given
below, if they are present.

Due to the mutual dependency of the inputs and outputs of the two controllers and the
fact that they have incomparable information, this case is more involved. In particular, the
solution from [137] cannot be readily applied because it deals only with one-way dependency of
information flow. To deal with mutual dependency of information flow, we extend the concept
of communication trees in order to represent ω-languages over Σ1×Σ2 in such a way that access
to the components is maintained.

A B2-labeled Σ1 × Σ2-tree t represents the language Lω(t) ⊆ (Σ1 × Σ2)ω with α ∈ Lω(t) if,
and only if, for each finite prefix w of α we have t(w) = (>,>). However, more information is
stored in such a tree: the components PrΣi(α) may depend on each other which is expressed in
the individual components of the B-tuples. If t(u_v) = (>,⊥), then this tells us that v−1 may
be answered by u but u−1 may not be answered by v, analogous for t(u_v) = (⊥,>). Clearly
this is different from just saying that u_v will not occur.

Of course, any such tree t which in fact represents a joint output language of p1 and p2, has
properties analogous to the properties (C1) - (C3) of the communication trees Tc(Σ). However,
as we don’t need those properties in the decidability proof, we do not require them explicitly.

Theorem 5.8. The controller problem for Dwed is decidable for locally decomposable regular
specifications.

Proof. We construct two alternating parity tree automata A1 and A2 over B2-labeled Σ-trees
which, roughly, work as follows: When running on a tree t, at each step, A1 nondeterministically
guesses some output signal b ∈ Σ1 which is the action chosen by the intended strategy σ1 for p1
at this point. Then, A1 universally branches over all possible input signal (x, y) ∈ Γ1 × Σ2 and
proceeds to copies (↓(b,y), x), keeping the corresponding Γ1-signal in mind. If A1 encounters a
⊥ in the Σ1-component of the next node then this means that output b should not be chosen in
this situation according to t, so A1 rejects immediately. If, on the other hand, A1 encounters a
⊥ in the Σ2-component then this means that input y will not occur in this situation according
to t, so A1 goes into a special accepting state.

In this way, A1 guesses a strategy for p1, on all inputs from Γ1 and those inputs from Σ2 that
it may receive according to t, and which produces outputs according to t on c12. Moreover, on
all paths that are consistent with σ1 and Lω(t), A1 simulates a deterministic parity automaton,
recognizing L1. The automaton A2 works analogously. We will see that L(A1) ∩ L(A2) 6= ∅ if,
and only if, there is a joint winning strategy for p1 and p2.

To define A1 and A2 formally, let Si = (Σpi , QSi , qSiin , δ
Si , colSi) be deterministic parity

automata with L(Si) = Lpi for i = 1, 2. We construct the alternating parity tree automata
Ai = (B2, Qi, qiin, δ

i, coli) i = 1, 2 over B2-labeled Σ1 × Σ2-trees as follows. We only define
A1 = (B2, Q, qin, δ, col) using S1 = (Σp1 , Q

S , qSin, δ
S , colS), A2 is defined completely analogously.

• Q = (QS ] {qacc, qrej})× (Γ1 ∪ {�}) and q0 = (qSin, �)

• col(q, ã1) = colS(q), col(qacc, ã1) = 0 and col(qrej, ã1) = 1

• δ((q, ã1), (⊥, ζ)) =
∨

[b1∈Σ1]
∧

[(a1,b2)∈Γ1×Σ2](↓(b1,b2), (qrej, a1))

• δ((qrej, ã1), (ζ1, ζ2)) =
∨

[b1∈Σ1]
∧

[(a1,b2)∈Γ1×Σ2](↓(b1,b2), (qrej, a1))

• δ((q, ã1), (>,⊥)) =
∨

[b1∈Σ1]
∧

[(a1,b2)∈Γ1×Σ2](↓(b1,b2), (qacc, a1))

• δ((qacc, ã1), (ζ1, ζ2)) =
∨

[b1∈Σ1]
∧

[(a1,b2)∈Γ1×Σ2](↓(b1,b2), (qacc, a1))

Notice that any of the four cases for which we have defined δ so far is one of the special
cases where A1 either immediately reject or goes into some special accepting state which is then
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propagated to the whole subtree. In particular, the nondeterministic and universal branching of
δ in these cases is just implemented to make a run of A1 actually look like a strategy for p1.
The most interesting case in the definition of δ is the one where both labels are >:

δ((q, ã1), (>,>)) =
∨

[b1∈Σ1]

∧
[(a1,b2)∈Γ1×Σ2]

(↓(b1,b2), (δS(q, (a1, b2, b1)), a1))

Now we claim that L(A1) ∩ L(A2) 6= ∅ if, and only if, there is a joint winning strategy
σ = (σ1, σ2) for p1 and p2. To prove this, first let t ∈ L(A1) ∩ L(A2). Moreover, for i = 1, 2, let
ρi : T i → (Σ1×Σ2)∗×Qi with T i ⊆ N∗ be a run of Ai on t. We define the strategy σ1 according
to ρ1 as follows. Using the definition of A1 it is easy to see that, for any u1

_v2 ∈ (Γ1 × Σ2)∗,
there is exactly one node x in ρ1 such that the unique path from the root of ρ1 to x corresponds
to u1

_v2 (that means, is labeled with u1
_v2 in the Γ1 × Σ2-components). Moreover, there is

some b1 ∈ Σ1 such that any successor of x in ρ1 is labeled with b1 in the Σ1-component. Now we
define σ1(u1

_v2) = b1 for this particular b1. The strategy σ2 is defined completely analogously,
using the run ρ2.

Now let α = α1
_α2

_β1
_β2 ∈ (Γ1×Γ2×Σ1×Σ2)ω be a global system run which is consistent

with σ = (σ1, σ2). First, as above, there is exactly one path π1 in ρ1 which corresponds to α1
_β2

and there is exactly one path π2 in ρ2 which corresponds to α2
_β1. Since α is consistent with

σ, γ1 := α1
_β2

_β1 is consistent with σ1 and γ2 := α2
_β1

_β2 is consistent with σ2. Therefore,
by definition of σ1 and σ2, the path π1 is labeled with β1 in the Σ1-component and the path
π2 is labeled with β2 in the Σ2-component. So the path which corresponds to π1 in the tree
t is π = β1

_β2 and the path which corresponds to π2 in the tree t is π as well. As both, ρ1
and ρ2, are accepting, each node on π is labeled with (>,>). Now by construction of A1, this
yields, that only states from QS1 occur in the Q1-component of π1 and the infinite sequence
ρS = (qj)j∈N ∈ (QS1)ω of states of S1 constitutes a run of S1 on the ω-word from (Σp1)ω which
is obtained from the corresponding components of the labels of π1. Now this ω-word is precisely
γ1 and since ρ1 is accepting, so is ρS . Hence, γ1 ∈ L1 and in the same way we obtain γ2 ∈ L2.

Now let conversely σ = (σ1, σ2) be a joint strategy for p1 and p2. We define the tree
t : (Σ1 × Σ2) → B2 as follows. For v1

_v2 ∈ (Σ1 × Σ2)∗ let t(v1
_v2) = (>, ζ) if there is

some u1 ∈ Γ|v1|
1 such that u1

_v2
_v1 is consistent with σ1. Analogously, let t(v1

_v2) = (ζ,>)
if there is some u2 ∈ Γ|v2|

2 such that u2
_v1

_v2 is consistent with σ2. Now we define the
run ρ1 : T 1 → (Σ1 × Σ2)∗ × Q1 inductively such that, for all x ∈ T 1, the unique path π
from the root of ρ1 to x is labeled with states q 6= qrej in the Q1-components. Moreover,
u1
_v2

_v1 ∈ (Γ1 × Σ2 × Σ1)∗ is consistent with σ1, where (v1, v2) = Pr(Σ1×Σ2)∗(ρ1(x)) and
u1 ∈ Γ|v1|

1 is the labeling of π in the Γ1-components (of the Q1-components). The run ρ2 is
constructed completely analogously.

First, ρ1(ε) = (ε, q1
0). Now let x ∈ T 1 be any node of the run that has already been

constructed, let ρ1(x) = (v1
_v2, (q, ã1)) and let t(v1

_v2) = (ζ1, ζ2). Moreover, let σ1(u1
_v2) =

b1 ∈ Σ1, where u1 ∈ Γ|x|1 is the Γ1-labeling of the unique path π from the root of ρ1 to x.
By definition of A1, δ(((q, ã1), (ζ1, ζ2)) contains a conjunct

∧
[(a1,b2)∈Γ1×Σ2](↓(b1,b2), (q(a1,b2), b1))

and we define the successors of x as x · j, j = 0, . . . , r − 1, where Γ1 × Σ2 = {b0, . . . , br−1}.
Moreover, for j ∈ {0, . . . , r − 1}, ρ1(x · j) = ((v1 · b1)_(v2 · b2), (qb1,b2 , a1)) where (b1, b2) = bj .

Now we prove that any node x · j fulfills the conditions formulated above. So let j ∈
{0, . . . , r − 1} and bj = (b1, b2). As u1

_v2
_v1 is consistent with σ1, by definition of b1,

(u1 · a1)_(v2 · b2)_(v1 · b1) is also consistent with σ1. For the proof that q(b1,b2) 6= qreject, first
notice that q 6= qreject. Therefore, if ζ2 = ⊥ or q = qacc we have q(b1,b2) = qacc. Moreover, since
u1
_v2

_v1 is consistent with σ1, by definition of t we have t(v1
_v2) = (>, ζ) so ζ1 6= ⊥. So

assume that q ∈ QS1 and ζ2 = >. Then q(b1,b2) = δS1(q, (a1, b2, b1)) ∈ QS1 .
Clearly, ρ1 is a run of A1 on t. To prove that ρ1 is accepting, let π1 be some infinite path

through ρ1 and let β = α1
_β2

_β1 ∈ (Γ1×Σ2×Σ1)ω be the Σp1 -labeling of π1. By construction
of ρ1, α1(<k)_β2(<k)_β1(<k) is consistent with σ1 for all k ∈ N, so the local run β of p1 is
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Figure 5.1: Architecture with two connected local DCF specifications

consistent with σ1. Moreover, PrQ1(π1(<k)) = (qk, ãk1) ∈ (QS1 ∪ {qacc}) × (Γ1 ∪ {�}) for all
k ∈ N and, if qk = qacc for some k then π1 is accepting. So assume that qk ∈ QS1 for all k.

Then t(β1(<k)_β2(<k)) = (>,>) for all k ∈ N so, by construction of t, for all k, there
is some u2 ∈ Γk2 such that u2

_β1(<k)_β2(<k) is consistent with σ2. Clearly, the set of all
u2 ∈ Γ∗2 such that u2

_β1(< |u2|)_β2(< |u2|) is consistent with σ2 is prefix-closed, so by König’s
Lemma, there is some α2 ∈ Γω2 such that α2

_β1
_β2 is consistent with σ2. Since α1

_β2
_β1 is

consistent with σ1, it follows that α = α1
_α2

_β1
_β2 is consistent with σ. Since σ is winning,

α1
_β2

_β1 ∈ L1, so the unique run of S1 on α1
_β2

_β1 is accepting. As, by the definition of
A1, this run coincides with the QS1-labeling of π1, the path π1 is accepting. Therefore, ρ1 is
accepting. Completely analogously, one shows that ρ2 is an accepting run of A2 on t. Hence,
t ∈ L(A1) ∩ L(A2).

5.2 Undecidability
Now that we have all the additional basic decidable cases at hand, we have to prove matching
undecidability results. In particular, for deterministic context-free specifications, we have shown
decidability only for a rather particular case, so there have to be far-reaching undecidability
results, and we structure our exposition primarily along the number of processes which (are
allowed to) have a deterministic context-free local specification.

Two DCF specifications. First we demonstrate how two connected processes, each of which
has a deterministic realtime 1-counter specification, can directly simulate a 2-register machine.
As the non-halting problem for such machines is undecidable, any architecture which contains
two such processes is undecidable. Even more, the controller problem for such architectures is
not even recursively enumerable.

Theorem 5.9. The controller problem for a connected architecture with at least two local DR1-C
specifications is not recursively enumerable.

Proof. We proceed by a reduction from the non-halting problem for 2-register machines. For
those machines we use the notation from Section 3.4: LetR be a 2-register machine consisting of a
sequence I0, . . . , Ik−1, Ik = stop of instructions Ij ∈ {inc(Ri), dec(Ri), if Ri = 0 goto l | i ∈
{1, 2}, l ∈ [k]}.

Let pi0 , . . . , pim be processes such that p = pi0 and p′ = pim are connected and have DR1-C
specifications, cf. Figure 5.1. Moreover, let Cm = {ci|i ∈ [m]} be a set of channels such that,
ci ∈ Cpi and r(ci) = pi+1 or vice versa. That is, Cm induces a (not necessarily directed) path
between p and p′. We define Σc = [k] for all c ∈ Cm and we silence all other channels c /∈ Cm
by defining Σc = {]}.

The idea is now as follows. The processes p and p′ both write a sequence j0, j1, . . . of
instruction numbers of R which is supposed to induce the (unique) run of R when started on
empty registers. However, since both processes have a deterministic one-counter specification,
only one of the registers can be actually checked for each of the sequences which is not sufficient
to guarantee that it actually corresponds to the run of R. To overcome this problem, we
synchronize the processes by requiring that, in each step, the same number j is written to all
channels from Cm. With the two sequences of instruction numbers equalized in this way, it is
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then sufficient that each of the two deterministic 1-counter specifications is responsible for only
one of the two registers: The pushdown automaton P1 recognizing Lp simulates register R1 and
uses states qj for j ∈ [k], qnomb and qrej. Whenever an instruction number j is written such
that Ij deals with register R1 then P1 manipulates its counter accordingly, determines the next
instruction number j and goes to qj . When P1 is in state qj and receives letter l ∈ [k] then it
checks whether l = j, that is, whether the instruction number that is written to c0 is correct.
If not, P1 goes to qrej. If, on the other hand, Ij deals with register R2, then P1 goes to state
qnomb, indicating that it is not responsible for the next instruction. (Or to state qrej, if it was
previously in state qj and l 6= j.) If, at some point, Ij = stop then P1 goes to qrej.

Technically, for any process pi with 0 < i < m we define

Lpi = {α ∈ Σpiin × Σpiout|PrΣci (α) = PrΣci+1
(α)}.

So, if the processes have a joint winning strategy, the information sent via c0 and cm has to
be identical in each step. The specifications Lp and Lp′ are given by deterministic realtime
1-counter automata P1 and P2, respectively.

We define P1 = (Σ, {A}, Q, qin, δ, col) as follows, where we consider only the component from
Σc0 . Q = {qj | j ∈ [k]}∪{qnomb, qrej}, qin = q0, Σ = Σc0 = [k] and col(q) = 0 for all q ∈ Q\{qrej}
and col(qrej) = 1. Moreover, δ is defined as follows:

• if Ij ∈ {inc(R2), dec(R2)}, δ(qj , j, Z) = δ(qnomb, j, Z) = (qnomb, Z)
• if Ij = if R2 = 0 goto l, δ(qj , j, Z) = δ(qnomb, j, Z) = (qnomb, Z)
• if Ij = inc(R1), δ(qj , j, Z) = δ(qnomb, j, Z) = (qj+1, AZ)
• if Ij = dec(R1), δ(qj , j, Z) = δ(qnomb, j, Z) = (qj+1, ε)
• if Ij = if R1 = 0 goto l,
δ(qj , j,⊥) = δ(qnomb, j,⊥) = (ql,⊥) and
δ(qj , j, A) = δ(qnomb, j, A) = (qj+1, A)

• if Ij = stop, δ(qj , j, Z) = δ(qnomb, j, Z) = (qrej, Z)
• δ(qj , l, Z) = (qrej, Z) if l 6= j

• δ(qrej, j, Z) = (qrej, Z)
The automaton P2 is defined in a completely analogous way with registers R1 and R2

swapped. It is easy to see that a sequence γ ∈ Qω is in L(P0) ∩ L(P1) if, and only if, the
corresponding sequence of instructions is an infinite run of R with initially empty registers. Since
any such sequence can be generated by a strategy σpij for process pij (for each j ∈ {0, . . . ,m}),
it follows that there exists a joint winning strategy for p = pi0 , pi1 , . . . , pim = p′ if, and only if,
the (unique) run of R on initially empty registers is infinite. Notice that such a strategy needs
as input only ticks | so in particular, none of the processes pil needs to be reachable from the
environment.9

One DCF specification. The previous result shows that we can allow at most one deterministic
context-free specification. We have already seen that in this case, the controller problem is
decidable if the architecture is a pipeline and the controller p with a deterministic context-free
specification is the last one in the pipeline. In particular, any other controller in the system is
better informed than p. The next result shows that, indeed, as soon as we have some controller
p′ that is not better informed than p, then the controller problem is again undecidable (not even
recursively enumerable), already for deterministic realtime 1-counter specifications, cf. Figure 5.2.
To show this, essentially, we use p and p′ to simulate the proof of Theorem 3.20: Process p′ has
the task to construct a run of the given 2-register machine while the local specification of p is

9On the other hand, to actually implement a joint winning strategy for pi0 , . . . , pim (if it exists), in general,
any of the processes pij needs a two-counter memory structure!
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Figure 5.2: Undecidable architecture with one deterministic context-free specification

used to check the construction. Recall that we can check only one register at a time, so that p′
must not notice when the construction is checked, cf. Section 3.4. This can be accomplished
since p′ is not better informed than p.

Theorem 5.10. Let A be an architecture with two connected controllers p 6= p′ such that p
is reachable and has a DR1-C specification and p′ is not better informed than p. Then the
controller problem for A is not recursively enumerable.

Proof. Again, we proceed by a reduction from the non-halting problem for 2-register machines.
For this, let R be a 2-register machine as in the proof of Theorem 5.9. First, we show the
result for the special case where A consists only of the two controllers p, p′ and where penv sends
information to p via some channel c0 ∈ Cpenv and p and p′ communicate via some channel c1.
Moreover, p′ has an output channel c2 ∈ Op′ (which may be c1 if c1 ∈ Op already).

We define
• Σc0 = {0, 1, 2} and
• Σc1 = Σc2 = [k] ∪ {A1, A2}
• Lp′ = {α ∈ (Σp′)ω|PrΣc1 (α) = PrΣc2 (α)}

• Lp = {α ∈ (Σp)ω|Pr(Σc0×Σc1 )(α) ∈ L̃p}

where L̃p ⊆ Σc0 × Σc1 is the deterministic realtime 1-counter language from the proof of
Theorem 3.20, that is, α0

_α1 ∈ L̃p if the following conditions hold:
(1) α1 has the form C0C1 . . . where Cj ∈ [k] · {A1}∗ · {A2}∗ for each j

(2) C0 = 0εε
(3) if there exists a r ∈ N with α0(r) ∈ {1, 2} then consider the smallest such r and the smallest

s ≥ r with α1(s) ∈ [k], and let α1 = α1(<s)CC ′γ.
Then C

α0(r)7− C ′.
So the local specification Lp′ requires merely that PrΣc1 = PrΣc2 , that is, the same symbol

has to be written to both channels in each step. If c1 = c2 this is of course trivial but if c1 is
a channel from p to p′ then this means, that p and p′ have to choose the same action in each
step simultaneously. In particular, p′ will not be able to infer anything from the input that it
receives from p.

Now, if R does not halt if started with initially empty registers then p and p′ have the
following joint winning strategy: They both write the unique run of R when started on empty
registers to the channels c1 and c2 simultaneously. If, on the other hand, R halts if started with
empty registers, then let σ be any joint strategy of p and p′. To see how the environment can
spoil σ, let α1

_α2 ∈ (Σc1 × Σc2)ω be the word produced by σ when p receives input α0 = 0ω
from the environment. If α0

_α1 /∈ L̃p or α1 6= α2 then σ is not a winning strategy, so assume
that α0

_α1 ∈ L̃p and α1 = α2. In particular, α1 satisfies conditions (1) and (2), so α1 consists
of a sequence C0C1C2 . . . of configurations of R starting with the initial configuration C0 = 0εε.
However, since R halts if started with empty registers, α1 cannot be a run of R.
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Let j be minimal, such that Cj 6` Cj+1. Then we have Cj 6
17− Cj+1 or Cj 6

27− Cj+1. In the first
case, set i = 1 and in the second case set i = 2. Now let α1

_α2 ∈ (Σc1 × Σc2)ω be the word
produced by σ when p receives input α0 = 0|C0...Cj−1| i 0ω from the environment. Obviously,
α2(0) = α2(0) which implies α1(0) = α1(0), so α2(1) = α2(1), thus α1(1) = α1(1) and so on,
hence α2 = α2 and α1 = α1. Since α0

_α1 is consistent with σ and α0
_α1 = α0

_α1 /∈ L, σ is
not a winning strategy.

To extend the proof to the general case, we simulate the communication between p and p′

as above using a sequence of channels connecting p and p′. Furthermore, the signal i from the
environment can be transmitted to p via the (directed) path from penv to p. Notice that the
signal i will arrive at p with a delay (which depends only on the given architecture). We have
to incorporate this into the specifications, that is, we have to adapt the specifications in order
to postpone the starting point of the production of a sequence of configurations by p and p′.
Moreover, although the set of channels used for this transmission is, in general, not disjoint from
the set of channels connecting p and p′, by a simple adaption of the alphabets and specifications,
the different information can be sent along the same channels. Finally, since p′ is not better
informed than p, the signal i can still be kept away from p′.

Regular Specifications. Since any architecture that is undecidable for locally decomposable
regular specifications is also undecidable for arbitrary regular specifications, any architecture
that will be shown to be undecidable here has also been shown undecidable in [80]. In particular,
any such architecture contains an information fork.

For locally decomposable specifications, however, proving undecidability may be more
involved. In particular, not any information fork can be used to show undecidability as the
decidability of two-flanked pipelines for locally decomposable regular specifications demonstrates.
In order to be able to connect the inputs and outputs of two incomparably informed processes
p and p′ in the specification sufficiently, we need at least one additional process p′′ that is
appropriately connected with p and p′. We distinguish cases according to how the p and p′ are
connected with p′′.

Of course, any acyclic architecture that is not decidable for locally decomposable regular
specifications has been shown undecidable in [137]. The reason why cycles may make it even
harder to prove undecidability is that, although each process has at least one output channel,
there may arise cases where two processes that are incomparably informed send all their outputs
to each other. So we cannot let these processes work completely independently. On the
other hand, for arbitrary regular specifications this problem has also been solved in [80] using
encryption: The environment sends encryption function to the processes which they have to use
to encode their outputs. Since the processes do not know the encryption function that the other
processes uses, they cannot deduce anything from the output of the other process that they get.
We will see that for the cases that we have to deal with here, it is easy to simulate this method
using locally decomposable specifications.

First we consider Aprefork = (C, r, w) with controllers p1,p2 and p3 and with

• C = {c01, c12, c13, c20, c30},
• w(cij) = pi and r(cij) = pj .

So here, p2 = p and p3 = p′ form an information fork and both processes are reachable via a
directed path (of length one, in this case) from p1 = p′′.

Since A0 does not contain cycles, the controller problem for this architecture is undecidable
according to [137]. However, we give a different proof of this result, for which it is easier to
incorporate encryption functions in order to cover the case where c2 and c3 are not necessarily
external output channels but may be read by other controllers. Our proof uses an idea from [30],
yielding a variant of the proof of the corresponding result from [171] for arbitrary regular
specifications. Similarly as in the proof of Theorem 5.10, processes p2 and p3 will have the task
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of writing configurations (of a Turing machine, in this case) while the specification L1 is used to
check the correctness of their constructions.

Theorem 5.11. The controller problem for Aprefork for locally decomposable regular specifica-
tions is not recursively enumerable.

Proof. We proceed by a reduction from the non-halting problem for Turing machines, so let

M = (Σ, Q, qin, δ, qacc)

be a deterministic Turing machine and set
• Σconf = Σ ∪Q ∪ {]}
• Σsign = { ,y}.

We use the following labeling for the channels of Aprefork:
• Σc01 = Σsign × Σsign

• Σc12 = Σc13 = Σsign × Σconf

• Σc20 = Σc30 = Σconf

Now we define the specifications. For some local behavior

α = (β1
_β2)_α12

_α13 ∈ (Σ01 × Σ12 × Σ13)ω

of process p1, we distinguish two cases: If {λ ∈ N |βi(λ) =y} = ∅ then α ∈ L1. If, on the other
hand, {λ ∈ N |βi(λ) =y} 6= ∅, then let

goi(α) = min{λ ∈ N |βi(λ) =y}+1.

and let
α ∈ L1 :⇐⇒ |go1(α)− go2(α)| > 1 or (1) - (3).

(1) PrΣconf(α1i) = ]goi(α)+1 C ]ω such that
(a) C is a non-terminal configuration of M
(b) if goi(α) = 1 then C = Cin is the initial configuration of M when started on the empty

word
(2) PrΣsign(α1i(0))) = and PrΣsign(α1i(λ))) = PrΣsign(βi(λ− 1)) for λ > 0
(3) Let PrΣconf(α1i) = ]goi(α)+1Ci]

ω.
(a) if go2(α) = go3(α) then C2 = C3

(b) if go2(α) = go3(α)+1 then C3 ` C2

(c) if go2(α) = go3(α)−1 then C2 ` C3

Moreover, for some local behavior

α = α1i
_αi ∈ (Σpi)ω

of process pi with i ∈ {2, 3}, we define

α ∈ Li :⇐⇒ PrΣconf (α1i) = PrΣconf (αi).

Obviously, L1, L2 and L3 are all regular. Now we claim that M does not halt on the empty
tape if, and only if, p1, p2 and p3 have a joint winning strategy.

First, let us explain the intended meaning of a system run. Controllers p2 and p3 have the
task of writing exactly one configuration of M , as soon as they receive symbol y via c12 and
c13, respectively. This symbol is sent by the environment, thereby determining in which round
each of the processes p2 and p3 start writing their configuration. However, the respective rounds
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of p2 and p3 may differ by at most one. Notice that these signals from penv must be routed
through p1, so we have a delay there which is accounted for in the specification.

Now, besides propagating the signals from penv to p2 and p3, p1 has the task of synchronizing
the Σconf-components of the channels c12 and c13 with the channels c20 and c30, respectively,
so that the local specification of p1 can be used to relate the configurations C2 and C3 that p2
and p3 produce. More precisely, if p2 and p3 receive y for the first time in the same round
then C2 and C3 must be equal, and if pi receives y for the first time one round earlier than pj
then Ci must be the predecessor configuration of Cj . Moreover, if prompted by y right at the
beginning, then the processes must produce the initial configuration of M and they may also
never produce any terminal configuration.

Now if M does not halt on the empty tape, then these conditions can be easily fulfilled
by the controllers: For i ∈ {2, 3}, on receiving an input β ∈ { }ky { ,y}ω with k ≥ 1,
controller pi produces output ]k+1 C(k) ]ω, where C(k) is configuration number k in the run of
M when started on the empty tape. Moreover, on receiving  ω, pi produces ]ω. (Clearly, this
function can be implemented by a strategy for pi.) It is now easy to see that there is a strategy
for p1 such that the corresponding joint strategy of p1, p2 and p3 is, indeed, winning: Forward
the Σsign-components from c0 to pi in the next step, respectively, and synchronize the Σconf
components of c1i with ci by anticipating the actions of pi.

Now let, conversely, σ = (σ1, σ2, σ3) be a joint winning strategy for the controllers. First
notice that, due to the specification L2, the following holds: If σ is any strategy for p2 that is
locally winning on some language Lin ⊆ (Σsign × Σconf)ω then for any β ∈ { }Σω

sign, there at
most one γ ∈ Σωconf such that β_γ ∈ Lin. Since sequences β ∈ { }Σsign correspond to natural
numbers k = min{λ ∈ N |β(λ) =y} ≥ 1 or k = ω, if β(λ) = for all λ ∈ N, the strategy σ2
can be viewed as function σ2 : N≥1 ∪ {ω} → Σωconf.

Moreover, due to L2 and condition (2) of L1, condition (1) of L1 also applies to any local
run of process p2 which is part of a global system run that is consistent with σ. Therefore, σ2 is
in fact a function

σ2 : N≥1 ∪ {ω} → N≥1 ∪ {ω}

where σ2(l) = k means that upon receiving k ∈ N ∪ {ω}, σ2 produces ]k+1 C(k) ]ω or ]ω, if
k = ω. Now, the very same applies to σ3 as well and, by specification L1, the strategies must
satisfy the following conditions:

• σ2(1) = σ3(1) = 1
• σ2(l + 1) = σ3(l) + 1
• σ3(l + 1) = σ2(l) + 1.

It is easy to see that the only such functions are σ2 = σ3 = idN. Therefore, the environment can
request any configuration in the run of M when started on the empty tape from p1. However,
according to condition (1),(a), L1 is violated as soon as p1 writes a terminal configuration.
Hence, in the unique run of M when started on the empty tape, there can be no terminal
configuration.

The next step is now to incorporate encryption functions into the construction that we have
performed in the proof, in order to adapt the proof to the architecture Ãprefork which is obtained
from Aprefork by re-defining r(c20) = 3 and r(c30) = 2 (for at least one of the channels c20 and
c30). The main idea is as follows. We provide the environment with the possibility to send
two different encryption functions in each step and we demand of process p1 that it distributes
them to the processes p2 and p3. Then, processes p2 and p3 have to encode their output using
the function which they have received in the last step. The set of functions available to the
environment can, for example, be chosen as the set of all permutations on Σconf. Using these
encryption functions, the environment can guarantee that neither p2 nor p3 can derive any
information from the input that it receives from the other process, respectively.
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This idea is taken from [80] where is has been applied to the architecture Awed from
Section 5.1.3 for arbitrary regular specifications. It is obvious that the reasoning from [80] (see
also [191]) can be directly applied to our scenario as well: The process p1 just propagates the
encryption functions to p2 and p3, respectively, and the whole encryption processing takes place
at p2 and p3, using their respective specifications. So we obtain that the controller problem for
Ãprefork for locally decomposable regular specifications is undecidable.

What remains to do is to extend the undecidability results to more complex architectures
which consist of more than three controllers but where we can find patterns that look like Aprefork
or Ãprefork. This is rather straightforward, similar as in the proof of Theorem 5.10: Clearly, it is
not necessary that the environment has a direct channel to the process p1 but there merely needs
to be a directed path from the environment to p1 which neither contains p2 nor p3. So it suffices
to assume that p1 is reachable and p2 and p3 are both not better informed than p1. Moreover,
if one or both of the output channels of p2 and p3 are neither external output channels nor read
by the other process, then the proof also works just as before: For an output channel of p2 or p3
that is read by the other controller as in Ãprefork, we use encryption as described above. Output
channels that are read by any other process can be treated as external output channels. Hence,
we obtain the following result. Notice that, in particular, p2 and p3 form an information fork.

Theorem 5.12. Let A be an architecture with a reachable process p1 such that p1 sends
information to processes p2 6= p3 which are not better informed than p1. Then the controller
problem for A for locally decomposable regular specifications is not recursively enumerable.

Now we consider the case where we have an information fork {p, p′} and a process p′′ which
is reachable from both p and p′. Again, we start with a special case: Consider Apostfork1 =
(C1, r1, w1) with controllers p1, p2, p3 and:

• C1 = {c01, c02, c13, c23}
• w1(cij) = pi and r1(cij) = pj

In Apostfork, it is very easy to connect p1 and p2: We don’t have to synchronize p1 and p2
with p3 like in the proof of Theorem 5.11 but we can directly merge the outputs of p1 and p2
at p3. Therefore, we can simulate the original undecidability proof of [171] (or our proof of
Theorem 5.11, accordingly) using the local specification straightforwardly, cf. [137]. Moreover, it
is not important which processes read the output channels of p3: The process is only needed to
have a single local specification that can talk about c13 and c23 at the same time.

The processes p1 and p2 also do not need to have direct channels to p3. It suffices that p3 is
reachable from p1 via some path P1 that does not contain p2, and from p2 via a path P2 that
does not contain p1. Then we can propagate the outputs of p1 and p2 to p3 where they are
merged. Clearly, there is also no harm done in sending these outputs along the same channels,
so that P1 and P2 do not have to be disjoint. Of course, these paths may have a different length
which creates a delay between the outputs. However, this delay is a fixed number which depends
only on the architecture and can be easily accounted for in the specification of p3. Finally, the
proof can also be easily adapted to the case where p1 and p2 do not receive direct inputs from
the environment, but are merely reachable from the environment via directed paths.

However, if, for example, p3 is reachable from p2 via a path P2 that does not contain p1 but
any path from p1 to p3 contains p2 then things become a little more complicated again. For
this case, we consider the architecture Apostfork2 = (C2, r2, w2) with controllers p1, p2, p3 and

• C2 = {c01, c02, c12, c23, c30}
• w2(cij) = pi and r2(cij) = pj .

According to [137], this architecture is undecidable and it is rather easy to extend this result
to more general scenarios as described above for Apostfork1. However, in this case, it is important
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again that p3 does have some output channel so we have to take of the possibility that all output
channels of p3 may be read by other processes (which, in particular, includes the possibility that
they are all read by p1). This can be done similar as described above using encryption and so
we obtain the following result.

Theorem 5.13. Let A be an architecture with at least two incomparably informed processes p1
and p2 which are both reachable such that there is a process p3 /∈ {p1, p2} which is reachable from
both p1 and p2. Then the controller problem for A for locally decomposable regular specifications
is not recursively enumerable.

5.3 Characterization
Now we characterize the exact classes of architectures which are decidable for locally decompos-
able regular specifications and, for each decidable architecture, we determine the exact set of
processes which may have a deterministic context-free specification such that decidability still
holds. Moreover, we also determine a particular case where we can allow one nondeterministic
context-free specification.

First, we simplify the setting a little. Consider a distributed system with a locally decom-
posable specification

D = (A, (Σc)c∈C) with A = (C, r, w) and L = (Lp)p∈Pcon .

As we have already mentioned, hidden input channels from the environment do not make any
difference if the specification is locally decomposable: None of the individual local specifications
Lp can incorporate these channels, so the global system specification is independent of the
outputs that the environment sends along its hidden channels. Hence, these channels can be
totally neglected.

Moreover, for an induced subarchitecture A′ = (C ′, r′, w′) of A, by D′ we denote the subsystem
(A′, (Σc)c∈C′) and by L′ we denote the locally decomposable specification (Lp)p∈P ′ of D′. Then,
the grand coalition has a joint winning strategy for (D, L) if, and only if, it has a joint winning
strategy for every subsystem (D′, L′). Clearly, any joint winning strategy for the grand coalition
contains a joint winning strategy for each such subsystem. On the other hand, if the grand
coalition has a joint winning strategy for every subsystem (D′, L′), then the collection of joint
winning strategies for all subsystems (D′, L′), where A′ is a connected component of A, also
yields a joint winning strategy for (D, L): The specification (Lp)p∈P ′ embraces everything that
L can express about the subsystem D′ within the system D. That means, in particular, L
cannot relate the individual connected components of A among each other. So, the controller
problem for A is decidable if, and only if, it is decidable for every connected subarchitecture of
A. Therefore, w.l.o.g., we assume that A is connected.

On the other hand, we can not assume, of course, that A is strongly connected and, in
particular, there may be non-reachable processes. This issue does not occur in [137]: There, any
process has at least one input channel and since only acyclic architectures are considered, every
process is reachable. In our setting, processes do not need to have input channels and, even if
they do, cycles still make it possible to have non-reachable processes. Now, in the context of
global specifications, such processes can be incorporated into the specification as their strategies
are only words, cf. [80]. (Notice that all non-reachable processes are equally informed.) For
locally decomposable specifications, however, this cannot be done so easily since a non-reachable
process may send information to several other processes which are thereby linked to each other.
In general, this link cannot be directly established via any of the local specifications. We will
see, however, that, also for locally decomposable specifications, all non-reachable processes can
be assembled into one large monster process.

In the following, we denote the class of all pipelines with backward-channels by K1 and the
class of all two-flanked pipelines with backward-channels which have either only two controllers or
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which do not have a backward-channel from the last process by K2. Moreover, for an architecture
A, M(A) denotes the set of all controllers which are not reachable. Notice that Pcon \M(A)
induces a subarchitecture of A.

Theorem 5.14. The controller problem for A is decidable for locally decomposable regular
specifications, if, and only if, any connected component of A(Pcon \M(A)) is in K1 ∪ K2. The
problem remains decidable for deterministic context-free specifications if, and only if, one of the
following conditions hold.
(1) A ∈ K1 and Lp is regular for all controllers p except the last one.
(2) There is a p ∈M(A) such that Lp′ if regular for all p′ ∈ Pcon \ {p}.

Moreover, in case (2), Lp may even be nondeterministic context-free.

Proof. First assume that the controller problem for A is decidable for locally decomposable
regular specifications and let B = (CB, rB, wB) be a connected component of A(Pcon \M(A)).
If |PB| = 1 then obviously B ∈ K, so let |PB| = 1. Since B is a connected component and
disjoint from M(A), there is at least one controller p ∈ PB

con that reads some channel from the
environment and sends information to some controller q in B.

For k ∈ N, let Reachk(p) be the set of all q ∈ PB
con with dist(p, q) = k, that means, there is

a directed path from p to q of length k in B but there is no such path of length < k. First
we have |Reachk(p)| ≤ 1 for all k ∈ N, because if |Reachk(p)| > 1 for some k ∈ N with
q 6= q′ ∈ Reachk(p) then q and q′ are incomparably informed. This puts us in the situation of
Theorem 5.12. Now let

m = max{k ∈ N | Reachk(p) 6= ∅}

and for k ≤ m, let qk be the unique process with qk ∈ Reachk(p). (Notice that Reachl(p) 6= ∅
implies Reachk(p) 6= ∅ for all k ≤ l.) Since p sends information to at least one q ∈ PB

con we have
m ≥ 1.

Now we show that
Reach(p) = {q0, q1, . . . , qm} = PB

con.

Towards a contradiction, assume that there is some controllers q ∈ PB
con \ Reach(p). Since B is

connected, there is some (not necessarily directed) path from q to some qi which implies that
there is some q′ ∈ PB \ Reach(p) that sends information to qi or receives information from
qi. However, in the latter case we would have q′ ∈ Reach(p), so in fact q′ sends information
to qi. Again, since B is a connected component and disjoint from M(A), q′ is reachable from
qenv in B and as it is not reachable from q, the controllers q′ and q are incomparably informed.
Moreover, if i = 0 then q1 /∈ {q, q′} is reachable from both q′ and q and if i > 0 then qi /∈ {q, q′}
is reachable from both q′ and q. Therefore, we are in the situation of Theorem 5.13 and hence,
Reach(p) = P con .

Moreover, none of the processes qi with 0 < i < m reads a channel from the environment
because otherwise, q0 = p and qi would be incomparably informed and qi+1 is reachable from q0
and from qi, so Theorem 5.13 would apply. So, if qm also reads no channel from the environment,
then B is a pipeline with backward channels, that means, B ∈ K1. If, on the other hand, qm does
read a channel from the environment, then B is a two-flanked pipeline with backward channels.
Now, if m ≥ 2 and pm sends information to some process pi with i < m, then Theorem 5.13
could be applied. So we have m = 1 or there are no backward channels from pm which yields
B ∈ K2.

As to context-free specifications, since A is connected, Theorem 5.9 yields that the controller
problem for A becomes undecidable if there are at least two processes that have a deterministic
context-free specification. Therefore, assume that exactly one process p has a deterministic
context-free specification. If p ∈ M(A), then for all p′ ∈ M(A) \ {p}, the local specification
Lp′ of p′ is regular, so condition (2) holds. Now consider the case p /∈M(A), that means, p is
reachable, and let penv → q0 → . . . qk = p be some path from the environment to p. We claim

195



that Pcon = {qi | i = 0, . . . , k}: If there is some q ∈ Pcon \ {qi | i = 0, . . . , k} then q is not better
informed than p because penv → q0 → . . .→ p is a path from penv to p that does not contain q.
This puts us in the situation of Theorem 5.10. Therefore, Pcon = {qi | i = 0, . . . , k} and since
Lq0 , . . . , Lqk−1 are regular, condition (1) holds.

Now assume, conversely, that any connected component of A(Pcon \M(A)) is in K1 ∪ K2
and let

B1, . . . ,Bm

be the connected components of A(Pcon \M(A)). Let L ⊆ (ΣA)ω be a locally decomposable
specification L = (Lp)p∈Pcon for A and let (Σc)c∈C be the underlying labeling of A. If condition (1)
holds then Theorem 5.7 tells us that the controller problem for A is decidable, so assume that
condition (2) holds and, moreover, Lp may be nondeterministic context-free. So, any Bj is in
K1 ∪ K2 and there is a p ∈M(A) such that Lp′ is regular for all p′ ∈ Pcon \ {p}, cf. Figure 5.3.
We abbreviate M = M(A) and CM =

⋃
p∈M w−1(p), that is, the channels in CM are precisely

the output channels of the non-reachable processes, and we set ΣM =
∏
c∈CM Σc.

First, for p ∈M , let Lp = {α ∈ ΣωM |PrΣp(α) ∈ Lp} and let

LM =
⋂
p∈M

Lp.

That is, LM is a global specification for the non-reachable processes of A. Now, a strategy
for a non-reachable process p ∈M is simply a word from (Σp)ω. Therefore, αM ∈ LM if, and
only if, there is a joint strategy σM = (σp)p∈M for the non-reachable processes such that any
global system behavior α of A which is consistent with σM fulfills all local specifications of the
processes in M and satisfies PrΣM (α) = αM . Moreover, since at most one specification Lp for
p ∈M is context-free and all others are regular, LM is context-free.

Now consider some connected component

Bi = B = (CB, rB, wB)

of A(Pcon \M) and let
p1 � . . . � pn

be the controllers of B. We consider here only the case where B is a two-flanked pipeline
with backward-channels but no backward channels from the last process. The other two cases –
pipelines with backward channels and two-flanked pipeline with backward-channels that consist
of only two controllers – can be treated very similar. Our construction proceeds in four steps.
First, we simulate the channels CM→B = CM ∩r−1(P ) from processes in M to processes in B by
channels from pn−1 to the other processes in B. Notice that all backward channels introduced in
this way are feedback channels. In the next step, we remove all feedback channels from B using
the construction described in Section 5.1.2. Then we construct the nondeterministic parity tree
automaton NB from Theorem 5.3 recognizing L(An)∩L(An−1), as described there. In the final
step, we construct an alternating parity automaton A that runs over words from (ΣCM→B

)ω and
checks that there is a tree in L(NB) which represents a language (a possible output language of
pn−1) that is constant on the channels CM→B) (which we have simulated by output channels of
pn−1).

Step 1. We define B̂ = (Ĉ, r̂, ŵ) and L̂ = (L̂1, . . . , L̂n) as follows. First, we set

Ĉ = CB ∪ CM→B ∪ CdM→B.

The channels from M to PB
con are simulated by the channels CM→B with

• w(CM→B) = {pn−1}
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• r̂(c) = r(c) for all c ∈ CM→B \ r−1(pn−1)
• r̂(c) = penv for all c ∈ CM→B ∩ r−1(pn−1).

That means, via the channels CM→B in B̂, pn−1 sends information to the respective recipients
of the original channels, or to the environment penv, in case pn−1 is the recipient of the channel.
Notice that, since pn−1 is better informed than any process in M , it can deduce the outputs of
all processes in M from its own inputs. Moreover, the channels CdM→B are duplicate channels
which are read by process pn and the modified specification L̂pn−1 of process pn−1 requires that
the information sent along the channels CM→B is the same as the information sent along the
channels CdM→B in each step:

• w(CM→B) = {pn−1} and r(CM→B) = {pn}
• L̂pn−1 is the intersection of

– {β ∈ (Σ̂pn−1) |PrΣpn−1 (β) ∈ Lpn−1}
– {β ∈ (Σ̂pn−1) |PrΣM→B

(β) = PrΣd
M→B

(β)}.
Clearly, the fact that the channels from CM→B that a process pi reads are now channels
from pn−1 instead of channels from processes in M does not require any modification of the
specification Lpi . So, apart from the equality constraint on the channels from CM→B and their
respective duplicate channels, the specifications of the processes are just as before. That means,
L̂pi = Lpi for i = 1, . . . , n− 2 and the specification L̂pn is Lpn , adapted to the new channels (on
which L̂pn does not impose any conditions).

Steps 2 & 3. First, we apply the construction described in Section 5.1.2 to remove all feedback
channels from B̂ which yields a two-flanked pipeline B̃ and a new specification L̃ = (L̃1, . . . , L̃n)
for B̃. Then we use the construction from [137] as described in Section 5.1.1 to obtain a
nondeterministic parity tree automaton NB = (B, QN , qNin , δN , colN ) over communication trees
t ∈ Tc(Σ̃n−1) which accepts such a tree if, and only if:
(1) There are strategies σ̃1, . . . , σ̃n−1 for p1, . . . , pn−1 such that

(a) σ̃1| . . . |σ̃n−1 generates a language Ln−1
out ⊆ Lω(t) over Σω01

(b) Each strategy σ̃i is locally winning on the language Liin ⊆ Σ̃ωi−1 generated by σ̃1| . . . |σ̃i−1
over Σω01

(2) There is a strategy σ̃n for pn that is locally winning on Lω(t)× Σω0,n.
However, this solution is still not sufficient for our concerns because process pn−1 is now in
charge of the channels CM→B but since it better informed than the processes in M , it may
create outputs on these channels that could not be produces by the processes in M . In fact, as
we have mentioned above, in order to be sure that pn−1 creates outputs on the channels CM→B

that are consistent with some strategy for the processes in M , pn−1 may not use any information.
To ensure this, we use the duplicate channels: We construct a solution of the controller problem
for B̃ as described above, where the language Lω(t) is constant on the channels CdM→B. That
means, there is some word µ ∈ (ΣdM→B)ω such that PrΣd

M→B
(Lω(t)) = {µ}. This is done in the

final step.

Step 4. We construct an alternating parity automaton AB over ω-words µ ∈ (ΣdM→B)ω such
that µ ∈ L(AB) if, and only if, there is a t ∈ Tc(Σ̃n−1) with

PrΣd
M→B

(Lω(t)) = {µ} and t ∈ L(NB).

The idea for the automaton is as follows. It runs over the word µ, universally spans a Σ̃n−1-tree
over µ and nondeterministically guesses a B-labeling for it, such that the resulting B-labeled
Σ̃n−1-tree t is in Tc(Σ̃n−1). Moreover, we have the additional constraint that AB only guesses
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the label > for a node u ∈ Σ̃∗n−1 if u = µ(< |u|). This can be achieved by ensuring, in each
step, that u is only >-labeled if last(u) = µ(|u| − 1). At the same time, AB simulates NB on t.
Formally,

AB = (ΣdM→B, Q, qin, δ, col)

with
• Q = QN × B× (Σ̃n−1 ∪ {ε})
• qin = (qNin ,>, ε)
• col(q, ζ, b) = colN (q)
• δ((q,⊥, b̃), a) =

∨
[ϕ∈δN (q,>)]

∧
[b∈Σ̃n−1](↓, (p,⊥, b)) where (↓b, p) ∈ ϕ

The case in the definition of δ that we have already done – where ζ = ⊥, that is, the label
that has been chosen in the previous step is ⊥ – is the obvious one: We just propagate ⊥ to all
directions from ˜Σn−1 and continue to simulate NB. The more involved case is ζ = >:

δ((q,>, b̃), ã) =
∨

[∅6=X⊆Σ̃n−1]

∨
[ϕ∈δN (q,>)]

∧
[b∈Σ̃n−1]

(↓, q(X,ϕ,b,ã))

where

q(X,ϕ,b,ã) =
{

(p,>, b) if b ∈ X and PrΣd
M→B

(b) = ã and (↓b, p) ∈ ϕ
(p,⊥, b) if (b /∈ X or PrΣd

M→B
(b) 6= ã) and (↓b, p) ∈ ϕ

Putting it All Together. Consider some µ ∈ L(AB), that means, there is a tree t ∈ Tc(Σ̃n−1)
such that PrΣd

M→B
(Lω(t)) = {µ} and t ∈ L(NB). As t ∈ L(NB), there is a joint winning

strategy σ̃ = (σ̃1, . . . , σ̃n) for the grand coalition for B̃ and L̃ such that the language generated
by σ̃1| . . . |σ̃n−1 over Σω01 is a subset of Lω(t). According to Proposition 5.5 the grand coalition
has a winning strategy σ̂ = (σ̂1, . . . , σ̂n) for B̂ and L̂ and it is easy to see from the construction
of σ̂ that the language generated by σ̂1| . . . |σ̂n−1 ◦ PrΣ̂n−1

over Σω
01 is also a subset of Lω(t).

(Notice that, by construction of B̃, Σ̃n−1 = Σ̂n−1.) So any global system behavior β̂ of B̂ which
is consistent with σ̂ satisfies PrΣd

M→B
(β̂) = µ.

We define the joint strategy σB = (σ1, . . . , σn) for the processes p1, . . . , pn in the architecture
A as follows. First, σi = σ̂i for i = 1, . . . , n − 2 and σn−1 = σ̂n−1 ◦ PrΣ

pn−1
out

. Moreover,
σn(u) = σ̂n(u_µ<|u|) for u ∈ (Σpnin )∗. Now consider any global system behavior α of A which is
consistent with σB and fulfills PrΣM→B

(α) = µ. We define β̂ = PrΣB(α)_µ.
Then PrΣpi (β̂) = PrΣpi (α) for i = 1, . . . , n − 2, so β̂ of B̂ is consistent with σ̃1, . . . , σ̃n−2

by definition of σ1, . . . , σn−2. Moreover, PrΣd
M→B

(β̂) = PrΣM→B
(β̂), so as σ̂ is winning, β̂ is

consistent with σ̂n−1. Finally, by definition of σn, β̂ is consistent with σ̂n, so altogether we have
that β̂ is consistent with σ̂. As σ̂ is winning, PrΣ̃pi (β̂) ∈ L̃pi and thusly PrΣpi (α) ∈ Lpi for
i = 1, . . . , n.

The converse from a strategy σB for p1, . . . , pn to a word µ ∈ L(AB) can be shown similarly.
Therefore, we have µ ∈ L(AB) if, and only if, there is a strategy σB = (σ1, . . . , σn) for the
processes p1, . . . , pn in the architecture A such that any global system behavior α of A which is
consistent with σ and satisfies PrΣM→B

(α) = µ, fulfills all local specifications of p1, . . . , pn.
Now let, for any connected component Bj of A(Pcon \M) let

L(ABj ) = {α ∈ ΣωM |PrΣM→Bj
(α) ∈ L(ABj )}

and let
L =

m⋂
j=1

L(ABj ) ∩ LM .
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Figure 5.3: Generic decidable architecture.

Then we have L 6= ∅ if, and only if, there is a word µ ∈ LM such that PrΣM→Bj
(µ) ∈ L(ABj )

for each j, that means, for each j:
• there is a joint strategy σBj for the controllers in Bj

• each system run α of A that is consistent with σBj and satisfies PrΣM→Bj
(α) = PrΣM→Bj

(µ)
fulfills all local specifications of the controller in Bj .

As we have mentioned, the words in LM correspond directly to strategies for the non-reachable
processes, so we conclude that L 6= ∅ if, and only if, the grand coalition a joint winning strategy
for A and L. Now, any of the languages L(ABj ) is regular because alternating parity ω-automata
and deterministic parity ω-automata are equally expressive (Theorem 3.8 and Theorem 2.8).
Therefore, L is context-free, so emptiness of L can be decided.

Remarks. From our proofs and constructions in Section 5.1 and Section 5.2, we obtain some
amendments to Theorem 5.14.

Weaker Specifications: By Theorem 5.9 and Theorem 5.10, all undecidability results for deter-
ministic context-free specifications hold even for deterministic realtime 1-counter specifications.
It is also not very hard to see that all undecidability results go through for safety conditions:
In the proofs of Theorem 5.9 and Theorem 5.10 it is sufficient to have DR1-C automata that
use a safety acceptance condition and in the proof of Theorem 5.11, all specifications can easily
be seen to be recognizable by an ω-automaton that uses safety acceptance. For Theorem 5.12
and Theorem 5.13 we did not demonstrate the technical details but for these results, safety
conditions suffice as well, cf. [137, 135, 80, 190].

Enumerability and Finite State Strategies: Any of the controller problems that is not
decidable, is not even recursively enumerable as has been stated in our undecidability results.
On the other hand, these proofs do not directly establish undecidability of the finite state
winning strategy problem, that means, does the grand coalition have a joint winning strategy
σ = (σ1, . . . , σn) such that each σi can be implemented by a finite memory structure? The
reason is that our reduction from non-halting problems, while showing non-enumerability, does
require the controllers to use infinite state strategies because they have to cover the infinite
number of steps that the machine runs.10

10Notice that obviously we cannot have both at the same time because the finite state controller problem for
(not necessarily locally decomposable) deterministic context-free specifications is recursively enumerable for any
architecture: We can successively enumerate all finite state controllers using one state, then those using two
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Nevertheless, the proofs of all theorems from Section 5.2 can be adapted so that they show
undecidability of the finite state controller problem. The key step is to perform reductions from
halting problems instead of non-halting problems. However, this also involves different kinds of
winning conditions. For Theorem 5.9 and Theorem 5.10, for example, we need DR1-C automata
with reachability acceptance condition. Moreover, for Theorem 5.12 and Theorem 5.13 we need
specifications that can express at least disjunctions of safety and reachability conditions. The
original proof (for not necessarily locally decomposable specifications) can be found in [171], for
adaptions to locally decomposable specifications see [137, 86].

Nondeterministic Contextfree Specifications: The addendum concerning nondeterministic
context-free specifications establishes, in fact, the only case where such a specification can be
allowed: The controller problem for A is undecidable as soon as there is some reachable process
that has a nondeterministic context-free specification. The reason is that already the controller
problem for the single controller architecture A1 is undecidable for nondeterministic context-free
specifications, cf. Section 2.2.2 and Section 3.1.3 and if we have a process p that reads some
channel from the environment and has a nondeterministic context-free specification, then the
controller problem for A comprises the controller problem for A. If, on the other hand, p is
merely reachable from penv via some directed path p0 → p1 → . . .→ pk = p, then the controller
problem for A1 can be easily reduced to the controller problem for A: Given a specification
L for A1, we label the channel from pi to pi+1 for i = 0, . . . , k − 1 with ΣA1

c∈ , where cin is the
channel from the environment to the single controller in A1. Moreover, we label some output
channel of p with ΣA1

cout
, where cout is the external output channel of the controller in A1. Then

we require that all the processes p1, . . . , pk−1 just propagate the signals that they receive from
penv in any step while pk = p has the same specification as the controller in A1 (up to the delay
that is created by propagating the signals from p0 to p.)

Processes without Output Channels. So far, we have assumed that any controller has
at least one output channel. We have already mentioned in Section 2.1.3 that, for locally
decomposable specifications, this assumption cannot be neglected a priori: Processes that
do not have any output channels may still increase the expressiveness of the individual local
specifications. This is very similar to the way in which non-reachable processes can connect
certain channels and increase the expressiveness of local specifications. As we have seen in
Theorem 5.14, non-reachable processes may be connected arbitrarily among each other and
may send information to other controllers in an arbitrary fashion. Processes without output
channels, on the other hand, do not send information to any process, so in particular, they are
not connected among each other at all, but they may receive information from other processes.

However, as we have seen in Theorem 5.13, as soon as a controller p receives information from
two controllers p1 6= p2 which are both reachable, then the controller problem is undecidable,
even if p does not have any output channels. Now assume that p receives information from
processes p1, . . . , pk but at most p1 is reachable. First, if p has a regular local specification, then
p can be eliminated as follows: Let ci be the channel from pi to p. We re-define r(c1) = penv
and r(ci) = p1 for all i = 2, . . . , k. Then the local specification of p can be checked at p1 and
since none of the processes p2, . . . , pk is reachable, this construction does not harm decidability
of A. If p has a deterministic context-free specification then, since p is reachable, Theorem 5.10
yields that as soon as there is some process p′ that is connected to p and not better informed
than p, then A is undecidable. So, if A is in fact decidable then we have k = 1 and the only
process that is connected to p1 and is not better informed than p1 is p. So in this case, A is a
pipeline with last process p, so p can also be eliminated by incorporating its local specification
into the one of p1. Since A is still a pipeline with last process p1, A remains decidable.

Therefore, although Theorem 5.14 does not hold in the stated form if we allow controllers

states and so on. Moreover, once we have constructed a joint finite state strategy σ, we can check whether it is
winning: The set of all system runs that are consistent with σ is then regular and X ⊆ Y is decidable if X is
regular and Y is deterministic context-free.
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without output channels, we can extend the characterization to this case: We inspect each such
controller and check, according to the cases constituted above, whether this controller makes
A undecidable. If we don’t find any such controller then we know that we can characterize A
along the patterns from Theorem 5.14, ignoring the controllers without output channels. To
solve the controller problem for a given specification, we then eliminate all processes without
output channels in advance, as described above.

Complexity. Recall that the complexity of the controller problem for pipeline architectures is
nonelementary, cf. 3.3: Given a pipeline Dn,p with n controllers and an LTL specification ϕ,
solving the controller problem for (Dn,p, ϕ), asymptotically, takes time at least expn(|ϕ|). The
reason is the iterative application of a construction which consists of removing alternation from
a parity tree automaton and simulating the resulting nondeterministic parity tree automaton by
the next alternating parity tree automaton. Since this nondeterministic parity tree automaton
is exponentially bigger than the original alternating one, we get an exponential blow up in
each step. The same kind of construction has been applied to solve the controller problem for
two-flanked pipelines with locally decomposable regular specifications. In fact, it is not hard
to see that also for locally decomposable regular specifications, the controller problem has a
nonelementary complexity, even for straight pipelines.

The reason is that we can simulate an arbitrary regular specification L for a pipeline A with
controllers p1, . . . , pn by a collection of local regular specifications L1, . . . , Ln, see also [135]:
Add backward channels ci1 for i = 2, . . . , n which are labeled with Σci1 = Σpiout and modify the
local specification of pi to require PrΣci1 (β) = PrΣpiout

(β) for each local run of pi. That means,
pi must write the same signal to ci1 that it writes into its original output channels in each step.
Then, the global specification L can be checked using just L1. Moreover, using the construction
from Section 5.1.2, we can transform the modified system back into a system with a pipeline
architecture and a locally decomposable regular specification. Clearly, this whole construction
takes only time polynomial in the size of the system and the specification.

Corollary 5.15. The controller problem for Dn,p is n-Exptime-hard for locally decomposable
regular specifications.

Now, in view of practical applicability of the decision procedures that we have developed
(and those that were already known previously for distributed systems [171, 129, 137]) this
may seem very discouraging. On the other hand, in [129], it has been mentioned that the high
complexity of synthesis algorithms is somewhat misleading because it is measured only in terms
of the size of the specification while the complexity of verification algorithms is measured in
terms of the size of the system as well. Although the system about which we’re talking is yet to
be build in the case of synthesis, it might seem more appropriate to take its size into account as
well. Since those systems have nonelementary size as well (cf. Section 5.4), the complexity then
appears in a different light.

5.4 Controller Synthesis
Theorem 5.14 provides us with a comprehensive yet simple and, in particular, decidable criterion
for the decidability of a given architecture for locally decomposable regular and context-free
specifications and there is an algorithm that solves the controller problem for any decidable
architecture. Now, as usual, once we know that a joint winning strategy for the grand coalition
exists, we also want to implement such a strategy by some kind of computing device. We have
already discussed in Section 3.2.1 how we can obtain such implementations by iteratively applying
Rabin’s regularity theorem (Theorem 3.7) and plugging in the solution from the last step. Here,
we will also obtain implementations of winning strategies from our automata theoretic solution
of the controller problem for the decidable architectures for locally decomposable specifications.
However, since the trees over which the automata run do not directly represent strategies for
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the controllers, the construction is more involved. We consider only the regular case and we will
see that finite state strategies are sufficient. We will make some remarks on the context-free
case at the end of this section.

In the following, consider a distributed system with a locally decomposable specification

D = (A, (Σc)c∈C) with A = (C, r, w) and L = (Lp)p∈Pcon .

such that Lp is regular for all p ∈ Pcon and A is decidable for locally decomposable regular
specifications, that means, each connected component of A(Pcon \M(A)) is in K1∪K2 as defined
in Section 5.3. Let B1, . . . ,Bm be the connected components of A(Pcon \M(A)) and, for each
Bi let ABi be an alternating parity automaton over words µ ∈ (ΣM→Bi

)ω as in the proof of
Theorem 5.14.

We have to start at the end. If the grand coalition does have a winning strategy for (D, L)
then L 6= ∅, so there is a word ν ∈ L. According to Rabin’s regularity theorem11 there is also a
regular word ν ∈ L, that means, ν can be generated by a finite automaton

C = ({|}, QC , δC , qCin, τC)

with output function τC : QC → ΣM as ν(k) = τC((δC)∗(u)) for u = |k. This automaton
immediately yields an implementation of a joint strategy σMν for the non-reachable processes.
Moreover, this strategy can be easily decomposed into individual strategies σp for p ∈ M by
simply projecting to the respective output of p. (Recall that a strategy for p just depends on
the ticks of the system.)

Now we want to synthesize a joint strategy for all the reachable processes that agrees with
ν. For this, we can consider each component Bi individually as in the proof of Theorem 5.14.
Again, we consider only the case where B is a two-flanked pipeline with backward-channels but
no backward channels from the last process. So, consider some connected component

Bi = B = (CB, rB, wB)

of A(Pcon \M) and let
p1 � . . . � pn

be the controllers of B. Moreover, let B̂ and B̃ be as in the proof of Theorem 5.14, that is,
B̂ simulates the channels from M to B by feedback channels and B̃ simulates the feedback
channels by forward channels. Now consider the following tree automata:

• An−1 = (B, Qn−1, qn−1
in , δn−1, coln−1)

• An = (B, Qn, qnin, δn, coln)
• N = (B, QN , qNin , δN , colN )

An−1 and An are the alternating parity tree automata from Theorem 5.3, applied to B̃ and
N is a nondeterministic parity tree automaton with L(N ) = L(An−1) ∩ L(An). Since ν ∈ L we
have

µ = PrM→B(ν) ∈ L(AB),

so there is some tree t ∈ L(N ) ⊆ Tc(Σ̃n−1) such that PrΣd
M→B

(Lω(t)) = {µ}. By construction
of An−1 and An we know that:

(1) There are strategies σ̃1, . . . , σ̃n−1 for p1, . . . , pn−1 such that
(a) σ̃1| . . . |σ̃n−1 generates a language Ln−1

out ⊆ Lω(t) over Σω01
(b) Each strategy σ̃i is locally winning on the language Liin ⊆ Σ̃ωi−1 generated by σ̃1| . . . |σ̃i−1

over Σω01

11Notice that here, Rabin’s regularity theorem is actually overkill as L is ω-regular. It suffices to use Büchi’s
result that any ω-regular language contains an ultimately periodic word.
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(2) There is a strategy σ̃n for pn that is locally winning on Lω(t)× Σω0,n.
Now we would like to synthesize such strategies, starting with σ̃n. As we have mentioned, the

problem is that the input trees of An do not represent strategies of process pn but just possible
inputs that pn might receive from pn−1. On the other hand, from the proof of Theorem 5.3 as
described in Section 5.1.1 we know that we can obtain an appropriate strategy for pn from an
accepting run of An: A run of An on some given input tree t ∈ Tc(Σ̃n−1) is a Σ̃∗n−1×Qn-labeled
N-tree ρ. Now, Qn has components (q, b, c) where q ∈ QSn is a state of the deterministic parity
automaton Sn recognizing L̃n, b ∈ Σn,e is some output signal of pn and c ∈ Σ0,n is some external
input signal of pn.12 Moreover, any run ρ has the property that for all (u,w) ∈ Σ̃∗n−1 × Σ∗0,n
there is exactly one node x in ρ that corresponds to (u,w), that means, PrΣ̃∗

n−1
(ρ(x)) = u and

the unique path from the root of ρ to x is labeled with w in the Σ0n-components.
Therefore, a run of An on t can be represented as a B×QSn ×Σn,e-labeled Σ̃n−1×Σ0,n-tree

ρ : (Σ̃n−1 × Σ0,n)∗ → B×QSn × Σn,e

where the B-components are the corresponding labels of t. Now, if such a tree ρ represents, in
fact, an accepting run of An on some input tree t ∈ Tc(Σ̃n−1) then any path through ρ which is
labeled with >ω in the B-component is labeled with an accepting run of Sn in the QSn -component.
So, indeed, ρ represents a strategy σ̃n for pn that is locally winning on Lω(t)× Σω0,n.

However, Rabin’s regularity theorem only guarantees that there is some regular input
tree, not a regular run. Even worse, the set of all (accepting) runs of a given alternating
tree automaton is not a regular tree language in general. The problem is that for a tree
ρ : (Σ̃n−1 × Σ0,n)∗ → B×QSn × Σn,e to be actually a run of An on some input tree t, it must
satisfy the consistency constraint that

PrB(u,w) = PrB(u,w′)

that is, the B-components that represent the labels of the input tree t may, of course, depend
only on the nodes of t and not on the nodes w ∈ Σ∗0,n. However, we already know that such
consistency constraints cannot be checked by tree automata, cf. Section 3.2.

On the other hand, if we consider runs of An on some fixed tree t ∈ Tc(Σ̃n−1) then these
B-components are determined by the labels of t – and if t is regular, then these labels can be
computed while running over ρ. Therefore, the set of all (accepting) runs of An on some regular
tree t is regular and therefore, by Rabin’s regularity theorem, we can find again a regular tree

t′ : (Σ̃n−1 × Σ0,n)∗ → B×QSn × Σn,e

which represents an accepting run of An on t, so it contains an implementation of a strategy σ̃n
for pn that is locally winning on Lω(t)× Σω0,n.

Now, since we need the same tree t also for synthesizing a winning strategy for pn−1, we start
by construction a regular tree t ∈ L(N ). However, we cannot take any such tree but we have to
construct one where PrΣd

M→B
(Lω(t)) = {µ}. Since µ can be generated by C (using projection to

ΣM→B) we can construct such a tree by plugging µ into the emptiness game for N .

Constructing t ∈ L(N ) with PrΣd
M→B

(Lω(t)) = {µ}. To guarantee that PrΣd
M→B

(Lω(t)) =
{µ}, we relativize the emptiness game of N to µ similar as described in Section 3.2.1. However,
here we don’t just take the product of the game graph G(An) and the automaton C that generates
µ, because now, µ is not a sequence of labels but of (partial) directions of the trees t ∈ Tc(Σ̃n−1).

In the game graph G(An, µ), positions of player 1 are of the form (q, p, ζ) where q ∈ QN , p ∈
QC and ζ ∈ B. Positions of player 0 are of the form (q, ζ, q1, . . . , qs, p) where Σ̃n−1 = {a1, . . . , as},

12Notice that we did not mention the fact that Qn contains the Σ0,n-component explicitly in Section 5.1.1.
However, we always assume that an alternating tree automaton carries its universal branching in its state space,
cf. Section 3.2.1 and Theorem 5.8. Here, this makes it easier to write down the strategy that we obtain from
such a run. However, in the end this will make no difference.

203



(q, ζ, q1, . . . , qs) is a transition of An and p ∈ QC. The initial position is (qNin , qCin,>). From a
position (q, p, ζ), player 1 can move to any position (q, ζ ′, q1, . . . , qs, δ

C(p, |)) such that

ζ = ⊥ =⇒ ζ ′ = ⊥.

From a position (q, ζ, q1, . . . , qs, p) can move to any position (qj , p, ζ ′) such that

ζ ′ = > ⇐⇒ PrΣM→B
(τC(p)) = PrΣd

M→B
(aj).

So, being in a position (q, ζ, q1, . . . , qs, p) of player 0 and in some node u ∈ Σ̃∗n−1 of the input tree,
we look at all the successors u · aj of u and for each such successor with PrΣd

M→B
(aj) 6= µ(|u|)

we predetermine the label ⊥ for u · aj . In this way, player 1 constructs a tree t ∈ L(N ) such
that, for each node u ∈ Σ̃∗n−1,

PrΣd
M→B

(u) 6= PrΣM→B
(µ(< |u|)) =⇒ t(u) = ⊥,

that means, PrΣd
M→B

(Lω(t)) = {µ}.

Constructing σ̃n. Now we can use t to construct a strategy σ̃n for pn as described above: We
construct a nondeterministic parity tree automaton A′n that runs over a B×QSn ×Σn,e-labeled
Σ̃n−1 × Σ0,n-tree t′ and checks that t′ is an accepting run of An on t. For this, A′n uses the
finite automaton Ct that generates t to compare the B-labels of t′ with those of t. Moreover, A′n
simulates An which can now be done by a nondeterministic tree automaton: Nondeterminism
is needed because A′n still has to guess the transitions of An that have been used to build
the alleged run t′. On the other hand, alternation is not needed because the branching of t′
comprises the universal branching of An. Now, by Rabin’s theorem we can construct a regular
tree t′ ∈ L(A′n), from which we immediately obtain an implementation of a strategy σ̃n for pn
that is locally winning on Lω(t)× Σω0,n.

Constructing σ̃n−1, . . . , σ̃1. When trying to synthesize a strategy σ̃n−1 for the process pn−1,
we run into the same kind of problem as before: A tree t ∈ Tc(Σ̃n−1) does not represent a
strategy for pn−1 but merely possible outputs that pn−1 might send to pn. Again, we have
to construct a regular run of An−1: In any run ρ of An−1 on some tree t ∈ Tc(Σ̃n−1) and
for any w ∈ Σ̃∗n−2, there is exactly one node x in ρ that corresponds to w, that means, the
unique path from the root of ρ to x is labeled with w in the Σ̃n−2-components. Now, the
states of An−1 have components (q, b, c, ζ) where q ∈ QSn−1 is a state of the deterministic
parity automaton Sn−1 recognizing L̃n−1, b ∈ Σn−1,e is some external output signal of pn−1 and
c ∈ Σ̃n−2 is some input signal of pn−1. Moreover, ζ is the label of the current node w ∈ Σ̃∗n−2
of the tree s ∈ Tc(Σ̃n−2) that An−1 guesses. Therefore, a run of An−1 can represented as a
B1 × B2 ×QSn−1 × Σn−1,e-labeled Σ̃n−2-tree

ρ : (Σ̃n−2)∗ → B1 × B2 ×QSn−1 × Σn−1,e

where B1 = B2 = B and the first B-component is the corresponding label of the input tree t.
As before, we construct a nondeterministic parity tree automaton A′n−1 that runs over such

trees t′ = ρ and checks whether t′ is an accepting run of An−1 on t, using the finite automaton
that generates t. Then we construct a regular such tree, which yields a strategy σ̃n−1 for pn−1
and a regular tree s ∈ Tc(Σ̃n−2) such that, by construction of An−1, the following holds:

(1) There are strategies σ̃1, . . . , σ̃n−2 for p1, . . . , pn−2 such that
(a) σ̃1| . . . |σ̃n−2 generates a language Ln−2

out ⊆ Lω(s) over Σω01
(b) Each strategy σ̃i is locally winning on the language Liin ⊆ Σ̃ωi−1 generated by σ̃1| . . . |σ̃i−1

over Σω01
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(2) σ̃n−1 ◦ PrΣ̃n−1
generates a language Ln−1

out ⊆ Lω(t) over Lω(s)

In the next step, we proceed completely analogously, using the tree s as a regular input tree
for An−2. In the end, we obtain a joint winning strategy

σ̃ = (σ̃1, . . . , σ̃n)

for the processes p1, . . . , pn in B̃ such that each σ̃i is implemented by a finite memory structure.
Moreover, σ̃1| . . . |σ̃n−1 generates a language Ln−1

out over Σω01 that satisfies PrΣd
M→B

(Ln−1
out ) = {µ}.

Constructing σB. The strategy σ̃ is a joint winning strategy for the grand coalition for B̃ that
is constant on the channels CM→B. We have seen in the proof of Theorem 5.14 how to construct
from σ̃ a joint strategy σB = (σ1, . . . , σn) for the processes p1, . . . , pn in the architecture A such
that any global system behavior α of A which is consistent with σ and satisfies PrΣM→B

(α) = µ,
fulfills all local specifications of p1, . . . , pn. This involves, in particular the construction described
in the proof of Proposition 5.5. It is easy to see how to obtain an implementation of σB from an
implementation of σ̃: We re-define the transition function of each automata so that it uses, for
the input that it expects on the additional channels (which have been introduced to simulate
the feedback channels), its own corresponding output in the last step. Once we have got an
implementation of such a winning strategy σBi for each component Bi we can easily combine
these strategies with σMν to obtain a joint strategy for the grand coalition for A and L.

Theorem 5.16. Let A be an architecture that is decidable for locally decomposable regular
specifications and let L be a locally decomposable regular specification for A such that the grand
coalition has a joint winning strategy for (A, L). Then one can effectively construct finite state
implementations of individual strategies σi such that σ = (σ1, . . . , σn) is a joint winning strategy
for the grand coalition for (A, L). The size of each individual strategy σi is at most expn(|L|).

Alternative Solution. Our construction for removing feedback channels in the context of
locally decomposable specifications is rather simple. So is the construction of an implementa-
tion of σB from a given implementation of σ̃ as obtained from the proof of Proposition 5.5.
Nevertheless, we have to modify the given system in advance which, in particular, involves the
specification of the system, that is, we have to manipulate the parity automata recognizing
the individual local specifications. Moreover, once we have an implementation of σ̃ we have to
manipulate the strategy automata in order to obtain an implementation of σB.

In [86] an alternative construction has been described that does not proceed via removal of
feedback channels but yields a more direct approach. Although the solution is more complicated
than just removing feedback channels and applying the construction from [137], it also offers a
more coherent method for solving the controller problem for locally decomposable specification
in the presence feedback channels because it does not involve any explicit manipulations of the
given system. So throughout the whole construction, we consider only the actual system for
which we want to synthesize a winning strategy. In particular, we do not have to modify the
strategy automata a posteriori. In the following, we give a rough description of the construction.
In particular, we explain the main concept, so-called strategy products of communication trees.13

As we have mentioned, feedback channels increase the expressive power of the individual local
specifications. So, if we don’t remove feedback channels a priori, the construction from [137]
cannot be directly applied. Instead, we rather need (partial) assembly points where we can
check the more global specifications. On the other hand, as we have already discussed, the
construction from Section 3.2.1 does neither work for two-flanked pipeline with regular local
specifications nor for pipelines with a deterministic context-free specification for the last process.

13A complete exposition of the construction can be found in the full version of [86], currently available at
www.logic.rwth-aachen.de. (Notice that the formulation of Lemma 5 as stated there is incorrect: The function
that generates a language L ⊆ Lω(tin) over Σω

0 should be the delay-composition of σ1, . . . , σi−1 as in Section 5.1.)
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The idea is to somehow combine the two approaches: We let the first controller p1 use an
extended strategy that anticipates the strategies of all other controllers (except for the last one,
if we deal with two-flanked pipelines) but we encode these strategies in the output language of p1.

This encoding of strategies in output languages is formalized by the notion of strategy product
of communication trees, introduced in [86]: Given a tree tin which represents input sequences
that a process receives and a tree tout which represents output sequences that the process may
write, we define the strategy product tin↪→ tout of tin and tout as a set of trees t, each of which
defines an assignment of input sequences from Lω(tin) to output sequences from Lω(tout), so it
yields a strategy σ(t) for the process.

Formally, for a tree tin ∈ Tc(Σin) and a tree tout ∈ Tc(Σout), the strategy product tin↪→ tout
is defined as the set of all B-labeled Σ× Σ′-trees t such that the following conditions hold:
(S1) if tin(u) = ⊥ or tout(v) = ⊥ then t(u_v) = ⊥
(S2) if tin(u) = > then there is exactly one v ∈ (Σout)|u| such that t(u_v) = >
(S3) if t(u_v) = > then there is some b ∈ Σout such that for all a ∈ Σin with tin(ua) = > we

have t(ua_vb) = > and t(ua_vc) = ⊥ for c ∈ Σout \ {b}
Now, given some t ∈ tin↪→ tout, the strategy σ(t) represented by t is defined as follows. For

u ∈ (Σin)∗ with tin(u) = >, let v be the unique element from (Σout)∗ with t(u, v) = > and let a
be the unique element from Σout with t(ub, va) = > for any b ∈ Σin with tin(ub) = >.

We set
σ(t)(u) = a.

Moreover, if tin(u) = ⊥ then σ(t)(u) = a for some a ∈ Σout. Notice that, in fact, for any
such t, we have PrΣin(Lω(t)) = Lω(tin) and PrΣout(Lω(t)) ⊆ Lω(tout). Moreover, notice that
tin↪→ tout ⊆ Tc(Σin × Σout).

Now using trees t ∈ tin↪→ tout that encode extended strategies for the controllers instead
of usual communication trees that just represent the output of one controller, we can proceed
similarly as in [137]. Of course, we have to show that we can handle such trees with tree
automata. As it turns out, strategy products have good regularity properties:

Proposition 5.17. Let A be a nondeterministic parity tree automaton over B-labeled Σin×Σout-
trees. The following tree languages are regular.
(1) The set of all B-labeled Σout-trees tout such that there is a B-labeled Σin-tree with tin↪→

tout ∩ L(A) 6= ∅.
(2) The set of all B-labeled Σin × Σout-trees t such that there is a B-labeled Σin-tree tin and a

B-labeled Σout-tree tout with t ∈ tin↪→ tout.

Property (1) can be used in the inductive construction for the processes pi with i ∈
{2, . . . , n− 1} where Σin = Σi−1 and Σout = Σ≥piout . A noteworthy detail of the construction is
the application of the widening operator wideΣb

i
in each step, where Σbi is the alphabet labeling

the backward channels of pi. That means, we project the backward channels of pi out: The
input trees t ∈ Tc(Σ≥piout ) of Ai also contain the outputs that pi writes into its backward channels
but the strategy for pi+1 must not depend on these inputs. The important observation here
is that the application of the widening operator does not increase the complexity by another
exponential:14 We can apply Proposition 3.4 directly to the alternating parity tree automaton
Ai which yields an alternating parity tree automaton Ãi of size polynomial in Ai. Only then,
we remove alternation and proceed to the next step in the iteration.

Moreover, notice that applying the widening operator at this point of the construction means
that the tree t′ = wideΣb

i
(t) ∈ Tc(Σ≥piout ) (where t ∈ tin↪→ tout ⊆ Tc(Σi × Σ≥pi+1

out ) is the tree that

14If it did, then the increased complexity would obliterate any possible merits of this solution.
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the automaton Ai+1 guesses) allows process pi to produce any possible output on its backward
channels: If process pi may produce u ∈ Σ∗i on ci according to t then pi may produce any
output u_v ∈ (Σi ×Σbi )∗ on Σpiout because t′(u, v) = > if, and only if, t(u) = >. To see why this
is appropriate notice that, while process pi+1 must take into account all outputs that pi may
produce on ci according to t, the processes pj with j < i do not have to take all the outputs
into account that pi may produce on its backward channels according to t′: The strategy that
pi uses is determined by the extended strategies of these processes.15 Therefore, a process pj
must take into account only those v ∈ (Σbi )∗ with t′(u, v) = > (for some u) that it has actually
chosen itself to be a response to some of its own inputs! Thusly, while t must be chosen carefully
(with as few >’s as possible), the extension of t to t′ can be chosen maximally (as wideΣb

i
(t)).

For the case of pipelines, property (2) gives us the main argument how to treat the last
process pn. For two-flanked pipelines, the last process is even easier because there are no
backward channels from it. In any case, the induction basis is the easiest step because the
inputs that p1 may receice from p0 are not restricted. Once we know that there is some joint
winning strategy for the grand coalition, we can synthesize such a strategy along the same lines
as above. Notice that, although the trees in L(Ai) encode strategies, a regular tree t ∈ L(Ai)
does not directly yield a strategy for pi: Such a tree is in Tc(Σ≥piout ), so it contains strategies
for the processes pj with j > i but not for process pi. Also notice that we have to apply the
widening operator in each step. Clearly, if t is regular then wideΣb

i
(t) is regular as well.

Size of Implementations. We have already mentioned in Section 5.3 that the undecidability
proofs from Section 5.2 demonstrate that there are distributed systems with two controllers and
locally decomposable safety specifications where the following holds: The grand coalition has
a joint winning strategy but each such strategy requires infinite memory (for both individual
strategies). Moreover, the corresponding reductions from the halting problem (rather than the
non-halting problem) demonstrate that there are such systems where the following holds:16

The grand coalition has a winning strategy σ where σ1 and σ2 can be implemented by finite
state machines but the size of these machines in the size of the specification is not computable.
(If it was, the controller problem could be decided by successively trying the finitely many
possible implementations of joint winning strategies using that many states, cf. Section 5.3. See
also [30].) However, these lower bounds on the memory apply to undecidable architectures.

For architectures which are decidable for locally decomposable regular specifications, the
constructions that we have presented yield that, whenever the grand coalition has a joint winning
strategy σ = (σ1, . . . , σn), then there is such a strategy where each σi is implemented by a
finite state machine. Furthermore, the size of the implementations measured in the size of
the specification is computable, but nonelementary. More precisely, given a pipeline Dn,p and
a locally decomposable LTL specification ϕ = ϕ1 ∧ . . . ∧ ϕn, for any joint winning strategy
σ = (σ1, . . . , σn), the size of each strategy σi is at least expn(|ϕ|).

Moreover, from the nonelementary lower bound on the computational complexity in Corol-
lary 5.15 we obtain a nonelementary lower bound on the overall size of the strategy σ as well,
using the same argumentation as above: If the size of each strategy σi could be bounded
by expk(|ϕ|) for some fixed k ∈ N then we could solve the controller problem for (Dn,p, ϕ)
by successively trying the finitely many possible implementations of joint winning strategies,
using at most expk(|ϕ|) many states. Once we have constructed such an implementation of
σ = (σ1, . . . , σn), checking whether σ is a joint winning strategy for the grand coalition simply
amounts to constructing an ω-automaton C that recognized all global system runs that are
consistent with σ and checking whether L(C) ⊆ L(ϕ).

The point is that now, not only are there finitely many implementations using at most

15Recall that, by construction, Ai simulates all automata Aj with j < i, so it is guaranteed that a tree which
is accepted by Ai is actually part of such an extended strategy.

16Notice that in this case we need locally decomposable specifications that can express at least disjunctions of
safety and reachability conditions.
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expk(|ϕ|) states, but the number is elementary in the size of the specification. So trying all these
possible implementations successively yields a decision procedure that is also elementary in the
size of the specification which contradicts the lower bound on the complexity, cf. Section 5.3.17

Therefore, we cannot hope to obtain implementations of lower size than we get from the
methods that we have presented here. The best we can do is to choose the lesser evil – removing
feedback channels or constructing larger tree automata. Of course, there may be cases where it
is possible (or even desirable) to remove feedback channels from the actual system instead of
adapting the implementation to the original system with feedback channels. However, if the
communication structure of the system is already implemented by some sort of expensive wiring
or something, then this might not be the best thing to do.

Contextfree Specifications. So far, we have considered the implementation of strategies for
the controllers only for architectures where each process has a regular local specification. If
there is some controller in the architecture that may have a context-free local specification then,
according to Theorem 5.14, this controller is either not reachable or the whole architecture is a
pipeline. Let us consider the first case. As in the regular case, we start with some ν ∈ LM but
this time, ν cannot be generated by a finite state automaton but we have to use a pushdown
automaton with output to represent ν finitely.18

In the next step, we play the emptiness game of the tree automaton N relativized to
µ = PrΣM→B

(ν) just as before only that now, this game is not played on a finite graph but on
an infinite graph generated by a pushdown automaton. By Walukiewicz’s result [219], we can
synthesize a pushdown strategy for player 1 which yields a tree t ∈ L(N ) that is generated by a
pushdown automaton and agrees with µ. We continue this procedure just as in the regular case
but now, in each step, we have a tree at hand that is generated by a pushdown automaton and,
accordingly, we have to solve a parity game on a pushdown graph to construct the next tree. In
the case where we have a reachable process with a deterministic context-free specification and
the whole architecture is a pipeline, we proceed analogously, starting from the emptiness game
for the nondeterministic parity pushdown tree automaton An.

A noteworthy point about this construction is that, in general, it yields a joint strategy
σ = (σ1, . . . , σn) for the grand coalition where each σi is implemented by a pushdown automaton,
even if the only process with a context-free specification is not reachable. It is also not hard to
see that this is unavoidable, that means, in general, any controller pi needs a pushdown memory
as soon as there is some local specification that is context-free.

17Notice that this reasoning does not necessarily result in a precise lower bound of expn(|ϕ|). It is mentioned
in [129], however, that such a lower bound does hold.

18Notice that such an automaton is guaranteed to exist, for example, by [219].
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Chapter 6

Knowledge in Multiplayer Games

Our perception of the uncertainties and communication of the players in a game was rather
pragmatic throughout the previous chapters and driven by the mere need to model the limited
information of individual processes. In particular, in a distributed system the information that
a process receives is determined by its communication channels and constitutes its strategic
powers. These strategic powers, in turn, can be captured by tree automata so that for deciding
the controller problem, we never have to retrace the epistemic dynamics of the process’ state of
mind. We conclude our presentation with a more explicit analysis of knowledge in multiplayer
games and we incorporate our models into a more epistemological context.

In fact, while the construction in Section 3.5 can be straightforwardly derived from the usual
powerset construction for nondeterministic reachability ω-automata, the knowledge tracking
construction that we have advertised as a generalization of the powerset construction from
Section 3.5 and as a method to obtain an explicit representation of the knowledge of the players
in an arbitrary multiplayer game on a (finite) graph. calls for some basic knowledge about
epistemic models and, in particular, possible worlds semantics. We present the required notions
in Section 6.1.1. We shall, however, not be too precise and formal at this point but merely present
some basic concepts and intuitions that are helpful to comprehend the construction in Section 6.2
and to deepen the understanding of epistemic reasoning in multiagent systems in general. In
particular, we introduce the so-called S5-axioms and briefly discuss their consequences on the
properties of knowledge in the models that we consider.

In Section 6.1.2 we have a look at the epistemic temporal logic ETL and we show that
winning conditions which can be defined in ETL using both, synchronous and asynchronous,
knowledge operators are, in fact, ω-regular. This yields a simplified proof of the decidability of
ETL model checking on synchronous systems and it also extends this result to our particular
case of asynchronous observability. Moreover, it has significant consequences on the decidability
of synthesis from ETL specifications which we will discuss in Section 6.1.4. There, we also have
a closer look at the strategic dependencies in multiplayer games, in particular, the fact that the
question whether the grand coalition of cooperating players has a winning strategy includes the
possibility of the players to coordinate on the joint strategy. We have already discussed this
issue in Section 2.1.3 as well as in Chapter 5 and we return to it in this more epistemic context.

We present the knowledge tracking construction in Section 6.2. The main idea is to represent
each possible epistemic state of the grand coalition during a play of the game as an individual
position in the new game graph. Moreover, the strategic dependencies are captured as follows:
Each player of the grand coalition chooses, in each possible world of the current epistemic state,
an action and the successor states of the current state are determined by all these possible
macro joint actions (Section 6.2.1). Notice that, by definition, this construction yields an infinite
game graph. The main feature of the construction is now that, under the assumption of an
observable winning condition, it allows for a more succinct representation by taking the quotient
under homomorphic equivalence. That means, we can identify all homomorphically equivalent
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epistemic models and still obtain a game that is equivalent to the original game with imperfect
information in the sense of (uniformly translatable) winning strategies (Section 6.2.2.)1

In general, the resulting game graph will still be infinite. In fact, we cannot represent all
the possible mental states of the grand coalition in a finite way in general, even for games with
winning conditions that allow positions strategies in the full information case: The reason is
the higher order knowledge of the players, that is, knowledge about knowledge about . . . We
discuss this issue in Section 6.1.4. However, we will see that for hierarchical games, abstraction
by homomorphic equivalence is, indeed, sufficient to yield a finite result for all game graphs.
So we can infer that the strategy problem for hierarchical games with observable deterministic
context-free winning conditions is decidable.

The method is also interesting beyond that result. First, as we have already mentioned in
the introduction, since the construction yields an explicit representation of the possible states
of knowledge of the players and the dynamics of this knowledge, analyzing the possibilities
and limitations of knowledge tracking enhances the understanding of epistemic reasoning in
multiplayer games. Moreover, the method may serve as a platform to approach decidability
results for classes of games where we do not only limit the patterns of information flow between
the players but also the structure of the game graph as well as amount of uncertainties that a
player may have, cf. Chapter 4.

And finally, the method yields a semi-decision procedure for arbitrary games with observable
omega-regular winning conditions already in its current form. That means, the procedure
is not guaranteed to terminate but, if it does, it yields the correct answer.2 In particular,
while all known automata-based methods rely on a fixed structure of the communication graph
(architecture) [171, 129, 137, 80], cf. Section 3.2.1 and Chapter 5, this algorithm does not require
any a priori restriction of the information flow between the players. So, while we know that for
(in)appropriately chosen game graphs, the method is bound to fail, even for safety conditions (cf.
Theorem 5.11), the method can take advantage of the structure of the given game graph and
may solve instances for which there is no way to get even started with automata-based methods.

Except when mentioned otherwise, throughout this chapter, we use a somewhat different
version of game graphs with partial information which has the form

G = (V,∆, (∼Vi )i∈n) with ∆ ⊆ V × (A1 × . . .×An)× V,

that means, we don’t have actions for the environment explicitly but it just resolves the nonde-
terminism that is left over once all the players 1, . . . , n have chosen their actions. We denote
A = A1 × . . . An. We view a play as a sequence of positions π = v0v1 . . . such that for all l ∈ N
there is some al ∈ A with (vl, al, vl+1) ∈ ∆. In particular, winning conditions and strategies are
position based.3 So, we implicitly assume that all actions are indistinguishable for all players.
In particular, a player cannot distinguish his own actions. We will discuss the implications of
this assumption in Section 6.1.4. We also have an equivalence relation for the environment
player 0 which is meaningful in this more epistemic context where we refer to the knowledge of
the players explicitly.

This chapter is based on [172, 173, 31]. The figures in Section 6.2 are reproduced from [31].

1Notice that, since multiplayer games with observable safety conditions are undecidable in general, this result
is still nontrivial.

2Notice, however, that this does not yield recursive enumerability of the strategy problem for such games –
this would require the algorithm to terminate on all positive instances which is impossible because the problem
is not recursively enumerable, cf Chapter 5.

3It should be mentioned, that it is not difficult to incorporate actions into the constructions and results in
this chapter. Technically, however, it would be rather costly and result in a significant blow up of notation.
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6.1 Knowledge and Cooperation
We start with some background on knowledge and cooperation in infinite games and, more
generally, knowledge in any kinds of multiagent systems. We just give a broad overview over
some of the main ideas and concepts. For an in-depth treatment of epistemic reasoning in
multiagent systems we recommend the book [78] and the original fundamental work of Halpern
and Moses [105].4 The articles [16, 17] by van Benthem and the paper [180] discuss some
interesting notions concerning knowledge that are more related to games.

In Section 6.1.2 we consider the epistemic temporal logic ETL and we show how to translate
ETL formulas into S1S formulas. In Section 6.1.4 we discuss the implications of this translation
on synthesis from ETL specifications, in particular for hierarchical games. We also give a
detailed discussion of epistemic reasoning when strategic dependencies and winning conditions
come into play. This aims at deepening the understanding of knowledge in multiplayer games
and serves as a preparation for the construction in Section 6.2.

6.1.1 Reasoning About Knowledge
Reasoning about knowledge originates in philosophy where it establishes the field of epistemology.
Epistemology is concerned with the very nature of knowledge, that means, with its inherent
properties and tries to answer questions like

• How is knowledge acquired?
• How can we know what we know?
• How can we distinguish knowledge from belief?

The idea of using logical languages and methods to put the analysis of those questions on a
formal basis has been brought to full effect by the groundbreaking work of Jaakko Hintikka [109]
in 1962. Hintikka formulated several rules of consistency for the notion of knowledge which
(should) form the formal basis of reasoning about knowledge. Hintikka used a modal style logic
and he developed a possible worlds semantics for this language.

The modal logic has operators Ka where a refers to a person and Kap for a certain sentence
p means a knows that p. Semantics is given in terms of model systems which are sets of model
sets, each of which is a set of modal sentences that satisfy the rules of consistency. On a model
system, for a person referred to by a, an alternative relation is defined and the sentence Kap is
in a model set µ if, and only if, p belongs to any alternative µ∗ to µ with respect to a. In other
words, in a world µ, the person referred to by a knows the fact p if p holds in any world µ∗,
that a considers possible.

Possible worlds semantics were also investigated by other philosophers like Rudolph Carnap
and Saul Kripke and are now widely used on so-called Kripke structures which also encompass
Hintikka’s model systems in a more abstract setting. A Kripke structure has the form

K = (K,Prop, (Ei)i∈I)

• K is a (finite) set (of possible worlds)
• Prop is a set of unary relations (atomic propositions)
• each Ei is a binary relation (alternative relation)

So, a Kripke-structure is a directed graphs with labeled edges and, for any vertex k, a set
Φk = {P ∈ Prop | k ∈ P} of atomic propositions assigned to k, where Prop contains all the
relevant basic facts about the possible worlds. In a game for example one could have atomic
propositions like it is player i’s turn and action a is available to player i and so on. Epistemic
logic is defined by

ϕ ::= P |ϕ ∧ ϕ|¬ϕ|Kiϕ

4It is also worth mentioning that Hintikka’s groundbreaking essay [109] has been reprinted 2005 by King’s
College Publications.
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• K, k |= P if k ∈ P
• K, k |= Kiϕ if K, k̃ |= ϕ for all k̃ with (k, k̃) ∈ Ei

So epistemic logic is just basic modal logic with [i]ϕ written as Kiϕ and read as agent i knows ϕ.
We also define the dual operator Pi as Pi := ¬Ki¬ϕ which might be read as agent i considers it
possible that ϕ.

This formal treatment of knowledge has many applications. For example, in artificial
intelligence, a robot should not only complete his task but he should also know when his task
is completed which he can only guarantee using his sensors, to acquire basic data and using
logical inference rules, to obtain more complex knowledge. In economy, a bargaining situation
may require knowledge over certain facts which may be obtained using facts that are already
known but may slip the bargainers attention. Moreover, in our context of synthesis under partial
information, this is particularly important. For example, a safety critical action should only be
performed in a system, if the controller knows that the current state of the system ensures a
safe execution. Moreover, security protocols often involve requirements like no component of the
system will ever know the value of any internal variable of some other component.

Notice that the formalization of knowledge by means of Kripke structures entails that the
agents can do perfect reasoning, which is also called logical omniscience, that is, they know all
tautologies and they know all logical consequences of their knowledge, cf. [78]. More precisely,
if Mn is the class of all Kripke-structures with n agents, then the following propositions holds:
(1) Mn |= (A1) (Kiϕ ∧Ki(ϕ→ ψ))→ Kiψ

(Distribution Axiom)
(2) For all K ∈Mn: (A2) if K |= ϕ then K |= Kiϕ

(Knowledge Generalization Rule)
Moreover, in these applications, in particular in the context of synthesis under partial

information, it is often assumed that the alternative relations Ei are equivalence relations. First,
let us discuss the, quite far-reaching, consequences of this assumption on the logical system.
Afterwards we broach the issue of appropriateness. Let Mχ

n for χ ∈ {s, r, t} be the class of all
Kripke structures with n agents where all alternative relations Ei are symmetric, reflexive and
transitive, respectively. We say that a formula ϕ is valid in K ∈Mn, written K |= ϕ, if ϕ holds
at each vertex of K. The formula is valid in a class M⊆Mn, written M |= ϕ, if it is valid in
each structure from M. The following propositions hold:
(3) Mr

n |= (A3) Kiϕ→ ϕ

(Knowledge Axiom)
(4) Mt

n |= (A4) Kiϕ→ KiKiϕ

(Positive Introspection Axiom)
(5) Ms

n ∩Mt
n |= (A5) ¬Kiϕ→ Ki¬Kiϕ

(Negative Introspection Axiom)
These five axioms are also called the S5-axioms.5 The S5-axioms together with all tautologies of
propositional calculus and modus ponens as inference rule, form a sound and complete axiom
system for modal logic with respect to Ms

n ∩Mt
n ∩Mr

n, cf. [78]. However, the positive and,
even more, the negative introspection axiom are highly controversial among philosophers. In
fact, while (A1)-(A4) are also amongst Hintikka’s rules of consistency, he rejected the negative
introspection axiom (A5). Notice that by proposition (5) this means that the alternative relations
Ei will be not symmetric in general.

In our context (and in applications in computer science in general), the alternative relations
will usually be equivalence relations intrinsically and therefore, the S5-axioms are indisputable
in the relevant models. The reason why we have equivalence relations is that the alternative

5Notice that one can easily check that the above classes are not the largest classes in which the respective
axioms are valid.
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relation of an agent i is defined by the information that this agent has: A controller may have
some predefined information that is stored in some sort of memory (which is included in the
state space of the computing device implementing the controller) and any other information
that the controller has, is received via sensors, communication channels linking it to other
components and so on. This information concerns only a fixed amount of facts that we include
in the model a priori and it can be encoded by bit strings. The controller does not have any
form of uncontrollable perception, cognition or consciousness that would have to be taken into
account. So we can represent the knowledge of the agents (controllers) in such a system by a
Kripke structure

K = (K, (∼i)i∈n,Prop)

where K is the set of all possible states of the system, Prop is the set of relevant atomic facts
about the system that we have decided to include and we define

k ∼i k̃ ⇐⇒ Φik = Φi
k̃

where Φi
k ⊆ Φk = {P ∈ Prop | k ∈ P} is the information that agent i has about the state k.

So in the world k, agent i considers the world k̃ possible, if its information is insufficient to
distinguish whether the actual world is k or k̃. In a somewhat less precise sense we usually
say that the worlds k and k̃ are indistinguishable for agent i. Clearly, any relation ∼i is an
equivalence relation.

This demonstrates that alternative relations which are defined via some fixed amount of facts
that the agents have are equivalence relations. Clearly we can model any equivalence relation ∼i
on K in this way by using atomic propositions Prop = 2K with Φik = {[k]∼i}. However, usually
we write epistemic formulas over some fixed set Prop which is independent of K, so we do not
assume that the information that the agents may have about the system can be completely
described using Prop.

Notice that we have also included an alternative relation ∼0 for agent 0 which, in our
models, represents the environment/nature. In fact, throughout this section we assume that the
environment has partial information about the system as well. As we have mentioned repeatedly,
so far, the information of the environment about the system was completely irrelevant. However,
now that we address the knowledge of the components of the system explicitly, this is no longer
true. It might be, for example, desirable to be able to express that the environment does not
know the internal states of the controllers because knowing the internal states of the controllers
of the system might add up to breaking the systems security or something like that.6

Although the representation of knowledge as described above is very natural in the context
of the systems that we consider, we have to appreciate the properties of knowledge that this
particular model entails, that means, we have to be aware of the S5-axioms. As we have
mentioned, throughout the previous chapters, this issue was completely dispensable since we
never had to care about the actual states of mind of the agents but we were concerned only with
their strategic powers and handling and representing strategies appropriately. So we didn’t have
to concern ourself with the fact that from KiP and Ki(P → Q) it follows that KiQ holds as
well. However, now that we address the knowledge of the components of the system explicitly,
it is absolutely crucial to be aware of the fact that if, for example, a system invariably uses
RSA-encryption with a private key x and a public key y, and agent i knows the value of y, then
agent i also knows the value of x.7

Of course, if the controllers have a joint winning strategy, once we do have a finite state
implementation, their reasoning powers are fixed by the particular computing device. However,

6Notice that the argumentation why ∼i will be an equivalence relation in our setting does not apply to ∼0 if
we include the possibility that the environment may be a human user. However, we don’t discuss this issue any
further but stick with the assumption that any ∼i is, indeed, an equivalence relation.

7Notice that we had to deal with some sort of encryption functions already in the proof of Theorem 5.12.
However, it was not necessary to have an explicit epistemic representation of the knowledge of the players there
but it was sufficient to reason about their strategic abilities.
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if it is necessary for the controllers to break some encryption in the system in order to win,
then the computing device will have the capacity to do so. This is somehow a limitation of our
model because in many applications we would take the view that a task which requires to break
RSA-encryption is intractable: The computing devices would have to be too large and it would
take them too long to compute the necessary information. We do not discuss this issue or other
consequences of the S5-axioms here further. We do suggest, however, to mind their presence
and we refer to [78] and the literature given there for further discussions of this matter.

6.1.2 Epistemic Temporal Logic.
At this stage, the representation of the knowledge in a system as defined above does not directly
incorporate the dynamic character of reactive systems. It applies to static systems or it may
represent a snapshot of a dynamic system where, however, the agents’ state of the mind is
completely determined by their current observations and does not include their memory about
the past. This, of course, is crucial because the knowledge of the agents evolves during a system
run. In fact, as we have seen, even for winning conditions that allow positional strategies in the
full information case, infinite memory may be needed in systems with some information fork.
So, in general, there will even be infinitely many possible mental states that the agents may
have during a system run.8

To incorporate the dynamics of a system over time into the above representation of knowledge,
we take K to be the set of all histories π of events in the system instead of just current states.
Moreover, the atomic propositions are inherited from the states of the system, that is, π ∈ P
if last(π) ∈ P . The alternative relations ∼i can, in principle, be any equivalence relations
on K ×K. In the cases that we have treated in Chapters 4 – 5 the relations will be defined
by synchronous or asynchronous observability, given the equivalence relations on the possible
states/events of the system. In particular, the resulting Kripke structure is finitely presentable.9

On the other hand, in any formula of epistemic logic, we can only address a finite number of
particular points in time but we can not express eventuality or necessity which is crucial for
specifying nonterminating reactive systems. Therefore, we consider stronger epistemic logics that
also incorporate time in LTL-style. Many incarnations of this concept have been investigated,
for an overview and discussion we refer to [78, 104]. More recent approaches can be found
for example in [3, 68]. They also deal with model checking knowledge and information flow,
especially in interactive situations like games, but are significantly different from epistemic
temporal logic as we consider it here. We won’t discuss these approaches any further.

First, we subsume the above way of capturing the knowledge dynamics of a (nonterminating,
reactive) system by a Kripke structure with the abstract notion of a multiagent system, cf. [78].
A multiagent system has the form

E = (R, (Prop, L), (∼i)i∈n)

• R is a set of system runs
• L : R× N→ Prop is the propositional labeling
• each ∼i is an equivalence relation on R× N

A finitely generated multiagent system is one, which is defined in the above way from some given
description of a finite state system

S = (V,Prop,∆, (∼Vi ))
8As we have mentioned, the reason is the higher order knowledge of the players, cf. Section 6.1.4.
9Recall that our construction in Section 6.2 follows a different approach: There, we encapsulate each possible

state of mind of the agents, relative to strategic dependencies, as an individual position of the new (game)
structure.
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where V is a finite set of states and ∆ ⊆ V ×A× V is the move relation, assuming a finite set
A of actions. We denote the generated system by E(S). Each alternative relation ∼i is assumed
to be either ∼∗i or ←−∼∗i . The system is called synchronous if each ∼i is ∼∗i .

Moreover, for a state v ∈ V of S, by E(S, v) we denote the multiagent system that is defined
in the same way but consists only of those system runs that start in the initial position v. We
call such systems also initialized systems.

There are many other interesting cases of indistinguishability relations to be studied in the
context of epistemic logics. We have already discussed general methods to define equivalence
relations by means of logical formulas or automata. Let us just mention two more particular
cases which are especially interesting:

• Clock: (π, n) ∼i (ρ,m) ⇐⇒ n = m and last(π) ∼Vi last(ρ)
• Observational (Forgetful): (π, n) ∼i (ρ,m) ⇐⇒ last(π) ∼Vi last(ρ)

Now, epistemic temporal logic ETL is defined as follows:10

ϕ ::= P |ϕ ∧ ϕ | ¬ϕ |Xϕ |ϕUϕ |Kiϕ |

• E , (π, t) |= P if P ∈ L(π, t)
• E , (π, t) |= Xϕ if E , (π, t+ 1) |= ϕ

• E , (π, t) |= ϕUψ if there is some s ≥ t such that E , (π, s) |= ψ and
E , (π, r) |= ϕ for all t ≤ r < s

• E , (π, t) |= Kiϕ if E , (ρ, s) |= ϕ for all (ρ, s) ∼i (π, t)

We write E |= ϕ if E , (π, 0) |= ϕ for all π ∈ R. Moreover, for a finite state system S and
some state v ∈ V , we write

S, v |= ϕ :⇐⇒ R(S, v) |= ϕ.

Although we will not be concerned with common knowledge very much throughout our
studies, due to its central importance in the theory of epistemic reasoning, we define this notion
here as well. Epistemic Temporal Logic ETL +C with common knowledge is defined as ETL
with the additional rule

ϕ ::= CBϕ

where B ⊆ {1, . . . , n}. The semantics is defined as

E , (π, t) |= CBϕ if for all (ρ, s) ∼B (π, t) we have E , (ρ, s) |= ϕ

where ∼B is the transitive closure of the union of all ∼i for i ∈ B. That means,

E , (π, t) |= CBϕ ⇐⇒ for all i1, . . . , ik ∈ B : E , (π, t) |= Ki1 . . .Kikϕ.

Notice that if we write these knowledge statements for all i1, . . . , ik down explicitly, it reads
as follows:

• E , (π, t) |= Kiϕ: Everyone in B knows ϕ
• E , (π, t) |= KiKjϕ: Everyone in B knows that everyone in B knows ϕ
• . . .

Model Checking. Using this formalism, we want to check systems for epistemic properties:
Given a finite state system S, a state v and a formula ϕ ∈ ETL, does

S, v |= ϕ

10The abbreviation ETL is used in [18], but it is not quite standard and used for other logics as well. Here,
however, we shall use it only for epistemic temporal logic so that no confusion can arise.
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hold? This is called model checking knowledge and time. We first collect some of the very
fundamental results on model checking knowledge and time which help to appraise the expres-
siveness of the logical systems and the computational characteristics of formal reasoning about
knowledge (and time).

First, model checking knowledge without any temporal dynamics means to check a formula
of propositional modal logic on a finite Kripke structure. More precisely, the model checking
problem for epistemic logic is stated as follows: Given a finite Kripke structure K, a state k
and an epistemic formula ϕ, does K, k |= ϕ hold? This problem can be solved using the usual
labeling technique, cf. [78], which gives a time complexity that is linear in the size of the system
and the size of the formula. Where the size of the system is defined as

||K|| = |K|+ |∼0 |+ . . .+ |∼n |.

Moreover, the size of the formula is its length |ϕ| as a word. Notice that the complexity also
depends on the number of atomic propositions. However, since only those propositions are
relevant that actually occur in ϕ, this is already accounted for in |ϕ|.

Proposition 6.1. See for example [78]
The model checking problem for epistemic logic can be solved in time O(||K|| · |ϕ|). If we add
common knowledge, the problem can still be solved in polynomial time.

On the other hand, model checking time without knowledge means to evaluate LTL-formulas
on finitely generated systems. This problem is well known to be Pspace-complete.

Theorem 6.2. See for example [215]
LTL model checking is Pspace-complete.

Now we consider both, knowledge and time. The results that we mention here are from
the fundamental work of van der Meyden and Shilov [208] where they considered synchronous
systems.11 We start with the most expressive language.

Theorem 6.3. [208] ETL +C model checking is undecidable for synchronous two-agent systems.

Van der Meyden and Shilov explain this undecidability intuitively as a result of the arbitrary
reach through two orthogonal dimensions of the semantic structures, which the operators until
and common knowledge facilitate. This explanation seems very plausible, in particular in view
of the decidability of model checking for the logics that we get if we neglect at least one of the
two operators.

Theorem 6.4. [208] ETL−U +C model checking is Pspace-complete for synchronous systems.

Without the until operator, we have just basic epistemic logic with common knowledge
which is simple and, additionally, we have the next operator. This operator, however, can only
occur finitely many times in any given formula and so, a formula ϕ of this restricted logic is
only capable of looking at most |ϕ| steps into the system.

Theorem 6.5. [208] ETL model checking is decidable for synchronous systems but has non-
elementary time complexity.

Van der Meyden and Shilov provide two different proofs for this result. The first proceeds
via a reduction of to chain logic with equal level predicate. This logic is obtained from the
monadic logic of n successors SnS by constraining the set quantifiers to range only over chains,
that is, sets that are totally ordered by the prefix relation, and adding the equal level predicate.
Thomas has shown [201] that chain logic with equal level predicate is decidable on regular trees
by a translation into S1S. The other proof is more direct and incorporates the knowledge-depth

11Notice that their notion of synchronous perfect recall coincides with our notion of synchronous observability.
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of ETL-formulas, that is, the maximum nesting d(ϕ) of knowledge operators that occurs in such
a formula ϕ. The proof leads to a space complexity which is polynomial in |ϕ| · expd(ϕ)(O(||S||)).

We give yet another proof of Theorem 6.5 that proceeds by a more direct translation of
ETL-formulas into S1S-formulas and which we also adapt to not necessarily synchronous systems.
This shows that, for any given ETL-formula ϕ and finite state system S, the set L(ϕ) ⊆ V ω

of all runs π of S that satisfy E(S), (π, 0) |= ϕ is ω-regular. In particular, Theorem 6.5 holds
for not necessarily synchronous systems as well. However, the fact that L(ϕ) is regular turns
out to have also significant consequences on the strategy problem for games with ETL winning
conditions, in particular, hierarchical games, cf. Section 6.1.4.

Now given a finite state system S = (V,Prop,∆, (∼Vi )), a formula ϕ ∈ ETL defines a set

LS(ϕ) = {π ∈ V ω | S, (π, 0) |= ϕ}.

To prove that LS(ϕ) is ω-regular, we construct from ϕ an equivalent S1S formula.
Let us recall the definition of S1S: For an alphabet Σ we consider the signature TΣ =

{S,min, <, (Pa)a∈Σ} and for an ω-word α ∈ Σω we consider the TΣ structure

α = (ω, S,min, <, (Pαa )a∈Σ)

• S is the successor function on ω

• min and < are as usual
• Pαa = {i ∈ N |α(i) = a} for all a ∈ Σ

Now an MSO(TΣ) = S1S sentence defines an ω-language

L(ϕ) = {α ∈ Σω |α |= ϕ}.

We have already mentioned the result of Büchi from 1962, that an ω-language is regular if and
only if it is S1S definable. Moreover, the translations from formulas into automata and vice
versa are effective, cf. Section 2.2.

Before we demonstrate the translation from ETL formulas to S1S formulas, we state a simple
technical lemma on S1S that we use in the proof.

Lemma 6.6. Let ϕ(x) be an S1S formula, α ∈ Σω and let Xa for a ∈ Σ be set variables.
Moreover, let I : {Xa | a ∈ Σ} → N be an interpretation for these variables and let β ∈ Σω be
defined as β(λ) = a iff λ ∈ I(Xa). For any u ∈ N|x|:

(α, I, u) |= ϕ[Pa/Xa](x) ⇐⇒ (β, u) |= ϕ(x),

where ϕ[Pa/Xa] denotes the formula that is obtained by replacing each occurrence of Pa in ϕ
with Xa, for any a ∈ Σ.

Theorem 6.7. For any finite state system S and formula ϕ ∈ ETL, we can effectively construct
an S1S-sentence ϕ̂ such that L(ϕ̂) = LS(ϕ).

Proof. We construct, inductively over the structure of ϕ, an S1S formula ϕ̂(x) over the signature
TV such that for each system run π and all t ∈ N we have

S, (π, t) |= ϕ ⇐⇒ π |= ϕ̂(t).

For the LTL-part this translation is well known. We repeat the definition of ϕ̂ for the base
case and temporal operators as preparation for the more complicated case where knowledge
operators are involved. Boolean combinations are trivial. For a formula θ(x) and a term t, the
formula θ[x/t] is obtained from θ(x) by replacing (simultaneously) each free occurrence of x
with t.
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• ϕ = P  ϕ̂(x) =
∨
v∈P Pvx

• ϕ = Xψ  ϕ̂(x) = ψ̂[x/Sx]
• ϕ = ϕ1Uϕ2  ϕ̂(x) = ∃y(x ≤ y ∧ ϕ̂2[x/y] ∧ ∀z(x ≤ z < y → ϕ̂1[x/z]))

It remains to construct ϕ̂(x) for ϕ = Kiψ. First, assume that ∼i=∼∗i and let ψ̂(x) be the
corresponding formula for ψ according to induction hypothesis. Then we have S, (π, t) |= Kiψ
if, and only if, for each run ρ with ρ(≤ t) ∼∗i π(≤ t) we have S, (ρ, t) |= ¬ψ, so by induction
hypothesis, S, (π, t) |= Kiψ if, and only if, for each run ρ with ρ(≤ t) ∼∗i π(≤ t) we have
ρ |= ¬ψ̂(t).

The idea how to express this in S1S is to quantify over runs ρ by quantifying over partitions
of N into sets Xv, where v ranges over V , such that the following holds. Whenever this partition
constitutes a run ρ with π(≤ t) ∼∗i ρ(≤ t), then ρ |= ψ̂(t). To check that π(≤ t) ∼∗ ρ(≤ t), we
only have to compare the labels at corresponding positions within the two ω-words. Moreover,
ρ |= ψ̂(t) can be checked, according to Lemma 6.6, by replacing the atomic propositions Pv for
v ∈ V in ψ̂ with the set variables Xv. So, we define ϕ̂(x) as follows, where v ranges over V , that
is, we quantify over set variables {Xv | v ∈ V }.

∀Xv [ ∀y(
∨
v∈V (Xvy ∧

∧
w 6=v ¬Xwy) )

∧ ∀y∀z(Sy = z →
∨

(v,a,w)∈∆Xvy ∧Xwz)
∧ ∀(y ≤ x)(

∧
v∈V (Pvy →

∨
w∼ivXwy))

→ ψ̂(Pv/Xv) ].

Given the explanations above, it is easy to see that for all runs π and all t ∈ N we have
π, t |= ϕ if and only if π |= ϕ̂(t).

On the other hand, in the asynchronous case, that means ∼i=←−∼∗i , we have S, (π, t) |= Kiψ

if, and only if, for each run ρ and each s with ρ(≤ s)←−∼∗π(≤ t) we have ρ |= ψ̂(s), where s 6= t is
possible: Between each two observations of agent i, there may be a priori unboundedly long
sequences of states which are not observed by agent i. Due to this, it is not clear how to apply the
above approach for defining the formula ϕ̂ directly to the asynchronous case. Instead, we make
a detour through automata. We also apply negation, in order to be able to use nondeterministic
automata for the construction, which makes it somehow easier to deal with the unboundedly
long sequences of nonobservable events. We describe the construction here only informally.12

Using the usual translation of S1S-formulas into automata, we obtain a nondeterministic
Büchi-automaton A over the alphabet V × {0, 1} such that

L(A) = {π_αt ∈ (V × {0, 1})ω |π |= ¬ψ̂(t)},

where for s ∈ N, αt(s) = 1, if s = t and αt(s) = 0, if s 6= t. Notice that, by induction hypothesis,
L(A) = {π_αt ∈ (V × {0, 1})ω | S, (π, t) |= ¬ψ}.

The nondeterministic Büchi automaton B, while reading π_αt, nondeterministically guesses
a run ρ and some s such that π(≤ t)←−∼∗ρ(≤ s) and simulates A on ρ∧αs. To handle the fact that
s 6= t is possible, reading π_αt and guessing ρ_αs must be asynchronous for the first t steps.
More precisely, while not reading a letter (v, 1), the automaton B skips all the nonobservable
moves, that means u→ v with u ∼Vi v, which occur in π: it does not change the current state
but only keeps track of the current equivalence class of states.

As soon as B reads some observable move in π, it extends ρ by a sequence of nonobservable
moves (of possibly different length than the sequence which has occurred in π!) and inputs the
previous observable move together with this sequence of private moves into the automaton A.

12The rather lengthy technical description of the automaton can be found in the full version of [173], currently
available at www.logic.rwth-aachen.de. Notice that the notation there is slightly different because the construction
is tailored to game graphs with two players.
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Figure 6.1: A finite state system with two isomorphic runs

Finally, when B reads some letter (v, 1), then it once more extends ρ by two sequences of private
moves (before the position corresponding to v as well as after that position) and then inputs a
corresponding letter (w, 1) into A. Afterwards, B does not have to take care of equivalence of
prefixes of π and ρ anymore.

Extending the run ρ which B guesses by sequences of nonobservable moves is done similarly
as in the construction in Section 3.5.4: We have transitions which imply finite sequences of
nonobservable moves such that a corresponding infix of a run of A on ρ is guaranteed to exist
and which is also guaranteed to visit F if some flag is set accordingly. A similar reasoning as in
the proof of Proposition 3.32 shows, that B can be constructed effectively from A and S: All
conditions determining the membership of a transition to ∆B are regular properties of finite
histories in S and can thus be transformed into finite automata.

It is not hard to see, that L(B) = {π_αt | S, (π, t) |= ¬Kiψ}. Finally, using the usual
converse translation of Büchi automata into S1S formulas, we obtain an S1S-formula θ(x) such
that for all runs π ∈ V ω and all t ∈ N we have π |= θ(t) if, and only if, π_αt ∈ L(B). That means,
π |= ¬θ(t) if, and only if, S, (π, t) |= Kiψ, giving us the desired formula ϕ̂(x) = ¬θ(x).

Uniform definability. Notice that this result does not yield uniform S1S-definability of
ETL-specifications: If ϕ is an ETL-formula over unary predicates (Pa)a∈Σ for some finite set
Σ, then Theorem 6.7 does not give us a monadic second order sentence ϕ̂ over the signature
TΣ = {S,min, <, (Pa)a∈Σ}, such that for any finite state system S we have LS(ϕ) = L(ϕ̂). Even
more, it is obvious, that such a formula ϕ̂ does not exist in general, since the semantics of S1S
is completely determined by the word models π and does not additionally access the underlying
system S. So if the alphabet Σ over which the word models are defined must be independent of
G, there is no way to define knowledge operators:

Consider the ETL-formula ϕ = K0FP over Prop = {P} which expresses that agent 0
knows that at some point in the future (including now), P will hold and consider the system
S depicted in Figure 6.1. Moreover, for λ = 1, 2, 3 let πλ = vλw

ω
λ , Obviously, S, (π1, 0) |= ϕ

but S, (π2, 0) 6|= ϕ, since π3(≤ 0) ∼∗0 π2(≤ 0) and S, (π3, 0) 6|= FP . But for any S1S sentence ϕ
over τ = {S,min, <, P} we have π1 |= ϕ if, and only if π2 |= ϕ: since π1 and π2 are isomorphic
τ -structures, they cannot be distinguished by any S1S(τ)-sentence.

From Theorem 6.7 we can now easily derive that model checking for ETL is also decidable
for not necessarily completely synchronous systems.

Corollary 6.8. ETL model checking is nonelementary decidable.

Remark. The translation from Theorem 6.7 also works if we consider a mixed ETL-language,
where we have two knowledge operators Ki and ←−K i for each agent, where Ki has synchronous
semantics and ←−K i has asynchronous semantics. That means, ETL definable specifications are
still ω-regular if we can refer to the synchronous and the asynchronous view of each agent within
the same formula.
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6.1.3 Digression: Dynamic Epistemic Logic
Another approach to describing epistemic dynamics in a formal logical language is dynamic
epistemic logic DEL. In contrast to epistemic temporal logic which is evaluated on the unfolding
of a system, formulas of dynamic epistemic are evaluated on Kripke structures that represent a
static epistemic situation and the dynamic aspect is captured by the operators of the logic which
incorporate so called epistemic actions.13 In the following, an epistemic structure is a Kripke
structure where each alternative relation is an equivalence relation. Intuitively, an epistemic
action can be any kind of action that may happen in a given epistemic situation which only
affects the knowledge of the players, for example, revealing a card in a card game, privately
answering a question or making a public announcement about certain facts (atomic propositions)
that are included in the formal description of the situation.

Formally, dynamic epistemic logic is obtained from basic epistemic logic by allowing formulas
of the form

[α]ϕ,

where α is an epistemic action and ϕ is a formula. The meaning of the formulas is: After the
execution of the epistemic action α, the epistemic formula ϕ holds. For example, after the public
announcement that player 0 holds the blue card, the fact that player 0 holds the blue card is
common knowledge among all players. Formally, the semantics of [α]ϕ is defined as

K, v |= [α]ϕ ⇐⇒ (K, v)[α] |= ϕ,

where (K, v)[α] is the epistemic structure that is obtained from K, v by applying the epistemic
action α. We do not introduce epistemic actions and the epistemic update (K, v)[α] formally.
Essentially, α is an epistemic model as well and (K, v)[α] is the product of (K, v) and α. So,
roughly speaking, the knowledge of the agents in (K, v)[α] is the knowledge in (K, v), relativized
to the knowledge in [α].

The development of dynamic epistemic logic originates in logics for analyzing public an-
nouncements, a special form of epistemic actions, and was partly inspired by dynamic modal
logics like PDL and the modal µ-Calculus, as well as epistemic temporal logics. Early funda-
mental work includes the papers by Plaza [166] as well as Gerbrandy and Groeneveld [97]. The
development of dynamic epistemic languages which incorporate more general epistemic updates
started mainly in the late 90’s with works of Baltag, Moss and Solecki [10], Gerbrandy [95], van
Ditmarsch [69] and others. We refer to [209] for an excellent presentation and comprehensive
overview over the different incarnations and aspects of dynamic epistemic logic.

Here we just mention some fundamental properties of dynamic epistemic languages that
help to appraise the expressiveness of the languages. First, basic epistemic logic with epistemic
actions14 is no more expressive than basic epistemic logic [209]. That means, for basic epistemic
logic, updates with epistemic actions are just syntactic sugar. This changes, as soon as we add
common knowledge: Dynamic epistemic logic with common knowledge is more expressive than
epistemic logic with common knowledge but can still be translated into propositional dynamic
logic PDL and, hence, into the (two-variable fragment of the) modal µ-Calculus [121, 210, 19],
see also [209]. On the other hand, once we allow to iterate relativization (by action models)
then the satisfiability problem for the resulting logic becomes undecidable [146] and therefore,
the logic is not a fragment of the modal µ-Calculus anymore.

It is important to observe that dynamic epistemic logic, as we have considered it here, really
talks about epistemic changes only. That means, after an update with some epistemic action,
the knowledge of the players may have changed, but the factual situation remains unchanged. In

13In fact, we mix up the terminology of dynamic epistemic logic a little: What we call an epistemic action is
usually referred to as action model while epistemic actions establish a different language, cf. [209]. However, we
do not consider these kind of epistemic actions so, since action models are intuitively epistemic actions we well,
we like to refer to them as such.

14Defined by finite action models.
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contrast, the temporal operators of ETL allow to quantify over possible time points in the future,
at which factual change may have occured very well. In [19], a logic has been investigated that
is capable of expressing epistemic dynamics but also incorporates factual change. In [18], an
extensive study of the relationship between epistemic temporal logic and dynamic epistemic
logic has been carried out.

6.1.4 Reasoning About Knowledge in Games
In Section 6.1.1 we have studied formal methods for reasoning about knowledge in systems.
There, it didn’t matter whether the system was actually a game or a simple message passing
system or maybe a formal model for some sort of bargaining situation: We simply took the set
of all possible runs of the system and we let epistemic temporal formulas talk about the agents
state of minds throughout these runs. However, when it comes to games, we are particularly
interested in strategies. We will see that as soon as strategic dependencies are incorporated,
reasoning about knowledge becomes much more cumbersome. Of course, we cannot cover all
facets of this intriguing subject. We just give some main ideas and intuitions that help to
appreciate the complexity of knowledge in games and which serve as a preparation for our
construction in Section 6.2.

Strategic Dependencies. Let us start with the task to synthesize a controller for a system
that is specified by an ETL formula. We might proceed as follows: We take a game graph

G = (V,∆, (∼Vi ))

with partial information that models the system and we have a set Prop of atomic propositions
where we assume that G brings along an interpretation of the atomic propositions, explicitly
represented as subsets of V . Our approach would be to synthesize a joint winning strategy
for the grand coalition for the game played on G where the winning condition is W = LG(ϕ).
This, however, ignores one crucial point: E(G), (π, t) |= Kiψ holds if E(G), (ρ, s) |= ψ for all
(ρ, s) ∼i (π, t). So we do not take into account the fact that once the grand coalition follows
some joint winning strategy σ, the whole system will be relativized by σ, that means, only plays
occur which are consistent with σ.

But does this actually mean that the semantics of the knowledge operators should be
relativized to consistent plays as well? Intuitively, we would clearly assume that any player
knows his own strategy. Moreover, throughout the previous chapters we have repeatedly
insinuated that each player knows the strategies of all other players. Now, for the construction
of a joint winning strategy this assumption is perfectly appropriate because the formulation of
the strategy problem includes the possibility of the players to coordinate on the joint strategy:
The value of a strategy σi for player i is only relevant on histories which are already consistent
with the joint winning strategy, so in this sense, player i can rely on the other players playing
the strategies that they all have agreed on. This entails that a player i which is better informed
than a player j, can predict the actions of player j. We have used this fact excessively for the
construction of winning strategies, cf. Section 2.1.3, Chapter 3 and Chapter 5.

On the other hand, if we are concerned with an explicit representation of the players states of
mind, then we should revise the expression of the players knowing each others and, in particular,
their own strategies. In fact, to rely on a strategy being played is not the same as knowing that
a strategy is actually played, cf. Figure 6.2. There we use a turn based notation: As usual,
circle positions belong to player 1, while square positions belong to player 2. The dotted lines
indicate the indistinguishabilities of player 1, while player 2 has full information. Position goal
is the goal. It is obvious that player 1 and player 2 can coordinate on a joint winning strategy:
Player 2 chooses action l and, despite the fact that player 1 does not observe this action, relying
on this choice of player 2, player 1 chooses action a. On the other hand, given the history
π = 0 l 1, the question whether player 1 knows that he is in position left depends on how we
model the knowledge of player 1.
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Figure 6.2: Knowing strategies vs. relying on strategies
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Figure 6.3: Observing actions is not sufficient for deducing strategies

For example, a controller in a reactive system cannot be actually said to realize what it is
doing but it just sends and receives signals. Recall that we have not postulated that a player can
distinguish any two of its own actions in general. (In fact, in this chapter we use a model where
this is not the case.) We have merely mentioned that for the strategy problem this will make no
difference because for constructing a strategy we can rely on the fact, that the actions which are
carried out are those that the strategy prescribes. So, if we hide its own actions from a player
then it is not clear what we mean by saying that the player knows its own strategy, even less the
strategies of the other controllers. Here it also interesting to mention that observing the actions
of the other players in the game is not sufficient for knowing their strategies, cf. Figure 6.3.
We use the same notation as in Figure 6.2 and, additionally, diamond positions belong to the
environment player 0. Again, player 1 and player 2 can easily coordinate on a joint winning
strategy: At position 1, player 2 chooses action a and at position 2, player 2 chooses action b.
Player 1 then just needs to copy the action of player 2. On the other hand, player 1 cannot
deduce the strategy that player 2 uses from merely observing his actions: If he observes action a
then, since he does not know whether the game was in 1 or 2 in the previous step, he does not
know whether player 2 chooses action a at 1 or at 2 (or at both).15

So rather than assuming that the controllers actually know each others strategies, we might
define the knowledge of a controller as exactly that what can be deduced from the information
which it has received explicitly. Basically, this is a design decision that depends on the situation

15On the other hand, observing his own actions is sufficient for a player to know his own strategy: If π ∼∗i ρ
and player i is able to observe all his actions, then π is consistent with σi if, and only if, ρ is.
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at hand. However, as we will see, it has significant consequences.
First, let us see how we should model the strategy problem for ETL-specifications if we

assume that each player actually knows all the strategies that are being used. We would then
have to ask, given a game graph G with partial information and an ETL-formula ϕ, is there a
joint winning strategy σ for the grand coalition such that

E(G, σ) |= ϕ?

The multiagent system E(G, σ) is now defined with respect to σ, that means, it contains only
histories which are consistent with σ and therefore, the knowledge operators are relativized to the
joint winning strategy. Let us call this the realizability problem for ϕ, following the terminology
in [143] and distinguishing it clearly from the strategy problem with winning condition LG(ϕ),
where the knowledge operators are not relativized to strategies.

In [143] it has been shown that for two-player games and ETL-specifications that contain
only the synchronous knowledge operator K1 for player 1, this problem is decidable.

Theorem 6.9. [143] The realizability problem for ETL specifications using only the synchronous
knowledge operator for player 1 is decidable for games with two players and can be solved in
doubly exponential time.

Notice that if we assume that player 1 can distinguish any two of his own actions, then
the strategy problem for two-player games with ETL winning conditions and the realizability
problem for ETL specifications coincide because then, for any strategy σ of player 1 and all
histories π, ρ with π ∼∗1 ρ, we have that π is consistent with σ if, and only if, ρ is consistent
with σ. Therefore, relativization of the knowledge operators to σ is without effect.

If we do not make this assumption, decidability can still be easily obtained from the methods
that we have developed so far. Theorem 6.7 yields a (nonelementary) translation into an
ω-regular winning condition and for two-player games with ω-regular winning conditions we have
plenty of possibilities to solve the strategy problem.16 The doubly exponential time complexity
(which is actually singly exponential in the size of the system and only doubly exponential
in the length of the formula) cannot be obtained that directly but on closer inspection one
finds that it holds as well. We do not discuss any details here but just draw the conclusion
that, in the two-player case, the particular choice of knowledge semantics is not important for
the computational properties of the strategy problem. In the multiplayer case, the situation
is completely different: Theorem 6.7 still yields that any ETL-definable winning condition is
ω-regular and we already know that the strategy problem for hierarchical games with ω-regular
winning conditions is decidable.

Theorem 6.10. The strategy problem games on finite graphs with partial information and
ETL-definable winning conditions is decidable.

On the other hand, van der Meyden and Wilke have shown that the following result holds:

Theorem 6.11. [144] The realizability problem for ETL specifications using only the synchronous
knowledge operator for player 1 is undecidable for games with three players.

This also remains true with even stronger restrictions. In particular, player 2 can be assumed
to have full information while player 1 can be assumed to be blind. Moreover, the strategy of
player 1 may be fixed so that only the strategy of player 2 has to be actually synthesized. So,
as soon as we have three players and we assume that player 1 knows the strategy of player 2,
the problem becomes undecidable. This reveals a fundamental difference between the fact that
each player of the grand coalition can rely on the strategies which his companions are using and
making this explicit by assuming that each player of the grand coalition knows these strategies.

16Notice that once we have an ω-regular winning condition at hand, we can assume w.l.o.g. that player 1 can
distinguish any two of his own actions.
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Winning Conditions. We have seen that reasoning about knowledge becomes tricky if strategic
dependencies come into play because those dependencies generate a sort of implicit knowledge
on the possible histories and the question whether or not we make this knowledge explicit has
huge impact on the computational properties of the strategy problem for ETL specifications.

As soon as we incorporate winning conditions, reasoning about knowledge becomes even more
intricate, because winning conditions generate a similar form of implicit knowledge: Consider a
history π such that either each extension of π to a play in G is won by the grand coalition or
each such extension is lost by the grand coalition. Then any player i of the grand coalition can
completely ignore π, even if player i consider π possible, that is, π ∼∗i ρ, where ρ is the history
that has been played so far. The reason is just as for histories which are not consistent with the
joint strategy of the grand coalition: Player i can define his strategy on π arbitrarily as long as
it is still constant over equivalent histories (which is just a matter of sensible choice here).

Now in this case, one would certainly tend to keep this knowledge of the players implicit,
because histories where the winner is already determined are still very much possible. So it seems
not reasonable to say that player i knows that an atomic proposition P holds if last(ρ) ∈ P but
last(π) /∈ P . On the other hand, the construction that turns a reachability condition R ⊆ V
on some game graph G with partial information into an observable reachability condition does
exactly this: It turns the implicit knowledge of the players about relevant histories into explicit
knowledge about possible histories. So while this construction is certainly useful in view of
the strategy problem, it should be considered carefully when we are interested in the actual
knowledge of the players. Notice that, while observably decomposable winning conditions may
still generate implicit knowledge in general, observable winning conditions, of course, don’t.

Higher Order Knowledge. We already know that in general, infinitely many mental states
of the grand coalition may arise in a multiplayer game. This can be seen, for example, from
the fact that finite memory is not sufficient to implement winning strategies for the grand
coalition in safety games with two players which are incomparably informed, cf. Chapter 5. The
reason why we need unboundedly large epistemic structures to represent the mental states of the
grand coalition is the higher order knowledge, that means, knowledge about knowledge about
knowledge . . .. Let us start with a small example where the strategic dependencies on second
order knowledge become evident. Notice that player 1 has full information in the example.

Consider the game graph depicted in Figure 6.4. We use notation as in Figure 6.3. Although
player 2 has full information and the game has a reachability winning condition, player 2 needs to
know something beyond the current position: The positions that player 1 considers possible! If
the game is in y then player 2 needs to know whether the game was previously in position 1 or 2.
If the game was in 2, then player 1 knows that x is not the actual position and, remembering
that the previous position was 2, player 2 does know that. Analogously, if the game was in 1.
Then, player 2 can signal player 1 the actual position by choosing action b if the game was in 1
and choosing action a if the game was in 2.

It is also easy to see that the higher order knowledge of the players can evolve unboundedly
in games with at least two incomparably informed players. However, to see that an unbounded
amount of higher order knowledge has to be taken into account in the strategic reasoning, we
have to have a closer look at such a situation. In particular, we have to take into account the
winning condition! The following epistemic analysis was inspired by an example from [30]. The
relevant part of the corresponding extensive game with imperfect information is depicted in
Figure 6.5. The relations ∼∗1 and ∼∗2 on the histories of the game tree are indicated by dotted
and dashed lines, respectively.

Consider the distributed system D2 with two incomparably informed controllers, cf. Sec-
tion 3.2.1. The undecidability proof of Theorem 5.11 can be directly adapted to D2. In fact, it
gets even easier: The two controllers p1 and p2 directly receive the signals  and y from the
environment and they do not observe which signals the other controller receives.
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Figure 6.4: Higher order knowledge in a simple interactive situation

Assume that neither p1 nor p2 have received y in the first step. Clearly, p1 considers it
possible that p2 has received y in the first step. (Also notice that p1 knows that p2 considers
it possible that p1 has received y in the first step.) Now assume that neither p1 nor p2 have
received y in the second step as well. Then p1 considers it possible that p2 has received y in
the first or in the second step, but the possibility that p2 has received y in the first step is no
longer relevant, because there, the controllers have already won. In the following, let us treat
this as if p1 actually knows that p2 did not receive y in the first step.

However, and now it gets tricky, although p2 itself knows very well that it has not received
y in the first step, p2 does not know that p1 knows this. The reason is that p2 considers it
possible that p1 has received y in the second step and in this situation, p1 still considers it
possible that p2 has received y in the first step. In fact, if some oracle (like the father in the
muddy girls puzzle, cf. [78]) told p2 that p1 knows that p2 has not received y in the first step,
then p2 would know that p1 has received  in the first two steps. But given the objective of
the players as specified by the winning condition, this information must clearly be concealed
from p2. Therefore, although both players know that p2 has not received y in the first step,
this possibility can still not be dismissed from a full representation of the mental state of the
controllers!17

This effect is now propagated from stage to stage. In the next step, the reasoning has to be
taken to the next level of the knowledge hierarchy: p1 considers it possible that p2 considers
it possible that p1 considers it possible that p2 has received y in the first step. Therefore,
although both players know that p2 has not received y in the first step and both players know
that both players know this, this possibility can still not be dismissed from a full representation
of the mental state of the controllers: If p1 knew that p2 knows that p1 knows that p2 as not
received y in the first step, then p1 also knew that p2 has received  in the first three steps.
Therefore, we have to use unboundedly large (and hence infinitely many) epistemic structures
for a full representation of all possible mental states of the grand coalition.

We have already mentioned that if infinite memory is needed to implement winning strategies
in some game with a safety winning condition then the higher order knowledge of the players

17Notice that what we have described here seems like higher order uncertainties rather than higher order
knowledge. However, from a logical point of view, these notions are just dual to each other (Piϕ :≡ ¬Ki¬ϕ), so
we stick with the term of higher order knowledge.
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Figure 6.5: Unbounded Evolution of Higher Order Knowledge

necessarily evolves unboundedly. The reason is, roughly speaking, as follows: If this was not the
case then there would be only finitely many possible mental states of the grand coalition which
we could represent explicitly using our knowledge tracking construction from Section 6.2. Then
we could synthesize a positional winning strategy in the resulting game with full information
which yields a finite state winning strategy for the original game with imperfect information
which is not possible. It is important to realize, however, that the converse is not true in general:
If we consider a trivial winning condition for the system D2 like W = (ΣD2)ω then no memory
is needed to implement winning strategies for the resulting game with imperfect information.
However, the higher order knowledge of the players still evolves in the very same way as before.
The reason is that the knowledge of the players about the relevant plays according to the winning
condition (in this case: none) is implicit, as discussed above. In order to downscale the evolution
of knowledge in this case, we would have to make this implicit knowledge explicit.

Finally, we would like to comment on the notion of common knowledge in games. Due to
the absence of broadcast channels, common knowledge can be achieved in distributed systems
only about more or less trivial facts (like for example that the last event in the system has been
some action from ΣD). On the other hand, in game graphs with partial information we can
have public variables: Assume that the positions have the form v = (v0, v1, . . . , vn, w) where
vi is private to player i and w is public. Then the value of w is always common knowledge!
Now, in view of our translation of game graphs with partial information into distributed systems
one might wonder what kind of black hole absorbs this common knowledge if we apply the
translation. Well, it is the winning condition: The translation requires to encode the structure
of the game graph into the specification and the environment distributes the visible portions
of the current positions to the respective individual processes. However, the processes have no
way of knowing whether the environment does this faithfully. In fact, none of the processes
knows the value of w at any time. On the other hand, if the value of w which a process pi
has received is incorrect then the current history is irrelevant. Hence, taking into account the
implicit knowledge that the winning condition generates, in any situation where the environment
has not lost yet, the value of w is common knowledge again. So in view of the knowledge of the
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players, the translation of game graphs into distributed systems is also critical.

6.2 Knowledge Tracking for Multiplayer Games
We now tackle the task of developing a procedure that turns a game graph with partial
information into one with full information and allows for a direct and uniform translation of
strategies. So the new game graph must somehow comprise all the possible states of minds that
the grand coalition may have during some play of the game as well as the dynamics of these
mental states. We already know that there infinitely many such states in general, so we cannot
hope to find a construction that guarantees a finite representation.

In Section 6.1.2 we have used the system E(G) to evaluate epistemic temporal properties of
the game, so this system should be a sincere representation of all the knowledge that may be
important throughout the game. However, this representation is still not explicit enough: The
game that is played on E(G) is the corresponding extensive game of imperfect information, cf.
Section 2.1. The positions in the game tree are histories in G and the possible states of minds of
the grand coalition can only be carved out by considering unboundedly many positions in the
game tree at the same time.

Instead, each single position in the new game graph should comprise an entire possible
mental state of the grand coalition, that means, a snapshot of what players know at some stage
of the game. Then, the limited strategic powers of the members of the grand coalition are
also encapsulated at each such position. The main idea of our construction is to start with an
extensive representation where we gather all histories, which some player of the grand coalition
considers possible after some finite history has been played, in Kripke structures called epistemic
models. Moreover, we incorporate the strategic dependencies in the game explicitly into these
epistemic models, that means, the representation of the mental states of the grand coalition
indeed makes the implicit knowledge of the players about each others strategies explicit!

Clearly, the new game graph is one of full information, but is infinite by definition. The
next step is to find a more succinct representation. For this, we define an abstraction based
on homomorphic equivalence which we prove to be sound for games with observable winning
conditions. Moreover, we show that for hierarchical games, this abstraction is strong enough.

6.2.1 General Knowledge Tracking
Before we get started, let us introduce a little example that we will use to illustrate our
construction and to discuss the problems that arise when we try to apply the quotient modulo
homomorphic equivalence to games with nonobservable winning condition. Essentially, the game
graph G‖ is obtained by translating the distributed system D2 into a game graph with partial
information using the construction described in Section 2.3. In particular, the strategy problem
is undecidable for G‖, even for safety winning conditions, cf. Chapter 5.

The game graph is depicted in Figure 6.6. Here, we use concurrent notation, that means, the
players make their moves simultaneously. The game starts at position x where the players of
the grand coalition have only trivial moves ⊥ and the environment chooses a letter from {a, b}
and a digit from {0, 1}. The label of the successor position reflects this choice. Player 1 only
observes whether the environment has chosen a or b, whereas player 2 observes whether it was
0 or 1. (The relations ∼V1 and ∼V2 are represented by dotted and dashed lines, respectively.)
Next, player 1 chooses a letter from {a, b} and player 2 a digit from {0, 1}, again reflected by
the label of the successor position. After that, the game returns to x.

Epistemic Models. To describe the mental states of the grand coalition, that is, the knowledge
acquired by its members during a play, we use epistemic models. An epistemic model over a
game graph G is a Kripke structure

K = (K, (Pv)v∈V , (∼i)ni=1)
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Figure 6.6: The game graph with partial information G‖.

where (Pv)v∈V is a partition of K and each ∼i is an equivalence relation on K such that, for all
k, k′ ∈ K:

k ∼i k′ =⇒ vk ∼i vk′

with vk denoting the unique element from V such that k ∈ Pvk .
We assume that K is connected by ∼n∪=

⋃n
i=1 ∼i, except when indicated otherwise. Notice

that ∼n∪ is not necessarily an equivalence relation.

Epistemic Unfolding. When unfolding a game G, we will keep track of the knowledge of the
grand coalition in epistemic models. Thus, the states of the unfolding are epistemic models over
G. Since we assume that all players know the initial position, the initial epistemic model is just
a one-element structure:

K0 = ({v0}, (Pv)v∈V , (∼i)),
where Pv0 = {v0}, Pw = ∅ for w 6= v0, and ∼i= {(v0, v0)}.

Now, given a state of the unfolding represented by an epistemic model K = (K, (Pv)v∈V , (∼i)),
what are the possible actions of the players of the grand coalition and what kind of knowledge
dynamics will the execution of such an action imply? As we have mentioned, we relativize the
knowledge of the players by their possible strategies, that is, we let the players choose a joint
action in each possible world k ∈ K which results in a tuple (ak)k∈K of joint actions ak ∈ A.
Each possible next epistemic model will be defined with respect to such a macro action. Of
course, we have to respect the limited strategic abilities of the members of the grand coalition
in the original game. To capture this, we allow only tuples (ak)k∈K which are consistent with
the players’ knowledge, that means, for all i < n and all k, k′ ∈ K:

k ∼i k′ =⇒ (ak)i = (ak′)i.

We define the, possibly disconnected, epistemic model

Update(K, (ak)k∈K) := (K̃, (P̃v)v∈V , (∼̃i)ni=1)

• K̃ = {kv | k ∈ K, k ∈ Pw and (w, ak, v) ∈ ∆},
• P̃v = {kv | kv ∈ K̃},
• kv ∼̃i k′v′ :⇐⇒ k ∼i k′ and v ∼Vi v′.

The set of epistemic successor models Next(K, (ak)k∈K) consists of the ∼n∪-connected compo-
nents of Update(K, (ak)k∈K). The moves of the environment player 0 in the epistemic unfolding
will consist of choosing one of the epistemic successors in Next(K, (ak)k∈K).

To unfold a game G and track the knowledge with epistemic models, we start with the initial
structure K0 as above and consider all possible joint actions a the players can take. We get the
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epistemic models Next(K, a) as next states, and continue the unfolding from there, considering
all possible macro actions. With this dynamic process in mind, we give the following declarative
definition.

The epistemic unfolding of a game graph G = (V,∆, (∼Vi )) is a game graph with full
information

Tr(G) = (V t,∆t)
• V t is the set of all epistemic models K over G with K ⊆ V ∗

• ∆t = {(K, (ak)k∈K ,K′) | (ak)k∈K ∈ A|K| and K′ ∈ Next(K, (ak)k∈K)}

If W ⊆ V ω is a winning condition for G, similar as for the generalized powerset construction
in Section 3.5.1, the winning condition of Tr(G) requires that all paths through the sequence of
Kripke structures are winning in the original game: For a play πt = K0K1 . . . in Tr(G), a path
through πt is a sequence ρ = k0k1 . . . such that

• kl ∈ Kl
• kl+1 = klv for some v with (vkl , a, v) ∈ ∆ for some a

For such a path ρ, the corresponding play πρ = v0v1 . . . in G is defined by

vj = vkj for all j ∈ N.

Notice that the definition of a path through πt implies that πρ is indeed a play in G. The set
Π(πt) ⊆ V ω is the set of all plays in G that correspond to some path through πt. Now,

πt ∈W t ⇐⇒ Π(πt) ⊆W.

Given that the epistemic models in Tr(G) actually consist of histories in G, the definition of
the winning condition W t may seem a little complicated. Indeed, Π(πt) is the set of all plays in
G such that π(≤ l) ∈ Kl for all l ∈ N. However, the more abstract definition that uses only the
worlds kl ∈ Kl and the atomic propositions Pv is useful when we consider the more succinct
representation of epistemic unfolding modulo homomorphic equivalence.

Notice that W t is now position based. Of course, prerequisite for this is the fact that W is
position based. Moreover, since the players of the grand coalition have no knowledge about the
actions in the game whatsoever, the winning condition is also independent of the actions of the
environment (which are only implicit in this model anyway).18

The reason why W t is also independent of the (joint) actions of the grand coalition, on the
other hand, is that the histories that are contained in the epistemic models are relativized to
strategies of the grand coalition. So, for any play πt in Tr(G) there is a joint winning strategy
for the grand coalition such that any play π ∈ Π(πt) is consistent with this strategy, see also the
proof of Proposition 6.12.19

As in the case of the generalized powerset construction, observable winning conditions W
can be described more explicitly. For simplicity, we assume that W is given by a pair (col,Wo)
where col : V → C is an observable coloring of V for some finite set C ⊆ N and Wo ⊆ Cω is a
set of good sequences of colors. Since epistemic models are ∼n∪-connected, the coloring col is
constant over all worlds of a position K ∈ Tr(G) and we write col(K) for this color. Then,

K0K1 . . . ∈W t ⇐⇒ col(K1)col(K2) . . . ∈Wo.

Just as in the case of the generalized powerset construction, this property follows by König’s
Lemma for finite game graphs but does not hold in general for infinite game graphs as there
may be infinite plays in Tr(G) for which there is no corresponding infinite play in G.

18Recall that the winning condition for the generalized powerset construction from Section 3.5.1 was also
independent of the actions of player 0 if player 1 didn’t have any information about these actions.

19We will see that for the epistemic unfolding modulo homomorphic equivalence where we obtain a more
succinct representation by identifying homomorphic equivalent epistemic models, the situation is different.
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Figure 6.7: Epistemic unfolding Tr(G‖) of the game graph G‖.

Observe that, since Tr(G) is a game graph with full information, in particular all players of
the grand coalition have the same information. Thus, the grand coalition can be regarded as a
single super-player who chooses actions on behalf of every member, and the game can be solved
as if it was a two-player game between this super-player and the environment, cf. Section 2.1.

In Figure 6.7, we present a few first steps of the epistemic unfolding Tr(G‖) of G‖. Note that
the structures get larger as more and more knowledge of the players has to be accounted for.
Also observe that, in contrast to the standard unfolding into the corresponding extensive game
with imperfect information, the branching degree in Tr(G‖) may grow with increasing level.

Proposition 6.12. The grand coalition has a winning strategy for (G,W, v0) if, and only if the
grand coalition has a winning strategy for (Tr(G),W t,K0).

Proof. First, let σ = (σ1, . . . , σn) be a winning strategy for the grand coalition for (G,W, v0).
We define the strategy σt = (σt1, . . . , σtn) for the grand coalition for Tr(G) by induction over the
length of histories in Tr(G) from initial position K0 such that, for each history π = K0 . . .Kr
that is consistent with σt, any π ∈ Kr is consistent with σ. For r = 0 there is nothing to do.

Let now πt = K0 . . .Kr be a history in Tr(G) consistent with σt. We define σt(πt) = (ak)k∈Kr
by

ak = σ(k) for k ∈ K.

Notice that each k ∈ Kr is a σ-history in G from v0. We observe that (ak)k∈Kr ∈ act(Kr):
If k ∼i k′ (in the epistemic model), then k ∼∗i k′ (in G), and since σi is a strategy for
player i for G, we have (ak)i = σi(k) = σi(k′) = (ak′)i. Now consider an epistemic successor
Kr+1 ∈ Next(Kr, (ak)k∈Kr ) of Kr with respect to (ak)k∈Kr . By definition, πtKr+1 is consistent
with σt and every π ∈ Kr+1 is consistent with σ. This concludes the induction.

Now consider any play πt = K0K1 . . . in Tr(G) from K0 that is consistent with σt and let
ρ = k0k1 . . . be any path through πt. Since k0 = v0 and, by construction, each ki has the form
ki = v0 . . . vi such that v0 . . . vi is a σ-history, we get that v0v1 . . . ∈W , and thus πt ∈W t, by
definition. Hence, σt is a winning strategy.

Now let, conversely, σt = (σt1, . . . , σtn) be a winning strategy for the grand coalition for
(Tr(G),W t,K0). We define the strategy σ = (σ1, . . . , σn) for the grand coalition for (G,W, v0) by
induction over the length of histories of G from v0 and, simultaneously, with each such history
π = v0 . . . vr that is consistent with σ, we associate a history

ζ(π) = K0 . . .Kr
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in Tr(G) from K0, such that the following conditions hold.
(1) π ∈ Kr

(2) if ρ ∼∗i π for some σ-history ρ in G from v0 then ζ(ρ) = ζ(π)
(3) ζ(π) is consistent with σt

(4) ζ(v0 . . . vl) = K0 . . .Kl for any l ≤ r
For π = v0 we define ζ(π) = K0. Now let π = v0 . . . vr be any history in G from v0 that is

consistent with σ and let ζ(π) = K0 . . .Kr. We define σi(π) = (aπ)i, where

(ak)k∈Kr = σt(ζ(π)),

that means, σi(π) is the projection to the i-th component of the action, chosen by player i at ζ(π)
for the position π ∈ Kr according to σt. First, we observe that σi is constant over ∼∗i -equivalence
classes: if ρ ∼∗i π for some σ-history ρ in G from v0, then by (1) and (2), ρ ∈ ζ(ρ) = ζ(π), so
σi(ρ) = (aρ)i. Moreover, as π ∼∗i ρ and (ak)k∈Kr ∈ act(Kr), we have (aπ)i = (aρ)i.

Now let vr+1 ∈ V such that (vr, σ(π), vr+1) ∈ ∆ (that means, πvr+1 is a σ-history) and
let Kr+1 ∈ Next(Kr, (ak)k∈Kr) such that πvr+1 ∈ Kr+1, that means, Kr+1 is the unique ∼n∪-
connected epistemic successor from Next(K, (ak)k∈Kr ) that contains πvr+1. Observe that, since
last(π) = vr and (vr, aσ, vr+1) ∈ ∆, the history πvr+1 is contained in Update(K, (ak)k∈Kr),
ensuring (1) and, by induction, (4). By definition, ζ(πvr+1) = ζ(π)Kr+1 is consistent with σt,
ensuring (3), so it remains to show (2), that means, if ρv ∼∗i πvr+1 for some σ-history ρv of G
from v0, then ζ(ρv) = ζ(πvr+1).

First, notice that ρv ∼∗i πvr+1 implies ρ ∼∗i π, so ζ(ρ) = ζ(π). Moreover, the construction of
ζ(πvr+1) from ζ(π) = ζ(ρ) is independent of πvr+1, except for the choice of the ∼n∪-connected
component Kr+1 ∈ Next(Kr, a) of Update(K, (ak)k∈Kr). As ρv is a σ-history with ρ ∈ Kr, by
definition of σ(ρ), we have ρv ∈ Update(Kr, (ak)k∈Kr), since ρv ∼∗i πvr+1, ρv and πvr+1 lie in
the same ∼n∪-connected component of Update(Kr, (ak)k∈Kr ,).

Finally, consider any play π = v0v1 . . . in G from v0 that is consistent with σ and let
πt = ζ(π) = K0K1 . . . be the play in Tr(G) from K0 associated with π By construction, any
finite prefix v0v1 . . . vl of π is a path through πt of the form k0k1 . . . kl, and this extends to the
whole play π. Since πt is consistent with σt and thus won by the grand coalition, by definition
of the winning condition W t, we get that π ∈W .

6.2.2 Knowledge Tracking Modulo Homomorphic Equivalence
As we have mentioned, the game graph Tr(G) is infinite, by definition, for any game graph G
which allows at least one infinite play. So, in order to be able to use the construction for solving
the strategy problem, it is crucial to represent the game graph Tr(G) more succinctly, that is,
we have apply some sort of compression that identifies certain epistemic models in Tr(G) in
an appropriate way. So the question we have to answer is: What would be a good notion of
similarity between epistemic models that is
(A) strong enough to yield a sufficient degree of succinctness
(B) guarantees that two epistemic models that are identified approximately represent the same

mental state of the grand coalition?
Of course, appropriate degree of succinctness and approximately the same mental state are
vague expressions. In fact, there is room for variation. We will see that the notion of similarity
we come up with yields a finite result for any hierarchical game graph but, in general, it retains
the relevant information carried by the epistemic models only in the case of observable winning
conditions. There may be other notions that still guarantee finite results for all hierarchical
game graphs but are sound for arbitrary winning conditions.

We start with a brief discussion of similarity of epistemic models. In particular, we introduce
the notion of homomorphic equivalence and we show that the epistemic unfolding modulo this
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notion of similarity preserves winning strategies for the grand coalition in the case of observable
winning conditions. This yields a semi-decision procedure (the procedure does not necessarily
terminate, even on positive instances) for the strategy problem for games with imperfect
information played on finite graphs with observable ω-regular and deterministic context-free
specifications. At the end of this section we discuss the case of nonobservable winning conditions,
especially ω-regular ones, and we we will see that for this case, the construction at least yields a
partial solution method for the strategy problem (the procedure does not necessarily terminate
and may produce wrong answers, but the positive answers are always correct).

Similarity of Epistemic Models. One simple approach to define a similarity on epistemic
models would be to identify isomorphic models. Clearly, two isomorphic epistemic models
represent the same mental state of the grand coalition. On the other hand, isomorphic epistemic
models have, in particular, the same number of worlds, so for hierarchical games, the quotient
modulo isomorphic equivalence would not be finite in general. Therefore, this does not yield a
sufficient degree of succinctness.

Since epistemic models are, in particular, Kripke structures, another natural approach would
be to define similarity of epistemic models as bisimilarity of Kripke structures. When used as
system models, bisimilarity is the most popular notion of equivalence between Kripke structures.
In particular, modal logic (and hence standard epistemic logic) cannot distinguish bisimilar
Kripke structures. However, as it turns out, bisimulation is somewhat difficult to handle when it
comes to epistemic unfolding. Of course, it may be that we have just fumbled with bisimulation20

but there are also certain independent objections against bisimulation as a notion of similarity
for Kripke structures that represent epistemic states. For a detailed discussion of epistemic
equivalence and bisimulation we refer to [96] and the references given there.

Here we just mention the following aspect, picking up an example from [96]. Consider
the Kripke structure K = ({A,B,C,D}, {P},∼1,∼2) with P = {A,D}, ∼1 is the closure of
{(A,B), (C,D)} and ∼2 is the closure of {(A,C), (B,D)}. With respect to usual epistemic logic
over Prop = {P}, agent 1 and agent 2 have the same knowledge in K. On the other hand,
K, A |= D1,2P where D1,2 is the operator for distributed knowledge: K, A |= D1,2ϕ if K, X |= ϕ
for all X with X ∼1 A and X ∼2 A. So ϕ is distributed knowledge among agent 1 and agent 2
if they know ϕ if the pool their information about the possible worlds together.

But then, how is K, A |= D1,2P possible if agent 1 and agent 2 have the same knowledge in
K? The reason is that the knowledge of the agents in terms of the propositions as expressible in
epistemic logic is not the same as the knowledge that the agents have about the possible worlds.
In the structure K, both agents can distinguish the worlds A and D as well as the worlds B and
C, although they satisfy the same atomic propositions. However, if we quotient the structure by
bisimulation, those worlds a merged. In fact, the full epistemic situation in the bisimulation
quotient is not reflected in K. In particular, there is no homomorphism from the bisimulation
quotient to the original structure K. Recall that we have explicitly mentioned in Section 6.1 that
we do not assume that the information of the agents in a multiagent system can be described
completely by the atomic propositions. In particular, this is not the case if the possible worlds
are histories and the atomic propositions just refer to the last position.

Technically, the problem is, indeed, the missing homomorphism from the bisimulation
quotient to the original structure. Of course, we want to translate strategies both ways, from the
extensive unfolding Tr(G) to the succinct unfolding Trsucc(G) and vice versa. So, whenever we
consider a position L in Trsucc(G) and the original position K in Tr(G) then the possible worlds
in L must have appropriate counterparts in K. Now, we won’t let this discussion escalate but
just use this observation to lead over to the notion of homomorphic equivalence where, indeed,
we have homomorphisms both ways by definition.

Homomorphic Equivalence. We recall the notion of graph homomorphism, which we apply
20In fact, we do not have an example that would show that bisimulation is not appropriate.
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to epistemic models. Let K = (K, (Pv)v∈V , (∼i)) and K′ = (K ′, (P ′v)v∈V , (∼′i)) be epistemic
models. A function f is a homomorphism from K to K′, if Pv(k) implies P ′v(f(k)) and k ∼i k′
implies f(k) ∼′i f(k′). The models are homomorphically equivalent, denoted K ≈ K′, if there
exists a homomorphism from K to K′ and a homomorphism from K′ to K. Notice that ≈ is an
equivalence relation because the composition of two homomorphisms is again a homomorphism.

For a finite epistemic model K, a core is an epistemic model K′ ≈ K with the minimal number
of elements. One crucial observation is that the core of a model is unique up to isomorphism.
The proof uses the same arguments as the standard proof for graphs.
Lemma 6.13. The core of a finite epistemic model is unique up to isomorphism.

Proof. Let K1 = (K1, (P 1
v ), (∼1

i )) and K2 = (K2, (P 2
v ), (∼2

i )) be cores of K. By definition of
core, |K1| = |K2| and as K1 and K2 are both homomorphically equivalent to K, K1 and K2
are homomorphically equivalent as well. Moreover, all homomorphisms f12 : K1 → K2 and
f21 : K2 → K1 are both bijections.

Indeed, if f12 was not a bijection, then the homomorphic image f12(K1) would be homomor-
phically equivalent to K1, as f12 is a homomorphism from K1 to f12(K1) and f21 � f12(K1) is a
homomorphism in the other direction. Hence, f12(K1) would be homomorphically equivalent
to K but as f12 is not a bijection, |f12(K1)| < |K1| which contradicts the definition of a core.
Analogous for f21.

Now consider the composition f := f21 ◦ f12 of f12 and f21. As f12 and f21 are both
bijections, f is a bijection on K1 and as K1 is finite, there is a natural number k ∈ N such that
fk is the identity on K1. Now consider the function g := f12 ◦ fk−1. As the composition of
homomorphisms is again a homomorphism, g is indeed a bijective homomorphism from K1 to
K2. Moreover, f21 ◦g = f21 ◦f12 ◦fk−1 = fk = idK1 . So f21 is the unique inverse function of the
bijection g. Hence, if k, k′ ∈ K1 such that g(k) ∼2

i g(k′) then k = f21(g(k)) ∼1
i f21(g(k′)) = k′

and if k ∈ K1 such that g(k) ∈ P 2
v for some v ∈ V then k = f21(g(k)) ∈ P 1

v since f21 is a
homomorphism. Hence, g is a bijective strong homomorphism, that means, an isomorphism.

Epistemic Unfolding up to Homomorphic Equivalence. Essentially, epistemic unfolding
up to homomorphic equivalence consists of performing the tracking construction while identifying
homomorphically equivalent models. Since there may be many possible models equivalent to
a model K, we describe this unfolding with respect to a function q, defined on all epistemic
models, which chooses for every epistemic model K a homomorphically equivalent companion
model q(K) ≈ K.

The epistemic unfolding of a game graph G with partial information up to homomorphic
equivalence, with respect to a function q, is a game graph with full information

Trq(G) = (V q,∆q)

• V q is the set {q(K) | K is an epistemic model over G},
• ∆q = {(K, (ak)k∈K , q(K′)) | (ak)k∈K ∈ A|K| and K′ ∈ Next(K, (ak)k∈K)},

Note that, since K ≈ K, the unfolding Trq is a generalization of the tracking construction
Tr obtained with q(K) = K. However, as we have mentioned, the construction is only sound
for observable winning conditions. The definition of W q for the case of an observable winning
condition W = (col,Wo) is just as in the case of the general unfolding construction:21

W q = {πq = L0L1 . . . | col(L0)col(L1) . . . ∈Wo}.
We now extend Theorem 6.12 to all unfoldings Trq for games with observable winning

conditions. The key point is how to extend the homomorphisms from a model to the next one in
a tracking. This is an interesting observation in itself and we formulate it as a separate lemma.

21We will see a more general definition that corresponds to the definition of W t as given above at the end of
this section.
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Lemma 6.14. Let K and L be epistemic models, let h : K → L be a homomorphism, and let
(bl)l∈L be a tuple of actions for L. Then (ak)k∈K with ak = bh(k) is a tuple of actions for K,
and for each connected component K′ of Update(K, (ak)k∈K), there is a connected component
L′ of Update(L, (bl)l∈L) such that there is a homomorphism h′ : K′ → L′.
Proof. Since h is a homomorphism, (ak)k∈K is obviously a tuple of actions for K. Let K′
be a connected component of Update(K, (ak)k∈K) and consider the connected component of
Update(L, (bl)l∈L) that contains all elements h(k)v with kv ∈ K ′. Note that since K′ is
connected by ∼n∪ and h is a homomorphism, the elements h(k)v are ∼n∪-connected as well and
thus are included in a single L′, which we denote by h(K′). The mapping h′ : K′ → L′ with
h′(kv) = h(k)v is again a homomorphism, now from K′ to L′.

Proposition 6.15. Let W = (col,Wo) be an observable winning condition. The grand coalition
has a winning strategy for (Tr(G),W t,K0) if, and only if, the grand coalition has a winning
strategy for (Trq(G),W q, q(K0)).
Proof. First, let σt be a joint winning strategy for the grand coalition for (Tr(G),W t,K0). We
define the joint winning strategy σq for the grand coalition for (Trq(G),W q, q(K0) by induction
on the length of histories in Trq(G) and simultaneously, with each such history πq = L0L1 . . .Lr
that is consistent with σq, we associate a history

ζ(πq) = K0K1 . . .Kr
in Tr(G), such that the following conditions hold:
(1) ζ(πq) is consistent with σt

(2) there is a homomorphism f : Lr → Kr
(3) ζ(L0L1 . . .Ls) = K0K1 . . .Ks for each s ≤ r

For r = 1, there is only one history πq = L0 = q(K0). Thusly, let ζ(πq) = K0 and let
f : q(K0) → K0 be any homomorphism. Let now πq = L0 . . .Lr be a history consistent with
σq, let ζ(πq) = K0 . . .Kr be the associated history consistent with σt, and let f : Lr → Kr be a
homomorphism according to (2). Consider the actions

(ak)k∈Kr = σt(ζ(πq))

prescribed by σt given the history ζ(πq) in the game on Tr(G).
We define σq(πq) by σq(πq)(l) = af(l) = σt(ζ(πq))(f(l)). By Lemma 6.14, σq(πq) is a tuple

of actions for Lr. So, for any connected component L′ of Update(Lr, σq(πq)), the sequence
ρq = πqLr+1 with Lr+1 = q(L′) is a history in Trq(G) which is, by definition, consistent with σq.
Moreover, Lemma 6.14 yields a homomorphism g : L′ → K′ for some K′ ∈ Next(Kr, σt(ζ(πq))).
So, by composing some homomorphism h from Lr+1 to q(Lr+1) = L′ with the homomorphism
g from L′ to K′, we obtain a homomorphism from Lr+1 to K′ and we set ζ(ρq) = ζ(πq)K′. By
construction, ζ(ρq) is consistent with σt.

Now let πq = L0L1 . . . be a play in Trq(G) consistent with σq. By (3), the sequence
ζ(L0), ζ(L0L1), . . . yields a play πt = K0K1 . . . in Tr(G) consistent with σt such that, for each
r ∈ N, there is a homomorphism fr : Lr → Kr. In particular we have col(Lr) = col(Kr) for all
r ∈ N. Since σt is a winning strategy, πt ∈W t, so col(K0)col(K1) . . . ∈Wo and thusly πq ∈W q.
Hence, σq is a winning strategy for the grand coalition.

Now let σq be a joint winning strategy for the grand coalition for (Trq(G),W q, q(K)0). We
define the joint winning strategy σt for the grand coalition for (Trt(G),W t,K0 similarly as
before. We proceed by induction on the length of histories in Tr(G) and simultaneously, with
each such history πt = K0K1 . . .Kr that is consistent with σt, we associate a history

ζ(πt) = L0L1 . . .Lr
in Trq(G), such that the following conditions hold:
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Figure 6.8: Epistemic unfolding Tr(G‖) quotiented by core.

(1) ζ(πt) is consistent with σq

(2) there is a homomorphism f : Kr → Lr
(3) ζ(K0K1 . . .Ks) = L0L1 . . .Ls for each s ≤ r

For r = 1, there is only one history πt = K0. Thusly, let ζ(πt) = q(K0) and let f : K0 →
q(K0) be any homomorphism. Let now πt = K0 . . .Kr be a history consistent with σt, let
ζ(πt) = L0 . . .Lr be the associated history consistent with σq, and let f : Kr → Lr be a
homomorphism according to (2). Consider the actions (bl)l∈Lr = σq(ζ(πt)) prescribed by σq at
ζ(πt) in the game on Trq(G).

We define σt(πt) by σt(πt)(k) = bf(k) = σq(ζ(πt))(f(k)). By Lemma 6.14, σt(πt) is a tuple
of actions for Kr. So, for any connected component K′ of Update(Kr, σt(πt)), the sequence
ρt = πtKr+1 with Kr+1 = K′ is a history in Tr(G) which is, by definition, consistent with σt.
Moreover, Lemma 6.14 yields a homomorphism g : K′ → L′ for some L′ ∈ Next(Lr, σq(ζ(πt))).
So, by composing g with some homomorphism h from L′ to q(L′), we obtain a homomorphism
from Kr+1 to q(L′) and we set ζ(ρt) = ζ(πt)q(L′). By construction, ζ(ρt) is consistent with σq.

Now let πt = K0K1 . . . be a play in Tr(G) consistent with σt. By (3), the sequence
ζ(K0), ζ(K0K1), . . . yields a play πq = L0L1 . . . in Trq(G) consistent with σq such that, for each
r ∈ N, there is a homomorphism fr : Kr → Lr. In particular we have col(Kr) = col(Lr) for all
r ∈ N. Since σq is a winning strategy, πq ∈W q, so col(L0)col(L1) . . . ∈Wo and thusly πt ∈W t.
Hence, σt is a winning strategy for the grand coalition.

While the proposition above can be applied to an arbitrary tracking Trq such that q(K) ≈ K,
we will concentrate on a specific one, namely Trcore(G), obtained with the function that maps
every structure K to its core. In Figure 6.7, we have presented a few positions from the epistemic
unfolding Tr(G‖). In Figure 6.8 we present the same situation, but these structures are now

replaced by their cores. Note that, for example,
x x

x x
gets quotiented to x and thus, from the

fourth stage, the structures are repeated. Since we identify isomorphic Kripke structures, the
game Trcore(G‖) is a finite game with perfect information.

The uniqueness of a core allows us to prove the following property.

Proposition 6.16. There exists a finite tracking Trq(G) of G if, and only if, the tracking
Trcore(G) is finite.

Proof. Of course if Trcore(G) is finite then we have a finite tracking, so one direction is trivial.
For the other one let q be a function such that Trq(G) is finite, that means, the set V q. Then
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clearly (V q)core = {core(K) | K ∈ V q} is finite as well and we show that (V q)core ⊇ V core.22

Consider some K ∈ V core, i.e., there is some epistemic model L over G with L ⊆ V ∗ such
that core(L) = K, and set L′ = q(L). Then L′ and L are homomorphically equivalent, and we
claim that core(L′) is also a core of L. From this, by Lemma 6.13, it follows that core(L′) is
isomorphic to core(L) = K.

To see that core(L′) is a core of L, notice that core(L′) is homomorphically equivalent to L′
and thus to L. Moreover, if there exists some L̃ that is homomorphically equivalent to L such
that |L̃| < |core(L′)|, then L̃ is also homomorphically equivalent to L′, which contradicts the
assumption that core(L′) has the minimal number of worlds among all epistemic models over G
that are homomorphically equivalent to L.

As a consequence, we obtain a semi-decision procedure for the strategy problem for games
on finite game graphs with partial information and observable ω-regular and deterministic
context-free winning conditions: compute Trcore(G) and if it is finite, solve the strategy problem
for (Trcore(G),W core). Thus, the procedure takes arbitrary game graphs with partial information
and observable (ω-regular and deterministic context-free) winning conditions as input. This is
in contrast to tree-automata based methods, which require a certain information-order among
the players, and hence a-priori restrict possible inputs, cf. Section 3.2 and Chapter 5.

If, indeed, there is a joint winning strategy σq for the grand coalition for (Trcore(G),W core)
then a finite state winning strategy (pushdown winning strategy, respectively) can be constructed.
At the end of this section, we discuss how we can compute a winning strategy for the grand
coalition for (G,W ) from such an implementation of σq.

Nonobservable Winning Conditions. Let us attempt an epistemic unfolding modulo
homomorphic equivalence for a position based but not necessarily observable winning condition
W ⊆ V ω. We consider here only q = core. A general definition of a winning condition W q that
applies to W can be derived from the definition of W t as given above but, as we have mentioned,
now we have to incorporate the actions (of the grand coalition) as well, cf. Section 3.5.1.23

Moreover, when defining the notion of a path through a play πq = L0(a0
l )l∈L0L1(a1

l )l∈L1 . . .
(with actions for the grand coalition) in Trq(G), we have to migrate to the core model in each
step.

Now, a path through a play

πq = L0(a0
l )l∈L0L1(a1

l )l∈L1 . . .

(with actions) in Trq(G) is a sequence ρ = l0l1 . . . such that
• lr ∈ Lr
• lr+1 = q(lrv) for some v with (vlr , arlr , v) ∈ ∆

Where q(lrv) denotes the homomorphic image of lrv in q(Update(L, (al)l∈L)) under some homo-
morphism f : Update(L, (al)l∈L)→ q(Update(L, (al)l∈L)). For such a path ρ, the corresponding
play πρ = v0v1 . . . in G is defined as before by vj = vkj for all j ∈ N and the set of plays that
correspond to some path through πq is denoted Π(πq). Also as before,

πq ∈W q ⇐⇒ Π(πq) ⊆W.

Notice that, although W is position based, this definition does imply that W q depends on the
actions that occur in the plays πq in Trq(G).

22More precisely, we show that any epistemic model from V core is isomorphic to an epistemic model from
(V q)core. As we take V core to contain no duplicate isomorphic copies, V core is finite.

23Actually, since we only want to prove the strategy translation from Trq(G) to G, we could stick with a purely
position based definition of W q . Then, however, there would be even more cases where a winning strategy for G
does not imply one for Trq(G) which causes the partial solution method to fail gratuitously.
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Now let us see why, with this definition of W q, Proposition 6.15 does not extend to the
nonobservable case. For this, consider the game G‖ and its epistemic unfolding Trq(G‖) up to
homomorphic equivalence as depicted in Figure 6.8. Notice that the topmost epistemic structure
in the third step gets quotiented to a single element structure, so in particular, the histories
πa = x(a, 0)(a′, 0′) and πb = x(b, 0)(a′, 0′) are merged. If the winning condition is observable,
this is totally appropriate of course, because such a winning condition cannot distinguish between
these two histories.

On the other hand, we have πa 6∼∗1 πb, so a strategy for player 1 can distinguish between the
histories – and it will have to in general, if the winning condition is not observable: Consider,
for example, a winning condition W for G which requires player 1 to copy the first signal that he
receives from player 0, but only at the second stage of the game, after player 0 has chosen another
signal. The task of the two players in their first turn is just to choose (a, 0). Of course, the
grand coalition has a joint winning strategy for (G,W, x). However, the grand coalition does not
have a winning strategy for (Trq(G),W q,L0): Consider any strategy σq for the grand coalition.
First, they will have to choose the sequence ⊥a⊥⊥ of actions, where a = (a|0, a|0, a|0, a|0) as
depicted in Figure 6.8. Let πq = L0⊥L1aL2⊥L3⊥L4 be the unique history in Trq(G) that is
consistent with this choice of actions.

Now, for the world (a, 0) in L4, player 1 has to choose either action a or action b. However,
none of these possible choices will guarantee winning because πax(a, 0) and πbx(a, 0) are both
histories that correspond to πq. So, if player 1 chooses a then πbx(a, 0)a(a′, 0′) corresponds to
πqσq(πq)L5 but πbx(a, 0)a(a′, 0′) is lost by the grand coalition in the game on G. Analogously,
if player 1 chooses b. Therefore, σ cannot be winning for (Trq(G),W q,L0).

Given this situation, there might arise some confusion: The winning condition W can be
recognized by a deterministic safety automaton B and, as we already know, safety conditions can
easily be transformed into observable safety condition. However, for observable safety conditions,
the epistemic unfolding modulo homomorphic equivalence is sound. The point here is that to
transform the given winning condition W into an observable safety condition, we first have to
take the product of B and G and apply the epistemic unfolding to this new game graph. There,
the histories which player 1 has to distinguish in order to win will carry the relevant information
explicitly and therefore satisfy different atomic propositions in the epistemic structures – hence,
they will not be merged.

This demonstrates that a strategy translation from G to Trq(G) is not meaningful for nonob-
servable winning conditions in general because in proceeding from G to Trq(G), too much
information is lost for the grand coalition: Certain histories which some players still need to
distinguish can get merged. On the other hand, since in G the grand coalition has at least
as much information as in Trq(G), it seems reasonable that a winning strategy for the grand
coalition for (Trq(G),W q) induces one for (G,W ), for arbitrary winning conditions W . This
is indeed the case. Moreover, similar as in Section 3.5.1, one can show that if W is ω-regular
and Trq(G) is finite, then W q is ω-regular as well. We will show these two facts in the next two
propositions. First, let us discuss the consequences.

Given a finite game graph with partial information and some ω-regular winning condition
W we can proceed as follows: Compute Trq(G) and, if it is finite, compute W q. Then solve the
strategy problem for (Trq(G),W q). and if there exists a joint winning strategy for the grand
coalition for (Trq(G),W g) then construct a finite state implementation of such a strategy from
which, in turn, a finite state implementation of a winning strategy for the grand coalition for
(G,W ) can be computed.

This yields a partial solution method for the strategy problem for (arbitrary) finite game
graphs with partial information and ω-regular winning condition: The procedure is not guar-
anteed to halt, even on positive instances and if it does not find a winning strategy for the
grand coalition, this does not mean, that none exists. On the other hand, if it does terminate
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and yields a positive answer then this answer is correct and, as we will see at the end of this
section, we can implement a finite state winning strategy for the grand coalition for (G,W ). For
practical purposes, this can be useful. Of course, sometimes we write specifications for systems,
being not sure whether they are actually realizable and we would like a synthesis method to
establish this positively. However, if we have carefully written a specification for a realistic task
then we are usually convinced that the specification is realizable but it might be rather involved
to come up with such a realization. There, our partial solution method can be useful.

The strategy translation from Trq(G) to Tr(G) (which implies one to G by Proposition 6.12)
is the same as in the proof of Proposition 6.15. However, we have to use an additional property
of the histories ζ(πt) in Trq(G), that we associate with the histories in Tr(G). The point is that if
we have a history π ∈ V ∗ in G that corresponds to πt, not only must π also correspond to ζ(πt)
(which holds for the converse translation as well), but π must correspond to a path through
ζ(πt) that can be obtained by applying the homomorphisms to the path through πt! In fact,
due to the definition of W q, if k0k1 . . . kr is a path through πt then f0(k0)f1(k1) . . . fr(kr) is a
path through ζ(πt), where fs for s ≤ r are the homomorphisms according to (2). This property
does not hold for the converse translation, cf. the definition of W t.

Proposition 6.17. Let W ⊆ V ω be an arbitrary winning condition. If the grand coalition has
a joint winning strategy for (Trq(G),W q, q(K0)) then the grand coalition has a winning strategy
for (Tr(G),W t,K0).

Proof. Let σq be a winning strategy for the grand coalition for (Trq(G),W q, q(K0)). Analogously
as in the proof of Proposition 6.15, we define the strategy σt and the function ζ, which associates
with each such history πt = K0K1 . . .Kr that is consistent with σt, a history

ζ(πt) = L0L1 . . .Lr

in Trq(G), such that the conditions (1) – (3) hold. Moreover, this time, we also incorporate the
actions into the histories. Now let

πt = K0(a0
k)k∈K0K1(a1

k)k∈K1 . . .

be a play in Tr(G) that is consistent with σt. Using condition (3) we obtain that the sequence
ζ(K0), ζ(K0(a0

k)k∈K0K1), . . . yields a play

πq = L0(b0l )l∈L0L1(b1l )l∈L1 . . .

in Trq(G) that is consistent with σq such that, for each r ∈ N, there is a homomorphism
fr : Kr → Lr. To show that πt is won by the grand coalition, let π = v0v1 . . . ∈ Π(πt) and
consider any path ρt = k0k1 . . . through πt such that π corresponds to ρt, that means, vr = vkr
for all r ∈ N. Since π also corresponds to ρq = f0(k0)f1(k1) . . . and πq is won by the grand
coalition, it only remains to show that ρq is a path through πq as well: Clearly we have
fr(kr) ∈ Lr for any r ∈ N. Moreover, for each r ∈ N we have kr+1 = krv for some v ∈ V
with (vkr , arkr , v) ∈ ∆. Since fr is a homomorphism, we have vkr = vfr(kr) and, by definition,
arkr = brfr(kr). Therefore, (vfr(kr), b

r
fr(kr), v) ∈ ∆. By definition, this means that ρq is, indeed, a

path through πq.

Proposition 6.18. If W is ω-regular and Trcore(G) is finite then W core is ω-regular and can
be computed from W and G.

Proof. Let A = (VA, Q, qin, δ, col) be a deterministic parity automaton recognizing W . By
definition of W core, we have πq = L0(a0

l )l∈L0L1(a1
l )l∈L1 . . . ∈W core if, and only if, for each path

ρ = l0l1 . . . through πt, that means lr ∈ Lr and lr+1 = core(lrv) for some v with (vlr , arlr , v) ∈ ∆,
we have vl0vl1 . . . ∈W . We construct a universal parity automaton

Acore = (V coreAcore, Qcore, qcore
in , δcore, colcore)
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that recognizes W core. The automaton works similarly as the automaton constructed in
Section 3.5.1: It universally branches over all such sequences π = l0l1 . . . and simulates A on
the corresponding plays vl0vl1 . . . in G. Of course, when proceeding from an epistemic model Lr
with current world lr to the epistemic model Lr+1, we have to compute core(lrv) (for any v with
(vlr , arlr , v) ∈ ∆)), to determine the particular world lr+1 of Lr+1 with which the automaton
proceeds in this branch.

Formally, the automaton Acore is defined as follows. First Qcore = Q× Lcore where Lcore is
the union of all the worlds contained in some epistemic model from V core and qcore

in = (qin, v0).
Notice that we consider only plays in V core from the initial epistemic model core(K0) ∼= K0
which consists only of world v0. Moreover, colcore(q, l) = col(q). The transition function δcore

is defined as follows. For a given state (q, l∗) ∈ Qcore and a symbol (L, (al)l∈L) which the
automaton currently reads, we distinguish two cases. If l∗ /∈ L then δcore(L(al)l∈L, (q, l∗)) is not
defined. Otherwise,

δcore(L(al)l∈L, (q, l∗)) =
∧

v∈V : (vl∗ ,al∗ ,v)∈∆

(δ(q, vl∗al∗), core(l∗v))

So the automaton Acore always stores the world l∗ = core(k∗w) that has been chosen for the
current branch. If this world is not contained in the epistemic model K which the automaton
reads next, then clearly, this branch should not be traced further. Otherwise, Acore branches
over all successor positions v of vl∗ according to the action (al)l∈L that it reads. Then, any next
world that may have to be traced (according to the definition of W core) is of the form core(l∗v)
for such a v. Moreover, the next epistemic model that Acore reads determines which of these
worlds have to be checked in fact. In this way, precisely the relevant sequences are examined
and Acore accepts if, and only if, A accepts all corresponding plays in G. Hence, πq ∈ L(Acore)
if, and only if, πq ∈W q.

Remark. In the definition of the Π(πq) for some play πq in Trq(G), we have stipulated that q(lrv)
denotes the homomorphic image of lrv in q(Update(L, (al)l∈L)) under some homomorphism
f : Update(L, (al)l∈L)→ q(Update(L, (al)l∈L)). So implicitly, we quantify over all possible such
homomorphisms f . Alternatively, we could have assume that for each L ∈ Trq(G) and each
possible action (al)l∈L for L we have a fixed homomorphism

f[L,(al)l∈L] : Update(L, (al)l∈L)→ q(Update(L, (al)l∈L)).

For L ∈ Trq(G), some action (al)l∈L for L and a world lv ∈ Update(L, (al)l∈L), we could then
have denoted

q(lv) = f[L,(al)l∈L](lv).

It is not hard to see, however, that this yields the same set Π(πq) and therefore, the same
winning condition W q: If ρ = k0k1 . . . is a path through some play

πq = L0(a0
l )l∈L0L1(a1

l )l∈L1 . . .

in Trq(G) that is defined with respect to arbitrary homomorphisms, then we can easily con-
struct a path ρ̃ = l0l1 . . . through πq that is defined with respect to the fixed homomor-
phisms f[L,(al)l∈L] such that vkr = vlr for all r ∈ N: We define l0 = k0 and, if l0 . . . lr is
constructed, then we have kr+1 = f(krv) for some v ∈ V with (vkr , arkr , v) ∈ ∆ and some
homomorphism f : Update(Lr, (arl )l∈Lr) → core(Update(Lr, (arl )l∈Lr)). Since vkr = vlr we
have lrv ∈ Update(Lr, (arl )l∈Lr ) and we set

lr+1 = f[Lr,(arl )l∈Lr ](lrv).

Since f[Lr,(arl )l∈Lr ] is a homomorphism, we have vlr+1 = v = vkr+1 .
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Implementation of Strategies. Assume that there is a joint winning strategy σq for the
grand coalition for (Trq(G),W q, q(K0)). We consider only the case where W q allows positional
strategies, so that we can assume that σq is a function V q → A. The extension to more general
winning conditions is straightforward, incorporating the computing devices which implement σq
into the construction similar as described in Section 3.5.2. The main line of argumentation is
the same as there as well: The strategy automaton reads histories in G and constructs, step
by step, the corresponding position in Trq(G) according to the proofs of Proposition 6.15 and
Proposition 6.12. However, there are certain particular issues in the multiplayer case that we
have to take care of.

In the proof of Proposition 6.12, we have constructed a joint winning strategy σ for the
grand coalition for (G,W, v0) which is not decomposed into strategies for the individual players
but it is a function σ : V ∗ → A such that PrAi(σ) satisfies the consistency condition (S2) for
all i. However, for an actual realization of some distributed reactive system, we need separate
implementations of all individual strategies where each strategy automaton Ai reads only the
signals that player i actually receives, that is, it reads observations [v]i. Let us describe how
such an automaton Ai works.

The states of the automaton have the form (L, L′) where L ∈ V q and L′ ⊆ L is a subset
of the possible worlds of L with k ∼i l for all k, l ∈ L′. This subset represents those worlds
in L that player i actually considers possible. The initial state is (L0, L0) with L0 = q(K0).
Now, given a state (L, L′), the output of the automaton is PrAi(Prk(σq(L))) for an arbitrary
k ∈ L′. That means, we look at the joint macro action σq(L) = (al)l∈L that σq prescribes at
the position L, we choose one of the worlds k ∈ L′ that player i considers possible, and we let
player i choose the action PrAi(ak) in the game on G.

Now in the next step, reading an observation [u]i of player i, the automaton Ai proceeds
as follows: First, it computes Update(L, σq(L)) and then it chooses the connected component
L̃ ∈ Next(L, σq(L)) of Update(L, σq(L) that corresponds to [v]i and L′.24 To see how this
component is determined, consider the set L̃′ of all possible worlds kv from Update(L, σq(L)) that
satisfy k ∈ L′ and v ∼Vi u. Then there is exactly one connected component L̃ of Update(L, σq(L))
such that L̃′ ⊆ L̃. The next state of the automaton is now

(core(L̃), core(L̃′)),

where core(L̃′) = {core(l) | l ∈ L̃′} and, as before, core(l) denotes the homomorphic image of l
in core(L̃) under some homomorphism f : L̃ → core(L).

Then, the joint strategy
(σ1, . . . , σn)

for the grand coalition, where each individual strategy σi is implemented by the automaton Ai,
coincides with the strategy σ as constructed in the proofs of Proposition 6.15 and Proposition 6.12,
so it is a winning strategy.

6.3 Hierarchical Games
We apply our construction to hierarchical games which are games played on finite game graphs
G = (V,∆, (∼Vi )) with hierarchical partial information, that means,

∼V1 ⊆∼V2 ⊆ . . . ⊆∼Vn .

So the information of the players is ordered linearly: Player 1 is the best informed one, player n
has the least information. Such game graphs correspond to distributed systems with pipeline

24Notice that without the set L′, we could not choose a unique component because the observation [v]i may
occur in several connected components of Update(L, σq(L)).
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architectures, cf. Section 2.3 so from the results that we have discussed in Section 3.2 it follows
that the strategy problem is decidable for hierarchical games with ω-regular winning conditions,
cf. [171, 129, 80]. On the other hand, pipeline architectures are undecidable for deterministic
context-free specifications, even if we have only two controllers (or at least one hidden channel
from the environment), cf. Section 3.4.

In this section we show that the strategy problem is decidable for hierarchical games with
observable deterministic context-free winning conditions. For this, we demonstrate that for
any finite game graph G with hierarchical partial information, Trcore(G) is finite. This is also
an interesting observation in itself because it shows that the abstraction by homomorphic
equivalence yields a reasonable degree of succinctness.

Proposition 6.19. Let V be a finite set and let n be a natural number. Up to homomorphic
equivalence, there are at most expn(|V |) different Kripke structures K = (K, (Pv)v∈V , (∼i)ni=1)
such that:

1. (Pv)v∈V is a partition of K
2. ∼1⊆ . . . ⊆∼n are equivalence relations
3. K is connected by ∼n∪.

Proof. We denote by Ψn(V ) the class of all Kripke structures K which satisfy 1. – 3. We prove
inductively that, for each n ∈ N, there is a class Ψ≈n (V ) of Kripke structures from Ψn(V ) with
|Ψ≈n (V )| = expn(|V |) such that each structure from Ψn(V ) is homomorphically equivalent to
one from Ψ≈n (V ).

First, Ψ≈1 (V ) is the set of all Kripke structures K = (K, (Pv)v∈V ,∼1) with K ⊆ V , Pv = {v}
for v ∈ V and ∼1= K ×K. Hence, any structure in Ψ≈1 (V ) can be identified with a subset of
V , so |Ψ≈1 (V )| = 2|V | = exp1(|V |). Clearly, Ψ≈1 (V ) ⊆ Ψ1(V ). Now let

L = (L, (Pv)v∈V ,∼1) ∈ Ψ1(V ).

We define a homomorphism f on L by

f(l) = vl.

(Recall that vl is the unique v ∈ V such that l ∈ Pv.) The homomorphic image f(L) =
(K, (Pv)v∈V ,∼1) is in Ψ≈1 (V ) and g : f(L) → L with g(v) = l for some l ∈ L ∩ Pv is a
homomorphism. Hence, L and f(L) are homomorphically equivalent.

For n > 1, suppose Ψ≈n−1(V ) has already been constructed. Without loss, we assume that
all Kripke structures from Ψ≈n−1(V ) are pairwise disjoint. We define Ψ≈n (V ) as the set of all
Kripke structures K = (K, (Pv)v∈V , (∼i)ni=1) which consist of a union of epistemic models from
Ψ≈n−1(V ) and we set ∼n= K × K. Hence, any structure in Ψ≈n (V ) can be identified with a
subset of Ψ≈n−1(V ), so |Ψ≈n (V )| = 2expn−1(|V |) = expn(|V |). Now, let

L = (L, (Pv)v∈V , (∼i)ni=1)

be any Kripke structure from Ψn(V ). As L is connected by ∼n∪, we have ∼n= L × L: any
l, l′ ∈ L are connected in L via some ∼n∪-path and as ∼n−1

∪ ⊆∼n and ∼n is transitive, it follows
that l ∼n l′.

Consider the decomposition of L into ∼n−1
∪ -connected components L1, . . . ,Lr. Clearly,

Lj ∈ Ψn−1(V ) for j = 1, . . . , r and hence, each Lj is homomorphically equivalent to a Kripke
structure from Ψ≈n−1(V ). For j ∈ {1, . . . , r} we fix a homomorphism fj on Lj such that the
homomorphic image fj(Lj) is in Ψ≈n−1(V ) and a homomorphism gj from fj(Lj) to Lj . Moreover,
we define the homomorphism f on L by

f�Lj = fj
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for j = 1, . . . , r. As the components Lj are pairwise disjoint, this is well defined and it is easy
to see that the homomorphic image f(L) is in Ψ≈n (V ).

Furthermore, we define g : f(L) → L as follows. For any ∼n−1
∪ -connected component M

of f(L), there is some j ∈ {1, . . . , r} such that fj(Lj) = M and we define g�M = gj , for an
arbitrary such j. The mapping g is a homomorphism and hence, L and f(L) are homomorphically
equivalent.

Theorem 6.20. The strategy problem is decidable for hierarchical games with observable deter-
ministic context-free winning conditions.

Proof. Let G be a game graph with hierarchical partial information and let W = (col,Wo) be
an observable winning condition such that Wo is deterministic context-free.

By Proposition 6.15, the grand coalition has a joint winning strategy for (G,W ) if, and
only if, it has one for (Trcore(G),W core), and since G has hierarhical partial information, by
Proposition 6.19, Trcore(G) is finite.

Moreover, since Wo is deterministic context-free, so it is easy to see that W core is deterministic
context-free as well. Hence, the strategy problem for (G,W ) can be decided by solving the
problem for (Trcore(G),W core) – a finite game graph with full information and deterministic
context-free winning condition.

Two-Player Games. A very special case of hierarchical games are two-player games on finite
game graph with partial information which we have studied extensively in Section 3.5 and in
Chapter 4. It is not hard to see that the powerset construction as presented in Section 3.5 is a
special case of the epistemic unfolding modulo homomorphic equivalence: For any game graph
with partial information and two players we have

2G = Trcore(G).

Moreover, for any given winning condition W we have

W = W core.

For nonobservable winning conditions, of course, this is only true if we use the general definition
that incorporates actions as well but then, the strategy translation is sound both ways. The
reason is that the grand coalition consists only of a single player, so whenever two histories are
merged by the core, they are indistinguishable for that player and therefore, a strategy cannot
make a difference between them anyway.
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Chapter 7

Conclusion

Synthesis is computationally harder than verification and synthesis for systems with partial
information is computationally harder than synthesis for systems with full information. This
has been sort of the guiding theme for the research we have presented. Although this statement
is clearly not beyond reproach,1 it strongly motivates a close look at the fine structure of
synthesis under partial information, where multiple essential parameters crucially influence the
computational complexity. We have found that by carefully and elaborately tuning certain
parameters, interesting and relevant cases are obtained that can be solved algorithmically and,
in some more restricted cases, even by polynomial time algorithms. In Chapter 3 we have
assembled and reviewed as well as slightly extended and unified fundamental solutions and
hardness results. In Chapters 4, 5 and 6, we have made further contributions that substan-
tially extend known results to more general cases and also offer some completely new perspectives.

In view of our experiences, it seems obvious that the most crucial factor for the computational
complexity is the difference between two players and three players or more. We have intensively
studied the special case where only two players interact on a finite game graph, particularly
for parity conditions. The strategy problem for these games is Exptime-complete for both,
observable and non-observable, parity conditions. However, for the case of observable parity
conditions, the usual powerset construction is sufficient and no additional automata constructions
are involved. This makes it particularly practicable to analyze this case further, especially in
terms of complexity of the game graphs which was the subject of Chapter 4.

The starting points were the corresponding Ptime results for parity games with full infor-
mation on finite game graphs of bounded complexity. We have seen that for game graphs with
unbounded partial information, these results do not hold. More precisely, even for game graphs
with partial information of DAG-width at most three, the strategy problem is Exptime-hard
for (observable) reachability as well as safety conditions. Moreover, on acyclic game graphs,
the problem is still Pspace-hard. This demonstrates that the intrinsic complexity caused by
(unbounded) partial information is high, even on very simple graphs.

On the other hand, for game graphs with bounded partial information, we have shown
that the strategy problem can be solved in polynomial time for observable parity conditions.
Since we could rely on the algorithmic solution from [24, 25], our task was merely to show
that the powerset construction preserves DAG-width. For this, however, we have used heavy
machinery. We have discussed the notion of concurrent graph searching which implies the
problem of interferences between different plays. To handle this problem, after a detour via
directed path-width, we have introduced a new concept of graph searching with mulitple robbers
which can not only run on the graph but also have the capacity to split. We have shown that if

1In particular, in view of the fact that the computational effort of verification is measured in terms of both,
the size of the specification and the size of the (given) system, while for synthesis, only the size of the specification
is taken into account, cf. [129].

243



k cops monotonously capture a single robber on a directed graph G then k · r cops monotonously
capture r jumping robbers on G. The way in which we have defined the cops’ strategy for the
game against r robbers from the strategy against a single robber is quite intricate and it is far
from obvious whether this can be substantially simplified.

Of course, if one could show that DAG-width has bounded monotonicity cost, then the
Ptime-result would follow without using graph searching with multiple robbers.2 Notice that
since we already know that DAG-width does not have monotonicity cost zero, this solution
would not directly yield the same precise bound of k · r · 2r−1 on the DAG-width of 2G but
at least a constant factor of 4

3 would have to be added, cf. the example in [123]. Moreover,
although we did not pursue any further aspects of this here, our new concept of graph searching
on directed graphs with multiple robbers that can also split seems quite interesting in itself.

Completely independently of this, a solution to the monotonicity problem would be a
great contribution to the theory of complexity measures for directed graphs which is currently
at a rather early stage, cf. Section 4.1.2. We have also mentioned several normal forms of
strategies for the cop player as well as the robber player that would help to understand the
particular properties of graph complexity measures for directed graphs and which might be a
first step towards a solution of the monotonicity problem and several other important open
questions. Notice that for a particular normal form that would have been most helpful for
proving Theorem 4.22, we have shown that it does not exist.

Our analysis yields rather tight results: For the case of unbounded partial information we
have shown that even on very simple graphs, the strategy problem for reachability games with
imperfect information is computationally hard. One of the few interesting cases that are still
open is that of game graphs of DAG-width at most two and winning conditions that allow
positional winning strategies in the full information case. On the other hand, for bounded partial
information, the problem can be solved in polynomial time on any class of graphs with bounded
DAG-width which is much less restrictive than bounded tree-width or directed path-width.
For other interesting graph complexity measures like Kelly-width, directed tree-width and
clique-width, however, the question is still open.

Besides these gaps and variations that we were not able to solve, the everlasting quest for
tractable subcases of the strategy problem for two-player games on finite graphs with partial
information and preferably expressive winning conditions raises a lot of challenges that we did
not take up here at all. For example, the question whether the strategy problem for parity
games with full information can be solved in polynomial time on classes of graphs with bounded
directed tree-width is still open. Moreover, as we have mentioned, no general criteria are
known which would guarantee that the antichains method (cf. Section 3.5.3) terminates after
polynomially many steps. Another challenging case is that of nonobservable winning conditions.
So far, there seems to be no way around the automata constructions that are usually used to
handle nonobservable winning conditions, but chewing upon this intensively might finally bring
some manageable subcases to light.

Currently one of the most important and intriguing open problems in the theory of synthesis
and verification of nonterminating reactive finite state systems is whether the strategy problem
for parity games on finite game graphs with full information is in Ptime.3 Notice that this
would also directely imply that the strategy problem for two-player games on finite game graphs
with bounded partial information and observable parity conditions can be solved in polynomial
time, regardless of the complexity of the game graph.

2Unless, of course, graph searching with multiple robbers would be used for the proof of the monotonicity
result. However, although certain difficulties that we have encountered in the proof of Theorem 4.22 are quite
related to the monotonicity problem, it does not seem likely that our concept of graph searching with multiple
robbers could be used as a tool for this.

3A nice side-aspect of this problem is that if one could show that the problem is actually NP-hard it would
follow that NP = co-NP.
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After this close analysis of the two-player case, we have turned to more general scenarios
where, in particular, an arbitrary number of players is involved. We have built on the long
tradition of papers establishing decidability and undecidability results for architectures along
certain patterns of information flow. A distinguishing feature of these results is that, unlike
results on game graphs with partial information, they do not consider any a priori restrictions
of the system, like a predefined labeling for the channels or a given subset of the possible
system runs. The case of arbitrary safety/regular (and CTL /CTL∗) specifications was already
completely settled [171, 129, 80] but of course, there are lots of possible further extensions and
restrictions of the specifications that are worthwile to be considered. Here, we focus on the
informational aspect of interaction, so it is particularly expedient to consider special cases of
specifications that restrain the extent to which the specification can address facts that (some of)
the controllers do not observe.

We have seen that observable specifications are too restricted for the model of distributed
systems as we have used it. On the other hand, locally decomposable specifications are
still expressive enough to cover many relevant and interesting cases. In [137], a complete
characterization of all decidable architectures has been proved, but only for regular specifications
and acyclic architectures. In particular, the restriction to acyclic architectures is a serious
limitation of the scenario because in complex communication networks, cycles occur frequently.
Moreover, by extending the analysis to context-free specifications we enter the area of infinite
state systems which is also very appealing in view of complex computing systems.

The investigation in Chapter 5 has covered both these aspects and, ultimately, we have again
provided a complete characterization of all decidable architectures for locally decomposable
specifications. A particular feature of our characterization is that different processes in the
architecture may have different types of local specifications: Some are restricted to regular local
specifications, others may have deterministic context-free specifications and, in rare cases, we
can even allow arbitrary context-free specifications without losing decidability.

Also here, our analysis yields a fairly complete picture. One of the cases that has been
left open is that of architectures with broadcast channels. As we have mentioned, in principle,
broadcast channels can be simulated in our setting, using the specification. However, if there
are broadcast channels from the environment, it is not clear whether this can be done in such a
way that local decomposability is preserved. It is also not clear whether there are specifications
that are more expressive than regular ones but for which the controller problem is decidable in
certain cases where deterministic context-free (even DR1-C) specifications cause undecidability.
Another open problem is whether the decidability results for locally decomposable regular
specifications can be transfered to branching time specifications like CTL and CTL∗. As we have
mentioned, the problem is that the languages which are represented by the communication trees
t ∈ L(Ai) are overapproximations of the languages that may actually produced by the controller
pi according to some stategy. In the linear time paradigm this is ok but in the branching
paradigm it fails because CTL-formulas can also require that certain branches in a strategy tree
have to exist. In fact, in [135] it has been conjectured that two-flanked pipelines are undecidable
for locally decomposable CTL-specifications.

Besides these gaps and variations that we were not able to solve, the everlasting quest for
decidable subcases of the controller problem for distributed systems and preferably expressive
winning conditions raises a lot of challenges that we did not take up here at all. One other
approach that we have already mentioned is that of [94] where external specifications have been
considered that only relate external input and output channels. Also there, certain decidability
results have been shown for so-called well connected architectures that contain information forks.4
Clearly, this is a relevant and interesting subcase of the general problem and it seems appealing
to pursue this into further directions. Many other restricted settings and variations of the synthe-
sis problem have been considered, see for example [8, 148, 92, 220, 195, 196, 155, 15, 136, 162, 79].

4In [93] it has been shown that well connectedness of architectures is also decidable.
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As promised in the introduction, our decision procedures also imply techniques for synthesizing
winning strategies which do not require significantly more computational effort than the solution
of the decision problem. For the polynomial time algorithm that is obtained from our results
in Chapter 4 this is straightforward, given the methods that we can build on: We apply the
algorithm from [24, 25] to the powerset graph 2G of which we know that dw(2G) ≤ k ·r ·2r−1 and,
if player 1 does have a winning strategy for (2G , col, {v0}), the algorithm constructs a positional
such strategy in polynomial time. As discussed in Section 3.5.2, from this strategy we obtain a
finite memory winning strategy for (G, col, v0) which uses only polynomially many states.

For the algorithms that we have developed in Chapter 5, controller synthesis was not com-
pletely straightforward. First, we had to deal with the fact that the structure of the decidable
architectures may be rather involved as compared to simple, straight pipelines and two-flanked
pipelines. Second, the usual constructive emptiness test for nondeterministic (parity) tree
automata (Rabin’s Theorem) is not sufficient, because the languages of the tree automata that
we construct in the first instance do not consist of strategies. However, we have seen that, using
an extended constructive emptiness test and adroitly combining the partial solutions for the
individual parts of the architecture, we can construct a finite memory winning strategy for the
grand coalition whenever the grand coalition has a joint winning strategy for a given locally
decomposable regular specification. For context-free specifications, of course, we have to use
pushdown machines to implement winning strategies.

In the last chapter we have considered multiplayer games with imperfect information from
a more epistemological viewpoint, focussing on knowledge rather than strategic powers. We
have seen that already without strategic dependencies, analyzing the dynamics of knowledge in
multiagent systems is quite involved and computationally hard. As soon as strategic dependencies
have to be taken into account, the dynamics of knowledge become even much more intricate.
Here, we found the reason for the undecidability of the strategy problem for games with multiple
players: While this is clear for sufficiently powerful specification formalisms, it is less obvious for
winning conditions that allow positional winning strategies in the full information case. Indeed,
the infinite character of such games that makes the strategy problem undecidable comes from the
unbounded evolution of higher order knowledge. Of course, the winning condition plays a crucial
role here as well but, as illustrated in Figure 6.5, already for safety conditions, unboundedly
many histories may have to be taken into account by the members of the grand coalition.

Our ambition here was to find a way to represent the possible states of mind of the players
and the dynamics of this knowledge explicitly, resulting in what we have advertised as knowledge
tracking. For this, rather than just looking at the extensive form of a game on some given
finite game graph, we have encapsulated complete states of mind of the members of the grand
coalition in epistemic structures and each such epistemic structure is an individual position
in the new game graph. Moreover, the transitions between these states are relativ to the
strategic powers of the grand coalition in the original game. This representation allows for an
abstraction by homomorphic equivalence in the case of observable winning conditions which
yields a semi-algorithm that we have shown to terminate at least for hierarchical game graphs.
This yields decidability for hierarchical games with observable deterministic context-free winning
conditions. Moreover, for nonobservable regular winning conditions, it yields a partial solution
method that does not give false positive answers. Finally, we have shown that the powerset
construction which we have presented in Section 3.5, and which we have used extensively in
Chapter 4, is indeed a special case of this generalized knowledge tracking construction.

With this epistemic analysis of multiplayer games and its very special case of two-player
games, we have closed the circle to the beginnings of synthesis of winning strategies for in-
teraction under partial information, in the context of computing systems and, in particular,
nonterminating reactive systems.

246



Besides all the open problems that we have mentioned during our subsumption, there are a
lot of broader issues and challenges in the theory of design and analysis of computing systems,
and in particular synthesis of open nonterminating reactive systems, that lie ahead. We have
mentioned in Section 2.1.4 several more general possibilities how imperfect information can
be defined in games. Especially the notions of finite memory strategies and imperfect recall
are particularly important in computing systems and should be closely investigated. A lot of
research has also been done on several special cases of asynchronous systems, but classifying and
relating different kinds of asynchronism is still a huge project. This holds also true for several
other kinds of models and problems that are explored and which often emerge from different
fields of research and come in plethora of different disguises. Their precise relationship and
relative merits, particularly in view of practical applications, are far from being fully understood.

One of the absolute major issues in computing system design and analysis is the balance
between expressivity and computational manageability of the models. Clearly, to model practi-
cally relevant scenarios, Church’s original setting is not the ultimate deal. Besides the extension
to systems with partial information and multiple processes, we have also mentioned lots of other
variations and extensions, especially stochastic and hybrid systems. But we have seen that we
hit the undecidability barrier pretty fast as soon as we try to incorporate more complex elements
like multiple players and infinite state components. The same holds true for probabilistic and
continuous aspects. The only way out is to advance sophisticatedly: Analyzing the reasons why
problems become complex, and elaborately containing and tuning relevant parameters, with real
life scenarios at the back of our mind, has led to numerous strong and useful decidability and
tractability results. In the course of the past six chapters, we have pursued this line of research
and in some directions, we have pushed the limits a little further.
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