
Investigation of the interaction between Alzheimer’s

abeta peptide and aggregation inhibitors using

molecular simulations

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der

RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Olujide O. Olubiyi,

M.Sc. in Drug Discovery (London)

aus Efon-Alaaye, Nigeria

Berichter:

Jun.- Professor Dr. Birgit Strodel
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Chapter 1

Introduction

Protein misfolding has long been known to constitute an important class of disease ini-

tiating factors. Of special significance in this group is Alzheimers disease (AD) in which

the aggregation of misfolded small molecular weight amyloid β peptides (Aβ) triggers a

host of biochemical anomalies that destroy brain neuronal processes. AD is recognised

as the most common form of dementia in the elderlies and characterised by a progressive

loss of brain neural and synaptic functions. While a number of cellular processes have

been implicated in AD, the overwhelming majority of research evidences support Aβ as

being central in Alzheimer’s pathogenesis. Alzheimer’s disease was first described by the

German neuropathologist, Alois Alzheimers in 1906. However, in spite of the enormous

efforts invested into AD research over the past century, there still remain crucial questions

that are yet to be answered, in particular with respect to AD treatment. In other words,

after 100 years of research, AD remains incurable. Even though a number of drugs exists

for the relief of associated symptoms, there is at the moment no definitive treatment that

halts the progressive neurological decline in AD patients. An explanation for this may be

found in the peculiarities of the Aβ peptide, the molecular target commonly targeted for

drug development.

Aβ is produced via post-translational cleavage of the transmembrane amyloid precur-
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Introduction

sor protein (APP) followed by its release into the extracellular medium. Unlike most

other protein drug targets however, Aβ both lacks a regular three dimensional fold and

possesses a significantly high aggregation propensity under physiological conditions. In

healthy individuals, the production of Aβ is delicately balanced by its clearance, and when

this balance is thrown out of sync, as observed in AD, aggregating Aβ initiates the neu-

ronal and synaptic damage charactising AD. However, Aβ’s extremely high aggregation

tendency renders most available experimental structure determination tools to an extent

unable to determine its physiologically relevant conformations. Attempts to address this

challenge includes the use of nonphysiological solubilising conditions, which at the same

time compromises the usefulness of such models for Aβ-directed drug discovery. This,

however, is just one of the several dimensions of the challenge associated with the Aβ

peptide.

Also unlike most drug targets, the Aβ peptide exhibits a high level of structural hetero-

geneity involving different truncated forms of the 39 to 43-residue Aβ monomer, each

exhibiting unique structural and toxicity properties. Added to this, Aβ monomer ag-

gregates into differently sized, conformationally and toxicologically diverse oligomers and

fibrils. In other words, the number of structural states that Aβ can adopt is so immense

that it constitutes a potent challenge to therapy development. It is therefore obvious

that the search for definitive treatment of AD will significantly benefit from an in-depth

understanding of Aβ’s structural dynamics. This will necessarily depend on first finding

a means of studying Aβ conformations under physiological conditions. In this work, we

have employed a number of molecular simulation approaches to address these challenges.

We study and describe the structural dynamics of the two physiologically dominant Aβ

species–Aβ40 and Aβ42 monomers.

Using multiple molecular dynamics (MD) simulations on microsecond time scale, we stud-

ied the conformations of Aβ40 and Aβ42 in explicit water and under simulation conditions
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Introduction

mimicing physiological conditions. To validate the obtained results, we employed chemical

shift calculations which we compared with Nuclear Magnetic Resonance (NMR) chemical

shifts, enabling us identify the force field that correctly models experimentally relevant

Aβ structural ensembles. An explanation is advanced for the differences observed in force

fields, especially with respect to natively disordered peptides of which Aβ is a type. We

provide an atomistic explanation for certain important aspects of the Aβ structure, such

as the observed differences between Aβ40 and Aβ42 monomers, and the intramolecular

factors that drive conformational behaviour of Aβ under different pH conditions.

Our goal for analysing Aβ’s conformation is to obtain structural ensembles closely resem-

bling the physiological state, for use in investigating Aβ’s interaction with aggregation

inhibitors currently investigated in the group of Prof. Dr. Willbold (ICS-6 Forschungszen-

trum, Jülich). These aggregation inhibitors were discovered using the mirror image phage

display technique. They showed promising anti-amyloid activities against Aβ42 in in vitro

tests and improved behaviour indices in transgenic mice. The inhibitors abolished Aβ’s

toxicity in a dose-dependent manner, but their mechanism(s) of action, to a large extent,

remains unknown. The aim of our study is thus to provide explanation for the mode

of action for the observed anti-amyloid effects of the D-peptide inhibitors. Our in sil-

ico investigation is based on an hypothesis linking Aβ’s neurotoxicity to its structure,

in particular the β-sheet content. The evidence for this came from an observation that

the D-peptide- treated solutions of Aβ lose their toxicity to cultured cell and at the same

time their β-sheet contents. The structural effects obtained in our calculations thus serve,

both as a means of approximating and comparing the D-peptides’ anti-amyloid effects,

as well as provide a way of validating the correctness of our results with respect to ex-

perimental observation. Our calculations reveal the possible mechanism of action of the

D-peptides, and at the same time provide a detailed description of their effects on Aβ’s

secondary structure. We also performed exhaustive point mutations on the D-peptides’
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Introduction

sequences using both natural amino acids and some non-standard residues. The results

suggest possible modifications that can be performed on the original D-peptides’ amino

acid sequences that can help modify their selectivity for different Aβ oligomer sizes.
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Chapter 2

Molecular dynamics

2.1 Introduction

”Given for one instant an intelligence which could comprehend all the forces

by which nature is animated and the respective situation of the beings who

compose it–an intelligence sufficiently vast to submit this data to analysis–

it would embrace in the same formula the movements of the greatest bodies

of the universe and those of the lightest atom; for it, nothing would be

uncertain and the future, as the past, would be present in its eyes.”[1]

–Pierre-Simon Laplace writing on causal determinism (1812-1820)

Dynamics simply put describes the motion and at the same time the property of a particle

or system of particles undergoing motion, which in biological systems represents an insepa-

rable aspect of biomolecular processes. Fairly recently the study of the dynamic properties

of biological systems from different perspectives (chemist, biologist and physicist’s) have

assumed significant proportion, and that not unnecessarily given the critical roles played

by dynamic processes in living systems. The microscopic scale characterising most bi-

ological processes in some cases has caused biomolecular dynamics to elude reckoning.

For instance, biomolecular processes had for some time been approached as involving still
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Molecular dynamics 2.1 Introduction

molecules (an example is the lock-and-key model used to describe the interaction of drug

molecules to their biological receptors). The realisation that a description of biochemical

functions remains incomplete without accounting for structural dynamics of constituent

particles (e.g., atoms and molecules) is a major driving factor spurring the rapid growth

in the study of molecular scale dynamics. Added to this are a plethora of powerful ex-

perimental tools such as X-ray crystallography, nuclear magnetic resonance, atomic force

microscopy, circular dichroism (CD), electron microscopy and fluorescence assays used

in biomolecular structure determination and limited aspects of structure dynamics, for

instance, using solution Nuclear Magnetic Resonance (NMR) techniques. Molecular scale

motions, however, traverse such broad time and distance scales (table 2.1) typically rang-

ing from the fast femtosecond-scale vibrational motions featuring small amplitudes (≈

0.01 Å) and energetics (≈ 0.1 kcal/mol) to the much slower domain and global rearrange-

ments occurring on hour scale characterised by much larger amplitudes (≈ 100 Å) and

energies (≈ 100 kcal/mol)[2]. Within the two extremes lie a host of intermediate scales

each of which has specific biological relevance. These different scales do not exist in isola-

tion relative to one another, instead they are interdependent–coupled– in that the smaller

scale motions determine the dynamics of processes existing on larger scales in such a way

that the largest dynamics (both distance- and time-wise) is indirectly dictated by the

smallest motion [2].

The dynamic properties of biomolecular systems are often inseparable from biological

Molecular motion Typical time-scale (s) Amplitude (Å) Accessibility
Bond vibrations 10−15 − 10−12 < 1 Fully
Loop motions 10−9 − 10−6 1-5 Fully
Domain movement 10−6 − 10−3 5-10 Fully
Protein folding and interaction 10−3 − 104 >10 Partly

Table 2.1: Time-scales of biological systems[2].

functions; however, such motions usually occur on scales that put them beyond the scope

of many conventional experimental techniques. Fortunately many of these biologically

relevant dynamics happen on time-scales that have become amenable to molecular scale
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Molecular dynamics 2.2 The molecular dynamics algorithm

simulation methods, such as deterministic methods making use of empirical potentials

in which either the Newtonian or the Lagrangian equation of motion is integrated over

time to obtain the positions and momemta of particles (idealised atoms) of the system

of interest[3]. Added to the recent tremendous progress in computer ware and algorithm

development, the investigation of biomolecular dynamic processes have increasingly been

brought within the domain of computational methods, thus providing a powerful and in-

creasingly indispensable high resolution details to complement experimental investigation.

2.2 The molecular dynamics algorithm

A molecular dynamics simulation involves solving the Newton’s second-order equation of

motion for atom i having mass mi experiencing a net force Fi and typically within a

system featuring other interacting particles.

Fi = miai (2.1)

= mir̈i (2.2)

= mi
∂2ri
∂t2

(2.3)

Although the specific implementation of the code varies with parameterisation philosophy,

the fundamental sequence of steps comprising an MD algorithm include: 1) the specifica-

tion of the initial conditions, 2) the calculation of atomic forces, 3) configuration update

involving the integration of the equation of motion, and 4) data (i.e., output) collection

and analysis [4].

15



Molecular dynamics 2.2 The molecular dynamics algorithm

2.2.1 Initial set of conditions–positions and velocities

The molecular dynamics algorithm is a deterministic simulation method. Deterministic

in the sense that starting with a specified set of initial system conditions, the method

can be used to provide exact solutions for state properties such as positions and velocities

(i.e., the phase space) at later time-points[5]. An MD simulation typically commences

with the specification of the starting coordinates R(t = 0) at time zero, consisting of

coordinates r1,2,3...,N for N atoms. The degrees of freedom represent the 6N -dimensional

phase space corresponding to the x, y and z components of the positional vectors ri and

the momentum vectors pi for each atom i. When completely specified for all atoms, the

phase space vectors R and P represent together a microstate in the phase space[6].

With ri known, a value for the initial interaction U(t = 0) (with velocities known) and

the initial velocities v1,2,3...N (may be optional in some MD codes; with U(t = 0) known)

of the N atoms can be calculated [4]. The starting coordinates, R(t = 0), for all atoms

are usually obtained from experimental techniques such as X-ray crystallography and

NMR, and in some cases from homology modelling[2]. Often times however, the initial

structures require some pretreatment and structural refinement before they are suitable

for use in molecular dynamics simulation. Hydrogen atoms, for instance, being too light

for X-ray scattering often have their coordinates missing in X-ray structures; while the

high structural flexibility characterising residues (both protein and nucleic acids) in loop

segments hamper their determination by both NMR and crystallographic methods. In

certain instances also, the missing residues result from deliberate removal as part of the

X-ray crystallographic procedure. Fortunately however, a number of computational tech-

niques exist to preprocess such starting coordinates and add in the missing atoms and

residues even up to whole absent loop regions.

Once the starting atomic positions have been fully specified there arises next the need to

specify the initial velocities which in most cases can not be obtained empirically. With
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Molecular dynamics 2.2 The molecular dynamics algorithm

the system temperature specified (typically but not always 300 K), however, the initial

velocities may be assigned according to a Maxwellian distribution, conducted initially in

an ad hoc manner,

P (v) =

√
m

2πkT
e

(
−mv

2

2kT

)
(2.4)

where P (v) is the probability, m and v are respectively the atomic mass and velocity,

while k is the Boltzmann constant. The initial system setup is however sometimes far

from equilibrium partly resulting from the random manner in which velocities were as-

signed. This may also result from factors associated with the specific details of the method

employed in generating the starting set of coordinates. For this reason further fine-tuning

of the assigned velocities may be necessary. Starting with low temperature values where

the system atoms feature wildly fluctuating kinetic energies (and thus velocities, equation

(2.5)),[2] the temperature is slowly increased (in principle) until thermal equilibrium is

achieved. From the equipartition theorem (equation (2.6)), it is possible to compute the

system average kinetic energy and thus the velocities. The new velocities corresponding

to thermal equilibrium can then be assigned. A second workaround involves iteratively

assigning the velocities from the Maxwellian distribution until certain predefined conver-

gence criteria are met.

The equipartition theorem allows to connect the system temperature T with the atomic

velocities vi:

Ekin =
1

2
mv2 (2.5)

T =

(
1

k3N

) N∑
i=1

∑
a=x,y,z

miv
2
i,a (2.6)

where vi,a refers to the velocity of atom i in either x, y or z direction.
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Molecular dynamics 2.2 The molecular dynamics algorithm

2.2.2 Computing forces between interacting atoms

The level of detail being modelled will necessarily affect the manner in which the force

calculation is conducted. This as well affects how atomic positions and momenta are sub-

sequently computed. [3] For systems for which less-than-atomic resolution is acceptable

some other equations of motion are solved to obtain forces: for instance the Lagrangian

equation employed for studying whole domain motion, while solution of the Langevin

equation is more appropriate for stochastic processes [3] In systems requiring atomistic

detail description, numerical solutions of Newton’s equation of motion are required for

every atom and in each x, y and z direction. Solution to the Newtonian equation for

atom i in equations (2.1) to (2.3) yields the atomic coordinates ri at time t. In order to

obtain the atomic forces, from which positions and momenta are subsequently computed,

the gradient of the atomic potential, −∇iU, is taken with respect to the position vector

of atom i:

Fi = −∇iU (2.7)

= −∂U(R)

∂ri
(2.8)

That is, forces are only computed from the interaction part of the Hamiltonian H which

is equivalent to the total energy and comprises the kinetic energy which is a function of

the atomic momenta (pi = miṙi), as well as the potential (interaction) energy part which

is a function of the atomic coordinate ri:

H(P,R) = Ekin(P) + U(R) (2.9)

=
∑
i

(
1

2

)
miṙ

2
i (p) + U(r) (2.10)

18



Molecular dynamics 2.2 The molecular dynamics algorithm

2.2.3 Integrating Newton’s equation of motion

An MD simulation involves sampling the phase space by tracking the time-dependent

evolution of the system via time discretisation and choice of an appropriate time-step to

integrate the equation of motion. The molecular dynamics simulation of biomolecular

systems studied in this work is based on the numerical solution of Newton’s second law of

motion for a system of interacting particles. Knowing the system coordinates, velocities

and forces at time t, the task is thus to calculate subsequent positions of the interacting

atoms following a step taken in time space. The resulting sequence of positions as a func-

tion of time are referred to as a trajectory. In principle, what is done is to calculate the

atomic forces, using a force field described in 1.3.3, from which the subsequent velocities

and positions can be obtained.

Molecular dynamics employs the finite-difference method for the numerical solution of the

equation of motion[2]. To this end, the time space is discretized,

τ = t0 + n
∑

∆t (2.11)

where τ is the length of the simulation, t0 is the initial time (often zero), ∆t is the

time-step, and n is the number of such steps taken during the simulation. In the finite-

difference method, the atomic velocities and positions after taking a ∆t time-step (i.e.,

at tnew = t + ∆t) are calculated using the corresponding values before the time-step. In

practice, however, this is only possible when the value chosen for ∆t is sufficiently small

(usually between 1–2 fs) in order to capture the fastest motion of the system, which is hy-

drogen bond vibration (table 2.1). Otherwise, the magnitude of accumulated error would

become too large.

Three popular integration algorithms exist: the Verlet algorithm, the Leap-frog algorithm

and the Velocity-Verlet algorithms with the last being the most accurate especially with
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Molecular dynamics 2.2 The molecular dynamics algorithm

respect to velocity calculation, and the first being the least. They are all based on Taylor

expansion of the atomic positions:

r(t+ ∆t) = r(t) + v(t)∆t+

(
1

2m

)
F(t)∆t2 + . . . (2.12)

The equation calculates the new coordinate at (t+∆t) from the current coordinates (first

term on the RHS), the current velocities (second term on the RHS), the current accel-

eration (third term on the RHS) and higher order terms. In practice the higher orders

are usually ignored while evaluating the expansion. The Verlet algorithm is based on

two such Taylor expansions, one for the future (t + ∆t, equation (2.13)) and one for the

past (t − ∆t, equation (2.14)). By summing up the two expansions all terms with odd

numbered orders (∆t1, ∆t3, ∆t5 . . . ) cancel out, and the coordinates at t+ ∆t can then

be calculated from the current coordinates and forces, and the previous coordinates[2]:

r(t+ ∆t) = r(t) + v(t)∆t+

(
1

2m

)
F(t)∆t2 +O(∆t3) (2.13)

r(t−∆t) = r(t)− v(t)∆t+

(
1

2m

)
F(t)∆t2 −O(∆t3) (2.14)

r(t+ ∆t) = 2r(t)− r(t−∆t) +
F(t)

m
∆t2 +O(∆t4) (2.15)

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
+O(∆t2) (2.16)

When equations (2.13) and (2.14) are substracted the value of the velocity is obtained

(equation (2.16)). The main advantages of the Verlet algorithm are its associated low

computational cost deriving mostly from the use of single force calculations per time-step

and its time-reversibility [2]. The disadvantages associated with the algorithm includes

the fact that velocities at t can only be calculated when the positions (r(t + ∆t)) are

known. Another disadvantage is the integration error for velocities being in the order of
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O(∆t2). This, however, has been reduced by the more recent modifications to the Verlet

algorithm, such as the Leap-frog algorithm, which evaluates velocities at half time-steps,

and the Velocity-Verlet algorithms. A detailed description of the two algorithms can be

found in reference [2].

2.2.4 Data analysis

The classical equation of motion as described above is solved at every time-step for the de-

sired length of simulation (τ), yielding a trajectory. The coordinates, velocities, potential

energy, pressure, etc can then be used to compute the desired time-averaged equilibrium

properties [7]. Examples include the root-mean-squared deviation (RMSD) which can ei-

ther be averaged over selected coordinates to temporally trace the structural fluctuation,

or over time in which case the relative fluctuation of the different subsets (e.g., a loop

region) of the system can be determined. Generally, analysis of MD-generated trajectories

typically involves calculating the time average of a desired quantity A over the length of

the simulation T :

〈A(r,p)〉time = lim
T→∞

1

T

∫ T

t=0

A(r(t),p(t)) dt (2.17)

In order words, 〈A(r,p)〉time represents the average, which is a function of the position

r and momentum p, calculated for a single point over the several time steps making

up the total simulation time. MD-derived average contrasts with what obtains at the

macroscopic level, where an ensemble average (equation (2.18)) represents several multi-

ple points existing at the same time:

〈A(r,p)〉ensemble =

∫∫
A(r,p) ρ(r,p) dr dp (2.18)
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where ρ(r,p) is the probability density. According to the ergodic hypothesis [8], at

the limit of an infinitely long MD trajectory, 〈A(r,p)〉time converges to 〈A(r,p)〉ensemble.

Rather than conducting infinite MD sampling, in practice, what is done is to generate

trajectories that are long enough for the simulated system to have equilibrated. Sub-

sequent trajectory analysis then involves calculating the time averages of the desired

quantities (〈A(r,p)〉time) and approximating these as representing the ensemble average

(〈A(r,p)〉ensemble). To a large extent the validity of this assumption will depend on the

degree to which the phase space has been sampled. And generally, the longer the simu-

lation the larger the part of sampled phase space. There are different types of properties

that can be calculated from an MD trajectory, but the analyses eventually performed will

depend on the question the simulation seeks to address. The properties calculated in the

present work are discussed in the relevant sections.

2.3 The potential energy function

The potential energy function represents a set of mathematical expressions that allow

a atomic system’s potential energy to be obtained from its 3-dimensional structure [2].

The mathematical models employed efficiently capture the various physicochemical inter-

actions contained in the system[2]. Such potential energy functions are often typically

designed for a defined group of molecular systems such as proteins, and are commonly

referred to as force field. Individual force fields are developed with various objectives in

mind, but practical applicability often demands that the employed forms of the mathemat-

ical expressions aim at achieving a balance between accuracy, implementation efficiency

and practical applicability [2]. It can as well be argued that the emergence of force field

methods already represents a major compromise between model accuracy and applica-

bility compared with quantum mechanical approaches in which electrons are explicitly
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treated. The advantage of accuracy obtainable in quantum mechanical (QM) treatments

is, however, at the same time a major limitation to their relevance in investigating most

biomolecular systems of interest. This is mostly because the high-level quantum chem-

ical calculations employed in QM treatment are in reality only able to study systems

containing less than 100 atoms and quickly requiring beyond available computational re-

sources for larger systems. Nonetheless, force field development has immensely benefited

from quantum mechanics for the derivation of force field parameters. Furthermore the

Born-Oppenheimer approximation which decouples the nuclear and the electronic wave-

functions serves as an important foundation for the classical treatment employed in force

field methods.

The potential energy, written as U(R) in equation (2.8) specifies the interaction energies

between the atoms composing the system but can also includes contributions to the en-

ergy function resulting from the use of special restraining forces during an MD protocol.

An instance is the use of restraints in biasing defined inter-atomic distances or angles[9].

These special interactions must then be accounted for as part of the potential energy

while computing forces.

The mathematical description of the potential energy function comprises two core ingre-

dients: bonding terms which specify the energy contributed by covalent bond terms, and

the nonbonding terms specifying contributions between atoms that are not via covalent

connections:

U = Ub + Unb (2.19)

where both Ub and Unb are in turn composed of separate terms the specific details of which

depend on the adopted functional form.
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2.3.1 Bonded interactions

The Ub term is obtained as a sum over all covalent bond lengths, bond angles, bond

torsions (or proper dihedral angles, often called dihedrals for short), and an improper

dihedral term:

Ub = UBonds + UAngles + UTorsions + UImproper (2.20)

Based on Fig. 2.1 an example for each of these four contributions is given:

• The covalent bond formed between atoms i and j: e.g., the C—CA bond

• The bond angle formed by atoms i, j and k and centred around j: e.g., the

C–CA–N angle

• The torsional angle involving successive atoms i, j, k, l: e.g., the angle defined

around the bond CA—N between the two planes (shown as gray triangles) involving

atoms C, CA, N and atoms CA, N, H.

• The improper dihedral involving four atoms i, j, k, l where j, k, l are all directly

bound to i. The improper torsion is also known as the out-of-plane bending term. It

is especially useful in cases where it is necessary to enforce a particular configuration,

such as planarity or chirality and tetrahedal centres[9]. In figure 2.1 the planarity

of the ring is enforced by an improper dihedral angle defined as the angle between

the planes spanned by Cb, CD1, CD2 and Cb, CG, CD1

The separate bonded terms are often treated either as harmonic or trigonometric func-

tions. For the harmonic treatment, the bond length, bond angle and improper dihe-

dral terms are calculated respectively as sum over the total number of covalent bonds

(ib = 1, 2, 3, . . . , Nb), bond angles (iθ = 1, 2, 3, . . . , Nθ), and improper dihedral angles
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Figure 2.1: Phenylalanine for the illustration of bonded interactions.

(iω = 1, 2, 3, . . . , Nω) according to the Hookean spring equation:

Uα =
Nα∑
iα=1

1

2
Kα[α− αeq]2 (2.21)

where α is any of b, θ and ω, and Kα represents the harmonic force constant for the motion

in question, and αeq is the equilibrium value of the bond or (improper dihedral) angle.

The force constants, usually obtained from spectroscopic measurements of related com-

pounds or from QM calculations, [2, 9] are typically defined for specific types of bonded

interactions. These are then supplied as parameters in the mathematical formulation of

the potential function. As an illustration, the value of Kb for a C-sp3—C-sp3 (σ-bond)

bond is expected to be different from the value for either of a C-sp2—C-sp2 (π-bond) or a

C-sp3—N-sp3 bond. The equibrium value αeq is, like the force constant, supplied as input

parameter for different bond types (e.g., C-sp3—C-sp3 versus C-sp2—C-sp2), bond angle

types (e.g. a tetragonal centred around sp3-C versus a trigonal centred around sp2-C),

and improper angles. In addition, the equilibrium values for both bonds and angles (αeq)

can also be obtained from experimental measurements (X-ray diffracton in particular)[9]

and QM calculations.
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An harmonic function is generally sufficient in capturing the properties of covalent connec-

tions which generally oscillate around the equilibrium values under commonly encountered

conditions. It is however important to note that the adopted functional forms of each of

these models also crucially depend on the need to simplify and reduce the number of

computational operations that need to be evaluated while computing the potential. For

instance, the new generation GROMOS force fields employ a non-harmonic function for

the bonds:

Ub =

Nb∑
ib=1

1

4
Kb,anharm[b2 − b2

eq]
2 (2.22)

This form allows a reduction in the number of mathematical operations requiring square

roots evaluation and by so doing simplifies the calculations. Similarly, a cosine expression

is employed (GROMOS) for the bond angles (equation (2.23)), evaluating cos θ rather

than θ, which reportedly improves numerical stability and allows the operations to be

performed more efficiently [9].

Uθ =

Nθ∑
iθ=1

1

2
Kθ[cos θ − cos θeq]

2 (2.23)

In the case of the torsion angle a different function capable of adequately capturing the

unique features of the angle is required. For these, the cosine function is used either

in a Fourier expansion (equation (2.24)) or Ryckaert-Bellemans formulation (equation

2.25) which more satisfactorily (compared with an harmonic function) models the periodic

nature of a torsion angle moving through angles ranging from 0◦–360◦ (or -180◦ depending

on adopted the angular definition):

Uφ =

Nφ∑
iφ=1

∑
m=1

Kφ,m[1 + cos(mφ− δ] (2.24)

Uφ,RB =

Nφ∑
iφ=1

5∑
m=0

Cm[cos(φ− 180◦)]m (2.25)
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The cosine function, in addition, better models the uniquely small energy barriers that

exist between multiple stable states, which partly result from the influence of nonbonded

interactions on the torsional potential [4, 11]. As a result of the dependence of the tor-

sional potential on the nonbonded interaction, the Ryckaert-Bellemans function ignores

the through-space interaction between the two outer atoms (i.e, 1-4 interaction) during

nonbonded interaction calculation while in the implementation in GROMACS, for in-

stance, special dispersion parameters are employed for the two atoms.

2.3.2 Nonbonded interactions

The nonbonded component of the interactions involve pairwise interactions transmitted

via space and not via the covalent network of bonds and angles[10]. There are two types

commonly included in most force fields: the electrostatic interaction resulting from ex-

plicit charges (e.g., attraction potential between oppositely charged aspartate and lysine

sidechains) and the van der Waals contribution (vdW, dispersion) resulting from uneven

and instantaneous electron distribution:

Unb = UvdW + UElectrostatic (2.26)

In the calculation of nonbonded interactions covalently bonded atoms are generally ex-

cluded. This may take the form of an exclusion list of all atoms connected via 1 or 2

bonds for which nonbonded calculations are not performed.

Compared with the electrostatic interaction (attractive and repulsive) which is a long-

range interaction as it scales with 1
r

where r is the distance between the interacting

atoms, the vdW interaction is a short-range interaction. The van der Waals potential

becomes attractive as the interaction distance decreases to an intermediate value, result-

ing from an electron redistribution also known as induced dipoles. On further decreasing
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the distance, electron clouds from different atoms get too close and the potential turns

repulsive[11]. This unique distance-dependent behaviour can be conceived of as arising

from the electrons getting in each other’s way [12] at distances smaller than the sum

of the interacting atomic radii where the interaction is dominated by high nuclear and

electron repulsion. The employed functional forms thus seek to adequately capture three

core aspects of the potential. That is: repulsive at short distances, slightly attractive at

intermediate distances, and vanishing at large distances. The different forms employed

usually only differ in the repulsive component. While the Buckingham [13] and the Morse

potentials [14] yield better results, the Lennard-Jones (LJ) potential is more commonly

preferred because of its associated lower computational cost:

UvdW = Uij −
Cij
r6
ij

(2.27)

UBuckingham = Aij expBijrij −Cij
r6
ij

(2.28)

UMorse = Dij

[
1− exp

(
−
√

k
2Dij

rij

)]
(2.29)

ULJ = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.30)

where Cij(vdW ) 6= Cij(Buckingham). Equation (2.27) captures the essential ingredients

for modelling van der Waals interactions. The choice of exponential functions by the

Buckingham (2.28) and Morse (2.29) functional forms more accurately capture the dis-

tance dependence than the LJ function (2.30). The constants Aij, Bij, Cij, and Dij, are

parameters defining the interaction of atoms i and j. The repulsive part defined in the

Lennard-Jones formulation by Aij/r
12
ij is chosen for no obscured reasons than to ensure

that it vanishes faster than the attractive part (dispersion) as rij increases [11]. The

choice of 12 for the exponent is thus mainly for the ease of computation (r12
ij = (r6

ij)
2)

for which reason other force fields can be found using values other than 12. Aij and Bij
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are values depending on the atomic radii of the atoms involved in interaction and are

supplied as parameters for the particular atom types [9] being treated. Equation (2.30)

shows the functional form of the LJ potential employed by MD codes like GROMACS.

The parameter σij is the value of rij at the minimum energy while εij is the depth of the

potential minimum energy.

The electrostatic interaction of charged groups (atoms and group of atoms) within the

system is usually modelled by the Coulombic function where partial charges are assigned

to the concerned atoms:

UCoul. =
1

4πε0

qiqj
εrrij

(2.31)

where qi and qj are respectively the partial charges of atoms i and j, while εr and ε0 are

respectively the relative dielectric constant and a distance dependence of the εr included

to include the screening effect of the medium. While functions including polarisation

effects and higher multipoles have proved more accurate at modelling the electrostatic

potential, such functions often come with high computation cost which has continued to

make the Coulombic model an attractive choice. For instance, evaluation of all pairwise

electrostatic interactions is associated with a O(N2) complexity. In practice, schemes

using spherical cutoffs such as the switching and shifting functions to a significant degree

reduce the discontinuity in energies and forces resulting from the use of simple trun-

cation, and have been used extensively in computing nonbonded interactions. A better

treatment of the long-range component of the electrostatic interaction in biomoecular sim-

ulation is achieved with the particle-mesh Ewald method (PME), an Ewald sum methods

which computes electrostatic interaction using a lattice with periodic boundary conditions

(PBC). With the PME the evaluation complexity is reduced to O(N logN).
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The overall potential energy function for the system can therefore be written in the form,

U =

Nb∑
ib=1

1

2
Kb[b− beq]2 +

Nθ∑
iθ=1

1

2
Kθ[θ − θeq]2

+

Nφ∑
iφ=1

∑
m=1

Kφ,m[1 + cos(mφ− δ] +
Nω∑
iω=1

1

2
Kω[ω − ωeq]2

+
N∑
i<j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
N∑
i<j

[
1

4πε0

qiqj
εrrij

]
(2.32)

The discussion of the implementation details and the specific mathetical treatment em-

ployed by different force fields and MD codes is beyond the scope of this thesis, which

aims at providing an overview, though incomplete but sufficiently broad to highlight the

most important contributory terms typically employed in a force field.

The actual force calculation is performed by taking the first derivative of the calculated

potential energy with respect to the atomic coordinate. As an illustration, the calculation

of forces coming from the nonbonded terms of the potential can given as[4]:

Fnb(rij) =

{(
1

4πε0

qiqj
εrr2

ij

)
+ 4εij

[
12

(
σij
rij

)13

− 6

(
σij
rij

)7
]}

rij
rij

(2.33)

2.3.3 Force field parameterisation

Currently employed force fields usually have all the necessary parameters required to

perform molecular dynamics simulations on proteins, nucleic acids, lipids, and carbohy-

drates which represent the most commonly encountered biomolecular systems. For this

reason force field parameter development focuses primarily on the building blocks of these

macromolecules as standard entries. From time to time however, there arises the need

to study nonstandard groups such as small molecule ligands, chemically derivitised forms

of standard groups of interest, or non-biological polymer systems. The nontrivial process
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of obtaining force field parameters for such nonstandard groups is what is referred to as

force field parameterisation, and it represents an advanced field in molecular simulation.

The parameterisation effort commences with first identifying the existing force field de-

scription to which the new parameters should agree. This ensures compatibility with

the existing potential description and eliminates unreasonable behaviour. Subsequently

parameters that already exist in the force field having the same (or in certain cases sim-

ilar) atomic properties, bond hybridisation, and chemical environment as existing in the

nonstandard molecules should be identified. This approach is known as parameterisa-

tion by analogy and benefits from a good chemical intuition and knowledge of organic

chemistry. In a great number of cases the required parameters already exist but not neces-

sarily in a single force field chemical entry. As illustration, the phenyl ring parameters for

phenylglycine, a nonstandard amino acid residue, maybe wholly sourced from the related

phenylalanine, but not from tyrosine because the hydroxyl group will have altered the

partial charges on the aromatic ring. In some cases, not all of the required parameters

that are available in the force field, making (high-level) QM calculations necessary for

parameter generation. This typically involves geometry optimisation at the appropriate

level of theory, followed by potential energy scanning along the internal modes of interest,

such as bonds or bond angles. The resulting energy profiles can then be used to deter-

mine the equilibrium values and force constants via fitting to the specific potential energy

function employed by the force field (equation (2.21)).
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Chapter 3

Amyloid beta peptide

3.1 Introduction

Amyloid beta (Aβ) polypeptide, a 4-kDa metallopeptide and principal component of

amyloid plaques found in the brains of Alzheimer’s patients, derives its name amyloid from

an initial description of it as a carbohydrate product, and beta to indicate its secondary

structural signature of β-pleated sheets. The self-aggregating peptide is an enzymatic

product of two secretases—the β and the γ secretases—acting on the parent amyloid

precursor peptide, a type-I transmembrane protein. The Aβ peptide is perhaps the most

important peptide involved in neurodegeneration, a reputation earned by its role in the

pathogenesis of Alzheimer’s disease. In 1987, the peptide was identified by Kang et al.

as the principal component of the amyloid plaque deposited in the brain of AD patients

[15]. It was later accepted widely as the single most important hallmark of the disease.

At that time the peptide was referred to as A4 protein. This, however, was not its first

discovery: four years earlier Glenner and Wong had reported the same peptide as the main

constituent of a vascular amyloid system[16]. Its distribution, however, is not exclusively

limited to the compact or diffuse senile plaques typically found in the hippocampal and

neocortical compactments of the brain, the peptide has also been isolated from the vascular
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tissues and generally in the central nervous system especially in the cerebrospinal fluid

[17–19].

3.2 The amyloid hypothesis

Initially different explanations for the development of Alzheimer’s disease were put forward

but it was only the amyloid-beta based hypothesis that best accounted for the different

pathological and biochemical events characterising the disease[20–26]. In the hypothesis,

elevated levels of the peptide in the cerebral cortex is considered as the trigger factor

for the development of AD pathology [27]. Increase in cerebral Aβ peptide results from

a disturbance in the fine balance between the generation and clearance of the peptide.

In other words, any event capable of altering Aβ peptide production or its clearance is

potentially a candidate in the initiation of such disturbance. And in fact, both aspects

are considered in attempts to design therapeutic agents aimed at rectifying the Aβ pep-

tide concentration anomaly in AD. The disruption of Aβ peptide level regulation in the

cerebral system (mainly though not exclusively) soon sets off a host of biochemical events

which ultimately results in the clinically observed systems typical of AD–cognition and

memory impairment[28].

The amyloid hypothesis has been widely accepted in explaining the specific details as-

sociated with AD mostly because it represents the model that most accurately fits the

different biochemical and functional changes accompanying the development of the dis-

ease. Some of the strongest evidence supporting the validity of the amyloid hypothesis

have come from Aβ toxicity studies, from the correlation of genetic mutations in the APP

and presenilin-1 and 2 genes, and from transgenic mice experiments. Aβ peptide was

shown to possess an aggregation-dependent neurotoxicity in cell culture studies, believed

to be an indication of the peptides toxicity in AD [29,30] The mutations associated with

Alzheimer’s disease pathology involve three main peptide systems–the amyloid precursor
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peptide, the presenilin-1 (chromosome 14) and presenilin-2 (chromosome 1) and finally

the apolipoprotein E lipoprotein (chromosome 19). Mutations in the amyloid precursor

peptide gene, though representing only a fraction of familial Alzheimer’s disease, have

been observed to involve sequence regions within the APP identified to correspond to the

Aβ peptide. An example is the London mutation in which a point mutation of codon 717

leads to an increased generation of Aβ42, an alloform of the amyloid peptide associated

with higher aggregation and neurotoxicity but normally produced in much lower titres

than what is seen in the London mutation of familial Alzheimer’s disease [31,32]. Another

strong evidence implicating Aβ as the main player in AD development comes from Down

Syndrome (DS) in which people with DS invariably develop AD if they live up to the 40

years [33]. The link between the two conditions arises from a triplication in DS of the

Chromosome 21 encoding the APP from which Aβ peptide is produced.

The strong correlation of amino acid substitutions involving the Aβ peptide sequence

with the pathology of Alzheimer’s disease further strongly establishes the causative role

of the peptide in disease development. Of special importance are point mutations involv-

ing glutamic and aspartic acids respectively at positions 22 and 23 of the Aβ peptide

sequence. Both assembly structure and clinical presentation of AD are strongly affected

by this group of mutations, which on a general note are associated with a faster aggrega-

tion kinetics and more aggressive symptom presentation. The Arctic mutation, involving

a change of Glu22 to a glycine (E22G) was reported to significantly increase Aβ prefibril-

lar structures and is associated with an early-onset pathology with a symptom complex

identical to the later-onset disease [34–37]. This is unlike the other mutations involving

Glu22 and Asp23 whose distinct structural and pathological signatures separate them

from the wild-type disease. Mutating Glu22 to either a lysine (E22K) as seen in the

Italian mutation or to a glutamine (E22Q) of the Dutch mutation results in a symptom

complex involving significant cerebral haemorrhage[38, 39]. Either the haemorrhage in
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the Dutch mutation, or the reported cerebral amyloid angiopathy [40] causes episodes of

cerebrovascular accidents (i.e. ischaemic or haemorrhagic stroke) with the attendant loss

of function of the area of the brain so affected. Both mutations are associated with the

formation of diffuse plaques and intensely increased polymerization rates; for instance,

the Italian mutant has been reported to be associated with twice as fast aggregation ki-

netic compared with the wild-type Aβ peptide [39, 41]. Lastly, diffuse plaque formation

as well as nonhaemorrhagic cerebral amyloid angiopathy have similarly been observed in

the Iowa mutation with aspartic acid 23 changed to asparagine (D23N)[38,42,43].

Presenilin-1 and 2 are part of the γ secretase enzyme complex that cleaves the APP

in regions corresponding to the Aβ C-terminus. While mutations involving the ε4 vari-

ants of apolipoprotein E is associated with increased amyloid deposition in late-onset

Alzheimer’s disease, mutations in the presenilin-1 and 2 genes have been observed to shift

the C-terminal processing activities of γ-secretase in favour of Aβ42 over other less toxic

alloforms in early-onset AD[44,45]. Lastly, features akin to human AD such as gliosis, loss

of cerebral synapses and behavioural dysfunction have also been observed in transgenic

mice expressing the APP gene, but much less in mice lacking the apoE gene[45–47].

Criticism: At the turn of the century, when the amyloid hypothesis was just proposed

for explaining the pathogenesis of AD, the insoluble deposits were believed to be the prin-

cipal causative of the neurodegeneration associated with the disease. However, there is a

noticeable absence of the direct proof that amyloid plaque deposition is the major factor

that culminates in AD development. [48] And crucially, the observation that neurodegen-

eration occurs prior to the detection of amyloid plaques and the detection of the deposit in

nonsymptomatic or healthy persons represents a major disconnect between the amyloid

plaque-based hypothesis and clinical reality of the disease [49]. The available body of

evidence for the disease better points at the water-soluble prefibrillar aggregates as the

clinically relevant neurotoxic species rather than amyloid plaques whose deposition fail to
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sufficiently correlate with AD pathogenicity and progression[50]. This then led to a major

revision of the hypothesis to account for the observation that the water soluble oligomers

of Aβ are the main neurotoxic component[25]. The soluble Aβ oligomers not only demon-

strate significantly higher toxicities in cultured cells than the insoluble plaques, they also

reveal toxicity patterns that correlate better with AD pathology[51,52].

3.3 From structure to dysfunction: the mechanism

of toxicity

Following enzymatic cleavage from APP the generated small molecular weight amyloid-β

peptide undergoes a set of structural changes involving both intramolecular and inter-

molecular transitions, which two kinds of structural remodelling do not necessarily pro-

ceed independently. Prior to release from APP, the Aβ peptide adopts a predominantly

helical state inside the hydrophobic transmembrane environment, and after cleavage and

release into the aqueous extracellular medium it dynamically undergoes structural con-

versions in what is commonly believed to be an unstructured state in the monomer. At

this particular level attempts to unambiguously characterize the structural states of the

peptide have often been less than successful, largely a consequence of the rapid intrinsic

aggregation properties of the peptides under physiological conditions. While this has been

partly circumvented by employing artificial and nonphysiological experimental conditions,

including the use of nonpolar solvents, the obtained results cannot be safely extrapolated

to physiologic conditions. And this is where computational experiments have amply filled

in the gap.
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3.3.1 Aβ peptide

Based on intrinsic toxicity Aβ42 represents the most clinically important alloform of the

proteolytic products of β and γ secretases. The extra two residues in the C-terminus

confers subtle but important structural and toxicity properties on the peptide compared to

the most abundant but less amyloidogenic Aβ40 variant. The primary sequence of the full

length Aβ peptide features neighbouring subregions with sharply differing polar/solubility

properties, with the N-terminal portion largely composed of polar and hydrophilic residues

and the C-terminus lined up with hydrophobic residues. Within the mid-section is a short

hydrophobic stretch referred to as the central hydrophobic core (CHC). The very detail

of the ordering of the Aβ peptide sequence represents a vital driving force in the peptides

structural identity and by extension, its toxicity:

1DAEFRHDSG10YEVHHQKLVF20FAEDVGSNKG30AIIGLMVGGVV40IA.

The unique structural features of the peptide partly derives from its sequence constitu-

tion composed of six negative, three positive, and three histidine residues mostly in the

N-terminal half, and a predominantly hydrophobic C-terminal half. The peptide has an

isoelectric pH of 5.3 and under most experimental conditions has a negative charge surplus

at physiological pH values. Following cleavage by β– and γ–secretases and release into the

aqueous extracellular compartment, the peptide undergoes a sequence of conformational

transitions from being largely unstructured, to rapidly interconverting secondary struc-

tural units, and assembly into water-soluble structurally heterogeneous oligomers, and

ultimately to β-sheet-rich protofibrils and amyloid fibrils. The level of β-sheet formed

appears to be a characteristic feature that increases with aggregate size and stage.

The monomer is widely considered as an intrinsically disordered peptide. But rather than

being altogether unstructured, studies have shown that the monomers sample different

features in different parts of the sequence. For instance, studies by Yang and Teplow

revealed the two major variants as possessing a ”unique statistical coil” bearing identi-
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fiable secondary structure units, which are separated by turn structures[53]. NMR and

MD studies aimed at distinguishing between the two peptides revealed a higher rigidity

in Aβ42’s C-terminus[54, 55]. This was used to explain the higher amyloidogenicity and

neurotoxic potencies of Aβ42 compared with the Aβ40 [54, 55]. Other studies comparing

Aβ40 and Aβ42 have also revealed distinctions in their structures and aggregation prop-

erties[56, 57]. Nuclear Overhauser effect (NOE) measurements indicate both peptides as

exhibiting high conformational interconversion at the pico- to nanosecond time-scale[54].

The NOE values for Aβ42 C-terminus, however, suggested a higher rigidity compared

with Aβ40 [54]. This was believed to enforce some sort of conformational restriction that

keeps Aβ42’s C-terminal segment in a β-strand competent conformation. This in addition

serves an internal seeding function that translates into higher aggregation propensities in

the longer Aβ alloform. For instance, Yang and Teplow reported an increased C-terminal

residue contact with the CHC of Aβ42, which effect serves to better stabilize the β-sheet

structure more than in the shorter peptide, where the CHC would rather interact with

the N-terminus. Apart from the difference in primary amino acid sequences of the two

extra hydrophobic residues, Urbanc and co-workers identified a turn structure at sequence

positions Gly37-Gly38 in Aβ42 as another feature distinguishing it from the shorter pep-

tide[56, 57]. The Gly37-Gly38 turn has been suggested as an explanation for the relative

preference of Aβ42 for pentameric and hexameric oligomers, compared with the dimeric

assemblies more preferentially favored by Aβ40 [56,58,59]. A β-strand located at positions

Ala2-Phe4 has also only been exclusively identified in the Aβ40 [56].

The aggregation of Aβ monomers into toxic β-sheet-rich oligomer structures is believed

to depend to a significant extent on the sampled conformational state of the monomer

and factors influencing it. Metal ions, such as Cu2+, Zn2+, and Fe2+, lipid membranes,

the presence of preformed oligomers, hydrogen ion homeostasis as well as sample prepa-

ration conditions have been found to strongly influence both folding and the aggregation
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kinetics[60–65]. A weakly acidic pH (pH range 3.5-6.5) was suggested to be an important

factor promoting amyloid aggregation[60]. The protonation state of Aβ histidine residues

(His6, His13, and His14) is strongly influenced by pH changes with a change in net molec-

ular charge from –3 to 0 associated with a change from neutral to slightly acidic pH values.

It was found that pH-controlled structural changes can also be attributed to metal ion-

binding and to changes in the electrostatic charge distribution of the molecule[62]. For

instance, the binding of Cu2+ by Aβ28 was observed to be pH-dependent, with the diva-

lent metal ion inducing aggregation only at pH values lower than the physiological pH[61].

Whether it is by promoting metal coordination or by intrinsic redistribution of electro-

static charges, acidic pH values are likely to promote amyloid aggregation by decreasing

the hydrophilicity of the N-terminal portion of Aβ. Given the slightly acidic nature of

accompanying inflammatory response in AD,[66] acidic pH-facilitated aggregation is likely

to be of importance in disease development. It has been shown that brain from patients

who die from AD are more acidic than brains from patients who die suddenly with no

brain disease[67].

3.4 Aβ conformational sampling

The current section, written by me and corrected by Jun.-Prof Dr. Birgit Strodel, has

been published in the Journal of Physical Chemistry B[68] and has been cited here.

3.4.1 Initial configurations

The starting structures of the monomeric Aβ peptides, Aβ40 and Aβ42 were taken from

the RCSB Protein Data Bank (www.rcsb.org). The structure of Aβ40 (figure (3.1(a)))
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Figure 3.1: Aβ starting structures: (a) Aβ40 (PDB 1BA4), (b) Aβ42 (PDB 1Z0Q). The N and C termini are
represented as blue and red beads, respectively.

with accession code PDB 1BA4 [69] was solved in 1998 by solution NMR at a moderately

acidic pH 5.1 and in a micellar system composed of water–sodium dodecyl sulfate mixture.

It features largely unstructured N-terminal residues extending up to His14, after which

an α-helix involving a Gly25-Ser26-Asn27 hinge is adopted up to Val36. The employed

conditions more closely mimic a membrane or a membrane-aqueous system rather a pre-

dominantly aqueous system as modelled in the present work. The first of the ten NMR

structures deposited in the data bank was selected as starting configuration for MD in

explicit solvent environment. The simulation was designed to grant insight into the likely

conformational behaviour of the peptide in completely aqueous milieu, akin to what is

experienced in vivo after enzymatic cleavage, after which the peptide is released in the

extracellular compartment where aggregation into toxic oligomeric structures takes place.

Importantly, the choice of aqueous simulation conditions would provide an understanding

of the conformational profile of the monomer which expectedly serves as the foundation

for higher order structural organisation, and at the same time provide a structural refer-

ence for rationalising the observed differences in the closely related Aβ42 monomer whose

possession of two additional C-terminal residues has been proposed as the explanation for

the observed higher aggregation and neurotoxicity propensities[25,54].
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The starting structure for Aβ42 was also obtained from solution NMR-determined config-

uration obtained from the RCSB Protein Data Bank (figure (3.1(b)), accession code PDB

1Z0Q)[70]. The structural determination was performed in an apolar organic solvent,

hexafluoroisopropanol (HFIP) and the Aβ42 monomer was observed to adopt two helical

subunits, the shorter of which was sampled in the C-terminal segment of the peptide.

Using a combination of CD and NMR spectroscopies, the effect of increasing water con-

centration up to 99%v/v was probed and observed to involve reversible conversion of the

predominantly C-terminal helix at high HFIP concentration to β-sheet–rich conformation

at water levels greater than 80%v/v[70]. As long as the apolar HFIP was present however,

the N-terminal helix was retained leaving the important question of what conformations

would be adopted in a completely aqueous environment. The significantly high aggre-

gation propensity of the peptide has, however, prevented conventional experiment from

being able to address the question. And this is where molecular dynamics simulation

provides a powerful method of investigating the peptide’s conformational experience in

100%v/v aqueous system: the very fact that a single molecule can be studied, immedi-

ately circumvents the high aggregation propensity challenge.

3.4.2 Simulation details

The relevance of a force field crucially depends on its parameterisation scheme and em-

ploying it for systems for which it was not originally designed should be done with caution.

This, for example, applies to most protein force fields whose parameter development were

based on small non-protein compounds. One way this work has selected to reduce force

field peculiarities is by employing two different force fields for each protein system–the

GROMOS force fields ffG43a2 parameterised to reproduce experimental heat of vapor-

isation of small molecules [71], and ffG53a6 parameterised to reproduce experimental
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solvation enthalpies for small molecules. [9]. Both are united-atom force fields which en-

sures sufficient similarity in overall force field structure, and the simulation results from

each were validated against experimental NMR chemical shift data (discussed below). A

cubic simulation box was set up for each of the Aβ40 and Aβ42 monomers, and the peptide

centered inside with a 10 Å minimum distance allowed between each atom and the edges

of the box giving a box length of ≈ 65 Å. A rather large box was chosen so as to avoid

artefacts resulting from the constraining effect of smaller box types preventing protein

unfolding[72]. Artefacts from edge effects (unnatural edge truncation) resulting from the

use of a finite system, however, remains and in order to reduce this effect, a periodic

boundary condition (PBC) was applied across the box edges. This entails surrounding

the simulation box with the translated copies (periodic images) of itself in the xyz direc-

tions closely resembling a boundless situation[4]. There is a special implication to this, the

possibility of simulated particles to be surrounded by multiple copies of itself which calls

for a special way of handling nonbonded interactions. In GROMACS, the minimum image

convention method is employed, that involves computing the short-range component of

the nonbonded interaction for only the closest periodic image. The choice of a cut-off

radius smaller than half the box vector for a cubic box (the smallest of the box vectors

for noncubic boxes) ensures that a maximum of one copy of the particle is considered for

short-range interactions. The Particle Mesh-Ewald method, a lattice sum approach, was

employed for calculating the long-range component of the coulombic interactions. A 14

Å cutoff was used for truncating the short-range electrostatic (also van der Waals) forces.

Following steepest descent energy minimization of Aβ40 (and Aβ42) in vacuo, sufficient

water molecules, using the simple point-charge (SPC) water model were added to fill the

simulation box. The choice of protonation states for the ionizable residues to mimic the

near-neutral physiological pH of 7.4 produced a −3 net charge per molecule. This involves

protonating basic groups – Arg5, Lys16, Lys28 and the N-terminus, while deprotonating
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the acidic groups Asp1, 7 , 23, Glu3, 11, 22 and the C-terminus. Counter ions, Na+ and

Cl−, were randomly added to neutralise the net molecular charge while at the same time

achieving a NaCl concentration of 150 mM. The addition of solvent often leaves pockets

of empty spaces within the system, while at the same time there is the possibility of

placing a solvent molecule too close to the peptide (that is, violating the van der Waals

radius). Both phenomena results in high system energy, and it is crucial to first bring

the system as close to equilibrium as possible before performing the production MD run.

For this reason, the solvated system was first subjected to 5000 steps of steepest de-

scent minimisation followed by 5000 steps of conjugate gradient minimization. This was

followed by position-restrained dynamics performed for 1 ns, during which a harmonic

restraining force of 239 kcal/mol was placed on each coordinate of the peptide’s heavy

(i.e., non-hydrogen) atoms, allowing the solvent molecules to relax around the restrained

peptide. This serves as a very efficient means of removing bad contacts remaining af-

ter the energy minimisations steps, thus bringing the system near equilibrium conditions.

The position-restrained dynamics was performed under constant temperature (300 K) and

pressure (1 bar) conditions (i.e., NPT ensemble) involving a coupling of the system to a

Berendsen thermostat and barostat, respectively. After turning off the position restraints,

and replacing the temperature and pressure coupling respectively with the Nosé-Hoover

thermostat and a Parrinello–Rahman barostat, the system was subjected to a 1.5 µs MD

production run. Neighbour list generation, that is the dynamic (static over the number of

steps used in updating the list) list defining neighbouring atoms for computing nonbonded

interactions, was updated every 10 ps using a cutoff radius of 1.4 nm. Coordinates were

saved every 20 ps, and after completion the trajectories were analysed.

System in the simulation setup description stands for each of Aβ40–ffG43a2, Aβ40–ffG53a6,

Aβ42–ffG43a2, and Aβ42–ffG53a6 peptide-force field combinations. That is, an aggregate

of 6.0 µs MD simulation in explicit solvent was performed for a comparative study of the
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conformational behaviour of the two Aβ monomers as well as for determining the accu-

racy of the force fields at describing the two Aβ peptides’ dynamics. Each simulation was

performed using 64 cores of the Jülich Supercomputer Centre’s (JSC) JUROPA computer

cluster. The use of virtual hydrogen sites allowed the use of a simulation timestep of 5 fs,

and a simulation time of approximately fifteen days for each system.

3.4.3 The structure of Aβ40

In order to monitor the transition of the peptide’s secondary structure, the program

DSSP [73] that employs hydrogen bond definition in addition to information from ge-

ometric pattern analysis, was employed. Interfacing of GROMACS with DSSP allows

the secondary structure transition to be obtained as a function of simulation time. The

DSSP plot for ffG43a2 (figure 3.2) shows a retention of the N-terminal α-helix, while the

C-terminal-ward edge underwent a conversion into turns and β-strands within the first

20 ns. Between 20–90 ns the α-helix was partly converted to π-helix involving residues

13–25, which between 140 and 340 ns reduced to residues 13–18. Relative to the other

residues of the peptide and according to the force field, residues 13–25 seem to possess

a high helical propensity, which gradually converts between the α-helical form obtained

in apolar medium (HFIP) to π-helical in 100% completely aqueous medium. Conversion

between the helical forms represents gradual destabilisation of the helix which eventually

was converted into turns between 900–1100 ns. The N-terminal residues 1–14 on the

other hand remained largely disordered throughout the 1.5 µs-long trajectory, only fleet-

ingly sampling α-helix (for instance, the boundary residue 13) and β-bridge in the second

half of the simulation. β-structures were also sampled, involving the C-terminal residues

28–39, separated from the helical CHC by a coil structure involving Gly25-Ser26-Asn27.

Residues 30–31 and 34–35 existed as turns.
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Simulation with the ffG53a6 parameter set produced certain differences in the confor-

Figure 3.2: DSSP plot showing secondary structure transition in Aβ40 as modelled by ffG43a2. The structural
pattern involves three distinct segment-based conformations with N-terminal up to residue 14 sampling turns
and bends; a stable α-helix is sampled involving residues 16 to 24 of the peptide; and residues in the C-terminal
segment forms β-sheet structure.

mations sampled by Aβ40 (figure 3.3). With ffG53a6, the helix in the CHC completely

disappeared after 600 ns. Also notable is the fact that participation of residues in the helix

was limited to just residues 10–14. The initial 200 ns saw the C-terminal section undergo

structural transitions involving helix, β-strands and disordered conformations. From 200

ns on a β-strand was more stably sampled between residues 19–23 and 32–37, while 24–31

for the most part remained disordered. To a large extent the N-terminal residues did not

form a β-strand: between t=0 and t=600 ns residues up to 10 were disordered, which for

the rest of the simulations increased to residues 1–17. In general, the appearance of the

DSSP-obtained secondary structure plots for Aβ40 indicates a higher structural flexibility

for ffG53a6 than for ffG43a2 in which sampled structures generally persisted longer.

To better describe the structural states sampled by the force fields, cluster analysis was

Figure 3.3: DSSP plot showing secondary structure transition in Aβ40 as modelled by ffG53a6.

performed on each trajectory using the method by Daura et al. [74]. This involves the
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pooling together of all the sampled configurations in the trajectories, and counting the

number of structures (neighbours) within a predetermined cutoff radius. The structure

with the highest number of neighbours which together with its neighbours constitute a

cluster, is then eliminated from the pool alongside its neighbours. The process is re-

peated until all the structures have been assigned to clusters. Using a 2 Å cutoff for the

backbone atoms, and the last 1.0 µs of the trajectories (chemical shift analysis, discussed

below revealed the trajectories as having equilibrated after t=500 ns), cluster analysis was

performed. Figure 3.4 presents the central structures for the five largest clusters for each

force field. Before discussing the result from the cluster analysis, it should be noted that

an instance of secondary structure assignment conflict occurred in figure 3a, involving

a π-helix assigned by STRIDE (the secondary structure assignment algorithm used by

VMD, the employed graphic programme) for residues 28–36 to which DSSP assigned a

strand-turn-strand-turn structure. No other instance of assignment conflict was observed

and for consistency the assignment by DSSP has been adopted in this work.

Results of the cluster analysis significantly capture the structural changes featured in

Figure 3.4: Aβ40 structures for the centers of the five most populated clusters obtained from the last 1000 ns of
the MD simulations using ffG43a2(a) and ffG53a6(b) with the cluster size decreasing from (i) to (v). The blue
and the red spheres respectively show the N- and C-termini. π helix, β-sheet, and β-bridge regions are shown in
purple, red and black respectively, while the yellow and while regions are unstructured.

the DSSP plots (figures 3.2 and 3.3). In the case of ffG43a2 the five largest clusters

represent 94% of all the sampled configurations while for ffG53a6 only 26% of the sam-

pled configurations were contained in the five clusters, indicating a higher conformational

flexibility in the latter force field compared to the former. The DSSP plots suggest that
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the N-terminal region contributes significantly to this flexibility difference. An overlay of

the root mean square fluctuations of the backbone atoms in figure 3.5 indicates a much

higher structural flexibility in the peptide when simulated with ffG53a6. This may also

Figure 3.5: Root mean square fluctuation of the backbone atoms of Aβ40 showing higher peptide flexibility with
ffG53a6 (red) compared with ffG43a2 (black).

be described as ffG53a6 favouring disordered states for Aβ40, which better correlates with

the expectation for Aβ monomers. The cluster centres for ffG53a6 feature a largely disor-

dered N-terminal segment and a β-strand involving two sequence stretches, 19FAED23 of

the CHC self-recognition unit, and 32IGLMVG37 belonging to the C-terminal hydrophobic

patch. The terminal three residues, 38GVV40, exist as disordered in all five clusters. This

partly agrees with the structural model proposed by Danielsson et al. from 15N relaxation

data.[75]. Using persistence lengths obtained at temperatures ranging from 3 to 18◦C, a

model composed of six structurally distinct units was proposed for Aβ40 involving a π-

helix for residues 1–4; a coil structure between residues 5–10; a second π-helix for residues

11–15; a β-strand for residues 16–24; a second coil involving residues 25–30; and finally

a β-strand involving C-terminal hydrophobic residues 31–40. In the ffG53a6 simulation,

the observed unstructured region involving residues 1–18 and 24–31 and the β-strand of

residues 19–23 (16–24 in the experimental model) and 32–37 (31–40 in the experimental

model) are in agreement with the proposed NMR relaxation model. The exception is the

π-helix involving residues 1–4 and 11–15, which was not found to be stable in the ffG53a6
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simulation of Aβ40.

3.4.4 The structure of Aβ42

As presented in figure 3.6, the plots of the secondary structure of Aβ42 obtained with

ffG43a2 reveals a pattern similar to that obtained for the shorter peptide, especially in

the formation of a relatively stable N-terminal helix. However, in the present case, a π-

helix (rather than an α-helix) between residues 5–15 is observed. Between ca 370 and 840

ns, the mid-section region spanning residues 20–30 support a strand–turn–strand confor-

mation. This structure was subsequently replaced by a disordered state, while sequences

spanning residues 33–40 and 2–4 sampled β-strands.

With the ffG53a6 force field, the two helical units present in the NMR starting structure

Figure 3.6: DSSP plot showing secondary structure transition in Aβ42 as modelled by ffG43a2.

were completely lost within 100 ns (figure 3.7), suggesting a much higher conformational

flexibility than observed with ffG43a2. This, however, does not indicate inability to sam-

ple specific conformations. Based on sampled β-strand–coil features, the trajectory may

be viewed as being temporally divided into four stages. In the first 400 ns residues 24–

40 intermittently but continually sample β-strand structure while residues 1–23 remain

largely disordered. During the next 325 ns, the N-terminal section stably sampled β-

strand while the remaining residues (i.e. covering the CHC and the C-terminal sections)

adopted disordered states. Between 725 ns and 1250 ns, the peptide again adopts a

49



Amyloid beta peptide 3.4 Aβ conformational sampling

structure characterised by the C-terminal region adopting β-sheet state and disordered

N-terminal residues. The first 1250 ns thus sees β-sheets sampled interchangeably and

with a mutual exclusivity by the two half segments of the peptide. During the last 250

ns, however, the β-sheet additionally extends to the N-terminal residues 6–13.

As for Aβ40, cluster analysis was performed on the last microsecond of the MD tra-

Figure 3.7: DSSP plot showing secondary structure transition in Aβ42 as modelled by ffG53a6.

jectories with the same 2 Å RMSD cutoff. In agreement with the secondary structure

plot for ffG43a2, the five cluster centres (Figure 3.8) adopt an extensive N-terminal π-

helix spanning residues 4–16. The five largest clusters for ffG43a2 represent 76% of

all sampled configurations indicating a higher conformational rigidity compared with

ffG53a6, in which 48% of all structures are captured in the five clusters. In the case

of ffG53a6, the cluster centers mostly feature β-sheets involving residues 3EFRHDSG9,

residues 17LVFFAE22 – the CHC self-recognition unit – and the C-terminal hydrophobic

stretch 30AII GLMVGGVV40 where the italicised residues are disordered. In 2004, Ur-

banc et al. identified the disordered 36VGG38 as distinctly characteristic of Aβ42 where it

forms a hinge[56]. In agreement, the ffG53a6 force field correctly identified the hinge at

36VGG38 in Aβ42.

From the relative size of the five most populated clusters, it becomes obvious that the

observed pattern of conformational flexibility arises from the force field rather than solely

from the simulated peptides. As observed above for the shorter peptide, Aβ42 monomer

also undergoes a higher structural dynamics when simulated with the ffG53a6 as shown
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Figure 3.8: Aβ42 structures for the centers of the five most populated clusters obtained from the last 1000 ns of
the MD simulations using ffG43a2(a) and ffG53a6(b) with the cluster size decreasing from (i) to (v). The blue
and the red spheres respectively show the N- and C-termini. π helix, β-sheet, and β-bridge regions are shown in
purple, red and black respectively, while the yellow and while regions are unstructured.

in the backbone RMSF plot in figure 3.9.

Figure 3.9: Root mean square fluctuation of the backbone atoms of Aβ42 showing higher peptide flexibility with
ffG53a6(red) compared with ffG43a2 (black).

3.4.5 Comparison of Aβ40 and Aβ42

The extra two residues distinguishing the primary sequence of Aβ40 and Aβ42 have been

indicated to confer significant differences on both the conformation and aggregation prop-

erties of the two peptides[56, 57]. Both peptides were shown by NOE measurements to

undergo a high conformational interconversion at the ps-to-ns time-scale; however, higher

NOE values were obtained for the C-terminus of Aβ42 indicating a relatively more rigid

C-terminus than for the shorter peptide[54]. This was proposed to maintain Aβ42’s C-

terminus in a β-strand conformation which acts as an internal seed for amyloid aggre-
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gation. The diglycine turn (Gly37-Gly38) turn was only identified in Aβ42, which was

proposed as a distinguishing feature of Aβ42 since it was not found in Aβ40 [56,57]. This

was used to explain the preference of Aβ42 for pentamer and hexamer formation, compared

with Aβ40 which would rather aggregate into dimeric structures [56, 58, 59]. A β-strand

was also uniquely identified between Ala2–Phe4 in Aβ40 [56].

Our simulations present the two peptides as largely unstructured in their first 10 residues

(N-terminal). In comparative terms however, Aβ40 appears to be more disordered in this

segment than Aβ42, which additionally samples either π-helix and β-strands in its N-

terminal residues. Both force fields successfully predict β-strands in the β-sheet-forming

self-recognition sequence 17LVFFAE22 of Aβ42. In Aβ40, only ffG53a6 predicts β-strand

and only in the vicinity of the self-recognition unit involving 20FAED23. The 16KLVFF20

motif is widely accepted as the first key motif for nucleating Aβ aggregation [76], being

one of two hydrophobic stretches present–17LVFFA21 and 30AIIGLMVGGVV40IA42. The

simulations for both peptides additionally reveal Gly25–Asn27 as constituting some sort

of a bridge, which conformationally separates the two hydrophobic patches. In agree-

ment with the suggestion that a conformational transition from helix to coil precedes the

characteristic β-sheet-dependent aggregation of Aβ [70], both force fields predict the com-

plete loss of the helix in the second hydrophobic patch of both peptides. The C-terminal

segments of both peptides sampled a β-strand conformation; however in agreement with

earlier studies the hinge 37GG38 identified as characteristic of the longer peptide[56, 57]

was sampled only in Aβ42.

Furthermore, the ffG53a6 simulation showed Aβ42 as capable of sampling β-strand in its

N-terminal, mid-sequence, and the C-terminal segments, although the last two segments

were significantly better able to do this. This compares with Aβ40 in which β-strands

were largely limited to the last two segments, and that to a much lesser degree. The five

clusters obtained from ffG43a2 for Aβ42 feature an extensive π-helix spanning sequence
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spanning residues 4–16, which slightly contrasts with the prefential sampling of α-helix in

Aβ40, but strongly contrasts with the stabilisation of disordered structure and β-strands

predicted by ffG53a6. Both force fields however indicate a higher β-sheet propensity

for Aβ42 than Aβ40. Thus, by using two force fields based on different parameterisation

philosophies we have been able to identify peptide-based structural properties.

The terminal residues of both peptides adopt a coil structure. However, while these in-

Figure 3.10: A pictorial representation of the relative structural flexibilities of Aβ40 and Aβ42 and the influence
of force fields: (a) Aβ40 with ffG43a2, (b) Aβ40 with ffG53a6, (c) Aβ42 with ffG43a2, (d) Aβ42 with ffG53a6.
For a description of the figure, see text below.

volve three residues of Aβ40, only two of Aβ42 exist as coil. This perhaps is an indication

of a higher C-terminal stiffness reported for the longer peptide [54]. Comparing the per-

centage representations obtained in the cluster analyses of the two peptides is instructive

in further capturing the influence of the extra two residues in Aβ42. With ffG53a6, 48% of

the sampled frames were captured in the five biggest clusters of Aβ42 and 26% for Aβ40,

which demonstrates Aβ42 as being more rigid than Aβ40. This supports the findings of

Yan and Wang, who, through experimental measurements, found Aβ42 to be more rigid
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at its C-terminus than Aβ40 [54]. On the other hand, ffG43a2 supports a more rigid

Aβ40, with 94% structures within the five largest clusters, compared with 76% in Aβ42.

An estimate of the relative rigidity can be determined from the cluster analysis results.

Figure 3.10 shows a pictorial representation using information from cluster analyses to

distinguish between the observed peptide- and force field-based differences. Each of the

four peptide-force field systems is represented by a blue boundary (dimensionless) within

which all sampled conformations are represented by the 10 black dots. The conformations

falling within the five largest clusters are shown inside the black circles. The number of

conformations within and without the black cycles provides a simple means of comparing

the behaviour of both the peptides and the force fields. The degree of force field bias

for the folded state, for example, can be estimated using the number of clusters falling

outside the black circles. For instance, ffG43a2 is about 7 times and 2.5 times less likely

to sample disordered conformations compared with ffG53a6 for Aβ40 (figure 3.10(a) vs

(b)) and Aβ42 (figure 3.10(c) vs (d)) respectively. Vertical comparison on the other hand

presents the differences between the two peptides, with ffG43a2 showing Aβ40 to be about

2 times more rigid than Aβ42 (figure 3.10(a) vs (c)) against experimental findings[54]. In

figure 3.10(b) and (d) on the other hand and in agreement with experiment findings[54],

ffG53a6 supports a slightly higher Aβ42 conformational rigidity, about 1.4 that obtained

for Aβ40.

3.4.6 Experimental validation using chemical shifts

The simulation results presented above suggest there are significant force field biases in the

conformational study of the two Aβ peptides. One possibility of identifying which force

field is biased towards which type of secondary structure (e.g., helical, coil and β-sheet)

is by assessing the convergence of the trajectories with respect to experimental data. For
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this we have chosen solution NMR chemical shifts which were determined in the group of

Prof. Zagorski at the Department of Chemistry, Case Western Reserve University, Cleve-

land, USA[77]. It should be noted that the determination of the NMR chemical shifts at

278 K rather than at 300 K as employed by our simulations, may slightly but not greatly

affect the results since both studies employ the same pH and aqueous conditions.

We calculated the N, HN, Cα, and Cβ chemical shifts (δcalc) using the programme

CamShift that employs the dependence of chemical shift on conformation as a function

of intramolecular atomic distances expressed as a polynomial expansion[78]. See section

3.7 for additional information on CamShift. CamShift takes individual coordinate files as

input for the prediction, which we adapted to work on trajectories by taking snapshots

at every 50 ps and performing the shift calculation. We then calculated the deviation ∆δ

of δcalc from the δexp for the entire 1.5 µs trajectories for each Aβ peptide. Figure 3.11

shows the time evolution of δcalc and ∆δ for the Cα atoms, while table 3.1 presents the

∆δ for each 500 ns time-block for the selected four atom types. We base the acceptability

of the calculated ∆δ values on the published values for a test set of protein in which

CamShift was shown to be of comparable accuracy as other chemical shift predictors[78].

The reference ∆δ data have also been presented in table 3.1.

The data obtained for the four chemical shift types (N, HN, Cα, and Cβ) show the ∆δ

values as being within the expected deviations, in particular for the force field ffG53a6.

The discussion of the results, from this point on until the end of italicization, is cited

as excerpt from our work, Olubiyi OO, Strodel B, Journal of Physical Chemistry 2012,

Volume 116, pages 3280-91, 2012:

”The ∆δ for Aβ40 and Aβ42 modeled with ffG43a2 show that this force field is not fully

able to reproduce the experimentally determined shift values. Although δcalc for HN and

Cβ are generally consistent with the experimental values (ffG43a2 and ffG53a6), the ∆δ

for the amide N and Cα shifts reveal that these shifts really converged to the experimental
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values only for the simulations with ffG53a6. With ffG53a6, the average ∆δ for the N

and Cα shifts are generally below the expected deviation for simulation times longer than

500 ns. Only for Aβ40 with ffG53a6, ∆δ for the N chemical shift is slightly above 3.01

ppm between 500 and 1000 ns; it decreases to values below 3.01 ppm for simulation times

above 600 ns. This decrease in ∆δ coincides with the conversion from a helical to coil

state in the N-terminal segment around 600 ns (figure 3.3) .

In Aβ42 (ffG43a2), a transition from coil to β-strand is observed for some N-terminal

Figure 3.11: ∆δ values between δcalc and δexp plotted against time for (a) Aβ40 with ffG43a2, (b) Aβ40 with
ffG53a6, (c) Aβ42 with ffG43a2, (d) Aβ42 with ffG53a6. Values for the amide N, Cα, Cβ and HN atoms are shown
in blue, red, turquoise and green with the CamShift published deviations for the protein test set represented with
horizontal lines. Deviations of the δcalc from δexp for the Cα atoms (i.e., ∆δ=δcalc- δexp) using the last 1000 ns
are shown for (e) Aβ40 with ffG43a2, (f) Aβ40 with ffG53a6, (g) Aβ42 with ffG43a2, (g) Aβ42 with ffG53a6.

residues around 400 ns (figure 3.7), which causes ∆δ to decrease considerably at this time,

that is, better agreeing with experimental data. This finding supports our approach to use

500 ns as the boundary between the equilibration and the production phases for the analy-

sis of our MD simulations. For the ffG43a2 simulations, however, it becomes evident that

the ∆δ values do not decrease during the last 1000 ns of the MD trajectories; in some

cases, they even increase, showing that this particular force field does not correctly sample

the experimentally observed structures.

To get insight into which of the residues cause the deviation of δcalc from δexp, we com-

puted for the last 1000 ns of the MD trajectories, the average δcalc values for Cα,
〈
δcalc

〉
,

and plotted these against δexp in Figure 3.12. And we calculated the difference between〈
δcalc

〉
and δexp: ∆δ =

〈
δcalc

〉
− δexp. The results for ∆δ are shown in figure 3.11. For

the simulation of Aβ40 with ffG43a2, it becomes obvious that large deviations between
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〈
δcalc

〉
and δexp ( |∆δ| > 1 ppm) occur for almost all residues between residues 7 and 35.

Particularly striking is the overestimation of
〈
δcalc

〉
between residues 13 and 23, whereas

for the other residues, we observe an alternation of over- and underestimation of
〈
δcalc

〉
,

for example, from residues 7 to 12 and from 28 to 35.

Since Cα atoms experience a relative upfield shift when the residue in question is in-

Force field Peptide Time (ns) N(3.01) HN(0.56) Cα(1.30) Cβ(1.36)

ffG43a2

Aβ40 0→500 3.95 0.40 1.79 1.09
Aβ40 500→1000 4.01 0.40 1.76 1.09
Aβ40 1000→1500 4.19 0.41 1.77 1.07
Aβ42 0→500 3.87 0.43 1.69 1.17
Aβ42 500→1000 3.64 0.46 1.49 1.20
Aβ42 1000→1500 3.51 0.44 1.43 1.26

ffG53a6

Aβ40 0→500 3.71 0.35 1.46 1.13
Aβ40 500→1000 3.08 0.33 1.16 1.27
Aβ40 1000→1500 2.87 0.34 1.12 1.44
Aβ42 0→500 3.40 0.36 1.24 1.22
Aβ42 500→1000 2.68 0.35 1.30 1.19
Aβ42 1000→1500 2.74 0.37 1.18 1.30

Table 3.1: |∆δ| table for the amide N, Cα, Cβ and HN atoms. For comparison, ∆δ values published for CamShift
using a test set of proteins are presented in parentheses.

corporated into an α- or π-helix [79, 80] or a turn region,[79] we conclude that in the

regions with ∆δ > 1 ppm, one of these secondary structures is overstabilized by ffG43a2.

Indeed, the DSSP plot in figure 3.2 shows a rather stable α-helix between residues 13 and

23 in Aβ40. From 15N relaxation data, a structural propensity for π-helix was predicted for

residues 11-15 in Aβ40. However, from the comparison of the Cα shift results, it becomes

obvious that ffG43a2 overestimates the N-terminal helical stability in Aβ40. This helical

stability leads to a reduction of the conformational flexibility of the Aβ peptides, as the

high population of the first five clusters from the ffG43a2 simulations revealed. A too-

small computed Cα shift is indicative of an overstabilization of β structure as Cα protons

experience a relative downfield shift when incorporated into a β-sheet[79]. The alterna-

tion of too-high and too-low shifts between residues 7-12 and 28-35 is thus a result of the

overestimation of successive turn and β conformations, respectively. This conclusion is

underpinned by the DSSP plot in figure 3.2.

In summary, ffG43a2 does not provide a satisfactory model for the conformational dy-

namics of Aβ40. For Aβ42, the ffG43a2 result is better, especially for the C-terminal part

from residue 17 onward, for which most |∆δ| values are <1 ppm. However, for residues

5-16, we observe an overstabilization of the N-terminal π-helix (figure 3.6), leading to

∆δ > 1 ppm in this region. According to our chemical shift analysis, ffG53a6 provides a

better description for both Aβ40 and Aβ42. Most of the |∆δ| values are <1 ppm. Note-
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worthy exceptions are residue 22 in Aβ40 and residues 6, 12, and 30 in Aβ42, for which

the β content is slightly overestimated. Our comparison between experimental and simu-

lated chemical shifts is of similar performance as the same kind of analysis in ref [81], in

which the simulated shifts were obtained from replica exchange MD simulations of Aβ40

and Aβ42 using the AMBER99SB force field[81] with implicit solvation. The representa-

tive structures obtained by Yang and Teplow also show similarities to the most important

cluster structures, which we obtained with ffG53a6 [53].

In summary, from the comparison between calculated and experimental chemical shifts,

Figure 3.12: Comparison of |∆δ| (red) and δexp (black) using Cα atoms for (a) Aβ40 with ffG43a2, (b) Aβ40
with ffG53a6, (c) Aβ42 with ffG43a2, and (d) Aβ42 with ffG53a6.

we can conclude that ffG53a6 is better able to model the intrinsically disordered Aβ peptide

than ffG43a2, which overstabilizes the helical state in the N-terminal half of the sequence

and underestimates the overall conformational flexibility of the peptide. This finding is

contrary to the performance of ffG43a2 and ffG53a6 for folded proteins, in which ffG43a2

was found to be better able to maintain folded structures and generally provides a good

balance between helical and β folds[82]. The superiority of ffG53a6 for modeling Aβ may

be due to the fact that this force field was solely parametrized to reproduce the free en-

thalpies of hydration and apolar solvation for a range of compounds[83].

The relative free enthalpy of solvation between polar and apolar environments is a key

determinant in many biomolecular processes of interest, such as protein folding and ag-

gregation or membrane formation and transport over membranes. Thus, the folded protein

state in ffG53a6 results from the choice of the parameter set and not vice versa. In a re-
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cent study, it was shown that the common protein force fields (ffG53a6 was not included)

are generally able to correctly predict the rate of folding and the structure of the native

state[84]. The folding mechanism and the properties of the unfolded state, however, were

found to depend substantially on the choice of force field. This finding, as well as other

force field studies for Aβ peptides,[55] demonstrate the need for proper benchmarking of

the protein force fields for unfolded and intrinsically disordered proteins.”

3.5 The effect of pH on Aβ

Various studies conducted on the effect of pH variation on the structure of Aβ have

indicated that the protonation states of the three histidine residues in Aβ (His6, His13

and His14) are crucial in explaining the role of pH [61, 85, 86]. And in fact, histidine

residues have been suggested to sensitise the peptide to metal ions binding, as revealed

in mutation studies in which His substitution resulted in reduced Aβ aggregation in the

presence of aggregation-promoting Cu2+ and Zn2+ [61,85,86]. In this section the effect of

pH variation on the structural dynamics of the two Aβ monomers is discussed.

The pH of a system can be defined as the negative logarithm of the molar concentration

of protons present:

pH = − log[H+] (3.1)

Since subatomic units like electrons and protons may only be accurately captured using

quantum descriptions (and this not without a prohibitive cost in terms of computational

resources for modelling systems containing 30,000 atoms or more), we have employed a

classical description in modelling different pH conditions. This essentially involves the

choice of the ionisation states of Arg5, Lys16, Lys28, Asp1, Asp7, Asp23, Glu3, Glu11,

Glu22, His6, His13, His14 and the N- and C-termini to mimic four pH conditions: an
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acidic pH, an isoelectric pH, the physiologic pH and a basic pH (table 3.2).

pH 2.0 5.0 7.4 8.0
R5 +1 +1 +1 0
K16 +1 +1 +1 0
K28 +1 +1 +1 0
D1 0 −1 −1 −1
D7 0 −1 −1 −1
D23 0 −1 −1 −1
E3 0 −1 −1 −1
D11 0 −1 −1 −1
D22 0 −1 −1 −1
H6 +1 +1 0 0
H13 +1 +1 0 0
H14 +1 +1 0 0
N-Term. +1 +1 +1 0
C-Term. 0 −1 −1 −1
Net Charge +7 0 −3 −7

Table 3.2: Modelled ionisation states for residues and termini of Aβ42.

3.5.1 Simulation setup, models and analyses

Histidine is neutral (also referred to as deprotonated) when protonated only at the δ nitro-

gen of the imidazolyl sidechain, and positively charged (protonated) when the ε nitrogen

is additionally protonated. Using an MD protocol similar to that described in 2.4.2, 1

µs production runs were performed for each modelled pH and for each peptide-force field

combination. That is, an additional 6 µs of simulations time was cumulated; while the

first 1 µs from the 1.5 µs trajectories discussed above were used for the physiologic pH. All

simulations were performed at 300 K and 1 bar, using an explicit solvent representation

and an isothermal-isobaric ensemble that closely reflects standard laboratory conditions.

Although the simulations were performed with both ffG43a2 and ffG53a6, only results for

the latter force field are discussed since ffG43a2 was already shown (above) to suffer from

a significant structural bias. Furthermore, test simulations for ffG43a2 revealed that the

pattern of variations as a result of pH changes, was captured in a similar manner to that

of ffG53a6 [68].

To provide an explanation for the differences in the observed dynamics of the peptide

under the considered pH conditions we performed contact map analyses for the four tra-
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jectories with a truncation distance of 15 Å at 0 ns, 300 ns, 600 ns and 1 µs. In order

to account for sidechain as well as backbone contributions, all the atoms in the protein

were included while constructing the maps. Figure 3.13 presents the contact maps. Each

resulting pattern in figure 3.13 may be taken as a fingerprint of Aβ42 monomer’s tertiary

structure for the particular pH state. In this regard, helical and β structures are the easiest

to identify. Helical structures present a diagonal pattern involving residues i+ n running

parallel to the self-contact axis. For 310-, α-, and π-helices, n is respectively 3, 4 and 5.

Thus helices appear in the map as interactions involving a maximum of 5 neighbouring

residues. Extended antiparallel β-sheet structures on the other hand involves off-diagonal

interaction, the length and number of which respectively signify the extent and number

of the β-sheet. Random coil lacks the discernible patterns of helical and β structures.

To better compare the sampled structures we performed DSSP analyses which we have

restricted to the final 500 ns of each trajectory at which time the peptide is considered to

have equilibrated.

3.5.2 Effect of pH on Aβ42 secondary structure

For all four systems, at time t = 0 the peptide features a pattern representing helical

conformation derived from the starting structure. By 300 ns, the contact maps have

become substantially different for each pH. The peptide has almost entirely lost its helices

at pH 5.4 and 7.4 while they continued to be sampled at pH 2.0 and 8.0. This appears

to be a separation in dynamics based on Aβ42’s net-charge, whereby the peptide’s helices

are retained under high charges of ±7 and lost at lower charges of 0 (pH 5.4) and −3 (pH

7.4). Visual inspection of the structures in figure 3.15 further shows that at 300 ns, pH

5.4 and 7.4 the helices have been replaced by coils and β-sheets. While the peptide is able

to form β-sheets under all four modelled pH values as shown in the DSSP plot in figure
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Figure 3.13: Contact maps for Aβ42 monomer at pH 2.0, 5.4, 7.4 and 8.0 using conformations sampled at 0 ns,
300 ns, 600 ns, and 1000 ns.

3.14, β-sheets at pH 2.0 and 8.0 are mostly limited to residues 33 to 42 with a turn at

29GAII32 (pH 2.0) or 27NKGAII32 (pH 8.0). Residues 4–28 and 1–26, respectively at pH

2.0 and 8.0, form helices (figures 3.13 and 3.15). At pH 2.0 and 100 ns, the N-terminal

helix formed at 6HDSGYEVHHQKLVFFAED23 contains all the ionisable residues (except

Lys28). By 200 ns, the helix has reduced to 10YEVHHQKLVFF20. Towards the end of the

trajectory at 800 ns, the β-sheet structure increased slightly, accompanied by a decrease

in helical structure. A similar trend was obtained for the peptide at pH 8.0. with the

difference being in the relative percentage of structures sampled as presented in table 3.3.

At pH 5.4 and 7.4, there exist more far-reaching contacts with β-sheets between residues
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1–7 and 11–18 at pH 7.4, and between residues 2–23 and 25–42 at pH 5.4. However, β

content at pH 7.4 is the lowest.

Our observations can be summed up as follows: at high net charge, Aβ42’s N-terminal

segment forms helical structures while a separated C-terminal segment forms β-sheets and

random coil. At physiological pH, β-sheet formation is confined to the N-terminal and

mid-sequence segments, while at the isoelectric pH, all the peptide residues are involved

in β-sheets. For the most part these distinctions remain up to 1000 ns. The structure of

Aβ42 at 7.4 continues to evolve with β-sheet alternatively sampled between the N-terminal

versus mid-sequence segments and the C-terminal versus mid-sequence segments.

The most significant differences in secondary structure involve the sampled coil, β, and

helical structures. The differences are however more poignant when comparing pH 5.4

and 7.4. The latter pH supports a relatively higher coil structure (51%) but lower β-sheet

(15%) contents compared to pH 5.4 (31% coil and 39% β-sheet). The highest content of

random coil structure was observed at pH 7.4 in agreement with the belief that Aβ42 is

unstructured under physiological conditions. The highest percentage of β-sheet was found

at pH 5.4 in agreement with CD results [87]. This result suggests a strong role for pH

conditions in determining Aβ42’s structure. Importantly, it indicates the need for caution

when generalising the results obtained for the peptide under a specific experimental pH

condition. Furthermore, our results revealing Aβ42’s ability to form β-sheet structure

at all four pH conditions, provide an explanation for the observation by Guo et al.[63]

that Aβ is able to polymerise regardless of the charge state. The significant differences

in the extent to which the different structures are sampled, however, suggests possible

differences in aggregation rate, a possible explanation for the role of mutations in AD

pathology. For instance, most of the clinically observed mutations, including Glu22→Gly

(Arctic), Glu22→Gln (Dutch), Glu22→Lys (Italian), and Asp23→Asn (Iowa), lower the

net charge of the peptide and can explain the peptide’s associated enhanced aggregation
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kinetics.

Figure 3.14: DSSP plot showing the secondary structure evolution of Aβ42 monomer under different pH condi-
tions.

Structure (%) pH 2.0 (%) pH 5.4 (%) pH 7.4 (%) pH 8.0 (%)

Coil (14) 29 31 51 38
Beta (0) 29 39 15 21
Bend (7) 11 27 29 20
Turn (19) 10 3 5 8
Helix (64) 21 0 0 14

Table 3.3: The effect of pH on the secondary structure of Aβ42 monomer averaged over the last 500 ns of the
trajectories. The values in parentheses represent the secondary structure at t = 0.

3.5.3 Role of histidine residues

Since the only difference between the Aβ42 models employed in modelling the pH 5.4 and

7.4 is the protonation state of His6, His13 and His14, the differences in the structural

states observed for the two pH conditions may be directly attributed to the protonation

states of the histidine residues. We therefore examined the interactions involving the

three histidine residues for these two pH values. At pH 5.4 and as early as 100 ns the

three histidine residues (and in particular His6) were observed to be involved in extensive
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intermolecular contacts with both the N- and C-terminus of Aβ42. Intermolecular con-

tacts formed by His6 in the early part of the trajectory include residues Asp1, Glu3 and

Ala42. The contact with Ala42 was soon lost, after which His6 employs its protonated

imidazolyl sidechain as a surface promoting intramolecular contact between residues from

different regions of the peptide (figure 3.16). For this to occur His6 adopted an arrange-

ment that allows all interaction surfaces of the imidazole ring to be available. The δ-N

surface forms interaction with residues in the N-terminal segment, while the ε-N surface

promotes contact with the C-terminal residues. As early as 200 ns 4FR5 and 17LV18 have

begun to adopt β-sheet competent alignment. The underside of the imidazolyl ring forms

a π-stacking contact with Tyr10, which later recruits 17LVF19. His6 was observed to form

the nucleus of the inter-domain contacts responsible for the higher β-sheet of Aβ42 at pH

5.4 compared with pH 7.4 under which condition the histidine residues were not observed

to serve the described anchoring function.

Instead, at pH 7.4, the N- and C-terminal segments avoid interacting with each other,

Figure 3.15: Aβ42 monomer structures at different pH and time. Histidine and acidic residues are shown in
green and red, respectively, while the KLVFFA sequence is shown in liquorice coloured by atom names. The N-
and C-termini are respectively shown as blue and red beads.
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which is likely a consequence of charge incompatibility between the hydrophobic C-

terminal and the predominantly hydrophilic N-terminal. As can be observed in the dis-

tance maps for pH 7.4 (figure 3.13), Aβ42 exhibit an interaction pattern mostly suggestive

of a disordered state and limited β-sheet formation. The net charge removal when moving

from pH 7.4 (Aβ−3
42 ) to pH 5.4 (Aβ0

42) thus promotes hydrophobic interactions between

the different segments, which in turn leads to significant increase in β-sheet formation.

We believe this reduction in electrostatic repulsion between the N- and C-termini to be

an important driving force for the fast aggregation kinetics observed for Aβ under slightly

acidic pH [60–62].

Figure 3.16: The role of His6 in promoting β-sheet in Aβ42 monomer at pH 5.4. Contacts formed by His6
(green), Asp1, Tyr10 and Val24 are shown. The δ and ε-N atoms of His6 are shown as black and blue beads,
respectively.

3.6 Conclusion

Using explicit solvent MD simulations on the microsecond time-scale and two GROMOS96

force fields, we investigated different influences affecting the secondary structure of the

Aβ peptide. We conducted a comparative study of Aβ40 and Aβ42 and also present a

perspective on the intramolecular effects of the histidine protonation state on Aβ42, ex-

plaining how this leads to the experimentally observed increase in aggregation kinetics at
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acidic pH[60–63]. Our simulation results revealed that both peptides are mainly unstruc-

tured in the first 10 N-terminal residues. However, Aβ40 is more disordered in this region

than Aβ42, which also samples either a π-helix or β-sheet in the N-terminal residues. The

β-sheet-rich self-recognition motif 16KLVFF20 was sampled in both peptides in our sim-

ulations but to a higher degree in Aβ42. Both force fields reveal a loss of the C-terminal

helix for both peptides, replaced by random coil and β-sheets. We observed the Gly37-

Gly38 hinge structure in Aβ42, which was identified as an important feature distinguishing

Aβ42 from its C-terminal truncated relative[56,57]. To validate the force field models, we

calculated NMR chemical shifts using CamShift [78] and compared them to experimen-

tally determined chemical shifts[65]. For the ffG53a6 simulations of Aβ40 and Aβ42, we

found that the conformational sampling converged to an ensemble that is representative

of the experimental data after 500 ns of simulation time. In addition, only the ffG53a6

suitably capture the rapid structural conversion expected for an intrinsically disordered

peptide like Aβ. The ffG43a2 simulations, on the other hand, fail to completely reproduce

the experimental NMR chemical shifts. The largest deviations were observed for the N-

terminal half of Aβ40 and Aβ42, for which ffG43a2 predicts a rather stable α– and π-helix,

respectively. The comparison between calculated and experimental chemical shifts allows

us to conclude that in this region, ffG43a2 overestimates the stability of the N-terminal

helix and generally underestimates the conformational flexibility of the Aβ peptides.

We subsequently investigated the effect of pH on the structural dynamics of Aβ42 monomer.

Previous experiment had indicated the structure and aggregation of Aβ are largely af-

fected by pH. For instance by mutating selected residues in Aβ40, a significant correlation

was observed between net molecular charge and aggregation[63], while in the case of Aβ42,

a higher aggregation and toxicity was reported at pH 5.8 than at physiological pH[88].

In our in silico study, we modelled four pH states by selecting the ionisable states of

Aβ42 residues as expected under corresponding pH conditions. Our results show that,
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under extreme pH conditions (pH 2.0 and pH 8.0) Aβ42 structural dynamics suggests a

two-domain interaction system with the highly polar N-terminal domain folded into he-

lices, while the hydrophobic C-terminal segment samples β-sheet and coil structures. At

both the isoelectric (5.4) and physiological (7.4) pH, on the other hand, Aβ42 appears

to be composed of a 3-folding units. At pH 5.4, the N- and the C-terminal domains

cooperatively form an extensive network of β-sheets via His6 with the CHC. The double

protonation of His6, His13 and His14 at this pH reduces the net peptide charge from −3

(pH 7.4) to zero, increasing intramolecular interactions by enhancing hydrophobic con-

tacts. That is, the N-terminal segment becomes better able to interact with the highly

hydrophobic C-terminal segment as a result of a lowering of electrostatic repulsion. The

absence of these factors at pH 7.4, and the two other pH values, explains why Aβ42 forms

significantly high percentage of β-sheet only at the isoelectric pH.
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3.7 Supplementary information

Chemical shift calculation with CamShift

Chemical shifts, conventionally obtained from NMR experiment, are powerful tools for

determining the structure of organic compounds in particular[89,90]. The delicate depen-

dence on the chemical environment, molecular geometry, and chemical bond types make

them highly applicable in biological structure investigation for determining molecular con-

formation. Computational methods are increasingly exploiting this dependence on local

configurational parameters to predict chemical shifts for biomolecular systems. Both ab

initio and semi-empirical quantum chemical calculations have yielded good accuracy in

predicting chemical shifts [91–97]. The high accuracy associated with quantum chemi-

cal approaches notwithstanding, their restriction to systems containing fewer number of

atoms than typically encountered in proteins and nucleic acids precludes them from rou-

tine use in protein structure prediction.

To calculate chemical shifts, CamShift employs the intricate network of contributions

within the 3-dimensional protein structure using a polynomial expansion of the inter-

atomic distances[78]. Equation (3.2) depicts the different contributions used in approxi-

mating the dependence of the chemical shift on local configuration.

δcalci = δrci + δsci + δbbi + δφi + δnbi + δRCi + δHBi + δi−1
i + δi+1

i (3.2)

The total chemical shift of atom i (δcalci ) involves separate terms representing contributions

from the sidechain atoms (δsci ), backbone atoms (δbbi ), the dihedral angle (δφi ), nonbonded

interactions (δnbi ), ring current effect (δRCi ), hydrogen bonds (δHBi ), neighbouring atoms

(δi−1
i and δi+1

i ), while δrci represents the chemical shift of atom i in random coil confor-
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mation as obtained from NMR database. Equation (3.2) can be re-written as

δcalci = δrci +
∑
j,k

αj,kd
βj,k
j,k (3.3)

where αj,k and βj,k (the value of which is 1 if covalent bond exists, otherwise 1 and -3) are

parameters determined by the atom and residue under consideration. dj,k is the distance

between atoms j and k. Experimental shifts from NMR database were subsequently

employed for fitting each parameter. Benchmarking calculations using different protein

test sets were reported to generate root mean square deviations from experimental data

(table 3.4 ) that are comparable with the values obtained for SPARTA[97] and ShiftX[94],

two leading chemical shift predictors[78].

Atoms CamShift SPARTA ShiftX
N 3.01 (2.78) 2.87 (2.66) 2.87 (2.66)
HN 0.56 (0.56) 0.58 (0.53) 0.59 (0.55)
HA 0.28 (0.26) 0.30 (0.26) 0.30 (0.28)
Cα 1.30 (1.22) 1.19 (1.03) 1.30 (1.14)
Cβ 1.36 (1.19) 1.30 (1.07) 1.42 (1.25)
C’ 1.38 (1.12) 1.39 (1.05) 1.48 (1.19)

Table 3.4: How RMSδcalc values for CamShift compare with the quantum chemical-based SPARTA[97], and
ShiftX[94]. The predictions employed a test set comprising 28 proteins; the values appearing in parenthesis were
obtained from 7 proteins.
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Chapter 4

Alzheimer’s disease: In search of

treatment

4.1 AD drug discovery and mechanisms of toxicity

Aβ toxicity features a plethora of biochemical process disruption that eventually culmi-

nates in AD. This perhaps can be attributed to the high structural diversity (both the

aggregation and conformational states) of the Aβ peptide. Different Aβ assemblies are

associated with different degrees of cellular toxicities: this suggests the existence of either

toxicity mechanisms varying from one Aβ assembly to the other, or simply a varying

degree of the same toxicity pattern. The exceedingly high structural complexity associ-

ated with Aβ notwithstanding, damage of neuronal and synaptic structures is recognised

as the common significant theme characterising Aβ’s involvement in AD. This results

from a diverse disruptive action of the amyloid peptide on subcellular processes. On cell

membranes and membrane channels electrophysiological studies including the long-term

potentiation (LTP) measurements [98, 99] revealed a Ca2+ (in particular) homeostasis

disruptive effect resulting in increased Ca2+ influx, excitotoxicity and eventually synap-

toneuronal death[100–103]. These effects are mediated both by the structural interaction
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of Aβ with membrane lipids and via the action of Ca2+-, K1+- and glutamate (NMDA)

receptors[100, 104]. Additional mechanisms include induction of oxidative stress and for-

mation of highly toxic radicals, and a caspase-derived apoptotic process which amongst

others result from high Ca2+ influx and mitochondrial destruction[105,106]. The pathol-

ogy of Alzheimer’s disease is characterised by a host of disease influencing factors and

many more underlying biochemical components of the associated neuronal degeneration.

The implication of this is in two respects. First, the complexity of the disease mechanism

implies the possibility of using different pharmacological agents in the management of

the disease. These drugs are typically aimed at correcting defined aspects of the toxicity

complex. While these are currently employed for symptomatic management, the com-

plexity of the pathology implies the likelihood of pharmacotherapy burden on the patient

since different agents are required to manage different aspects of the disease. Secondly it

implies the presence of multiple targets that can be considered in the search for definitive

cure. Drug development efforts are currently being undertaken on two fronts including

the search for biomarkers needed for facilitating early diagnosis, and the search for com-

pounds capable of altering the identified underlying molecular causes of AD.

4.2 Current treatment strategies

For the pharmacological management of AD it is often necessary to make a distinction

between factors immediately responsible for disease signs and symptoms from those ini-

tiating the entire pathology. While the latter represent the ideal in AD management,

the former are currently of crucial immediate importance for initiating treatment plans

that assuages patients discomfort. In this regard, Terry et al. suggested in 1991 that

the degree of synaptic function loss should be considered in staging Alzheimer’s disease

with respect to cognition loss rather than the two accepted hallmarks of the disease, that

72



Alzheimer’s disease: In search of treatment 4.2 Current treatment strategies

is, senile plaques and neurofibrillary tangles [107]. The cholinergic, glutaminergic and

GABAergic synaptic neuron networks have been observed to be significantly impaired

as a result of the Aβ-induced neurotoxicity[108, 109]. Following the establishment of a

relationship between AD and cholinergic function loss, the cholinergic hypothesis was pro-

posed in the early 1980s[110]. According to the hypothesis, cognitive decline observed in

AD pathology is a consequence of compromised cholinergic neurotransmission in both the

cerebral cortex and the forebrain. This belief then prompted the search for compounds

with cholinesterase-blocking activities to halt the depletion of the CNS levels of acetyl-

choline.

The major factor in the advent of treatment with cholinesterase inhibitors was the post

morterm detection of a significant reduction of the levels of biomarkers associated with

the cholinergic neurons in severe Alzheimer’s disease brains. Clinical trials[111–114] were

conducted starting with the natural anticholinesterase agent physostigmine obtained from

the plant Physostigma venenosum Balf[111]. The initial trials were plagued with signifi-

cant gastrointestinal adverse drug reactions especially in the case of the first-generation

cholinesterase inhibitors, physostigmine and tetrahydroaminoacridine (tacrine), and ad-

ditional hepatic reactions observed in a small number of patients in the case of the second

agent. In 1993, Tacrine became the first drug treatment to be approved by the Food

and Drug Administration (FDA) for the management of Alzheimer’s disease [114–117].

Three second-generation cholinesterase inhibitors are currently approved for the treat-

ment of mild-to-moderate AD, and these are donepezil, galantamine, and rivastigmine.

They all act either as reversible (donepezil, the first drug in this category to be licensed

for use in AD, and galantamine) or pseudoreversible[117] (rivastigmine) inhibitors of

acetylcholinesterase and butyrylcholinesterase (rivastigmine). Huperzine-A is additionally

available for use in China. Memantine, licensed for the treatment of moderate-to-severe

Alzheimer’s disease, regulates the central nervous system’s (CNS) concentration of the
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neurotransmitter glutamate by blocking the NMDA (N-methyl D-aspartic Acid) recep-

tor. The concurrent administration of both memantine and the cholinesterase inhibitors

has increasingly been employed to take advantage of their complementary activities.

The symptomatology of Alzheimer’s disease is composed of both cognitive and noncogni-

tive symptomatic presentations. While the greater percentage of drug trials are directed at

evaluating the efficacy of cholinesterase inhibitors on cognitive presentations, the noncog-

nitive symptoms–especially in the advanced disease–are predominantly responsible for

hospital admissions. Clinical management of the symptoms of Alzheimer’s disease with

the cholinesterase inhibitors and memantine, while it in many cases has modestly im-

proved the quality of life of sufferers, it has conspicuously left the course of the disease

unaffected. Literally, the import of this is that once diagnosed of AD the individual pro-

gresses through phases of progressive cognitive and neurological decline and ultimately

to death with no treatment capable of slowing down, let alone aborting the course. The

past few decades have witnessed increasing research efforts both in the academia and in

the industry specifically focussed on designing definitive therapies capable of modifying

the disease path. Some of such efforts have advanced to preclinical and clinical phases of

testing, of which a significant percentage have failed either as a result of insufficient proof

of efficacy or serious toxicities.

The current search for a definitive treatment of Alzheimer’s disease is principally based on

the amyloid cascade hypothesis and biochemical events secondarily triggered as a result.

Drug development focussing on the Aβ-centric pathway maybe broadly categorised into

compounds directed at:

1. Aβ peptide production from APP

2. Aβ misfolding and aggregation

3. Aβ clearance.
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The first two points are discussed in detail.

4.2.1 Aβ peptide production from APP

The enzymatic cleavage of the amyloid precursor peptide into Aβ is widely accepted as

the foremost step in the subsequent neurotoxicity complex that characterises Alzheimer’s

disease and designing drug candidates that target this step has all along constituted a vi-

able drug design approach. The β–secretase which cleaves the N-terminal segment of Aβ

and the γ-secretase that cleaves APP at Aβ’s C-terminal segment thus represent an at-

tractive target for drug design. As a further indication of the flurry of interest in this drug

design school of thought, the past few decades have witnessed significant research efforts

involving both academia and pharmaceutical industries out of which some inhibitors have

reportedly been identified with inhibitory activities[118–124]. Targeting the secretases in

developing Alzheimer’s disease treatment is however not without serious drawbacks. In

the first instance, there are strong indications that both enzymes are involved in other

biological processes making the business of inhibiting the secretases a very tricky one.

Apart from APP cleavage, the enzymatic activity of the γ–secretase, for example, also

includes the transmembrane Notch growth hormone receptor, the voltage-gated Na chan-

nels, the vascular endothelial growth factor (VEGF), the CD44, and a number of other

endogeneous substrates[125–129]. Inhibiting γ–secretase thus carries the potential risk of

disrupting important biological functions. In the case of β-secretase, the solved structure

of the enzyme revealed an extensive binding site that in practical terms precludes the de-

sign of small-molecule non-peptidic inhibitors capable of disrupting the APP-processing

function of the enzyme[130]. This however did not completely discourage search into

prospective BACE-1 inhibitors, some of which reportedly inhibit APP processing in ani-

mal models[131,132].
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4.2.2 Aβ aggregation inhibitors

Alzheimer’s disease pathology of synaptoneuronal loss is characterised by the presence

of amyloid plaque (mostly extracellular) and neurofibrillary tangles (intra-axonal) in the

brain of the sufferers of the disease. Of the two causative peptides, Aβ currently takes

the centre stage in research spending, both facilitated by and resulting in the availabil-

ity of a large body of data correlating structural features (e.g., the formation of soluble

oligomer) with neurotoxicity. The Aβ composite conformational system is characterised

by the presence of a dynamic structural equilibrium between the different aggregation

states of the peptide consisting of monomers, soluble oligomeric intermediates and the

insoluble fibrils[133,134]. While the specific details of the structural events accompanying

the conversion from the intrinsically disordered monomer to the β-sheet-dominated higher

order aggregates remain unclear, there are evidences that the neurotoxicity cascade char-

acterising AD is linked to the formation of soluble Aβ oligomers[135]. This however does

not singularly attribute neurotoxicity to β-sheet formation alone, otherwise the original

amyloid hypothesis identifying the high-β-sheet-containing fibrils as the basic neurotoxic

unit in AD would have not required revision. Instead, AD neurotoxicity appears to result

from a highly complex interplay between Aβ solubility, β-sheet content, peptide sequence,

as well as prevailing factors in the local brain environment.

The paucity of knowledge on the aggregation pathway notwithstanding, the misfolding

and aggregation of Aβ peptides provide a viable mechanism being explored in AD drug

discovery [136] In principle, the gamut of molecular events surrounding the Aβ peptide’s

involvement in Alzheimer’s disease present possible targets that may be considered for

treatment. And the conformational aspects of the peptide have been extensively ex-

plored[137, 138]. Such efforts have included the in vitro screening of large chemical li-

braries [139], an approach traditionally employed in pharmaceutical industries which has

the benefit of generating viable hits with desirable physicochemical properties. This ap-
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proach successfully identified small molecule aggregation inhibitors belonging to different

chemical classes including curcumin[140], melatonin[141], tannic acid [142], trehalose[143],

nicotine[65], and dapsone[144], to mention a few. While the small size of this category of

chemical compounds make them ideal for optimisation, this feature at the same time is

what disqualifies most of them from progressing beyond the initial in vitro studies onto

clinical testings. This largely results from the absence of binding specificity, a challenge

further attributed to the fact that the Aβ peptide systems represents a structurally ill-

defined target, with such dynamic conformational aspects and polymorphism that it is

practically impossible for such small molecules to effectively arrest aggregation.

One approach that circumvents the challenge with small molecular inhibitors is the im-

munotherapeutic method employing both active and passive immunisation for clearing

endogenous Aβ [45, 145]. In active immunisation sequence fragments of the Aβ peptide

are injected into subjects to stimulate antibody production, while passive immunization

involves the injection of prepared anti-Aβ antibodies [45,145]. Immunotherapy eliminates

the size-dependent lack of binding specificity associated with small molecule drugs. And

both cognition and plaque deposition were reported to be improved in trials involving

APP transgenic mouse models. Plaque clearance, however, appeared to be significantly

compensated for in the brain by a tripling and quadrupling of the quantity of cerebral

amyloid vascular deposits[146]. Occurrence of microhaemorrhages in a small but sig-

nificant amount of human subjects subsequently led to the stoppage of clinical testing.

However, reports emerging from a subset of treated patients strongly suggest a relative

improvement of the cognitive decline profile[147,148].

Lastly, an entirely different AD drug discovery philosophy known as the rational drug

discovery approach, makes use of insight into Aβ’s structure and aggregation dynamics in

the design of aggregation inhibitors. At the most fundamental level, this approach utilizes

knowledge of the identified critical folding (Aβ being a disordered peptide cannot be said
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to form a unique 3D structure) units of the monomers which, importantly, are also critical

for oligomeric assembly. The various research efforts in this area are discussed under the

following subcategories that should not taken as illustrative and not as an exhaustive

treatment of the topic.

The Aβ self-recognition unit: sequence

The self-recognition unit in the Aβ peptide is made up of the CHC residues 16KLVFF20

which is crucial in the amyloid misfolding event and believed to kick-start the entire

aggregation-dependent neuropathology[138]. The first attempt to target the self-recognition

unit was by Tjernberg et al in a report published in 1996 [76]. This pioneering work paved

way to subsequent designs employing variants of this approach to design aggregation in-

hibitors, also known as β breakers. In the work by Tjerberg et al., the self-aggregating

self-recognition unit was synthesized as part of a peptide that was demonstrated to in-

hibit fibrillation of the full peptide. Expectedly, the strong aggregation propensity of

this peptide coupled with its susceptibility to peptidase degradation prevented it from

being considered for further development. However, this work served to demonstrate the

viability of pursuing this mechanism in the search for amyloid aggregation inhibitors.

In addition, a small number of peptide-based inhibitors were also reported, where the

proposed mechanism of action is the stabilization of the peptide in a helical conforma-

tion via binding to residues 13–23, which includes the self-recognition unit [149]. These

compounds were reported to frustrate assembly into neurotoxic aggregates of the amyloid

peptide[149].
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The Aβ self-recognition: hydrophobicity

Since the high intrinsic hydrophobicity of the Aβ peptide is an important factor in driving

the undesirable aggregation, it was hypothesized that by attaching a charged unit to the

self-recognition unit, the effective hydrophobicity of the self-recognition unit could be

reduced. The self-recognition unit provided a good template for in this instance, mostly

because of its critical role as the recognition element in fibril assembly[150, 151]. To

confirm this hypothesis, Ghanta et al. incorporated a poly-K(i.e, polylysine) fragment to

the C-terminus of Aβ 15−25, resulting in significant reduction in Aβ 39’s amyloidogenic

properties [150]. Inhibitors with poly-K units inserted via the N-terminus of the self-

recognition unit were reported to be ineffective or mildly amyloidogenicity enhancing. In

addition to this outcome, in 1999, Pallitto et al. published their findings on the activities

of hybrid peptides containing poly-K units at the C-termini of a number of short self-

recognition unit-containing Aβ peptides[152]. They observed that the hybrid peptide’s

effect on Aβ’s toxicity and aggregation profile are related. Interestingly, however, these

compounds also significantly increased Aβ’s aggregation kinetics leading to the suggestion

that the observed lowering of Aβ toxicity might have resulted from a facilitated conversion

of toxic Aβ oligomers into relatively less toxic fibrils. In these studies, however, a minimum

of three lysine residues were required for the observed anti-amyloid activities.

The Aβ self-recognition: disruption of amyloid binding pattern

Another way to disrupt the amyloid aggregation process of the self-recognition unit is by

incorporating bulky groups capable of sterically interfering with intermolecular contacts

necessary for cross-β structure formation. Findeis et al. in 1999, designed a range of

hybrid aggregation inhibitors incorporating the bulky cholic acid at the N-terminus of

the CHC peptide LVFFA. In vitro assays revealed marked lowering of Aβ40 and Aβ42’s

aggregation and toxicity [153, 154]. However, administration of the inhibitors to rats
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revealed significant hepatic clearance, which effect was pronounced in inhibitors with L-

amino acids. The D-analogues were observed to possess higher hepatic stability [153,154].

Another bulky group that has been used involves the methylation of the amide N on al-

ternate residues of Aβ peptide fragments which both inhibited fibril formation as well as

dissolved mature fibrils [155,156]. The incorporation of the amino acid proline within the

self-recognition unit sequence was also shown to produce inhibitors capable of interfering

with Aβ fibrillization [157]. Since both N-methylation and proline lack the amide N,

they most likely produce the observed inhibitory effect via a disruption of intermolecular

hydrogen bonds.

The Aβ self-recognition: stereochemistry

As promising as these peptide-based molecules are, they generally suffer from a drawback

relating to their rapid clearance from the circulation, especially by endogenous peptidases.

This drawback is partly mitigated by the incorporation of bulky non-peptide groups in

the peptides; by doing so this confers on the inhibitors a measure of resistance to pro-

tease activities. A second approach employs inhibitors based on D-enantiomeric amino

acid residues. Certain D-Peptides have been found to inhibit both Aβ aggregation and

neurotoxicity [158–164]. These include D-peptide sequences constructed based on the key

amyloidogenic motif (the self-recognition unit), 16KLVFFA21, which in addition to the

desired fibril-disrupting abilities and protease-resistance, also exhibit little to no immuno-

genicity compared with the L-peptide-based counterparts [161]. This is the approach

being pursued in the present work, and the design aim is to realise aggregation inhibitory

effects, protease resistance, as well as an non-immunogenicity in the same compounds.

Some years ago, a 12-residue D-peptide, code-named D3, and with the sequence Arg-Pro-

Arg-Thr-Arg-Leu-His-Thr-His-Arg-Asn-Arg, was designed using mirror-image phage dis-
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play selection in the group of Prof. Dieter Willbold, the head of the Institute of Complex

Systems 6, Forschungszentrum Jülich [162]. The peptide demonstrated amyloid aggrega-

tion inhibitory effect, a dose-dependent reduction in plaque load, as well as improvement in

cognitive function in transgenic mice [162,163]. Rather than merely disassemble preformed

fibrils, the peptide is believed to drive the aggregation path through a nontoxic pathway

in which D3 precipitates the formation of nontoxic amorphous Thioflavin-negative aggre-

gates [162].

4.3 Aggregation inhibition with D3

In mirror-image phage display, a technique described by Mayr et al., the target protein is

converted into its D-enantiomer via chemical synthesis followed by phage libraries screen-

ing for strongly binding L-peptide ligands [165]. Synthesis of the D-enantiomeric form of

the selected ligands should then produce D-peptide ligands with desirable binding proper-

ties for the original target L-protein. The D3 peptide was discovered in a similar fashion

[162]. Using highly dilute solutions of synthetic D-Aβ42 (2 nM under which solution con-

dition low order Aβ42 assemblies are expected to exist) as target protein, an entire phage

library of more than one trillion 12-residue peptides was screened for high-binding ligands,

a biopanning process that was conducted six times thereby enriching the phage. Sequence

determination of the predominant peptide in the enriched phage identified D3 as consti-

tuting about 40% of randomly selected phage peptides, with the remaining high-affinity

ligands displaying greater than 75% sequence identity to D3[163].

Both in vitro and in vivo experiments were performed to determine the effect of D3

on Aβ42 aggregation and toxicity. In vitro determination of amyloidogenic properties of

amyloid proteins in most cases utilises Thioflavin T (Tht) fluorescence assay in which amy-

loid property is determined by the characteristic fluorescence enhancement and red shift

exhibited by Thioflavin T, the chloride of 4-(3,6-dimethyl-1,3-benzothiazol-3-ium-2-yl)-
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N,N-dimethylaniline, upon binding to ordered β-sheet-rich amyloid structures [166–168].

In addition, an apple-green birefringence upon staining a peptide system with Congo Red

(Sodium 3,3’-([1,1’-biphenyl]-4,4’-diyl)bis(4-aminonaphthalene-1-sulfonate) is also indica-

tive of amyloid properties. Both ThT and Congo Red assays revealed significant and

concentration-dependent reduction in Aβ amyloidogenic properties when treated with D3

[162,163].

Following treatment with D3 using both the oral and direct hippocampal administration

routes, transgenic mice expressing human APP and presenilin-1 genes were reported to

show significant improvement in cognition over the untreated group as determined by

the Morris water maze experiment. Histological assessment using the frontal cortical and

hippocampal brain sections further revealed significant reduction in both plaque load and

plaque-dependent inflammation in the treatment group [164]. Follow-up measurements

aimed at determining the possible mechanisms of D3/Aβ aggregation inhibition included

Aβ particle size determination by dynamic light scattering (DLS). These experiments re-

vealed an increased average particle size in Aβ42 solution systems from amyloidogenic 300

Å hydrodynamic radius (without D3) to large amorphous aggregates of about 800–7000 Å

hydrodynamic radius (with D3) that were both ThT- and Congo Red-negative. This re-

sult was further confirmed by electron microscopy (EM). In other words, treatment with

D3 peptide abolishes Aβ toxicity and converts the neurotoxic water-soluble oligomers

into non-toxic, non-amyloidogenic and non-fibrillar aggregates but without increasing the

concentration of Aβ monomer.
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Chapter 5

Computational study of D3’s

anti-amyloid properties

5.1 Overview

The simulations performed in this section rest on the background of insight obtained from

the conformational study of Aβ discussed in chapter 2.

A general outline of the study plan is first presented here. The overarching aim of the

studies conducted in this section is to unravel the mode of action. Two aspects of the

D-peptide’s inhibitory activities are important: D3 binding and binding efficacy. Inves-

tigation into the strength and specific nature of the Aβ/D3 binding requires identifying

residues within both peptides that are responsible for the interaction. Here, a global

optimisation method implemented in the GMIN programme [169]. turned out to be par-

ticularly useful in this respect because it allows for the generation and optimisation of

protein complexes, taking into account translational, rotational and conformational de-

grees of freedom (flexible docking). The methodology description below includes a detailed

introduction to the GMIN simulations. The optimised Aβ-D3 complexes were subjected

to a rigorous scoring, in which the binding energy for each complex was computed, and
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then ranked. The most favourable complexes based on binding energy were selected for

further processing using explicit solvent MD.

The term binding efficacy, used as a general analogy to pharmacological efficacy, describes

the effect of D3 binding on Aβ. In order to have an idea of how well the calculations agree

with experimental measurements, changes in secondary structure upon D3 binding have

been monitored. This makes it possible to take the description of binding event beyond

mere binding to what may be described as effective binding. This becomes particularly

useful in the section dealing with the investigation of different lengths of a close relative of

D3 where strong binding was observed to not automatically translate to efficacy. We have

employed explicit solvent MD simulations together with appropriate control systems to

quantify the effect of binding on Aβ. The applicability of explicit solvent MD is however

not limited to quantifying efficacy, it is also used for decomposing the interaction energy

into residue–residue contributions. The resulting energy matrix provides an indication

of the stability of the system, and more importantly of the relative significance of the

individual residues in driving the inhibitor-Aβ peptide interactions.

5.2 Methodology

5.2.1 Peptide models

D3 peptide

D3 is a twelve-residue peptide with the sequence 1RPRTRLHTHRNR10 containing all

amino acid residues in the D-enantiomeric configuration. To obtain suitable GROMOS53a6

[9] and CHARMM22 [170] force field models, for each residue the chirality of the backbone

centred around the Cα atoms was inverted in congruence with each force fields topological

convention. In GROMOS53a6 this entailed inverting the order for the improper dihedral
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entry from ”CA N C CB” for L-amino acids to ”CB N C CA” for the D-enantiomer. In

CHARMM22 it was required to invert the sign for the improper dihedral angle formed

by ”N C CA HA” from −117◦ to +117◦. New D-amino acid entries were thus created

in both force field for all twenty amino acid residues using new residue names essentially

involving prefixing the old names with a ”D” and dropping the last letter. For instance,

D-leucine has the name ”DLE” in our model.

Starting with a fully extended peptide configuration for D3 generated with the CHARMM

simulation package [171], the conformational space of the peptide was studied in a 100

ns-MD simulation conducted with GROMACS [83] using the ffG53a6 force field [9]. The

extended peptide was first subjected to a cycle of in vacuo steepest descent minimiza-

tion and then inserted in a cubic water box (SPC water model) using a 10 Å separation

distance from the peptide to the box edges. Boundary treatment involves surrounding

the simulation box with its periodic images (i.e., periodic boundary condition). A 14 Å

cutoff was used in truncating short-range forces, while the long-range component of the

Coulombic forces was treated using the particle mesh Ewald method. Sufficient numbers

of Na+ and Cl− were included to neutralise the net +5 peptide charge emanating from

the five arginine residues and at the same time to achieve a 150 mM NaCl concentration.

After further minimisation steps involving steepest descent followed by conjugate gradi-

ent minimisation, an equilibration dynamics in the NPT (24833 atoms, 1 atm, 300K)

ensemble was performed using a 239 kcal/mol restraining force on peptide heavy atoms.

This lasted 1 ns, and it served to relax the water molecules around the peptide in order

to remove high forces resulting from atomic clashes while at the same time removing

pockets of empty space resulting from the random process by which the water molecules

were added to the box. After the position restraints were turned off, a 100 ns production

MD run was performed under simulation conditions essentially the same as in the equi-

libration step, except that a Nosé-Hoover thermostat was used instead of a Berendsen
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thermostat. In addition pressure coupling made use of the Parrinello-Rahman barostat

in place of the Berendsen barostat. The neighbour list was updated every 10 ps while

new coordinates and energies were saved every 20 ps. The resulting trajectory, containing

Figure 5.1: Most populated D3 structure.

5000 configurations, was subjected to cluster analysis using a 20 Å RMSD cut-off. The

largest cluster, for which a representative configuration is shown in figure 5.1, features

an extended structure. The adopted conformation of D3 is driven by an effort to min-

imise electrostatic repulsion, which requires a careful spatial arrangement of the sidechain

groups. This is however not unexpected, especially given that the peptide contains no

more than twelve residues out of which five are positively charged. The central struc-

ture of the largest cluster (figure 5.1) was employed for all subsequent interaction studies

involving Aβ peptides and is hereafter referred to as ”D3” peptide.

Aβ monomer

The five largest cluster centres obtained from the 1.5 µs MD simulation of Aβ42 (force field

ffG53a6) were independently used as the starting structure for studying the interaction

of D3 with Aβ42 monomer. The choice of five conformationally different Aβ structures

(figure 3.8) ensures structural variability to account for the structural flexibility of the

peptide in solution. This helps to limit the error of conformationally biasing the binding

had a single conformation been employed for Aβ42. In addition, the five cluster centres
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were obtained from the equilibrated part of the trajectory as determined by experimental

chemical shift validation.

Aβ pentamer

The coordinate file PDB 2BEG of an Aβ42 pentamer solved by solid state NMR was

taken from the www.rcsb.org database [172]. The structure resulted from solid-state NMR

investigation of Aβ42 fibril which suggested the pentamer as the β-sheet structural unit of

the fibril. In this structure, Aβ42 samples a strand-turn-strand conformation with residues

18–26 and 31–42 forming an in-register β-sheets. The N-terminal residues 1–17 were,

however, disordered and lacked coordinates. Starting from 2BEG, residues 1–17 taken

from the Aβ42 monomer MD simulation and sampling a coil conformation were stitched

onto each of the five peptide units composing the pentamer. A coil conformation was

decided for the attached N-terminal residues 1–17 based on the experimental observation

that this section of the peptide is disordered [172]. Furthermore, the generated structural

construct was thereafter subjected to global optimisation with basin-hopping in which the

positions of residues 18–42 were fixed while the added residues 1-17 of each peptide were

perturbed until all atomic clashes were resolved and a low-energy structure was obtained.

Several cycles of basin-hopping were conducted before a sufficiently disordered N-terminus

was obtained in each of the five chains. This also necessitated the alternate freezing of

the peptide chains. For example, the freezing of the coordinates of chains 1, 3 and 5

allowed chains 2 and 4 to be perturbed until they were adequately separated from the

frozen chains. Then chains 2 and 4 were frozen while chains 1, 3, and 5 were perturbed.

This was repeated until the total energy of the entire system converged. Thereafter, 500

ns explicit solvent MD using ffG53a6 was performed on the full-length Aβ pentamer at

300 K and 350 K. The simulations were performed in the absence of any form of restraint

so as to determine whether or not the new model would remain stable. The full-length
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pentamer remained stable at both temperatures. A clustering analysis with a 1 Å RMSD

cut-off was subsequently performed on the MD trajectory at 350 K using the Cα atoms

of residues 18–42 of each peptide for least squares fitting. The representative structure

of the most populated cluster, hereafter referred to as Aβ pentamer or simply pentamer,

is shown in figure 5.2. This structure was then selected as the starting structure for the

Aβ42 pentamer-D3 interaction studies using GMIN [169].

Figure 5.2: Full-length Aβ42 pentamer in VMD green NewCartoon representation showing the top view (a) and
the sideview (b). The sidechain groups of the charged amino acid residues are represented with liquorice coloured
according to charges–red and blue respectively for acidic and basic amino acid residues. The newly modelled
residues 1–17 sample a disordered state and the fibril-stabilising salt bridges involving Asp23 and Lys28 are visible
in (b) while Glu22 lies above the fibril plane.

5.2.2 Generation and optimisation of Aβ complexed with D3

Basin-hopping (BH) simulations

The basin-hopping (BH) approach to global optimization [174,175] is equivalent, in prin-

ciple, to the Monte Carlo-minimization method [173]. It involves proposing moves by

perturbing the current geometry, which are either accepted or rejected depending on the

difference between the energy of the local minimum of the instantaneous configuration

following energy minimisation, and the energy of the previous local minimum in the chain.

What results in essence is that the typically complex potential energy surface (PES) is
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transformed into what has been referred to as the basins of attraction [174, 175] consist-

ing of all the local energy minima. That is, the energy for configuration R can now be

expressed as,

Ẽ(R) = min{E(R)} (5.1)

where min signifies energy minimisation. With the transformed energy surface, it becomes

feasible to take large steps, especially since the aim is to step between the energy minima

in search of the global configuration. In addition, the need to maintain detailed balance

while taking the steps between the minima vanishes since the BH method is intended for

locating the global minimum, and not for sampling thermodynamic properties. The BH

algorithm has been implemented in the GMIN program [169] employed in the present work

for finding the global minimum of D-peptide-Aβ complexes. In all the interaction studies

performed using GMIN, the Aβ peptide(s) represent the receptor molecule(s) whose co-

ordinates were fixed while the D-peptides represent the ligand molecules.

Aβ monomer/D3

With the aid of the oligomer-generation procedure [176] implemented into GMIN, 1000

Aβ42-D3 binary complexes were generated for each of the five Aβ42 starting structures,

i.e. a total of 5000 Aβ42-D3 complexes. The structure of D3 was taken from a 100 ns

explicit solvent MD simulation described above. The C-terminus was amidated to mimic

the employed experimental condition in which D3’s C-terminus was attached to a surface

(personal communication with Prof Dr. D. Willbold).

The generated complexes were subsequently optimized using 300 BH steps in which di-

hedral angle moves [177], small rigid body rotations and translations [178] were applied

to D3 peptide. This involves a twisting of the dihedral angles to a maximum of 30 ◦ with

a 30% twisting probability while the rigid body rotation and translation were performed,
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respectively, to a maximum of 80◦ and 2 Å. Parameters from the CHARMM22 force field

were employed for treating interacting systems [170], while the generalised Born solvent

model FACTS [179]was used in modelling the aqueous environment. The reason for using

the CHARMM force field for the GMIN simulations, rather than the GROMOS force field

employed in the MD runs, was because the latter force fields are yet to be interfaced to the

GMIN programme. In addition, the CHARMM force fields had not yet been implemented

in GROMACS at the time of commencement of the study.

A total of 5000 Aβ42 monomer-D3 compplexes were generated and optimised, after which

the binding energies (∆∆Gbind, section 5.2.3) were calculated and used in ranking the

predicted complexes. The top-ranking 100 complexes were subsequently submitted to

explicit solvent MD simulations described below.

Aβ pentamer/D3

A protocol similar to that described for the Aβ42 monomer-D3 system was employed for

the study of the full-length Aβ42 pentamer complexed with D3 (stoichiometry Aβ42:D3

= 5:1). The employed simulation parameters were also similar, except few changes were

necessary to account for the bigger size of the system. To this end, a total of 400 BH steps

were performed. Rigid body rotation (up to a maximum of 90◦) and translation (up to a

maximum of 2 Å) were applied to D3 only at every BH step. In addition, D3’s dihedral

angles were also twisted with a probability of 30% up to a maximum of 30◦. A total of

4000 Aβ42 pentamer-D3 complexes were generated and optimised. The predictions were

subsequently ranked according to ∆∆Gbind (calculated as described in section 5.2.3). The

100 predictions with the best ∆∆Gbind values were then selected for explicit solvent MD

simulation.
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5.2.3 Calculation of binding energies

To estimate the binding energy (∆∆Gbind), the idea of the MM/GBSA formalism was

employed with force field parameters derived from the CHARMM22 potentials, and the

FACTS implicit solvent parameters employed for the GBSA part:

∆∆Gbind = ∆∆Gint + ∆∆GSol (5.2)

The ∆∆Gbind was calculated as a sum of contributions from interpeptide interactions

and solvation terms. The interaction energy includes van der Waals and electrostatic

interactions between Aβ and D3, while the solvation term contains the polar (electrostatic)

and nonpolar solvation terms:

∆Gint = ∆Gvdw
int + ∆Gele

int (5.3)

∆∆GSol = ∆∆Gpol
Sol + ∆∆Gnpol

Sol (5.4)

∆∆Gpol
Sol and ∆∆Gnpol

Sol were each computed by removing the individual terms for Aβ42

and D3 from the energies of the complex:

∆∆Gpol
Sol = ∆Gpol

AB/D3 −∆Gpol
AB −∆Gpol

D3 (5.5)

∆∆Gnpol
Sol = ∆Gnpol

AB/D3 −∆Gnpol
AB −∆Gnpol

D3 (5.6)

∆∆Gbind was computed for each of the optimised 5000 Aβ monomer-D3 complexes and

4000 Aβ pentamer/D3 complexes, and the obtained data used in ranking the predictions.

The top one hundred with the most favourable energies ∆∆Gbind were selected for explicit

solvent MD simulation as discussed below. Within MM/GBSA, ∆∆Gbind is commonly

referred to as the binding free energy, which use has also been largely adopted in this

91



Computational study of D3’s anti-amyloid properties 5.2 Methodology

thesis. However, it is important to point out that only ∆∆GSol is a free energy, whereas

∆∆Gint is a potential energy (also in MM/GBSA).

5.2.4 Explicit solvent MD

The final explicit solvent molecular dynamics simulations performed with the GMIN-

predicted Aβ-D3 complexes serve different purposes. The first is confirming the stability

of the bound configurations, which is tested by calculating the backbone RMS displace-

ment from the starting (GMIN) structure. The MD trajectory also provides a means of

obtaining a time-averaged description for the energetics of the bound systems. Lastly,

it enables the assessment of the effect of binding (i.e., the binding efficacy) on peptide

structural features. Two groups of MD simulations were conducted: simulations of Aβ-D3

complexes and control simulations of Aβ alone. All MD simulations were performed with

the SPC water model, employing the ffG53a6 force field and a protocol similar to the one

described for D3 conformational sampling above in section 5.2.1. In the simulations of Aβ

monomer-D3, each of the 100 GMIN-generated configurations with the lowest ∆∆Gbind

values was subjected to a 10 ns MD run. With respect to the Aβ pentamer-D3 systems,

the 100 best ∆∆Gbind configurations were first parsed through a clustering procedure to

reduce the geometric redundancies, as D3 binds more specifically to the ordered pentamer

structure than the flexible monomer Aβ. As an example, there are a number of Aβ-D3

complexes in which D3 binds to similar sites in the disordered N-terminal section of the

pentamer. The cluster analysis involves a least-square fitting to the Aβ42 pentamer atoms

and a clustering of D3 placements around the pentamer. The choice of a 2.19 Å RMSD

cutoff distance yielded 15 clusters in which redundancies in D3 binding to Aβ pentamer

were largely eliminated. 50 ns MD simulation was initially performed on one the cluster

centres after which this was extended to 100 ns. After it was observed that extending the

simulation to 100 ns did not grant additional information, 5 other cluster centres were
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each subjected to 50 ns MD simulation.

The second set of MD simulations are control simulations of Aβ peptides in the absence of

D3. This, in the case of Aβ monomer, entails independently performing a hundred 10 ns

MD simulations. The starting structures employed were obtained by stripping each Aβ42

monomer-D3 complex off its D3 binding partner. The unbound Aβ were then subjected

to explicit solvent MD simulation following the setup described in section 2. In the case of

Aβ42 pentamer, a single control MD simulation (50 ns) the Aβ pentamer (figure 5.2) was

performed. This was deemed sufficient because the same starting structure was employed

for generating the 4000 Aβ42 pentamer-D3 complexes.

5.3 Results and discussion

5.3.1 Aβ42 monomer/D3

Before discussing the results obtained for the Aβ42 monomer-D3 complexes it is useful

to note that the choice of five different Aβ42 configurations for the global optimisation

was a necessary attempt to capture the high conformational flexibility exhibited by Aβ42

monomer as discussed in chapter 2. Unlike most folded peptides whose conformational

space may be represented by an average structure with essentially invariable backbone

architecture, the Aβ42 monomer conformational space is characterised by its ability to

rapidly interconvert between different secondary structures. This property is factored

into the present setup by employing five different representative structures (cluster cen-

tres). The employment of a single D3 configuration is deemed sufficient since all sampled

states principally consisted of extended conformations driven by the need to increase the

distance between the five arginine residues and thereby minimising electrostatic repulsion.

Finally, the choice of one hundred binding poses for more detailed analysis serves to mimic
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experimental situations where thousands of molecules are involved in peptide-peptide as-

sociation. Ideally, the entire set comprising 5000 D3-Aβ42 binary complexes obtained from

GMIN should have been subjected to MD. This however, would have increased the re-

quired computational time and resources by almost two orders of magnitude. The choice

of 100 poses therefore reflects a compromise between the computational resources avail-

able for this project (provided by the Jülich Supercomputing Centre, Forschungszentrum

Jülich) and the requirement to make the analyses as descriptive (and predictive) of ex-

perimental observations as possible.

The top one hundred favourable ∆∆Gbind values range from−170.75 kcal/mol to−120.05

∆∆Gbind (kcal/mol)
-170.75 -140.83 -132.94 -129.22 -123.01
-170.66 -140.23 -132.65 -128.84 -122.96
-170.17 -139.82 -132.53 -128.58 -122.75
-168.53 -139.63 -132.01 -128.07 -122.54
-161.31 -139.28 -131.72 -128.05 -122.42
-161.20 -138.83 -131.46 -127.05 -122.30
-160.58 -138.78 -131.34 -127.02 -122.22
-154.59 -138.34 -131.25 -126.72 -122.21
-153.43 -138.30 -131.14 -126.45 -122.20
-151.41 -137.87 -131.14 -126.02 -121.99
-146.58 -137.40 -131.04 -125.51 -121.86
-146.11 -136.71 -130.91 -125.29 -121.78
-145.95 -136.37 -130.89 -125.10 -121.48
-145.90 -135.70 -130.65 -124.74 -121.43
-144.68 -135.27 -130.52 -124.36 -120.93
-144.47 -135.00 -130.42 -124.21 -120.89
-144.43 -134.86 -130.04 -123.65 -120.86
-143.49 -133.98 -129.80 -123.45 -120.63
-142.14 -133.67 -129.52 -123.33 -120.08
-141.17 -133.47 -129.44 -123.03 -120.05

Table 5.1: Binding energies (kcal/mol) of the one hundred Aβ monomer-D3 complexes with the lowest ∆∆Gbind.

kcal/mol with an average of −133.87 kcal/mol. The full list has been presented in table

5.1. These were each subjected to 10 ns of MD simulation, making an aggregate of 1 µs

MD simulation. For each of the MD simulations, the minimum separation between Aβ42

and D3 was calculated over the 10 ns MD trajectories and then averaged over the one

hundred systems. This serves as a check to verify the overall stability of the predicted

complexes, and if the switch from implicit solvent in the GMIN simulations to explicit

solvent in the MD simulations has any significant effect on the stability of the systems.

The obtained distance profile in figure 5.3 shows that the average separation distance

stays between 2.8 Å and 3.0 Å throughout the trajectories. Thus the two peptides remain

tightly bound. The slight fluctuation observed might have resulted from the system’s re-
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sponse to the space-filling effect of the explicit water and the peptides’ thermal vibrations

within the allowed limits of the bound systems. In any case, the magnitude of the fluctu-

ation is sufficiently small to render it incapable of disrupting the tight binding between

the peptides.

Figure 5.4 shows the residue-residue contributions to ∆Gint generated from the se-

Figure 5.3: Average minimum separation between D3 and Aβ42 as a function of time in the 100 Aβ42 monomer-
D3 complexes.

lected 100 binding configurations. Each of the selected Aβ42-D3 complexes had been

subjected to MD simulation and from each resulting trajectory energy the residue(Aβ42)-

residue(D3) interaction energy ∆Gint composed of the nonbonded energies (Lennard-Jones

and Coulombic) was calculated. This resulted in 540 time-averaged energy values for each

binding pose (i.e., 42 x 12). Subsequently an averaging over the one hundred binding poses

was performed to produce the energy matrix shown in figure 5.4. In figure 5.4 the interac-

tion energy map summarises the energetic contributions showing the relative significance
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Figure 5.4: D3-Aβ42 monomer explicit solvent molecular dynamics-generated interaction energies decomposed
into residue-residue interactions. The interaction map represents a mean over one hundred such maps separately
calculated for each unique D3-Aβ42 GMIN-predicted binding poses with the best ∆∆Gbind. The map reveals
residues of the D-peptide preferentially interacting Aβ hydrophilic residues in sequence regions 3 to 11 and 22 to
23 while the two hydrophobic stretches–the CHC and the C-terminal hydrophobic resides–are avoided.

of each residue pair interaction to the association event. The pattern shows D3 as near

exclusively interacting with the N-terminal residues of Aβ42, in particular Glu3, Asp7,

Glu11, Glu22, Asp23. The fact that these five Aβ42 residues are all negatively charged

suggests that interaction with D3 is mediated by electrostatic attraction involving D3’s

five arginine residues. The averaged interaction energies between D3 and Aβ42’s neg-

atively charged residues range between −0.78 to −1.13 kcal/mol, in sharply contrasts

with the −0.09 to −0.20 kcal/mol for Aβ residues in the CHC (residues 13 to 21) and

the C-terminal hydrophobic (residues 25 to 42) sequences. The pattern reveals that D3

preferentially binds Aβ42 monomer’s N-terminal segment. D3 on the other hand shows

little residual selectivity for its interaction with the amyloid peptide. With averaged in-

teraction energies ranging from −0.35 to −0.46 kcal/mol, the five arginine residues shows
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a similar preference for interaction with Aβ monomer which suggests that the reported

amyloid inhibitory activity of D3 involves an electrostatic steering that directs D3 to the

N-terminal half of Aβ. Interestingly the C-terminal end of D3, made of the sequence

HRNR, demonstrates a mildly superior average ∆Gint in partial agreement with the work

of Ghanta et al. [150, 152]. Figure 5.4 shows that D3 binding to the negative residues

in Aβ brings D3 to Aβ’s self-recognition sequence, which is expected to significantly af-

fect amyloid aggregation. This can also be seen in figure 5.5 presenting ten complexes

Figure 5.5: VMD rendenring of some of the one hundred studied Aβ42 monomer-D3 complexes. D3 is shown
as green tube with the sidechain group of arginine residue shown in liquorice. Aβ42 monomer is rendered using a
surface representation coloured according to residue types–red, blue and silver respectively for acidic, basic and
uncharged residues.

randomly selected from the 100 investigated systems. It therefore appears that amyloid

inhibitory mechanism of D3 involves electrostatic-driven attraction to Aβ’s negatively

charged residues, which then prevents aggregation into toxic oligomers via a shielding of

Aβ’s aggregation nucleating sequence.

It then became crucial to determine the effect (if any) of D3 binding on the secondary
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Structure Aβ alone Aβ with D3 %∆
Coil 0.484 0.539 +11.36
Beta 0.162 0.125 -22.84
Bend 0.307 0.302 -1.63
Turn 0.037 0.025 -32.43

Table 5.2: The effect of D3 binding on Aβ42 monomer’s secondary structure. Given are the populations of each
secondary structure element in Aβ42 obtained from 100 10 ns MD simulations (averaged over time).

structure of Aβ42 monomer. In order to achieve this, the secondary structure content of

Aβ42 monomer in the bound and unbound states was calculated using the secondary struc-

ture prediction programme DSSP [73] interfaced to GROMACS. The secondary structure

results obtained as a function of time were then first averaged over time (i.e., 10 ns) and

subsequently over the 100 simulated systems. Table 5.2 presents the values obtained for

each secondary structural element. Comparing these values to those obtained form Aβ42

alone, it becomes obvious that the interaction of D3 peptide goes beyond a mere strong

binding to Aβ42 monomer. It also has a noticeable effect on the structure of the amyloid

peptide, which includes a significant reduction in β-sheet (−22.84%) and turn (−32.43%)

content accompanied by an increase in coil structure (−21.4%). D3 thus dissolves regular

Aβ42 structure into unstructured states, in agreement with staining experiment that re-

ported the absence of fibrillogenic property (i.e. β-sheet structure) in Aβ42 treated with

D3 [163,164]. This result partly explains the experimentally observed amyloid inhibitory

activity of the D-peptide involving the conversion of toxic fibrillogenic Aβ structure into

nontoxic nonfibrillogenic amorphous assemblies [162–164]. It thus further lends credence

to the belief linking Aβ structure and toxicity–that is, destroying toxic amyloid structures

provides a viable mechanism for Alzheimer’s disease therapy.

5.3.2 Aβ42 pentamer/D3

Using basin-hopping, 4000 Aβ42 pentamer-D3 complexes were generated and optimised,

and the binding energies ∆∆Gbind were calculated for the resulting complexes. The one
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hundred lowest ∆∆Gbind values (table 5.3) range from −222.22 kcal/mol to −160.42

kcal/mol with an average of -175.30 kcal/mol. This represents a gain in ∆∆Gbind of−41.44

kcal/mol compared with the average value of −133.87 kcal/mol for Aβ42 monomer-D3.

This does suggest a stronger affinity of D3 for higher-order Aβ oligomers (pentamer in

this case) than for the monomer.

The higher affinity of D3 to pentameric Aβ may partly be explained as resulting from

∆∆Gbind (kcal/mol)
-222.22 -183.54 -175.08 -169.42 -163.82
-205.93 -183.15 -174.78 -169.35 -163.78
-203.74 -182.69 -174.75 -169.34 -163.48
-203.37 -182.41 -174.55 -169.13 -163.23
-203.14 -181.89 -173.40 -168.79 -163.23
-201.75 -181.56 -173.33 -168.79 -163.09
-199.29 -181.47 -172.74 -168.63 -163.08
-198.42 -180.57 -172.71 -167.50 -163.08
-196.45 -179.84 -172.13 -166.58 -162.94
-194.43 -179.74 -172.00 -166.47 -162.76
-193.64 -179.15 -171.95 -166.26 -162.74
-192.98 -178.90 -171.65 -165.90 -162.70
-191.98 -178.13 -171.42 -165.36 -162.40
-188.70 -178.00 -171.27 -165.25 -162.39
-188.47 -177.41 -170.57 -165.22 -161.35
-188.26 -177.07 -170.51 -165.21 -161.27
-187.84 -176.56 -170.47 -164.94 -161.09
-184.51 -176.18 -170.30 -164.79 -160.86
-184.49 -175.96 -170.16 -163.90 -160.44
-184.46 -175.61 -169.96 -163.89 -160.42

Table 5.3: Binding energies (kcal/mol) of the one hundred Aβ pentamer-D3 complexes with the lowest ∆∆Gbind.

the bigger oligomeric size, which allows D3 to form more contacts with Aβ42 pentamer.

To provide a graphical representation of D3 binding, the D3 centre-of-mass was calculated

in each of the 100 systems:

rcom =
∑
i

miri
N

(5.7)

where mi and ri are atomic masses and coordinates, respectively. This transforms the

representation from atomic to molecular resolution, which becomes advantageous for rep-

resenting several interacting systems at the same time. In figure 5.6 D3’s centres-of-mass

in the one hundred systems are shown together with the Aβ42 pentamer to highlight

the interaction poses at a glance. The regular scaffold formed by the pentamer, unlike

monomeric Aβ42, enforces a more directed D3 binding. As would be expected, a large

proportion of the interaction is confined to the disordered but negatively charged sections

of the Aβ42 peptide, reminiscent of D3-Aβ42 monomer binding discussed above. A smaller
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proportion involves D3 interacting, at the same time, with the disordered and the β-sheet

ordered sections of the pentamer. Interestingly, in about 10 % of the observed complexes

D3 is able to bind within Aβ’s U-shaped β-sheet segment and interact directly with the

Asp23-Lys28 salt-bridge with the possibility to affect ordered fibril formation. The differ-

Figure 5.6: Overview of the interaction of D3 with Aβ42 pentamer. In yellow VDW radius the centres-of-mass
of D3 in the one hundred lowest ∆∆Gbind free energy configurations are shown superposed on Aβ42 pentamer
represented in green NewCartoon with acidic and basic residues shown in red and blue liquorice, respectively.

ent D3 binding regions must be independently considered as a variation in the binding

efficacy (i.e., the effect on structure) between different binding modes as against what was

obtained for Aβ monomer. Therefore, a cluster analysis was performed on the positions of

D3 around Aβ42 pentamer with the aim to identify regular patterns in the binding modes

(detail about the clustering in section 5.2.4). Fifteen clusters were obtained. After visual

inspection, six clusters were selected (figure 5.7) and subjected to 50 ns explicit solvent

MD simulation. Clusters 1, 4, 5, 6, 11 and 12 were selected based on the uniqueness of

binding poses, and involve D3 binding to both or either of the two termini residues of

the pentamer. Clusters 1, 5, 11, and 12 have the D3 residues at least partially piercing

through two adjacent chains of the pentamer in the N-terminal segment (cluster 1) or the

β-strand-forming segments (clusters 5, 11 and 12). And in clusters 4 and 6, D3 bridges

the length of the pentamer and interacts with both termini.
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As for the monomer, we analysed the effect of D3 binding on Aβ42 secondary structure

Figure 5.7: Six unique Aβ42 pentamer-D3 binding modes obtained after clustering. The yellow VDW represen-
tation shows D3, bound to Aβ42 pentamer represented in green NewCartoon with acidic and basic residues shown
in red and blue liquorice, respectively. (a) cluster 1, (b) cluster 4, (c) cluster 5, (d) cluster 6, (e) cluster 11, and
(f) cluster 12.

in the pentamer. The observed changes in Aβ42 helical structures for the six binding

modes are, for all purposes, insignificant. Although this is not surprising since helical

structures represent less than 3 % of the sampled structure. The situation, however, be-

comes drastically different in the case of β-sheet and random coil structures, with all six

binding poses being able to induce noticeable changes in the secondary structure of the

pentamer. All binding modes increased the coil content while reducing β-sheet structure,

but to greatly differing degrees. Cluster 6, where D3 binding exclusively to the disordered

region of Aβ, records the least changes in both coil and β contents. On the other hand,

binding poses with D3 simultaneously interacting with Aβ’s N-terminal and U-shaped

regions significantly reduce the β-sheet content. The strongest effect is observed for clus-

ter 12, in which D3 wedges between adjacent Aβ42 chains in the U-shaped section of the

pentamer. This leads to a disruption of the in-register backbone interaction (hydrogen

bonds and sidechain packing) as well as the Asp23-Lys28 salt-bridge, which can account

for the deletion of β-sheet. In clusters 1, 5 and 11 D3 concurrently interacts with Aβ’s

disordered end and the Glu22 residues oriented above the fibril plain, while in cluster 4
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the interaction involves the pentamer’s disordered region and Ile41 and Ala42 at the C-

termini. This diversity in D3 interaction with Aβ suggests the existence of many fruitful

binding modes in solution–fruitful because they all induce the desired reduction in Aβ’s

secondary structure. While it will be instructive to study the relative importance of the

different binding modes, such detail is unlikely to increase the understanding of the as-

sociation mechanism, especially, given the high degree of conformational plasticity and

heterogeneity associated with the oligomeric peptide Aβ. In other words, several of these

binding modes are likely to be concurrently significant, which will also partly explain the

transformation of β-sheet-rich Aβ into an amorphous mass rather than a single structure.

Figure 5.8: Secondary structure of Aβ42 in the pentamer with and without D3. The black histogram represents
the reference simulation, i.e., Aβ42 pentamer in the absence of D3.

5.3.3 Conclusions

Our study of the interaction between D3 and both monomeric and pentameric Aβ42

reveals important structural effects in both Aβ species that can explain the experimentally

observed inhibitory activities of D3, as well as structural aspects of amyloid toxicity

inhibition. The performed simulations reveal that D3 strongly binds to Aβ42 monomer and

pentamer, and in the process forms very stable complexes. Binding energy calculations
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reveal a stronger interaction with the pentamer. Binding of D3, in both Aβ species,

results in the disruption of regular secondary structure, β-sheet in particular, in favour of

random coil structure. This corroborates the experimental observation of Aβ structural

conversion into amorphous Tht-negative aggregates after treatment of a Tht-positive Aβ

solution with D3. Thus, the structural aspect of the inhibitory activity of D3 can be

explained based on the outcome of the present study. Our results reveal an electrostatic-

driven association between D3 and Aβ42 which possibly brings D3 to the self-recognition

unit of Aβ42. Our in silico study captures well salient structural aspects of an otherwise

complex in vitro situation, and even a more complex in vivo environment. In experiments,

the simultaneous presence of several thousand molecules of D3 and an heterogenous mix

of Aβ assemblies ranging from monomers to protofibrils and fibrils is likely to influence the

activity of D3. Under such conditions, D3 binding alone has the capability of significantly

altering Aβ size structure with each D3 molecule simultaneously binding different Aβ

units. The arginine-rich D3 may act as ”glue” onto which Aβ units stick. This alone

immediately destroys the intricate amyloid aggregation process that is crucially dependent

on a self-recognition-driven assembly, backbone hydrogen bond formation and sidechain

packing.

So far we have learned how D3 can bind to preformed β-sheets and start to disrupt them.

Future simulation will study he aggregation process of Aβ42 with and without D3 to learn

how D3 inhibits amyloid aggregation in the first place.
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Chapter 6

D3 Modifications

6.1 Introduction

An overarching aim of the lead identification stage of pharmaceutical drug discovery is the

identification of active compounds with the needed physicochemical profile such as molec-

ular size, lipophilicity, number of rotatable bonds, hydrogen bond-donating and -acceptor

groups. This allows the compound to possess the necessary pharmacokinetic attributes,

such as bioavailability, without which candidate compounds cannot progress through sub-

sequent stages of the discovery pipeline. In addition, lead optimisation is conducted (which

is more of an iterative process) in which the desired activity of the compound of interest

is improved upon (optimised) mainly via structural modifications relying on a knowledge

of the structure-activity relationship (SAR) of the compound. Most peptide drugs have

properties that frustrate their blood brain barrier (BBB) permeation, which constitutes

a major reason why peptide-based systems sometimes represent a poor choice in the di-

agnostic and treatment of neurological pathologies. For instance, D3’s molecular weight

of 1.6 kD and other molecular indices violating acceptable thresholds for druggability,

should either make it unfit for development, or then call for extensive chemical derivitisa-

tion to obtain agents with a better pharmacokinetic profile. For one, the preponderance
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of arginine residues in D3 (isoelectric point of 13.1) would normally make unassisted

BBB permeation difficult under physiological conditions. However, results from oral ad-

ministration of D3 to transgenic mice indicates that D3 is able to sufficiently permeate

the BBB and elicit its actions in the brain, suggesting the involvement of an assisted

transport mechanism [164]. In 2010, using a model consisting of rat’s brain microvascular

endothelial cells and astrocytes, Liu et al. demonstrated [180] that D3’s permeation of the

BBB involves a partly saturable BBB transport via the adsorptive-mediated transcytosis

mechanism [181] similar to that employed for ferrying strongly basic and arginine-rich

peptides across membrane barriers [181, 182]. The permeability, which was found to be

higher than that obtained for another second 12-residue D-peptide (codenamed D1, se-

quence QSHYRHISPAQV) with better lipophilicity than D3, showed a strong inhibition

by cationic agents such as polylysine, further lending supporting to the presence of a

facilitated BBB transport [180]. The result further highlights the importance of D3’s

five arginine residues in ensuring BBB permeation, as D1 with a single arginine residue

showed reduced permeability. The five arginine residues of D3 thus confer upon it the

ability to pass through the BBB to the brain where its actions are needed.

In the work reported in this chapter, we decided to determine if the desirable properties

of D3 can be improved upon. We performed in silico modifications of D3 involving minor

alterations of the D3 molecule. This way we did not risk losing the desirable features

of D3 and at the same time the ability to evaluate the properties of modified molecules

against those of D3.

6.2 D3 sequence reshuffling: RD2 and progenies

The first modification to the D3 structure involves a simple sequence reshuffling. The

fact that D3 demonstrates no pattern involving a huge relative importance for any of the
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non-arginine amino acid sequence suggests that the antiamyloid activity is expected to be

retained as long as the arginines are present. The sequence reshuffling involved pooling

together all the arginine residues at the C-terminus while the remaining residues are in

the N-terminus. This resulted in RD2, a D-peptide bearing 100% residue identity with

D3 peptide but having a different D-amino acid sequence:

PTLHTHNRRRRR

The construction of RD2 aims at designing a template molecule having the five arginine

residues as molecular arrowhead for targeted binding to Aβ, while small molecules possess-

ing β-sheet-breaking activities may be incorporated into the N-terminal via substitution.

In our simulation studies of RD2, the peptide was subjected to the same procedures (con-

formational search and interaction with both Aβ42 monomer and pentamer) as described

for D3 in the previous chapter. The starting structure, generated with CHARMM with

backbone φ and ψ angles set to 180◦ (figure 6.1(a)), was subjected to a 100 ns explicit

solvent MD run after which a cluster analysis revealed the structure in figure 6.1(b) as

the dominant conformation. In order to minimise repulsion, the sidechain groups of the

five successive arginine residues are arranged in whorl-like manner roughly spanning 360◦

around the backbone.

Two additional D-peptide models were obtained from the RD2 sequence, HN5 rep-

Figure 6.1: RD2 peptide model. (a) extended conformation before MD simulation. (b) dominant structure after
100 ns explicit solvent MD simulation with backbone coloured according to residue types with purple representing
arginine residues.

resenting the last seven residues with sequence HNRRRRR, and 5RS which is the
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penta-D-arginine group. Each peptide was subjected to explicit solvent MD simulation

as performed for RD2 and the dominant structures after cluster analysis of the resulting

trajectories determined (figure 6.2). All three D-peptides had an amidated carboxy ter-

minal. Adopting the study procedure described for D3, the interaction of each D-peptide

with Aβ42 monomer (employing five representative structures from the largest five clusters

obtained from Aβ42 conformational sampling in a 1.5 µs MD simulation) was investigated

using a combination of global optimisation, binding free energy calculations, and explicit

solvent MD simulations.

Figure 6.2: The two RD2 peptide progenies obtained after explicit solvent MD simulation: (a) HN5 and (b)
5RS. The backbone segment corresponding to arginine sequence is shown as purple tube.

6.2.1 Simulation protocol

With the aid of the oligomer-generation procedure [176] implemented into GMIN, 1000

Aβ42-D-peptide binary complexes were generated for each of the five Aβ42 starting struc-

tures, which were then subjected to 300 BH steps to optimise them employing dihedral

angle moves [177] and small rigid body rotations and translations [178] applied to the

D-peptides. Dihedral perturbation was performed with a 0.3 probability with a maximal

angle change of 30◦, while rigid body translation and rotation were performed with a 0.8

probability and a maximum displacement of 2 Å and 80◦, respectively. 5000 lowest energy

configurations were collected for each Aβ42–D-peptide system (1000 structures for each

of the five Aβ42 starting configurations) for which ∆∆Gbind was computed and employed
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for ranking the binding poses. Each of them was subjected to a 10 ns explicit solvent

MD simulation. The trajectories were analysed by averaging over time and the 100 sys-

tems, to obtain interaction energy maps between Aβ42 residues and D-peptide residues.

The simulations were then analysed to determine the effect of D-peptide binding on Aβ42

monomer’s secondary structure.

The interaction of RD2 with the full-length Aβ42 pentamer was subsequently studied as

for D3, i.e. 4000 Aβ42 pentamer-RD2 complexes were generated and optimised in 400

basin-hopping steps. Here, a maximum angle of 90◦ was allowed for rigid body rotation

with 1.0 probability and a maximum translation of 2 Å was applied to RD2 at every BH

step. The lowest energy Aβ42–RD2 complexes were collected and ranked using calculated

∆∆Gbind (as described in section 2.2.1). The distribution of RD2 around Aβ42 pentamer

was then determined by calculating the centre-of-mass of RD2 in each of the 100 binding

poses having the most favourable ∆∆Gbind values. Based on the RD2 position in the

complexes, a cluster analysis was performed with a 2.9 Å RMSD cutoff yielding 15 clus-

ters. Representative structures for six clusters with sufficiently different binding patterns

were selected and each subjected to a 50 ns explicit solvent MD simulation using the same

simulation parameters as for D3-Aβ42 pentamer. The outcome were then compared to

the 50 ns reference simulation of unbound Aβ42 pentamer.

6.2.2 Results and discussion

The top 100 Aβ42 monomer-RD2 binding poses have ∆∆Gbind values ranging from −177.4

to −114.3 kcal/mol, representing an improvement in binding for the complex of −7

kcal/mol compared with D3 (lowest ∆∆Gbind of -170.8 kcal). The situation between

the two D-peptides however reverses when considering the average binding energy values

(∆∆Ḡbind), −128.0 kcal/mol and −133.9 kcal/mol for RD2 and D3, respectively. This
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seems to indicate that both RD2 and D3 generally display a similar pattern of binding

to monomeric Aβ42. However, this is not surprising given that RD2 and D3 share 100

% residue similarity, the only difference being the sequence, which is not expected to

significantly affect the electrostatic-driven association between the D-peptides and Aβ42

monomer.

However, moving on to the shorter seven-residue HN5 and the five-residue 5RS peptides,

a second factor influencing interaction with Aβ42 monomer seems to emerge. Despite the

fact that HN5 and 5RS also contain five arginine residues as RD2 and D3, they exhibit

much higher ∆∆Ḡbind values than the 12-residue D-peptides (table 6.1). Additionally,

HN5 is better bound to Aβ42 monomer than 5RS, which suggests the larger interaction

surface in the longer D-peptides as well as additional contributions from non-arginine

residues are important for binding of the D-peptides to Aβ42. Normalising ∆∆Ḡbind to

the number of residues,

∆∆Ḡres =
∆∆Ḡbind

Nres

(6.1)

where Nres is the number of residues in the D-peptide. We find that ∆∆Ḡres values for

HN5 (−14.8 kcal/mol) and 5RS (−18.6 kcal/mol) are more favourable than the values

for RD2 (−10.7 kcal/mol) and D3 (−11.2 kcal/mol). However, this appears to result

from the increasing relative number of D-arginine residues going from the 12-residue

RD2 and D3 (41.7 %) to the penta-D-arginine 5RS (100 %). This further reveals the

relative importance of arginine residues in driving the interaction. ∆∆Ḡres for 5RS is

markedly different from the other three systems, principally because the other systems

contain non-arginine residues unlike 5RS. In order to properly describe the contributions

of the different residues, especially in D-peptides containing non-Arginine residues, it is

necessary to calculate ∆∆ḠArg and ∆∆ḠX,X 6=Arg, respectively representing the averaged

contributions of arginine and non-arginine residues to ∆∆Ḡint (table 6.1).
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Aβ System % Arg ∆∆Ḡbind ∆∆Ḡres ∆∆Ḡ?Arg ∆∆Ḡ?X,X 6=Arg

Aβ42 monomer

D3 41.7 -133.9 -11.2 -16.5 -11.1
RD2 41.7 -128.0 -10.7 -18.8 -9.6
HN5 71.4 -103.9 -14.8 -16.8 -11.6
5RS 100.0 -93.1 -18.6 -18.1 -

Aβ42 pentamer
D3 41.7 -175.3 -14.6 - -
RD2 41.7 -182.2 -15.2 - -

Table 6.1: Binding free energies for D-peptide Aβ42 complexes in kcal/mol. The ∆∆Ḡ? values were obtained
using GROMACS and ffG53a6.

Following the explicit solvent MD simulations of the selected 100 binding poses for RD2-

Aβ42 monomer, HN5-Aβ42 monomer and 5RS-Aβ42 monomer, a decomposition of the

time-averaged interaction energy into inter-residue contributions was performed and av-

eraged over the 100 complexes. This generated the interaction energy maps presented

in figure 6.3 (the map for D3 has been included for comparison). While a pattern of

electrostatic-driven binding similar to that for D3-Aβ42 monomer is also obtained for

RD2, HN5, and 5RS, the three D-peptides display a generally higher preference for the

acidic residues of Aβ42. The number of residue-residue contacts with interaction energies

lower than −2.00 kcal/mol is much higher for RD2 than for D3. As the relative D-arginine

content increases from RD2 through 5RS so does the number of interactions with energies

close to −3.00 kcal/mol. It is however interesting to note the increased preference for

Aβ42’s N-terminal residues 1→11 with increasing relative D-arginine content. 5RS almost

exclusively binds Aβ42 monomer at residues 1→11; completely avoiding Glu22 while the

strength of interaction with Asp23 has also reduced to ≈ −1.40 kcal/mol. This is partly

a result of electrostatic repulsion between the penta-D-arginine and Lys28 of Aβ as the

interaction map for 5RS shows. As the number of non-arginine residues increase in the

RD2 family, so does the interaction strength with Glu22-Asp23 of Aβ (≈ −2.20 kcal/mol

and −3.00 kcal/mol respectively in HN5 and RD2). RD2 containing seven non-arginine

residues also interacts mildly with the hydrophobic C-terminal half of Aβ. Compared

to D3, RD2 more selectively binds Glu11 and Asp23 of Aβ42 monomer. ∆∆ḠArg and

∆∆ḠX,X 6=Arg values for D3 and RD2 in table 6.1 suggest a probable cause for this. With

the five D-arginine residues pooled in the C-terminal half of the peptide, RD2 demon-
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strates a more favourable ∆∆ḠArg of −18.79 kcal/mol compared with −16.49 kcal/mol

for D3. This partly explains while RD2 demonstrates higher selectivity for Aβ’s Glu11

and Asp23. There is however a trade-off with respect to a less binding favourability

of the non-arginine residues in RD2 (∆∆ḠX,X 6=Arg −9.60 kcal/mol) compared with D3

(∆∆ḠX,X 6=Arg −11.06 kcal/mol). This can also be seen in figure 6.3(c) where D3 is seen

to form more extensive interactions with non-charged residues of Aβ than RD2.

∆∆Ḡbind value obtained for the binding of RD2 to Aβ42 pentamer differs by −6.9

Figure 6.3: Interaction energy maps for Aβ42 monomer residues and (a) RD2 residues, (b) HN5 residues, (c)
D3 residues, and (d) 5RS residues.

kcal/mol from that of D3 (table 6.1). RD2 thus exhibits slightly stronger binding than

D3 to Aβ42 pentamer. In addition, the lowest ∆∆Gbind value of −272.52 kcal/mol ob-

tained for RD2 is substantially lower than the corresponding value of −222.22 kcal/mol for
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D3. The presence of a better structurally defined binding partner in Aβ42 pentamer, com-

pared with the largely unfolded Aβ42 monomer, might hold a special significance for this

relatively large disparity in the binding of RD2 and D3. The ordered stacks of five Asp23

residues within the fibril core of Aβ42 pentamer and the five Glu22 residues immediately

above it (figure 6.4) possibly provide a better binding surface for the penta-D-arginine

groups of RD2 which are absent in D3. This is captured in figure 6.5 which presents the

distribution of RD2 and D3’s centers-of-mass around Aβ42 pentamer.

RD2 binding modes are divided into two classes in which interaction is either restricted

Figure 6.4: A view of the frontal section of Aβ42 pentamer showing Phe20 → Gly33 in green cartoon. The
five Asp23 residues inside the fibril core and the Glu22 above appear in red liquorice, and Lys28 residues in blue
liquorice.

to Aβ42 pentamer’s disordered segment, or to the hydrophobic U-shaped fibril core bear-

ing Asp23 and Glu22 residues. This sharply contrasts with D3 which is distributed more

widely around the Aβ42 pentamer. Of the top 100 binding poses, RD2 centres-of-mass

within the fibril core can be found 41 times, compared with 16 for D3. In other words,

RD2 is ≈ 2.6 times better at targeting Aβ42 pentamer’s fibril core compared to D3. This

thus suggests that the reshuffling of D3 residues into RD2 with the five D-arginine con-
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centrated at the C-terminus significantly enhances its ability for focussed binding to the

fibril core of the Aβ42 pentamer.

This brings us to the important question: how does the observed binding pattern trans-

Figure 6.5: Binding of (a) RD2 and (b) D3 to Aβ42 pentamer. The centre-of-mass of RD2 and D3 in each
of the selected 100 binding poses is shown as yellow balls, residues 1–20 of Aβ42 pentamer are represented with
transparent ribbon, while residues Phe20–Gly33 have been shown in green NewCartoon. The fibril core’s five
Asp23, Glu22 (red) and Lys28 residues (blue) are represented in liquorice. The backbone groups of the acidic
(red) and basic (blue) residues within Aβ42’s disordered segment are also shown as liquorice.

late into structural efficacy in monomeric and pentameric Aβ42 peptides? To this end,

the trajectories for the 100 Aβ42 monomer-D-peptide systems were analysed for secondary

structure composition and the average over the 100 systems calculated. This was repeated

for the unbound Aβ42 from each of the predictions to provide a suitable control analysis.

The changes in secondary structure between the bound and unbound Aβ42 structures were

then calculated and expressed as percentage change as shown in table 6.2. The percentage

changes were calculated in such a way that a negative value represents a decrease in the

respective secondary structure element while a positive value represensts an increase. Out

of the four D-peptides, D3 and RD2 binding induce the largest changes in Aβ42 monomer

structure consisting mostly in β structure destruction and increased coil content. How-

ever, the effect of D3 is conspicously higher than that of RD2, which is likely to be a result

of the higher level of D3 interaction with the hydrophobic residues of Aβ42 monomer (fig-

ure 6.3). Figure 6.3 shows D3 as relatively more readily interacting with the two stretches

of hydrophobic residues (17–21 and 30–42) with interaction energies in the order of −0.72

kcal/mol compared with > −0.24 kcal/mol for the RD2 family. Both HN5 and 5RS only
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mildly affect the Aβ structure. In conclusion, the RD2 family of D-peptides’ increased

targeting of Aβ42 monomer’s acidic residues fails to translate into better structural effect

in Aβ42 monomer.

RD2 binding positions on Aβ42 pentamer were subjected to geometric clustering that

D-peptide Beta (%∆) Coil(%∆) Bend(%∆) Turn(%∆)
D3 -22.84 11.36 -1.63 -32.43

RD2 -15.09 5.53 1.95 -20.00
HN5 -3.66 0.60 1.68 -8.33
5RS -4.07 1.00 2.03 -15.38

Table 6.2: Percentage change in Aβ42 monomer’s secondary structure following D-peptide binding

generated 15 clusters (in line with the number obtained for D3). Six of these clusters

(figure 6.6) were each subjected to 50 ns MD simulation in explicit solvent. The trajec-

tories were analysed and the sampled secondary structure contents were determined and

compared to the reference (control MD simulation of unbound Aβ42 pentamer). As can

be observed in figure 6.6 RD2 binding, especially in clusters 2, 7 and 13, appears to induce

much larger disruption of the Aβ42 pentamer structure than did D3. Figure 6.7 shows

secondary structure analysis and how the selected representative cluster centres compare

with the D3-Aβ42 pentamer complexes.

On a general note, RD2 more strongly inhibits β structure while at the same time

increases coil content compared with D3. When RD2 binds along the fibril axis (i.e.

perpendicular to the β-sheet) as in clusters 8 and 9, the effect on the Aβ42 secondary

structure is maximised. This represents a deviation from the pattern obtained for Aβ42

monomer in which D3, as a result of the ability to form more widespread interaction with

Aβ generated higher structure-disrupting influence on the amyloid peptide. Experimental

measurements on different D-peptides including D3 and RD2 reported RD2 as possessing

higher amyloid-inhibiting effect than D3 peptide (Oleksandr Brener, personal commu-

nication). However, the relative amyloid-inhibitory effect of the two D-peptides under

experimental conditions will very likely also depend on the relative abundance of different

Aβ species, with D3 likely to have a higher effect on monomeric and less structured Aβ
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Figure 6.6: Six unique Aβ42 pentamer-RD2 binding modes obtained from cluster analysis. The yellow VDW
representation shows RD2 (the penta-D-arginine can be distinguished by its non-transparent representation),
bound to Aβ42 pentamer, which is shown in green NewCartoon with acidic and basic residues shown in red and
blue liquorice, respectively. (a) cluster 1, (b) cluster 2, (c) cluster 7, (d) cluster 8, (e) cluster 9, and (f) cluster
13.

Figure 6.7: Effect of D-peptide binding one Aβ42 pentamer secondary structure. On the left is the plot of
changes resulting from RD2 binding, and on the right is a plot of changes from D3 binding. Generally, RD2
demonstrates much stronger effect Aβ42 pentamer structure than D3.

species, while RD2 preferentially inhibits more structured Aβ oligomers.
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6.3 D3 mutations with natural and non-natural amino

acids

6.3.1 Mutation studies with Aβ42 monomer

The second category of modifications performed involve replacement of each amino acid

sequence of D3 with the remaining nineteen possibilities. These mutations were performed

for each of the 100 Aβ42 monomer-D3 complexes with the lowest ∆∆Gbind values. That

is, with each of the 100 complexes as starting structure, each of the D-amino acid residues

of D3 was replaced with the other 19 D-amino acid residues to produce new complexes

bearing the modified D-peptides. Glycine and proline residues were not substituted into

the first sequence position; accounting for these two exceptions, the total number of amino

acid substitutions is:

Nmut = (17 + 11× 19)× 100 = 22, 600 (6.2)

We used the MMTSB tool set [183] to carry out the mutations using parameters from

the CHARMM22 force field for topology definition [170]. Each of the resulting mutant

system was first subjected to energy minimisation to eliminate atomic clashes resulting

from the substitutions. Using the binding free energy calculation method described in

the previous chapter for D3, ∆∆Gmut
bind was subsequently calculated for each of the 22,600

mutants. The deviation of ∆∆Gmut
bind from ∆∆Gorig

bind was then calculated:

∆∆Gdiff
bind = ∆∆Gmut

bind −∆∆Gorig
bind (6.3)

where ∆∆Gorig
bind is the energy for the corresponding precursor D3-Aβ42 monomer complex.

From equation (6.3) it follows that any mutation improving the binding for a particular
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amino acid position will have a negative ∆∆Gdiff
bind , and vice versa. Lastly, the average

for each mutation was calculated over the 100 different binding poses and the standard

deviations determined.

Out of 226 point mutations presented in figure 6.8, only ten show slight improvement

Figure 6.8: D3 substitution with natural amino acids for binding to Aβ42 monomer. D3 residues appear on
the vertical axis while the replacement D-amino acids are on the horizontal axis. The white circles represent non
applicable substitutions involving self-substitutions (e.g., Arg replacing itself) and the omitted Pro and Gly at
the N-terminus.

(i.e., ∆∆Gdiff
bind < 0) over the original D3. This suggests that D3 represents a highly opti-

mised sequence in particular with respect to its Aβ monomer binding activity. Four of the

substitutions have ∆∆Gdiff
bind values only slightly lower than zero and these are Thr8→Leu,

Arg1→Asn, His7→Lys and Thr8→Ala. Replacing Arg1 with Ser brought about the high-

est observed improvement with a ∆∆Gdiff
bind value of of −10.5 ± 1.18 kcal/mol, followed

by His9→Met and Arg3→Ala with −7.60 ± 1.09 kcal/mol and −5.31 ± 1.15 kcal/mol

respectively. Changing Arg1→Leu and Thr4→Ser resulted in −4.50± 1.21 kcal/mol and

−4.08 ± 0.92 kcal/mol, respectively. The binding enhancing mutations may be put to-

gether to produce the sequence (A),

(A): SPASRLKLMRAR
(B): RPRTRLHTHRNR

where Pro2, Arg5, Leu6, Arg10 and Argr12 of D3 are all conserved. The sequence (B) is

the D3 peptide. The introduced ’KLM’ group vaguely resembles Aβ42’s self-recognition

unit that is critical for fibril assembly. Interestingly, the proposed sequence changes sup-

118



D3 Modifications 6.3 D3 mutations with natural and non-natural amino acids

port a more hydrophobic N-terminal segment for the D-peptide which mildly echoes the

sequence pattern in RD2. In this regard, the mutant peptide is likely to improve D3’s

affinity for Glu22-Asp23. This, however, may not directly translate into structural efficacy

considering that D3 demonstrated better destruction of the β content in Aβ42 monomer

than RD2. However, considering the fact that the mutations increase the peptide’s net

hydrophobicity from 5 charged and 2 hydrophobic residues in D3 to 4 charged and 5 hy-

drophobic residues in the mutant, increased hydrophobic interactions (∆∆ḠX,X 6=Arg/Lys)

in the new sequence with Aβ42 monomer will likely improve binding efficacy.

Another interesting observation is that the three aromatic amino acids, Phe, Tyr, and

Trp as well as the acidic amino acids, Asp and Glu, are strictly forbidden, i.e., they in-

creased ∆∆Gbind. Substitution with Asp or Glu is likely to interfere with the crucial role

of D3’s arginine residues via repulsive interaction with the acidic residues of Aβ42. The

avoidance of the aromatic residues points to a likely influence of chemical structure, in par-

ticular steric hindrance disallowing the replacement of D3’s residues with large aromatic

side-chains. In addition, the Thr→Ser mutation suggests that the 4th D-peptide position

is better occupied by a hydroxymethyl group of serine than threonine’s 1-hydroxylethyl

group. On the other hand, methionine’s -CH2SCH3 side-chain is preferred to histidine’s

imidazole ring at position 9.

6.3.2 Mutation studies with Aβ42 pentamer

The same kind of mutation study was repeated for Aβ42 pentamer, but with three im-

portant modifications:1) Some selected non-natural amino acids were included; 2) the

mutations were performed on both D3 and RD2 sequences and ; 3) the programme for per-

forming the point mutations was changed to Modeller [184] (used with the CHARMM22

force field [170]) that allows the definition of non-standard molecules. This represents an
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initial attempt at diversifying the molecular structure of the two D-peptides and incorpo-

rating wider chemical classes. Starting with the top 100 D3-Aβ42 pentamer and RD2-Aβ42

pentamer structures used for the above described interaction study, each residue of D3

and RD2 was mutated to one of the other 19 natural and the seven non-natural amino

acids. The structures of the non-natural residues, after geometry optimisation at the

semi-empirical level of theory (PM6)[185], are shown in figure 6.9.

Binding free energy calculations, as described under section 6.3 were performed and

Figure 6.9: Structures of the non-natural amino acids employed for mutation. Structure generation and geometry
optimisation were performed with Spartan’10 [12].

∆∆Gdiff
bind of resulting mutant D3 calculated for the Aβ-D3 bound systems (total of

12 × 24 × 100 = 28, 800 mutations). In the case of RD2, the penta-D-arginine group

shown to be crucial in RD2’s interaction with Aβ42 was kept, so that the substitutions

were restricted to the seven non-arginine residues producing a total of 7×24×100 = 16, 800

mutations.
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6.3.3 Results and discussion

The obtained ∆∆Gdiff
bind values the D-peptide–Aβ42 pentamer differ from the values ob-

tained for the Aβ monomer mainly as a result of the differences in the extent of the

D-peptide’s interaction with the Aβ peptides. Interaction with Aβ42 monomer involves

less extensive peptide contacts than with Aβ42 pentamer; this, perhaps, partially accounts

for the fewer number of free-energy-improving substitutions obtained in the former. The

higher extent of contact in the D-peptide–Aβ pentamer, however, comes with certain im-

plementation challenges in which some of the systems returned very high ∆∆Gbind values

resulting from serious clashes involving residues with large sidechain groups. Examples

include BPP with a benzoylphenyl sidechain, and NPA with a naphthalyl sidechain, which

as seen in figures 6.10 and 6.11, are too large to be accommodated within the D-peptide-

Aβ42 pentamer tightly bound complexes. Nevertheless, their energies were not excluded

since they provide useful information about unfavourable energetics of the concerned

residues.

In other words, BPP and NPA are disfavoured in both D3 and RD2 peptides mostly

Figure 6.10: D3 optimisation by amino acids substitutions for binding to Aβ42 pentamer. D3 residues are listed
on the vertical axis while the substituting D-amino acids are on the horizontal axis. The white circles represent

zero ∆∆Gdiffbind for self-substitution, e.g., replacing Arg residue with itself.

because of unfavourable size. In the case of D3, however, the picture changes signifi-

cantly going from BPP and NPA, with two-ring aromatic sidechains, to one-ring aromatic

sidechain where changing Pro2→Phe, Leu6→Trp, Leu6→Phe, Leu6→Tyr, Leu6→FPA,

and Asn11→Tyr result in some of the most favoured substitutions. While the replace-
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ment of Pro2 and Leu6 with hydrophobic and aromactic residues represents a significant

majority of the favourable substitutions, D3’s arginine residues are all strictly conserved.

This tends to suggest that the arginine residues play a more crucial role in binding Aβ42

pentamer than they do in Aβ42 monomer. Also, the fact that aromatic substitutions are

disallowed in D3-Aβ42 monomer complexes while they are allowed in D3-Aβ42 pentamer

complexes suggests that aromatic substitutions may be important for designing D-peptide

inhibitors with increased specificity for Aβ42 oligomers.

The pattern observed in RD2 substitutions is similar to that of D3, especially in the

Figure 6.11: RD2 optimisation by amino acids substitutions for binding to Aβ42 pentamer. D3 residues are
listed on the vertical axis while the substituting D-amino acids are on the horizontal axis. The white circles

represent zero ∆∆Gdiffbind for self-substitution, e.g., replacing Arg residue with itself.

preference for hydrophobic and aromatic substitutions. However, many more favourable

amino acid substitutions are possible in RD2 than in D3 peptide. For example, RD2’s pro-

line in position 1 accommodates most of the substitutions with the exception of Trp, GAB,

HCT, LBH, and NPA. The higher chances of substitution observed for RD2 compared

with D3 may have resulted from the specific nature of RD2’s binding to Aβ42 pentamer.

By mostly utilising its penta-D-lysine group for interacting with Aβ42 pentamer, RD2

makes its seven non-arginine residues relatively more available for substitution than D3

where the staggering of the five D-arginine residues along the entire sequence makes it

difficult to introduce substitutions that do not affect interaction. From the non-natural

residues, only FPA replacement of Leu6 produces favourable ∆∆Gdiff
bind for D3-Aβ42 pen-

tamer, while for RD2 FPA replacement of Pro1, Leu3, His4, as well as PGL replacement

of Pro1 and Leu3 improve Aβ42 pentamer binding. That is, RD2 provides a better molec-

ular template for chemical modifications than D3.
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A closer look at the substitutions involving single-ring aryl sidechains such as Phe, Tyr,

FPA (4-fluorophenylalanine), and PGL (phenylglycine) in figure 6.11, seems to suggest

a distinct pattern. Replacing Thr5 and Asn7 with Tyr is unfavourable, suggesting a

disallowing of the aromatic OH group at this position. Interestingly however, replacing

Tyr’s hydroxyl group with a flouride (FPA) at this position produces a favourable bind-

ing energy. Phe, Tyr, and FPA produce an identical effect when replacing Leu3 and

Thr5 (∆∆Gdiff
bind ≈ −10 kcal/mol) and Pro1 (∆∆Gdiff

bind ≈ −12 kcal/mol), suggesting the

effect here mostly results from the phenyl ring. However, with the sidechain shortened

by a methylene group, as seen in PGL, the number of favourable substitutions reduced

from 3, in Phe, Tyr and FPA, to 2 in PGL where substitution is only allowed for Leu3

(∆∆Gdiff
bind ≈ −12 kcal/mol) and Pro1 (∆∆Gdiff

bind ≈ −10 kcal/mol). Only Leu3→PGL

can be considered seriously given the fact that Pro1 is generally open to all substitutions

including BPP. Apart from PGL, valine and histidine also successfully replace Leu3 which

seems to suggest this position in RD2 prefers sidechain groups that are slightly smaller

than a benzyl group. Lastly, the incorporation of FPA provides a means of improving the

lipophilicity of the molecule, should that be desired, since flourine in the para position

has the ability of improving both the lipophilicity and stability of the aromatic ring [186].

6.3.4 Conclusion

Using sequence shuffling and about 700 hundred different point mutations, we examined

the effect of amino acid sequence modifications on the binding free energies of D3 inter-

acting with Aβ42 monomer and pentamer. Pooling the five D-arginine residues present

in D3 to the C-terminus produces RD2, a reshuffled form of D3 with a penta-D-arginine

sequence expected to facilitate targeted binding of the D-peptide to Aβ42’s acidic residues.

We performed an assessment of the binding free energy as well as the effect of binding
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on Aβ42 monomer and pentamer structures. A comparison of RD2 with D3 resulted in

an identical pattern of binding to Aβ42 monomer dominated by electrostatic attraction

between the D-arginine residues of D3 and RD2 and Aβ’s acidic amino acid residues.

However, while D3 prefers to interact with Aβ42’s Glu22 and Asp23, RD2 demonstrates

a slightly higher preference for Glu11 and Asp23. A deconvolution of the binding energy

shows that the five D-arginine residues are more efficiently employed in RD2 than in D3.

However, while interacting with Aβ42, D3 additionally utilises several energetically weak

hydrophobic contacts. While both D-peptides demonstrate β-sheet breaking effect on

Aβ42 monomer, the fact that D3 more significantly affects Aβ’s structure demonstrates

the importance of hydrophobic contacts to overall binding.

Sequential removal of RD2’s non-arginine residues almost completely abolishes the β-sheet

breaking effect, further supporting the contribution of hydrophobic interactions. Visual

examination of D3-Aβ42 monomer complexes and interaction energies suggests the em-

ployment of binding poses which allows D3 to interact with Aβ42’s hydrophobic sequences

that are often involved in β-sheet formation. This explains the higher structural effect

obtained for D3 compared with RD2 in the Aβ42 monomer complexes.

The pattern, however, reverses in Aβ42 pentamer systems. Interestingly, the penta-D-

arginine group of RD2 renders it better able to interact with Asp23 existing deep within

Aβ42 pentamer’s hydrophobic core. In this regards, compared with D3, we have shown

that RD2 is approximately thrice as likely to penetrate into Aβ42 pentamer’s fibril core.

Drawing inference from the energetic pattern seen in Aβ42 monomer, RD2’s binding may

be a consequence of the increased binding effectiveness observed for the D-arginine residues

in RD2. In addition, it explains the higher destruction of Aβ42 pentamer’s β-sheet ob-

tained for RD2 than for D3. We further observed that the structural effect of D-peptide

binding in both RD2 and D3 correlates well with the binding site within Aβ42 pentamer.

The two peptides produce the largest effect on Aβ structure when bound to the β-sheet-
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forming regions than when bound to the disordered N-termini. However, it may be

possible that the in vitro and in vivo anti-amyloid effects reported for the two D-peptides

are mediated via both binding modes.

Results from the amino acid substitutions reveal D3 as already highly optimal for binding

Aβ42 monomer. Replacing Arg1 and His9 with Ser and Met, respectively, produced the

highest improvement in binding free energy. We also observed that substitution of D3’s

Pro1, Arg5, Leu6, Arg10 and Arg12 is strongly disallowed, and that aromatic residues are

generally not favoured over existing D3 residues. This pattern, however, changes slightly

with D3-Aβ42 pentamer and RD2-Aβ42 pentamer systems where more substitutions are

allowed than for the Aβ42 monomer. This further supports the position that D3 sequence

is highly optimised for monomeric Aβ. Using substitutions with natural and seven non-

natural amino acids, we observe that certain amino acid positions in the D3 sequence

demonstrate selectivity for a particular chemical class. The fact that single-ring aromatic

substitutions are favoured over other groups suggests the possibility of using these groups

in designing inhibitors with improved selectivity for Aβ42 oligomers.

125



D3 Modifications 6.4 Supplementary information: Force field parameterisation

6.4 Supplementary information: Force field parame-

terisation

In the quantum chemical description of molecular systems, molecules are modelled as

collections of interacting electrons and nuclei. Various levels of approximations are used

in order to solve the molecular Schrödinger equation, which expresses the total energy of

an electronic system as an eigen-equation:

ĤΨ = EΨ (6.4)

Here, Ψ is a wavefunction representing the electronic state, and when operated upon by

the Hamilton operator, Ĥ, the system energy is obtained. For the simplest case, which

is the hydrogen atom–the only system for which the equation has an exact solution–the

equation expands (in atomic units) into,

(
−1

2
∇2 − Z

r

)
Ψ(r) = EΨ(r) (6.5)

which captures both the electronic kinetic (first term in the equation) and potential energy

(second term in the equation). The distance r is the separation between the electron and

the nucleus having a nuclear charge Z (Z = 1 for H) and r is the 3D coordinate of the

electron. The Schrödinger equation for polyelectronic systems includes terms for electron-

electron, electron-nucleus, and nucleus-nucleus interactions:

ĤΨ(r,R) = EΨ(r,R) (6.6)
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where the Hamiltonian operator is given by:

Ĥ = −1

2

electrons∑
i

∇2
i +

electrons∑
i

electrons∑
j>i

1

rij
− 1

2

nuclei∑
A

1

MA
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A

+
nuclei∑
A
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ZAZB
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−
electrons∑

i

nuclei∑
A

ZA
riA

(6.7)

where rij is the distance between electrons i and j, RAB is the distance between nuclei A

and B, and riA is the separation between electron i and nucleus A. This equation can-

not be solved analytically. Approximations introduced to make it numerically tractable

include the Born-Oppenheimer approximation that neglects the nuclear motion removing

the third term in equation 6.7 and turning the 4th term into a constant. The Hartree-Fock

(HF) model derives from the similarly named approximation in which the wave function

of the system can be approximated by a single Slater determinant, which considers Ψ for

a collection of electrons, each with a wave function known as spin orbital. By invoking the

variational method, one can derive a set of Nspin-coupled equations for the Nspin spins.

The Hartree-Fock system gave birth to semi-empirical models which neglect non-valence

electrons and use much fewer basis sets than the HF models. Finally but importantly,

semi-empirical models also employ approximations that allow the incorporation of empiri-

cal terms, which coupled with its computational efficiency and the availability of basis sets

for calculations relating to transition metals make semi-empirical method a good choice

for systems containing up to few hundreds of atoms. In this work, the semi-empirical

method PM6 [185] as implemented in the quantum chemistry package Spartan’10 [12]

was employed to derive force field parameters for 7 non-natural amino acids.

Following energy minimisation, the equilibrium geometries for the seven non-natural

amino acids were used to determine the molecular mechanics parameters compliant with

the

CHARMM27 potentials. With the newly generated CHARMM parameters a 10 ns MD
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simulation in explicit solvent using the MD programme NAMD [187] was performed for

each molecule to confirm that the parameters did not sample unreasonable conformations.

The parameters were thereafter employed for conducting the amino acid substitution in

the bound D3-Aβ42 pentamer and RD2-Aβ42 pentamer systems.
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Chapter 7

Summary and Future perspectives

The past decades have witnessed a great deal of research activities into the role of Aβ

peptide in the development of Alzheimer’s disease. While increasing number of biochem-

ical pathways have been discovered to be involved in AD development, research findings

have also increasingly supported the involvement of the Aβ peptide in many of these

pathways. For instance, there is a good documentation of the neuronal toxicities of differ-

ent Aβ alloforms and oligomeric sizes, which understanding has also motivated targeting

of Aβ associated pathways in Alzheimer’s drug design. However, the very fact that no

definitive treatment currently exists for Alzheimer’s disease highlights the associated level

of complexity. Unlike other drug targets, the small oligomers of the Aβ peptide, which are

rightly believed to be the main toxic species, lack a unique three-dimensional structure.

In addition, their significantly high aggregation rates make it difficult to employ powerful

tools like solution NMR, for Aβ structure determination. This has prompted the employ-

ment of artificial solubilising conditions such as the use of organic solvents in structure

determination. The problem with this approach is that the obtained structures, which

are often helical, do not exactly represent the physiological state under which conditions

Aβ is believed to mostly sample β-sheet and random coil structures.

Using the ability of molecular simulations to focus attention on a single molecule, we
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studied the conformation dynamics of Aβ peptides. To limit force field bias, we employed

long MD trajectories and validation with NMR chemical shifts to select the force field

that best models Aβ40 and Aβ42 monomers’ physiologic conformations. Only the force

field ffG53a6 sufficiently reproduced the NMR chemical shifts for both Aβ40 and Aβ42

monomer, and captured the fast conformational transitions associated with an intrin-

sically disordered peptide (IDP) like Aβ. The force field shows both peptide as being

essentially unstructured in the N-terminal segment, but with Aβ40 slightly more disor-

dered than Aβ42. In addition, it shows the self-recognition unit sequence 16KLVFF20 as

forming β-sheet in both peptides but to a slightly higher extent in Aβ42, in which a Gly37-

Gly38 turn thought to distinguish Aβ42 from Aβ42 was also correctly sampled. Cluster

as well as secondary structure analyses revealed Aβ42 as more rigid and a better β-sheet

former than Aβ40. Importantly, our results agree well with experimental findings, sug-

gesting that the behaviour of the two peptides in a laboratory set up involving thousands

of molecules, can be explained at a single molecule level using molecular simulation. This

is also true with respect to the conformations sampled by Aβ42 under the different pH

conditions we modelled based on amino acid charged states. Previous experiments had

indicated that the structure and aggregation of Aβ are largely affected by pH. In our

in silico experiment, we observed the Aβ42 conformation to depend on the protein net

charge. The observed structural effect is most dramatic at the isoelectric pH 5.4 where

the highest percentage of β-sheet is formed resulting from a minimisation of electrostatic

repulsion. His6 was observed to play a critical role in ordering intramolecular contacts and

facilitating secondary structure formation. We believe this explains, at a single molecule

level, the high aggregation propensity associated with the peptide at slightly acidic pH.

The weakness of our approach is however also associated with the ability to single out

individual molecules for investigation. Atomistic simulations are still unable to handle

system sizes comparable to what can be achieved in experiments. In addition, there is
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the risk of mismatching protein system and force field capabilities mainly because there

is still no universal protein force field. Instead the design of the currently available force

fields restricts their very use to systems not too much different from those for which they

were designed. For instance, the factors driving the conformational properties of IDPs

are sufficiently different from most globular proteins, which probably explains why most

existing force fields have not been as successful with IDPs as they have been with natively

folded proteins. Most of the existing protein force fields have been observed to correctly

predict protein folding rates as well as native state conformations, while the performance

with respect to the features of the unfolded state and the folding mechanism depends

heavily on the choice of force field. It therefore becomes evident, that the inability of

the force field ffG43a2 to sample the correct structural ensemble for Aβ emanates from a

restriction of its applicability to folded protein systems for which it has been largely suc-

cessful. On the other hand, the success of the ffG53a6 force field for modelling Aβ is likely

because it was parametrised to reproduce both the free enthalpies of hydration and apolar

solvation which are important factors in most biomolecular processes. In other words, Aβ

conformational states obtained for ffG53a6 result from the choice of the parameter set

and not vice versa. Our results further highlights the need for a proper benchmarking of

the protein force fields, and in particular for the need to broaden the selection of protein

test sets beyond natively folded proteins to include IDPs. In addition, the benchmarking

may include validation with experimental observables such as chemical shifts.

Using a combination of global optimisation, binding free energy calculation and MD

simulation methods, we investigated the interaction of amyloid aggregation-inhibiting D-

peptide inhibitors on Aβ42 monomer and pentamer structures. The D-peptides, especially

the 12-residue D3 peptide, interact via electrostatic interactions with Aβ42’s Asp23, Glu22,

and Asp11 residues, to produce significant reduction in Aβ’s β-sheet content. While RD2,

a reshuffled form of D3 with a C-terminal penta-D-arginine sequence, presents similar
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binding pattern as D3 to Aβ42 monomer, it is slightly not as efficient at destroying Aβ42

monomer’s secondary structure; an effect which results from D3’s better ability to ad-

ditionaly interact with Aβ42 monomer’s hydrophobic residues. Truncated forms of RD2

including a penta-D-arginine peptide, bind strongly to Aβ42 monomer but failed to repro-

duce the amyloid-disrupting effect of RD2 and D3. Interestingly, with the Aβ42 pentamer,

RD2 produces a much greater β-sheet breaking effect than D3. This was observed to re-

sult from RD2’s greater ability to interact within Aβ42 pentamer’s fibril core. We suggest

this to be attributable to a difference in the Aβ oligomer specificity of the two D-peptides

and the possibility of deriving, via co-administration, a synergistic advantage from D3’s

effect on Aβ42 monomer and RD2’s on small Aβ42 oligomers. Furthermore, we performed

exhaustive point mutations of D3 and RD2’s sequences and assessed the resulting binding

free energies. The obtained results indicate that D3 is already highly optimised for Aβ42

monomer in agreement with the original phage display selection that identified D3 un-

der a set of solution conditions where monomeric Aβ42 was expected to be the dominant

species. On the other hand, substitutions with natural and non-natural amino acids with

single aromatic sidechains were observed to improve binding to Aβ42 pentamer.

While our use of representative hundreds of Aβ42-D-peptide systems successfully captured

important aspects of the interaction, it is still important to acknowledge that this number

represents only a very small fraction of the number of the interacting partners present in

a typical test tube. In particular, by selecting the top 100 complexes in each system our

results have become more narrowed to the set of systems analysed. The analyses would

doubtlessly have better modelled the ensemble averaged properties existing in vitro had

we included the entire 5000 GMIN-generated complexes. This, however, is currently be-

yond the computational resources available for the project. Also, the mutational analyses

employed only the binding configurations of the selected top D3-Aβ complexes. For in-

stance, the global energy minimum of each mutant may be expected to differ from that

132



Summary and Future perspectives

of the parent D-peptide-Aβ complex, and by ignoring this difference the mutation study

could not completely account for all energetic and configurational possibilities. In other

words, configurational entropy of the interacting peptide and inhibitors was not included.

On the other hand, fully sampling each of the ≈ 700 point mutations studied in this

work would require basin-hopping optimisation, binding energy calculation, and explicit

solvent MD simulations for about 3,500,000 different configurations!

Future work should consider the full optimisation of a number of point mutations se-

lected based, for instance, on the binding energies reported in this study. With this,

systematic chemical modifications may be employed for designing D-peptide-derived in-

hibitors with specificity for different Aβ oligomer size. In addition, the effect of varying

the Aβ-D-peptide stoichiometric ratio will also be conducted which will help to determine

the optimal number of D-peptides necessary to produce the largest structural effect on

Aβ. This study will require the profiling of Aβ aggregation process using atomistic MD

simulations of up to 20 for each of Aβ40 and Aβ42 peptides.
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7.1 List of abbreviations

Aβ Amyloid beta

AD Alzheimer’s disease

AFM Atomic force microscopy

APP Amyloid precursor peptide

BH Basin hopping

BBB Blood-brain barrier

CHC Central hydrophobic core

COM Centre of mass

CSF Cerebrospinal fluid

LTP Long-term potentiation

MD Molecular dynamics

NMR Nuclear magnetic resonance

QM Quantum mechanics

SRU Self-recognition unit

Tht Thioflavin T

134



Summary and Future perspectives 7.2 Amino acids codes

7.2 Amino acids codes

Ala (A) Alanine

Arg (R) Arginine

Asn (N) Asparagine

Asp (D) Aspartic acid

Cys (C) Cysteine

Gln (Q) Glutamine

Glu (E) Glutamic acid

Gly (G) Glycine

His (H) Histidine

Ile (I) Isoleucine

Leu (L) Leucine

Lys (K) Lysine

Met (M) Methionine

Phe (F) Phenylalanine

Pro (P) Proline

Ser (S) Serine

Thr (T) Threonine

Trp (W) Tryptophan

Tyr (Y) Glutamic acid

Val (V) Valine
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7.3 Article reuse permission
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