
 

 

 

Towards the generation of recombinant and 

pharmaceutically relevant target proteins: 

Phage display-based isolation of specific scFv antibodies  

against metastasizing pancreatic carcinoma  

for clinical application and  

development of novel fluorescent reporter tags  

for on-line monitoring during target protein production 

 

 

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften 

der RWTH Aachen University zur Erlangung des akademischen Grades einer 

Doktorin der Naturwissenschaften genehmigte Dissertation 

 
 
 
 
 
 

vorgelegt von 
 

Eva-Maria Siepert (M.Sc.) 

aus Bad Säckingen 

 

 

 

 

Berichter: Universitätsprofessor Dr. rer. nat. Dr. rer. medic. Stefan Barth 
  Universitätsprofessor Dr. rer. nat. Lothar Elling 
 
Tag der mündlichen Prüfung: 22. November 2013 
 
 
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           In Erinnerung an meine Großmutter 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data presented in this thesis has partially been published in a peer-reviewed journal:  

“Siepert, E.M., et al., Short-chain fluorescent tryptophan tags for on-line detection of 

functional recombinant proteins. BMC Biotechnol, 2012. 12(1): p. 65. 

This DFG-funded project was performed in co-operation with Esther Gartz und Prof. Dr. 

Jochen Büchs at the Department of Biochemical Engineering (AVT) at RWTH Aachen 

University. 

All bioengineering experiments, and subsequent data analysis, were conducted by Esther 

Gartz at the Department of Biochemical Engineering (AVT) at RWTH Aachen University 

at the head of Prof. Dr. Jochen Büchs 

 



Index 

I 

Index 

1 Introduction .............................................................................................................................. 1 

1.1 Pancreatic cancer ........................................................................................................... 2 

1.1.1 Statistics ......................................................................................................... 2 

1.1.2 Risk factors ..................................................................................................... 3 

1.1.3 Diagnosis ........................................................................................................ 3 

1.1.4 Therapy ........................................................................................................... 4 

1.2 Immunotherapy .............................................................................................................. 6 

1.2.1 Immunotoxins ................................................................................................. 9 

1.2.2 Monoclonal antibodies ................................................................................... 9 

1.3 Phage display technology ............................................................................................ 12 

1.3.1 M13KO7 bacteriophage ............................................................................... 12 

1.3.2 In vitro selection procedure .......................................................................... 14 

1.3.3 Tomlinson Libraries I and J .......................................................................... 16 

1.3.4 L3.6pl target cell line .................................................................................... 18 

1.3.5 Epidermal growth factor receptor ................................................................. 19 

1.3.6 Monoclonal anti-EGFR antibody fragment 425(scFv) ................................. 19 

1.3.7 Generation of 14.1(scFv) .............................................................................. 20 

1.4 Protein expression ........................................................................................................ 20 

1.4.1 Prokaryotic protein expression ..................................................................... 20 

1.4.2 Eukaryotic protein expression ...................................................................... 21 

1.5 Protein tags .................................................................................................................. 22 

1.5.1 Affinity tags .................................................................................................. 22 

1.5.2 Reporter proteins .......................................................................................... 23 

1.5.3 Synthetic labels and SNAP-tag technology .................................................. 26 

1.5.4 Tryptophan and potential tryptophan-based tags ......................................... 28 

1.6 On-line monitoring of micro-scale shaking cultures ................................................... 28 

1.7 Objective ...................................................................................................................... 30 

2 Material .................................................................................................................................. 33 

2.1 Chemicals and consumable supplies ............................................................................ 33 

2.2 Equipment and software .............................................................................................. 33 

2.3 Bacterial strains and media .......................................................................................... 35 

2.4 Eukaryotic cell lines and media ................................................................................... 36 



Index 

II 

2.5 Enzymes and their buffers ........................................................................................... 37 

2.6 Reaction kits ................................................................................................................ 37 

2.7 Buffers, solutions and antibiotics ................................................................................. 37 

2.8 Antibodies and enzyme-conjugated antibodies ........................................................... 39 

2.9 Primer .......................................................................................................................... 39 

2.10 Plasmid vectors ............................................................................................................ 40 

2.11 Molecular weight markers ........................................................................................... 41 

2.12 Single chain antibody libraries and helperphage ......................................................... 41 

3 Methods .................................................................................................................................. 42 

3.1 Molecular biological and DNA cloning techniques ..................................................... 42 

3.1.1 Polymerase chain reaction ............................................................................ 42 

3.1.2 DNA restriction digest .................................................................................. 44 

3.1.3 DNA ligation ................................................................................................ 44 

3.1.4 DNA sequencing and sequencing analysis ................................................... 44 

3.1.5 Analytical and preparative agarose gel electrophoresis ............................... 44 

3.1.6 Determination of DNA concentration .......................................................... 45 

3.1.7 Plasmid DNA isolation from E.coli.............................................................. 45 

3.1.8 Design of tryptophan tag (W-tag) ................................................................. 46 

3.1.9 Cultivation of E.coli ..................................................................................... 46 

3.1.10 Preparation of bacterial cryo stock cultures ................................................. 49 

3.1.11 Heat shock transformation of E.coli ............................................................. 49 

3.2 Tissue culture and cell processing ............................................................................... 49 

3.2.1 Cultivation of eukaryotic cell lines ............................................................... 49 

3.2.2 Cryopreservation and reactivation of eukaryotic cell lines .......................... 50 

3.2.3 Eukaryotic recombinant protein expression in HEK293T cells ................... 51 

3.2.4 Isolation of peripheral blood mononuclear cells .......................................... 52 

3.2.5 Preparation of membrane fractions .............................................................. 53 

3.3 Protein chemical and immunological methods ............................................................ 54 

3.3.1 SDS-PAGE ................................................................................................... 54 

3.3.2 Western blot analysis .................................................................................... 54 

3.3.3 Determination of protein concentration ........................................................ 54 

3.3.4 Immobilized metal-ion affinity chromatography ......................................... 55 

3.3.5 Extraction of recombinant protein after prokaryotic expression .................. 57 

3.3.6 Dialysis of scFv-protein solutions and crude lysate ..................................... 58 

3.3.7 Concentrating protein solutions .................................................................... 58 



Index 

III 

3.3.8 Mass spectrometrical analysis ...................................................................... 59 

3.3.9 Enzyme-linked immunosorbent assay (ELISA) ........................................... 59 

3.3.10 Flow cytometric analysis .............................................................................. 62 

3.3.11 Fluorescence-based internalization assays ................................................... 63 

3.4 Phage Display Technology .......................................................................................... 66 

3.4.1 Cultivation of Tomlinson Libaries I and J .................................................... 66 

3.4.2 Phage infection and production .................................................................... 66 

3.4.3 Phage precipitation ....................................................................................... 67 

3.4.4 Titer determination ....................................................................................... 67 

3.4.5 Biopanning ................................................................................................... 67 

3.4.6 Site-directed mutagenesis ............................................................................. 72 

3.5 Methods of bioengineering .......................................................................................... 74 

3.5.1 Micro-scale on-line measurement ................................................................ 74 

3.5.2 2D-scan analysis ........................................................................................... 75 

3.6 Analytical and statistical software ............................................................................... 75 

3.7 Documentation and image editing ............................................................................... 75 

4 Results: Antibodies against pancreatic cancer ....................................................................... 77 

4.1 Experiments prior to phage display selection .............................................................. 77 

4.1.1 Quality assessment of Tomlinson Libraries I and J ...................................... 77 

4.1.2 Testing of blocking and washing conditions ................................................ 78 

4.2 Isolation of L3.6pl-specific scFv-phage particles ........................................................ 79 

4.2.1 Enrichment of scFv-phage particles on adherent cells ................................. 79 

4.2.2 Enrichment of scFv-phage by suspension panning ...................................... 81 

4.2.3 Enrichment of scFv-phage particles on membrane fractions ....................... 83 

4.2.4 Identification of unique L3.6pl-specific scFv-phage binders ....................... 85 

4.2.5 Monoclonal phage ELISA of 14.1(scFv) ..................................................... 89 

4.3 Sequence analysis of isolated L3.6pl-specific scFv ..................................................... 90 

4.3.1 Whole cell ELISA ........................................................................................ 92 

4.3.2 Cross-reactivity analysis ............................................................................... 93 

4.4 QuikChange Mutation of stop codons ......................................................................... 95 

4.5 Production and purification of soluble scFv antibodies ............................................... 95 

4.5.1 Prokaryotic expression in HB2151 E.coli via pIT2 phagemid ..................... 96 

4.5.2 Prokaryotic expression in BL21 Rosetta 2 (DE3) via pMT plasmid ............ 97 



Index 

IV 

4.5.3 Eukaryotic expression in HEK293T via pMS-SNAPMut plasmid .............. 98 

4.5.4 IMAC purification and SNAP-tag labeling with fluorescent dyes ............... 99 

4.6 Characterization of soluble scFv antibodies .............................................................. 100 

4.6.1 Protein ELISA ............................................................................................ 100 

4.6.2 Flow cytometric analysis ............................................................................ 101 

4.6.3 Internalization assays ................................................................................. 105 

5 Results: Design of novel fluorescent W-tag ......................................................................... 112 

5.1 Generation of W-tag constructs ................................................................................. 112 

5.1.1 Sequence design and cloning ..................................................................... 112 

5.1.2 Vector assembly of W-tag constructs ......................................................... 114 

5.2 Expression of W-tag fusion proteins.......................................................................... 115 

5.2.1 Protein expression in bacterial pellet .......................................................... 115 

5.2.2 Protein secretion into cultivation medium .................................................. 116 

5.2.3 Protein expression in different types of media ........................................... 117 

5.2.4 Percentage of over-expressed Wx-Ki-4(scFv) ........................................... 117 

5.3 On-line measurement data ......................................................................................... 118 

5.3.1 On-line fluorescence intensity measurements ............................................ 119 

5.4 Protein purification of Wx-Ki-4(scFv) proteins ........................................................ 123 

5.4.1 Protein recovery by TES buffer lysis ......................................................... 123 

5.4.2 IMAC protein purification .......................................................................... 124 

5.5 Measurement of protein binding activity ................................................................... 125 

5.5.1 Wx-M12(scFv) binding analysis on MCF7 and MDA-MB-231 ................ 125 

5.5.2 Protein ELISA of Wx-Ki-4(scFv) fusion proteins ..................................... 126 

5.5.3 Flow cytometric analysis of Wx-Ki-4(scFv) on L540cy ............................ 126 

5.5.4 Competitive FACS ..................................................................................... 127 

5.6 2D fluorescence measurement of Wx-Ki-4(scFv) ..................................................... 129 

6 Discussion ............................................................................................................................ 130 

6.1 Isolation and characterization of pancreas-specific scFv antibodies ......................... 130 

6.1.1 Enrichment of L3.6pl-specific binders ....................................................... 131 

6.1.2 The Tomlinson Phage Library .................................................................... 139 

6.1.3 Protein Expression ...................................................................................... 143 

6.1.4 Soluble protein ELISA analysis ................................................................. 144 



Index 

V 

6.1.5 Flow cytometric binding and cross-reactivity observations ....................... 145 

6.1.6 Hypothesis on clones D5(scFv) and D9(scFv) ........................................... 146 

6.1.7 Internalization behavior .............................................................................. 147 

6.2 Design of optically active W-tags .............................................................................. 149 

6.2.1 W-tag design............................................................................................... 150 

6.2.2 W-tag protein expression and purification ................................................. 151 

6.2.3 Online measurement of fluorescence intensity ........................................... 153 

6.2.4 2D-scans ..................................................................................................... 155 

6.2.5 Flow cytometric binding analysis ............................................................... 156 

7 Outlook................................................................................................................................. 157 

7.1 Pancreas-specific scFv antibody fragments ............................................................... 157 

7.2 Characterization of optically active W-tag ................................................................ 158 

8 Summary .............................................................................................................................. 160 

9 References ............................................................................................................................ 162 

10 Appendix .............................................................................................................................. 178 

10.1 QuikChange Mutagenesis primers ............................................................................. 178 

10.2 Amino acids (IUPC letter codes) ............................................................................... 179 

10.3 List of approved therapeutic mABs in Germany ....................................................... 179 

10.4 Abbreviations ............................................................................................................. 181 

10.5 List of figures ............................................................................................................. 186 

10.6 List of tables .............................................................................................................. 189 

10.7 Publications, presentations and posters...................................................................... 192 

10.8 Curriculum Vitae ....................................................................................................... 193 

10.9 Acknowledgement ..................................................................................................... 195 

 



Introduction 

 

 

1 

1 Introduction 

Cancer is the second most common cause of death in Germany (total incidence of 469,800 

in 2008 [1]) as well as in the rest of the Western world [2, 3]. Each type of cancer is 

classified by the specific tissue initially affected. With an incidence of 71,660 (32.1%) 

breast cancer is most common in women, whereas in men prostate cancer is most frequent 

with an incidence of 63,440 (25.7%) [1]. In general, cancerous cells emerge due to mostly 

age-dependent genetic modifications resulting either in up-regulated gene function or in 

down-regulated tumor suppression [4]. Due to demographic changes as well as increasing 

obesity, a dramatic rise of cancer incidence rates is expected over the next decades [1]. 

Based on the assumption that practically all mammalian cells share a similar molecular 

repertoire of pathways controlling their proliferation, differentiation and death, literature 

suggests a multi-step process of events progressively leading to neoplastic development. 

During tumorigenesis malignant cells aquire a set of novel capabilities which successfully 

disrupt tissue-own cancer defense mechanisms [4, 5]. Literature states six main 

characteristics that apply for the formation of virtually all malignant cells (Table 1-1): 

Table 1-1 Six generally applicable characteristics for development of malignant tumor cells. [4, 5] 

Characteristic property Mechanisms 

Self-sufficiency in  

growth signals 

Well-controlled proliferative pathways are misregulated due to signals governing 

cell growth-and-division cycle. This is can be caused by autocrine production of 

growth factors or over-expression of receptors (e.g. tyrosine kinases such as the 

epidermal growth factor receptor (EGFR) (I.3.4.4)) answering to growth signals [6]. 

Evasion of 

growth-inhibiting signals 

Tumor suppressor genes, such as RB (retinoblastoma-associated) [6], process 

extracellular signals necessary for cell cycle activation. The TP53 protein acts as a 

DNA damage sensor [7] and receives intrinsic stress signals (e.g. O2 or growth 

factor levels). As a result, it can halt the cell cycle or induce apoptosis. Defective or 

missing genes result in uncontrolled proliferation. 

Evasion of apoptosis 

Typically apoptosis is activated by various physiologic stresses [8] but is inactivated 

in high-grade malignant cells by pro- and antiapoptotic regulatory proteins. For 

example blocking of caspases 8 and 9, as well as activation of the Bcl-2 family 

apoptosis inhibitor oppresses programmed cell death [9, 10]. 

Replicative immortality 

Due to absent telomerase, telomers of healthy cells become shorter with each 

replication cycle. Elevated telomerase levels in about 90% of all cancers ensure 

addition of hexanucleotide tandem repeats to telomers thus creating immortal cells 

[11].  

Sustained angiogenesis 

Cancer cells and tumors possess an exorbitant need for nutrients and oxygen which 

leads to never-ending neovascularization. Angiogenesis is for example induced by 

up-regulation of the vascular endothelial growth factor A (VEGF-A) or by 

inactivation of the angiogenic inhibitor thromospondin-1 (TSP-1) [12]. 

Tissue invasion and metastasis 

Alterations in cell attachment and changes in the extracellular matrix, e.g. 

inactivation of the adhesion molecule E-cadherin [13], induce detachment of cells 

which then evade surrounding tissues, or release of malignant cells that build 

metastasis at different locations. 

Tumors do not merely comprise a cluster of abnormal cells, but develop an organ-like 

complexity. Multiple distinct cells are recruited by malignant cells creating a tumor 

microenvironment which for example provides necessary signals and growth factors, or 
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structural foundation (fibroblasts). During the hyperproliferative phase of a tumor, even 

whole subpopulations of cancer stem cells (CSC) are formed that promote malignant 

growth and metastasis [14, 15]. [4, 5] 

1.1 Pancreatic cancer 

The pancreas is an organ of mainly glandular tissue located behind the stomach. Its 

exocrine gland comprises more than 95% and produces the pancreatic juice containing 

enzymes to digest fats, proteins and carbohydrates. The remaining parts are endocrine cells 

arranged in small clusters (islets of Langerhans) responsible for hormone release, for 

example insulin, into the blood. Tumors originated from glandular tissue are classified as 

adenocarcinomas. [16, 17] 

1.1.1 Statistics 

The pancreatic adenocarcinoma is a rare but very aggressive type of cancer. In 2008, the 

morbidity in Germany was 18/100,000 people with a total incidence of 14,960, which 

corresponds to only 3% of all cancers (Table 1-2). Despite its low incidence rate, 

pancreatic cancer is the 4
th

 most common cause of cancer-related deaths [1]. 

Table 1-2 Statistical data on pancreatic cancer in Germany in 2008 with a prognosis for 2012. [1] 

 2008 2012 

 ♂ ♀ ♂ ♀ 

Incidence 7,390 7,570 7,800 7,600 

Deaths by pancreatic cancer 7,327 7,508 N/A N/A 

Morbidity1 18.4 18.1 19.5 18.3 

Age at diagnosis2 70 76 N/A N/A 

Mortality rate1 18.2 17.9 N/A N/A 

Relative 5-year survival rate 8 7 N/A N/A 
1 per 100,000 persons, 2 median 

The main reason for this high mortality is its distinctly invasive growth behavior in 

addition to an enormous potential for premature lymphogenic and hematogenic metastasis 

into neighboring organs, such as liver, lymph nodes, and lung [16, 18, 19]. Fast metastatic 

spread and high tumor resistance towards radiation and chemotherapy result in a mortality 

rate of nearly 100% (Table 1-2) [1, 16, 19]. This implies that the prognosis of a patient is 

strongly dependent on the progression of disease at the time of diagnosis. Except for very 

early diagnosis, pancreatic cancer is always lethal resulting in an average 5-year patient 
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survival rate of 1 – 5% and a median life expectancy of 4 – 6 months when diagnosed after 

metastasis or local spread [1, 16, 18, 20, 21]. 

1.1.2 Risk factors 

Definite reasons for pancreatic cancer are not exactly known, but classified risk factors are 

excessive abuse of alcohol and cigarettes, as well as obesity in combination with type 2 

diabetes [22-24]. In 5 – 10% of the patients, malignant pancreatic cancer is due to a 

genetically induced risk, inherited from a likewise diseased first-degree relative with 

cancer or hereditary pancreatitis [16, 25]. Currently identified genetic alterations include 

amongst others, mutations in codon 12 of the oncogene KRAS2 which is involved in the 

regulation of cellular growth factor signal transduction [26] or inactivating mutations of the 

tumor suppressor genes TP53 (inactivated in approximately 60% of pancreatic cancers) or 

p16 (inactivated in 90% of pancreatic cancers). Normally, TP53 is activated after DNA 

damage occurs thus inducing apoptosis in the G1-phase of the cell cycle, whereas active 

p16 acts as cyclin-dependent kinase inhibitor. Its inactiviation leads to unhindered cell 

proliferation. Mutations, which result in deviant methylation patterns of for example 

FoxE1, NPTX2, CLDN5 or SPARC [19, 27, 28], influence rates of receptor-ligand signal 

transduction. Prevalence of mutations for the hereditary and sporadic pancreatic carcinoma 

is evaluated similarly. Moreover, a genetic predisposition to develop pancreatic cancer 

originates in the mutation of gametes [19, 27, 28]. Altogether, all genetic factors account 

for approximately 20% of all cases but could also lead to a differential diagnosis.  

1.1.3 Diagnosis 

The asymptomatic disease pattern of early-stage pancreatic cancer and the lack of adequate 

and reliable cancer markers in combination with poor molecular imaging techniques 

complicate an early and correct diagnosis. Primary tumors are located deep inside the body 

and cannot be seen or felt during routine examinations. Acute clinical symptoms, for 

example severe pain, weight loss and jaundice, usually do not arise before metastasis has 

occurred and the tumor has reached an irresectable stage [16, 19]. In case of suspected 

pancreatic cancer, classical sonography and CT examinations (optionally with contrast 

agents) are employed to visualize tumor growth. By means of additional tests, such as 

endoscopic retrograde cholangiopancreatography combined with tissue biopsy, MRI or 

laparoscopy, the tumor spread is estimated preoperatively. Other examination methods 

may include intraductal or endoscopic sonography (possibly combined with a Fine-Needle-
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Aspiration biopsy), angiography or positron emission tomography (PET) [16]. Tumors are 

staged according to the American Joint Committee on Cancer (AJCC) using the Tumor-

Nodus-Metastasis system [29]. At time of diagnosis, the disease is exclusively localized to 

the pancreas in 20% of the patients, another 40% are diagnosed with local spread whereas 

visceral metastasis are found in the rest of the patients [30]. Malignant tumors of the 

exocrine pancreas originate predominantly (95%) within the ductal epithelium [20, 31]. 

Many pancreatic tumors express carbohydrate antigen (CA 19-9), carcinoembryonic 

antigen (CEA), cytokeratins 7, 8, 13, 18 and 19, as well as B72.3 (TAG-72), CA 125, 

DUPAN2 or mucins (Muc 1, 3, 4 or 5AC). These markers can be detected via 

immunohistochemistry staining techniques of biopsy tissue or blood samples. CA 19-9 is 

the most commonly used tumor marker (gold standard) for serum and tissue analysis with a 

sensitivity of 80% for asymptomatic pancreatic cancer and 55% at occurrence of small 

resectable tumors < 3 cm. However, no diagnostically significant results are possible from 

CA 19-9 serum concentrations in asymptomatic patients with invasive lesions [19]. 

Therefore, CA 19-9 is mostly only used for follow-up examinations during medical 

treatment. Genetic testing rarely appears promising since inherited DNA mutations are 

often linked to many different kinds of cancers.  

1.1.4 Therapy 

Despite marked advancements in molecular tumor biology, the treatment efficiency of 

pancreatic cancer has not significantly increased within the last 25 years [1, 20]. Basically, 

three main types of treatment are available: (a) Surgery, (b) chemotherapy and (c) radiation 

therapy. Surgical tumor removal (pancreatico-duodenectomy or Whipple procedure) is 

currently the only curative treatment with prospects of success [16, 32]. It can be 

performed in 15 – 20% of the patients; but even if R0 resection of the tumor was 

successful, the 5-year survival rate amounts to only 25 – 30%. Survival decreases to 10% 

after lymph nodes have been invaded [16, 33]. Only approximately 5% of all tumors are 

truly resectable at the time of diagnosis.  

Nowadays, adjuvant therapeutic approaches consisting of systemic chemo- or radiation 

therapy, or a combination of both, are employed to reduce the mortality rate [34, 35]. Best 

results are currently obtained by combining the cytostatic adjuvant Gemcitabine 

(2’, 2’-Difluordesoxycytidin, Gemzar
®

) with resection [36-38]. Since its approval in 1996, 

it is applied during first-line treatment of advanced and metastasized pancreatic carcinoma 
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but with limited success. Besides a pain-reducing and weight-gaining effect, Gemcitabine 

was successfully applied during adjuvant treatment of operable tumors. In comparison to 

5-FU (5-Fluorouracil, Efudex
®

), used until the late 1990s, Gemcitabine is better tolerated 

and results in an improved treatment outcome with a 1-year survival rate of 18% instead of 

2% [37, 39, 40]. Both adjuvants are cytostatic pyrimidine analogues and belong to the 

family of antimetabolites. They intervene during DNA synthesis, especially in highly 

proliferating tumor cells, leading to cell cycle arrest and subsequent apoptosis. While 

Gemcitabine is metabolized intracellular to Gemcitabine-triphosphate and inserted into the 

DNA instead of the human cytidine, 5-FU irreversibly blocks the enzyme thymidylate 

synthase thus inhibiting thymidine and DNA synthesis.  

Since 2007, Erlotinib (Tarceva®) is approved for chemotherapeutic treatment of pancreatic 

cancer. It is a selective inhibitor targeting the tyrosine kinase domain of the epidermal 

growth factor receptor (EGFR) and is mostly applied in combination with Gemcitabine 

[41, 42]. EGFR is highly expressed, and sometimes mutated, in a lot of cancerous cells. 

Erlotinib reversibly attaches to the adenosine triphosphate (ATP) binding site of EGFR 

thus interrupting cell signal transduction. Usually two EGFR molecules have to form a 

homodimer for signal transmission. This linking process which activates cellular pathways 

is induced by ATP. Its blocking consequently results in a missing signaling cascade. 

During adjuvant radiation therapy, ionizing high-energy X-rays (photons) or charged 

particles are used to eliminate cancer cells as pre-operative or post-operative tumor 

treatment. Ionization of atoms either damages ssDNA and dsDNA of cancerous or dividing 

cells directly leading to apoptosis. On the other hand, free radicals (hydroxyl radicals) are 

formed after ionization of water molecules which indirectly damage cellular DNA. 

Computer-controlled radiation is focused on the tumor by external beam radiation devices, 

such as intensity-modulated radiation therapy (IMRT) or the robotic arm CyberKnife
®

. 

They place precise multiple-directioned doses of radiation on the tumor according to its 3D 

shape to minimize exposure of normal tumor-surrounding tissue [43, 44]. Post-surgery 

radiation therapy combined with chemotherapy, currently yields the best prognosis for 

pancreatic cancer patients [31]. 

Due to the high resistance of pancreatic cancer towards conventional chemotherapeutics 

and radiation therapy, repeated high-dosage treatment causes unspecific damage to healthy 

tissue surrounding the tumor. Subsequently this leads to various adverse side effects, such 

as nausea, hair and weight loss. Chemotherapeutics also damage the bone marrow and the 
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subsequent production of new blood cells causing an increased chance of infection 

(lymphocytes) as well as bleeding and bruising after minor injuries (platelets), or fatigue 

(erythrocytes). This dramatically reduces a patient’s life quality [17, 45, 46]. 

1.1.4.1 Prognosis 

Residual tumor cells (minimal residual disease (MRD)) are responsible for a high relapse 

rate featuring liver metastasis as dominating recurrence in 50 – 70% of the patients [16]. 

Current treatment options are rarely curative and mostly palliative and life-prolonging. The 

prognosis remains devastating, especially considering the increasing tendency towards 

malignant diseases as a result of demographic change (incidence of pancreatic cancer 

peaks between 7
th

 and 8
th

 decade of life) [1]. Therefore, the need to investigate clinical and 

tumor biological factors that enable an improved targeted therapeutic approach becomes 

apparent. 

1.2 Immunotherapy 

Immunotherapy is a relatively novel but fast advancing field of targeted cancer therapy. It 

exploits characteristics of cancerous cells, which specifically distinguish them from 

healthy ones, to eliminate malignant cells with minimal side effects. Within the last 20 

years various strategies for targeted tumor treatment have been developed. 

Immunotherapeutics [31, 47] in form of antibody-drug-conjugates (ADC) present a 

promising alternative approach which has already led to an increased therapeutic 

specificity for other types of cancer [48, 49]. Moreover, specific antibodies conjugated to 

an imaging molecule (e. g. fluorophore, Fe
2+

-particles) may be applied for tumor 

diagnostics [50-52] in addition to targeted therapeutic drug delivery. 

Active immunotherapy stimulates the immune system directly into attacking diseased cells 

by induction of an efficient cytotoxic T lymphocyte (CTL) response. Moreover, inate 

mechanisms of the immune system to initiate, program and regulate tumor specific 

immune responses are exploited [53], including dendritic cells (DCs) as powerful 

antigen-presenting cells. DCs process unfamiliar endogenous proteins to antigenic peptide 

fragments and present them on their surface as MHC class I complexes for CD8+ T-cell 

recognition [31, 54]. Exogenous antigens, on the other hand, are digested by proteases after 

uptake via lysosomes, presented as MHC class II complexes and recognized by CD4+ T-

cells [31, 54]. T-cells then secrete interferons (e. g. IFN-Ȗ) or cytokines (e. g. tumor 

necrosis factor TNF-α) as well as interleukins (e. g. IL-4, IL-10) to activate DCs and CTLs 
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[31, 55, 56]. T-cell activation is often additionally linked to a humoral antibody-based 

immune response. Known and frequent surface antigen mutations of pancreatic cancer, 

such as KRAS [57], CEA [58], p53 [59] or human telomerase reverse transcriptase 

(hTERT) [60], are perfect targets for immunotherapeutic approaches [31]. Particularly 

interesting targets concerning pancreatic cancer therapy are its treatment-suppressing 

mechanisms, caused by immune suppressive cells within the tumor microenvironment. 

Among other mechanisms, this comprises the expression of surface molecules suppressing 

immune response (e. g. vascular endothelial growth factor) [61], which repress CD8+ CTL 

function by IL-10 secretion [31]. Vaccines, consisting of inactive whole tumor cells as 

vehicle, can be utilized to deliver specific tumor-associated antigens (TAA) into the body. 

Another possibility are peptide vaccines mimicking a small immunogenic region of a 

defined TAA, which induce a TAA-specific T-cell mediated immune response [31]. For 

cell-based vaccines, synthetic peptides from known tumor antigens are inserted into DC for 

MHC class I and MHC class II complex presentation [31]. Other options include insertion 

of tumor cell lysates or transfection with whole tumor cell DNA or RNA [31]. 

Immunogenicity of tumor cells can be increased by transfection of DCs with genes coding 

for example for the co-stimulating granulocyte macrophage colony-stimulating factor [62]. 

In a variation of cell-based immunotherapy, certain cell types (DCs, CTLs) from a cancer 

patient are amplified, modified ex vivo and re-injected into the patient [63, 64]. As a direct 

result, these molecules inhibit tumor growth, indirectly act anti-angiogenic or increase 

immune response (progress was shown during melanoma therapy by injection of tumor 

infiltrating lymphocytes (TIL) [65-67]). As for pancreatic cancer, these active 

immunotherapeutic approaches are currently under preclinical and clinical investigation. 

During a passive immunotherapeutic approach, recombinant monoclonal antibodies (mAB) 

specifically recognize tumor-associated antigen (TAA) structures on target cells ideally 

over-expressed on the tumor as well as its metastasis [68, 69]. This specific activity is 

associated with a reduction of side effects and poses a huge advantage for therapeutic 

mABs. Their therapeutic effector mechanisms can be direct or indirect. The direct effector 

function only depends on the binding performance of the mAB to a specific target antigen. 

Binding recombinant mABs disrupt receptor-ligand interactions by blocking either 

receptor (e. g. EGFR) or ligand (e. g. TNF-α, VEGF). Similary, disabling of surface 

structures also prevents interactions between cells, for example after transplantations (e. g. 

IL-2 against CD25). An additional direct effector function is the mediation of intracellular 



Introduction 

 

 

8 

apoptotic impulses by cross-linkage of two surface receptors. Indirect effector mechanisms 

are dependent on the Fc-moiety of a mAB and thus the antibody isotype. Effector cells 

(e. g. macrophages, T-cells) are recruited via the Fc-effector function, resulting in the 

elimination of a diseased cell by apoptosis, phagocytosis or activation of the complement 

system. Complement-dependent cytotoxicity (CDC) is induced after opsonisation with 

mAB leading to complement activation and cell lysis [70]. So-called antibody-dependent 

cellular cytotoxicity (ADCC) is stimulated by attachment of the Fc-part of bound mABs to 

receptors on effector cells [70, 71]. These cells then secrete substances, such as perforin 

and Granzyme B, or mediate phagocytosis. Table 1-3 exemplarily lists recombinant mAB 

with direct and indirect effector function. 

Table 1-3 List of approved exemplarily mABs with a direct and indirect effector mechanisms. 

mAB Mechanism Effector molecule Application 

Infliximab 

(Remicade®) 

direct  

ligand-mediated 

binding to cytokine TNF-α blocks receptor 

reaction, inhibition of proinflammatory 

signals 

rheumatoid arthritis,  

Crohn’s disease [72] 

Adalimumab 

(Humira®) 

direct  

ligand-mediated 

binding to cytokine TNF-α blocks receptor 

reaction, inhibition of proinflammatory 

signals 

rheumatoid arthritis,  

autoimmune diseases [73] 

Basiliximab 

(Simulect®) 

direct  

receptor-mediated 

binding to IL-2 receptor CD25 prevents 

rejection after kidney transplants 
organ transplantation [74] 

Daclizumab 

(Zenapax®) 

direct 

 receptor-mediated 

binding to IL-2 receptor CD25 prevents 

rejection after kidney transplants 
organ transplantation [75] 

Bevacizumab 

(Avastin®) 

direct  

ligand-mediated 

binding to secreted VEGF inhibits 

angiogenesis 

advanced colorectal, lung,  

breast, kidney and  

cervix carcinoma [76] 

Trastuzumab 

(Herceptin®) 

Direct 

 receptor-mediated 

indirect (ADCC) 

binding to EGF blocks HER2/neu receptor, 

inhibits growth and proliferation-inducing 

signals 

breast cancer [49, 71] 

Rituximab 

(MabThera®) 

direct  

receptor-mediated, 

indirect  

(CDC and ADCC) 

Binding to and cross-linking of CD20 

receptors on B-cell, induces apoptotic 

signals 

lymphoma, leukemia,  

transplant rejection [48, 70, 71] 

In Europe, currently twelve mABs are approved for cancer therapy (10.3) [77], for 

example Rituximab, Trastuzumab or Cetuximab [48, 49, 78], but none for an effective and 

specific treatment of pancreatic cancer. To improve their therapeutic effect, the natural 

binding function of mABs is enhanced by covalent conjugation to cytotoxic substances, 

such as low-molecular chemical compounds, to form radioimmunoconjugates (e. g. I
131

 or 

Y
90

 [79, 80]) or non-radioactive chemoimmunoconjugates (e. g. Doxorubicin [81]), as well 

as macro-molecular protein-based immunotoxins (IT) [69, 82]. 
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1.2.1 Immunotoxins 

Immunotoxins (ITs), also known as cytolytic fusion proteins, are passive humoral 

immunotherpeutics. They consist of a tumor-specific binding moiety and a cytotoxic 

effector domain, where the mAB acts as a carrier molecule for targeted delivery. In order 

to reach complete cytotoxic potency and consequent selective elimination of malignant 

cells, ITs have to be internalized and translocated to the cytoplasm after surface binding 

[83]. Hence, the choice of target protein is important since not every binding ligand is also 

internalized and suitable to induce apoptosis with a limited number of receptors. Protein-

based cytotoxic effector domains can be derived from plants (e. g. Ricin or Saporin (also 

called ribosome inactivating protein (RIP)) or bacteria (e. g. diphtheria toxin, Exotoxin A 

(ETA) [84, 85]). A frequently used bacterial toxin is the truncated version of the Exotoxin 

A (ETA’) [85-87] from Pseudomonas aeruginosa, whose genetic mutation does not 

influence its catalytic activity but prevents unspecific toxicity caused by premature 

separation of ligand and toxin. Due to their high immunogenicity, plant and bacteria-

derived toxins have their limitations during repeated treatment cycles since they may 

induce an immune response, ranging from fever to kidney toxicity and vascular-leak-

syndrome [88]. Next generation toxins are of human origin, such as human RNAse 

(angiogenin) [89], kinases (DAPK2) [90] or serin proteases (Granzyme B) [91, 92]. 

Human toxins are smaller than ETA’ which is favorable for efficient protein expression 

and presents an advantage for tissue penetration during solid tumor treatment [31, 68, 69, 

93-96]. 

1.2.2 Monoclonal antibodies 

Antibodies are part of the natural immune reaction and responsible to mark foreign 

substances or mutated cancer-related protein structures on cells [97]. In cancer therapy, 

antibodies are used to detect tumor-specific target structures. While the idea of targeted 

cell toxins was already phrased by Paul Ehrlich in the 1800s [98], it was impossible to be 

realized until the invention of hybridoma technology [99], which was a huge mile stone in 

the field of specific recombinant mAB development. Hybridoma technology uses 

immunized mice to isolate antibody-secreting B-cells which are then fused to immortal 

myeloma cells (cancer B-cells) for antibody production.  

Murine as well as human mABs belong to the immunoglobuline (Ig) superfamily [97]. An 

Ig consists of four poly-peptide chains with two identical light chains (L-chain) and two 
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identical heavy chains (H-chain) which are covalently inter-linked via disulfide bridges 

[97]. Each chain is divided into a constant region (C-region) and a variable region 

(V-region). The constant heavy chain (CH) has three domains (CH1, CH2, CH3), whereas the 

variable chain has just one domain (Figure 1-1). V-regions of both chains (VH and VL) are 

divided into three hypervariable regions, denoted complementarity determining regions 

(CDRs) which are stabilized by four genetically conserved framework regions (FWRs) 

with ȕ-sheet structure [100, 101]. These CDRs are the specific antigen binding sites and 

identically presented on the two arms of the Y-shaped antibody protein. Antibody 

specificity is mainly determined by the amino acid sequence of the CDRs, whereas the 

three domains of the C-region mediate effector functions, such as the activation of the 

complement system or binding to surface receptors of macrophage.  

The high level of immunogenicity in first-generation recombinant mABs, caused by their 

hybridoma technology-related murine origin, often resulted in a human anti-mouse 

antibody (HAMA) immune response during clinical studies [102]. HAMA is amplified 

when a therapeutic is applied repeatedly and antibodies are neutralized before they can 

take effect. This may cause severe side effects, from fever to life-threatening renal failure. 

Moreover, in vivo tumor penetration was impaired by the large size of full-length 

antibodies (150 kDa) [103]. Since 1975, the rapid progress in recombinant DNA 

technologies and antibody engineering has contributed fundamentally to overcome the 

problems of size and immunogenicity. Recombinant molecular biological techniques 

allowed the artificial in vitro generation of genetically modified antibody fragments with 

higher binding affinity, stability and less immunogenicity. To reduce antibody size and to 

improve mobility and diffusion properties through tumor tissue, different antibody 

fragments can be designed for therapeutic use [97, 104]. Besides the full-length antibody 

(150 kDa), monovalent Fab fragments (fragment of antigen binding, 50 kDa) are produced 

with protease treatment [105]. Another option are bivalent F(ab)2 fragments (100 kDa) [97] 

or monovalent single chain fragment variables (scFv) (Figure 1-1) [97, 106]. With only 

25 kDa, recombinant scFv molecules are the smallest antibody fragments. They consist of 

protein heterodimers with associated variable domains of VH and VL chains which are 

connected by a glycine-serine linker (GS-linker) for stabilization and proper folding. 
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Figure 1-1 Schematic drawing of monoclonal antibody, F(ab’)2fragment and scFv to illustrate the 

structure of immunoglobulins (Ig) and derived antibody fragments. 

(A) shows the monoclonal full-length antibody (150 kDa) marked with its important regions: CDR = 

complementarity determining region (hypervariable regions), L-chain = light chain (yellow), H-chain = 

heavy chain (blue), C-region = constant region (red arrow), V-region = variable region (red arrow), VL = 

variable light chain, VH = variable heavy chain and the three constant domains of the heavy chain CH1, CH2, 

CH3. (B) The F(ab’)2 fragment (50 kDa) shows two fragments of antigen binding connected via a disulfide 

bridge. (C) The scFv (single chain fragment variable) as the smallest recombinant antibody (25 kDa) linked 

with a glycine-serine (GS) linker for correct folding and stability. 

To minimize the HAMA immune reaction caused by murine recombinant antibodies, 

second-generation chimeric antibodies are constructed by exchanging the murine C-region 

with a human sequence. Third-generation humanized antibodies are created by murine 

CDR-grafting into a human antibody framework. These antibodies still cause an immune 

reaction against the residual murine portion (HACA = human anti-chimeric antibody) or 

against allotypic epitopes and glycosylation of the foreign human C-region 

(HAHA = human anti-human antibody) [107, 108]. Nevertheless, these antibody formats 

are preferable since they only result in low antibody titers and may still be used for 

therapeutic applications. Latest-generation antibodies are composed of completely human 

antibody sequences acquired by immunization of transgenic mice carrying human Ig genes 

[109] or via isolation from human phage display libraries [110, 111]. 

All mentioned molecules can be constructed by means of recombinant antibody 

technologies, with the option for immunotoxin expression and in vitro as well as in vivo 
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analysis. For this thesis, only scFv antibody formats were utilized. Their low molecular 

size supports rapid and efficient tumor penetration but results in a shorter circulation time 

due to renal clearance from the system, which occurs up to about 60-70 kDa [112]. Larger 

constructs are cleared through the digestive system and consequently have a longer 

retention time [113]. Recombinant scFv antibodies lack the functional Fc effector moiety 

[114, 115] and are easy to produce in large high-quality quantities by means of prokaryotic 

and eukaryotic expression systems. 

Essential parameters to choose a suitable molecule for tumor targeting are: (a) High 

specificity, (b) missing cross-reactivity towards undiseased tissues, and (c) high affinity 

(preferably in the low µmolar and nmolar range during in vivo targeting) [116]. 

1.3 Phage display technology 

Phage display technology is a powerful, fast and efficient tool to select specifically binding 

antibodies or scFv fragments (also Fab fragments) against almost any antigen [111], for 

use in targeted immunotherapy or diagnostic optical imaging techniques. In contrast to the 

hybridoma technology [99], phage display is performed completely in vitro. A huge 

advantage of this technology is the potential to construct large phage libraries with high 

sequence diversity [110, 117]. Compared to traditional approaches, it allows for in vitro 

screening and selection of billions of scFv fragments or peptides/proteins to identify lead 

candidates of monoclonal therapeutic antibodies [110, 111, 118]. Moreover, it facilitates 

the construction of recombinant antibodies with a completely human framework, thus 

minimizing adverse immune reactions [118]. It is distinguished between immunized 

libraries constructed from antigen-reactive B-cells or naïve libraries created from B-cells 

without antigen contact [111]. In addition, CDRs can be artificially mutated to enhance 

diversity by means of polymerase chain reaction (PCR) and randomized oligonucleotide 

primers [119]. Once high-affinity antibodies have been identified from a phage library, 

their synthesis is straightforward and can be optimized by conjugation or cloning [120]. 

Besides the described system of antibody phage display (1.3.1, 1.3.2, 1.3.3), this method 

has also been established on yeast or ribosomes [121]. 

1.3.1 M13KO7 bacteriophage 

Phage display technology is based on the fusion of a scFv antibody to a bacteriophage coat 

protein where the phage is responsible for presenting the scFv antibody for selection [122]. 

The M13KO7 bacteriophage (Figure 1-2), used in this thesis, is a ssDNA virus, and 
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belongs to the filamentous non-lytic bacteriophage that infects gram-negative bacteria, 

such as TG1F
+
 E.coli. M13KO7 decreases bacterial growth but keeps the host cell intact 

while producing and secreting scFv-phage particles into the surrounding medium. 

M13KO7 phage particles have a diameter of 6.5 nm and are 939 nm long with a viral mass 

of 16.3 kDa [123]. Its genetic information is contained on a circular ssDNA of 

6407 nucleotides encapsulated inside the phage coat proteins. It encodes eleven proteins 

(pI - pXI) responsible for the coat proteins (pIII, pVI, pVII, pVIII, pIX), phage assembly 

(pI, pIV, pXI) and DNA replication (pII, pV, pX). Its flexible cylinder-shaped body is 

composed of approximately 2700 copies of coat protein pVIII and is capped by each five 

copies of the minor coat proteins pIX and pVII on one side, and by each five copies of pVI 

and pIII on the other side (Figure 1-2A). For most phage display applications, the pIII coat 

protein is N-terminally fused to a peptide, protein or scFv fragment, which is then 

presented on the phage particle exterior for selection. Moreover, the pIII protein is required 

for infection of the TG1F
+
 E.coli bacteria carrying the conjugative F-plasmid (F = fertility 

factor), which allows expression of F-pili essential for M13KO7 absorption. After 

attachment of the phage coat protein pIII to the tip of the F-pilus, it is drawn inwards; the 

phage genome is injected and translocated into the cytoplasm [124]. The complementary 

strand of the ssDNA is synthesized by the bacteria which results in a supercoiled dsDNA 

template for replication and protein translation inside the host cell. Proteins pVII, pIX, 

pVIII, pIII and pVI are directed to the periplasmic membrane where they are assembled 

and subsequently secreted after completion [125]. The oxidizing environment within the 

periplasm ensures correct folding and disulfide bound formation of fusion proteins for 

phage display. Phage proteins pII, pX and pV remain in the cytoplasm since they are only 

engaged in the replication process. Genetic information of the different scFv fragments 

fused to the pIII proteins is encoded on a plasmid-based phagemid. This merely carries the 

gene for the scFv-pIII fusion but none of the other phage genes and has been transformed 

into TG1F
+ 

E.coli. Phagemids have an E.coli origin for expression as well as a phage 

origin locus and an ampicillin resistance. Additionally, a multiple cloning site is integrated 

in front of the pIII gene (gIII) to insert the scFv antibody fragment. The phagemid is 

missing all genetic information for assembly, coat proteins and DNA replication thus 

lacking the ability to build phage particle on its own. To achieve that, phagemid-containing 

bacteria are infected with “empty” helperphage which complements the missing genes 

including the pIII wild-type protein [126] thus combining genotype and phenotype. This 

process is called phage rescue. This non-complex phagemid system simplifies any 
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subsequent cloning procedures and enables the construction of larger and more diverse 

libraries. Moreover, this system allows adjusting the valency of the scFv-presenting phage. 

 
Figure 1-2 Schematic of filamentous M13 bacteriophage and E.coli with F-pili.  

(A) Schematic drawing of filamentous M13 bacteriophage showing coat proteins pIII, pVI, pVII, pVIII and 

pIX as well as the ssDNA within the phage body (drawing adapted from [123]), (B) Electron microscopic 

picture of E.coli bacterium displaying F-pili [127], (C) Electron microscopic picture of filamentous 

bacteriophage [128].  

Two types for M13KO7 phage exist: (a) Monovalent M13KO7 helperphage, which still 

contain genetic information for the pIII wild-type protein, can incorporate between zero 

and one copies of the pIII-scFv fusion protein during assembly [129], and (b) polyvalent 

M13KO7ΔpIII hyperphage, being a helperphage with a deletion of the pIII gene, can 

integrate five copies of pIII-scFv fusion protein during assembly to avoid heterogenicity 

[130]. Since the helperphage genome encodes the wild-type coat proteins, typically over 

90% of rescued phages do not display the library protein at all. Nevertheless, monovalent 

display by using phagemid vectors may be essential when selecting antibodies of higher 

affinity [131]. 

1.3.2 In vitro selection procedure 

The in vitro selection process of specifically binding scFv fragments by means of phage 

display is called biopanning. The selective antigens (purified proteins, viable cells, 

membrane fractions or sugars) are immobilized on immunotubes or microtiter plates 
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(MTPs) with maxisorb surfaces [110, 111, 119, 132-134]. Phage particles displaying the 

scFv-pIII fusion protein (scFv-phage) are expressed in TG1F+ bacteria and incubated on 

these antigen target structures. Unbound or low-affinity scFv-phage particles are removed 

during stringent washing cycles and bound antibody fusion proteins can be eluted via 

pH-shift. To complete the biopanning cycle, obtained scFv-phage binders are amplified by 

infection with fresh TG1F+ E.coli and the selection cycle is repeated three times [135, 

136]. Washing stringency is increased with each selection round whereas the concentration 

of immobilized antigen is decreased. Figure 1-3 illustrates a biopanning selection cycle as 

performed during this work. 

 

Figure 1-3 General schematic illustration of phage display panning procedure for the selection of 

specific scFv-phage particles.  

(A) Infection of unselected TG1F+ E.coli library, transformed with the scFv-carrying phagemids. Either the 

monovalent M13KO7 helperphage or the polyvalent M13KO7ΔpIII are used for infection of the library. (B) 

Amplification of scFv-phage particles. (C) Subtractive selection of scFv-phage molecules that show 

unspecific binding to a depletion antigen (e. g. peripheral blood mononuclear cells (PBMCs)); unspecifically 

bound scFv-phage particles are discarded. (D) Positive selection of scFv-phage particles that specifically bind 

to the target antigen. (E) Unbound or weakly bound scFv-phage molecules are removed by several stringent 

washing steps supplemented with different detergents if necessary. (F) Specifically bound scFv-phage 

proteins are eluted via pH-shift and used to infect “empty” TG1F+ E.coli to amplify fresh scFv-phage 

particles for the next panning round. In order to isolate specific scFv-phage binders, the shown selection 

cycle is repeated three times. 



Introduction 

 

 

16 

Biopanning is ideally conducted on a certain homogeneous target protein in form of 

purified protein [137] but heterogeneous panning strategies are also feasible [134, 138]. 

Since surface proteins are integrated into the lipid layer of the membrane, selections are 

then performed on whole viable cells to preserve their native protein conformation or on 

membrane fractions which imitate the intact cell surface [134, 138]. A great advantage of 

selections on purified protein is that only one protein is targeted compared to the entire 

repertoire of membrane proteins, phospholipids, polysaccharides and glycoproteins on 

living cells or membrane fractions. Heterogeneous conditions favor enrichment of 

unspecific scFv-phage particles which can be removed by means of subtractive selection 

on different cells as well as vigorous washing [138]. A complementary selection strategy is 

concentrated on the isolation of internalizing scFv-phage particles since this attribute is 

essential for therapeutic approaches [139], such as immunotoxins or other antibody 

conjugates. All eukaryotic cells are able to take up extra cellular substances in vesicles via 

endocytosis. Ligand-binding receptors then transport cytolytic antibody immunoconjugates 

to their target location within the cell. Internalizing antibodies are best selected on viable 

cells where they mostly target surface proteins with a very high expression density. 

Isolation of a desired and specific scFv antibody from an antibody phage library may 

require a combination of different selection methods. 

1.3.3 Tomlinson Libraries I and J 

High diversity (normally 10
9
 - 10

11
 clones/library) and quality of phage display libraries 

are essential for successful antibody selection [140-142] by phage display. It is generally 

distinguished between naïve and immunized libraries. Immunized libraries are constructed 

from V-genes of mice [128] or other animals whereas naïve libraries are either derived 

from natural human non-immunized or synthetic V-genes [143]. Random rearrangement of 

VH and VL genes of naïve human B-cells, enables the design of highly diverse libraries 

consisting of scFv antibody fragments. The probability to isolate a specific high-affinity 

binding peptide from an antibody phage display library increases with the structural 

diversity of the library [144]. Naïve libraries are advantageous over immunized libraries 

which are limited in their diversity [145]. Within several days, binders against any 

arbitrary antigen may potentially be generated from the same naïve phage library. This 

includes toxic substances, haptens and carbohydrates as well as intra- and extra-cellular 

proteins of cells and viruses, or body-own antigens which evade immunization through 

natural tolerance mechanisms [141]. 
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This work uses the Tomlinson phage libraries I and J [135] for the isolation of recombinant 

monoclonal scFv antibody fragments. Both libraries are naïve semisynthetic filamentous 

phage display libraries of human origin with over 100 million diverse scFv fragments. 

Library size is only limited by transformation efficiency (10
7
 - 10

9
 clones/library) of the 

pIT2 phagemid vector (Figure 1-4) into the E.coli strain TG1F+ [135]. Each single chain is 

constructed of a polypeptide consisting of a VH and VL domain connected by a flexible 

synthetic glycine-serine [(Gly4Ser)3] linker [110] (1.2.2, Figure 1-1). All scFvs bind to 

protein A and L for detection, purification or immobilization purposes and in addition 

carry a myc-tag and His6-tag. In order to maximize side chain diversity, CDRs of library I 

have been diversified via DVT triplets [135, 146], in a total number of 18 residues 

(D = adenine, guanine, thymine, V = adenine, guanine, cytosine, T = thymine). This results 

in a library size of 1.47 x 10
8
 clones with 96% insert-carrying plasmids. For library J, CDR 

diversity was artificially enhanced by NKK triplet mutations (N = any base, K = cytosine, 

guanine) to a library size of 1.37 x 10
8
 clones, comprising 88% insert-carrying plasmids. 

As a drawback, NNK diversification generates the amber stop triplet TAG with a statistical 

probability of 3% [147]. Besides incorporated side chain diversity both libraries are based 

on a single human framework with VH (V3-23/DP-47 and JH4b) [148, 149] and VΚ 

(O12/O2/DPK9 and JΚ1) [149, 150]. Expression patterns of these V-gene families 

dominate the human antibody repertoire [151] and feature high stability [152]. During 

scFv-phage expression in the E.coli suppressor strain TG1F+ the amber stop codon is 

translated as glutamine. This is necessary since the pIT2 phagemid system includes a 

systematically inserted TAG triplet that theoretically separates the scFv from the pIII 

fusion protein during soluble protein expression in a non-suppressor strain, such as 

HB2151 E.coli. Random amber stop codon insertion within the CDRs imposes a 

disadvantage during soluble protein production resulting in early protein termination or 

translation of non-sense proteins. Consequently, TAG triplets in CDRs have to be removed 

via site-directed mutagenesis before expression of soluble proteins. During this procedure 

thymine is exchanged against cytosine, thus encoding for a glutamine triplet instead of an 

amber stop codon [153, 154]. Protein expression in the pIT2 phagemid (Figure 1-4) is 

under the control of the IPTG-inducible lac promoter located up-stream of the ribosomal 

binding site (RBS). Down-stream of that, the N-terminally located bacterial pectate lyase B 

leader signal sequence (pelB) is responsible for transporting the expressed proteins into the 

periplasmic space for subsequent secretion of scFv-phage particles. 
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Figure 1-4 Schematic illustration of pIT2 phagemid and corresponding expression cassette for 

production of scFv-phage particles.  

(A) pIT2 phagemid vector for production of scFv proteins fused to the pIII M13KO7 phage coat protein in 

TG1F+ E.coli as well as for soluble protein production in HB2151 E.coli without pIII-fusion controlled by an 

IPTG-induced lac-operon. Soluble protein expression ends after the His6-tag and myc-tag as shown in (B). 

(B) Schematic of pIT2 expression cassette for prokaryotic expression of soluble proteins in HB2151 E.coli. A 

pelB signal peptide is located up-stream of the scFv sequence mediating periplasmic protein expression and 

eventual protein secretion into the culture medium. Within the scFv, the heavy chain VH is connected to the 

light chain VL through a glycine-serine (GS) linker peptide. IPTG-inducible scFv expression is controlled by 

a lac-operon. Down-stream of the scFv sequence a His6-tag and myc-tag are integrated followed by the amber 

stop triplet TAG to separate the scFv and pIII phage coat protein. Potential restriction sites (HindIII, SfiI, 

NotI, XhoI, SalI) for subcloning into other expression vectors are indicated. [135] 

The M13KO7 phage carries a kanamycin resistance so that infected bacteria carrying the 

ampicillin-resistant pIT2 phagemid grow and produce scFv-phage particles only in culture 

medium complemented with both antibiotics; hence uninfected and phagemid-lacking 

bacteria or contaminating organisms are sorted out. 

1.3.4 L3.6pl target cell line 

The pancreatic carcinoma cell line L3.6pl was chosen as phage display target cell line for 

its highly metastasizing properties and the existence of a well-established orthotopic mouse 

model [155]. L3.6pl was developed from the human ductal pancreas adenocarcinoma cell 

line COLO357. This generated the FG cell line (FG = fast growing) after several 

transplantation and selection cycles of in vivo pancreas-liver transplants in nude mice and 
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subsequent in vitro cultivation [156]. FG was then injected into the spleen of nude mice, 

and potentially developed liver metastasis were removed and cultivated in vitro. Several 

repetitions of this process resulted in the L3.6pl which exhibited very aggressive tumor 

growth and extreme potential for metastasis [155]. The L3.6pl-based orthotopic mouse 

model, developed by Bruns et al. [155], has proven useful to treat and image L3.6pl 

tumors, or to examine effects of novel proapoptotic therapeutics on pancreatic tumors [157, 

158]. 

1.3.5 Epidermal growth factor receptor 

Similar to many other cell lines derived from epithelial tumors, the pancreatic cancer cell 

line L3.6pl features an increased over-expression of the epidermal growth factor receptor 

(EGFR) [157, 159] which accounts for a very high proliferation index and inhibited 

apoptosis of malignant cells [160, 161]. EGFR is a membranous glycoprotein 

(MW = 170 kDa) with tyrosine kinase activity integrated into the cell membrane and is 

involved in signal transduction pathways. EGFR over-activation often coincides with 

increased resistance against conventional chemotherapeutic treatment options, as well as 

advanced tumor stages and a reduced survival rate [162]. Binding to an EGFR molecule 

causes dimerization of two receptor molecules, thus inducing autophosphorylation of 

tyrosine residues of the intracellar EGFR tyrosine kinase. This activates a signal 

transduction cascade and mediates the internalization of the EGFR-ligand-complex by 

endocytosis [163]. High internalization capability is also required for potentially 

therapeutic scFv antibodies isolated by phage display throughout this work. Therefore, the 

EGFR and its corresponding well-documented single chain antibody fragment 425(scFv) 

[164], offer an excellent positive control for all binding and internalization processes on 

the L3.6pl cell line used for comparison of the newly isolated scFv binders. 

1.3.6 Monoclonal anti-EGFR antibody fragment 425(scFv) 

During this work, the monoclonal anti-EGFR antibody fragment 425(scFv) [164], binding 

to the EGFR, was used as a positive control. Several studies have proven that anti-EGFR 

mAB can inhibit growth of some EGFR-positive (EGFR+) cell lines in vitro as well as 

EGFR+ tumor growth in transplanted immunodeficient mice [165, 166]. Selective tissue 

treatment was shown, resulting in the mAB IMC225 Cetuximab (Erbitux®) against 

metastasizing colon carcinoma [167]. Cetuximab binds to a different surface epitope of the 

EGFR than 425(scFv) [164, 168]. The latter has not been approved for therapeutic use but 
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has proven very efficient in the lab when used as 425(scFv)-ETA’ immunotoxin on 

EGFR+ cell lines, as for example A431 or L3.6pl [157-159, 169].  

1.3.7 Generation of 14.1(scFv) 

In addition to the clones selected from Tomlinson libraries I and J, the recombinant clone 

14.1(scFv) was characterized in this work. It has originally been isolated from an 

immunized library created from murine B-cells by Beate Stadler at Fraunhofer IME 

(Aachen). Therefore, mice have been immunized, with a total of 1 x 10
7
 L3.6pl cells or 

membrane fractions [134] in combination with GERBU Adjuvant 10, by applying six 

subcutaneous boosts within 13 weeks. Antibody saturation in serum was documented from 

weekly blood samples by ELISA analysis. After 15 weeks, spleens were dissected to 

isolate and prepare mRNA. After subsequent cDNA synthesis of VH and VL genes 

followed by SOE-PCR amplification, the generated scFv antibody fragments were cloned 

into the pHEN4II phagemid via the restriction sites SfiI and NotI and transformed into 

TG1F+ E.coli. The library (size ~10
6
) construction process was carried out according to 

Tur et al, 2003 [134]. Analogous to the method described in chapter 0, the 

pancreas-specific antibody fragment 14.1(scFv) has been isolated on L3.6pl antigen via 

biopanning prior to this work. 

1.4 Protein expression 

1.4.1 Prokaryotic protein expression 

Non-human proapoptotic proteins are often toxic for the host organism when produced in 

eukaryotes. Hence, recombinant cytolytic proteins are usually expressed in prokaryotes 

such as E.coli. This microorganism is one of the most commonly used hosts for the 

expression of recombinant proteins and well-studied as prokaryotic production system. It is 

easy to manipulate on genetic level and uncomplicated to handle during cultivation. 

Recombinant proteins can either be expressed in the cytoplasm or secreted into the 

periplasmic space of the bacteria [170].  

Periplasmic expression: During this process, recombinant proteins are secreted into the 

periplasmic space via the inner membrane by means of signal peptides, such as pelB or 

ompA. The oxidizing environment of the periplasm in E.coli contains disulfide-

oxidoreductases [171, 172] and chaperons [173], which favors the generation of disulfide 

bonds and consequently correctly folded proteins. Moreover, low content of contaminating 
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bacterial proteins presents an advantage for subsequent purification processes. 

Additionally, the periplasm comprises few proteases thus reducing proteolytic degradation 

to a minimum [174]. Improved expression protocols and systems increase production 

efficiency by use of compatible solutes and osmotic stress [175], facilitating the 

accumulation of up to 95% of functional protein in the periplasmic space. Combined with 

high expression vectors, for example pET-derived vectors [171], very high productivity 

rates are attained. Nevertheless, subsequent protein secretion from the periplasmic space 

into the culture medium is not always feasible but strongly depends on protein size and 

culturing conditions that increase membrane porousness. 

Cytoplasmic expression: In comparison to the periplasmic production, the cytoplasmic 

expression produces considerably higher yields during recombinant protein production 

[176, 177]. However, these proteins are mostly stored within the cell as insoluble 

aggregates, known as inclusion bodies (IBs) [178]. Proteins in IBs exist in a denatured and 

cross-linked form with a strongly diminished biological activity of varying degree [178]. 

To reconstruct functional proteins, costly and elaborate back-folding is necessary which 

often leads to low recovery rates of functional protein as well as decreased protein stability 

and diminished aggregating behavior [179]. Nevertheless, the high concentration of 

recombinant protein in IBs can be an advantage, since they also protect proteins from 

degradation by cytoplasmic proteases [180]. 

During human protein production in E.coli, differences of codon usage in prokaryotes and 

eukaryotes have to be considered [181]. When neglected, the effect on translation 

efficiency and folding can be dramatic. Certain E.coli strain derivatives, such as BL21 

Rosetta 2 (DE3), contain the pRARE2 plasmid supplying tRNAs for 7 rare codons (AGA, 

AGG, AUA, CUA, GGA, CCC, CGG) [182] enabling the bacteria to translate human 

triplets; thereby enhancing the yield for expression of mammalian proteins. Another 

limiting factor is the inability of bacteria to accomplish post-translational modifications 

and glycosylation, which may lead to misfolding and disturbed functionality of expressed 

proteins [172]. 

1.4.2 Eukaryotic protein expression 

Alternatively to prokaryotic systems, recombinant protein expression in eukaryotes allows 

the production of a homogenous protein product in high quantity and quality with correct 

post-translational modifications. The existence of glycosylation and diverse other 
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modifications is of utmost importance for subsequent use in clinical applications. In 

addition, expression systems accomplish the production of larger and more complex 

proteins (e. g. 150 kDa full-length mAB). Responsible for proper protein folding and 

functionality are disulfidisomerases and chaperones located in the endoplasmic reticulum 

(ER), which guarantees formation of disulfide bonds as well as clustering of protein 

domains [172]. Moreover, eukaryotic cells secrete recombinant proteins into the culture 

medium when directed by a signal sequence. This renders a continuous protein expression 

possible since the destruction of production cells becomes unnecessary. Media collection is 

sufficient and, due to low level of unwanted proteins, purification is simplified. One 

possible system for the secretion of eukaryotically expressed proteins is the 

pSecTag-derived pMS vector system (2.10) [183], where an N-terminal Ig-Kappa (Igț) 

signal sequence controls secretion of transfected protein from the cells and promotes fast 

production of high amounts of recombinant target protein. By using mutated cell lines, 

unsusceptible towards the catalytic domains of the cytotoxic proteins [184], it is also 

possible to employ eukaryotes for the production of functional recombinant cytolytic 

proteins when modified in their binding activity and cytotoxicity [92, 185]. Commonly 

used mammalian production cell lines are cos7 (monkey kidney cells), CHO (Chinese 

hamster ovary) and the human embryonic kidney cell line HEK293T. HEK293T and cos7 

cells are equipped with the SV40 origin of replication (ori), expressing the large-T antigen 

of the SV40 virus. This supports high-copy production transfected plasmids and is 

especially suitable for transient transfections. 

1.5 Protein tags 

1.5.1 Affinity tags 

In recent years, the field of high-yielding production of recombinant heterologous proteins 

has grown rapidly. To facilitate purification of a single target protein from a heterologous 

protein solution, protein fusion tags, called affinity tags, are applied. Commonly, these tags 

are employed for specific and efficient affinity purification by means of chromatography, 

for example during immobilized metal-ion affinity chromatography (IMAC), or 

immunodetection of proteins during Western blotting or analysis via enzyme-linked 

immunosorbent assays (ELISA). The most frequently used affinity tags, their use and 

amino acid sequence are listed in Table 1-4 below. 
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Table 1-4 List of common affinity tags including matrices, sequences and molecular size [186] 

Name Matrix Sequence Size (kDa) 

Polyarginine-tag 

(poly-arg) 
Cation-exchange resin RRRRR 0.80 

Polyhistidine-tag 

(poly-His) 

Ni2+-NTA, Co2+-CMA 

(Talon) 
HHHHHH 0.84 

FLAG-tag Anti-FLAG mAB DYKDDDDK 1.01 

Strep-tag II Strep-Tactin WSHPQFEK 1.06 

c-myc-tag mAB EQKLISEEDL 1.20 

S-tag S-fragment of RNaseA KETAAAKFERQHHMDS 1.75 

HAT-tag 

Natural histidine affinity tag 

Co2+-CMA 

(Talon) 
KDHLIHNVHKEFHAHAHNK 2.31 

Larger affinity fusion tags that are well-established are: 3 x - FLAG-tag, 

calmodulin-binding peptide, cellulose-binding domains, streptavidin-binding peptide 

(SBP), chitin-binding domain, glutathione S-transferase (GST) or maltose-binding protein 

[186]. Moreover, the Fc-part of recombinant mABs may be utilized likewise as affinity tag. 

1.5.2 Reporter proteins 

Literature mostly features three major reporter systems. In 1980, the first article was 

published about reporter fusions with ȕ-galactosidase (lacZ gene) [187] used to determine 

tissue-specific promoter activity, to perform blue/white screening by indicating bacterial 

colonies carrying a certain DNA region or to monitor transcriptional regulation in various 

biological processes [188]. Furthermore, luminescence-based reporter systems, for 

example in form of firefly luciferase (luc) or bacterial luciferase (luxCDABE), are state of 

the art [188, 189]. The third category of reporter proteins comprises the fluorescent 

proteins; such as the green fluorescent protein (GFP) and its derivatives, or flavin 

mononucleotide-based fluorescent proteins (FbFPs). They enable rapid and simple 

detection or even quantification of molecular and genetic occurrences since the system 

provides an easily measurable signal output after protein expression [190]. Fluorescence 

proteins have been used to study biofilm formation, protein expression in prokaryotes and 

eukaryotes in vitro as well as in vivo. 

1.5.2.1 Fluorescent reporter tags 

Green fluorescent protein (GFP) and its derivatives: Conventional fluorescent reporter 

proteins, such as GFP [191] and its derivatives are state-of-the-art and often used as fusion 

tags for detecting recombinant proteins during cultivation, screening and bioprocess 

optimization; or to analyze localization, movement and interaction of proteins in vitro and 
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in vivo. GFP was first described in 1961 [192, 193] as a protein originated from the jelly 

fish Aequorea Victoria emitting green fluorescence after excitation with blue or ultra violet 

light. Currently, GFP is an important tool for gene-specific fusions to investigate protein 

expression or protein targeting in living cells, tissue, or organs. Its protein sequence 

consists of 238 amino acids with a molecular mass of 26.9 kDa [191]. The chromophore, a 

p-hydroxybenzylideneimidazolinone, is formed by an autocatalytic reaction starting from 

the tripeptide sequence Ser65–Tyr66–Gly67 within the native protein structure. For 

fluorescence formation, GFP folds into a nearly native conformation where the 

imidazolinone is formed by nucleophilic attack of the amide of Gly67 on the carbonyl of 

residue 65, followed by dehydration. The molecular oxygen dehydrogenates the α-ȕ-bond 

of residue 66 to connect its aromatic group with the imidazolinone [191]. Afterwards, the 

chromophore acquires visible absorbance and fluorescence ability. This mechanism 

requires atmospheric oxygen for fluorescence development. Fluorescence of anaerobically 

preformed GFP develops with a simple exponential time course only after air is readmitted. 

This means that fluorescence formation does not correlate with the concentration of the 

GFP itself. Considering the secondary structure of GFP, almost the whole primary 

sequence is used to build an 11-stranded ȕ-barrel threaded by an α-helix running up the 

axis of the cylinder (Figure 1-5). The chromophore is attached to the α-helix and is buried 

in the center of the cylinder. A large number of polar groups and structured water 

molecules are adjoining the chromophore [191]. The excitation maxima of wild-type GFP 

occur at wavelengths 395 nm and 475 nm resulting in an emission at 509 nm. GFP mutants 

have been generated with optimized features or variations of fluorescent proteins have 

been discovered in other organisms, displaying other fluorescence spectra, such as CFP 

(cyan), YFP (yellow), mCherry or dsred (red), eGFP (enhanced GFP), color-switching FPs 

and many others [194]. The GFP gene itself comprises all necessary information for 

post-translational synthesis so that fluorescence formation is not based on external 

jellyfish-specific enzymes even though it requires an oxygen-sufficient environment.  

However, some drawbacks discussed in literature may arise during the use of GFP as 

reporter protein. This may render on-line monitoring a challenging affair where fluorescent 

proteins are detected using non-invasive, specific and sensitive devices that monitor 

product formation and localization in vivo. One disadvantage of fluorescent proteins, based 

on GFP, is their relatively high molecular mass (26.9 kDa) compared to typical target 

proteins which might impose stress on the host metabolism during fermentation. Moreover, 

its oxygen-dependency may result in a lag-time between expression and fluorescence 
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detection rendering quantitative real-time measurement impossible. Detection of the GFP 

fluorophore can even be completely inhibited in an oxygen-limited or anaerobic 

environment [191, 195-197]. As a conclusion, on-line measurement of GFP is feasible, but 

not ideal in oxygen-insufficient fermentation systems or ones that yield active protein 

products, particularly for products with a low molecular weight. Moreover, hydrogen 

peroxide generation via oxidation with O2 during fluorophore formation, at a 

stoichiometric 1 : 1 ratio with mature GFP, can be problematic during high-yield protein 

over-expression, since it imposes stress and damage to the host cell [191]. 

Flavin mononucleotide-based fluorescent proteins: Recently, flavin mononucleotide 

(FMN)-based fluorescent proteins (FbFPs), such as the blue light receptor Evoglow®, 

were developed as an alternative to GFP. FbFPs are derived from the blue light receptor of 

the light-oxygen-voltage family and are widely spread in prokaryotic and eukaryotic 

organisms as well as in plants [198, 199]. In contrast to plants, the physiological function 

of the receptors is practically unknown in bacteria. FMN (phototropin) serves as 

chromophore excitable by blue light. Following excitation, the thiol group of a preserved 

and photoactive cysteine residue bonds with FMN, thus forming a FMN-cysteine-C(4a)-

thiol adduct. One example is the bacterial YtvA receptor from B. subtilis (Figure 1-5) 

[200]. It has a length of 261 amino acids including an N-terminal photoactive LOV-domain 

(residues 25 - 126) and a C-terminal sulfate transporter and anti-sigma factor antagonist 

domain (residues 147 - 258) carrying a nucleotide triphosphate-binding motif [199]. When 

excited at 450 nm, these FbFPs emit weak intrinsic auto-fluorescence at 495 nm. Using 

genetic manipulation, the respective photoactive cysteine was replaced by a non-polar 

alanine to enhance fluorescence performance as a result of reduced fluorescence quenching 

[200, 201]. In order to enhance fluorescence intensity in E. coli the N-terminal LOV-

domain was adjusted to E.coli usage [200]. In comparison to GFP, which is limited to 

biological systems containing sufficient cellular oxygen, FbFPs also fluoresce under 

oxygen-limited and even anaerobic conditions, thus rendering in vivo labeling and 

detection without oxygen possible [200]. Furthermore, the genetically modified FbFPs are 

much smaller, only 15.7 kDa, (42% of GFP by molecular weight) [196, 200, 202] which 

presents an advantage for the host organism during protein synthesis. 
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Figure 1-5 Illustrated protein structure of GFP and YtvA LOV domain from Bacillus subtilis 

exemplarily for the FMN-based fluorescent proteins. (A) Figure displays the 11-stranded ȕ-barrel (green) 

and the chromophore attached to the α-helix in its center (brown) [203]. (B) Its FMN-binding domain 

consists of five ȕ-sheet structures (blue) that are flanked by two α-helices (red and yellow). The chromophore 

is indicated in green, and the photoactive cysteine in the center is colored red [200]. 

1.5.3 Synthetic labels and SNAP-tag technology 

Artificial post-expression coupling of a target protein to a particle, small molecule or dye, 

is an essential method for some targeting approaches. Conveniently, proteins and peptides 

naturally display four different reactive groups that are used for chemical conjugation, such 

as amino, sulfhydryl, carboxyl and carbonyl groups in glycoproteins. These groups can be 

modified with a variety of available cross-linking reagents. Such labeling reactions are 

random and may change or interrupt protein activity. Especially small scFv antibody 

fragments often do not tolerate chemical modifications as they consist only of the antigen 

binding variable domains where the majority of residues is involved in antigen recognition 

or essential for scFv structure. Due to difficulties in site-specific coupling causing 

alterations in protein activity, scFv antibodies are less frequently used for post-expression 

labeling than mABs or peptides, despite their excellent affinity, specificity and flexibility 

to the respective antigen. Therefore, coupling via predefined residues has been introduced, 

such as cysteine residues or unnatural amino acids, with unique reactive groups. Tag-based 

systems are available for the labeling of proteins with fluorophores including the Halo-tag 

and the lumio-tag [204, 205] or enzyme-based tags including trans-linked systems by the 

biotin holoenzyme synthetase, sortases and the Sfp phosphopantetheinyl transferase [206-

208]. Still, the use of these systems for in vivo applications is limited since they are not 

broadly applicable, unspecific and labor intensive. 
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Another excellent alternative to direct genetic labeling is the SNAP-tag (Figure 1-6) [209]. 

It is an artificial post-expression labeling technique and allows coupling of a protein of 

interest to all kind of dyes, nanoparticles, radioactive labels or even the generation of 

theranostics. The SNAP-tag is a genetically engineered version of the human DNA-repair 

enzyme O(6)-alkyllguanine DNA alkyltransferase (hAGT) [210], which allows substrates 

containing O(6)-benzylguanine (BG) derivatives to be covalently linked to a recombinant 

protein thus providing a strategy to equip an antibody with various imaging reagents [211]. 

The benzylguanine (BG) derivates are substituted with a label at position 4 of the benzyl 

ring and guanine is cleaved off during the covalent labeling process. The label itself is 

chemically attached to the free amines of BG which react with commercially available 

activated carboxyl esters, such as N-hydroxysuccinimide (NHS) attached to a fluorescent 

dye [209, 212]. Its molecular size is approximately 20 kDa and either N- or C-terminal 

fusion proteins can be generated. In its natural function, hAGT supports DNA integrity. It 

scans DNA for alkyl adducts on guanine and thymine bases and removes them by a 

nucleophilic substitution reaction, thus inactivating the enzyme followed by its degradation 

[213]. 

 

Figure 1-6 Schematic illustration of SNAP-tag coupling mechanism. [214] 

This technology has been employed in a multitude of experimental applications ranging 

from labeling of proteins within living cells with cell-permeable BG-fluorophore dye [212] 

to protein immobilization on BG-modified chip surfaces [215]. Specific scFv antibodies 

labeled with the near infrared dye BG-747 were shown to accumulate rapidly and 

specifically at tumor sites. Its small size ensured efficient renal clearance, thus generating a 

much higher signal-to-background ratio than the full-length antibody [158]. The coupling 

reaction is highly efficient and specific for any kind of substrates modified for covalent 

binding (e. g. particles, radioactives or fluorescent dyes). Similarly to the SNAP-tag, an 

O(2) benzylcytosine reactive tag, called CLIP-tag has recently been described [216]. 
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1.5.4 Tryptophan and potential tryptophan-based tags 

Although FbFPs are an improvement over GFP, considering its suitability for anaerobic 

environments, even smaller fluorescent protein tags are preferable to further reduce the 

impact on host strain metabolism. This would allow more resources to be committed to the 

production of the recombinant target protein. In general, larger tags are less favorable due 

to increased protein interactions, disturbance of proper protein folding or production 

related stress on the host organism. One possible solution is to develop novel and even 

shorter tags based on the auto-fluorescent properties of aromatic amino acids such as 

tryptophan (W), tyrosine (Y) or phenylalanine (F) [217]. Within these amino acids, 

delocalized π-electrons in the aromatic ring structures are excited to higher energy states 

when exposed to certain wavelengths of light, emitting fluorescence in the UV-range when 

returning to their ground state. All three amino acids depict hydrophobic properties but 

feature differing Stoke’s shifts. Tryptophan displays a larger Stoke’s shift (~70 nm) than 

the other two aromatic amino acids which is combined with a relatively high quantum 

yield with an excitation maximum at 280 nm and an emission maximum at 350 nm.  

These characteristics make tryptophan a suitable choice for the design of a novel protein 

reporter tag with auto-fluorescent optical activity. Moreover, its fluorescence is highly 

sensitive to the properties of the surrounding environment (i. e. polarity) and arrangement 

of neighboring amino acids [218]. Spectral characteristics of tryptophan may also be 

enhanced in the presence of tyrosine [219] since it is able to share its delocalized 

π-electrons. Most proteins are statistically likely to contain tryptophan but the number and 

distribution of residues vary [220]. Tags with tryptophan residues have previously been 

used to improve protein isolation by creating a hydrophobic affinity patch rather than a 

fluorescent label [221]. 

1.6 On-line monitoring of micro-scale shaking cultures 

Generation of novel pharmaceutically relevant target proteins has led to a constantly 

growing demand for efficient and high-throughput screening systems in the field of 

molecular biotechnology. Complex gene and protein libraries allow the identification of 

new lead candidates for the drug industry by initial screening [222]; for example in 

microtiter plates (MTPs) followed by scale-up for industrial production. MTPs are 

frequently used for the high-throughput parallel characterization of microbial cultures 

under identical conditions, small-scale screening and as a lab-scale model for shaking 
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bioreactors. Simple and functional design makes them a cost-efficient and fast tool for 

parallel experiments (MTPs with 48, 96, 384 and 1536 up to 3456 wells) during multiple 

fermentation parameter analysis, such as measurement of temperature, oxygen transfer 

rates (OTR), dissolved oxygen tension (DOT), pH value and biomass. The recently 

developed BioLector® technology [223] even allows monitoring of continuously shaking 

E.coli cultures via on-line measurements using specially adapted MTPs [224, 225]. 

In the late 1990s, the first shaking high-throughput systems were engineered from 

Erlenmeyer flasks equipped with standardized pH and DOT sensors for real-time 

monitoring [226] in form of a fed batch system connected to feeding lines consisting of 16 

parallel flasks (20-300 mL). The Respiration Activity Monitoring System (RAMOS) is 

another advanced shaking system [227] where the head of the flasks is equipped with an 

oxygen and a pressure sensor to assess the oxygen transfer rate (OTR), carbon dioxide 

transfer rate (CTR) and the resulting respiratory quotient (RQ). RAMOS can operate up to 

eight flasks simultaneously on an orbital shaker with working volumes of 10 – 50 mL in 

250 mL flasks. To reduce developmental periods and to increase throughput, the design of 

new micro bioreactors with minimized sample volumes and higher number of 

simultaneous samples was necessary. This resulted in a progression from Erlenmeyer 

flasks to microtiter plates [228], for example systems consisting of 48-well (SimCell 

system, Bioprocessors Inc., MA, USA) [229] and 24-well (Micro-24 system, Microreactor 

Technologies Inc., CA, USA) [230]. MTPs were developed that were aerated by rising 

bubbles assisted by additional orbital shaking. Nevertheless, integration of on-line sensors 

into those bubble columns proved difficult due to strong foaming and uneven oxygen 

distribution. With the BioLector® technology [223, 224], used in this work as a modified 

device, 96 samples and more can be analyzed in parallel at a sample volume of 

100 - 200 µL and continuously shaken during measurements. Supplementary equipment, 

such as multipipetes, pipetting robots, microscale readers and autosamplers, ensure 

reproducible results [228]. Aeration of microtiter cultures is primarily influenced by the 

ratio of gas-liquid exchange area to volume, and secondly by surface tension. Latter 

counteracts liquid movement and flow under impact of g-forces caused by orbital shaking 

so that the air-liquid surface area is sustainably reduced in wells of less than 8 mm 

diameter. Nevertheless, a satisfactory OTR can be achieved in small vessels, when small 

volumes are combined with high rotational velocity thus antagonizing surface tension 

[228]. An additional essential aspect of fermentation systems in MTPs, and subsequent 

quantitative and statistical analysis, is the sealing method of the individual wells to prevent 
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cross-contamination and to limit evaporation. Very often semi-permeable adhesive plastic 

foil is successfully used, ensuring sufficient oxygen exchange from the outside and tight 

well closure to minimize water loss at the same time. The production of recombinant 

protein products, during cultivation in non-invasive fermentation systems, is often 

monitored using fluorescent fusion proteins [231], classically GFP or one of its derivatives. 

Common measurement systems for fluorescence intensity documentation are microplate 

readers. 

1.7 Objective 

The thesis at hand is focused on two different topics:  

(1) The phage display-based isolation of novel recombinant scFv antibodies as potential 

tools for early diagnosis or as prospective therapeutic approach against metastasizing 

pancreatic cancer, and  

(2) the design of a short optically active reporter tag based on the auto-fluorescent 

properties of tryptophan for on-line monitoring of product formation during 

micro-scale fermentation. 

In the first part of this work, the primary scientific goal aims at the development of novel 

recombinant scFv antibodies for possible future application as efficient diagnostic tools in 

early stage tumor detection or post-operative disease monitoring of pancreatic cancer. 

Moreover, such novel recombinant proteins provide the opportunity for a therapeutic 

approach to specifically remove residual metastatic pancreatic carcinoma cells thus 

significantly increasing the average survival rate and life quality of patients. 

Pancreatic cancer is characterized by a mortality rate of nearly 100%. This is due to a high 

relapse rate, as a result of very aggressive tumor metastasis and incomplete elimination of 

malignant cells after treatment, as well as insufficient reliable options for early diagnosis. 

Extensive surgery, radiation and chemotherapy are state-of-the-art treatments but 

unspecific and hardly add to an improved prognosis. As a consequence the demand for 

novel and efficient therapeutic options is very high and research advances for early 

diagnosis are desperately needed. Recombinant antibodies are a promising tool and already 

established for diagnosis and specific targeted immunotherapy of other types of cancer. 

During a three-step panning strategy, the scFv libraries Tomlinson I and J are selected by 

means of phage display technology on living cells and functional membrane fractions of 

the metastasizing pancreatic cancer cell line L3.6pl to isolate new and highly specific scFv 

antibodies against unknown tumor-associated antigens in vitro. Their potential as 
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diagnostic imaging tool is evaluated by functionalizing scFv antibodies via SNAP-tag 

fusions by means of in vitro binding analysis. Additional in vitro investigations of 

internalization behavior assess the drug delivery potential for prospective fusions of the 

recombinant scFv ligand to a toxic effector domain to generate cytolytic fusion proteins for 

therapy. 

The second part of this thesis is focused on the development of short-chained optically 

active reporter tags based on the accumulation of tryptophan residues (W) and their ability 

to auto-fluoresce. These tags will be evaluated with regard to their applicability as 

non-invasive on-line monitoring tool for production of antibody-based therapeutics. 

Production up-scaling of recombinant pharmaceutically relevant therapeutical proteins still 

poses a bottle neck. Laboratory-scale fermentation systems, for example with the 

BioLector® device, simulate large-scale fermentation conditions thus rendering 

time-saving and cost-efficient parallel high-throughput characterization and screening of 

microbial cultures under identical conditions in microtiter plates (MTPs) possible. 

Commonly, the product formation of recombinant proteins during cultivation is monitored 

off-line after sampling, or on-line using conventional genetically fused fluorescent reporter 

proteins, such as green fluorescent protein (GFP) and its derivatives, or flavin 

mononucleotide-based fluorescent proteins (FbFPs). A major drawback of those 

conventional reporter proteins is their relatively high molecular size which imposes stress 

on the host metabolism during fermentation and possibly causes steric hindrance during 

protein folding and secretion. Moreover, the strong oxygen-dependency of GFP for 

fluorophore formation is problematic. In general, smaller fluorescent tags are preferable 

since this minimizes occurrence of potential problems. Therefore, five 

low-molecular-weight protein tags (W-tags) will be designed comprising different numbers 

of tryptophan residues, thus exploiting the auto-fluorescence of tryptophan-clustering. A 

genetic in-frame fusion of these newly designed W-tags with the anti-CD30 antibody 

fragment Ki-4(scFv) serves as proof-of-concept model to assess bacterial growth versus 

target protein formation. One aim is to visualize tryptophan fluorescence intensity during 

on-line monitoring in E.coli cultures as well as the dependency of fluorescence on the 

number of involved tryptophan residues. Besides that post-expression in vitro functionality 

and specificity analyses, are intended to demonstrate the potential of these novel W-tags as 

an alternative tagging method during fermentation of recombinant pharmaceutical proteins 

in comparison to conventional reporter proteins. 
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Figure 1-7 Flow chart illustrating the two objectives of this thesis and their experimental approach. 
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2 Material 

2.1 Chemicals and consumable supplies 

Chemicals and consumable supplies used in this work were purchased from the following 

companies: Applichem (Darmstadt), Becton, Dickinson & Co., BD Bioscience 

(Heidelberg), Biocompare (San Francisco, CA, USA), Carl Roth GmbH & Co. KG 

(Karlsruhe), Clontech (Saint-Germain-en-Laye, France), Eppendorf AG (Hamburg), GE 

Healthcare (München), Greiner Bio-One GmbH (Solingen), Invitrogen (Darmstadt), Merck 

KGaA (Darmstadt), Millipore (Darmstadt), Nerbe plus GmbH (Winsen/Luhe), New 

England Biolabs (Frankfurt am Main), Nunc GmbH & Co. KG (Wiesbaden), Otto Fischar 

GmbH & Co. KG (Saarbrücken), Promega GmbH (Mannheim), Roche Diagnostics 

Deutschland GmbH (Mannheim), Sarstedt AG & Co. KG (Nümbrecht), Sigma-Aldrich 

(Seelze), Thermo Scientific (Langenselbold), TPP Techno Plastic Products AG 

(Trasadingen, Switzerland), VWR International GmbH (Darmstadt) and Whatman GmbH 

(Dassel). All chemicals and consumables were applied according to manufacturers’ 

instructions if not indicated otherwise. Purchase from different suppliers is possible if 

requirements necessary for a successful and reproducible outcome are fulfilled. 

2.2 Equipment and software 

Table 2-1 List of software, its application and corresponding supplier 

Software Application Supplier 

Adobe Photoshop CS4 Image editing Adobe System, München 

AIDA 4.27.039 

Advanced Image Data Analyzer 

Protein concentration 

analysis 
Raytest Isotopenmessgeräte GmbH, Straubenhardt 

ArgusX Agarose gel analysis Argus Software, London, UK 

CellQuest Pro 3.3 Flow cytometry Becton, Dickinson & Co., BD Bioscience, Heidelberg 

Cyflogic 1.2.1 Flow cytometry Perttu Terho & Cyflo Ltd., Turku Finland  

Evoshell 
Confocal microscopy, 

OPERA 
Evotec Technologies, Hamburg 

Geneious 5 DNA sequence analysis Biomatters Ltd., Auckland, New Zealand 

GraphPad Prism 5.01 Statistics GraphPad software, Inc., LaJolla, CA, USA 

i-control Tecan reader Tecan Group Ltd., Männedorf, Switzerland 

Image J 1.42q Image editing National Institues of Health, Bethesda, MD, USA 

MassLynx v4.0 Mass spectrometry Micromass, Water Corporation, Eschborn 

MS Office 2010 Text and statistics Office 2012, Microsoft Corp., Redmont, WA, USA 

Origin 8 Statistics 
ADDITIVE Soft- und Hardware für Technik und  

Wissenschaft GmbH, Friedrichsdorf 

QuantityOne Basic 1-D  

Analysis software v.4.2.1 

Fluorescence 

documentation 
Bio-Rad, Offenbach 

Vector NTI 11 DNA sequence analysis Invitrogen, Darmstadt 

WinMDI 2.9 Flow cytometry Build 2, Joe Trotter, La Jolla, CA, USA 
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Table 2-2 List of hardware with corresponding suppliers  

Equipment/Hardware Supplier/Manufacturer 

Agarose Electrophoresis Device  mini-SUB/SUB-CELL® GT, Bio-Rad, München 

BioLector-like shaking device 

  

self-made at Aachener Verfahrenstechnik (AVT) at RWTH Aachen University,  

adaptation from m2p-Labs, Baesweiler  

Cell washer Dade Serotec, Baxter, Unterschleißheim 

Cytospin centrifuge Cytospin 2 Centrifuge, Shandon, Thermo Scientific, Braunschweig 

Centrifuges  

  

Centrifuge 5804R, Eppendorf AG, Hamburg 

Biofuge Haemo, Heraeus Instruments & Co. KG, Hanau 

Multifuge 3 L-R, Heraeus Instruments & Co. KG, Hanau 

Multifuge 3 S-R, Heraeus Instruments & Co. KG, Hanau 

Confocal microscope Opera HCS System, Evotec Technologies, Hamburg 

Flow cytometer FACScalibur, Becton, Dickinson & Co., BD Bioscience, Heidelberg 

Fluorescence documentation  VersaDoc MP System, Bio-Rad, Offenbach 

Incubator (37 °C) GFL 3031, GFL-Gesellschaft für Labortechnik G mbH, Burgwedel 

Mass spectrometer 
ESI-MS/MS Mass Spectrometer Micromass Electrospray Q-TOF-2, 

Waters Corporation, Eschborn 

MilliQ system MilliQ Synthesis QuantumEX Ultrapure Organex Cartridge, Millipore, Darmstadt 

Orbital shaker  POLYMAX 1040, Heidolph Instruments GmbH & Co. KG, Schwabach 

PCR Thermo Cycler 
GeneAmp PCR System 9700, Applied Biosystems  

by LifeTechnologies Corp., Darmstadt 

96-well plate shaker  TIMIX, Edmund Bühler GmbH, Hechingen 

Power supply  PowerPac® HC, Bio-Rad, München 

2D-scanner FluoreMax-4P, Horiba Jobin Yvon Instruments Inc., USA 

SDS-PAGE + Western blot devices 
BioRad miniProtean III device, additional equipment for gel casting, Bio-Rad, 

München 

Shaking incubator (variable T) Innova Incubator Shaker 4430, New Brunswick Scientific, Wesseling-Berzdorf 

Sonification device 
Sonoplus HD 2070, tip: UW 2070, KE76, Bandelin Electronic GmbH & Co. KG, 

Berlin 

Spectro-photometer BioPhotometer plus, Eppendorf AG, Hamburg 

Tecan reader Tecan Multiplate-Reade Infinite M200, Tecan Group Ltd., Männedorf, Switzerland 

Thermo shaker (variable T) Thermomixer comfort, Eppendorf AG, Hamburg 

Tissue culture clean bench HeraSafe HS18, Heraeus Instruments & Co. KG, Hanau 

Tissue culture incubator (37 °C) HeraCell 150, Thermo Scientific, Braunschweig 

Tube rotator Tube Rotator, VWR International GmbH, Darmstadt 

Ultracentrifuge Aventi Centrifuge J-25i, Beckman Coulter, Krefeld 

 

  



Material 

 

 

35 

2.3 Bacterial strains and media 

Following E.coli strains (Table 2-3) were used during this thesis. 

Table 2-3 List of E.coli strains, their genotypes and corresponding suppliers 

E.coli strain Genotypes Supplier 

BL21 Rosetta 2 (DE3)  

Supercompetent Cells  
F- ompT hsdSB(rB

- mB
-) gal dcm (DE3) pRARE2 (CamR) Merck KGaA, Darmstadt 

HB2151 K12 ara Δ(lac-proAB)thi/F' proA+B lacIq lacZΔM15 MCR, Cambridge, UK 

TG1 Tr 
K12 Δ(lac-proAB) supE thi hsdD5/F' traD36 proA+B lacIq 

lacZΔM15 
MCR, Cambridge, UK 

XL1 Blue  

Supercompetent Cells 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 

lac [F' proAB lacIqZΔM15 Tn10 (Tetr)] 

Agilent Technologies,  

Waldbronn 

Bacterial growth media and agar (Table 2-4) were prepared with ddH2O (deionized water) 

and autoclaved as 250 mL or 300 mL aliquots in 500 mL bottles, appropriate antibiotics 

and/or sterile glucose were added directly prior to use.  

Table 2-4 List of cultivation media and agars and their exact formulae 

Cultivation media/agar Composition 

2 x TY medium 16 g tryptone, 10 g yeast extract, 5 g NaCl, ad 1 L ddH2O 

2 x TYamp 100 µg/mL ampicillin in 2 x TY medium 

2 x TYamp, 2 x TYkan 100 µg/mL ampicillin or 50 µg/mL kanamycin in 2 x TY medium 

2 x TYgluc,amp 1% glucose, 100 µg/mL ampicillin in 2 x TY medium 

2 x TY induction medium 100 µg/mL ampicillin, 50 µg/mL kanamycin, 0.25 mM IPTG in 2 x TY medium 

Cryo medium 15% (v/v) sterile glycerol, appropriate antibiotic in 2 x TY medium 

Lysogeny Broth (LB) medium 10 g tryptone, 5 g yeast extract, 10 g NaCl, ad 1 L ddH2O 

LBamp, LBkan 100 µg/mL ampicillin or 50 µg/mL kanamycin in LB medium 

LB auto-induction medium 0.5 g/L glucose, 2 g/L lactose, 5 g/L glycerol in LB medium 

Lysogeny broth (LB) agar 5 g yeast extract, 5 g NaCl, 10 g Bacto-Agar, ad 1 L ddH2O 

LBamp, LBkan agar 100 µg/mL ampicillin or 50 µg/mL kanamycin in LB agar 

LBgluc,amp agar 1% glucose, 100 µg/mL ampicillin in LB agar 

M9 minimal agar  

(1 L final volume) 

Solution A: 15 g Bacto-Agar  in 780 mL ddH2O 

Solution B: 2.5 g NaCl, 5 g NH4Cl, 33.9 g Na2HPO4, 15 g KH2PO4 in 1 L ddH2O 

Solution C: 1 M MgSO4 

Solution D: 1 M CaCl2 x 6 H2O 

Solution E: 20% glucose 

Solution F: 0.001 g thiaminhydrochlorid in 10 mL ddH2O 

Autoclave solutions A – D, sterile filtrate solutions E and F 

Mix 780 mL Solution A, 200 mL Solution B, 2 mL Solution C, 100 µL Solution D, 

20 mL Solution E and 400 µL Solution F.  

SOC medium Agilent Technologies, Waldbronn 

Modified Wilms-Reuss medium  

(1 L final volume) [232] 

Solution I: 5 g (NH4)2SO4, 0.5 g NH4Cl, 3 g K2HPO4, 2 g Na2SO4,  

                   41.85 g MOPS (3-(N-morpholino)propanesulfonic acid buffer) 

                   in 947 mL ddH2O (pH 7.5) 

Solution II: 0.027 g ZnSO4 x 7 H2O, 0.024 g CuSO4 x 5 H2O, 0.015 g MnSO4 x H2O,  

                   0.027 g CoCl2 x 6 H2O, 2.088 g FeCl3 x 6 H2O, 0.099 g CaCl2 x 2 H2O,  

                   1.67 g Na2EDTA x 2 H2O in 50 mL ddH2O 

Solution III: 250 g glucose in 500 mL ddH2O 

Solution IV: 5 g MgSO4 x 7 H2O in 100 mL ddH2O 

Solution V: 0.1 g thiaminhydrochlorid in 10 mL ddH2O 

Autoclave solutions I, III, IV and sterile filtrate solutions II and V. 

Mix 947 mL Solution I, 1 mL Solution II, 40 mL Solution III, 10 mL Solution IV, 

1 mL Solution V and add appropriate antibiotic 
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2.4 Eukaryotic cell lines and media 

The EGFR+ and highly metastasizing pancreatic cancer cell line L3.6pl was chosen as 

selection cell line. Thus, the well-published anti-EGFR 425(scFv) single chain antibody 

fragment [159, 164] could be exploited as positive control during characterization 

experiments. The Hodgkins’ lymphoma-derived cell line L540cy over-expressing the 

CD30 surface receptor was used as positive cell line for the Ki-4(scFv) antibody fragment 

[132]. Table 2-5 and Table 2-6 list all cell lines and necessary reagents used for the 

characterization of scFv fragments or W-tagged fusion proteins. 

Table 2-5 List of cell lines, their originating tissue, supplier and cultivation medium 

Cell line Characteristics Supplier/Reference Medium 

A431 Human epidermoid carcinoma ATCC, Manassas, VA, USA RPMI/10/1 

FG Human pancreatic carcinoma Munich, Bruns et al. 1999 [155] RPMI/10/1 

HEK293T Human embryonal kidney ATCC, Manassas, VA, USA RPMI/10/1 

L3.6pl Human pancreatic carcinoma Munich, Bruns et al. 1999 [155] RPMI/10/1 

L540cy Human Hodgkins' Lymphoma ATCC, Manassas, VA, USA RPMI/10/1 

LNCaP Human prostate carcinoma DSMZ, Braunschweig RPMI/10/1 

MCF7 Human breast adenocarcinoma DSMZ, Braunschweig RPMI/10/1 

MDA-MB-231 Human breast adenocarcinoma ATCC, Manassas, VA, USA RPMI/10/1 

MIA PaCa-2 Human pancreactic cancer ATCC, Manassas, VA, USA DMEM/10/1 

PancTuI Human pancreatic carcinoma Kiel University, Prof. Kalthoff [189] RPMI/10 

PancTuI-CBRL Human pancreatic carcinoma Kiel University, Prof. Kalthoff [189] RPMI/10 

PT-46 Human pancreatic carcinoma Kiel University, Prof. Kalthoff RPMI/10 

S2-0028 Human pancreatic carcinoma Ulm University RPMI/10/1 

SiHa-BTH35 Human cervix carcinoma ATCC, Manassas, VA, USA RPMI/10/1 

Su86.86 Human pancreatic carcinoma ATCC, Manassas, VA, USA DMEM/10/1 

(RPMI: RPMI 1640 Glutamax, DMEM: DMEM Glutamax, 10: 10% fetal bovine serum (FBS), 1: 1% penicillin-streptomycin (P/S) 

Table 2-6 List of tissue culture media and supplementary components for tissue culture 

Media and supplementary components Supplier/Manufacturer 

Accutase® PAA Laboratories GmbH, Pasching, Austria 

DMEM (Dulbecco’s Modified Eagle Medium) Glutamax Invitrogen/Gibco, Life Technolgies GmbH, Darmstadt 

DMSO (99%) for tissue culture Sigma-Aldrich, Seelze 

1 x DPBS (Dulbecco’s Phosphate Buffered Saline), pH 7.4 Invitrogen/Gibco, Life Technolgies GmbH, Darmstadt 

Fetal bovine serum (FBS) Invitrogen/Gibco, Life Technolgies GmbH, Darmstadt 

Penicillin-Streptomycin Liquid Invitrogen/Gibco, Life Technolgies GmbH, Darmstadt 

RPMI (Roswell Park Memorial Institute) 1640 Glutamax,  

containing phenol red 
Invitrogen/Gibco, Life Technolgies GmbH, Darmstadt 

RPMI 1640 Glutamax,  

without phenol red 
Invitrogen/Gibco, Life Technolgies GmbH, Darmstadt 

Trypan blue Invitrogen/Gibco, Life Technolgies GmbH, Darmstadt 

0.25% trypsin-EDTA (1x), containing phenol red Invitrogen/Gibco, Life Technolgies GmbH, Darmstadt 

Zeocin® Invivogen, Toulouse, France 
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2.5 Enzymes and their buffers 

All enzymes (Table 2-7) for restriction digests, dephosphorylation, ligations or DNA 

amplification were applied according to distributor’s manual. Enzyme reaction buffers and 

reaction components essential for enzyme activity were supplied with enzyme purchase. 

Table 2-7 List of enzymes and corresponding suppliers 

Enzymes Supplier/Manufacturer 

Antarctic phosphatase New England Biolabs, Frankfurt am Main 

GoTaq Flexi DNA Polymerase  Promega GmbH, Mannheim 

Pfu DNA polymerase Fermentas, St. Leon-Rot 

DpnI Fermentas, St. Leon-Rot 

HindIII New England Biolabs, Frankfurt am Main 

NcoI New England Biolabs, Frankfurt am Main 

NdeI New England Biolabs, Frankfurt am Main 

NotI New England Biolabs, Frankfurt am Main 

SfiI New England Biolabs, Frankfurt am Main 

T4 DNA Ligase Invitrogen/Gibco, Life Technologies, Darmstadt 

2.6 Reaction kits 

Following kits (Table 2-8) were applied according to the manufacturer’s instructions. 

Table 2-8 List of commercially available kits and corresponding suppliers 

 

2.7 Buffers, solutions and antibiotics 

All buffers and solutions (Table 2-9) were prepared with ddH2O if not indicated otherwise. 

Antibiotics (Table 2-10) were prepared with ultra-pure water (MilliQ) from the MilliQ 

Synthesis System (specifications: 18.2 MΩ/cm at 25 °C, pyrogen content <0.0001 EU/mL 

and bacteria content <1 KBE/mL), sterile filtrated, aliquoted and frozen at -20 °C until use. 

  

Name Supplier/Manufacturer 

ABTS substrate Roche Diagnostics Deutschland GmbH, Mannheim 

FuGene HD Transfection  Roche Diagnostics Deutschland GmbH, Mannheim 

Nucleo Bond PC 100 Kit Macherey & Nagel, Düren 

Nucleo Spin Plasmid Kit Macherey & Nagel, Düren 

QIAquick Gel Extraction Kit Qiagen GmbH, Hilden 

QuikChange® Site-Directed Mutagenesis Kit Agilent Technologies, Waldbronn 

Uptima BC Assay Protein Quantification Interchim, Sankt-Augustin-Buisdorf 
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Table 2-9 List of composition of buffers and solutions 

Buffer Composition 

10 x colony PCR buffer 500 mM KCl, 100 mM Tris-HCl (pH 9.0), 1% (v/v) TritonX100 

Destaining solution 100 mL acetic acid (100% glacial), 200 mL methanol, 700 mL ddH2O 

ELISA coating buffer 
5.3 g Na2CO3 in 900 mL ddH2O, add 4.2 g NaHCO3, 1 g NaAc,  

ad 1 L ddH2O (pH 9.6) 

Homogenization buffer 25 mM Tris-HCl (pH 7.4), 320 mM sucrose, 1 Complete Protease Inhibitor tablet/50 mL 

IPTG solution 1 M IPTG stock solution in MilliQ 

10 x Laemmli running buffer 31 g Tris, 144 g glycine, 10 g SDS, ad 1 L ddH2O (pH 8.6) 

1 x Laemmli running buffer 1 : 10 dilution of 10 x Laemmli running buffer in ddH2O 

Lysis buffer 
50 mM Tris, 300 mM NaCl, 10 mM EDTA (pH 8.0),  

1 Complete Protease Inhibitor tablet/50 mL (pH 7.5) 

Lysis buffer with lysozyme 300 µg/mL lysozyme in lysis buffer 

Lysis buffer with NP-40 10 mM NP-40 in lysis buffer 

2% MPBS, 5% MPBST, 

5% MRPMI 
2% or 5% (w/v) milk powder dissolved in 1 x PBS, 1 x PBST or RPMI Glutamax 

10 x PBS  

(phosphate buffered saline) 
80 g NaCl, 2 g KCl, 14.4 g Na2HPO4, 2.4 g KH2PO4 (pH 6.9), ad 1 L ddH2O 

1 x PBS  1 : 10 dilution of 10 x PBS with ddH2O (pH 7.4) 

1 x PBST 1 x PBS, 0.05% (v/v) Tween20 

PEG/NaCl 20% (w/v) PEG6000, 2.5 M NaCl 

4% PFA fixing solution 4 g (w/v) paraformaldehyde, ad 100 mL 1 x PBS  

Phage elution buffer 200 mM glycine-HCl (pH 2.2) 

Phage neutralization buffer 1M Tris-HCl (pH 9.1) 

5 x protein loading buffer 
62.5 mM Tris-HCl (pH 6.8), 30% (v/v) glycerol, 4% (w/v) SDS,  

0.05% (w/v) bromophenol blue, 10% (v/v) ȕ-mercaptoethanol 

Resuspension buffer 50 mM Tris-HCl (pH 7.4) 

4% PAA stacking gel  

(2 gels) 

650 µL Rotiphorese Gel 30, 625 µL 1 M Tris-HCl (pH 6.8), 50 µL 10% (w/v) SDS,  

50 µL 10% (w/v) APS, 5 µL TEMED, 3.645 mL ddH2O 

12% PAA separation gel 

(2 gels) 

4 mL Rotiphorese Gel 30, 3.75 mL 1 M Tris-HCl (pH 8.8), 100 µL 10% (w/v) SDS,  

50 µL 10% (w/v) APS, 10 µL TEMED, 2.11 mL ddH2O 

50 x TAE buffer  

(Tris-Acetate-EDTA) 

242 g Tris, 57.1 mL pure acetic acid, 100 mL 0.5 M EDTA at pH 8.0  

(working pH 8.3) 

4 x TALON wash buffer 0.2 M NaH2PO4, 1.2 M NaCl, ad 1 L ddH2O (pH 7.0) 

1 x TALON wash buffer 1 : 4 dilution of 4 x TALON wash buffer with ddH2O (pH 7.0) 

1 x TALON elution buffer 250 mM imidazole in 1 x TALON wash buffer (pH 7.0) 

TEA buffer 0.1 M TEA in ddH2O (pH 12.0) 

1 x TES buffer 
50 mM Tris, 20% (w/v) sucrose, 1 mM EDTA (pH 8.0),  

1 Complete Protease Inhibitor tablet/50 mL  

0.2 x TES buffer  1 : 5 dilution of 1 x TES buffer with ddH2O, 1 Complete Protease Inhibitor tablet/50 mL 

10 x Western blot transfer buffer 25 mM Tris, 192 mM glycine, ad 1 L ddH2O 

1 x Western blot transfer buffer 100 mL 10 x Western blot transfer buffer, 200 mL methanol, 700 mL ddH2O 
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Table 2-10 List of antibiotics 

Antibiotics Supplier Stock concentration Working concentration

Ampicillin Sigma-Aldrich, Seelze 50 mg/mL 100 µg/mL 

Chloramphenicol Sigma-Aldrich, Seelze 34 mg/mL 34 µg/mL 

Kanamycin Sigma-Aldrich, Seelze 50 mg/mL 50 µg/mL 

Penicillin Invitrogen/Gibco, Life Technologies GmbH, Darmstadt 10 mg/mL 100 µg/mL 

Streptomycin Invitrogen/Gibco, Life Technologies GmbH, Darmstadt 10 mg/mL 100 µg/mL 

Zeocin® Invivogen, Toulouse France 100 mg/mL 100 µg/mL 

2.8 Antibodies and enzyme-conjugated antibodies 

Table 2-11 lists antibodies for specific proteinchemical detection of recombinant 

scFv-phage particles or scFv fusion proteins during ELISA (3.3.9), flow cytometry 

(3.3.10), Western blotting (3.3.2) and immunofluorescence staining (3.3.11.2). 

Table 2-11 List of antibodies for immunological analysis 

Antibodies Host Application Supplier Dilution 

HRP/anti-M13 monoclonal conjugate mouse E GE healthcare, München 1:5000 

Penta-His Alexa Fluor 488 conjugate mouse F Qiagen GmbH, Düren 1:300 

Monoclonal anti-polyHis IgG mouse E, WB Sigma, Seelze 1:2000 

Anti-rabbit Fc specific IgG HRP conjugate goat E, WB Sigma, Seelze 1:5000 

Anti-mouse-peroxidase conjugate goat E, WB Sigma, Seelze 1:5000 

Polyclonal anti-SNAP-tag IgG rabbit E, IF Genescript, Aachen 1:5000 

anti-rabbit IgG (H+L) F(ab)2 Fragment Alexa 

Fluor 647 
goat IF 

Cell Signaling Technology Inc., 

Boston, MA, USA 
1:5000 

E: ELISA, IF: immunofluorescence, F: flow cytometry, WB: Western blot 

2.9 Primer 

All primer sequences (Table 2-12) used for sequencing reactions or PCR amplification 

were ordered from Invitrogen (Darmstadt) as lyophilized powder, reconstituted in MilliQ 

to a concentration of 100 pmol and stored at -20 °C until use. 

Table 2-12 Primer sequences and corresponding vectors for sequencing and PCR 

Primer name Vector Sequence 5‘  3‘ Direction of sequencing 

fdseq1 pIT2 GAA TTT TCT GTA TGA GG reverse down-stream of scFv 

LMB3 pIT2 CAG GAA ACA GCT ATG AC forward up-stream of scFv 

mSNAP forward pMS-SNAPMut CGA CTC ACT ATA GGG AGA CCC AAG C forward up-stream of scFv 

mSNAP reverse I pMS-SNAPMut CCT TTG CCC AGC AGC TTG ATC TCG reverse down-stream of scFv 

mSNAP reverse II pMS-SNAPMut GCA ACT AGA AGG CAC AGT CG reverse down-stream of SNAP 

T7 promoter pMT TAA TAC GAC TCA CTA TAG GG forward up-stream of scFv 

T7 terminator pMT TAC AGG GCG CGT CCC ATT CG reverse down-stream of scFv 
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2.10 Plasmid vectors 

Table 2-13 Plasmid vectors/phagemids, corresponding background information and suppliers 

Vectors Background information Supplier 

pIT2 

Phage display vector of Tomlinson libraries I and J. Phagemid vector for 

pIII-scFv fusion protein production in E.coli TG1F+ or expression of soluble 

scFv proteins in E.coli HB2151. Ampicillin 40ancreati, lac-promoter/IPTG 

controlled.  

MRC, 

Cambridge, UK 

pMT 

Vector for prokaryotic protein expression of soluble scFv proteins or Wx-scFv 

fusion proteins. Derived from pET27b+ vector [171]. Kanamycin resistant, T7 

promoter/IPTG controlled. 

FhG IME, 

Aachen 

pET27b+ 
Vector for prokaryotic protein expression, used as negative control during  

on-line measurements. Kanamycin resistant, T7 promoter/IPTG controlled. 

Merck KgaA, 

Darmstadt 

pMS-SNAPMut 

Vector for eukaryotic soluble protein expression. Bicistronic construct 

combined from vectors pSecTag2 (Invitrogen, Darmstadt) and pIRES2-eGFP 

(Clontech, Saint-Germain-en-Laye, France). Ampicillin and Zeocin® resistant, 

CMV promoter controlled [183]. 

FhG IME, 

Aachen 

pMA Cloning vector for W-tags, ampicillin resistant 
GENEART, 

Regensburg 

pCR4Blunt-TOPO Cloning vector for W-tags, ampicillin and kanamycin resistant 
GENEART, 

Regensburg 

Detailed plasmid maps of pMT and pMS-SNAPMut vectors are illustrated in Figure 2-1 

displaying highlighted coding sequences for the single genetic components. Schematics of 

corresponding expression cassettes are outlined in 4.5 and 5.2 including all restriction sites 

required for cloning. 

 

Figure 2-1 Schemtic drawing of plasmid maps of expression vectors pMT and pMS-SNAPMut.  

(A) pET-derived pMT plasmid for the prokaryotic production of soluble scFv protein in BL21 Rosetta 2 

(DE3) E.coli promoting lac-operon controlled protein expression via T7 promoter and T7 terminator. 

Recombinant proteins are transported into the periplasmic space and eventually secreted via the pelB leader 

peptide. Detection and purification is performed via the His10-tag. Figure 4-9 describes the expression 

cassette in more detail. (B) Bicistronic pMS-SNAPMut vector for eukaryotic expression of recombinant 

proteins after transient transfection into HEK293T cells. Protein expression is CMV-controlled 

(cytomegalovirus promoter) and an Igkappa (immunoglobulin kappa) signal sequence promotes secretion of 

soluble proteins. Detection and purification is achieved with the His6-tag, myc-tag or SNAP-tag. An internal 

ribosomal entry site (IVS/IRES) mediates co-translation of eGFP (enhanced green fluorescent protein) during 

cultivation in Zeocin-supplemented medium. Cloning and prokaryotic expression is carried out duing 

Ampicillin pressure. Figure 4-10 explains the expression cassette in more detail. F1 ori: replication origin f1 

phage, pSV40: SV40 replication origin, SV40 pA: SV40 polyadenylation signal, ColE1: E.coli origin of 

replication, AmpR: Ampicillin resistance, KanR: Kanamycin resistance, ZeoR: Zeocin resistance. 
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2.11 Molecular weight markers 

Table 2-14 Molecular DNA and protein markers and corresponding suppliers 

DNA Ladder/Protein Marker Supplier/Manufacturer 

MassRuler DNA Ladder Mix, 100 – 10,000 bp Fermentas, St. Leon-Rot 

Spectra Multicolor Broad Range Protein Ladder, 10 – 260 kDa Fermentas, St. Leon-Rot 

Novex Sharp Pre-stained Protein Standard, 3.5 – 260 kDa Invitrogen, Darmstadt 

Prestained Protein Ladder Broad Range, 10 – 230kDa New England Biolabs, Frankfurt am Main 

Orange G, 6 x DNA loading dye, 50 bp New England Biolabs, Frankfurt am Main 

2.12 Single chain antibody libraries and helperphage 

Phage display libraries, used for selections during this thesis, were the human single-fold 

scFv Tomlinson Libraries I and J, originally obtained from the Medical Research Council 

(MRC) Center for Protein Engineering in Cambridge (UK). Both are encoded on the pIT2 

phagemid vector as scFv proteins fused to the pIII phage coat protein. Transformed into 

E.coli TG1 Tr (TG1F+), the phagmids were stored as cryo stocks at -80 °C. TG1F+ 

bacteria can be infected by filamentous M13KO7 phage particles to produce scFv-phage 

units. A detailed instruction and description of the Tomlinson Libraries I and J is found in 

1.3.3. Following phage types were used (Table 2-15). 

Table 2-15 Description of different types of phage particles and corresponding suppliers 

Phage Characteristics Supplier 

M13KO7  

helperphage 

It codes for genetic information of all wild-type coat proteins. After 

infecting phagemid-carrying bacteria, pIII-scFv fusion proteins are 

produced as well as unfused pIII coat proteins. During phage assembly, 

the coat proteins are joined at random so that between one and two 

pIII-scFv fusion proteins are presented on the surface of 1 – 10% of all 

produced phage particles. Kanamycin resistant. 

New England Biolabs, 

Frankfurt am Main 

M13 KO7ΔpIII  

hyperphage 

It is a M13KO7-derived gIII-deficient version which misses the pIII 

gene (gIII) completely. During phage assembly, only the scFv-pIII coat 

protein is present, and as a consequence, produced phage particles 

present five incorporated pIII-scFv on their protein coat. Kanamycin 

resistant. 

PROGEN Biotechnik GmbH, 

Heidelberg 
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3 Methods 

3.1 Molecular biological and DNA cloning techniques 

General recombinant DNA techniques, as well as methods for cell cultivation, transfecting 

mammalian cells and transforming bacteria, were based on standard of “Molecular 

Cloning: A laboratory manual” from Sambrook et al., 2001 [233]. Individual components 

for experiments are listed below. Phosphate buffered saline solution, here called PBS was 

used at a concentration of 1 x PBS. Same applies for PBS supplemented with 0.05% 

Tween20, called PBST. Recombinant cloning techniques were used to subclone DNA 

fragments into the plasmid/phagemid vectors pIT2 or pMT for prokaryotic expression, or 

into pMS-SNAPMut for eukaryotic expression (2.10). General cloning was performed with 

E.coli strain XL1 Blue (3.1.2, 3.1.3). 

3.1.1 Polymerase chain reaction 

Polymerase chain reaction (PCR) [233, 234] is an important standard technique in 

molecular biology. DNA fragments were exponentially amplified by PCR, for subsequent 

sequencing (3.1.4) or restriction digest (3.1.2), but also to introduce mutations in a DNA 

fragment (3.4.6) by means of the taq-polymerase from Thermus aquaticus bacterium [234]. 

Besides taq-polymerase, a pfu-polymerase was used with 3’-5’-exonuclease proof-reading 

activity to correct potential sequence errors during DNA assembly of the elongation step. 

PCR products were examined by analytical and preparative agarose gel electrophoresis 

(3.1.5). PCR reaction mixtures were prepared on ice; autoclaved ddH2O was used as 

negative control. 

3.1.1.1 PCR based on DNA template 

A PCR reaction can be started from a DNA template, such as chromosomal DNA or a 

plasmid. PCR reactions were set up in 200 µL tubes of a PCR-strip (25 µL/tube reaction 

volume). It was tested whether positive L3.6pl-binding scFv-phage particles, after 

screening in the monoclonal phage ELISA (3.3.9.2) contained a scFv-insert. Right-sized 

scFv-inserts were excised from the agarose gel (3.1.5), extracted and sequenced (3.1.4). 

Primers LMB3 (forward) and fdseq1 (reverse) attached to the insert template at a distance 

of 134 and 119 base pairs (bp), respectively, resulting in a PCR product 976 bp long. Table 

3-1 states conditions for the thermo cycler and the reagents for the PCR reaction mixture. 
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Table 3-1 Reaction conditions of DNA template-based PCR amplification reaction.  

(A) PCR reaction mixture, (B) thermo cycler program. 

(A) 
 

(B) 
 

    

Reagent Volume [µL] Temperature [°C] Time [min] Cycles 

DNA template 1 94 03:00 1 

5 x gotaq buffer 5 94 01:00 
 

DMSO (99%) 2 50 00:45 
 

dNTP mix (25 mM) 0.3 72 02:00 30 

LMB3 (10 pmol) 1 72 10:00 
 

fdseq1 (10 pmol) 1 4 ∞ 
 

50 x gotaq polymerase 0.15 
  

ddH2O ad 25 µL total volume 
  

DNA fragments for restriction digest were extracted by same PCR procedure. 

3.1.1.2 Bacterial colony PCR 

Instead of a DNA template, PCR can be started from a bacterial colony. Therefore, a single 

colony was picked from an agar plate with a sterile pipet tip, saved on a second agar plate 

by slightly touching and transferred to a 200 µL tube as PCR. Table 3-2 lists the colony 

PCR reaction mix and thermo cycler set-up. 

Table 3-2 Reaction conditions of colony-based PCR amplification reaction.  

(A) PCR reaction mixture, (B) thermo cycler program. 

(A) (B) 

Reagent Volume [µL] Temperature [°C] Time [min] Cycles 

Bacterial colony 1 colony 95 10:00 1 

10 x colony PCR buffer 5 95 01:00 
 

MgCl2 (25 mM) 3 50 01:00 
 

dNTP mix (25 mM) 0.3 72 01:30 30 

LMB3 (10 pmol) 1 72 10:00 
 

fdseq1 (10 pmol) 1 4 ∞ 
 

50 x gotaq polymerase 0.2 
 

ddH2O ad 50 µL total volume 
 

The colony PCR method was used to check for presence of scFv-inserts or to test whether 

a ligation (3.1.3) during cloning has been successful. 
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3.1.2 DNA restriction digest 

Plasmids or PCR products were digested with restriction endonucleases (2.5) according to 

enzyme concentrations, buffers and temperature given in manufacturers’ manual. 

Typically, 500 – 100 ng DNA material was digested in 50 µL total volume applying one 

unit enzyme/1000 ng DNA, except for supercoiled plasmid DNA where a 4-fold enzyme 

concentration was used to achieve complete digestion. Isolated L3.6pl-specific scFv 

fragments (3.4) were subcloned into pMT and pMS-SNAPMut expression vectors through 

restriction sites SfiI and NotI. Newly designed W-tags (3.1.8) with pelB leader were 

subcloned from GENEART vectors into the pMT expression vector [171] via NcoI and 

HindIII restriction sites, whereas W-tags without pelB leader were transferred using NdeI 

and HindIII. To prevent relegation, vector backbones were additionally dephosphorylated 

at 37 °C for 1 h after digest using Antarctic phosphatase, followed by a 20 min 

deactivation step at 65 °C. Digested DNA fragments were separated by preparative agarose 

gel electrophoresis (3.1.5), gel-purified (2.6) and ligated (3.1.3) into the desired DNA 

vector construct. 

3.1.3 DNA ligation 

To ligate scFv fragments and W-tags into their respective vector backbones, 50 – 100 ng 

vector were ligated to the insert at a molecular ratio of 1 : 3 using the enzyme T4 ligase 

(2.5). Ligation was carried out with T4 ligation buffer at RT for 3 h as instructed in the 

manual. 

3.1.4 DNA sequencing and sequencing analysis 

PCR products, site-directed mutations or correct ligations, as well as DNA fragments or 

plasmids were sequenced at MWG Eurofins (Ebersberg, Germany) by dideoxy chain 

termination according to Sanger et al. [235]. 15 µL of purified PCR product (5 ng/µL) or 

purified plasmid DNA (50 – 100 ng/µL) were transferred to an Eppendorf tube, sent for 

sequencing and subsequently analyzed with the Vector NTI software (Table 2-2). 

3.1.5 Analytical and preparative agarose gel electrophoresis 

For preliminary analysis, 5 – 10 µL samples of undigested plasmid DNA, PCR products or 

restricted DNA were mixed with DNA loading dye and loaded onto an analytical agarose 

gel to check the length of the DNA fragments. Gels were prepared with 0.8 – 1% (w/v) 
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agarose in 1 x TAE buffer (2.7), containing 0.1 µg/mL ethidium bromide, and run at 

80 - 120 V. Size and integrity of a DNA fragment were evaluated with a DNA molecular 

marker (2.11). DNA-embedded ethidium bromide was visualized via a UV transilluminator 

at 312 nm, documented by a black and white camera attached to the top of the 

transillluminator and analyzed using the ArgusX program (2.2). 

For subsequent DNA excision and purification, a preparative agarose gel was run 

separately using the entire DNA solution. No picture was taken to prevent DNA damage 

by UV-light but the desired DNA fragment was quickly excised from the gel (under a UV 

transilluminator lamp) and gel-purified using the QIAquick Gel Extraction Kit (2.6).  

3.1.6 Determination of DNA concentration 

DNA was diluted at 1 : 30 or 1 : 50 in ddH2O and transferred to a UV cuvette to measure 

DNA concentration in a spectro-photometer (2.2) via the extinction at Ȝ = 260 nm. DNA 

purity was evaluated at wavelengths 260 and 280 nm. Whereas the DNA absorbs UV light 

at both wavelengths, residual proteins absorb UV light at 280 nm only. DNA samples free 

of protein contamination have a 260/280 ratio of 1.8, whereas a contaminated sample 

displays a 260/280 ratio <1.8. 

3.1.7  Plasmid DNA isolation from E.coli 

Plasmid DNA was isolated from E.coli cultures using the Macherey & Nagel Kits (2.6) 

NucleoSpin Plasmid (mini-preparation) or NucleoBond PC100 (midi-preparation). Quality 

and quantity of isolated DNA was confirmed by spectrophotometric analysis (3.1.6). 

Isolated plasmid DNA was used for sequence analysis of bacterial clones (3.1.4), control 

digests (3.1.2) or long term storage at -20 °C. To prepare very pure DNA for transfection 

of eukaryotic cells, the eluted DNA was precipitated with isopropanol and washed with 

70% ethanol. The pellet was resuspended in 150 µL ddH2O, and then 1 / 10 volumes 3 M 

NaOAc and 2.5 volumes 100% ethanol were added. The tube was placed at -80 °C O/N 

and thawed at RT for 10 min. Precipitated DNA was spun down (12,000 x g, 4 °C, 

30 min). The supernatant was removed, the transparent pellet washed with 1 mL 

80% ethanol (12,000 x g, 4 °C, 10 min) and dried at RT for 5 – 10 min after the 

supernatant was removed with a pipet. DNA was resuspended in 50 – 100 µL TE-buffer. 
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3.1.8 Design of tryptophan tag (W-tag) 

Following the expertise of Dr. Heinrich Delbrück from Fraunhofer IME in Aachen, five 

short and optically active tags, called W tags, were modeled by integrating the aromatic 

auto-fluorescent amino acid tryptophan (W) into a naturally occurring ȕ-sheet motif from 

Bacillus caldolyticus cold shock protein (Bc Csp) [236].  

This special ȕ-sheet motif was found by screening the Protein Data Bank (PDB) for small 

motifs with the appropriate distribution of hydrophobic amino acids. Bc Csp [PDB: 1C9O] 

is a small protein (66 amino acids) comprising two ȕ-sheets that form a ȕ-barrel. The first 

ȕ-sheet (30 amino acids) consists of three ȕ-strands connected by two loops, with a 

hydrophobic core and one tryptophan and two phenylalanine residues exposed on the 

surface. Starting from the third residue, the sequence was systematically mutated in silico 

to increase the number of tryptophan residues within the loop using CHARMM 

(http://www.CHARMM.org) in Discovery Studio (http://www.accelrys.com) the free 

energy of each model was minimized and models with the lowest free energy for each 

number of substituted tryptophan residues were selected. 

W-tags were synthesized at GENEART (Regensburg, Germany) with E.coli-compatible 

base triplets as DNA sequence in pMA and pCR4Blunt TOPO cloning vectors containing 

restriction sites NheI, NcoI and HindIII, an His6-tag, a GS-linker and a cleavable 

enterokinase site (EK). W-tags were subcloned into the pMT expression vector upstream 

of the Ki-4(scFv) [237] or M12(scFv) [238] (3.1.3) and transformed into BL21 Rosetta 2 

(DE3) E.coli (3.1.9.3). Untagged Ki-4(scFv) or M12(scFv) were introduced as positive 

expression control (EC), the empty pET-27b+ vector served as negative control (NC). 

3.1.9 Cultivation of E.coli 

Different E.coli strains were used for infection of the Tomlinson libraries I and J, and 

subsequent production of M13KO7-based scFv-helperphage units (3.4.2), for DNA 

amplification and isolation (3.1.9.2), or for the prokaryotic production of proteins (3.1.9.3, 

3.1.9.4). For a list of all bacterial strains, their suppliers and the distinct characteristics see 

chapter 2.3. 
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3.1.9.1 Phage infection and production in TG1F+ 

TG1F+ E.coli (2.3) is an amber stop codon (TAG) suppressor strain, commonly used as 

host strain of filamentous M13KO7 helperphage and M13KO7ΔpIII hyperphage during 

biopanning (3.4.5). These TG1F+ cells have no antibiotic resistance and were grown on a 

M9 minimal media agar plate at 37 °C. For infection, a single TG1F+ colony was picked, 

transferred into 5 mL 2 x TY media (no antibiotics, no glucose) and grown at 37 °C, 

shaking at 250 rpm O/N. The O/N culture was diluted 1 : 100 into fresh 2 x TY medium 

and grown (37 °C, 250 rpm) to an optical density measured at 600  nm (OD600) of 0.4 –

 0.5. This indicates the logarithmical growth phase when the bacterial F-pili are formed and 

efficient infection with M13KO7 phage is possible. After each cultivation step, TG1F+ 

samples were plated on LBamp and LBkan control agar to check for contaminating 

unspecific M13KO7 phage or plasmids. 

3.1.9.2 DNA amplification and isolation in XL-1Blue 

XL1 Blue E.coli (2.3) were employed for general cloning, plasmid DNA amplification and 

isolation. Transformed XL1 Blue clones were picked from an agar plate for cultivation in 

5 mL (mini-preparation) or 25 mL LB medium (midi-preparation) at 37 °C and 250 rpm 

containing the plasmid-appropriate antibiotic. Important: No glucose was added since it 

clogs the membrane during DNA isolation (3.1.7).  

3.1.9.3 Prokaryotic recombinant protein expression in BL21 Rosetta 2(DE3) 

Large-scale expression of Wx-Ki-4(scFv) and Wx-M12(scFv) fusion proteins: Large 

quantities of the W-tag proteins fused to Ki-4(scFv) or M12(scFv) (5.2) as well as the 

negative and positive expression control proteins (5.2) were fermented in BL21 

Rosetta 2 (DE3) using 1L-Erlenmeyer flasks. Clones were inoculated from cryo stocks, 

grown O/N as pre-cultures in 10 mL modified Wilms-Reuss synthetic medium [232] (2.3) 

supplemented with 20 g/L glucose using 250 mL shake flasks sealed with cotton plugs at 

37 °C, a shaking frequency of 350 rpm and 50 mm shaking diameter. 80 mL fresh 

Wilms-Reuss synthetic medium containing 20 g/L glucose and 50 µg/mL kanamycin were 

inoculated at an OD600 adjusted to 0.1 (same culturing conditions as above). After 4 h, the 

bacterial cultures were induced with 1 mM IPTG, cultivated for another 6 h and harvested 

after 10 h (4000 x g, 4 °C, 30 min). 
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Micro-scale expression of Wx-Ki-4(scFv) and Wx-M12(scFv) fusion proteins: W-tagged 

fusion proteins were also expressed in BL21 Rosetta 2 (DE3) E.coli during the on-line 

measurement in microtiter plates (MTPs). Pre-cultures were prepared as described above. 

200 µL main cultures were inoculated at OD600 0.1 and grown in 96-well MTPs (lumox, 

black, µ-clear, Greiner Bio-One, Kremsmünster, Austria) sealed with a gas-permeable 

membrane (AB-0718; Abgene, Epsom, UK) to allow aeration while minimizing 

evaporation. Cultivation took place in a temperature-controlled room (37 °C) under an 

aerated hood with humidified air to minimize evaporation, at 950 rpm and 3 mm shaking 

diameter. When entering the exponential growth phase (t = 3.2 h), cultures were induced 

with 1 mM ITPG. The maximum oxygen transfer rate in Erlenmeyer and MTP system was 

always maintained by a high shaking frequency with an appropriate shaking diameter using 

small culture volumes in a large shaking volume [239, 240].  

5 mL expression of recombinant scFv, Wx-Ki-4(scFv), and Wx-M12(scFv) proteins: 

W-tagged fusion proteins and isolated scFv clones (after amber stop codon mutation 

(3.4.6) and subcloning into the pMT vector) were expressed in BL21 Rosetta 2 (DE3). 

Expression was either performed using a 25 mL flask in 5 mL Wilms-Reuss synthetic 

medium followed by IPTG induction (as described above) or in a special auto-induction 

medium (2.3) [241]. Therefore, a pre-culture of 5 mL LBkan was inoculated from a cryo 

stock, shaken O/N at 37 °C and 250 rpm. Then 100 µL/sample were inoculated into 10 mL 

main culture (LB auto-induction medium, 50 µg/mL kanamycin) and cultivation was 

continued O/N. 

L3.6pl-specific scFv antibodies were also cultivated in BL21 Rosetta 2 (DE3) to produce 

soluble protein for protein ELISA analysis (3.3.9.3). 

3.1.9.4 Prokaryotic recombinant protein expression in HB2151 

Soluble scFv proteins were produced with the non-suppressor strain HB2151 E.coli 

(3.3.9.3) via the pIT2 phagemid vector using the same expression protocol as in 3.3.9.3. 

No subcloning into an expression vector was needed and the scFv fragments were 

expressed at microtiter scale, directly after QuikChange Mutation of the amber stop codons 

in CDR2 (3.4.6). Produced soluble scFv proteins were analyzed for binding activity in a 

protein ELISA (3.3.9.3). 
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3.1.10 Preparation of bacterial cryo stock cultures 

For all bacterial strains and clones, 5 mL cultures were grown O/N at 37 °C shaking at 

250 rpm in LB or 2 x TY medium supplemented with the plasmid-appropriate antibiotic. 

Cells were pelleted (4500 x g, 4 °C, 10 min) and resuspended in 1 mL cryo medium (2.3). 

This bacterial suspension was quickly transferred into a labeled cryo tube, placed on ice 

and frozen at -80 °C for long-term storage. 

3.1.11 Heat shock transformation of E.coli 

Heat-shock transformation was used to introduce genetic material into chemically 

competent bacteria. Competent cells were thawed on ice for 10 min, 25 µL/sample 

bacterial suspension were transferred into a pre-chilled Eppendorf tube and 1 µL plasmid 

DNA (2 µL for ligations) were added. Cells were incubated on ice for 30 min, then 

heat-shocked in a 42 °C water bath for exactly 45 s since the duration of the heat pulse is 

the critical step for maximum transformation efficiency. Tubes were quickly placed back 

on ice for additional 2 min, then filled up with 250 µL SOC medium (pre-warmed to 

42 °C) and incubated at 225 – 250 rpm for 1 h to allow for development of respective 

antibiotic resistance during cell division. Afterwards 50 – 100 µL bacterial suspension 

(250 µL for ligations) were plated out on LB agar plates supplemented with the 

plasmid-appropriate antibiotic to grow cell colonies in an incubator at 37 °C for 12 – 16 h. 

3.2 Tissue culture and cell processing 

3.2.1 Cultivation of eukaryotic cell lines 

All mammalian cells were incubated at 37 °C in a 5% CO2 atmosphere and 95% relative 

humidity using 75 cm
2
 tissue culture flasks. Confluency dependent, cells were passaged 

and supplied with fresh media every three to four days. Dulbecco’s Phosphate Buffered 

Saline (DPBS) (2.4) was used for all cell lines. Depending on the cell line, cells were 

cultivated in RPMI 1640 Glutamax or DMEM Glutamax (2.4) media supplemented with 

10% FBS (fetal bovine serum) and 1% penicillin/streptomycin (P/S). For full list of media 

composition and components for cultivation and passaging see Table 2-5. 

Adherent cell lines were cultivated in the respective media (2.4). For passaging, cells were 

washed with 4 mL DPBS and detached from the bottom of the flask with 2 mL Accutase
®

 

at RT. Cell suspension was filled up with 8 mL medium and centrifuged (1200 rpm, 4 °C, 



Methods 

 

 

50 

5 min). Pellet was resuspended in fresh medium and diluted to the optimal cell density 

(between 1 : 3 and 1 : 10). 

The Hodgkins’ lymphoma-derived suspension cell line L540cy, expressing the CD30 

receptor for Ki-4(scFv) binding, was grown in complex RPMI/10/1. Cells were cultivated 

at a density of 0.5 – 1.5 x 10
6
 cells/mL in a 10 mL volume. 

Transfected HEK293T cells, used for the production of soluble scFv-SNAP proteins, were 

cultivated in RPMI/10/1, supplemented with 100 µg/mL Zeocin
®

 for selection pressure 

(RPMI/10/1/Zeo). Cells were passaged every 2 weeks at a 1 : 5 dilution. 

3.2.2 Cryopreservation and reactivation of eukaryotic cell lines 

For freezing, cells were grown in 75 cm
2
 flasks until log-phase for several days to reach 

about 60 – 80% confluence. Adherent cells were detached from flask using Accutase
®

 

before counting. Viable cells in a 10 mL cell suspension were counted in a Neubauer 

haemocytometer. A haemocytometer is a thick glass slide with two counting chambers, 

each 0.1 mm deep. Each chamber is divided into nine large squares delineated by triple 

white lines. The center square is divided into 25 squares which are subdivided into 

16 squares. The entire reticulated part has an area of 9 mm
2
. Trypan blue was used to 

determine the vital cell count. Non-viable cells absorb the dye and appear blue and 

asymmetrical under the microscope, while healthy viable cells are refractory to the dye and 

rounded. 10 µL cell suspension were mixed with 10 µL trypan blue and incubated for 

5 min. A cover slip was placed over the two chambers of the haemocytometer and 10 µL 

of the cell mixture with trypan blue were pipetted to one chamber. Viable cells in the four 

squares at the corners were counted, the average was calculated and the cell concentration 

per mL was calculated using the following formula: cells/mL = average number of counted 

cells x dilution factor x 10
4
. 

Then 10 mL cell suspension were pelleted (1,200 x g, 4 °C, 10 min) and cells were 

resuspended in freezing medium, consisting of 70% RPMI 1640 Glutamax or DMEM 

medium containing adequate antibiotics, 20% FBS and 10% DMSO, to a concentration of 

5 x 10
6
 - 1 x 10

7
 cells/mL, depending on the cell line. 1 mL of this suspension was 

transferred into sterile labeled cryo tube, closed tightly and placed on ice immediately. 

After 5 min the cryo tube was placed into the -20 °C freezer for 2 h, then at -80 °C O/N 

and after that into the liquid nitrogen tank for long-term storage. 



Methods 

 

 

51 

For thawing, a 75 cm
2
 tissue culture flask was prepared with 10 mL respective medium 

(pre-warmed to 37 °C). A tube with the cryo-preserved cells was removed from the liquid 

nitrogen, thawed at 37 °C until cell suspension was free of ice and cells were immediately 

transferred to the flask with the pre-warmed medium. Cells were left to settle for two days, 

then the media was refreshed and cells were passaged as described in 3.2.1. 

3.2.3 Eukaryotic recombinant protein expression in HEK293T cells 

Isolated L3.6pl-specific scFv antibody fragments, after monoclonal phage ELISA 

screening and site-directed mutagenesis of amber stop codons were subcloned into the 

eukaryotic pMS-SNAPMut expression vector (4.5.3) via SfiI and NotI restriction sites. 

Constructs were transfected into HEK293T cells, to produce soluble scFv protein under 

Zeocin
®

 selection pressure. Soluble scFv-SNAP proteins were used for protein ELISA 

analysis (3.3.9.3), flow cytometrical binding analysis (3.3.10) and internalization assays 

(3.3.11.1). 

3.2.3.1 Transfecting HEK293T cells 

All pMS-scFv-SNAPMut DNA constructs were transfected into HEK293T cells via 

lipofection [242] with the lipofection reagent FuGene HD (Roche Diagnostics GmbH, 

Mannheim) according to manufacturers’ instructions. With this method, exogenous DNA 

is introduced into a cell via cationic lipid vesicles. These vesicles complex the negatively 

charged DNA and create large clusters which are internalized through the cell membrane 

by endocytosis. This transfection process is most efficient in the log-phase when the 

mitosis metabolism in the cell is at its peak and DNA is transported to the nucleus and 

taken up. HEK293T cells were split into a 12-well plate at 6 x 10
4
 cells/well and cultivated 

in RPMI/10/1, for about 24 h or to reach 80% confluency. 2.5 µg purified DNA per 

transfection (3.1.7) were mixed gently with 3 µL FuGene transfection reagent, to reach the 

recommended ratio of approximately 1 : 3, and filled up with 100 µL serum-free RPMI 

Glutamax medium. This mixture was incubated at RT for 15 min to allow formation of the 

transfection complex. Meanwhile 1.5 mL/well fresh RPMI/10/1 was transferred into the 

12-well plate. Afterwards the transfection mixture was added dropwise, incubated at RT 

for 5 min. Then plates were incubated at 37 °C for another 48 – 72 h to allow transfection. 

The pMS-425(scFv)-SNAPMut plasmid was used as positive transfection control, ddH2O 

as negative. 
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3.2.3.2 Cultivation of transiently transfected HEK293T for protein production 

Following 48 – 72 h incubation, the transiently transfected HEK293T cells were supplied 

with 1.5 mL fresh RPMI/10/Zeo for selective pressure to remove untransfected cells. Two 

days later, all transfected HEK293T cells were detached from the 12-well plate using 

Accutase
®

, transferred to a 75 cm
2
 tissue culture flask without splitting and placed at 37 °C 

and 5% CO2 to settle and grow for one week under selective pressure. By then, several 

colonies with transfected HEK293T cells had developed which were singularized with 

Accutase
®

 and placed into a fresh 75 cm
2
 flask for passaging and collection of supernatant 

containing soluble scFv-SNAP proteins (3.2.1). Tissue culture supernatant was harvested 

once a week and stored at 4 °C for up to 6 months since the proteins were stabilized by the 

FBS in the medium. 

Protein production of secreted scFv-SNAP proteins was examined via SDS-PAGE (3.3.1) 

and Western blotting (3.3.2). In addition, the pMS-scFv-SNAPMut vector contains an 

eGFP sequence separated from the scFv-SNAP expression cassette by an IVS/IRES 

sequence. As a result, scFv-SNAP protein expression was monitored under a fluorescence 

microscope (data not shown). 

3.2.4 Isolation of peripheral blood mononuclear cells 

Peripheral blood mononuclear cells (PBMC) were isolated from buffy coats by means of 

density gradient centrifugation, to use for the preparation of membrane fractions (3.2.5), 

for depletion during biopanning (0, 3.4.5.2) or as negative control during flow cytometrical 

analysis (3.3.10). PBMCs were prepared freshly for each experiment. Buffy coats (45 –

 50 mL) were obtained from the Department of Transfusion Medicine at Aachen 

University Hospital. Blood was carefully withdrawn from the transfusion bag using a 

syringe and transferred to a 50 mL falcon tube where it was mixed with PBS (free of Ca
2+

 

and Mg
2+

!!) at a ratio of 1 : 1. Ficoll Paque PLUS (GE healthcare) was mixed thoroughly; 

15 mL were removed with a syringe and placed in 50 mL falcon tube. Ficoll Paque is an 

aqueous solution of a high molecular weight polysaccharide adjusted to a density of 

1.077 ± 0.001. Next, 30 mL of the blood-PBS mixture were carefully transferred onto the 

Ficoll Paque without disturbing the lower layer forming two phases. The falcon was 

centrifuged (800 x g, 18 – 20 °C, 30 min, brakes switched off). Ficoll-Paque acts as a 

separation medium and during centrifugation cells migrate to form layers containing 

different cell types. Erythrocytes and granulocytes aggregate at the bottom of the flask 
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together with cell debris. At the interface between plasma and Ficoll-Paque layer, 

mononuclear cells are found beside slowly sedimenting particles, such as platelets. After 

separation, the mononuclear ring containing the PBMCs was collected from the falcon. 

Cells were washed three times with 10 mL PBS (200 x g, RT, 5 min) to remove 

contaminations of platelets and cell material. Clean PBMCs were resuspended in PBS or 

homogenization buffer (2.7). 

3.2.5 Preparation of membrane fractions 

Biologically active membrane fragments were produced from different cell lines as a 

source for undefined antigen during solid-phase panning and as coating antigen on 96-well 

plates during screening and ELISA experiments. Cell lines were cultivated, sonicated and 

membrane fractions were isolated using ultra centrifugation [134].  

Cell lines were cultivated in 75 cm
2
 flasks using the appropriate media. About 10 flasks per 

cell line were harvested and 1.8 x 10
7
 cells/preparation/cell line were processed to 

membrane fractions. Adherent cells were detached from the flask with 2 mL Accutase
®

. 

Cells were washed with 3 x 10 mL PBS (200 x g, 4 °C, 10 min). Cells were resuspended in 

8 mL ice-cold homogenization buffer (2.7), counted and incubated on ice for 10 min. This 

cell suspension was sonicated twice for 60 s with intensity of maximum 70% or until the 

cell suspension appeared clear (depending on morphological properties of cell line). The 

clear suspension was centrifuged (1,000 x g, 4 °C, 12 min). The supernatant was 

transferred to ultra-centrifuge tubes and centrifuged (100,000 x g, 4 °C, 20 min). Pelleted 

membrane fractions were taken up in 10 mL ice-cold resuspension buffer (50 mM Tris HCl 

(pH 7.4)) and were ultra-centrifuged again under the same conditions. Finally, the 

membrane fraction pellet was resuspended in 1.2 mL/tube PBS and stored as 300 µL 

aliquots at -80 °C. For L3.6pl and FG membrane fractions ELISA coating buffer was used 

instead of PBS. 
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3.3 Protein chemical and immunological methods 

3.3.1 SDS-PAGE 

Denaturing discontinuous sodium dodecylsulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed for protein analysis, detection and size separation [233]. 

Protein samples were mixed with 5 x protein loading dye containing ȕ-mercaptoethanol, 

heated to 99 °C for 5 – 10 min for complete denaturation, centrifuged and loaded on a 12% 

polyacrylamide gel next to a pre-stained protein marker for size comparison. Protein 

separation was carried out in a BioRad MiniProtean III Electrophresis chamber at 100 –

 150 V for 1 – 2 h. Then glass plates were removed and separated protein bands were 

stained with Coomassie Brilliant Blue (SERVA, Heidelberg, Germany). The gel was 

destained until protein bands became clearly visible using Destaining Solution (2.7) and a 

sponge. For buffer compositions, stacking and separating gel mixtures see 2.7. Completed 

Coomassie-stained gels were scanned for documentation and subsequent automatic 

imaging data analysis (AIDA) (3.3.3.1). 

3.3.2 Western blot analysis 

Proteins from a duplicate SDS-PAGE (3.3.1) were transferred and immobilized onto a 

nitrocellulose membrane (GE healthcare, UK) with a cooled BioRad Mini Trans-Blot 

device. This method specifically verifies proteins by means of immunochemical 

visualization. Following protein transfer, the membrane was blocked with 2% MPBS for 

2 h at RT, washed 3 x 5 min with PBST and incubated with a penta-anti-His IgG mouse 

primary antibody (2.8) (dilution: 1 : 2000 in PBS) for 1 h at RT. Washing was repeated as 

above and the secondary goat-anti-mouse peroxidase conjugated antibody (2.8) was 

incubated (dilution: 1 : 5000 in PBS) for 1 h at RT. The signal was developed with 3,3′-

diaminobenzidine tetrahydrochloride (DAB) activated with 30% H2O2. Several washing 

steps with PBS stopped the substrate reaction and the blot was scanned for documentation 

and AIDA analysis (3.3.3.1). 

3.3.3  Determination of protein concentration 

Protein concentrations were determined using two different methods: (1) Densitometric 

analysis of protein bands on Coomassie-stained gels by the AIDA Image Analyzer 

software (3.3.3.1) and (2) colorimetric determination with a BC-assay (3.3.3.2). 
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3.3.3.1 AIDA analysis 

Protein samples on the Coomassie-stained gel (3.3.1) were analyzed against a BSA 

standard dilution series (10 µg/mL – 500 µg/mL) run in parallel. AIDA visually compares 

staining density of protein bands and protein concentrations were calculated in relation to 

the BSA standards. Thus, overall protein concentrations as well as the concentration of a 

certain target protein can be calculated. 

3.3.3.2 BC-Assay 

Total protein concentration of purified scFv-SNAP proteins was determined 

colorimetrically with a BC-assay (2.6). In this method, Cu
2+

 ions are reduced to Cu
+
 ions 

and proteins are quantitatively chelated to the monovalent copper ions in presence of 

bicichoninic acid to form a purple and water soluble complex. The color signal was 

developed for 1 h at 60 °C and its absorption was measured at Ȝ = 562 nm. The result was 

interpreted and calculated in Excel based on a straight calibration line from a BSA protein 

standard dilution series (2 – 500 µg/mL). The reaction protocol was carried out in a 

microtiter plate according to the manufacturers’ instructions for the “enhanced protocol”. 

3.3.4 Immobilized metal-ion affinity chromatography 

Eukaryotically expressed soluble scFv-SNAP proteins, as well as prokaryotically 

expressed Wx-Ki-4(scFv) proteins, were purified via the C-terminal His6-tag using 

immobilized metal-ion affinity chromatography (IMAC) [243]. This method facilitates 

small-scale purification of non-denatured prokaryotic and eukaryotic proteins by means of 

batch preparation with a suspended matrix. Its principle is based on the reversible 

interaction between various amino acid side chains (e. g. present in His6-tag) and bivalent 

immobilized metal-ions, such as Co
2+

, Ni
2+

 or Zn
2+

, usually embedded into pockets of an 

iminodiacetic acid (IDA) matrix. His-tagged proteins act as electron donor and transition 

metal ions as electron acceptor, thus forming a reversible ionic bond. Nickel-based resins 

tend to bind host proteins with histidine residues, having an adverse effect on protein 

purity. Instead, cobalt-based TALON resin was employed here to purify the His6-tagged 

proteins under native conditions. Competitive elution with excess imidazole recovers resin-

bound proteins by replacing all His6-tagged proteins on the TALON resin. 
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3.3.4.1 IMAC purification protocol 

Collected tissue culture supernatant (TCSN) containing eukaryotically expressed 

scFv-SNAP proteins (3.2.3) or bacterial crude lysate from prokaryotic expression after cell 

disruption with a combination of TES buffer lysis (3.3.5.2) and sonication (3.3.5.4) were 

processed during IMAC. Cell debris was removed from solutions (4,500 x g (15,000 x g 

for crude lysate), 4 °C, 30 min). Moreover, EDTA was removed from bacterial lysate in an 

additional dialysis step (3.3.6) to prevent it from disturbing the IMAC purification set-up. 

The whole purification process was carried out at RT. For purification, 9 mL TCSN or 

dialyzed crude lysate were mixed with 4 mL 4 x Equilibration buffer (2.7) in a 15 mL 

falcon tube. 150 – 200 µL TALON resin were transferred to a 1.5 mL Eppendorf tube, 

centrifuged (6,000 rpm, 1 min) and washed with 1 mL 1 x Equilibration buffer. 

Supernatant was always removed by dunking the pipet tip into the resin pellet and carefully 

aspirating the liquid. Equilibrated matrix and TCSN or dialyzed lysate were mixed and 

incubated for 1 h on a rotator to allow the His6-tagged proteins to attach to the Co
2+

 ions on 

the TALON matrix. This suspension was centrifuged (1,000 x g, 5 min), and after 

discarding the supernatant the resin was washed twice with 1 mL 1 x Equilibration buffer 

as above. To elute matrix-bound proteins, the matrix was incubated with 150 µL Elution 

buffer containing 250 mM imidazole (2.7) for 20 min on a rotator. The matrix was pelleted 

(6,000 rpm, 2 min), the supernatant containing the eluted protein transferred to a fresh 

Eppendorf tube and stored at 4 °C. 

Purified proteins were analyzed via SDS-PAGE (3.3.1) and Western blotting (3.3.2) to 

determine protein purity and concentration for following protein ELISA (3.3.9.3) and flow 

cytometric binding analysis (3.3.10) as well as internalization assays (3.3.11.1, 3.3.11.2). 

3.3.4.2 SNAP-tag labeling of scFv-proteins with fluorophore dyes 

For subsequent fluorescence-based binding and internalization experiments scFv antibody 

fragments were genetically fused to an engineered version of the human DNA-repair 

enzyme O6-alkylguanine DNA alkyltransferase (hAGT), known as SNAP-tag (1.5.3), by 

subcloning into the pMS-SNAPMut vector [209, 210, 212, 213]. Substrates containing 

O6-benzylguanine derivates can be covalently linked to SNAP fusion proteins providing a 

strategy to equip scFv antibodies with various fluorescent dyes or other imaging reagents 

[209, 211, 215]. The SNAP-tag labeling reaction is highly specific and efficient 

(stochiometrically 1 : 1) but independent of the label’s nature. Substrates BG-Vista Green 

(BG-VG), BG-Alexa Fuor 488 (BG-AF488) and BG-Alexa Fluor 647 (BG-AF647) were 
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purchased from New England BioLabs as lyophilized products, resuspended in 50 µL 

DMSO (stock concentration: 1 nmol/µL) and stored at -20 °C protected from light. For the 

labeling reaction scFv-SNAP proteins were IMAC-purified as described in 3.3.4.1. Right 

before the elution step, matrix-bound proteins were additionally incubated with 150 µL 

1 x Equilibration buffer containing 1.5 µL BG-dye for 1 h at RT on a rotator protected 

from light. Afterwards the resin was washed with 3 x 1 mL 1 x Equilibration buffer, eluted 

and analyzed as described in 3.3.4.1. Successful fluorescence labeling was checked on the 

SDS-PAGE before Coomassie staining under a VersaDoc device. Fluorescence-labeled 

proteins always have to be protected from light to avoid fading of fluorescence intensity. 

3.3.5 Extraction of recombinant protein after prokaryotic expression 

Bacteria-produced periplasmic recombinant proteins were released from the cells by 

application of several methods. Recovered proteins were used for soluble protein ELISA 

(3.3.9.3) or flow cytometric binding analysis (3.3.10), or 2D scans of Wx-Ki-4(scFv) 

proteins (3.5.2).  

3.3.5.1 Lysozyme extraction 

One method for protein extraction after prokaryotic expression was the enzyme-based 

lysozyme extraction. Lysis buffer (2.7) was freshly mixed with 300 µg/mL lysozyme 

(stock solution: 10 mg/mL in 10 mM Tris-HCl, pH 8.0) and the bacterial pellet was 

resuspended. This mixture was incubated at 37 °C for 30 min, then the suspension was 

centrifuged (15,000 x g, 4 °C, 30 min) and the lysate was transferred to a fresh tube. 

3.3.5.2 TES buffer extraction 

Osmotic shock extraction uses the sudden change of solute concentration from high to low 

around the cells. Due to the lower salt concentration, large amounts of water enter the cell 

very rapidly, causing it to swell and burst, thereby releasing the proteins contained in the 

periplasmic space. To release periplasmic proteins from 50 mL pelleted bacterial culture 

(3.1.9.3), they were resuspended in 8 mL 1 x Tris-EDTA-sucrose (TES) buffer (2.7). The 

suspension was incubated for 15 min on ice, then 12 mL 0.2 x TES buffer at RT were 

added and the mixture was incubated for 15 min shaking at RT to keep suspension intact. 

Osmotic lysate with periplasmic proteins was recovered after centrifugation (15,000 x g, 

4 °C, 30 min), transferred to a fresh 15 mL falcon tube. 
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3.3.5.3 Extraction with NP-40 

As third method, the non-denaturing detergent Nonidet-P40 (Applichem, A1694 0250, 

99% pure), normally a detergent for recovery of cytoplasmic proteins was tested. 

Therefore, lysis buffer (2.7) was supplemented with 10 mM of NP-40, the bacterial pellet 

was resuspended and the mixture was incubated on ice for 5 – 10 min. The lysate was spun 

down (15,000 x g, 4 °C, 30 min) and the lysate was collected in a clean tube. 

3.3.5.4 Extraction via sonication 

Harvested bacteria were resuspended in lysis buffer (2.7) and the suspension was sonicated 

five times for 60 s at 70% amplitude (Sonoplus, Bandelin, Berlin, Germany) until the 

solution appeared transparent. The mixture was kept on ice to prevent protein degradation. 

The solution was centrifuged (15,000 x g, 4 °C, 30 min) and released proteins were 

transferred to a fresh tube. 

3.3.6 Dialysis of scFv-protein solutions and crude lysate 

To remove salts, EDTA or imidazole, protein samples and crude cell lysates were passed 

through PD10-desalting columns (GE Healthcare, Munich) thus exchanging the buffer 

with PBS prior to down-stream analysis. This method is based on gravity-flow gel 

filtration for collecting size-sorted molecules. For dialysis, sample volume was adjusted to 

2.5 mL, then columns were calibrated with 2 x 10 mL ddH2O and samples were loaded 

onto the column. The flowthrough with the low-molecular contaminants was discarded and 

protein was eluted from gel filter with 3 – 3.5 mL PBS, whereas salts remain on the 

column. 

3.3.7 Concentrating protein solutions 

Samples of large volume and low protein content were concentrated by means of 

Vivaspin 6 (15 mL) or Vivaspin 20 (50 mL) ultrafiltration spin columns with a protein 

cut-off at 5 or 30 kDa depending on protein size. Molecules below cut-off pass the 

polyethersulfon membrane in the concentration centrifugators. A large volume of a protein 

solution was transferred to the upper compartment of the spin columns and centrifuged 

according to the manufacturers’ instructions at 4 °C to the desired volume and 

concentration. Contaminants were removed efficiently by refilling the protein solution with 

PBS to 5 or 10 mL and repeated centrifugation. Final protein concentrate was recovered 

directly from the spin column and transferred to a fresh tube to determine protein content. 
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3.3.8 Mass spectrometrical analysis 

As analytical method to determine molecules and molecule fragments mass spectroscopy 

was employed to verify the identity of W-tagged and non-tagged scFv antibody fragments. 

A protein band was excised from a Coomassie-stained SDS-PAGE (3.3.1), shredded and 

decolorized by adding ammonium hydrogen carbonate (NH4HCO3) and acetonitrile. After 

denaturation with dithiothreitol (DTT) and alkylation with iodine acetamide, mass 

spectrometric analysis was performed by Michael Küpper from Fraunhofer Institute IME 

(Aachen). Molecules were analyzed with an ESI-MS/MS mass spectrometer (Micromass 

Electrospray Q-TOF 2, Waters Corporation, Eschbor) after proteolytic cleavage with 

trypsin and gel extraction in a nanoHPLC (Dionex, Germering). Identified molecule 

fragments were evaluated using the protein data base MASCOT (Matrix Science, London, 

UK). 

3.3.9 Enzyme-linked immunosorbent assay (ELISA) 

The enzyme-linked immunosorbent assay (ELISA) is a common antibody-dependent 

detection assay based on an enzymatic color change reaction, thus identifying binding 

activity to an immobilized antigen on an MTP. ELISA was used to show enrichment of 

L3.6pl-binding scFv-phage particles (3.3.9.1), to screen for sequence-unique 

L3.6pl-specific scFv-phage particles (3.3.9.2) and to test cross reactivity to other cell lines 

(3.3.9.2). Moreover, specific binding activity of soluble scFv-SNAP proteins after 

eukaryotic expression was documented (3.3.9.3) by ELISA. Membrane preparations 

(3.2.5) of L3.6pl and PBMC cells were coated as antigen, as well as membrane 

preparations of several other cell lines during cross reactivity testing (4.3.2). 

General information for all ELISA experiments: (a) All blocking and incubation steps were 

performed out on an orbital shaker (400 rpm), (b) bacterial MTP cultures were covered 

with a semi-permeable membrane to ensure sufficient oxygen supply for bacterial growth 

and (c) MTPs with phage-containing solutions or bacterial cultures were covered with an 

air-tight plastic seal to avoid phage-related cross-contamination to neighboring wells or the 

incubator. 

3.3.9.1 Polyclonal phage ELISA 

After each selection round, polyclonal phage pools were analyzed for enrichment of 

L3.6pl-specific scFv-phage fragments. The scFv-phage pools of all three selection rounds, 

as well as the original Tomlinson Libraries, were precipitated with PEG/NaCl (2.7) and 
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resuspended in PBS to reach a phage concentration (3.4.4) of 1 x 10
11

 pfu/mL. A 96-well 

MTP was coated with 100 µL/well L3.6pl membranes (dilution: 1 : 100 in ELISA coating 

buffer) and 100 µL/well FG or PBMC membranes, respectively, at the same antigen 

dilution. Antigen was immobilized on MTPs by incubation at 4 °C for 12 – 16 h without 

shaking. Then the antigen was quickly washed with 3 x 200 µL/well PBS and blocked with 

200 µL/well 2% MPBS for 2 h at RT. In parallel, the polyclonal scFv-phage pools were 

blocked with 2% MPBS at a ratio of 1 : 1. Afterwards, wells were washed as above and 

100 µL/well blocked scFv-phage solution was added to the respective wells. After 

incubation of the scFv-phage solution for 1 h at RT unbound scFv-phage particles were 

removed with 3 x 200 µL/well PBST and 100 µL/well secondary HRP/anti-M13 

monoclonal conjugated antibody (dilution: 1 : 5,000 in 2% MPBS) were incubated for 1 h 

at RT. Then wells were washed as before and 100 µL/well fresh ABTS (2,2'-azino-bis(3-

ethyl-benzothiazoline-6-sulphonic acid) substrate solution were added and incubated at RT 

for 15 – 60  min. ABTS absorbance was measured in a Tecan Reader (2.2) at 405 nm 

(reference wavelength 490 nm) every 15 min. 

To verify results, all polyclonal scFv-phage pools were analyzed as triplicates. Moreover, 

every assay was performed twice with M13KO7 helperphage and repeated once with 

M13KO7ΔpIII hyperphage. 

3.3.9.2 Monoclonal phage ELISA 

After biopanning a population of scFv-phage particles was screened by a monoclonal 

phage ELISA to identify unique scFv-phage clones with L3.6pl-specific binding activity. 

A 5 mL 2 x TYgluc,amp culture was inoculated from TG1F+ E.coli glycerol stocks resulting 

from the third selection round and grown for 8 h at 37 °C and 250 rpm. 1 : 100 dilutions 

ranging from 10
-2

 to 10
-8

 were prepared with 2 x TYgluc,amp medium, then 10 µL/dilution 

was plated on an LBamp agar plate and incubated O/N at 37 °C. Single colonies carrying the 

information for one unique phagemid were picked to produce a single scFv-presenting 

clone for monoclonal phage ELISA analysis. Individual clones were each inoculated into a 

96-well MTP with 150 µL/well 2 x TYgluc,amp medium and grown at 37 °C and 250 rpm 

O/N. A cryo stock was prepared from this original 96-well MTP (3.1.10) from which a 

small inoculum (~1 – 2µL/well) was transferred to a fresh 96-well MTP containing 

200 µL/well 2 x TYgluc,amp medium. Cultures were grown at 37 °C and 250 rpm for 2 h to 

reach an approximate OD600 of 0.4 – 0.5, then 25 µL/well 2 x TYgluc,amp medium were 

added containing 1 x 10
9
 pfu/well M13KO7 helperphage. Wells were infected at 37 °C 
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without shaking for 30 min and another 30 min shaking at 37 °C and 250 rpm. Then the 

MTP was centrifuged (1,800 x g, 4 °C, 10 min), the supernatant was discarded and the 

bacterial pellet resuspended in 200 µL/well 2 x TY induction medium (2.3) to induce 

phage production. The MTP was placed at 30 °C and 250 rpm for 18 – 20 h to promote 

phage production. Next, scFv-phage cultures were centrifuged as above and the 

supernatant containing the scFv-phage was blocked with 2% MPBS (ratio 1 : 1) for 2 h 

before monoclonal phage ELISA analysis. For the monoclonal ELISA procedure the same 

protocol was used as for the polyclonal phage ELISA (3.3.9.1). 

One sample was analyzed per well, and thus each monoclonal phage ELISA was repeated 

three times to ensure reproducibility of the results. 

Antigen coating: Membrane fractions of L3.6pl and other cell lines were coated on the 

96-well MTP in 100 µL/well (dilution: 1 : 100 in ELISA coating buffer or PBS) and 

immobilized at 4 °C O/N. Living cells were coated 24 h previous to the ELISA 

experiment. 100 µL/well cell suspension, at 20,000 cells/well, were seeded out in 

RPMI/10/1 and grown. PBMCs were isolated (3.2.4), diluted to a concentration of 

20,000 cells/well and centrifuged to the MTP bottom, first at 500 x g for 5 min, then with 

increased centrifugation force for 30 min at 4,500 x g. The supernatant covering all cells 

was discarded and wells were air-dried for 2 min. Then 100 µL/well of ice-cold EtOH 

(-20 °C) were incubated on ice (under a hood) for 10 min to fix cells onto MTP.  

3.3.9.3 Protein ELISA 

After monoclonal phage ELISA screening (3.3.9.2) and site-directed mutagenesis of amber 

stop codons (3.4.6), L3.6pl-specific scFv antibodies were analyzed as soluble protein 

expressed in: (1) A prokaryotic system via pIT2 vector in HB2151 or pMT vector in BL21 

Rosetta 2 (DE3) E.coli, or (2) via the eukaryotic pMS-SNAPMut vector transfected into 

HEK293T cells (3.2.3). Binding activity and specificity without an attached phage 

particles, possibly interfering with the specific scFv-binding, was tested on L3.6pl 

membrane fractions (antigen coating as in 3.3.9.2). Samples were analyzed in triplicates 

and the soluble protein ELISA was repeated twice to confirm reproducibility of binding 

results. 

Prokaryotic expression: Soluble scFv proteins were expressed as 5 mL cultures as 

described in 3.1.9.3. Bacteria were pelleted (4,500 x g, 4 °C, 15 min) and periplasmic 

proteins were recovered via TES buffer lysis (3.3.5.2). The lysate was analyzed via 
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SDS-PAGE (2.7) before performing the ELISA experiment. Blocking, washing and 

incubation steps were analogous to the polyclonal phage ELISA (3.3.9.1), but different 

antibodies were applied. Specific L3.6pl-binding scFv antibodies were detected with a 

monoclonal anti-poly His mouse IgG antibody (dilution: 1 : 2500 in PBS) against His6-tag 

which was then bound by a goat-anti-mouse peroxidase-conjugated IgG secondary 

antibody (dilution: 1 : 5000 in PBS). ABTS substrate was added to develop a signal 

(3.3.9.1). The W-tagged Ki-4(scFv) proteins, after dialysis (3.3.6) and Vivaspin 

concentration (3.3.7), were treated likewise. 

Eukaryotic expression: TCSN containing scFv-SNAP proteins (3.2.3) was collected and 

the protein concentration analyzed via SDS-PAGE. Blocking, washing and incubation 

steps were analogous to the polyclonal phage ELISA (3.3.9.1). Bound scFv-SNAP proteins 

were captured with a commercial polyclonal anti-SNAP-tag rabbit IgG (dilution: 1 : 5,000 

in PBS). For specific detection a goat-anti-rabbit HRP-conjugated IgG antibody (dilution: 

1 : 5,000 in PBS) was applied followed by signal development with 100 µL/well fresh 

ABTS (3.3.9.1). 

3.3.10 Flow cytometric analysis 

Binding activity of L3.6pl-specific scFv-SNAP proteins and Wx-Ki-4(scFv) fusion 

proteins on a native antigen conformation was analyzed via flow cytometry. PBMCs were 

used as negative control. Samples were centrifuged at 1,200 x g at 4 °C for 5 min. Mean 

fluorescence intensity values (MFI) and geometrical mean values (%G mean) of the flow 

cytometry measurements were displayed as percent changes in relation to 425(scFv) 

positive control or Ki-4(scFv) expression control (100%). MFI was calculated by 

CellQuest Pro or WinMDI 2.9 software (Table 2-1). All measurements were performed 

with a FACScalibur flow cytometer (Table 2-2). 

3.3.10.1 Binding analysis of scFv-SNAP proteins 

50 µL L3.6pl and PBMC cell suspensions (2 x 10
5
 cells/mL) were transferred into FACS 

tubes and washed with 1 mL ice cold PBS. 300 µL/tube unpurified TCSN containing 

scFv-SNAP proteins (3.2.3) or 2 µg IMAC-purified protein (3.3.4) were added and 

incubated on ice for 1 h. Cells were washed once with 1 mL PBS, incubated on ice with 

100 µL/tube penta-anti-His Alexa Fluor 488 conjugated antibody (dilution: 1 µg/mL) for 

30 min and washed again twice. Cell pellet was resuspended in 500 µL/tube ice cold PBS 

containing 1 µg/mL propidium iodide to sort out dead cells. The fluorescence signal of 
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bound proteins was measured and analyzed. The same conditions were employed during 

flow cytometric cross-reactivity testing to other cell lines. 

3.3.10.2 Binding analysis of BG-coupled scFv-SNAP proteins 

L3.6pl and PBMC cells were transferred into FACS tubes and treated as in 3.3.10.1. Then 

2 µg IMAC-purified BG-coupled protein (3.3.4) were added and incubated on ice for 1 h. 

Used scFv-SNAP proteins were either coupled to BG-VG or BG-AF488 for measurement 

of green fluorescence or to BG-AF647 for red fluorescence documentation. Cells were 

washed twice with 1 mL PBS and resuspended in 500 µL/tube ice-cold PBS containing 

1 µg/mL propidium iodide to sort out dead cells (propidium iodide staining was not used 

for measurement of BG-AF647 coupled scFv proteins since the signal of propidium iodide 

interfered with the measurement). The fluorescence signal of bound proteins was measured 

and analyzed as in 3.3.10.1. 

3.3.10.3 Binding analysis of Wx-Ki-4(scFv) fusion proteins 

L540cy and PBMC cell suspensions (2 x 10
5
 cells/mL) were transferred into FACS tubes 

and treated as described in 3.3.10.1. Then 2 µg of each Wx-Ki-4(scFv) fusion protein, 

present in bacterial crude extract after TES-lysis (3.3.5.2) were incubated on ice for 1 h. 

Binding of Wx-Ki-4(scFv) fusion proteins to L540cy cells was detected via the His6-tag as 

described in 3.3.10.1. 

3.3.11 Fluorescence-based internalization assays 

When developing therapeutic treatment options it is essential to isolate scFv antibodies 

with internalizing properties. Internalization into a diseased target cell after binding to its 

cellular surface is a very basic requirement for cytolytic cancer therapeutics (e. g. 

immunotoxins) to unfold their full effect within the cell. Moreover, rapid degradation of 

the medicine in the body is prevented leading to better treatment results. Newly isolated 

scFv antibodies isolated from the Tomlinson Libraries I and J were characterized for 

internalization behavior by means of flow cytometry (3.3.11.1) and OPERA-based 

confocal microscopy on living cells (3.3.11.2) as well as on immunofluorescence-stained 

fixed and permeabilized cells (3.3.11.2). The well-documented and rapidly internalized 

EFGR-binding 425(scFv) antibody fragment [158, 159] was used as positive control 

throughout all internalization experiments. 
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3.3.11.1 Flow cytometry-based internalization testing 

All incubations at 4 °C were performed in 1% NaN3 to prevent too rapid internalization. 

Incubations at 37 °C were carried out in serum-free RPMI medium to create a most viable 

environment encouraging internalization. For washing, cells were resuspended in 1 mL 

ice-cold PBS and pelleted (1,200 rpm, 4 °C, 5 min). To test for surface binding and 

internalization, 1 x 10
6
 L3.6pl cells/tube were incubated for 1 h with 300 µL NaN3 or 

RPMI 1640 Glutamax medium, containing 3 µg AF647-coupled scFv-SNAP protein. 

Incubation was conducted at 4 °C to allow cell surface attachment only, and another in 

parallel at 37 °C to promote internalization of 647-labeled scFv-SNAP proteins. Then cells 

were washed with 1 x 2 mL PBS and the red fluorescence signal of 4 °C and 37 °C 

incubations was measured using a FACScalibur device. For measurements, cells were 

always resuspended in 500 µL/tube 0.5% PFA. Afterwards surface-bound scFv-SNAP 

proteins were digested off with 500 µL/tube 0.25% trypsin-EDTA at 37 °C for 5 – 10 min. 

Trypsin reaction was stopped by addition of 500 µL/tube RPMI medium supplemented 

with 20% FBS. Then, cells were washed once and the fluorescence signal was measured 

again. For 4 °C incubations, no fluorescence signal was expected after trypsinization. 

However, for 37 °C incubations the fluorescence signal should still be present from inside 

the cells if the internalization process has been successful. As additional control, L3.6pl 

cells before and after trypsinization were incubated with a penta-anti-His Alexa Fluor 488 

conjugated IgG as secondary detection antibody to confirm removal of all surface-bound 

scFv-SNAP proteins by trypsinization. Therefore, cells were resuspended in 100 µL/tube 

NaN3 containing 1 µg/mL secondary antibody, incubated on ice for 30 min., washed twice, 

measured and analyzed as described in 3.3.10. This protocol has been adapted from Xiao et 

al., 2008 [244]. 

3.3.11.2 OPERA-based confocal microscopy 

Real-time observation of living L3.6pl cells: All scFv-SNAP fusion proteins with a 

positive internalization outcome in 3.3.11.1 were examined further during live cell imaging 

with OPERA-based confocal microscopy at Fraunhofer IME (Aachen). The OPERA 

measurement device is a fully automated system for confocal microscopy able to measure 

several samples and their replica wells in parallel and to visualize internalization kinetics 

for several hours in real-time under cell cultivating conditions. The laser analysis system 

was able to focus on different layers throughout the cell and to stack the pictures for 

subsequent documentation and analysis. L3.6pl cells were split onto a 96-well MTP 
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(Greiner, black, µ-clear) at 20,000 cells/well, and placed at 37 °C to settle and adhere O/N 

in RPMI/10/1. Afterwards, culture medium was exchanged with serum-free medium for 

2 – 4 h. Then, wells were washed twice with 200 µL ice-cold PBS and 3 µg scFv-SNAP 

protein labeled with BG-AF647 were incubated at 4 °C in 50 µL/well RPMI medium 

without phenol red (color would disturb measurement) for 30 – 60 min to visualize binding 

to the cell surface. Again wells were washed with 3 x 200 µL PBS to remove excess dye or 

unbound proteins. The MTP was then placed at 37 °C to induce internalization. 

Internalization was observed and measured with the OPERA system after 30, 60 and 

80 min via AF647 fluorescence. To remove background fluorescence related to free AF647 

dye, wells were washed repeatedly with PBS. AF647-labeled Ki-4(scFv)-SNAP protein, 

without internalizing properties on L3.6pl cells, served as negative control. Samples were 

measured as triplicates and pictures were taken of surface-bound as well as internalized 

scFv-SNAP proteins. 

Immunofluorescence staining: L3.6pl cells were seeded into a 96-well MTP (Greiner, 

black, µ-clear) at 20,000 cells/well and grown O/N in full media. Medium was exchanged 

to serum-free and cells were incubated for another 3 – 4 h. Wells were washed twice with 

200 µL PBS and 150 µL/well unpurified TCSN containing soluble scFv-SNAP proteins 

were added. Proteins incubated at 37 °C for different time periods (4 h, 3 h, 2 h and 1 h) to 

examine internalization behavior. In parallel, the same scFv-SNAP proteins were incubated 

at 4 °C for 1 h to confirm cell surface binding. Next, wells were washed twice with 200 µL 

ice-cold PBS, fixed with 200 µL 4% PFA for 10 min at RT and washed again with PBS 

(2 x 5 min and 3 x fast). Half of the wells were permeabilized with 100 µL 

0.1% TritonX100 in PBS for 10 min at RT and washed with PBS (3 x 5 min). Unspecific 

sites were blocked with 200 µL/well 3% BSA/PBS (BSA: IgG-free fraction V) for 1 h at 

RT or at 4 °C O/N. Wells were cleaned with PBS (3 x fast) and the polyclonal anti-SNAP-

tag rabbit IgG secondary antibody (dilution: 1 : 5,000 in 1% BSA/PBS) was incubated for 

1 h at RT or at 4 °C O/N. Afterwards, cells were washed again with PBS (2 x fast, 

3 x 5 min.). Next, the anti-rabbit IgG (H+L), F(ab)2 Fragment (Alexa®647) tertiary 

detection antibody (dilution: 1 : 1,000 in 1% BSA/PBS) was incubated for 1 h at RT. Wells 

were washed using same washing conditions as above and 100 µL/well DAPI solution 

(dilution: 1 : 10,000 in PBS) were added for counter-staining of nuclei. Fluorescence 

intensity of bound scFv-SNAP proteins was detected via the OPERA system. Measurement 

parameters were adjusted with the OPERA software Evoshell with the help of Dr. Stefano 
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Di Fiore at Fraunhofer IME (Aachen). Figures were evaluated and edited using the ImageJ 

1.42q software. 

3.4 Phage Display Technology 

In this work, the naïve human and semi-synthetic Tomlinson Phage Libraries I and J 

(1.3.3) were used for the isolation of L3.6pl-specific scFv antibody fragments using phage 

display technology. To avoid confusion between clones selected from the two libraries, 

biopanning was performed separately. 

3.4.1 Cultivation of Tomlinson Libaries I and J 

Each library was received as a 500 µL cryo stock containing phagemid-carrying TG1F+ 

E.coli. 200 mL pre-warmed 2 x TYgluc,amp medium (2.3) were inoculated with it and grown 

O/N at 37 °C and 250 rpm. Bacteria were pelleted (4,000 x g, 4 °C, 10 min), resuspended 

in 10 mL 2 x TY cryo medium (2.3), aliquoted (500 µL/tube) and stored at -80 °C (3.1.10). 

Tomlinson library cultures for phage display selection were inoculated from these stocks 

and grown O/N as 5 mL 2 x TYgluc,amp medium pre-culture at 37 °C and 250 rpm. 25 mL 

fresh 2 x TYgluc,amp medium were inoculated with 500 µL pre-culture and grown in a sterile 

250 mL Erlenmeyer flask at 37 °C and 250 rpm to OD600 of 0.5. This optical density 

indicates the logarithmic growth phase of TG1F+ E.coli when phage infection via extended 

F-pili is possible (1.3.1). 

3.4.2 Phage infection and production 

5 mL of this culture (3.4.1) were infected with M13KO7 helperphage or M13KO7ΔpIII 

hyperphage, at a multiplicity of infection (MOI) ≥ 20, and incubated for 30 min at 37 °C 

without shaking followed by 30 min shaking at 37 °C and 250 rpm. The infected culture 

was centrifuged (4,000 x g, 4 °C, 5 min), the supernatant discarded and the infected 

bacterial pellet was resuspended in 25 mL 2 x TY induction medium (2.3) to promote 

phage production. The suspension was sealed in air-tight Erlenmeyer plastic flasks and 

incubated at 30 °C and 250 rpm for 18 – 20 h. As infection control, 50 µL of this 

suspension were also plated on LBkan agar and incubated at 37 °C O/N. Phage pools were 

prepared freshly before each selection round. 
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3.4.3 Phage precipitation 

The bacterial culture (3.4.2) was spun down (4,500 x g, 4 °C, 30 min), the phage-

containing supernatant transferred to a 50 mL falcon tube and 1/5 volume ice-cold 

PEG/NaCl (2.7) was added. At low temperatures, the presence of PEG shifts the solubility 

constant of the phage particles in solution, thus precipitating phage particles during 

incubation on ice for 1 h. Precipitated phage were pelleted (12,000 x g, 4 °C, 30 min) and 

the phage pellet was resuspended in 200 – 1000 µL PBS (depending on the selection round 

and strategy). Phage solutions were stored at 4 °C until use. 

3.4.4 Titer determination 

Before and after each selection round, the phage input and output titer was determined with 

the colony method, where ampicillin-resistant TG1F+ cultures were counted after infection 

with a dilution series of M13KO7 helperphage. Therefore, 10 mL 2 x TYgluc,amp medium 

were inoculated with a single uninfected TG1F+ colony from an M9 minimal agar plate 

(2.3) and grown at 37 °C and 250 rpm to an OD600 of 0.5. Then phage suspensions, either 

after PEG-precipitation or elutions after panning, were diluted 1 : 100 in 200 µL PBS 

(dilutions: 10
-2

 to 10
-16

) and used to infect fresh TG1F+ E.coli by incubation for 1 h at 

37 °C and 250 rpm. 10 µL of each dilution were spotted on an LBgluc,amp agar plate and 

incubated at 37 °C for 12 – 16 h. Plaque forming units (pfu), i. e. resistant bacterial 

colonies, were counted and phage concentration was calculated as follows: 

phage concentration [pfu/mL] = 
୬	ሾ୮୤୳ሿ	ൈ	ହሻሺୈ୊	ൈ	୴୭୪୳୫ୣ	ሾ୫୐ሿ 

(n = counted number of ampicillin-resistant colonies on one plate (e.g. plate with 10-6 dilution); DF = dilution factor of 

phage suspension from plate with counted colonies (e.g. at 10-6 dilution); volume = plated volume of phage-bacteria 

mixture of 10 µL; 5 =  dilution of phage-bacteria mixture; pfu = plaque forming units) 

3.4.5 Biopanning 

L3.6pl-specific scFv antibody fragments were selected via three panning strategies:  

(1) Solid-phase panning on adherent viable cells under internalizing conditions (3.4.5.1),  

(2) suspension panning on living cells under internalizing conditions (3.4.5.2) and  

(3) solid-phase panning on membrane fractions for selection of surface-binding scFv 

fragments (3.4.5.3). 

Each complete selection consisted of three panning rounds. First selection rounds were 

always performed with the polyvalent M13KO7ΔpIII hyperphage. This particular phage is 
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missing the gene coding for the pIII coat protein (ΔpIII), hence displaying five copies of a 

specific scFv fragment fused to pIII when produced in TG1F+ E.coli. It shows a much 

stronger binding affinity to a specific surface protein than phage particles with only one 

copy. By this a maximum amount of scFv fragments with unspecific binding to the 

depletion antigens were removed whereas the ones displaying L3.6pl-specific binding were 

rescued to the next selection round. Second and third selection rounds were carried out 

with the monovalent M13KO7 helperphage carrying one scFv-pIII protein on its surface. 

Antigen concentrations were reduced with continuing selection rounds along with 

increasing washing stringency to eliminate scFv-phage particles with unspecific binding 

properties. For detailed instructions to phage display technology, the Tomlinson libraries 

and a general panning schematic see Figure 1-3. 

3.4.5.1 Panning on adherent L3.6pl cells under internalization conditions 

Two days prior to panning 1 x 10
6
 L3.6pl cells were split into a 25 cm

2
 tissue culture flask 

with RPMI/10/1 medium. The same was done for the FG cell line. To avoid cell loss 

during panning, cells had to be adhered to the bottom of the flask. The same cell 

concentration was used for each selection round.  

Throughout selection rounds, 1 mL precipitated scFv-phage particles (3.4.3) were blocked 

with 5% MRPMI (ratio 1 : 1). This mixture was transferred to an empty 25 cm
2
 tissue 

culture flask and incubated at RT for 2 h on a shaker to block the unspecific binding sites 

and to eliminate plastic binders. Simultaneously, FG and L3.6pl cells were washed three 

times with 2 mL PBS and were each blocked with 2 mL 5% MRPMI for 2 h at RT. 

Cross-reactive scFv-phage particles were separated from L3.6pl-specific binders via 

depletion on FG cells, before selection on L3.6pl cells. Therefore, blocked phage solution 

was transferred onto the FG cells and incubated for 1 h at RT shaking slightly.  

This solution containing the non-bound phage after subtractive selection on FG cells was 

transferred onto the L3.6pl cells for positive selection. The phage mixture was incubated at 

37 °C for 1 h shaking slightly. The supernatant was discarded and L3.6pl cells were 

washed with PBS and PBST according to washing steps listed in Table 3-3. 

Table 3-3 Washing steps with increasing stringency applied during solid phase selection on 

adherent whole cells. 

 Selection round 1 Selection round 2 Selection round 3 

Washing steps 

3 x PBST quick 

2 x PBST 5 min on shaker 

3 x PBS quick 

2 x PBS 5 min on shaker 

1 x PBST quick 

4 x PBST 5 min on shaker 

1 x PBS quick 

4 x PBS 5 min on shaker 

1 x PBST quick 

4 x PBST 5 min on shaker 

1 x PBS quick 

4 x PBS 5 min on shaker 
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Phage were collected via proteolytic elution with 600 µL 0.2 M glycine HCl (pH 2.2) 

incubated on L3.6pl cells for 10 min at RT shaking slightly. The eluate was neutralized 

with 1500 µL 1 M Tris-HCl (pH 7.4), transferred to a fresh tube. L3.6pl cells were 

dissolved in 600 µL 0.1 M TEA (pH 12) by incubation for 10 min at RT and subsequently 

neutralized with 1500 µL 1 M Tris-HCl (pH 7.4). Output titers of phage eluate and lysate 

were determined (3.4.4) and two falcons with 14 mL E.coli TG1F+ suspension at an OD600 

of 0.5 were infected with the phage eluate and lysate, respectively. Infected cultures were 

centrifuged (4,000 x g, 4 °C, 10 min) and the pellet was resuspended in 600 µL 2 x 

TYgluc,amp medium. The bacterial suspension was plated on four LBamp agar plates and 

incubated at 37 °C for 12 – 16 h. Afterwards ampicillin-resistant colonies were scraped 

from the plate with 1.5 mL 2 x TY cryo medium and 1 mL/tube bacterial suspension were 

placed at -80 °C for long term storage. 

Figure 3-1 visualizes the selection strategy for the isolation of specific scFv fragments on 

adherent L3.6pl cells. 

 

Figure 3-1 Schematic for phage display selection on adherent whole L3.6pl cells.  

(A) Complete phage pool is incubated on the adherent L3.6pl cells for binding and internalization at 37 °C, 

(B) unbound phage particles are washed away in several washing step of differing stringency, (C) surface-

bound phage particles are eluted from the cells via a pH shift and I the eluted phage particles are amplified 

again so that they can be used for the next selection round starting again with (A) or for further 

characterization. (D) Phage particles that have been internalized during incubation at 37 °C are recovered via 

cell lysis. I Phage particles from lysis fraction are amplified again. 

3.4.5.2 Suspension panning on L3.6pl cells under internalizing conditions 

1 x 10
6
 L3.6pl cells and same amount of PBMC cells were harvested, washed twice with 

5 mL PBS and transferred to a 15 mL falcon tube. PBMCs were freshly isolated before 

each selection round (3.2.4). The same cell concentration was used for all three selection 
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rounds, all centrifugation steps were carried out at 200 x g at 4 °C for 2 min. To ensure that 

the cells were able to survive shear stress implied by repeated centrifugation, the third 

selection round was simulated previous to this panning strategy (Table 3-4).  

Table 3-4 Washing steps with increasing stringency used for selection rounds one, two and three 

during suspension panning with whole L3.6pl cells 

 Selection round 1 Selection round 2 Selection round 3 

Washing steps 

3 x PBST quick 

2 x PBST 5 min on shaker 

3 x PBS quick 

2 x PBS 5 min on shaker 

1 x PBST quick 

4 x PBST 5 min on shaker 

1 x PBS quick 

4 x PBS 5 min on shaker 

1 x PBST quick 

4 x PBST 5 min on shaker 

1 x PBS quick 

4 x PBS 5 min on shaker 

The same protocol as described in 3.4.5.1 was used for panning, internalization, lysis and 

re-infection of scFv-phage fragments with the only difference that the phage-scFv particles 

were not eluted from the cells but lysis was performed right away. Figure 3-2 shows a 

schematic of the applied suspension panning strategy. 

 

Figure 3-2 Schematic for phage display selection on L3.6pl cells in suspension.  

(A) Complete phage pool is incubated on L3.6pl cells in suspension for binding and internalization at 37 °C, 

(B) unbound phage particles are washed away in several washing step of differing stringency, (C) surface-

bound and internalized phage particles are recovered at the same time via total cell lysis without previous 

elution and (D) the recovered phage particles are amplified again so that they can be used for the next 

selection round starting again with (A) or for further characterization. 

  



Methods 

 

 

71 

3.4.5.3 Panning on membrane fractions 

100 µL/well PBMC and L3.6pl membrane fractions were coated on a 96-well MaxiSorb 

MTP at 4 °C for 12 – 16 h to immobilize the depletion and selection antigens. Antigen 

concentration was decreased during the panning process as well as the number of coated 

wells ( 

Table 3-5). L3.6pl membrane fractions were diluted in ELISA coating buffer (pH 9.6), 

PBMC membrane fractions in PBS (pH 7.4). 

Table 3-5 Dilution of membrane fraction antigen used for selection rounds one, two and three. 

 Selection round 1 Selection round 2 Selection round 3 

Antigen dilution Undiluted 1 : 10 1 : 100 

Number of coated wells 4 3 2 

Precipitated phage solutions were resuspended in 600 µL for the first, 400 µL for the 

second and 200 µL PBS for the third selection round. The precipitated phage pools were 

blocked with 5% MPBST (ratio 1 : 1). 200 µL/well 5% MPBST-phage mixture was 

transferred to empty wells (number of wells according to selection round) on the MTP and 

incubated at RT for 2 h on a shaker to block the unspecific binding sites as well as to sort 

out plastic-binding scFv-phage units. Simultaneously, wells coated with PBMC and L3.6pl 

antigen were washed with 3 x 200 µL PBS and were blocked with 200 µL 5% MPBST for 

2 h at RT. 

Cross-reactivity to healthy human cells was eliminated by negative selection on PBMC 

membranes. Therefore, blocked phage solutions were transferred to the PBMC-coated 

wells and incubated for 1 h at RT on a shaker before positive selection on L3.6pl antigen. 

The depleted phage solution was transferred onto the L3.6pl membranes and incubated on 

a shaker for 1 h at RT. Afterwards the supernatant containing unbound scFv-phage 

particles was discarded and the antigen was washed with PBS and PBST at RT according 

to the washing steps listed in Table 3-6. 

Table 3-6 Washing steps with increasing stringency applied during selections rounds one to three 

for all modes of selection. 

 Selection round 1 Selection round 2 Selection round 3 

Washing steps 

3 x PBST quick 

2 x PBST 5 min on shaker 

3 x PBST quick 

2 x PBST 5 min on shaker 

1 x PBST quick 

4 x PBST 5 min on shaker 

1 x PBST quick 

4 x PBST 5 min on shaker 

10 x PBST quick 

5 x PBST 5 min on shaker 

10 x PBST quick 

5 x PBST 5 min on shaker 
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Surface-bound scFv fragment antibodies were eluted via a pH shift. 200 µL/well 

0.2 M glycine-HCl (pH 2.2) were added to each antigen-coated well, incubated for 10 min 

at RT on a shaker and neutralized with 500 µL/well 1 M Tris-HCl (pH 7.4). The titer of 

each eluate was determined by drawing a 2 µL aliquot (3.4.4) and the phage were 

transferred to 14 mL TG1F+ suspension grown to an OD600 of 0.5. In parallel, 200 µL/well 

of the same TG1F+ culture were transferred into each phage-containing well on the MTP 

and both were incubated for 1 h at 37 °C without shaking to allow infection. Infected 

cultures were pooled and panning was finished as described in 3.4.5.1. Panning strategy on 

membrane fractions is illustrated in Figure 3-3. 

 

Figure 3-3 Schematic for phage display selection on L3.6pl membrane fractions.  

(A) Complete phage pool is incubated on the membrane fractions for binding, (B) unbound phage particles 

are washed away in several washing step of differing stringency, (C) bound phage particles are eluted from 

the membrane fractions via a pH-shift and (D) the eluted phage particles are amplified again so that they can 

be used for the next selection round starting again with (A) or for further characterization. 

3.4.6 Site-directed mutagenesis 

The Tomlinson Library J has been artificially diversified by introduction of NNK triplets. 

As a consequence, about 3% of the scFv clones statistically contain a TAG triplet coding 

for the amber stop codon (1.3.3) within CDR2. E.coli suppressor strains, such as TG1F+, 

translate the TAG stop codon to the amino acid glutamine. To obtain fully functional scFv 

clones for soluble protein expression in non-suppressor strains or eukaryotes, the amber 

stop codon was mutated using the “QuikChange Site-Directed Mutagenesis Kit” (2.6). A 

point mutation exchanged the amber stop codon TAG to the triplet CAG directly coding 

for the neutral amino acid glutamine. The kit is based on a PCR reaction performed with 

the proof-reading PfuTurbo DNA polymerase from Pyrococcus furiosus and a temperature 

cycler. PfuTurbo DNA polymerase replicates both plasmid strands without misplacing the 

mutant oligonucleotide primers. Instead of the usual ssDNA template, the basic procedure 

makes use of the supercoiled dsDNA vector containing the insert of interest and two 

synthetic oligonucleotide primers containing the desired mutation. Primers were especially 

Phage Binding Washing Steps Phage Elution Phage Amplification

L3.6pl

membranes

CA B D
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designed for the mutation of each CDR2. The oligonucleotide primers, each 

complementary to opposite strands of the vector, were extended during temperature 

cycling and create a new and mutated circular dsDNA plasmid. The PCR product was 

digested with DpnI, which is an endonuclease specific for methylated and hemimethylated 

DNA. Thus the parental bacteria DNA template was removed without damaging 

synthesized and mutated DNA not displaying methyl groups. 

3.4.6.1 QuikChange Mutation primers 

Due to the high degree of variation within each CDR2 sequence, a different primer pair 

was designed for each mutation process using the QuikChange Primer Design software 

from Agilent Technologies Genomics. Primers were between 25 and 45 bases long with a 

melting temperature Tm ≥ 78 °C and an optimal GC-content of at least 40%. Tm was 

calculated according to the following formula Tm = 81.5+0.41(%GC)-675/N-%mismatch 

(N=length of primer). Primers had to anneal at exactly the same sequence on opposite 

strands of the plasmid with the desired mutation in the middle of the primers and ~10 – 15 

bases of correct sequence on both sides. Primers (10.1) were ordered from Invitrogen and 

delivered as lyophilized powder. 

3.4.6.2 QuikChange Mutation protocol 

Lyophilized primers were restored with sterile ddH2O to a final concentration of 10 pmol 

and mixed for the PCR mutagenesis reaction with double-stranded phagemid DNA, 

reaction buffer, dNTPs and the PfuTurbo DNA polymerase on ice. Table 3-7 shows the 

mutagenesis mix and thermo cycler set-up. 

Table 3-7 Reaction conditions of site-directed mutagenesis of amber stop codons using the 

QuikChange Site-Directed Mutagenesis Kit. 

(A) PCR reaction mixture, (B) thermo cycler program. 

(A) (B) 

Reagent Volume [µL] Temperature [°C] Time [min] Cycles 

Phagemid DNA (~20 ng/µL) 0.5 95 00:30 1 

10 x Pfu reaction buffer 5 95 00:30 
 

dNTP mix (25 mM) 1 55 01:00 
 

Forward primer (10 pmol) 1 68-72 06:00 12 

Reverse primer (10 pmol) 1 72 10:00 
 

PfuDNA polymerase 1 4 ∞ 
 

ddH2O ad 50 µL total volume 
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The PCR product was placed on ice for 10 min, then 1 µl DpnI restriction enzyme was 

added to each amplification reaction and immediately incubated at 37 °C for 1 h to digest 

non-mutated parental DNA. Mutated plasmids were transformed into XL1Blue E.coli 

(3.1.11) and plated on LBamp agar. Single colonies were picked and tested for presence and 

correct size of the scFv-insert via colony PCR (3.1.1.2) using primers LMB3 and fdseq1 

and subsequent agarose gel electrophoresis (3.1.5). Correct scFv-inserts were gel-purified 

with the QIAquick Gel Extraction Kit (2.6), sequenced with same primers (2.9, 3.1.4) and 

evaluated via alignment with non-mutated sequences (Vector NTI software). Successfully 

mutated scFv-clones were stored as cryo stocks at -80 °C (3.1.10). 

3.5 Methods of bioengineering 

The bioengineering part of this thesis was performed in cooperation with Esther Gartz at 

the Institute for Biochemical Engineering (AVT) at RWTH Aachen University lead by 

Prof. Dr. – Ing. Jochen Büchs. The modified BioLector [223, 224, 245] device, used for 

this thesis, has originally been developed at the AVT and is now commercially distributed 

by m2pLabs GmbH (Baesweiler). All continuous on-line measurements with the 

BioLector-like device were exclusively performed at the AVT by Esther Gartz. It was used 

to monitor product formation of a target protein fused to the short auto-fluorescent W-tag 

designed in this thesis [246]. 

3.5.1 Micro-scale on-line measurement 

Continuous non-invasive micro-scale on-line measurement was performed on micro-scale 

cultures expressing the W-tagged Ki-4(scFv) and M12(scFv) fusion proteins (3.1.9.3). 

Biomass and product formation of induced and non-induced cultures were measured with 

the modified BioLector device containing an added fiber optical measurement moiety [223, 

224]. The adapted device included a modified orbital shaker (Kühner, Basel, Switzerland), 

an x-y linear motion unit (BMG, Lab Technologies, Offenburg), a fluorescence 

spectrophotometer with filter wheels (Fluostar, BMG, Lab Technologies, Offenburg) and a 

computer. All filters had an optical band width of 10 nm. Biomass formed during 

fermentation was quantified using 180° back-scattered light at 620 nm. Increase in product 

formation during the fermentation process was observed via fluorescence intensity of the 

accumulated tryptophan residues within the designed W-tags which were fused to the Ki-

4(scFv) or M12(scFv) target proteins. The auto-fluorescent W-tags were excited at 280 nm 

and detected at an emission wavelength of 350 nm. Both measurement variables were 
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obtained while the cultures were shaken continuously and without disturbing the 

fermentation system. 

3.5.2 2D-scan analysis 

After large scale protein production (3.1.9.3), the fluorescence intensity of 200 µL 

bacterial crude extract was analyzed in 96-well MTPs (lumox, black, µ-clear, Greiner 

Bio-One) using two dimensional (2D) fluorescence scanning. Bacterial cultures were 

centrifuged (4,500 x g, 4 °C, 30 min) and proteins were released with combined 

application of TES buffer lysis (3.3.5.2) and sonication (3.3.5.4). Buffer of the lysates was 

exchanged to PBS (3.3.6) to remove EDTA and colored bacterial contaminations to reduce 

disturbing factors during 2D-scan analysis. Then samples were concentrated (3.3.7) and 

fluorescence intensity of 3 µg/mL W-tagged proteins was measured at excitation 

wavelengths of 250 – 300 nm and emission wavelengths of 300 – 400 nm using a modified 

FluoreMax-4P (Horiba Jobin Yvon, USA) with a Y-shaped optical fiber and an inlet for 

the MTP to measure from below. Integration time was set to 100 ms and the gap width was 

2 nm for excitation as well as for emission. 

3.6 Analytical and statistical software 

All on-line fermentation and 2D-scan data was analyzed and statistically evaluated by 

Esther Gartz using Microsoft Office Excel 2010. Final data was obtained from the wells 

and the statistical mean was calculated of a 4-fold verified set of measurements. The 

relative percentage deviation was also calculated from this set of data. All results were 

proven to be reproducible in different experiments. Curve diagrams from this data were 

created with Origin. Calculation of the fitted power function in 5.3.1 was performed with 

MATLAB. ELISA data was statistically evaluated using Microsoft Office Excel 2010 or 

GraphPad Prism 5.0. Flow cytometric evaluation of mean fluorescence intensities and the 

geometrical mean was performed with the CellQuest Pro software (BD Biosciences, NJ). 

3.7 Documentation and image editing 

SDS-PAGE and Western blots were digitalized with a commercially available standard 

scanner. Photographs, scans and other pictures were edited and adapted in Adobe 

Photoshop CS4, with Microsoft Power Point 2010 or ImageJ. Both programs were used to 

optimize colors, black, white and grey shades or variations and intensities. Moreover, they 

were applied to sharpen contrast or adjust light intensities as well as to ensure sufficient 
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image resolution and the appropriate format of the filed pictures. Results were neither 

changed nor manipulated. 
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4 Results: Antibodies against pancreatic cancer 

Treatment of cancer with antibody-based immunotherapy holds high potential as 

alternative adjuvant therapeutic approach. Since currently no recombinant antibodies are 

approved for treatment of pancreatic cancer [77] or adequate early diagnosis, the aim of 

this thesis was to isolate novel and sequence-unique scFv antibody fragments from the 

Tomlinson phage libraries I and J using phage display technology. The highly 

metastasizing pancreatic cancer cell line L3.6pl was exploited as target antigen to generate 

highly specific scFv binders against unknown tumor-associated antigens expressed on 

pancreatic cancer cells. The following chapter provides isolation results of three different 

panning strategies applied for scFv antibody selection and the screening of sequence-

unique L3.6pl-specific scFv antibody fragments. Moreover, it states the in vitro 

characterization of isolated scFv antibodies, cross-reactivity data to other pancreatic cancer 

cell lines, native protein structure binding data on living cells and internalization 

properties. 

4.1 Experiments prior to phage display selection 

4.1.1 Quality assessment of Tomlinson Libraries I and J 

Selection of highly specific scFv antibodies was performed using the naïve and 

semi-synthetic human Tomlinson phage libraries I and J (1.3.3) obtained from the Medical 

Research Council (MRC) Center for Protein Engineering (Cambridge, UK).  

To assess infection rate and quality of phagemid-carrying bacteria, both libraries were 

infected separately with monovalent M13KO7 helperphage to produce scFv-presenting 

phage particles under antibiotic pressure with ampicillin and kanamycin (3.4.2). Titer 

determination (3.4.4) of precipitated phage molecules (3.4.3) showed a scFv-phage particle 

concentration of at least 4.9 x 10
11

 pfu/mL for the library I and 5 x 10
12

 pfu/mL for the 

library J. The minimum phage concentration necessary for successful selection is 

1 x 10
11

 pfu/mL. Successful analysis of phagemid-carrying and infected bacteria allowed 

subsequent high-quality production of scFv-phage units for phage display selection with 

different panning strategies (0, 3.4.5.1, 3.4.5.2). As continuous quality controls, input and 

output titrations were performed throughout all panning processes to ensure sufficient 

infection rates and scFv-phage concentrations. 
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4.1.2 Testing of blocking and washing conditions 

To observe potentially adverse effects of cell lysis and shear stress on living L3.6pl cells 

during suspension panning, the third selection round with the most stringent washing 

protocol (3.4.5.2) was simulated with five blocking/washing reagents (Table 4-1) prior to 

panning. 

Table 4-1 Five different blocking/washing reagents tested for their adverse effects on L3.6pl cells 

 
Reagent pH Manufacturer 

(a) 1 x PBS 7.4 lab stock (2.7) 

(b) 1 x DPBS 7.4 Invitrogen/Gibco, Life Technologies GmbH, Darmstadt 

(c) 1 x PBST 7.2 lab stock (2.7) 

(d) RPMI 1640 Glutamax 7 – 7.4 Invitrogen/Gibco, Life Technologies GmbH, Darmstadt 

(e) 0.9% (w/v) NaCl isotonic solution 7 – 7.5 VWR, Darmstadt 

The reagent with the least negative effect on L3.6pl cells was subsequently chosen for 

selection. Pellet size was documented after each step by marking the pellet border on the 

falcon tube resulting in Table 4-2.  

Table 4-2 Documentation of negative effects for five different washing reagents tested on the cell 

line L3.6pl using panning conditions of third selection round. 

Washing step (a) (b) (c) (d) (e) 

1 complete complete complete complete complete 

2 complete complete complete complete complete 

3 complete complete complete complete complete 

4 complete complete complete 50% 75% 

5 50% complete complete 25% 25% 

6 0% 50% complete 0% 0% 

7 
 

50% complete 

8 
 

25% complete 

9 
 

0% 50% 

10 
  

50% 

Reagents (a), (d) and (e) had the strongest adverse effect on L3.6pl cells resulting in a 

complete cell loss caused by lysis after 6 washing steps, followed by reagent (b) with total 

cell loss after 9 washing cycles. The best cell yield was reached with 1 x PBST (reagent 

(c)) with 50% remaining cells after completed third panning round. PBST was 

consequently applied for all selection rounds with L3.6pl cells in suspension. 
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4.2 Isolation of L3.6pl-specific scFv-phage particles 

This work employed the scFv-based Tomlinson libraries I and J to generate specific 

L3.6pl-binding scFv-phage units with the phage display technology. Successful isolation of 

specific binders depends on the scFv-phage library, the antigen source and the selection 

strategy. The next chapter describes the scFv-phage enrichment and selection results of 

three different panning strategies:  

(1) on adherent L3.6pl whole cells (3.4.5.1), 

(2) on L3.6pl cells in suspension (3.4.5.2), 

(3) on L3.6pl membrane fractions (3.4.5.3). 

A general panning schematic applied to all three panning strategies is diagrammed in 

Figure 1-3. L3.6pl-binding scFv-phage molecules were isolated during three consecutive 

panning rounds. Unspecific particles binding to ubiquitous surface proteins or the MTP 

surface were eliminated via negative selection on FG or PBMC antigen. Enrichment of 

scFv-phage binders after each panning cycle was assessed by input and output titration 

(3.4.4) as well as via polyclonal phage ELISA analysis (3.3.9.1). 

4.2.1 Enrichment of scFv-phage particles on adherent cells 

Solid-phase panning on adherent L3.6pl cells (3.4.5.1) was performed exclusively with 

Tomlinson library J. All subtractive selection steps were carried out on FG cells and the 

hyperphage M13KO7ΔpIII was applied for the first selection round. After phage rescue, 

eluted scFv-phage proteins were used for subsequent selection by elution only, whereas 

each lysis fraction was used for subsequent selection by elution and lysis. Elution fractions 

after the same selection rounds were combined before output titration. Sensitivity of L3.6pl 

cells towards the alkaline elution buffer and shear stress led to cell loss during washing and 

elution. Hence, to obtain complete titration result documented in Table 4-3, selection round 

two was repeated three times, and selection round three was repeated once for satisfying 

elution and lysis outcomes. The final lysis fraction showed a very low output titer but the 

infected culture on the harvest plate had enough colonies to stop the selection process. 

Based on input and output titrations, the enrichment factor (EF) (EF = output [pfu/mL] / 

input [pfu/mL]) was calculated for specifically binding scFv-phage units after elution and 

lysis for each selection round. Accordingly, the actual enrichment (AE) was calculated by 

dividing enrichment factors of two successive selection rounds (AE =  EFx / EFx-1) as 

displayed in Table 4-3. For the elution fractions, practically no enrichment (AE = 0.005) 
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was documented from the first to the second panning round but an 11-fold enrichment of 

L3.6pl-binding scFv-phage particles was found after the third selection round. No 

significant enrichment of scFv-phage particles was documented for the lysis fractions, 

neither after the second (AE2 = 0.0004), nor the third panning round (AE3 = 0.004). 

Table 4-3 Input and output titer of elution and lysis fractions during three consecutive panning 

rounds on adherent L3.6pl cells. 

The input titer was over 1 x 1011 pfu/mL and output titers ranged from 6 x 108 pfu/mL after selection round 

one to 1.2 x 102 pfu/mL after the third round. In addition, calculations of enrichment factors (EF) and 

resulting actual enrichments (AE) after each selection round are stated. (A) Enrichment documentation of 

elution fractions, (B) enrichment documentation of lysis fractions. 

(A) 
Selection round 

Elution 
EF AE 

 Input [pfu/mL] Output [pfu/mL] 

 1 5 x 1012 4.2 x 107 8.4 x 10-6 - 

 2 8 x 1011 3.3 x 104 4.1 x 10-8 0.005 

 3 5.2 x 1011 2.4 x 105 4.6 x 10-7 11 

      

(B) 
Selection round 

Lysis 
EF AE 

 Input [pfu/mL] Output [pfu/mL] 

 1 5 x 1012 6 x 108 1.2 x 10-4 - 

 2 1 x 1012 4.8 x 104 4.8 x 10-8 0.0004 

 3 5.7 x 1011 1.2 x 102 2.1 x 10-10 0.004 

In addition, enrichment of L3.6pl-binding scFv-phage particles was examined by means of 

polyclonal phage ELISA analysis (3.3.9.1) of scFv-phage pools from the original library J 

as well as from scFv-phage pools after each selection round. This allowed a comparison of 

the number of specific scFv-phage binders via their binding activity. For this panning 

strategy FG membrane fractions (subtractive antigen) were coated together with L3.6pl 

membrane fractions (selective antigen) diluted 1 : 100. The scFv-phage pools of eluate and 

lysis fractions after each selection round were precipitated separately, but mixed together 

for titer determination and subsequent polyclonal phage ELISA analysis. Figure 4-1 

depicts a strong absorption signal for the unselected library J on L3.6pl and FG membranes 

alike, indicating a large number of potential binders. In contrast to that, a significantly 

higher binding signal, i. e. 150% increased absorption signal (p = 0.0016) was observed for 

L3.6pl-binding scFv-phage units after the first selection round. Compared to this, binding 

activity decreased by 59% after the second (p = 0.0464) and 150% after the third selection 

round. Absorption after the final selection round was not significantly different from the 

value documented for naïve library J. ABTS signals on L3.6pl membrane fractions were 
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not significantly higher  than FG absorption values even though phage pools had been 

depleted on FG cells before each positive selection. 

 

Figure 4-1 Polyclonal phage ELISA after three panning rounds on adherent L3.6pl cells. 

Combined phage pools of elution and lysis fractions after each selection round were analyzed for binding 

activity on membrane fractions of the L3.6pl selection antigen (black) and the FG depletion antigen (grey). 

Binding activity is displayed via average of ABTS absorption values of three independently performed 

experiments including error bars for standard deviation. Significant increase/decrease of absorption values 

between the unselected library J and the selection rounds is indicated by asterisks (**: medium significant 

difference, *: low significant difference). NC: average absorption value of negative controls, no AG: average 

absorption value of controls without antigen coating, SR1 – SR3: selection rounds one to three. 

Considering the significant increase in binding activity after the first selection round, 

scFv-phage molecules resulting from the first and third selection round were screened by 

monoclonal phage ELISA analysis (3.3.9.2, 4.2.4.1). 

4.2.2 Enrichment of scFv-phage by suspension panning 

For suspension panning of L3.6pl cells the Tomlinson library I was used (3.4.5.2). All 

subtractive selection steps were executed on freshly isolated PBMC cells (3.2.4) and the 

polyvalent M13KO7ΔpIII hyperphage was used for the first selection round. After 

internalization at 37 °C no elution was performed but surface-bound and incorporated 

scFv-phage particles were simultaneously recovered by cell lysis. Table 4-4 presents input 

and output titrations, performed for all panning rounds, thus evaluating enrichment of 

L3.6pl-binding scFv-phage units. Based on input and output titrations, the enrichment 

factors (EF) and the actual enrichment (AE) were calculated according to chapter 4.2.1 

(Table 4-4). Enrichment factors resulted in an actual enrichment of L3.6pl-binding scFv-

phage units of 250-fold after selection round two and an additional 1.5-fold increase after 

selection round three. 
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Table 4-4 Input and output titrations of selections on Tomlinson library I on L3.6pl cells in 

suspension as well as enrichment factors (EF) and actual enrichment (AE) after each selection round. 

All input titers showed sufficient scFv-phage concentrations, output titers ranged from 105 after the first and 

second selection round to 106 after the third. Enrichment of L3.6pl-binding scFv-phage units was shown. 

Based on titrations, enrichment factors and actual enrichments were calculated for each panning round. 

Selection round Input [pfu/mL] Output [pfu/mL] EF AE 

1 3.1 x 1012 1.2 x 105 3.9 x 10-8 - 

2 1 x 1011 9.6 x 105 9.6 x 10-6 250 

3 2.6 x 1011 3.6 x 106 1.4 x 10-5 1.5 

Even though titrations and resulting actual enrichment indicated an increase of 

L3.6pl-specific scFv-phage particles, no significant increase in binding activity was 

documented during polyclonal phage ELISA analysis (3.3.9.1) of consecutive selection 

rounds (Figure 4-2). For this experiment PBMC membrane fractions (depletion cells) were 

coated as antigen together with L3.6pl membranes. Despite a slight increase in binding 

activity of 15% after the first selection round, absorptions values decreased during 

continued panning rounds. The unselected library I displayed 10% higher ABTS 

absorption signals on L3.6pl membranes than the phage pool after the third selection 

round. This indicates a loss of L3.6pl-binding scFv-phage particles. Statistical evaluation 

showed neither significant increase nor decrease of L3.6pl-specific scFv-phage units 

throughout all three selection rounds. Compared to absorption values on L3.6pl membrane 

fractions, signals on PBMC membranes were found to be significantly lower (p = 0.0424). 

 

Figure 4-2 Polyclonal phage ELISA after three selection rounds on L3.6pl cells in suspension. 

Overall ABTS absorption signals were very weak (< 0.25). Signals on PBMC membranes (grey) were 

considerably weaker than on L3.6pl antigen (black). Binding activity increased after first selection round and 

then decreased again until the third. Binding activity is displayed as average of ABTS absorption values of 

three independently performed experiments including error bars for standard deviation. No significant 

difference was found for binding activities of selection rounds. NC: average absorption value of negative 

controls, no AG: average absorption value of controls without antigen coating, SR1 – SR3: selection rounds 

one to three, *: low significant difference. 
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Based on the titration results, single clones were picked after the third selection round for 

analysis in a monoclonal phage ELISA (3.3.9.2, 4.2.4.2). 

4.2.3 Enrichment of scFv-phage particles on membrane fractions 

Solid-phase panning on L3.6pl membrane fractions (3.4.5.3) was performed on both 

Tomlinson libraries in parallel. Depletion was carried out on PBMC membrane fractions 

and the polyvalent M13KO7ΔpIII hyperphage was used for the first selection round. 

Surface-bound scFv-phage particles were eluted from the membrane antigen, and input and 

output titers were determined of all three panning rounds for both libraries (Table 4-5). 

Enrichment factors (EF) and actual enrichment (AE) were calculated from titrations as 

described in 4.2.1, and are also listed in Table 4-5. All selection rounds showed a constant 

output of 10
5
 for L3.6pl-binding scFv-phage proteins. Actual enrichment of library I was 

0.32-fold after panning round two and only 0.07-fold after round three (Table 4-5 A). For 

library J a 2.3-fold increase of L3.6pl-binding scFv-phage units was observed after 

selection round two, a 0.02-fold increase after round three (Table 4-5 B). 

Table 4-5 Input and output titers as well as enrichment factors (EF) and actual enrichment (AE) of 

panning rounds with Tomlinson Library I and J on L3.6pl membranes fractions. 

All input titers were over the necessary value of 1 x 1011 pfu/mL for a successful selection, output titers 

reached various values of 105 after all selections rounds. (A) Enrichment results of Tomlinson Library I, (B) 

enrichment results of Tomlinson Library J. A slight enrichment of L3.6pl-binding scFv-phage units was 

shown for both libraries within three consecutive panning rounds.  

(A) 
Selection round 

Tomlinson I 
EF AE 

 Input [pfu/mL] Output [pfu/mL] 

 1 1.2 x 1011 2.4 x 105 2 x 10-6 - 

 2 7.6 x 1011 4.8 x 105 6.3 x 10-7 0.32 

 3 1.1 x 1013 5.2 x 105 4.7 x 10-8 0.07 

      

(B) 
Selection round 

Tomlinson J 
EF AE 

 Input [pfu/mL] Output [pfu/mL] 

 1 2.5 x 1011 2.8 x 105 1.1 x 10-6 - 

 2 3.8 x 1011 9.6 x 105 2.5 x 10-6 2.3 

 3 9.3 x 1012 4 x 105 4.3 x 10-8 0.02 

Polyclonal phage ELISA experiments (3.3.9.1) displayed results for increase of 

L3.6pl-binding scFv-phage units analogous to titration-based enrichment calculations. For 

polyclonal phage ELISA, scFv-phage pools of both libraries and of the three continuous 

selection rounds were tested for binding activity on PBMC (subtractive antigen) and 

L3.6pl membranes previously used for positive selection.  
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Tomlinson Library I: In Figure 4-3A, ABTS absorption signals after panning of library I 

are illustrated after 15 min incubation. A very high binding capacity was measured for the 

unselected I library on L3.6pl membranes indicating a large amount of potential binders. 

After the first panning round, absorption values on L3.6pl membranes decreased by 57% 

when cross-reactive and weak binders had been sorted out via depletion on PBMC 

membranes. From the first to the second selection round, absorption signals increased 

again by 88%; after completion of selection round three, an additional increase of 18% was 

documented. In summary, a low but significant enrichment of L3.6p-specific binders was 

denoted after panning round two (p = 0.0287) and three (p = 0.0137) in comparison to the 

first selection round. Absorption values measured on PBMC membranes after selection 

round one, were 425% higher than for the naïve library I, and slightly higher (but not 

significantly) than the values on L3.6pl membranes. Nevertheless, PBMC absorption 

values decreased after panning rounds two and three indicating the successful elimination 

of scFv-phage molecules with cross-reactivity towards PBMC membranes. 

Tomlinson Library J: Figure 4-3B indicates ABTS absorption values after selection of 

library J measured after 60 min incubation. A very high binding capacity on L3.6pl 

membranes was documented for the naïve library J, indicating a large amount of potential 

binders. After the first selection round, absorption values on L3.6pl membranes decreased 

by 90% when cross-reactive and weak binders had been sorted out via depletion on PBMC 

membranes. From the first to the second selection round, absorption signals increased 

again by 800% but after finishing selection round three only a slight additional increase of 

L3.6pl-specific binders was found. In summary, a low but significant enrichment was 

denoted after panning round two (p = 0.0287) and the absorption values after round three 

showed medium significance (p = 0.0137) in comparison to the first selection round. 

Absorption values measured on PBMC membranes were similar throughout the panning 

process. 
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Figure 4-3 Polyclonal phage ELISA after three consecutive panning rounds with Tomlinson libraries 

I and J on L3.6pl membrane fractions. 

(A) Absorption signals for library I measured after 15 min ABTS incubation (signals too strong for TECAN 

measurement after longer incubation period), (B) absorption signals for library J measured after 60 min 

ABTS incubation. Absorption values on L3.6pl membranes are illustrated in black, values for PBMC 

membranes are indicated in grey. For both libraries, binding activity decreases after the first selection round 

and continuously increases again afterwards. Binding activity is displayed as average of ABTS absorption 

values of three independently performed experiments including error bars for standard deviation. NC: 

average absorption value of negative controls, no AG: average absorption value of controls without antigen 

coating, SR1 – SR3: selection rounds one to three, *: low significant difference, **: medium significant 

difference. 

Based on the assumption that the low increase of L3.6pl-binding scFv-phage particles 

represented strong binders, as shown during polyclonal phage ELISA experiments, 

pannings after round three were used for monoclonal phage ELISA analysis (4.2.4.3). 

4.2.4 Identification of unique L3.6pl-specific scFv-phage binders 

Phage pools with enriched L3.6pl-binding scFv-phage particles were screened for 

sequence-unique binders via measurement of binding activity in a monoclonal phage 

ELISA experiment (3.3.9.2). Depending on enrichment results after titration and 

polyclonal phage ELISA analysis (4.2.1, 4.2.2, 4.2.3), single clones were picked from 

LBamp,gluc agar plates, transferred into 96-well MTPs and analyzed on immobilized 

membrane fractions (diluted 1 : 100 in ELISA coating buffer or PBS). All monoclonal 

phage ELISA experiments were repeated three times to show reproducibility of results. A 

clone was defined as positive binder when its average absorption value was at least 

2.5-times stronger than the negative control (NC) values and background signals measured 

in reference wells without antigen coating. This defined value, here called NC-reference 

value, was calculated for every experiment and is graphically indicated by a black vertical 

line. Following monoclonal phage ELISA analysis, L3.6pl-positive clones were tested for 

presence of the scFv-insert (length ~950 bp) via colony PCR (3.1.1.2), then the scFv-insert 
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PCR product was extracted from a preparative agarose gel (3.1.5) and its DNA sequence 

was analyzed (3.1.4). 

4.2.4.1 Monoclonal phage ELISA after selection on adherent cells 

Based on results in 4.2.1, scFv-phage pools after the first and third selection round were 

screened in a monoclonal phage ELISA (3.3.9.2). Figure 4-4A and Figure 4-4B illustrate 

the screening results of: (a) Two master plates (144 clones) analyzed after the first 

selection round and (b) two master plates (144 clones) after the third selection round. 

Resulting from the first selection round, ten L3.6pl-binding clones displayed binding 

activity above the NC-reference value of 0.329 and were defined as positive (Figure 4-4A). 

Three of these clones (A6, B5, and F10) displayed ABTS absorption values twice the 

NC-reference value. Clone B7 exceeded it even three times. 

After the third selection round, only three L3.6pl-binding clones were classified as positive 

via binding activity above the NC-reference value of 0.509 (Figure 4-4B). All three binders 

displayed an absorption reading not significantly stronger than the NC-reference value. 

Clone F7 presented 50% stronger binding on FG than on L3.6pl membranes.  

 

Figure 4-4 Monoclonal phage ELISA after first and third selection round on adherent L3.6pl cells. 

(A) Ten L3.6pl-positive binders with absorption signals > 0.329 were detected after the first selection round 

(SR1), (B) three L3.6pl-positive binders with absorption values > 0.509 were identified after the third 

selection round (SR3). Black bars represent absorption measurements on L3.6pl membranes (positive 

selection), grey bars show absorption signals on FG membranes (subtractive selection), and the NC-reference 

value is indicated by the black vertical line. Binding activity is displayed as average of ABTS absorption 

values of three independently performed experiments including error bars for standard deviation. NC: 

average absorption value of negative controls, no AG: average absorption value of control wells without 

antigen coating. 
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All L3.6pl-positive clones exhibited binding activity above the NC-reference value on FG 

membrane fractions as well, but except for clones B9, E10 and F10, FG binding activity 

was weaker than on L3.6pl membranes. High binding activity on FG membranes was 

expected since the L3.6pl cell line was developed from FG and thus both cell lines share 

high similarity of surface proteins. Colony PCR and agarose gel electrophoresis revealed 

that all isolated clones were false-positive binders and none of the 13 positive clones 

contained a scFv-insert. As a conclusion all clones were discarded. 

4.2.4.2 Monoclonal phage ELISA after suspension panning 

After the third selection round, 216 single clones were picked onto three master plates to 

isolate sequence-unique scFv-phage binders. Following the calculation of the NC-reference 

value of 0.194, a total of three L3.6pl-positive clones were identified. They all displayed 

very weak overall absorption values (not significantly different from the NC-reference 

value). PBMC signals were between 50% and 75% of the L3.6pl signals. 

 

Figure 4-5 Monoclonal phage ELISA after three panning rounds on L3.6pl cells in suspension. 

Three L3.6pl-positive binders with absorption values > 0.129 were identified after the third selection round 

(SR3). Black bars represent absorption measurements on L3.6pl membranes (positive selection), grey bars 

show absorption signals on PBMC membranes (subtractive selection), and the NC-reference value is 

indicated by the black vertical line. Binding activity is displayed as average of ABTS absorption values of 

three independently performed experiments including error bars for standard deviation. NC: average 

absorption value of negative controls, no AG: average absorption value of control wells without antigen 

coating. 

L3.6pl-positive clones were checked by colony PCR (3.1.1.2), and after DNA analysis 

clone D4 was the only one identified with an intact insert sequence. Clone B1 had no 

insert, clone A11 carried a frame shift in CDR2 of the scFv-insert. Hence, both clones were 

not investigated further. 
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4.2.4.3 Monoclonal phage ELISA after panning on membrane fractions 

Succeeding completed panning and enrichment analysis (4.2.3), eight master plates (576 

clones) were picked from the selected Tomlinson library I and another eight master plates 

from selected Tomlinson library J. After monoclonal phage ELISA analysis, a total of 193 

clones was defined as L3.6pl-positive binders. To illustrate this large number of clones, 

false positive binders and clones containing a frame shift were sorted out by colony PCR 

and DNA sequence analysis. Only positive clones containing an intact insert sequence are 

displayed in Figure 4-6. 

Figure 4-6A shows eight truly L3.6pl-positive clones were isolated from library I with an 

absorption value higher than the NC-reference value of 0.210. While clones B12, C5, D8, 

D12 and F3 showed low absorption values that were 3-times higher than the background, a 

strong binding activity was measured for clones E5, E7 and F11 exceeding the background 

by 4-times and more. Clone C1 displayed an absorption value slightly below the 

NC-reference value but was analyzed exemplary as non-binding control for comparison. 

DNA sequencing revealed that clones B12 and D12 had the same sequence. Since stronger 

binding activity was measured for clone D12, it was kept for further experiments, clone 

B12 was discarded. 

Figure 4-6B illustrates absorption values of eleven L3.6pl-positive clones isolated from 

library J displaying binding activity above the NC-reference value of 0.172. While clones 

D1, E1 and E3 had low binding activity of twice the background, clones E2, E5 and F1 

displayed medium absorption values between twice and 5-times higher than the 

background. Binders D9 and E8 range between 5 and 10-times over the background 

whereas the remaining binders (A3 and D5) were measured to have a binding activity over 

10-times greater the NC-reference value. DNA sequence analysis revealed that clones E1, 

E2, E3 and E5 had the same sequence. Based on its high absorption value, clone E3 was 

applied for all further experiments and clones E1, E2 and E5 were discarded. 

Overall ABTS absorption signals on the PBMC membranes were low, displaying values 

similar to that of the negative controls and wells without coated antigen. The only 

exception was clones A3 which showed only 20% less binding activity on PBMC than on 

L3.6pl membranes. 
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Figure 4-6 Monoclonal phage ELISA after three panning rounds with Tomlinson Library I and J on 

L3.6pl membrane fractions. 

(A) Eight L3.6pl-positive binders isolated from Tomlinson library I, (B) eleven L3.6pl-positive binders 

isolated from Tomlinson library J. The black columns represent binding on L3.6pl membranes and the grey 

columns on PBMC membranes whereas the black line marks the NC-reference value defining a clone as 

positive binder. Binding activity is displayed as average of ABTS absorption values of three independently 

performed experiments including error bars for standard deviation. NC: average absorption value of negative 

controls, no AG: average absorption value of control wells without antigen coating. 

4.2.5 Monoclonal phage ELISA of 14.1(scFv) 

In addition to the Tomlinson-derived clones, monoclonal phage ELISA analysis was 

performed with the murine single chain antibody 14.1(scFv) isolated by Beate Stadler from 

a self-made phage display library originated from immunized mice (1.3.7). Prior to this 

work, the 14.1(scFv) has already been identified as L3.6pl-positive binder on membrane 

fractions. During this thesis, it was applied to characterization experiments to verify its 

binding activity on the L3.6pl antigen and to obtain additional characterization data. 

During the monoclonal phage ELISA, 14.1(scFv) displayed strong binding activity on 

L3.6pl membrane fractions with an absorption value 8.5-fold over the NC-reference value 

of 0.210 (Figure 4-7). Absorption readings on PBMC membranes ranged on the level of 

the negative controls. 
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Figure 4-7 Monoclonal phage ELISA of 14.1(scFv) on L3.6pl membrane fractions isolated from the 

murine self-made from immunized mice after multiple selection rounds on L3.6pl antigen. 

The black column represents binding on L3.6pl membranes and the grey column on PBMC membranes. The 

black line marks the NC-reference value identifying the 14.1(scFv) as L3.6pl-positive binder. Binding 

activity is displayed as average of ABTS absorption values of three independently performed experiments 

including error bars for standard deviation. NC: average absorption value of negative controls, no AG: 

average absorption value of control wells without antigen coating. 

4.3 Sequence analysis of isolated L3.6pl-specific scFv 

After completion of three consecutive panning rounds performed with three different 

selection strategies, 16 L3.6pl-specific and sequence-unique binders were isolated from 

Tomlinson libraries I and J, in addition to the already existing 14.1(scFv) antibody 

fragment from a self-made murine library (1.3.7). During monoclonal phage ELIA analysis 

many positive binders were identified as false-positive, projecting a positive absorption 

signal but were either missing the scFv-insert, had an incomplete sequence or a frame shift 

in FWR2. 

In summary, 23 master plates, containing a total number of single 1656 clones, were 

picked for screening by monoclonal phage ELISA analysis (Table 4-6). 13 L3.6pl-positive 

binders were detected after selection on adherent cells, three after panning in suspension 

and 193 positive clones after membrane selection of both libraries combined. This added 

up to a total number of 209 L3.6pl-binding clones (12.6% of all picked clones). 

Table 4-6 Overview of number of master plates and clones analyzed via monoclonal phage ELISA 

after three consecutive panning rounds with three different selection strategies, as well as number of 

resulting L3.6pl-positive binders 

Panning strategy Number of master plates Number of picked clones Number of L3.6pl-positive clones 

Adherent 4 288 13 (4.5%) a) 

Suspension 3 216 3 (1.4%) a) 

Membranes 16 1152 193 (16.8%) a) 

Total 23 1656 209 (12.6%) a) 

a) Percentage of L3.6pl-positive clones based on number of picked clones 
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Only 20 clones (9.6% of all ELISA-positive clones) contained an intact insert sequence, 

meaning that 91.4% of the ELISA-positive clones were false-positive (Table 4-7). 

Panning on adherent L3.6pl resulted in 100% false-positive clones. From panning in 

suspension one sequence-correct clone (33.3% of ELISA-positive clones) was isolated, 

whereas 19 clones (9% of L3.6pl-binding clones) were identified with an intact DNA 

sequence after panning on membrane fractions. 

Table 4-7 Overview of number and proportion of L3.6pl-positive clones identified with an intact 

DNA insert sequence with respect to different selection strategies.  

Panning strategy Number of sequence-intact clones Number of false-positive clones 

Adherent 0 (0%) b
) 

13 (100%) b)
 

Suspension 1 (33.3%) b)
 2 (66.6%) b)

 

Membranes 19 (9%) b)
 174 (91%) b)

 

Total 20 (9.6%) b
)
 189 (91.4%) b)

 

b) Percentage of sequence intact and false-positive clones based on number of 209 ELISA-positive clones 

DNA sequencing revealed that two clones from Tomlinson library I and four clones from 

library J had identical sequences. This resulted in a total of 16 L3.6pl-positive binders 

with a unique sequence (Table 4-8). After subtraction of identical clones, eight 

sequence-unique binders were defined for both libraries.  

Table 4-8 Overview of number of L3.6pl-binding clones with intact, identical and unique DNA 

sequence 

Library Sequence-intact clones Sequence-identical clones Sequence-unique clones 

I 9 2 8 

J 11 4 8 

I and J 20 6 16 

Unwanted stop codons were located in 14 clones, which corresponds to 87.5% of all 

sequence-unique clones (Table 4-9). Amber stop triplets (TAG) were found in the 

complementarity determining regions CDR2 or CDR3 of eight clones. An additional six 

clones contained the ochre stop codon triplet TGA in frame work region FWR2. Clones 

D4 (library I) and E3 (library J) did not carry any stop codon. 

Table 4-9 Overview of number and percentage of sequence-unique L3.6pl-postive clones contain 

amber or ochre stop codons.  

Library Number of clones with stop codon Amber stop codons Ochre stop codons No stop codon 

I 7 (87.5%) c
) 4 3 1 

J 7 (87.5%) c)
 4 3 1 

I and J 14 (87.5%) c)
 8 6 2 

c) Percentage of clones containing an amber/ochre stop codons based on number sequence-intact clones 
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Amino acid sequences of all 16 L3.6pl-positive clones marked according to the distribution 

of amber or ochre stop codons are listed in Table 4-10. 

Table 4-10 Amino acid sequences of complementarity determining regions (CDRs) in VH and VL of 

16 scFv antibodies identified as L3.6pl-positive binders during monoclonal phage ELISA analysis.  

CDRs were defined using the KABAT database [100, 101]. Clones marked with an asterisk contain an ochre 

stop codon (TGA) in FWR2, clones marked with an x contain an amber stop codon in CDR2 or CDR3, 

whereas clones D4 and E3 lack a stop codon. 

 
Heavy chain variable region (VH) light chain variable region (VL) 

 
CDR1 CDR2 CDR3 CDR1 CDR2 CDR3 

A3x 

SYAMS 

QINPNG*PTKYADSVKG NKRKFDYS

RASQSISSYLN

RASALQS QQAKKNPTT 

C5x AICNYGSSTS*ADSVKG TDACFDYS AASDLQS QQSSANPTT 

D1* SISNYGSTTSYADSVKG YYGDFDY SASALQS QQTYTAPYT 

D4 NISTLGAGTDYADSVKG NATAFDY AASWLQS QQCYSTPKT 

D5x NIYREG*RTSYADSVKG GAALFDY VASHLQS QQVAVTPVT 

D6* TIGYQGTHTMYADSVKG VPYAFDY SASSLQS QQSYSTPNT 

D8x YISAAGSNTDYVDSVKG ANSSFDY TAS*LQS QQNSAGPGT 

D9x NIYREG*RTSYANSVKG GAALFDY VASHLQS QQVAVTPVT 

D12x GIS*RGSTTAYVDSVKG NYTAFDY RASRLQS QQRPPRPRT 

E3 SIIGSQGSLTIYADSVKG HVVAFDY SASILQS QQFTRAPPT 

E5* DISTAGATTTYADSVKG DGYSFDY ASSLQS QQTYSAPAT 

E7* NICCGGSSTTYADSVKG STTSFDY NASSLQS QQADNSPTT 

E8* VIGSQGSRTAYADSVKG HVLAFDY SASILQS QQYRQSPPT 

F1x SIYS*GNLTIYADSVKG RPDSFDY TASTLQS QQLSRAPST 

F3x SITAYGDTTSYADSVKG SAT*FDY ASALQS QQCCDSPYT 

F11* AISTSGTSTNYADSVKG NYTSFDY TASALQS QQDASSPDT 

Except clone A3, none of the L3.6pl-positive clones showed any significant ABTS 

absorption signal on the PBMC negative control antigen during monoclonal phage ELISA. 

But all L3.6pl-positive clones depicted positive binding on the FG cell line. 

4.3.1 Whole cell ELISA 

Screening of sequence-unique L3.6pl-specific binders was performed on membrane 

fractions which present the still functional antigen on small membrane vesicles [134]. A 

major drawback of membrane fractions is the formation of vesicles to compensate surface 

tension. Approximately 50% right-side-out vesicles and 50% inside-out particles, exposing 

the inner cell membrane during selection and screening, are formed. To ensure binding 

activity on native surface protein conformations, the isolated binders were tested in a 

monoclonal phage ELISA on living L3.6pl cells (3.3.9.2). A positive binding signal was 

measured for some clones but absorption results could not be verified in repeated 
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experiments. Six repetitions of the monoclonal phage ELISA on whole cells resulted in 

very inconsistent binding data; different clones displayed positive binding activity with 

each ELISA repetition (data not shown). To obtain more reproducible binding results, 

100% ice-cold EtOH, acetone and 4% PFA were tested as alternative fixation methods. 

Nevertheless, binding results were dissenting for 100% ice-cold EtOH and acetone, 

whereas on 4% PFA high and unspecific background was measured after addition of 

scFv-phage particles. Fixed L3.6pl cells were viewed under a microscope and a substantial 

cell loss was documented independent of the fixation reagent. It was concluded that L3.6pl 

cells were very sensitive and difficult to handle during a whole cell ELISA, and 

consequently the resulting data was not significant. To confirm binding activity on whole 

L3.6pl cells, positive scFv antibodies were tested as soluble proteins via flow cytometry 

(3.3.10.1, 4.6.2). 

4.3.2 Cross-reactivity analysis 

L3.6pl-positive clones were examined for cross-reactive binding to other human pancreatic 

cancer cell lines by means of monoclonal phage ELISA analysis (3.3.9.2). Binding 

capacity of 17 clones, tested positive in 4.2.4, was analyzed on membrane fractions of FG, 

Su86.86, S2-0028 and PT-46 cell lines (Figure 4-8). Cross-reactivity testing was performed 

in triplicates and repeated three times for each clone and antigen to confirm reproducibility 

of binding data. A clone was defined as positive binder when its average absorption value 

was at least 2.5-fold stronger than the mean negative control (NC) and background 

absorption signals measured in reference wells without antigen coating. This calculated 

value, here called NC-reference value, was adjusted for each experiment. Weak binding 

was defined as absorption values up to 2-fold, medium binding activity as 3 to 5-fold, and 

strong binders as 5 to 10-fold higher than the background.  

With the exception of clones D8, 16 binders exhibited positive binding capacity on FG 

membranes (Figure 4-8A) with absorption signals higher than the NC-reference value of 

0.313. Clones D1 and E3 showed weak binding whereas medium absorption readings were 

recorded for seven clones (C5, D12, F1, F11, D4, E5 and E8). Clones D6, E7, F3, 14.1, 

D9, A3 and D5 were defined as strong binders. Moreover, Figure 4-8A illustrates positive 

absorption readings on Su86.86 antigen for eleven clones. Weak absorption values were 

measured for 6 clones (14.1, D6, D12, E3, E5 and F3), and medium binding activity was 

demonstrated for clones F1, F11 and D9. Strong absorption readings (up to 6-fold over 

NC-reference) were recorded for clones D5 and A3. 
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Figure 4-8B shows binding activity of isolated clones on S2-0028 and PT-46 antigen. 

Weak binding activity was recorded for clones C5, D5 and D9 on S2-0028 antigen. The 

remaining clones displayed no binding. On PT-46 antigen, two clones did not demonstrate 

binding (14.1 and E7), whereas all other clones displayed weak absorption values except 

for clone D9 which was denoted with medium binding activity. Overall background noise 

was very high for measurements on S2-0028 and PT-46 antigen. 

 

Figure 4-8 Cross-reactivity data of isolated clones and 14.1(scFv) obtained by means of monoclonal 

phage ELISA analysis on FG, Su86.86, S2-0028 and PT-46 membrane fractions. 

(A) Cross-reactivity data towards FG and Su86.86 antigen. The light grey bars present binding data on FG 

membranes, the bars with left-tilted lines indicate absorption readings on Su86.86 antigen and the NC-

reference value of 0.313 is marked by the black line. 16 clones were found with positive binding results on 

FG membranes and eleven clones displayed binding activity on Su86.86 antigen. (B) Cross-reactivity data 

towards S2-0028 and PT-46 membrane fractions. The grey dotted bars present binding data on S2-0028 

membranes, bars with right-tilted lines indicate absorption readings on PT-46 antigen and the NC-reference 

value of 0.515 is marked by the black line. 15 clones demonstrated positive absorption signals on the PT-46 

antigen but only 3 clones had positive ABTS measurement on S2-0028 membranes. Binding activity is 

displayed as average of ABTS absorption values of three independently performed experiments including 

error bars for standard deviation. NC: average absorption value of negative controls, no AG: average 

absorption value of control wells without antigen coating. 
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4.4 QuikChange Mutation of stop codons 

In order to characterize the isolated L3.6pl binders as soluble proteins, the scFv antibody 

fragments were expressed without the pIII phage coat protein fusion. Normally, soluble 

protein expression without pIII is achieved by transformation of pIT2 phagemids into the 

non-suppressor strain HB2151 E.coli. This bacterial strain recognizes the amber stop 

codon and terminates protein translation after the scFv right before the pIII phage coat 

protein (4.5.1). Here, the artificial NNK triplet diversification of CDRs in the Tomlinson 

library J (1.3.3) is problematic for the expression of soluble protein, since 3% of the 

diversifications result in the formation of the amber stop codon TAG. Phage display with 

the amber-suppressor strain TG1F+ E.coli allowed mistranslation of the amber stop codon 

as glutamine (CAG). Yet, expression of soluble proteins in prokaryotic non-suppressor 

strains or eukaryotes would result in truncated and non-functional proteins. In this work, 

eight of 16 positive clones included an amber stop codon in their DNA sequence. 

Moreover, seven clones displayed an abnormal point mutation in FWR2 where the amino 

acid tryptophan was mutated from triplet TGG to the ochre stop codon TGA. Introduction 

of a stop codon within the scFv sequence leads to an early termination of protein 

translation ending in an incomplete and non-functional scFv protein. Consequently, all stop 

codons were eliminated by site-directed mutagenesis with the QuikChange® Site-Directed 

Mutagenesis Kit (2.6). The amber triplet TAG was mutated to CAG, which encodes the 

amino acid glutamine, and the ochre TGA triplets were changed back to the regular 

framework triplet TGG, coding for tryptophan. As a result, the scFv antibodies could be 

expressed as soluble prokaryotic protein in E.coli HB2151 (3.1.9.4). After subcloning, 

soluble protein prokaryotic expression in E.coli BL21 Rosetta 2 (DE3) (3.1.9.3) and 

eukaryotic protein expression in HEK293T was feasible as well (3.2.3).  

Clone D8 was sorted out during site-directed mutagenesis since the stop codon could not 

be removed after 10 mutation attempts. Binding activity of mutated clones expressed in 

TG1F+ E.coli on phage level was not tested; instead soluble protein characterization was 

started directly after site-directed mutagenesis. 

4.5 Production and purification of soluble scFv antibodies 

After screening of L3.6pl-positive binders by monoclonal phage ELISA (4.2.4), DNA 

sequencing of unique binders (4.3) and site-directed elimination of stop codons (4.4), 15 

remaining binders, in addition to the 14.1(scFv) (1.3.7), were characterized on protein 
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level. Therefore, scFv antibody fragments were expressed without pIII phage coat protein 

fusion by means of three different expression methods: (a) Prokaryotic expression in 

HB2151 E.coli using the pIT2 phagemid (4.5.1), (b) prokaryotic expression in Rosetta 2 

(DE3) E.coli using the T7 promoter-controlled pMT plasmid (4.5.2) [171] and (c) 

eukaryotic expression in HEK293T cells via the CMV-operated pMS-SNAPMut plasmid 

(4.5.3) [183]. Expression of soluble scFv protein offers a huge advantage during scFv 

characterization since the phage coat protein in the original scFv-phage fusion protein may 

interfere with binding properties on L3.6pl cells or membranes due to protein interactions. 

The inexact titer determination (all phage particles in a solution are counted including the 

ones without scFv) is an additional problem during binding analysis on phage level. It is 

known that only up to 10% of the phage particles in a solution are fused to a scFv [247]. 

This renders exact quantitative evaluation of the binding activity on phage level 

impossible. Soluble scFv proteins will be characterized by protein ELISA (4.6.1), flow 

cytometry (4.6.2) and internalization assays (4.6.3). 

4.5.1 Prokaryotic expression in HB2151 E.coli via pIT2 phagemid 

After stop codon removal by site-directed mutagenesis, the pIT2-phagemids (2.10) were 

re-transformed into the non-suppressor strain HB2151 E.coli (2.3, 3.1.11) for soluble 

protein expression. Protein expression was initiated via the pHEN-derived lac-operon 

controlled pIT2 phagemid (Figure 1-4A) by means of IPTG or lactose induction. While 

still containing the genetic information for the pIII phage coat protein, the unsuppressed 

amber stop codon actively terminated protein translation, thus separating the scFv 

fragment from pIII. Figure 1-4B shows the expression cassette for production of soluble 

scFv proteins according to 3.1.9.4. 

Due to the low amount of scFv protein secreted into the medium, protein recovery from the 

bacterial pellet via TES buffer lysis (3.3.5.2) was necessary. Protein yield was analyzed by 

SDS-PAGE (3.3.1) and Western blot (3.3.2). Several clones displayed protein expression, 

whereas others did not express any protein. Huge variations in protein concentration were 

observed for all single clones in consecutive experiments. Each repetition featured 

different clones with strong protein yield, while others depicted no protein expression 

despite correct DNA sequence and intact open reading frame (ORF) (data not shown). This 

inconsistent protein production rendered binding analysis via protein ELISA impossible 

since absorption results mirrored the non-reproducible protein concentrations which 

resulted in varying binding activities (data not shown). To obtain more consistent protein 
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expression, some of the cultivation and experimental parameters were changed: (a) 

Different IPTG concentrations 0.5, 1, 2, 5 and 10 mM in LBamp medium to induce protein 

expression, (b) bacterial lysis with lysozyme (3.3.5.1) or sonication (3.3.5.4) for protein 

recovery instead of TES buffer, (c) LBamp medium and 2 x TYamp medium for cultivation 

instead of auto-induction medium, (d) use of different detection antibodies directed against 

His6-tag and myc-tag, and (e) use of different blocking reagents (Chemiblock, 

3% BSA/PBS, varying concentrations of milk powder dissolved in PBS (between 1 and 

10%)). None of these parameters succeeded in improved protein production and 

reproducible ELISA results. Only clones A3, D5 and D9 exhibited enough protein yield for 

repeatedly positive binding analysis in every performed protein ELISA. 

4.5.2 Prokaryotic expression in BL21 Rosetta 2 (DE3) via pMT plasmid 

As a consequence of 4.5.1, soluble scFv proteins for evaluation of protein binding activity 

were expressed with a different strategy. Therefore, scFv inserts were subcloned into the 

pET-27b+-derived pMT vector (2.10) via the compatible restriction sites SfiI and NotI 

(Figure 4-9) and transformed into BL21 Rosetta 2 (DE3) E.coli (2.3). This bacterial strain 

carries the lac-operon controlled gene for the T7 RNA polymerase (T7 promoter). 

Induction by IPTG or lactose, guarantees a stringent periplasmic expression of the 

recombinant scFv protein via a pelB leader peptide. 

 

Figure 4-9 Schematic of pMT expression cassette for prokaryotic production of soluble scFv protein 

in BL21 Rosetta 2 (DE3). 

A pelB signal peptide and the His10-tag are located up-stream of the scFv sequence. Within the scFv, the 

heavy chain VH is connected to the light chain VL through a glycine-serine (GS) linker peptide. scFv 

expression is controlled by a T7 promoter inducible with IPTG or lactose. A TAA stop codon terminates the 

protein translation down-stream of the scFv sequence. The scFv DNA sequence was inserted into the pMT 

vector through enzymatic restriction sites SfiI and NotI. 

Recombinant scFv protein was expressed as described in 3.1.9.3. Despite high potential for 

secretion, only small concentrations of soluble scFv protein were detected in the culture 

medium. Again the bacterial pellet was lysed using TES buffer (3.3.5.2), then protein yield 

was investigated by means of SDS-PAGE (3.3.1) and Western blot (3.3.2). Protein 

expression results displayed similar inconsistency of protein concentrations as in 4.5.1. 
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Same parameters were changed as variables for the expression in HB2151 to improve 

expression results; nevertheless, protein yield and ELISA binding results were not 

reproducible. As a consequence, prokaryotic expression of soluble recombinant scFv 

antibody fragments was not pursued further. 

4.5.3 Eukaryotic expression in HEK293T via pMS-SNAPMut plasmid 

To approach eukaryotic expression of soluble scFv antibodies, L3.6pl-positive scFv inserts 

were transferred into the pSecTag2-based pMS-SNAPMut vector (2.10) via restriction 

sites SfiI and NotI (Figure 4-10). 15 L3.6pl-positive clones were successfully transfected 

into HEK293T cells (3.2.3.1) along with the 14.1(scFv, and 425(scFv) antibody fragments 

as positive control. Eukaryotic expression was conducted as described in 3.2.3.2. 

 

Figure 4-10 Schematic of pMS-SNAPMut expression cassette for eukaryotic expression of soluble 

scFv-SNAP proteins in transiently transfected HEK293T. 

Protein expression is regulated with a CMV promoter. Recombinant scFv proteins, consisting of a heavy 

chain VH and light chain VL connected via a glycine-serine (GS) linker, are secreted into the culture medium 

via a Igkappa signal sequence up-stream of the scFv. The scFv is genetically fused to a SNAP-tag as well as 

a His6-tag and a myc-tag used for detection or fluorescent labeling. Protein expression is terminated by a 

TGA stop codon. Down-stream of this, the internal ribosomal entry side (IRES) promotes co-translation of 

enhanced green fluorescent protein (eGFP) in parallel to expression of scFv-SNAP. Visible green 

fluorescence in transfected HEK293T cells indicates successful scFv-SNAP protein production.  

In successfully transfected cells, the bicistronic pMS-SNAPMut vector promotes 

expression of soluble scFv-SNAP proteins in HEK293T cells simultaneously with eGFP. 

This fluoresces under the microscope, thus visualizing protein expression. Transfected 

cells were cultivated under selective pressure of Zeocin for two weeks until 80 ± 10% of 

all viable cells featured eGFP as well as scFv-SNAP protein expression; untransfected 

HEK293T control cells died completely. Produced scFv-SNAP proteins were secreted into 

the culture medium via an IgG kappa signal sequence and the tissue culture supernatant 

(TCSN) was examined by SDS-PAGE and Western blot (Figure 4-11). The coomassie-

stained SDS-PAGE is not displayed here since the high FBS concentration in the 

cultivation medium resulted in a protein band at 66 kDa overlaying the scFv-SNAP protein 

band at 42 kDa. All scFv-SNAP proteins, except E3(scFv)-SNAP, were successfully 

expressed at the expected protein size. Protein concentrations slightly differed between 
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clones but all bands were clearly visible, indicating a sufficient scFv-SNAP protein 

concentration for subsequent experiments. 

 

Figure 4-11 Western blot analysis of tissue culture supernatant containing transiently expressed scFv-

SNAP proteins.  

A protein band at ~42 kDa indicates successful expression of all scFv-SNAP proteins, here detected via a 

penta-anti-His primary and a GAM-PO secondary antibody followed by signal development with DAB. Lane 

2: Expression of the positive control protein 425(scFv)-SNAP, lane 3: protein band of 14.1(scFv)-SNAP 

expression. No protein band was detected for the E3(scFv)-SNAP protein (lane 12) which despite correct 

DNA sequence and ORF could not be expressed in HEK293T cells. 

Harvested TCSN, containing the scFv-SNAP proteins, was utilized for flow cytometric 

binding analysis (4.6.2), internalization assays (4.6.3) and IMAC purification combined 

with SNAP-labeling (4.5.4). 

4.5.4 IMAC purification and SNAP-tag labeling with fluorescent dyes 

Eukaryotically produced scFv-SNAP proteins were purified by means of immobilized 

metal-ion affinity chromatography (IMAC) via the C-terminal His6-tag and if necessary 

were additionally labeled at the SNAP-tag with benzylguanine(BG)–coupled fluorescent 

dyes. IMAC purification and fluorescent labeling was exclusively performed with 

ELISA-positive clones (3.3.4). By this, one set of unlabeled scFv-SNAP antibodies and 

one labeled with BG-Alexa Fluor 647 (AF647) fluorescent dye was generated. Proteins 

14.1(scFv)-SNAP and 425(scFv)-SNAP were purified and labeled likewise. Figure 4-12 

illustrates an SDS-PAGE (Figure 4-12A) and Western blot analysis (Figure 4-12B) of 

successfully purified and AF647-labeled scFv-SNAP proteins. Each purification eluate 

analysis featured a protein band at approximately 49 kDa. Successful AF647-labeling was 

verified via image analysis in a VersaDoc device (Figure 4-12C). The presence of the 

scFv-SNAP antibody within the protein band at 42 kDa was verified via mass spectrometry 

after comparison to the MASCOT protein data base (data not shown, 3.3.8). Recombinant 

scFv-SNAP proteins were specifically detected via the His6-tag or SNAP-tag with DAB 

during Western blot analysis (Figure 4-12B). Protein concentration of IMAC-purified 
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scFv-SNAP proteins was calculated by means of densitometric AIDA-based analysis 

(3.3.3.1) using several BSA protein standard dilutions (50 – 1000 µg/mL) for evaluation. 

Resulting protein yield of 40 mL TCSN was between 103 µg/mL (A3(scFv)-SNAP) to 

1078 mg/mL (425(scFv)-SNAP). While AF647-labeling was successfully documented 

(Figure 4-12C), presence of free fluorescent dye (<10 kDa) was not observed on the SDS-

PAGE. 

 

Figure 4-12 SDS-PAGE and Western blot analysis of IMAC-purified scFv-SNAP proteins with 

subsequent AF647 labeling. 

(A) SDS-PAGE after coomassie-staining of all proteins with visible protein band for the scFv-SNAP proteins 

at 49 kDa and  additional protein bands at 66 kDa for the BSA protein standard (lane 12: 50 µg/mL, lane 13: 

200 µg/mL, lane 14: 1000 µg/mL).Additional contaminating protein bands are visible around 70 kDa. (B) 

Western blot with scFv-SNAP proteins at 49 kDa specifically detected via penta-anti-His primary and 

GAM-PO secondary antibody, developed with DAB substrate. (C) Photograph of scFv-SNAP proteins 

successfully labeled with AF647 fluorescent dye. 

4.6 Characterization of soluble scFv antibodies 

Biological functionality of soluble scFv-SNAP proteins was characterized by means of 

soluble protein ELISA (3.3.9.3), flow cytometry (3.3.10.1) and internalization assays 

(3.3.11). Binding activity of unpurified, purified, and AF647-labeled scFv-SNAP protein 

was tested on the pancreatic cancer cell line L3.6pl in combination with internalization 

behavior. Additional cross-reactive flow cytometric binding analysis was performed on 

other pancreatic and non-pancreatic cell lines. The EGFR-binding 425(scFv)-SNAP 

antibody fragment [164] served as a positive control during scFv-SNAP characterization 

(1.3.6). 

4.6.1 Protein ELISA 

Binding activity against pancreatic tumor-associated antigen was examined via soluble 

protein ELISA on L3.6pl, FG and PBMC membrane fractions (3.3.9.3), by applying 

2 µg/well purified but non-labeled scFv-SNAP protein. All clones featuring absorption 

signals of at least twice the ABTS background value (NC-reference value) of 0.129, were 
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defined as positive. Figure 4-13 displays positive ABTS absorption values on L3.6pl 

membranes for eleven scFv-SNAP proteins. Even stronger absorption values were 

observed on FG membranes but none on PBMC negative control membranes. Clone 

14.1(scFv)-SNAP behaved likewise. A3(scFv)-SNAP showed weak but non-significant 

cross-reaction on PBMC membranes, although this particular absorption value on PBMC 

antigen was much weaker than during monoclonal phage ELISA analysis (4.2.4.3). Clones 

C5(scFv)-SNAP, D12(scFv)-SNAP, E3(scFv)-SNAP, E8(scFv)-SNAP and 

F3(scFv)-SNAP did not bind to L3.6pl membranes on protein level, and were not 

investigated further. Repetition of the protein ELISA, using TCSN instead of 

IMAC-purified protein, verified the tendency of results in Figure 4-13; but variations in 

absorption signals were observed due to differing protein concentrations in the TCSN (data 

not shown). Overall, stronger ELISA signals were measured with unpurified proteins. 

Clones D5(scFv)-SNAP and D9(scFv)-SNAP exhibited strong binding (absorption >10-

fold of background), clones 14.1(scFv)-SNAP and A3(scFv)-SNAP displayed medium 

binding between 5- and 10-fold over background, whereas all other L3.6pl-positive clones 

only showed weak binding activity (2- to 5-fold above background. 

 

Figure 4-13 Protein ELISA analysis with soluble scFv-SNAP proteins produced in HEK293T cells.  

Recombinant scFv-SNAP proteins were tested on L3.6pl, FG and PBMC membrane fractions. Bound 

scFv-SNAP antibodies were detected via polyclonal anti-SNAP-tag primary antibody, a GAM-PO secondary 

antibody and signal development with ABTS substrate. The average background value was 0.129, defining 

clones as positive when displaying ABTS absorption signals twice that value and higher. 

4.6.2 Flow cytometric analysis 

Besides binding analysis on membrane fractions, all eleven positive scFv-SNAP proteins 

(4.6.1) were tested for binding on living L3.6pl and PBMC cells via flow cytometry. 

Histograms in Figure 4-14A clearly document binding activity on viable L3.6pl cells, 

compared to the background fluorescence of the cells. Nine scFv-SNAP proteins, plus the 
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14.1(scFv)-SNAP, depicted positive binding on the L3.6pl target cell line but none on the 

PBMC negative control cells (Figure 4-14B). A3(scFv)-SNAP did not bind to the living 

PBMCs despite positive absorption measurements during ELISA analysis. Figure 4-14C 

states the percentage of L3.6pl target cells bound by scFv-SNAP antibodies and compares 

the mean fluorescent intensities (MFI) of each clone against the 425(scFv)-SNAP positive 

control. Clones E5(scFv)-SNAP and F11(scFv)-SNAP did not bind to living L3.6pl cells 

during flow cytometry and were discarded. Even though clones D5(scFv)-SNAP and 

D9(scFv)-SNAP featured very strong ELISA-binding, only very weak binding potential 

was observed here. Both clones will be discussed separately in 6.1.6. During flow 

cytometry, it was observed repeatedly that purified and fluorescence-labeled scFv-SNAP 

proteins depicted weaker binding activity than the unpurified TCSN (data not shown). 

 

Figure 4-14 Flow cytometric binding activity data of scFv-SNAP proteins on L3.6pl and PBMC cells. 

(A) Incubation of unpurified TCSN or 2 µg/sample scFv-SNAP fusion protein. The right-shifted grey curve 

represents bound scFv-SNAP proteins detected with an anti-His AF488-conjugated antibody. The black 

curve indicates the background fluorescence in comparison. Positive binding was shown for scFv-SNAP 

clones 14.1, A3, D1, D4, D6, E7 and F1. Clones D5 and D9 showed almost no binding. (B) None of the 

clones depicted binding on PBMC cells, (C) percentage of cells bound by scFv-SNAP proteins and the 

corresponding mean fluorescence values (MFI). 

D5(scFv) and D9(scFv) both exhibited very strong binding activity on membrane fractions 

during ELISA analysis on phage (4.2.4.3) and protein level (4.6.1) but merely featured 

weak binding (39% shifted cells) during flow cytometry (4.6.2). Closer investigations 

revealed a positive shift of 2.5% (D5(scFv)) and 2% (D9(scFv)) respectively (Figure 4-15), 
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indicating the possible existence of a certain cell subpopulation within the highly 

metastasizing L3.6pl cell line . 

 

Figure 4-15 Flow cytometric analysis of binding activity of D5(scFv) and D9(scFv) indicating a 

possible subpopulation within the L3.6pl cell line.  

Bound scFv proteins were detected with an anti-His IgG conjugated to AF488 fluorescence dye emitting in 

fluorescence channel FL-1. The black curve represents the background fluorescence of the detection antibody 

on the L3.6pl cells, the filled red curve displays the binding activity of D5(scFv) and D9(scFv) on L3.6pl. 

M1 indicates the area marked for shifted cells. 

4.6.2.1 Flow cytometric cross-reactivity analysis 

Since scFv-phage particles binding to healthy PBMC cells had already been depleted 

during panning, no binding was detected on living PBMC cells during flow cytometry. 

Nevertheless, cross-reactive properties of the L3.6pl-positive scFv-SNAP antibodies was 

investigated on other pancreatic cancer cell lines as well as on carcinoma cell lines 

originated from different tissue types (2.4). Existing cross-reactivity might indicate a 

tumor-associated antigen present on more than one type of cancer.  

Cross-reactivity to pancreatic cancer cell lines: Surface binding was examined on the 

pancreas-derived cell lines FG, Su86.86, MiaPaCa2, PancTuI and PancTuI-luc (Table 

4-11). All clones displayed positive binding on the PancTuI and PancTuI-luc but binding 

activities differed from the values measured on L3.6pl. For instance, clone 

D6(scFv)-SNAP bound 25% more PancTuI/PancTuI-luc cells, whereas clone 

14.1(scFv)-SNAP displayed approximately 50% less binding to PancTuI/PancTuI-luc than 

on L3.6pl. Recombinant scFv-SNAP antibodies 14.1, D1, D4, D6 and F1 also showed 
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binding activity to the non-metastasizing precursor cell line FG. Moreover, scFv-SNAP 

clones D1, D4, D6 and F1 bound to MiaPaCa2 and Su86.86, whereas 14.1(scFv)-SNAP 

did not feature any binding on the latter two cell lines. 

Table 4-11 Results of flow cytometric cross-reactivity testing with L3.6pl-positive scFv-SNAP 

antibody fragments on other pancreatic carcinoma cell lines. 

Clone L3.6pl FG MiaPaCa2 Su86.86 PancTuI/PancTuI-luc

14.1(scFv) +++ +++ - - + 

A3(scFv) +++ - - - ++ 

D1(scFv) ++ + + + ++ 

D4(scFv) +++ + + + + 

D5(scFv) + - - - + 

D6(scFv) ++ + + + +++ 

D9(scFv) + - - - + 

E7(scFv) ++ - - - +++ 

F1(scFv) ++ + + + +++ 

Definition of percentage of shifted cells: +++ = 100 – 75%, ++ = 75 – 50%, + = 50 – 25%, - = 25 – 0% 

Cross-reactivity to non-pancreatic cell lines: Different degrees of cross-reactive binding 

results on cell lines A431 (human epidermoid carcinoma), LNCaP (human prostate 

carcinoma), MDA-MB-231 (human breast carcinoma) and SiHa-BHT35 (human cervix 

carcinoma) are summarized in Table 4-12. All clones except D5(scFv)-SNAP and 

D9(scFv)-SNAP bound to A431 and MDA-MB-231. Cell line SiHa-BTH35 was tested 

positive for binding of six scFv-SNAP clones (14.1, D1, D4, D6, D9 and F1), but only four 

scFv-SNAP proteins (D1, D4, D6 and F1) displayed slightly positive binding on the 

prostate cancer cell line LNCaP.  

Table 4-12 Results of flow cytometric cross-reactivity testing with L3.6pl-positive scFv-SNAP 

antibodies on cell lines derived from several different cancer types. 

Clone A431 LNCaP MDA-MB-231 SiHa-BTH35

425(scFv) 
 

+ 
 

14.1(scFv) + - + ++ 

A3(scFv) + - + - 

D1(scFv) ++ + ++ + 

D4(scFv) + + ++ + 

D5(scFv) - - - - 

D6(scFv) ++ + ++ ++ 

D9(scFv) - - - + 

E7(scFv) + - + - 

F1(scFv) ++ + ++ ++ 

Definition of percentage of shifted cells: +++ = 100 – 75%, ++ = 75 – 50%, + = 50 – 25%, - = 25 – 0% 
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None of the scFv-SNAP antibodies showed unspecific binding to the eukaryotic expression 

cell line HEK293T (data not shown). 

4.6.3 Internalization assays 

Recombinant scFv antibodies isolated in this work are potential candidates for the 

generation of immunotoxins for application during targeted immunotherapeutic cancer 

treatment. It is essential for therapeutic antibodies to be transported into the cytosol of a 

target cell after surface binding. Internalization of fundamentally improves the metabolic 

uptake and therapeutic effectiveness of recombinant immunotoxins. Based on positive 

binding activity on viable cells during flow cytometry (4.6.2.1), flow cytometric 

internalization experiments [244] (4.6.3.1)  were performed with scFv-SNAP proteins of 

clones 14.1, A3, D1, D4, D5, D6, D9, E7 and F1. Candidates with positive internalization 

behavior during flow cytometric internalization were then further investigated by means of 

immunofluorescence staining and confocal microscopy in the OPERA live cell imager 

(4.6.3.2). 

4.6.3.1 Internalization analysis via flow cytometry 

IMAC-purified scFv-SNAP proteins were labeled with red AF647 fluorescent dye and 

incubated with L3.6pl cells at 37 °C to induce internalization. In parallel, the identical 

AF647-labeled scFv-SNAP proteins were incubated at 4 °C to document surface binding 

instead of internalization. Bound and internalized scFv antibodies marked with AF647 

were measured in fluorescence channel FL-4 of a FACScalibur device (Figure 4-16). 

Positive AF647-binding signals were detected at both temperatures. To distinguish 

internalized from surface-bound scFv antibodies, the exterior cell proteins were removed 

by digestion with trypsin. This eliminated the AF647 signal of surface-attached 

scFv-SNAP proteins, while keeping the internalized fluorescence signal intact. Afterwards 

fluorescence signals were still measured for clones 14.1, A3, D4 and F1, when previously 

incubated at 37 °C. Remaining clones did not display a positive fluorescence signal after 

incubation at 37 °C and trypsination. Following 4 °C incubation, none of the clones 

depicted a positive AF647 signal after trypsin treatment. Concluding, positive fluorescence 

signals after trypsin digest were only emitted by AF647-coupled and internalized 

scFv-SNAP antibodies. Figure 4-16 illustrates, a positive internalization process was 

measured for clones 14.1, A3, D4 and F1. A positive right-shift (black curve) was shown 

after incubation at 4 °C as well as 37 °C. Trypsin treatment of L3.6pl cells, after incubation 
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at 4 °C, resulted in a negative flow cytometric signal. To prove successful internalization, 

binding of scFv-SNAP proteins at 4 °C and successful trypsinization after internalization 

were verified by co-incubation with an anti-His-AF488 conjugated detection antibody. 

 

Figure 4-16 Flow cytometric documentation of internalization and binding properties of 14.1(scFv)-

SNAP, A3(scFv)-SNAP, D4(scFv)-SNAPand F1(scFv)-SNAP labeled with AF647 on L3.6pl cells.  

Binding and successful trypsination was detected via the His6-tag and an anti-His-AF488 conjugated 

detection antibody. (A) and (B) demonstrate binding at 4 °C; (C) and (D) prove elimination of red 

fluorescence after incubation at 4 °C and trypsination due to successful removal of surface-bound 

scFv-SNAP protein; (E) depicts the combined fluorescence signal of surface-bound and internalized 

scFv-SNAP at 37 °C; (F) shows surface-bound proteins after 37 °C incubation, detected with 

anti-His-AF488; (G) positive signal of AF647-labeled scFv-SNAP proteins after removal of surface-bound 

protein after incubation at 37°C; (H) proves that trypsination of cells measured in (G) has been successful 

because there is no measurable AF488 signal.  
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Measurements of trypsinated cells after incubation at 37 °C rendered positive 

red-fluorescent signals, indicating internalization of AF647-labeled proteins into L3.6pl 

cells but no signal for the AF488-conjgated detection antibody. Non-trypsinated cells 

featured an AF488-related fluorescence signal for all clones. Fluorescence intensity of 

internalized scFv-SNAP antibodies following trypsin treatment was weaker than the signal 

before trypsination. This was attributed to the removal of surface-bound scFv antibodies 

from the measurement. In summary, four scFv-SNAP clones (14.1, A3, D4 and F1) 

depicted a positive internalization signal during flow cytometric internalization analysis. 

Clones D1, D5, D6, D9 and E7 showed a similar binding performance as in Figure 4-14, 

but their fluorescence signal was completely eliminated by trypsin treatment after 

incubation at 37 °C. This led to the conclusion that for said clones merely exterior binding 

occurred but no internalization.  

4.6.3.2 Internalization via OPERA confocal microscopy 

Following flow cytometry (4.6.3.1), the four internalization-positive scFv-SNAP proteins 

14.1, A3, D4 and F1 were examined by immunofluorescence staining using the OPERA 

live cell imaging system. In a first experiment, IMAC-purified unlabeled scFv-SNAP 

proteins were detected via a polyclonal anti-SNAP-tag antibody and an AF647-labeled 

detection antibody. As second analysis, kinetic measurements were performed with the 

OPERA device by means of live cell imaging in order to document the internalization 

process of the AF647-labeled 14.1(scFv)-SNAP antibody fragment into L3.6pl cells. 

Immunofluorescence staining of scFv-SNAP proteins: 2 µg/well of IMAC-purified 

unlabeled scFv-SNAP protein were incubated on L3.6pl cells in a 96-well plate (µ-clear, 

black, greiner) at 4 °C for 1 h and at 37 °C for different time periods (1, 2, 3, 6 and 12 h) to 

observe internalization behavior. Since adhesive L3.6pl cells were not detached or treated 

with trypsin, differently shaped cells were observed to adhere to the bottom of the 96-well 

plate. Figure 4-17 illustrates the internalization of 14.1(scFv)-SNAP after one to two hours 

incubation at 37 °C at two different locations in a well.  
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Figure 4-17 Immunofluorescence staining of 14.1(scFv)-SNAP protein incubated on L3.6pl cells at 

4°C and 37°C.  

Half of the cells were permeabilized with Triton X100 before staining and after fixation with 4% PFA. After 

1 h incubation at 4 °C, surface binding was observed. After 1 h at 37°C, binding to cell surface was increased 

and vesicle formation started in the permeabilized cells. Internalization of vesicles with 14.1(scFv)-SNAP 

occurred after 1-2 h at 37°C. Vesicles inside the cell became larger and more with time. Non-permeabilized 

cells do not display the internalization very clearly but the permeabilized cells give a very good impression of 

the vesicles transported into the L3.6pl cells. Nucleus staining was performed with DAPI, scFv-SNAP 

detection via a polyclonal anti-SNAP-tag secondary and an AF647-labeled tertiary antibody. 

Non-permeabilized cells show excellent binding of the AF647-labeled 14.1(scFv)-SNAP 

protein, but hardly any internalized antibody. Permeabilized cells, on the other hand, show 

a large number of internalized vesicles after two hours. In contrast to the other antibodies 

with internalizing properties, 14.1(scFv)-SNAP bound to the cell surface continuously 

indicating recognition of a tumor associated target antigen with high expression density. 

Figure 4-18 depicts binding and internalization of clone A3(scFv)-SNAP. Binding after 1 h 

at 4 °C was very weak but binding increased during incubation at 37 °C. In contrast to 

14.1(scFv)-SNAP, binding was located in defined spots on the cell surface. Repeatedly, 

non-permeabilized cells only featured surface binding but permeabilized cells showed 

visible internalized vesicles three hours incubation at 37 °C. 
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Figure 4-18 Immunofluorescence staining of A3(scFv)-SNAP on L3.6pl cells at 4°C and 37°C.  

Half of the cells were permeabilized with Triton X100 before staining and after fixation with 4% PFA. After 

1 h incubation at 4 °C, surface binding was observed. After 1 h at 37°C, binding to cell surface was increased 

and vesicle formation started in the permeabilized cells. Internalization of vesicles with A3(scFv)-SNAP 

protein occurred after 1-2 h at 37°C. Vesicles inside the cell became larger and more with time. 

Non-permeabilized cells do not display the internalization very clearly but the permeabilized cells give a very 

good impression of the vesicles transported into the L3.6pl cells. Nucleus staining was performed with DAPI, 

scFv-SNAP detection via a polyclonal anti-SNAP-tag secondary and an AF647-labeled tertiary antibody. 

For clones D4(scFv)-SNAP and F1(scFv)-SNAP, binding as well as starting internalization 

were only observed after three to six hours incubation at 37 °C. Both were visualized by a 

growing number of vesicles with longer incubation time, in parallel to an enlargement of 

these vesicles over time. The actual internalization process of these two clones took 

between six and twelve hours. This is clearly documented in Figure 4-19 by the defined 

and internalized vesicles inside the cell.  
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Figure 4-19 Immunofluorescence staining of D4(scFv)-SNAP and F1(scFv)-SNAP incubated on L3.6pl 

cells at 4°C and 37°C.  

Half of the cells were permeabilized with Triton X100 before staining and after fixation with 4% PFA. 

Binding of both scFv proteins to cell surface was clearly visible after 3 – 6 h incubation at 37 °C. After 12 h 

at 37 °C binding to cell surface was increased and vesicle formation started. Starting internalization of 

vesicles with D4 and F1 proteins took place around 12 h at 37°C. Vesicles inside the cell became larger with 

time. Non-permeabilized cells do not show the internalization very clearly but the permeabilized cells give a 

very good impression of the vesicles that were transported into the L3.6pl cells. Again both scFv antibodies 

do not bind to the cell surface continuously but only on certain spots of the cell surface. Starting from theses 

spots, they start to internalize into the cells. Nucleus staining was performed with DAPI, scFv-SNAP 

detection via a polyclonal anti-SNAP-tag secondary and an AF647-labeled tertiary antibody. 

Binding of proteins A3(scFv)-SNAP, D4(scFv)-SNAP and F1(scFv)-SNAP located in 

small spots on the cell surface indicates that the bound surface antigen is not over-

expressed to the same extent of the antigen bound by 14.1(scFv)-SNAP antibody. 

Internalization kinetics of 14.1(scFv)-SNAP-AF647: Featuring the fasted internalization 

rate, IMAC-purified and AF647-labeled 14.1(scFv)-SNAP protein was applied during a 

kinetic experiment and measured with the OPERA system. Because living L3.6pl cells 

were very sensitive to any kind of unusual treatment, and tended to detach after two to 

three hours, fast internalization was essential for this experiment. Sensitivity was observed 

by rounding of L3.6pl cells which slightly influenced the focus of the OPERA confocal 

microscope, resulting in blurred photographs. Figure 4-20 documents a kinetic illustration 

of the internalization process of 14.1(scFv)-SNAP-AF647 at 37°C (concentrated 2 µg/well) 

at the same position in four wells at different time points (60 min at 4 °C (t = 0), 30 min at 

37 °C (t = 30), 60 min at 37 °C (t = 60 min), and 80 min at 37 °C (t = 80 min)). After 

surface binding, 14.1(scFv)-SNAP-AF647 was internalized via small vesicles. After 

80 min incubation at 37 °C, most cells were swimming freely in the wells and the 

experiment was stopped. No DAPI counter-staining was performed to avoid eventual 

interference with the AF647 signal and cell sensitivity. 
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Figure 4-20 Internalization kinetics of 14.1(scFv)-SNAP-AF647 into L3.6pl cells at 37°C at different 

time points.  

A, B, C and D show the internalization behavior of 4 different positions at 37°C. Pictures were taken after 1 h 

incubation at 4°C (t = 0) and after 30 min (t = 30), 60 min (t = 60) as well as 80 min (t = 80) incubation at 

37°C. All positions show the process of binding to the cell surface and the internalization of the 14.1(scFv)-

SNAP-AF647 protein into the L3.6pl cells. AF647 fluorescence in cells was photographed at 

40 x magnification with the confocal OPERA microscope. 
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5 Results: Design of novel fluorescent W-tag 

Efficient production of recombinant therapeutic proteins is another current major area of 

research. Prospectively, pancreas-specific scFv antibody fragments isolated from the 

Tomlinson libraries I and J characterized in the work, are promising candidates to serve as 

binding domain within an immunotoxin. Similar therapeutic results, based on the anti-

EGFR single chain 425(scFv) as binding moiety fused to a truncated version of the 

bacterial toxin Pseudomonas Exotoxin A’ (ETA’), have previously been described [157, 

159]. Being potentially toxic to eukaryotic organisms, such cytotoxic constructs are 

primarily produced in prokaryotic expression systems, such as E.coli. To evaluate the 

production of such recombinant target constructs more easily, research during the last 

decade has focussed on non-invasive on-line monitoring systems to observe bacterial 

cultures during fermentation. One system, called BioLector
®

, was developed at the 

Department of Biochemical Engineering at RWTH Aachen University. It is able to monitor 

bacterial cultures for product formation through a green fluorescent protein (GFP) reporter 

tag, measures pH or oxygen content. As an alternative to the commonly used reporter tag 

GFP, a new protein tag was developed, exploiting the auto-fluorescent characteristics of 

the aromatic amino acid tryptophan (W) by means of tryptophan clustering. This 

W-enriched tag, called W-tag, is much shorter than GFP. It offers a possibly advantageous 

approach for the on-line measurement of protein formation in real-time. Five W-tags with 

various numbers of tryptophan residues were designed and exemplarily fused to the 

anti-CD30 receptor single chain Ki-4(scFv) [237]. The anti-Muc1 receptor single chain 

M12(scFv) [238] was used as a second proof-of-concept protein for the on-line monitoring. 

The following chapter presents the results of cloning, expression, as well as on-line and 

off-line analysis regarding those novel W-tags. Additionally, the relation between product 

formation and tryptophan fluorescence intensity was investigated, followed by the analysis 

of binding specificity of W-tagged and untagged recombinant protein. 

5.1 Generation of W-tag constructs 

5.1.1 Sequence design and cloning 

Five different W-tag sequences, containing between one and five tryptophan residues 

(W1 – W5), were developed in co-operation with Dr. Heinrich Delbrück (Fraunhofer IME, 

Aachen). Accumulated tryptophan residues were embedded into the structure of a naturally 

occurring protein loop originated from a Bacillus caldolyticus cold shock protein 
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(GenBank accession numbers are: W1-tag – JN107996, W2-tag – JN120907, W3-tag – 

JN120908, W4-tag – JN120909, W5-tag – JN120910). Table 5-1 gives an overview of the 

number of tryptophan residues (and other aromatic amino acids) within the W-tags, 

additionally comparing the lengths of the W-tags and the W-tagged single chain fusion 

proteins. 

Table 5-1 Five different W-tag variations stating the number of tryptophan residues per construct, 

the construct name, the total number of aromatic amino acids (tryptophan, tyrosine and 

phenylalanine) as well as the size of the tag region and fusion protein in kDa. [246] 

Name Aromatic amino acids in W-tag Fusion protein in kDa W-tag in kDa

EC 0 24.16 1.73 

W1 1W 1Y 1F 25.79 3.36 

W2 2W 3Y 0F 27.44 5.01 

W3 3W 2Y 0F 27.46 5.03 

W4 4W 1Y 0F 27.49 5.06 

W5 5W 3Y 0F 28 5.57 

W-tags were synthesized at GENEART (Regensburg, Germany) and delivered as DNA 

sequences in plasmids pMA(amp) and pCR4Blunt-TOPO(amp,kan), containing the necessary 

restriction sites (NcoI, NdeI, HindIII and XbaI).  

Table 5-2 displays the DNA and protein sequence data of the W-tags. DNA triplets of the 

ordered DNA sequences were optimized for the protein expression in E.coli. 

Table 5-2 DNA and protein sequences of all five W-tags.  

The DNA sequences were ordered from GENEART with E.coli-optimized triplets. They were delivered in 

the vector backbones pMA and pCR4Blunt-TOPO containing all the restriction sites necessary for 

subsequent cloning into a prokaryotic or eukaryotic expression system. 

W-tag DNA sequence Protein sequence Delivery vector 

W1 
AAA TGG AGC AAC AAC GAA 

AAA GGC TAT GGC TTT AGC 
KWSNNEKGYGFS pMA 

W2 

CGC GGC AAA GAA AAA TGG 

AAA AAC AAC GAA AAA GGC 

TAT GGC TAT CAG GAA GAT 

GAA GGC GGC AGC TAT AAA 

TGG GAA GAT 

RGKEKWKNNEKGYGYQEDEGGSYKWED pMA 

W3 

CGC GGC AAA GAA AAA TGG 

AAA AAC AAC GAA AAA GGC 

TGG GGC TAT CAG GAA GAT 

GAA GGC GGC AGC TAT AAA 

TGG GAA GAT 

RGKEKWKNNEKGWGYQEDEGGSYKWED pMA 

W4 

CGC GGC AAA GAA AAA TGG 

AAA AAC AAC GAA AAA GGC 

TGG GGC TAT CAG GAA GAT 

GAA GGC GGC AGC TGG AAA 

TGG GAA GAT 

RGKEKWKNNEKGWGYQEDEGGSWKWED pCR4Blunt-TOPO 

W5 

CGC GGC AAA TAT AAA TGG 

AAA AAC AAC GAA AAA GGC 

TGG GGC TAT TGG GAA GAT 

GAA GGC GGC AGC TGG TAT 

TGG AAA GAT 

RGKYKWKNNEKGWGYWEDEGGSWYWKD pMA 
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During W-tag design, the protein sequences were analyzed with the CHARMM software 

(http://www.CHARMM.org) in Discovery Studio (http://www.accelrys.com) to minimize 

the free energy of each model and to create 3D-models for each W-tag protein loop (Figure 

5-1). Moreover, all protein sequences were arranged with the same program to ensure that 

tryptophan residues were positioned on the outside of the protein loop. 

 

Figure 5-1 3D-models of amino acid sequence structures of all five W-tags.  

(A) W1-tag, (B) W2-tag, (C) W3-tag, (D) W4-tag and I W5-tag; all structures display the amino acid residues 

on molecular basis featuring the calculated in- and outward orientation of the amino acids in the protein loop 

used for the W-tag design. 

5.1.2 Vector assembly of W-tag constructs 

All five W-tags were successfully subcloned from the pMA and pCR4Blunt-TOPO 

delivery vectors into the pET-27b+-derived pMT plasmid (2.10, Figure 2-1) used for 

prokaryotic protein expression in E.coli. The pMT expression vector contained a gene 

encoding the CD30-specific murine single-chain antibody fragment Ki-4(scFv) [237] or 

the human single chain M12(scFv) [238], supposed to bind against the MucI receptor. Two 

different constructs were prepared for each W-tag and each recombinant scFv antibodies: 

(a) One construct carrying a pelB leader peptide to produce periplasmic target protein 

(subcloned via restriction sites NcoI and HindIII), and (b) one construct without pelB 

leader peptide to produce cytoplasmic protein (transferred through enzymes NdeI and 

HindIII). 
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DNA fragments were ligated into the pMT plasmid to create the expressional vector series 

pMT-Wx-Ki-4(scFv) and pMT-Wx-M12(scFv), where x refers to the number of 

tryptophan residues in the W-tag. The complete expression cassette (Figure 5-2) comprised 

a pelB leader (or no pelB leader respectively), W-tags (W1–W5), a His6-tag, GS-linkers 

and a cleavable enterokinase site (EK-site). Recombinant scFv genes were introduced as an 

in-frame fusion down-stream of the W-tag region exchangeable within the expression 

cassette via restriction enzymes SfiI and NotI. 

 

Figure 5-2 Expression cassette for pMT-Wx-Ki-4(scFv) and pMT-Wx-M12(scFv) fusion protein 

constructs.  

The target protein is genetically linked to the W-tag region together forming the target fusion protein. The 

schematic structure of the Wx-Ki-4(scFv)/M12(scFv) insert in the expression cassette consists of the pelB 

signal peptide inducible with IPTG via the lac operator (periplasmic construct), W-tag fused to a His6-tag by 

a GS-linker and the scFv target protein linked to the His6-tag through a potentially cleavable EK-site. The 

cytoplasmic construct has no pelB leader peptide. Restriction sites for constructs with pelB leader are NcoI 

and HindIII, restriction sites for constructs without pelB leader NdeI and HindIII. The recombinant scFv can 

be exchanged through SfiI and NotI restriction sites. [246] 

All W-tag constructs were equipped with a His6-tag for immunodetection and affinity 

purification as well as an EK-site for potential cleavage of the target protein from the 

W-tag and His6-tag. Since all proteins naturally contain some tryptophan residues in their 

amino acid sequence vectors pMT-Ki-4(scFv) and pMT-M12(scFv) without W-tags were 

employed as expression controls (EC) to determine the background auto-fluorescence of 

the untagged single chains. The empty pET-27b+ vector was used as a true negative 

control (NC). 

5.2 Expression of W-tag fusion proteins 

5.2.1 Protein expression in bacterial pellet 

To illustrate protein expression, Wx-Ki-4(scFv) constructs with pelB leader are shown 

exemplary for all constructs with and without pelB leader as well as all corresponding 

Wx-M12(scFv) constructs. All five Wx-Ki-4(scFv) constructs including controls (EC and 

NC) were expressed under kanamycin selective pressure in BL21 Rosetta 2 (DE3) E.coli 
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(3.1.9.3) induced with IPTG via the lac operator. Samples were retrieved from bacterial 

pellet by heat lysis and successful target fusion protein expression was verified via 

SDS-PAGE and Western blot analysis against the His6-tag (Figure 5-3). Intense double 

bands ranging from 25 to 35 kDa were detected, confirming over-expression of the 

different W-tagged target proteins with and without the pelB leader peptide. NC did not 

show any protein expression on the Western blot. The double bands occurred due to 

incomplete cleavage of the pelB leader when the fusion protein was transported from the 

cytoplasm to the periplasmic space. The identity of each protein band was confirmed by 

mass spectrometry (3.3.8) (data not shown). The lower protein band (25 – 30 kDa) 

corresponded to the calculated weight of the protein, the higher band (30 – 35 kDa) 

included the uncleaved pelB leader peptide. Remaining visible protein bands on the 

SDS-PAGE were contaminating bacterial proteins. 

 

Figure 5-3 Wx-Ki-4(scFv) protein expression analysis on SDS-PAGE and Western blot.  

(A) SDS-PAGE: lane 1 – Prestained Broad Range Protein Marker, lane 2 – empty vector as negative control 

(NC), lane 3 – Ki-4(scFv) expression control (EC), lane 4 – W1-Ki-4(scFv), lane 5 – W2-Ki-4(scFv), lane 6 

– W3-Ki-4(scFv), lane 7 – W4-Ki-4(scFv), lane 8 – W5-Ki-4(scFv). (B) Western blot of proteins detected 

with a monoclonal anti-polyHis IgG antibody, a goat anti-mouse-peroxidase conjugated antibody and DAB. 

In figures (A) and (B) the proteins are detected as double bands. [246] 

The cytoplasmic constructs without pelB leader peptide and the Wx-M12(scFv) target 

fusion proteins were expressed in the pellet likewise (data not shown). [246] 

5.2.2 Protein secretion into cultivation medium 

Non-tagged Ki-4(scFv) antibody (EC) and the W1-Ki-4(scFv) protein were partially 

secreted and found in both the supernatant and the cell pellet (Figure 5-4A). Target fusion 

proteins containing between two and five tryptophan residues within the W-tag were 

almost exclusively detected in the cell pellet fraction and barely secreted into the medium,  

displayed by the very weak band visible in the Western blot (Figure 5-4B). Even though 

the bacterial pellet was thoroughly separated from the medium by centrifugation, these 

weak bands may be residual protein from cells damaged during centrifugation. 
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Wx-M12(scFv) constructs showed the same trend of protein secretion during expression as 

the W-tagged Ki-4(scFv) proteins. 

 

Figure 5-4 SDS-PAGE and Western blot analysis of Wx-Ki-4(scFv) proteins secreted into cultivation 

medium.  

(A) SDS-PAGE and (B) Western Blot of cultivation medium: Lanes 1 and 2 were loaded with the NC 

showing no protein, lanes 3 and 4 contain the Ki-4(scFv) expression control which was secreted into the 

cultivation medium (band at ~25kDa). In lane 5 and 6 the W1-Ki-4(scFv) protein secretion in to cultivation 

medium is shown. Lanes 7 to 15 display the Ki-4(scFv) protein tagged with W2 to W5 which were only 

detected as weak bands in the cultivation medium if at all. All lanes display various bands of bacterial 

protein. 

None of the cytoplasmatically expressed proteins without pelB leader were released into 

the medium since they were not transported to the periplasmic space after translation. 

5.2.3 Protein expression in different types of media 

Moreover, the proteins were expressed as 5 mL cultures using different media to test for 

differences in expression: (a) modified Wilm-Reuss synthetic minimal medium (2.3), 

(b) LBkan medium induced with 1 mM IPTG (2.3) and (c) LBkan auto-induction medium 

(2.3). Comparing the protein expression in these different types of media, all Wx-Ki-

4(scFv) target fusion proteins were over-expressed to a similar degree in all three types of 

media, although expression in LBkan auto-induction medium sometimes yielded slightly 

better results (data not shown). As a consequence, modified Wilms-Reuss synthetic 

medium was chosen for all subsequent fermentations and on-line fluorescence 

measurements. A huge advantage is that synthetic medium displays lower background 

fluorescence than complex medium, thus resulting in a clearer signal during measurements. 

It was confirmed that control cultures lacking induction with 1 mM IPTG or lactose, never 

featured any protein expression during any time of cultivation in any cultivation medium. 

5.2.4 Percentage of over-expressed Wx-Ki-4(scFv) 

To evaluate the time point of maximum target protein over-expression, samples of all 

induced Wx-Ki-4(scFv) target fusion proteins were taken from a fermentation at five 
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different time points (t0 = 4.44 h, t1 = 6.22 h, t2 = 9.11 h, t3 = 12.2 h, t4 = 26.7 h) as well as 

the NC and EC controls. All cultures were induced with 1 mM IPTG after 4.44 h of 

fermentation when the bacteria entered the exponential growth phase. The bacterial pellet 

of each sample was harvested and the protein concentration within each pellet was 

analyzed via SDS-PAGE (3.3.1) and AIDA analysis software (3.3.3.1). After determining 

the total bacterial protein concentration as well as the concentration of target protein from 

the respective protein band on the SDS-PAGE, the percentage of the target protein was 

calculated referring to the total bacterial protein amount. Target protein concentration 

peaked between 9 and 10 h of cultivation (Figure 5-5). Subsequently target proteins were 

harvested after 9.5 h of fermentation to obtain optimal yield for further investigations of 

the target proteins. The graph below clearly shows a lower protein yield for EC and 

W1-Ki-4(scFv) than for the target proteins. W3-Ki-4(scFv) was produced best. Target 

protein concentration decreased again between 10 and 12 h of fermentation due to protein 

degradation or accumulation of biomass without target protein.  

 

Figure 5-5 Calculated percentage of Wx-Ki-4(scFv) proteins referring to total bacterial protein after 

determination of protein concentration with AIDA.  

NC did not produce any protein. All target proteins reached a peak of over-expression between 9 and 10 h, 

except EC which kept growing and producing target protein until the fermentation ended. EC and W1-Ki-

4(scFv) display lower expression of the target protein than the other constructs. W3-Ki-4(scFv) has the best 

over-expression at the peak. Between 10 and 12 h of fermentation the target protein concentration decreased. 

5.3 On-line measurement data 

In the following, W-tagged Ki-4(scFv) and M12(scFv) fusion proteins were examined for 

bacterial cell growth and cytotoxic effects eventually influencing biomass production using 

a self-made Respiratory Activity Monitoring System (RAMOS) (data not shown). 

Additionally, target fusion protein production was monitored on-line with a non-invasive 
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BioLector-like device via the auto-fluorescence signal of the different W-tags which 

optically detected protein production in real-time (3.5.1). BioLector on-line measurement 

data was performed and analyzed by Esther Gartz at the Department of Biochemical 

Engineering at RWTH Aachen University. 

5.3.1 On-line fluorescence intensity measurements 

One aim of this thesis was to create a short and optically active protein tag exploiting the 

auto-fluorescence properties of accumulated tryptophan residues in an on-line 

measurement set-up with an adapted BioLector® device to simultaneously measure 

biomass and product formation via tryptophan fluorescence during fermentation of induced 

and non-induced cultures (Figure 5-6A-D). Fermentation in the BioLector-like apparatus 

was carried out in 96-well MTPs (3.1.9.3). During cultivation, bacterial growth was 

determined by measuring the scattered light signal at 620 nm [224]. Tryptophan was 

excited at 280 nm and its emission was measured at 350 nm in form of a tryptophan 

fluorescence signal. Mean measurement values of quadruplicate samples of parallel 

induced and non-induced cultures, representing each Wx-Ki-4(scFv) target fusion protein 

as well as the EC and NC constructs, are displayed in Figure 5-6A-E. The relative 

percentage deviation of these measurements was less than 6% (data not shown). [246] 

Scattered light signals of the non-induced cultures (Figure 5-6A) similarly increased for all 

constructs during the exponential growth phase up to 7.5 h of fermentation. At this stage, 

glucose was almost depleted and the signals then declined until 10 h. For all non-induced 

clones, the different W-tag clones had no influence on the growth behavior. From 10 h 

onwards, the scattered light signals increased for the EC and NC cultures and, after a short 

stationary period, in the other cultures as well (Figure 5-6A). Tryptophan fluorescence 

curves of the non-induced cultures were comparable to the corresponding scattered light 

curves (Figure 5-6C) and reached a plateau after 7.5 h, indicating no further growth when 

the bacteria switched from consuming glucose to the overflow metabolite acetate. The 

similar curves for scattered light and tryptophan fluorescence suggest that both signals 

provide data about biomass formation (discussed later in more detail). [246] 

A slight increase for scattered light and tryptophan fluorescence signals was also observed 

in the non-inoculated control wells with pure medium (Figure 5-6A-D). Still no cell growth 

was detected towards the end of the experiment (no pellet after centrifugation). [246] 
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Induction of protein expression with 1 mM IPTG in the early exponential phase (after 3.2 h 

of cultivation) profoundly impacted the resulting growth curves. Only a moderate increase 

in biomass formation was observed (Figure 5-6B) but tryptophan fluorescence signals of 

all cultures rapidly increased except the negative control (NC) (Figure 5-6D). It was 

observed that the W-tags with a higher number of tryptophan residues did not return a 

proportional increase in fluorescence intensity. Nevertheless, the fluorescence intensity 

increases even with a stagnating biomass formation apart from the EC which keeps 

growing until the end of the fermentation (Figure 5-6D). Glucose depletion was observed 

after 9 – 10 h and at the same time the tryptophan fluorescence intensity declined in all 

induced cultures. [246] 

In the non-induced bacteria (Figure 5-6A and C), the increasing biomass (scattered light 

signal intensity) and tryptophan fluorescence intensity correlate which each other, and thus 

with the presence of tryptophan in the biomass. The tryptophan fluorescence was plotted as 

a function of the scattered light where all data points were almost concurrent with one 

another (Figure 5-6E). This means that all five W-tag constructs performed in a similar 

manner with regard to tryptophan fluorescence vs. scattered light intensity in non-induced 

cultures. The connection between tryptophan fluorescence and scattered light intensity was 

described using the power function (fluorescence intensitycalc = 4780·[scattered light 

intensitymeas]
0.077

-7715). Consequently, tryptophan fluorescence in the non-induced cultures 

was independent of the W-tag variant and only mirrored the scattered light intensity 

depicting the amount of cells. This so called fit indicates the effect of the biomass 

fluorescence signal on the tryptophan fluorescence intensity. Using the biomass signal of 

the uninduced clones, this factor was subtracted from the tryptophan fluorescence signal 

(Figure 5-6E). [246] 

Thus, tryptophan fluorescence coming from the biomass could be calculated with the 

power function and was subtracted from the overall tryptophan fluorescence to retrieve the 

partial tryptophan fluorescence signal actually resulting from the W-tag. This implies no 

observations of correlation between the quantitative and exact concentration value of target 

protein and tryptophan fluorescence. Only an increased product formation was documented 

where the curves of the W-tagged proteins provided a differing signal from the untagged to 

the W-tagged target fusion proteins. [246] 

In the induced cultures, the overall tryptophan fluorescence signal is the sum of the 

fluorescence signal from the biomass and the fluorescence signal from the W-tagged fusion 
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proteins. When plotted against time (Figure 5-6F) it became apparent that the fusion 

protein begins to accumulate after induction only. Fluorescence intensity then increased 

until about 10 h of cultivation and declined after that, possibly reflecting protein 

degradation. Containing six tryptophan residues, the EC construct also generated 

tryptophan fluorescence but its tryptophan signal intensity was substantially lower than 

that of the W-tagged proteins. [246] 

 

Figure 5-6 On-line detection of biomass formation and production of Wx-Ki-4(scFv) target fusion 

proteins.  

The intensities of (A,B) represent the scattered light (620 nm) and (C,D) tryptophan fluorescence 

(280/350 nm excitation/emission) and were measured for the non-induced and induced cultures (induction 

with 1 mM IPTG is indicated by the vertical broken line after 3.2 h). For the non-induced cultures (no 

product), tryptophan fluorescence is plotted versus scattered light intensity (symbols). (E) The appropriate fit 

shown as a continuous line (power function: fluorescence intensitycalc = 4780·[scattered light 

intensitymeas]
0.077-7715). The plot of the residuals between the calculated and the measured fluorescence is 

displayed within the diagram as an inset box. (F) Product fluorescence intensity calculated by subtracting the 

biomass fluorescence of the non-induced cultures from the total fluorescence of the induced cultures. Data 

and figure were provided by Esther Gartz. [246] 
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To demonstrate the general applicability of the W-tagging concept the on-line 

measurement experiments were repeated using the second single chain M12(scFv) 

antibody [238] unrelated to the Ki-4(scFv) (Figure 5-7). This second antibody had been 

fused to the five different W-tags as well and was expressed in E.coli likewise (3.1.9.3). 

Fluorescence behavior of this antibody and the W-tags were similar to that of the original 

Ki-4(scFv) model antibody (Figure 5-6) confirming the Wx-Ki-4(scFv) data and thus 

provided a proof-of-concept of the W-tag as a reporter tag. 

 

Figure 5-7 On-line detection of biomass formation and production of Wx-M12(scFv) fusion target 

proteins.  

On-line fermentation signals measured with a modified BioLector® device during cultivation of E.coli BL21 

Rosetta 2 (DE3) expressing the M12 single chain variable fragment in modified Wilms-Reuss medium with 

20 g/L glucose using a 96-well microtiter plate. The intensities of (A,B) the scattered light (ex:620 nm/em) 

and (C,D) tryptophan fluorescence (ex:280 nm/em:350 nm) were measured for the non-induced and induced 

cultures (induction with 1 mM IPTG: vertical dash-dotted line after 3.2 h of cultivation). For the non-induced 

cultures (no product), tryptophan fluorescence is plotted versus scattered light intensity (symbols). The 

appropriate fit is given as the continuous line (power function: fluorescence intensitycalc = -

4190·108·[scattered light intensitymeas]
1,35+6415); the plot of the residues between the calculated and the 

measured fluorescence is displayed within the diagram as inserted. (F) Product fluorescence intensity 

resulting from the total fluorescence of the induced cultures derived from product and biomass minus the 

fluorescence originated from biomass calculated from the fit (E) for the uninduced cultures [246]. Data and 

figure were provided by Esther Gartz. 



Results: Design of novel fluorescent W-tag 

 

 

123 

The W-tagged Ki-4(scFv) and M12(scFv) target proteins without pelB leader peptide 

featured similar curves as in Figure 5-6 and Figure 5-7, except that the overall measured 

values for the tryptophan fluorescence intensity were weaker than the signal for clones 

with pelB leader (data not shown). 

5.4 Protein purification of Wx-Ki-4(scFv) proteins 

Different detergents were tested for bacterial lysis and the non-denaturing recovery of 

over-expressed W-tag target fusion proteins: (a) TES buffer lysis (3.3.5.2), (b) lysozyme 

(3.3.5.1), (c) NP-40 (3.3.5.3) and (d) sonication (3.3.5.4). Lysis results and yield of protein 

recovery were examined via SDS-PAGE and Western blotting, and the best recovery 

method was chosen for down-stream processing and protein preparation for further 

characterization of W-tagged proteins. 

5.4.1 Protein recovery by TES buffer lysis 

Non-denatured periplasmic protein was recovered by TES buffer lysis as instructed in 

(3.3.5.2) and Wx-Ki-4(scFv) proteins were used representatively. Figure 5-8A displays 

multiple bands of all bacterial proteins as well as the target protein in the TES lysate as a 

result of a successfully lysed cell pellet. Western blotting (Figure 5-8B) shows protein 

bands ranging from 25 – 35 kDa specifically staining the Wx-Ki-4(scFv) proteins. EC 

showed some bands of lower molecular weight from degraded proteins and the band for 

W5-Ki-4(scFv) was very weak. Apparently the W5-Ki-4(scFv) protein was not released 

from the bacterial pellet as well as the other proteins.  

 

Figure 5-8 SDS-PAGE and Western blot of Wx-Ki-4(scFv) fusion proteins after bacterial lysis with 

TES buffer.  

(A) shows the bacterial total lysate indicating a successful cell lysis by osmotic shock. In (B) the 

Wx-Ki-4(scFv) target proteins were detected via the His6-tag using an anti-His mouse IgG and an anti-mouse 

GAM-PO antibody followed by detection with DAB substrate. Distinctive protein bands between 25 and 

35 kDa were visible for all proteins, although the W5-Ki-4(scFv) band was only faint. 
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A disadvantage of the TES buffer method is the EDTA content of the lysis buffer. EDTA 

complexes Ni
2+

 and Co
2+

 ions, elutes them from the purification columns and therefore, the 

His6-tag intended protein purification would not be able to bind to the purification matrix. 

To render subsequent protein purification via IMAC (3.3.4.1) with Ni-NTA/Talon columns 

or further experiments feasible, the EDTA was removed from the bacterial crude lysate.  

The EDTA-containing TES buffer was exchanged with PBS via PD10-desalting columns 

(3.3.6, Figure 5-9). During this process, the sample volume was increased so that the target 

protein concentration was diluted. Proteins W4-Ki-(scFv) and W5-Ki-4(scFv) were not 

detected during immunoblot analysis after dialysis and it was assumed that elution from 

the PD10-desalting columns had been unsuccessful. EC and W1-Ki-4(scFv) were 

recovered at a high protein concentration (lane 2 and 3) but W2-Ki-4(scFv) and 

W3-Ki-4(scFv) showed weak protein concentrations in the PBS eluate. 

 

Figure 5-9 Documentation of protein dialysis with SDS-PAGE and Western blot analysis of EC, 

W1-Ki-4(scFv), W2-Ki-4(scFv) and W3-Ki-4(scFv) after TES lysis and buffer exchange to PBS.  

(A) Crude lysate with all bacterial proteins stained via coomassie. (B) shows the Western Blot analysis of 

EC, W1-Ki-4(scFv), W2-Ki 4(scFv) and W3-Ki-4(scFv) detected via the His6-tag. EC and W1-Ki-4(scFv) 

show a high amount of protein in the sample whereas W2-Ki-4(scFv) and W3-Ki-4(scFv) reach only a weak 

protein concentration in the PBS eluate. The W4-Ki-4(scFv) and W5-Ki-4(scFv) proteins got lost on the 

PD10-desalting columns. 

For further protein analysis the sample concentration of EC, W1-Ki-4(scFv), 

W2-Ki-4(scFv) and W3-Ki-4(scFv) was increased with Vivaspin 6 or Vivaspin 20 columns 

depending on the sample volume. Protein recovery by other lysis methods was not 

successful. 

5.4.2 IMAC protein purification 

Subsequently, the IMAC purification potential of the recovered native proteins was 

examined using the standard IMAC purification protocol (3.3.4.1) via His6-tag and Talon 

or Ni-NTA columns. For binding analysis or other applications of the target protein, it 
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would be ideal to use purified Wx-Ki-4(scFv) or Wx-M12(scFv) proteins with few 

contaminating substances as possible. Non-tagged expression control proteins Ki-4(scFv) 

and M12(scFv) were successfully purified with the IMAC method via Ni-NTA and talon 

columns. For the purification, W1 and W3 tagged constructs of Ki-4(scFv) and M12(scFv) 

were applied to the IMAC columns. Both W1 constructs resulted in successful protein 

purification with a decent amount of protein in the sample (data not shown), W3-tagged 

constructs could not be purified by IMAC. No protein was eluted from the talon or 

Ni-NTA columns, neither during elution nor during washing steps. The procedure was 

repeated at pH 7 and pH 8, with different imidazole concentrations (10, 20, 50, 75, 100, 

150, 200, 250 and 500 mM for elution but with without positive result. 

5.5 Measurement of protein binding activity 

Due to unsuccessful IMAC purification, the bacterial crude lysate after TES buffer lysis 

and dialyzed into PBS was applied for analysis of target protein binding activity. 

Biological functionality as well as the binding specificity of the W-tagged target proteins 

were examined. As shown in 5.4.1, only EC, W1-Ki-4(scFv), W2-Ki-4(scFv) and 

W3-Ki-4(scFv) could be used for binding analysis. The concentration of the W-tagged 

target proteins in the dialyzed samples was calculated to be between 3 and 40 µg/mL 

which was enough for the subsequent analysis experiments.  

5.5.1 Wx-M12(scFv) binding analysis on MCF7 and MDA-MB-231 

Flow cytometric binding analysis with the Wx-M12(scFv) fusion proteins was not 

successful since the M12(scFv) fragment antibody, even without W-tag, did not display 

binding on the MCF7 or MDA-MB-231 cells, neither during flow cytometry nor in a 

protein binding ELISA on MCF-7 membranes. Consequently, both cell lines were tested 

for the presence of the MucI surface protein which was detected to be positive on both cell 

lines with a commercially available anti-(human)MucI mouse IgG antibody (Abcam, 

Cambridge, dilution 1 : 150 in PBS) and goat-anti-mouse-FITC conjugated IgG antibody. 

A flow cytometric experiment verified MucI expression on the cell lines by a clear shift of 

75% of the cells (data not shown). 

It was concluded that the M12(scFv) fragment antibody simply does not bind to the MucI 

antigen unlike described by Wong et al., 2001 [238]. Binding analysis of M12(scFv) was 

not investigated further. 
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5.5.2 Protein ELISA of Wx-Ki-4(scFv) fusion proteins 

Binding activity of Wx-Ki-4(scFv) target fusion proteins was tested in a protein ELISA 

(3.3.9.3) on L540cy membrane fractions via ABTS detection at 405 nm. PBMC membrane 

fractions were used as negative control antigen. Wx-Ki-4(scFv) proteins were applied as 

TES lysates without further processing at a concentration of 3 µg/mL protein per well 

(Figure 5-10). The untagged EC showed sufficient binding on the L540cy membrane 

fractions. Binding of W1-Ki-4(scFv) was present on L540cy membranes significantly 

reduced by 25% compared to EC. Binding activity further decreased for the W2-Ki-

4(scFv) (by 40%) and W3-Ki-4(scFv) (by 50%) constructs, although binding for the 

W3-tagged version was slightly stronger. ABTS absorption signals were even more 

diminished for W4 and W5 tagged proteins, displayed absorption values equal to the 

PBMC negative control measurements. As a general observation, binding activity 

decreases with increasing number of tryptophan residues in the W-tag. 

 

Figure 5-10 Protein ELISA binding analysis of dialyzed TES crude lysate containing all five 

Wx-Ki-4(scFv) fusion proteins.  

Protein binding was detected via His6-tag, anti-His mouse IgG and GAM-PO antibodies and ABTS substrate. 

EC displays strong binding of untagged Ki-4(scFv) protein on L540cy membrane fractions. But amount of 

binding continuously decreases from W1-Ki-4(scFv) to W5-Ki-4(scFv) almost reaching ABTS absorption 

level of the PBMC negative controls, indicating no binding activity. Overall absorption values were weak 

(<0.3). 

5.5.3 Flow cytometric analysis of Wx-Ki-4(scFv) on L540cy 

Binding activity of Wx-Ki-4(scFv) target fusion proteins was analyzed by flow cytometry 

using the untagged Ki-4(scFv) antibody (EC) and the W-tag constructs with one, two and 

three tryptophan residues as dialyzed TES lysis crude extracts. W1-Ki-4(scFv), 

W2-Ki-4(scFv) and the W3-Ki-4(scFv) as well as the untagged EC antibody bound to 

EC W1‐Ki‐4(scFv) W2‐Ki‐4(scFv) W3‐Ki‐4(scFv) W4‐Ki‐4(scFv) W5‐Ki‐4(scFv)
0.0

0.1

0.2

0.3

0.4

0.5

L540cy

PBL

E
 4
0
5

 n
m

L3.6pl 

PBMC 



Results: Design of novel fluorescent W-tag 

 

 

127 

CD30-positive L540cy cells (Figure 5-11). The W-tagged fusion protein variants showed a 

slightly lower binding activity than EC indicated by a slightly lower fluorescent signal of 

the anti-His-AF488 conjugated detection antibody. 

 

Figure 5-11 Flow cytometric binding analysis of Wx-Ki-4(scFv) fusion proteins on L540cy cells.  

(A) EC (Ki-4(scFv)), (B) W1-Ki-4(scFv), (C) W2-Ki-4(scFv) and (D) W3-Ki-4(scFv). The black curve 

represents L540cy cells incubated with only the secondary antibody (background). The grey curve represents 

the different versions of the Wx-Ki-4(scFv) proteins. The signal shift to the right means increased 

fluorescence intensity in relation to the black curve as the antibody binds to the CD30 receptor. 

Moreover, the mean fluorescence intensity (MFI) was slightly lower for W-tagged fusion 

proteins when EC was assumed to be 100% binding activity (Table 5-3). This reconfirmed 

that binding between the fusion proteins and CD30 is slightly weaker than the 

corresponding interaction involving untagged Ki-4(scFv).  

Table 5-3 Mean fluorescence intensity (MFI) values and geometrical mean of the fusion proteins. 

The MFI of the W-tagged fusion proteins is only marginally reduced compared to the MFI of the Ki-4(scFv), 

which is arbitrarily set at 100%. The same tendency is illustrated with the geometrical mean values. The 

similar mean fluorescence of the W-tagged fusion proteins compared to EC indicates that the binding of the 

Ki-4(scFv) is reduced when a W-tag is present. 

(scFv) protein Mean Fluorescence Intensity % G-mean 

Ki-4(scFv) (EC) 7.13 100 

W1-Ki-4(scFv) 6.67 93.6 

W2-Ki-4(scFv) 6.73 94.4 

W3-Ki-4(scFv) 6.69 93.8 

For this experiment, HEK293T cells were used as negative control cell line. As expected 

neither the Ki-4(scFv) without W-tag nor the W-tagged fusion proteins displayed any 

binding on HEK293T cells. 

5.5.4 Competitive FACS 

In addition, a competitive flow cytometric analysis was performed to prove that even 

though the binding activity was effected, specificity of Ki-4(scFv) binding was not 

impaired by the presence of the W-tags (Figure 5-12). Increasing concentrations of the 
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hybridoma-derived bivalent Ki-4 full length antibody were incubated on L540cy cells 

parallel to the Wx-Ki-4(scFv) proteins thus replacing the monovalent single chain 

fragment variable by the full length antibody. It was shown that the fluorescence intensity, 

indicating specific binding of the Wx-Ki-4(scFv) fusion proteins, decreased with an 

increasing concentration of Ki-4 full length antibody. As a result the binding curves of 

Ki-4(scFv) shifted to the left displaying lower fluorescence intensity. Binding of the 

Ki-4(scFv) and W1-Ki-4(scFv) was stronger so that higher concentrations of the Ki-4 full 

length antibody were necessary to suppress single chain binding than the binding of the 

W2-Ki-4(scFv) and W3-Ki-4(scFv). It was concluded that the Wx-Ki-4(scFv) fusion 

proteins still possessed active and specific binding ability. Although, the binding 

specificity of the fusion proteins was not impaired, a higher number of tryptophan residues 

results had a negative influence on the binding affinity. This was shown by deletion of the 

Ki-4(scFv) binding signal with a lower concentration of full length antibody for W2 and 

W3. [246] 

 

Figure 5-12 Competitive flow cytometry of Ki-4(scFv), W1-Ki-4(scFv), W2-Ki-4(scFv), W3-Ki-4(scFv) 

against a monoclonal Ki-4 full length antibody.  

(A) Ki-4(scFv), (B) W1-Ki-4(scFv), (C) W2-Ki-4(scFv) and (D) W3-Ki-4(scFv). The black curve displays 

the measurement of the L540cy cells incubated with the secondary antibody α-His AlexaFluor 488 (Qiagen, 

Germany), the red curve presents the binding measurement of the Wx-Ki-4(scFv) protein detected via the 

α-His AlexaFluor 488 antibody without competitive addition of the monoclonal Ki-4 full length antibody. 

The green curve displays the fluorescence intensity of the Wx-Ki-4(scFv) proteins after adding and co-

incubation with 0.5 µg Ki-4 full length antibody. The blue curve presents the fluorescence intensity of the 

Wx-Ki-4(scFv) proteins after adding and co-incubation with 2 µg Ki-4 full length antibody and the purple 

curve after the addition of 5 µg Ki-4 full length antibody. [246] 
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5.6 2D fluorescence measurement of Wx-Ki-4(scFv) 

To ensure that the W-tagged target fusion proteins maintained their ability to fluoresce 

after TES buffer extraction and buffer exchange to PBS, extracts containing the 

W1-Ki-4(scFv), W2-Ki-4(scFv), W3-Ki-4(scFv) and EC constructs were analyzed by two-

dimensional (2D) fluorescence intensity scanning in a suitable MTP using a protein 

concentration of 3 µg/mL in 200 µL volume. Only dialyzed fusion proteins, containing one 

to three tryptophan residues plus the lysate of the EC, were analyzed since the protein 

concentration for the W4 and W5 constructs was too low. Tryptophan fluorescence was 

excited between 250-300 nm and the resulting emission was detected in a range from 

300-400 nm, using 2 nm steps for multiple measurement points. It was observed that the 

fluorescence intensity correlated with the number of tryptophan residues in the tag. 

Whereas no fluorescence was detected in empty wells (Figure 5-13A) or wells containing 

pure PBS (Figure 5-13B), the fluorescence intensity increased visibly from the EC (Figure 

5-13C) over W1-Ki-4(scFv), W2-Ki-4(scFv) and W3-Ki-4(scFv) (Figure 5-13D-F).All 

crude extracts generated maximum fluorescence values at comparable excitation/emission 

wavelengths of 290/338 nm. [246] 

 

Figure 5-13 Two-dimensional fluorescence intensity scan of concentrated Ki-4(scFv) tagged with 

different Wx-tags.  

Depicted are fluorescence measurements of (A) an empty well, (B) 100% PBS buffer, (C) EC Ki-4(scFv), 

(D) W1-Ki-4(scFv), I W2-Ki-4(scFv) and (F) W3-Ki-4(scFv). For each well, the concentration of the 

Ki-4(scFv) and Wx-Ki-4(scFv) fusion proteins amounts to 3 µg/mL, harvested after 10 h cultivation. The 2D 

scan shows that the increased fluorescence depends on the number of tryptophan residues in the tag. The 

empty well and PBS buffer do not generate significant signals. The cross in the diagram denotes the 

wavelength combination (280/350 nm excitation/emission) applied for the measurements [246]. 
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6 Discussion 

6.1 Isolation and characterization of pancreas-specific scFv antibodies 

Identification of novel recombinant monoclonal antibodies specifically binding 

tumor-associated antigens on metastasizing pancreatic cancer cells was a major aim of this 

thesis. New cancer targets are desperately needed to advance potential immunotherapeutic 

for targeted tumor elimination and removal of residual malignant cells to improve 

prognosis of patients. Additionally, reliable tools for early diagnosis and follow-up 

examinations are essential for a solid prognosis. Using phage display technology [145] a 

combination of different panning strategies was applied, for the in vitro isolation of 

specific human scFv antibodies against the metastasizing pancreatic carcinoma cell line 

L3.6pl [155, 156]. In the process, subtractive and positive selection [138] of the human 

naïve Tomlinson libraries I and J [135, 136, 142] was performed under selective pressure 

for internalizing scFv-phage particles [138, 139, 248] or supporting surface-displayed 

cancer targets only [134]. The ability for internalization is favorable for a direct drug-

delivery of therapeutic agents to ensure their translocation to an intracellular specific target 

of action. Isolation was followed by monoclonal phage ELISA screening on L3.6pl 

antigen. In addition to the already existing 14.1(scFv) antibody fragment isolated from an 

immunized murine phage display library (1.3.7), the successively eliminating 

characterization process of this thesis identified:  

(1) Nine novel and sequence-unique L3.6pl-specific scFv antibody fragments featured 

surface binding and thus are promising for potential use as diagnostics and 

therapeutics.  

(2) Four of these scFv antibody fragments displayed internalizing properties which 

renders them excellent candidates for in-cell delivery of therapeutic cytolytic fusion 

proteins. 

In the following chapters, results will be discussed with respect to the state-of-the-art as 

well as to certain discrepancies and difficulties which occurred during experiments and 

data analysis. 
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6.1.1 Enrichment of L3.6pl-specific binders 

Successful enrichment of antigen-specific phage particles mostly depends on three basic 

parameters:  

(a) The antigen source (purified protein, membrane fractions, viable cells),  

(b) the selection method (internalizing conditions, washing stringency, antigen dilution, 

phage valency) and  

(c) the scFv-phage library (naïve/immunized, diversity, insert-carrying phage). 

Each selection round, independent of panning strategy, was started with a scFv-phage 

concentration between 1 x 10
11

 pfu/mL and 5 x 10
12

 pfu/mL, but selection results varied 

widely. 

6.1.1.1 Influence of antigen presentation on enrichment 

Solid-phase panning on adherent L3.6pl cells [138, 248, 249] was adopted to select 

pancreas-specific scFv-phage particles with explicitly internalizing potential. Whole 

adherent cells present their antigens in a native form and thus allow the identification of 

antibodies against proteins with complex conformations, such as multiple 

membrane-spanning regions or protein interaction domains as well as glycosylation or 

post-translational modifications and non-proteinogene targets [250] in their natural active 

form [138, 251, 252]. To eliminate irrelevant or non-specific scFv-phage particles binding 

to the many abundant immunogenic cell-surface epitopes regardless of tumor specificity, a 

competitive selection approach on non-metastasizing FG cells was applied to remove 

unspecific scFv antibodies from the phage pool [138, 253] before positive selection the 

L3.6pl target cell line (1.3.4). Competition cells (FG) and selection cells (L3.6pl) were 

adherently grown in tissue culture flasks to maintain cell surface appearance during 

panning as original as possible [248]. Intact outer-membrane protein structure and intra-

cellular metabolic functions were supposed to favor internalization of scFv-phage particles 

during incubation at 37 °C under internalization pressure (3.4.5.1). Conditions for 

internalizing selection protocol were chosen to favor metabolically active uptake of 

surface-bound scFv-phage molecules into viable cells through translocation mechanisms of 

surface receptors [254]. Yet, using FG cells as competitive cell line proved problematic 

since no positive scFv binders without non-sense mutation emerged from this panning 

strategy. FG and L3.6pl cells feature a great similarity since the metastasizing L3.6pl cell 

line was directly derived, from the progenitor cell line FG, after several passages of 

pancreas-liver transplantations in nude mice [155, 156]. Originally exactly this similarity 
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should be exploited to isolate unique and extremely specific scFv binders against 

metastasizing and advanced forms of pancreatic cancer by application of a very stringent 

selection protocol. But even though a rigorous depletion of non-homogeneously presented 

universal background antigens is obligatory, the expression pattern on both cell lines was 

apparently related too closely for distinguished isolation of specific scFv binders. 

Consequently, potential tumor-specific binders were removed from the panning system 

during subtractive selection and were hence lost for the positive selection process.  

During panning on L3.6pl cells in suspension, unspecific binders were excluded from the 

system by introducing peripheral blood mononuclear cells (PBMCs) for negative selection. 

Although PBMCs are of non-epithelial origin [138] and do not represent healthy pancreas 

tissue, they typify a highly essential cell type in the human body. Unspecific 

cross-reactivity of a monoclonal antibody of clinical relevance to PBMCs has to be 

avoided on any account. But owing to lower competitive pressure during subtraction on 

PBMCs, isolated clones may feature less affinity. Nevertheless, this selection method 

resulted in one L3.6pl-positive binder that exhibited strong binding and internalization 

potential. 

One possibly problematic aspect of suspension panning, using originally adherent L3.6pl 

cells is the treatment with the enzyme-containing solution Accutase
®

 for cell detachment 

and singularisation before panning [255]. Even though Accutase
®

 is gentler than 

trypsin-EDTA and enhances cell viability, it still digests the protein anchorage of adherent 

cells thus altering their surface structure. Destruction of complex surface conformations 

during the singularisation process may result in isolation of scFv antibody fragments that 

are unable to bind antigens with intact outer protein structure. To circumvent this 

problematic aspect of cell manipulation by Accutase
®

 treatment in the course of this thesis, 

cryo sections of primary pancreatic tumor tissue were introduced for phage display 

selection of antigens expressed in situ [256]. However, no enrichment of pancreas-specific 

scFv-phage particles was documented (data not shown) and the method was not 

investigated further. 

Alternatively, selection antigen can be presented in form of membrane fractions (3.4.5.3), 

which almost behave like isolated and purified protein [134]. Those membrane vesicles 

were immobilized on artificial surfaces, such as Maxisorb plastic tubes or MTPs by means 

of hydrophobic interactions. Even though this protein presentation is uncomplicated and 

reliable during panning, hydrophobic immobilization may lead to exposure of 



Discussion 

 

 

133 

non-physiological epitopes on those synthetic surfaces. Especially membrane proteins only 

exist in their optimal conformation within the lipid membrane. This may result in the 

isolation of scFv antibodies unable to recognize the native protein in its natural 

surrounding [257, 258]. Moreover, the imbalanced surface-to-length ratio of the membrane 

fractions holds another problem since it may favor the formation of inside-out particles to 

compensate surface tension. Literature states that vesicles exposing the apoplastic surface 

right-side-out are formed initially, but repeated thawing and freezing cycles promote 

formation of vesicles turning out their cytoplasmic side [134]. Selection of unspecific scFv 

fragments binding to cell-internal proteins may be the consequence. During monoclonal 

phage ELISA and protein ELISA analysis inverted membrane vesicles resulted in seven 

false-positive clones, whose target proteins only existed inside the cells but was presented 

on the surface of wrong-side out membrane particles. Consequently, there was no 

guarantee that living cells during flow cytometry analysis were recognized by those 

binders. A drawback of membrane-based panning is that the selection pressure is 

automatically on surface-binding scFvs antibodies. Nevertheless, three clones also 

displaying internalizing properties were isolated by that panning strategy.  

6.1.1.2 Influence of washing stringency and buffers on enrichment 

Moreover, variety and quantity of washing steps are important criteria for a successful 

selection process. Even though basic phage display principles are universal, it is difficult to 

transfer protocols to any selection antigen. Ideal panning conditions have to be determined 

empirically before starting a selection to ensure that cells are still intact after washing and 

elution [259]. Application of intensive washing steps with detergent-complemented buffers 

(e.g. 0.05% Tween20) might impair antigen immobilization during selection rounds. 

Adherently grown L3.6pl cells turned out to be very sensitive towards buffers, pH value 

(pH 2.2 of elution buffer) as well as shearing stress or the combination of all three 

parameters. Continuously changing incubation, washing and elution buffers during the 

panning, as well as constant motion of the liquid in the shaken vessels, had a negative 

effect on cell adhesiveness and membrane stability. By the second washing step, cell 

clusters detached from the plastic surface and burst cells were lost by partial lysis. As a 

result, proteases were set free from inside the cells which again had an adverse proteolytic 

effect on the structure of the cell surface proteins and the scFv-phage proteins itself. 

Hence, binding of scFv-phage particles to tumor-associated cell surface protein might have 

been impaired by damaged protein structures on both sides resulting in a negative panning 
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outcome and repetition of panning round to obtain a sufficient output titer. Tests with 

different buffers such as PBS, PBST, RPMI medium or NaCl (4.1.2) confirmed the 

sensitive nature of the L3.6pl selection cell line. Although the non-ionic detergent 

Tween20 destabilizes lipids and destroys membrane proteins at high concentrations [260], 

it resulted in the least sensitive reaction of L3.6pl cells. FG and PBMC subtraction cells 

were not affected since the depletion time was limited to one hour. Fixation of L3.6pl cells 

with 4% PFA resulted in PFA-binding scFv antibody fragments and did not solve the 

problem. Implementing acetone or 100% ice-cold ethanol for cell fixation was not 

sufficient to oppose shearing stress and cells still detached during washing steps. While 

permanent fixation of sensitive living cells on plastic was challenging, no antigen 

detachment was observed with membrane fractions due to the highly affine immobilization 

on the MTP plastic surface. However, varying fixation of membrane fractions was 

observed depending on pH of coating buffers and cell line. Experiments demonstrated that 

PBMC membranes reached better immobilization with PBS (pH 7.4) whereas L3.6pl and 

FG membranes displayed optimal adsorption to the MTP surface using standard ELISA 

coating buffer (pH 9.6). 

Nevertheless, the number of washing steps defines selective stringency. Isolation of clones 

with high specificity usually fails if washing steps are not stringent enough and results in 

enrichment of unspecific clones [261]. Respectively, washing intensity and related optimal 

enrichment strongly depends on the cell line and practical realization.  

Normally, ideal washing conditions are determined according to quantity of excess 

scFv-phage particles detectable in washing waste. But destruction of cells and release of 

internalized scFv-phage particles into the surrounding medium before panning was 

completed rendered this impossible. Consequently, selection stringency was adapted to cell 

sensitivity even though optimal selectivity was not achieved.  

6.1.1.3 Internalizing selection conditions 

Besides specific antigen recognition, development of therapeutic antibodies requires a 

direct or indirect effector function (1.2) [68-70]. Direct effects are induced only by 

antibody binding performance which can alter signal transduction pathways via cross-

linking or disruption of receptor-ligand interactions, thus suppressing or stimulating cell 

proliferation [262]. An effector molecule fusion to a proapoptotic protein can enhance the 

therapeutic effect of the indirect antibody binding function. Therefore, it is essential that 

the recombinant antibody is transported to the target-site of pharmaceutical action located 



Discussion 

 

 

135 

inside of a malignant cell [83, 263]. This increases effective therapeutic concentration at 

the target-site and reduces systemic side-effects. 

In this work, a direct method for selection of internalizing scFv antibodies was employed 

[138, 139] where intact L3.6pl cells were incubated at 37°C to induce internalization 

instead of a 4°C incubation step for surface-binding scFv antibodies. Originally, elution 

buffer (pH 2.2) was utilized to recover surface-bound scFv-phage before collecting 

internalized scFv-phage particles via cell lysis at pH 12. Even though the acidic pH was 

supposed to remove only surface-bound scFv-phage molecules, it also caused partial lysis 

of the sensitive L3.6pl cells. Hence, it was impossible to distinguish between eluted and 

internalized phage and difficulties occurred during output titer determination of lysis 

fractions after previous elution. To improve output titer results, the elution step was 

skipped during suspension panning to ensure that L3.6pl cells were not affected by the 

acidic milieu of the elution buffer and that the whole pool of binding and internalized 

scFv-phage particles was rescued after final cell lysis (pH 12) without loss.  

6.1.1.4 Enrichment analysis by titer determination 

A selection progress during panning rounds is commonly determined by analyzing the 

input and output titers before and after each selection round, as well as calculation of the 

resulting enrichment factor. However, this parameter is only suitable to a limited extent to 

inform about enrichment of specific scFv clones. Phage titer was determined using the 

plaque method which has some significant limitations, such as a limited dynamic range, 

dependence on environmental conditions on media resulting in decreased infectivity, 

viability of host cells, visual counting errors, and multiple pipetting and dilution steps as 

errors source [264]. Other methods for titer determination have been investigated in 

literature but even though it is quite time-consuming, the plaque assay is still most easily to 

realize without expensive equipment. Frequently, a considerable decrease of phage output 

titer is observed after the first panning round due to removal of unspecific scFv-phage 

particles. An increase in phage output titer is monitored after the second panning round 

caused by amplification of specific binders and continuing elimination of unspecific ones 

[265]. Results of this work could not confirm these findings for titer development during 

panning. No enrichment was observed by titer development for any of the selection 

strategies. By dividing input and output titer results of the same selection round, the 

enrichment factor was calculated (EF = output [pfu/mL] / input [pfu/mL]). Enrichment 

factors of two selection rounds were divided to obtain the actual enrichment of 
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L3.6pl-specific scFv-phage particles (AE =  EFx / EFx-1). These factors allowed a better 

interpretation of enrichment by means of titration. 

As expected, during panning on adherent L3.6pl cells, lysis and elution output titers after 

the first selection round were much less than the input titer, output titers after all selection 

rounds decreased further, documenting potential loss of binding phage (4.2.1). These 

calculations are consistent with the observations of cell sensitivity during panning and may 

explain the negative screening result. Aside from the plaque method as error source, these 

results suggest that due to their high sensitivity selection on adherent L3.6pl cells is not the 

most suitable method to isolate scFv fragments from the Tomlinson phage library. 

Panning on L3.6pl cells in suspension was performed without the elution step before lysis. 

The calculated output titer after the first selection round decreased according to literature. 

Output titers of selection rounds two and three increased slightly, indicating a gain of 

binding scFv-phage particles (4.2.2). Additional panning rounds did not improve the 

amount of rescued phage particles (data not shown). It was concluded that suspension 

panning followed by cell lysis without preceding elution step was the better choice for 

panning on whole L3.6pl cells with internalization pressure. 

Comparing input and output titers as well as enrichment after selection on membrane 

fractions displayed unexpected results. Both libraries exhibited only a slight increase of 

L3.6pl-binding scFv fragments throughout the three selection rounds (4.2.3). The attempt 

to increase stringency by applying a fourth selection round with even more stringent 

washing conditions resulted in “over-panning” without any determinable output titer. 

When merely considering the enrichment results, selection on membrane fractions seems 

to be a non-feasible panning strategy. Nevertheless, 16 L3.6pl-binding clones resulted from 

this selection strategy. 

6.1.1.5 Enrichment analysis by polyclonal phage ELISA 

Titer and enrichment calculations (4.2, 0) might not be necessarily significant. Even a 

small number of isolated binders could represent a set of scFv fragments with strong 

affinity and high specificity but still project a low output titer. To further evaluate 

successful and successive enrichment of specific scFv antibodies during selection rounds, a 

polyclonal phage ELISA (4.2) was performed, on L3.6pl selection membranes using 

PBMC or FG membranes as negative control. Thus, specifically L3.6pl-binding scFv-
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phage particles were quantitatively analyzed from precipitated phage pools after each 

panning round by measuring ABTS absorption signals at 405 nm.  

For the non-metastatic FG cell line generally less binding signal was observed than for 

L3.6pl during panning on adherent cells. Even though the cell lines are directly related this 

was expected since FG cells were used for negative selection. Binding signals of the 

unselected library J were quite strong pointing towards a large number of potential binders. 

Selection round one displayed a significant increase of binders of 150%. Compared to the 

first selection round, quantity of binding phage decreased by 25% after the second round 

and over 50% after the third round, which may be attributed to cell loss by lysis caused by 

buffers and shear stress. Nevertheless, the negative selection outcome might partially be 

due to morphological chances of the target cell line after too many passages. Moreover, it 

is problematic that ELISA experiments were always carried out on membrane fractions 

instead of whole cells as employed during panning. Presence of inside-out vesicles also 

might have tampered with the results when isolated scFv antibodies were unable to bind 

[134]. 

Regarding the observed enrichment of L3.6pl-binding scFv-phage units after suspension 

panning, the polyclonal phage ELISA displayed a contradicting result. Again absorption 

values of library I were very high and a 15% increase of binding scFv-phage particles was 

observed after the first selection round. In contrast to enrichment calculations, the amount 

of binders decreased by 10% during the second selection round and by another 10% during 

the third. One explanation for this contradiction may be the use of membrane fractions 

instead of whole cells [134]. In addition the Accutase
®
 treatment might have had an 

altering effect on the surface antigen conformation of suspended cells. PBMC absorption 

values did not change during selection rounds but were about 25% lower than L3.6pl 

absorption measurements. Consequently, either general overall absorption values obtained 

of library I were very low or may reflect a poor quality of the new batch of L3.6pl 

membrane fractions used during this experiment. 

During panning on membrane fractions, titer and enrichment calculations stated a slight 

increase of L3.6pl-binding scFv-phage units for both libraries. However, data analysis of 

binding documentation by polyclonal phage ELISA was able to display growing numbers 

of L3.6pl-binding scFv-phage particles with continuing selection. Repeatedly, absorption 

values of both unselected libraries were very high. After the first selection round, a 57% 

decrease of binders was reported for the library I and 90% decrease for the library J. After 
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panning round two, quantitative binding increased by 88% for library I and by 800% for 

library J. L3.6pl-positive binders increased another 20% for library I whereas the third 

selection round showed no significant increase of binders for the J library. For the library J 

no significant binding was observed on PBMC membranes. Very unexpected, binding 

value even slightly higher than the respective one for L3.6pl was measured on PBMC 

membranes after the first selection round. That implies that during this selection round 

scFv fragments binding against a universal epitope were selected. Still, the ELISA 

absorption values for PBMCs decreased after the second selection round indicating 

successful depletion of these ubiquitous surface proteins. 

Tendency of polyclonal absorption values after selections of both libraries on L3.6pl 

membranes (4.2.3) varied from values measured after selection on whole cells (4.2.2, 

4.2.3). Observed overall absorption values are much stronger than after selection on whole 

cells. This discrepancy may be caused by morphological alterations of cells processed for a 

different batch of membrane preparations of L3.6pl cells and coated for membrane panning 

as well as all subsequent polyclonal and monoclonal phage ELISA experiments. 

6.1.1.6 Influence of phage valency 

The semi-synthetic Tomlinson phage library was employed to generate recombinant scFv 

antibodies targeting pancreatic cancer cells. To avoid the presence of empty phage 

particles, which occur during production of monovalent phage [129], the polyvalent 

M13KO7ΔpIII hyperphage was utilized during the first panning round and only substituted 

by the monovalent M13KO7 helperphage during following selection rounds [266, 267]. 

The polyvalent phage particle presents scFv molecules on all five pIII coat proteins and is 

supposed to improve selection efficiency [130] due to its increased avidity as a result of the 

multiplied valence-related affinity of the five binding sites. To isolate high-affinity scFv 

binders, the monovalent M13KO7 helperphage was applied during the second and third 

panning round. This monovalent structure displays strong intrinsic affinity and accuracy of 

fit towards a single surface epitope, whereas the multivalent phage particles may still 

feature strong binding activity attributable to inaccurate fit at multiple sites. By comparing 

of the bacterial infection rate of multivalent and monovalent phage particles via input titer 

calculation, no negative influence was observed. By combining these two phage valences, 

the first selection was supposed to retain as many L3.6pl-specific binders as possible after 

cross-reactivity elimination on PBMC antigen. Selections with the monovalent phage on 

the other hand had the aim to hold only the highly affine binders. 
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ELISA experiments performed with polyvalent phage particles always displayed much 

higher absorption signal (up to twice as high) than when performed with monovalent ones, 

even though the trend of binding activity was identical. This effect is due to the higher 

avidity of the multivalent phage format [254].  

6.1.2 The Tomlinson Phage Library 

6.1.2.1 Single clone analysis via monoclonal phage ELISA 

After panning and enrichment analysis, single clones were picked and screened in a 

monoclonal phage ELISA for binding activity on L3.6pl membrane fractions. Clones with 

absorption signal at least 2.5-fold stronger than the background were defined positive. In 

summary, 1656 single clones were tested of which 12.6% were identified as 

L3.6pl-positive binders. Thus the overall percentage of positive scFv antibody fragments 

was much lower than the 50% documented in literature [267, 268]. 

Whole adherent cells: Of 288 picked single clones only 13 were identified as 

ELISA-positive binders after solid-phase panning on whole adherent cells. On the one 

hand, the low number of positive binders was attributed to the close relation the of FG as 

competition cell line to L3.6pl, and on the other hand, to the selection strategy itself being 

not compatible with the sensitive L3.6pl selection cell line regarding washing, blocking 

and elution steps as well as shear stress. 

Whole cells in suspension: Merely three positive binders evolved from 216 picked clones. 

Although subtractive FG cells had been replaced by PBMCs, cell damage during washing 

was still assumed to be too severe to create optimal selective conditions even though 

scFv-phage enrichment was documented. 

Membrane fractions: Starting with 576 clones from both libraries, best selection results 

were observed during panning on membrane fractions with an outcome of 193 

ELISA-positive clones. A variation of ABTS absorption intensities was measured resulting 

in seven weak binders (absorption twice the background), six medium binders (absorption 

2 – 5 x background) and seven strong binders (absorption 5 – 10 x background).  

The large number of 1447 L3.6pl-negative clones (87.4%) during screening is conspicuous 

and suggests an ineffective and insufficiently stringent selection. As discussed in 0, reasons 

therefore might be the L3.6pl cell line as antigen source or non-compatible selection 

strategies concerning this special antigen source. Laboratory intern observations indicate 
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that such a low selection rate is very untypical. When compared to other selection 

processes with the Tomlinson Library generally only 20% of the picked clones were 

identified as negative during screening by monoclonal phage ELISA after application of 

the same panning protocols. 

6.1.2.2 Sequence analysis of single clones 

After screening via monoclonal phage ELISA, the scFv insert was investigated by colony 

PCR (3.1.1.2) and DNA sequence analysis (3.1.4). Subsequent to PCR analysis, 137 clones 

were found without intact scFv insert but false-positive ELISA signals. DNA sequencing 

identified 72 clones carrying a scFv insert, but only 20 clones containing an insert without 

a frame shift. 

Table 4-10 shows, the localization of hypervariable CDRs in VH and VL numbered after 

Kabat [100]. For all clones, conserved framework regions (FWR) were identical [146] but 

alignment revealed varying amino acid sequences in CDRs. During artificial library 

synthesis diversification were limited to positions H50, H52, H52a, H53, H55, H56, H58, 

H95, H96, H97, H98 of the heavy chain, and to positions L50, L53, L91, L92, L93, L94, 

L96 of the light chain [146]. 

Moreover, the amount of 137 false-positive clones not carrying a scFv-insert (65% of 209 

positive clones) was high [133] considering that only 4% of library I and 12% of library J 

are initially insert-free [135]. Apparently, insert-free phagemid vectors have a selective 

advantage [133]. On reason may be the contamination of the Tomlinson library with 

scFv-free vectors [133] or incomplete restriction, as well as phagemid self-ligation during 

library cloning [133]. In addition, low efficiency of helperphage-dependent packing of 

phage particles during phage rescue may lead to generation of phage particles without 

incorporation of scFv-pIII fusion proteins. Since the majority of phage proteins just 

expresses native pIII protein phage enrichment by non-specific binding activity to any 

antigen is favored. Besides that, a reduced vector size diminishes enrichment of specific 

phage. All these reasons result in a growth advantage of insert-free phage that cannot 

always be compensated by choice of selection strategy [133]. Selection of clones without 

ORF could be avoided when exclusively using the hyperphage with pIII deletion for 

selection [269]. Limited library size caused by a growth advantage of insert-free or 

defective clones results in their enrichment and may lead to an unsuccessful selection and 

failed enrichment during panning for all selection strategies. 
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Summarized, only 20 of 1656 analyzed clones displayed an intact DNA sequence for the 

scFv insert. Sequence analysis revealed that 8 clones contained an amber stop codon 

(TAG) within CDR 2 of VH. TAG triplets were formed during synthetic triplet generation 

in CDRs of library J according to the NNK distribution (1.3.3) [147]. Library I has been 

produced using DVT triplet distribution (1.3.3), and thus random TAG triplet formation 

should not occur during library synthesis. Nevertheless, stop triplets were detected in 

isolated clones. This phenomenon has not been described in literature before but was 

observed during all selections performed with Tomlinson library I by the AG Barth. 

Literature states, that only 3% of the scFv antibody fragments in the original Tomlinson 

phage library carry an amber stop codon. But after screening, 90% of the isolated clones 

were found with TAG triplet. Still, high percentage of amber stop codon containing clones 

after selection from the Tomlinson libraries has been shown by several other groups before 

[153, 154, 270-272]. The amber-suppressor strain TG1F+ E.coli used for phage 

propagation was suspected to be the source of this phenomenon [154]. During panning this 

strain translates the amber stop codon as CAG, encoding for glutamine, instead of TAG. 

Clones that bind to a target antigen and contain amber stop codons have a considerable 

growth advantage in TG1F+ E.coli [153, 269]. Propagation for stock amplification and 

distribution before panning, results in evolutionary changed scFv-phage pools and 

subsequent selections were started with more clones carrying stop codons than the original 

library. Consequently, each growth cycle additionally created even more clones with stop 

codons. But this was not investigated further. 

Aside from that, six clones were detected with ochre stop codons (TGA) in the conserved 

framework region FWR2 of VH in isolated clones from both libraries. For their 

characterization, TGA triplets were therefore mutated back to TGG, encoding for 

tryptophan, according to the actual framework sequence documented for the Tomlinson 

library. It is proposed that these framework mutations could be caused by spontaneous 

mutation [273]. They occur always at the same position in the FWR2. Apart from 

spontaneous mutations, this also suggests a systemic problem which might have already 

existed in the initially purchased Tomlinson library.  

Another explanation for the presence of TAG, as well as TGA stop codons, is the 

occurrence of mutations during PCR amplification reactions. DNA of positive clones was 

not sequenced from the phagemid vector directly but amplified first by colony PCR whose 

product was sequenced. When using goTaq polymerase without a proof-reading function 

for PCR reactions, the enzyme creates an error about every 9000 bases. In 30 reaction 
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cycles this statistically adds up to an incorrect base every 300 bases. Thus, the application 

of a non-proof-reading polymerase enzyme during PCR amplifications may also account 

for integration of TAG and TGA stop codons. Besides, inaccurate PCR amplification 

products might be an explanation for the 52 ELISA-positive scFv binders found with frame 

shift in CDR2. Resulting characteristics of single clone analysis and DNA sequencing are 

summarized in Figure 6-1. 

 

Figure 6-1 Illustrated distribution of L3.6pl-positive clones with regard to panning strategy and 

characteristics of scFv insert.  

Colony PCR revealed 137 false-positive clones (65.6%) without scFv insert. Of the 72 clones carrying a scFv 

insert, 52 clones contained a frame shift in CDR2 whereas DNA sequencing verified 20 clones (marked in 

red) with an intact scFv sequence which could be applied for further analysis. 

Moreover, clone diversity of isolated L3.6pl-positive scFv antibodies was analyzed by 

DNA sequencing. A total number 16 unique L3.6pl-specific binders was identified from 20 

positive clones of all three selection strategies. The sequence of clone E3 was found four 

times and clone D12 twice. Normally, much stronger enrichment of sequence-identical 

clones is expected during selection on complex heterogeneous epitopes as literature states 

for other cell systems [274].  

1656 single clones

209 (100%) 
L3.6pl-positive

Positive clones vs. panning strategy Distribution of insert properties

137 (65.6%) 
no insert

72 (34.4%)
insert

13 (6.2%)
adherent

3 (1.4%)
suspension

193 (92.4%)
membrane fractions

20 (9.6%) 
intact

52 (24.9%)
frame shift
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6.1.3 Protein Expression 

After analyzing of binding activity on phage-level and DNA sequencing to identify unique 

binders, L3.6pl-positive scFv clones were expressed as soluble proteins in order to evaluate 

binding independent of phage proteins in further characterization experiments. According 

to the Tomlinson protocol [135], it is possible to express library-derived scFv antibodies 

after transformation of the pIT2 phagemid into the non-suppressor strain HB2151 E.coli 

after removal of CDR-internal stop codons. This HB2151 non-suppressor strain reads the 

TAG stop codon down-stream of the genetic information for the scFv antibody and 

terminates translation before pIII expression. Consequently, soluble scFv proteins are 

produced without the pIII fusion protein and are then transported into the periplasmic 

space via the pelB leader peptide and are ideally secreted into the surrounding medium. 

The oxidizing milieu of the periplasm favors correct protein folding (chaperones) and 

formation of disulfide bonds [172]. In contrast to the Tomlinson protocol, experiments, 

using the HB2151 for soluble protein expression and subsequent ELISA binding analysis, 

showed very inconsistent results. Clones tested positive during monoclonal phage ELISA 

analysis did not display reproducible binding as soluble protein.  

SDS-PAGE and Western blot analysis showed that soluble scFv proteins were secreted 

only partially. Osmotic lysis of bacteria (TES buffer) to free enriched scFv proteins present 

in the periplasmic space did not yield better results. Generally, protein production in 

HB2151 bacteria was observed to be very low and inconsistent. 

Expression of clones was strongly dependent on time point of IPTG-induction of the lacZ 

gene which controls the lac promoter. Moreover, shaking radius and velocity during 

cultivation were not ideal since the surface tension, as a result of a small culture volume, 

prevents sufficient oxygenation capacity [223]. This means that not all clones were 

induced properly and were therefore unable to express enough protein for repeatable and 

comparable binding results. 

To solve this problem, the scFv were subcloned into the pET-derived pMT vector for 

prokaryotic protein expression in the BL21 Rosetta 2 (DE3) E.coli strain [171]. This 

expression system is under the control of the IPTG-inducible T7 promoter. Additionally, 

these bacteria carry the pRARE plasmid which enables them to translate DNA triplets of 

human origin. Nevertheless, an improvement in terms of reproducibility of protein 

expression and subsequent binding data was not achieved. 
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Therefore, and because prokaryotes are generally not able to form glycosylation or other 

post-translational modifications, soluble scFv proteins were expressed in a mammalian 

expression system [172]. Eukaryotic glycosylation also improves correct folding and 

conformation essential for production of functional proteins and also leads to better 

solubility [172]. For eukaryotic expression, the scFv genes were subcloned into the 

bicistronic pMS-SNAPMut vector [183] which was transfected into HEK293T cells and 

cultivated under Zeocin selection pressure (3.2.3). Successful transfection was monitored 

directly under the fluorescence microscope through co-translated eGFP down-stream of the 

IRES sequence. Production of scFv-SNAP fusion protein and its secretion into the tissue 

culture supernatant (TCSN) was evaluated via SDS-PAGE, where the prominent FBS band 

did not allow protein detection, and Western blotting. Therefore, protein concentration in 

the unpurified TCSN could not be quantified via AIDA-analysis (3.3.3.1) before 

scFv-SNAP proteins had been purified by means of IMAC (3.3.4). Thus, binding activity 

in relation to protein concentration could only be determined with pure protein. 

Nevertheless, presence of FBS in the unpurified TCSN favored scFv-SNAP protein 

stability in the HEK293T supernatant during long-term storage. 

Moreover, flow cytometric binding analysis with unpurified TCSN containing scFv-SNAP 

displayed even better binding results than the purified scFv-SNAP proteins.  

6.1.4 Soluble protein ELISA analysis 

Clones identified as positive by means of monoclonal phage ELISA and sequencing, were 

produced as soluble proteins in HEK293T cells via the eukaryotic pMS expression system 

[183]. Specific binding was analyzed by indirect ELISA against functional membrane 

fractions of the target cell line [134]. 

Here, only eleven of the 16 clones, showing reproducible binding activity during 

monoclonal phage ELISA analysis, were identified as positive binders after soluble protein 

expression. Five clones did not display positive binding activity when tested in a soluble 

protein ELISA. This loss in functionality may be attributed to the separation of the scFv 

fragment from the pIII phage coat protein during subcloning into the pMS-SNAPMut 

vector [183]. It is possible that the phage protein had a stabilizing effect on the scFv which 

is now missing on the C-terminal end so that the VL chain, normally adjoining the constant 

region, is now exposed to non-physiological buffers. Another reason might be the 

expression in HEK293T cells which rendered post-translational modifications and 
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glycosylation possible which did not exist during phage display selection in TG1F+ 

bacteria before [172]. Such post-translational changes of surface patterns may result in 

different binding behavior. 

6.1.5 Flow cytometric binding and cross-reactivity observations 

It is crucial for therapeutic applications that isolated scFv antibodies recognize the target 

antigen in its natural conformation (1.3.2). Most scFv antibody fragments were isolated on 

membrane fractions which display still functional proteins in a slightly changed 

conformation [134]. Another disadvantage of selection on membrane fractions is the 

possibility that isolated scFv candidates may bind to cytolytic epitopes on inside-out 

vesicles [134]. To ensure epitope recognition of native protein conformations, flow 

cytometric binding analysis was performed on viable L3.6pl cells. Nine out of eleven 

clones were tested positive on intact L3.6pl cells, only clones E5(scFv)-SNAP and 

F11(scFv)-SNAP did not bind to living L3.6pl cells. Loss of binding was attributed to the 

artificial antigen presentation of membrane fractions lacking the original complex protein 

conformation of intact cells (glycosylation, post-translational modifications) [138]. 

Moreover, isolation of scFv-phage binders to inside-out membrane particles had resulted in 

false-positive binding activity during previous monoclonal phage ELISA and soluble 

protein ELISA analysis [134]. 

A normalized amount of 2 µg total protein per sample demonstrated various degrees of 

binding strength on viable L3.6pl cells (4.6.2), caused by recognition of different surface 

epitopes with varying expression density. A high percentage of right-shifted cells in the 

histogram implied a high receptor density. Pointed curves indicated homogenous antigen 

expression whereas abroad and flat curves implied highly variable antigen expression 

within the measured cell population [275]. Gating around living cells ensured evaluation of 

binding activity on viable cells only, apart from dead ones or cell debris. 

Even though binding reactions are highly specific, it is possible that recognized epitopes 

are also present on tumor cells of different origin. This cross-reactivity may lead to the 

identification of a ubiquitously expressed tumor-associated antigen (TAA) as potential new 

cancer target. Selected clones displayed cross-reactive binding on various cell lines to 

different degrees, since tumor-assiciated antigens vary in differentiation and activation in 

different organ-derived tissue. Very interesting was the binding activity on the pancreatic 
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carcinoma cell line PancTuI/PancTuI-luc [189] since clones featuring strong 

L3.6pl-binding were only weak binders on PancTuI/PancTuI-luc and vice versa (4.6.2.1). 

6.1.6 Hypothesis on clones D5(scFv) and D9(scFv) 

When comparing all DNA sequences of the unique scFv clones, a general sequence 

similarity of 93% was found. In the course of this, clones D5(scFv) and D9(scFv) attracted 

special attention since their sequence only differed by one amino acid in CDR2 of VH due 

to one changed base pair in the DNA sequence. D5(scFv) contains aspartic acid (D) at the 

same position where asparagine (N) is found in D9(scFv). These amino acids are similar in 

atomic structure and properties (Figure 6-1). 

Table 6-1  Comparing illustration of structure and characteristics of aspartic acid and asparagine. 

 D5(scFv) D9(scFv) 

Amino acid Aspartic acid (D) Asparagine (N) 

Molecular structure 
 

 

MW = 133.10 g/mol 

 

 

MW = 132.12 g/mol 

Molecular formula C4H7NO4 C4H8N2O3 

Properties 

Acidic Polar but uncharged side chains 

Negatively charged via proton dissociation Electronegative groups 

Hydrophilic Hydrophilic 

Aspartic acid is formed via hydrolysis of the highly polar side chains of asparagine 

exchanging the amide group at to a carboxyl group. Hydrolysis generally occurs when a 

weak acid, such as an amino acid, is dissolved in an aqueous milieu. H2O is constantly 

subjected to spontaneous ionization into hydroxyl and hydrogen ions thus promoting 

hydrolysis of polar substances. This fact does support the theory that D5(scFv) and 

D9(scFv) not only share high similarity but might even be transformed into identical 

molecules when exposed to an appropriate environment [276]. 

Highly similar or even equal amino acid sequences are likely to share the same protein 

fold. This can be analyzed by homology modeling based on the assumption that unknown 

proteins of similar molecular structure are also predicted with a similar protein fold, as it 

may be the case for the CDR2 regions of D5(scFv) and D9(scFv) [277]. Proteins featuring 

identical 3D structures are expected to recognize similar or even the same antigen target 
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structures. Binding behaviors of both clones during monoclonal phage ELISA as well as 

the protein ELISA and flow cytometric experiments were almost identical. 

As already described in 4.6.2, clones D5(scFv) and D9(scFv) feature a strong right-shifted 

cell group comprising only 2.5% and 2% of the cell population, respectively (Figure 4-15), 

which could indicate existence of a certain cell subpopulation within the highly 

metastasizing L3.6pl cell line . 

Very specific characteristics of pancreatic cancer are its high potential to metastasize and 

its resistance against standard chemotherapy and radiotherapy. Recent findings indicate 

cancer stem cells (CSC) may assume a function in the aggressive development and 

progression of tumors [278-282]. This stem cell hypothesis has been explored in pancreatic 

cancer [283] and literature describes the specific identification of CSC within digested 

human pancreatic tumor tissue decisively featuring the expression of CD133 [284]. 

Moreover, a reproducible number of CD133+ cells (1 – 2%) were identified within the 

human pancreatic cancer cell line L3.6pl which possesses highly metastatic properties and 

succeeds in inducing tumor formation after orthotopic implantation with only 10
3
 cells 

[284]. The in vitro resistance of the CD133+ cells is mediated by the Chk1/Chk2 pathway, 

and CD133+ cells were observed to preferentially activate the DNA damage apparatus. 

Through up-regulation of DNA damage checkpoint response activation, CD133+ cells 

were able to more efficiently repair radiation-induced DNA damage than CD133- cells 

[285]. It is also described in literature that treatment with the first-line agent gemcitabine 

leads to enrichment of the CD133+ subpopulation in the L3.6pl cells cell line [284].  

The hypothesis is proposed that clones D5(scFv) and D9(scFv) may recognize that 

CD133+ cancer stem cell subpopulation within L3.6pl (7.1). Both could be an excellent 

target for further investigations to remove residual and aggressively metastasizing cells 

following surgical tumor removal or to identify tumor antigens associated with tumor 

migration and proliferation. 

6.1.7 Internalization behavior 

Internalizing properties are a critical factor for the development of novel potentially 

therapeutic immunotoxins, as their effectiveness depends on the drugs’ delivery and uptake 

into the cell metabolism [83]. 

Internalization was clearly verified for the murine clone 14.1(scFv), originated from a 

self-made immunized phage library (1.3.7) and for clones A3(scFv)-SNAP, 
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D4(scFv)-SNAP and F1(scFv)-SNAP isolated from the Tomlinson phage library by means 

flow cytometry (4.6.3.1), immunofluorescence staining and confocal-based internalization 

assays (4.6.3.2). Those three internalization-positive clones, originating from the 

Tomlinson library, represent only 2.1% of the 193 ELISA-positive clones (4.3). Literature 

states that phage particles with multiple scFv copies undergo receptor-mediated 

endocytosis more efficiently than monovalent ones since they are able to cross-link 

receptors [254]. Nevertheless, this effect was not confirmed for panning processes under 

internalization pressure within this work since only clone D4(scFv)-SNAP is the result on 

internalizing selections. Clones 14.1(scFv)-SNAP, A3(scFv)-SNAP and F1(scFv)-SNAP 

on the other hand display internalization potential despite isolation on membrane fractions. 

Different patterns of surface binding and internalization were observed for the murine 

14.1(scFv)-SNAP and the human clones A3(scFv)-SNAP, D4(scFv)-SNAP and 

F1(scFv)-SNAP. All Tomlinson-derived clones featured a spotted binding pattern on 

L3.6pl cells whereas the 14.1(scFv)-SNAP protein bound to the cell surface continuously 

(4.6.3.2). These variations of binding pattern may be caused by varying expression 

regulation of surface antigens or unequal distribution of receptor density. Recognition of 

different surface epitopes may result in different internalization mechanisms and up-take 

rates during translocation into the cytosol. 

Observed intracellular internalization pattern was the same for all four clones. Small 

vesicles were transported from the cell membrane towards a location in the cell center 

(4.6.3.2). Internalization periods varied between 1 – 2 h for clone 14.1(scFv), ranging over 

clone A3(scFv) with 3 – 4 h, to clones D4(scFv) and F1(scFv) with an internalization time 

of 6 – 12 h. This suggests at least three different target proteins presenting different surface 

receptors, different internalization mechanisms or a combination of both. Generally, 

internalization of fusion proteins is mediated by endocytosis [286]. Receptor-mediated 

internalization occurs in most cases by clathrin-mediated endocytosis but many other 

proteins are internalized by clathrin-independent cholesterol-dependent endocytic 

pathways with involvement of caveolin (cholesterol, glycolipids) [83, 287]. Such lipid rafts 

may in consequence account for the vesicle-like spotted biding to the cell surface. The 

three main ways of endocytosis are: (a) Phagocytosis, (b) clathrin-dependent 

receptor/ligand-mediated endocytosis (also extracellular fluids), and (c) 

clathrin-independent endocytosis [286-288]. 



Discussion 

 

 

149 

During internalization, scFv antibodies undergo endocytosis by entering endosomal 

compartments which provide an environment for sorting entering molecules. Endosomes 

regulate targeting of different destinations before lysosomal degradation, avoid degradation 

through translocation to the Golgi apparatus via retrograde trafficking pathways or 

relocation to the plasma membrane [287-289]. Following endocytosis, endosomal 

compartments are created which often fuse with lysosomes where enzymes degrade the 

present proteins. Thus, phage particles are either already lost during phage display 

selection or potential therapeutic scFv antibodies becomes useless. Besides retrograde 

transport ways, clathrin-independent endocytosis is sometimes able to bypass  the 

endosome-to-lysosome pathway by offering pathogens an alternative route to avoid 

lysosomal enzymes [287]. 

Phage molecules eventually lost through lysosomal degradation during panning can be 

rescued by rolling circle amplification which recovers the phagemid DNA instead of the 

complete phage particles [290]. Thereby recovered scFv antibodies can still be used for 

diagnostic applications but not for clinical treatment since the lysosomal transport way 

might end in degradation of the therapeutic agent. Nevertheless, the conducted 

internalization experiments did not hint at lysosomal uptake since no diffuse fluorescent 

background signal was measured in L3.6pl cells during confocal microscopy. 

6.2 Design of optically active W-tags 

Screening of numerous large-scale cultures in parallel during production of recombinant 

proteins is a huge challenge when cell growth and target protein quantification have to be 

assessed simultaneously without disturbing the actual cultivation process. Micro-scale 

fermentation in MTPs [224, 228] is a very convenient technique to evaluate efficient 

production of enzymes or other pharmaceutically relevant target proteins. Product 

quantification is usually achieved by sampling and off-line analysis, e. g. by measuring 

enzymatic activity [231] or performing an enzyme-linked immunosorbent assay (ELISA). 

Still, non-invasive on-line detection systems are preferable over sampling with subsequent 

separate sample analysis. Using representative parameters such as optical density (OD600), 

oxygen transfer rate (OTR) or culture fluorescence [223, 245] for monitoring, clones with 

optimal performance can be identified. Here, product quantification can be achieved in 

real-time by measuring intrinsic protein fluorescence or by expressing the target protein 

tagged with a fluorescent marker [231], e. g. a conventional fluorescent protein such as 

GFP [191] or a FMN-based fluorescent proteins [196, 200]. The second aim of this thesis 
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has been the design, development and characterization of a novel short and optically active 

reporter tag for on-line measurement purposes. Results of tag design, expression, 

purification and its use for the on-line monitoring of product formation in micro-scale 

bacterial cultures, as an alternative to GFP or FMN-based fluorescent proteins, are 

discussed below. [246] 

6.2.1 W-tag design 

A major drawback of GFP and its derivatives is the molecular large size, which may 

increase metabolic stress, inhibit protein folding or interfere with protein secretion into the 

supernatant. Moreover its ability to fluoresce is fully dependent on an aerobic environment 

since an anaerobic surrounding leads to a delay between expression and fluorescence 

development and thus its detection [191, 194, 196, 291]. In contrast to GFP, FMN-binding 

proteins are approximately half the size of GFP and do not depend on oxygen, but they 

may still cause metabolic stress and interfere with the folding of small target proteins. On 

the other hand, the short-chained W-tags developed in this thesis, are very small with 

comparatively 5-11% of the molecular weight referring to GFP. Tryptophan is known for 

its ability to auto-fluoresce and it does not need oxygen to mature like GFP. Therefore, it 

was presumed that the W-tags have full functionality even under oxygen-limited 

conditions. This renders them suitable for the multiplex parallel on-line analysis of 

bacterial cultures producing fusion proteins without any of the disadvantages caused by 

larger tags. Unfortunately, tryptophan is also counted to the hydrophobic amino acids. First 

approaches to design a tryptophan tag as imitation of the His6-tag, with several tryptophan 

residues simply in series, were not pursued any further since the accumulation of highly 

hydrophobic properties was assumed to be problematic during expression and purification. 

Therefore, the tryptophan residues were embedded in the originally occurring natural 

structure of a protein loop derived from a cold shock protein (BcCsp) of Bacillus 

caldolyticus [236]. The natural structure was meant to compensate for the hydrophobic 

quality of tryptophan through neighboring residues (Figure 5-1). 

With the assistance of Dr. Heinrich Delbrück (Fraunhofer IME, Aachen), energetically 

ideal W-tags were developed in silico using modeling software tools (CHARMM 

(www.charmm.org) in Discovery Studio (www.accelrys.com)). Corresponding DNA 

sequences were optimized by triplet configuration for expression in E.coli and then fused 

genetically in-frame with the coding sequence for the Ki-4(scFv) [237] or M12(scFv) 

[238], respectively. The tightly regulated IPTG-inducible expression vector pMT [171], 
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based on the pET expression system [292], was used as plasmid backbone to be able to 

compare non-induced cultures lacking the recombinant protein production to cultures 

expressing different W-tagged forms of the same recombinant antibody (Figure 5-2). [246] 

6.2.2 W-tag protein expression and purification 

6.2.2.1 Over-expression of W-tagged fusion proteins 

SDS-PAGE and Western blot analysis of W-tagged scFv target fusion proteins after 

fermentation showed a generally strong over-expression of Wx-Ki-4(scFv) and 

Wx-M12(scFv) proteins in 96-well micro-scale cultures as well as in larger culturing 

volumes. Very peculiar are the protein bands in Figure 5-4 since their molecular weights 

do not correspond to the calculated values. The molecular mass of the W-tagged proteins 

containing two to five tryptophan residues, show a continuously decreasing trend in size on 

the immunoblot even though molecular weight should increase with higher residue number 

(Table 5-1). The migration of proteins during SDS-PAGE analysis strongly depends on the 

negative charge attached to the protein as well as its length. Electrophoresis running buffer 

is supplemented with the ionic detergent SDS which binds to the hydrophobic protein 

regions. SDS places a negative charge on proteins with a constant charge-to-mass ratio, 

and in addition disrupts secondary and tertiary structures. Since tryptophan contains the 

hydrophobic indole ring system as side chain, it was assumed that proteins with more 

tryptophan residues and consequently increased hydrophobicity are surrounded by a higher 

negative charge, and simply move faster despite their higher molecular mass. But this 

phenomenon could also be explained by incomplete denaturation of some W-tagged 

proteins resulting in limited mobility at this certain polyacrylamide content. Addition of 

more reducing agents, such as ȕ-mercaptoethanol or DTT, into the protein loading buffer 

could solve this problem [293]. 

Expression evaluation of the W-tags revealed that fusion proteins were not secreted into 

the medium which essentially complicated protein retrieval and quantification. Lacking 

secretion was probably caused by the hydrophobicity of the tryptophan residues and their 

placement on the outer shell of the protein loop. High amounts of protein were detected in 

the bacterial pellet for periplasmic as well as cytoplasmic expression of W-tagged proteins 

(5.2.1). The double bands during immunoblot analysis (Figure 5-3) occurred due to the 

incomplete cleavage of the pelB leader when the fusion protein was transported from the 

cytoplasm to the periplasmic space. The identity of each protein band has been confirmed 
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by mass spectrometry (data not shown). The oxidizing environment of the periplasmic 

space promotes the correct disulfide bond formation and folding [172] of recoverable 

proteins in a soluble state. 

Nevertheless, excessively produced proteins, especially when expressed in the cytoplasm, 

may be present as insoluble precipitate, called inclusion bodies (IBs). These protein 

aggregates, consisting mostly of incorrect or only partially folded proteins, can reach a 

diameter of 0.2 – 1.5 µm, so that a single IB may fill out a single cell. IBs feature a porous 

but defined conformation and can accumulate up to 50% of the total amount of cell protein 

[178, 294, 295]. The proportion of biologically active protein within a cell can vary widely 

depending on the production organism and the target protein. To rescue inactive protein 

from IBs, often requires labor-intensive and expensive protein back-folding during 

down-stream processing. Even though the formation of IBs is very likely to occur in the 

neutral and aqueous milieu of the cytoplasm during expression, this possibility was not 

investigated further [178, 294, 295]. 

Considering observations of protein formation over time (Figure 5-5), it was found that the 

target protein concentration in MTP cultures peaked between 9 and 10 h of fermentation 

but decreased afterwards. A possible explanation is that the W-tagged proteins are 

degraded by the temperature used for fermentation (37 °C), or that the bacteria simply kept 

growing and produced more biomass but no target protein. Since the target protein content 

was calculated referring to the total bacterial protein concentration, this would account for 

the diminished quantity. [246] 

6.2.2.2 W-tag fusion protein recovery and purification 

Extraction of soluble Wx-Ki-4(scFv) and Wx-M12(scFv) protein with EDTA-containing 

TES buffer resulted in the partial release of proteins, tagged with W1, W2 and W3, from 

the cell pellet. W-tagged fusion proteins with four and five tryptophan residues (W4, W5) 

could not be detached from the bacterial pellet and were consequently analyzed by neither 

flow cytometry nor 2D-fluorescence intensity scanning. It was assumed, that the protein 

recovery rate decreased with increasing number of tryptophan residues in the W-tags due 

to increased adherence to the cell membranes as a result of enhanced hydrophobicity. Since 

the negative hydrophobic effects of tryptophan become stronger with the accumulation of 

residues, it can be said that protein yield is strongly dependent on the number of tryptophan 

in the W-tag. Application of stronger lysis buffers with different detergents might improve 

the recovery of soluble target fusion protein in the future [221]. 
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Purification of the tagged recombinant proteins by immobilized metal ion chromatography 

(IMAC) was unsuccessful. This was attributed to the close proximity of the W-tag to the 

His6-tag under the assumption that the affinity tag was obscured by the larger 

tryptophan-rich tag. Another possibility is the incomplete removal of EDTA from the TES 

lysis buffer via dialysis. EDTA can form complexes with Co
2+

 ions and elute them from 

the IMAC resin, thus preventing the capture of His6-tagged proteins. Moreover, steric 

hindrance might prevent protein recovery by IMAC which leads to potential solutions that 

include switching the order of the His6-tag and W-tag, separating them with an intervening 

linker, or appending them to different termini. If the presence of EDTA is preventing 

sufficient recovery, then a potential solution would be to replace the His6-tag, for example 

with a FLAG epitope [186]. This would also prevent EDTA disrupting down-stream 

purification strategies involving the use of Ni-NTA or talon columns. 

Difficulties during IMAC purification could also be caused by the formation of dimeric 

complexes between the accumulated tryptophan residues and the positively-charged Co
2+

 

and Ni
2+

 metal ions [296]. Such interactions of the negative end of the indole ring system 

with double-charged metal cations play a role in some ion channels (e.g. gramicidin-A 

channel [297]). Both metal ions applied via IMAC columns form so-called open-shell 

monomeric or dimeric complexes with tryptophan, but Ni
2+

 complexes are by far more 

stable [296]. Even though the IMAC purification system exploits binding of 

histidine-based affinity tags to the Ni
2+

 or Co
2+

 purification matrix, the strong binding and 

very stable complexes might be a problem during elution. Since none of the target protein 

was detected in the flowthrough, it was assumed that the W-tagged target proteins 

containing two to five tryptophan residues potentially complexed with the metal ion matrix 

to such a degree that rendered a successful protein recovery impossible. 

This purification problem could eventually be solved by aqueous two-phase extraction as 

described by Nilson et al. [221, 298, 299], where the hydrophobicity of accumulated 

tryptophan residues is utilized to specifically concentrate those tryptophan-enriched target 

proteins within an organic solvent by extraction. [246] 

6.2.3 Online measurement of fluorescence intensity 

During non-invasive on-line measurements of micro-scale fermentations in 96-well MTPs 

(3.1.9.3, 5.3.1), the induced cultures showed a strong over-expression of the 

Wx-Ki-4(scFv) fusion proteins. Target fusion proteins equipped with the different tags 

could be distinguished according to the intensity of the fluorescence signal in comparison 
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to the untagged protein. Statistically, every cell contains proteins that include tryptophan 

residues, resulting in a mixed fluorescence signal which is produced by all induced cultures 

expressing W-tagged recombinant target proteins. This signal is composed of the 

fluorescence intensity of both, the product fusion protein and the biomass. Therefore, 

induced and non-induced cultures had to be cultivated in parallel to determine the biomass 

signal, which was then subtracted from the total fluorescence to calculate the signal for the 

W-tagged recombinant target protein alone (Figure 5-6E). Normally, this would double the 

number of assays required for one experiment as well as the number of wells occupied in 

MTPs. However, since the correlation between fluorescence intensity and scattered light 

intensity for the non-induced cultures was the same for all fusion protein variants, it should 

be sufficient to cultivate just one of the variants as a non-induced control to determine 

biomass fluorescence. Moreover, fluorescence intensity of each fusion protein was 

substantially greater than that of the corresponding untagged target protein (Figure 5-6F), 

even when that protein contained multiple tryptophan residues [300-302]. 

This calculated product fluorescence intensity increased with the number of tryptophan 

residues from EC over W1 to W3. Even though W4 and W5 comprise a higher number of 

tryptophan residues they featured slightly weaker fluorescence intensity than W3. 

Supposedly, the enhanced hydrophobicity of the accumulated tryptophan residues resulted 

in a preferential interaction of the fusion proteins with the cell membranes, which may 

have caused partial quenching of fluorescence intensity. However, instead of 

hydrophobicity, the formation of exciplexes presents another probable explanation for the 

quenched fluorescence signals. Exciplexes are photo-induced electron transfer reactions, 

which occur during bimolecular encounter of an excited molecule and a quencher [303, 

304]. The dense packing of tryptophan residues in W4 and W5, as well as the increasing 

target product concentration towards the end of the fermentation, may support exciplex 

formation. Quenching, and thus a decrease in fluorescence signal intensity may be a 

consequence of that effect. Nevertheless, when comparing protein expression by means of 

immunoblotting and fluorescence intensity development via on-line monitoring, it could be 

confirmed that an increase in fluorescence intensity was equivalent to protein product 

formation. 

Slightly increased scattered light and tryptophan fluorescence signals were monitored 

during MTP fermentation, but no bacterial growth was detected. Even though the MTPs 

were sealed with a gas permeable membrane, some small degree of evaporation was 
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present. Consequently, the medium components became more concentrated and the 

signals, especially the scattered light signal, increased.  

From 10 h onwards, the scattered light signals increased for the EC and NC cultures and, 

after a short stationary period, in the other cultures as well (Figure 5-6A). This occurrence 

may reflect morphological changes of the bacteria [305]. 

The W-tagged Ki-4(scFv) and M12(scFv) target proteins produced without pelB leader 

peptide, featured similar curves as cultures with pelB leader in Figure 5-6 and Figure 5-7, 

except that the overall measured values for the tryptophan fluorescence intensity were 

weaker than the signal for clones with pelB leader (data not shown). This is a logic result 

since, without pelB leader, the proteins are transported into the cytoplasm inside the 

bacterial cells and not to the periplasmic space which is located between the outer and 

inner cell membrane. 

Identical results for the on-line analysis in MTPs were obtained with a second but 

unrelated M12(scFv) antibody fragment [238], demonstrating that the W-tagging concept 

is generally applicable. But bearing in mind that the W-tags described in this thesis are 

prototypes only, it is also possible that their general performance could be improved by 

additional structural modifications. [246] 

6.2.4 2D-scans 

Dialyzed crude cell lysates of EC and Ki-4(scFv) tagged with W1 to W3 were analyzed by 

two-dimensional scanning (5.6) to prove whether W-tagged target proteins outside the cell 

display similar fluorescence behavior than within bacterial cultures. It is known, that 

excitation and emission properties of tryptophan are strongly influenced by other 

compounds in the solution [302]. During on-line monitoring, tryptophan fluorescence was 

excited at 280 nm and fluorescence emission was recorded at 350 nm. Unfortunately, these 

wavelengths could not be adopted for the tryptophan fluorescence 2D scans of dialyzed 

crude extracts (Figure 5-13). Instead, maxima were observed at 292 nm (excitation) and 

338 nm (emission). This discrepancy was attributed to the different ionic strength 

(polarity) and buffer composition, resulting from the surrounding solution during the 

cultivation (Wilms-Reuss medium, (2.3)) and the off-line measurement of the 2D-analysis 

(PBS, (2.7)). Nevertheless, these differences in the excitation and emission wavelengths do 

not principally affect the values of the data, but it is necessary to determine optimal 
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measurement wavelengths on a case-by-case basis for individual fusion proteins, media 

compositions, pH values and other parameters. 

6.2.5 Flow cytometric binding analysis 

Binding activity of the Ki-4(scFv) target fusion proteins was tested for the untagged EC as 

well as for the W-tagged versions comprising one, two and three tryptophan residues using 

dialyzed TES lysis extracts (5.5.3). The binding activity of Ki-4 (scFv) [237] was not 

affected by the presence of the W-tags. All different W-tagged versions of the Ki-4(scFv) 

antibody fragment were able to bind the L540cy cell line that over-expresses the 

corresponding CD30 receptor. The slight decrease of fluorescence signal (especially for 

W3-Ki-4(scFv)), illustrated by the MFI and geometrical mean (%G-mean), may result 

from the binding of the secondary antibody to the His6-tag of the fusion proteins (Figure 

5-11). It is possible that the His6-tag is partially obscured by the W-tag, or that the W-tag 

folding itself causes this change (Table 5-3). It may also be that the W-tag negatively 

influences binding activity with increasing number of tryptophan residues in the tag as 

already shown in Figure 5-11. 

Binding of the W-tagged M12(scFv) antibody fragment could not be tested due to 

non-existent binding activity on the mamma-derived carcinoma cell lines MCF-7 and 

MDA-MB-231, despite proven presence of the MucI receptor on the cell surface. 

Competitive flow cytometry revealed that, notwithstanding adverse effects binding 

activity, the binding specificity against CD30 was not influenced by the W-tags (5.5.4) but 

that the binding affinity of W2-Ki-4(scFv) and W3-Ki-4(scFv) was lower when incubated 

against a Ki-4 full length antibody. 
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7 Outlook 

7.1 Pancreas-specific scFv antibody fragments 

Evaluation of the generated L3.6pl-positive antibody fragments (4.6.2) for application in 

diagnostic pathology could provide data on early tumor diagnosis. The detailed functional 

binding activity of the scFv-SNAP antibodies could be tested on primary human tumor 

material, using cryo-preserved and paraffin-embedded tissue blocks alike. 

Immunohistochemistry staining on as many different patient tissues as possible would lead 

to valuable conclusions on their clinical relevance. Co-staining with known tumor markers, 

such as CA19-9 (gold standard), CA 124 or CEA [19, 50, 306] could verify or exclude 

binding to tumorous tissues and possibly classify new ubiquitous tumor antigens. 

Additional prospective experiments may focus on the antigen identification of the 

tumor-associated epitopes bound by the pancreas-specific scFv antibodies. Since the 

isolated ligands were selected on undefined antigen binding sources, this could pave the 

way for the categorization of novel diagnostic cancer targets and insights into the structure 

of cancerous surface proteins used as potential immunotherapeutic targets. Therefore, 

conventional cell lysis followed by immunoprecipitation and Western blot analysis [233] 

with subsequent mass spectrometry is exploited before analysis of the antigen molecules 

using the MASCOT protein data base (Matrix Science, London, UK). Another method is 

the generation of a cDNA library originated of the mRNA from L3.6pl cells [307]. 

Antigens expressed from cDNA-carrying vectors are screened for binding activity by 

means of ELISA and analyzed via comparison in protein data banks after PCR 

amplification. Mammalian-based libraries have the advantage of antigen presentation in a 

natural surrounding including post-translational modification whereas prokaryotic 

expression libraries are more diverse but do not always fold proteins to their native 

conformation. 

Ligands with the biological function for internalization are promising candidates for 

immunotoxin fusions, prospectively used during targeted therapeutic approaches. Their 

small size is ideal for delivery to a target location within the cytosol resulting in a high 

value for adjuvant therapy and the focused elimination of residual cancerous cells. In vitro 

examinations of immunotoxin fusions of the scFv antibodies to the truncated version of 

Pseudomonas aeruginosa Exotoxin A‘ (ETA‘) [157, 159, 171, 175] for binding activity 

and cytotoxicity on L3.6pl and PancTuI-luc cell lines (XTT assay) will indicate whether or 
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not one of the ligands at hand are therapeutically relevant. Compared to other toxins, ETA’ 

is very efficient so that the internalization of one to ten molecules into the cytosol is 

theoretically enough to destroy the cell [85, 87]. As a drawback, ETA’ is not a human 

toxin and will provoke an immune response during repeated application. Systemic 

application of ETA’ fusion proteins may lead to several dosage-dependent side effects [88, 

308], caused by the high immunogenicity. Human enzymes with cytotoxic effector 

domains, such as the human RNaseA (angiogenine) [89], the serine protease GranzymeB 

[91, 92] or DAPKinase [90] can be used instead. 

Succeeding in vitro analysis, recombinant immunotoxins will be characterized in vivo. This 

includes an analysis of the in vivo toxicity by establishing the maximum tolerable dosis 

[309, 310] as well as investigations of the effect of the novel recombinant immunotoxins 

on subcutaneous tumor growth during treatment in comparison to Gemcitabine. A pre-

clinical orthotopic mouse model (SCID or NOD-SCID strains) based on the PancTuI cell 

line marked with click-beetle red luciferase (PancTuI-luc) [189] can be used for 

investigations on targeted tumor imaging.  

Therapeutic recombinant antibody-SNAP fusions not only hold the potential for in vivo 

optical imaging techniques after fluorescence-labeling [158, 211] but can also be applied 

as theranostics when for example coupled to Fe-particles. Here, the SNAP-tag technology 

could be applied to generate scFv fusion antibodies, labeled with supermagnetic iron oxide 

nanoparticles. This would create a non-invasive in vivo detection system, combining tumor 

localization as well as treatment and post-operative monitoring. For diagnosis, the 

molecules can be detected by MRI [311] without radiolabeling [312], and then an 

alternating magnetic field (AMF) can be used to induce mild heating [313], raising the 

temperature of the targeted cancer cells above 42.5°C and thus destroying the cells through 

a combination of protein denaturation and aggregation, cytoskeletal disruption, inhibition 

of DNA, RNA and protein synthesis, lipid peroxidation and inhibition of repair. 

7.2 Characterization of optically active W-tag 

Optically active reporter tags are essential tools for the on-line monitoring of product 

formation during fermentation of recombinant target proteins. The W-tags, newly 

developed during this work, show great promise. Due to their high fluorescence intensity 

compared to untagged recombinant proteins, future research may focus on optimizing the 

presented W-tags to improve secretion or ways to release the W-tagged proteins from the 
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bacterial pellet. Empirical switching of number and order of the tryptophan residues might 

result in optimized fluorescence intensity during on-line measurement and increase protein 

recovery yield. Apart from free energy calculations (CHARMM (www.charmm.org) in 

Discovery Studio (www.accelrys.com)), it is very difficult to predict fluorescence and 

expression behavior of newly designed W-tags and their protein fusions by means of 

software analysis and additional empirical data collection is unavoidable. 

Protein extraction via aqueous two-phase extraction techniques [221, 298] could solve the 

problematic of low to non-existent protein yield during purification via the IMAC method. 

The highly hydrophobic character of the W-tags posed a huge disadvantage throughout the 

experiments of this thesis. Here, the capability of the aromatic ring system to interact with 

a long-chained organic solvent might actually be advantageous to the extraction process 

which could result in highly concentrated W-tagged recombinant proteins in the 

hydrophobic phase. Afterwards, enterokinase digest could cleave the tag-region from the 

recombinant protein and finally functionalize the target protein for potential therapeutic 

approaches, such as immunotoxin treatment during targeted cancer therapy. 

Adaptation of the W-tags to a eukaryotic expression system offers the benefit of 

incorporated glycosylation and other posttranslational modifications within proteins of 

mammalian origin. Appropriate enzyme restriction sites (XbaI) to insert the W-tag into the 

pMS-SNAPMut expression vector [183] have already been included into the cloning 

constructs ordered from GENEART. Subsequent transfection and expression in HEK293T 

cells would reveal information about the applicability of the novel W-tags in eukaryotes. 

Small size and repeated insertion of tryptophan residues within short distance, makes the 

W-tags potentially suitable for the application as affinity tag. Phage display selection 

against the purified W-tag protein [314, 315] could generate a highly specific antibody for 

use during immunodetection. 
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8 Summary 

Pancreatic cancer is a most aggressive type of neoplasia characterized by its high potential 

for metastasis with a most devastating prognosis. Initial stages are almost asymptomatic, 

thus preventing early detection before local tissue invasion due to the lack of reliable 

diagnostics. Surgical removal in combination with standard first-line chemotherapeutic 

Gemcitabine treatment and radiation-based therapy are merely life-prolonging options. 

High resistance towards conventional therapeutics and the huge metastasizing potential 

leaves minimal residual micrometastasis accountable for an enormously high relapse rate. 

Despite its low incidence (3%), pancreatic cancer is the 4
th

 leading cause of death caused 

by malignant diseases. Therefore, the first aim of this thesis was to develop novel 

tumor-specific human single chain antibody fragments (scFv) for possible future 

application as cytolytic therapeutics for adjuvant treatment of metastasizing pancreatic 

cancer, as well as more efficient molecular tools for early diagnosis. Antibody-based 

approaches using highly specific scFv fragments present a promising alternative to 

conventionally applied therapies. Phage display technology was employed to generate 

pancreas-specific scFv-phage antibodies from the naïve human Tomlinson phage libraries I 

and J binding against unknown tumor-associated antigen. Highly specific scFv-phage 

ligands were isolated in a two-step panning strategy via depletion on human peripheral 

blood mononuclear cells (PBMC), followed by a positive selection on the metastatic 

pancreatic cancer cell line L3.6pl. Monoclonal phage ELISA identified 16 unique 

L3.6pl-positive scFv binders, subsequently expressed in eukaryotic HEK293T cells as 

soluble scFv proteins fused to the SNAP-tag (scFv-SNAP). Additionally, clone 

14.1(scFv)-SNAP, originally isolated from a laboratory-own murine immunized phage 

display library, was included into the expression and characterization process. Analysis of 

binding specificity of IMAC-purified scFv-SNAP proteins by soluble protein ELISA and 

flow cytometry identified nine clones recognizing L3.6pl cells with differing 

cross-reactivity to various pancreas-derived cell lines. Of these, four clones displayed 

internalizing properties during flow cytometric and OPERA-based internalization tests. All 

positive candidates are clinically relevant pancreatic carcinoma specific scFvs and may 

provide the prospect of a tumor-targeted cancer therapy to eliminate residual cancer cells. 

Moreover, they are highly promising candidates for diagnostic in vivo imaging tools 

besides an additional application as theranostics. 

To produce recombinant pharmaceutically relevant proteins on large scale, highly efficient 

screening technologies have been developed to characterize optimum cultivation 
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conditions for bacterial growth and production formation. Microtiter plates (MTPs), in 

combination with measurement systems such as the BioLector
®

, are a practical tool for 

non-invasive on-line monitoring of product formation of continuously shaken microbial 

cultures on lab-scale. Conventional reporter proteins for on-line monitoring, such as GFP 

and its derivatives or flavin mononucleotide (FMN)-based fluorescent proteins, are very 

large (26.9 kDa and 15.7 kDa, respectively) which possibly imposes stress on the host 

organism. Additionally, GFP strongly depends on an oxygen-saturated environment for 

fluorophore formation. To circumvent mentioned drawbacks of conventional reporter tags, 

short but still optically active reporter tag for on-line detection were designed in this thesis. 

These novel reporter tags (W-tags) are based on the auto-fluorescence of the aromatic 

amino acid tryptophan (W). Using in silico techniques, between one and five tryptophan 

residues (W1 - W5) were accumulated in the naturally occuring protein loop of the cold 

shock protein (Bc Csp), originated from Bacillus caldolyticus, to have equilibrated charges 

with the tryptophan residues presented on the outer side of the loop. Genetic fusions of 

these five different W-tags (MW = 3.4 to 5.6 kDa) to the anti-CD30 Ki-4(scFv) as well as 

the anti-MucI M12(scFv) antibody fragment were produced in the pET-derived prokaryotic 

pMT expression system. Analysis of on-line product fluorescence intensity during 

fermentation in MTPs followed by molecular biological flow cytometric binding analysis 

showed that more tryptophan residues within a W-tag generated a stronger tryptophan 

fluorescence signal gaining intensity corresponding to product formation. Nevertheless, an 

increase in tryptophan residues also complicated concentration of W-tagged proteins in the 

cell lysate. Protein recovery was only possible for W-tagged constructs containing one to 

three tryptophan residues. W4 and W5 remained in the cell pellet due to highly 

hydrophobic properties of the accumulated tryptophan molecules. Normal and comparative 

flow cytometry of W-tagged Ki-4(scFv) proteins on L540cy cells, in combination with a 

Ki-4 full length antibody, confirmed that binding specificity was not influenced whereas 

W-tags with more than one tryptophan residue seemed to have a negative effect on binding 

activity and affinity. Lacking the main drawbacks of conventional reporter proteins, the 

novel W-tags are a generally applicable alternative during non-invasive monitoring of 

recombinant product formation. They present the possibility for rapid and qualitative 

on-line measurement during large-scale production of pharmaceutically relevant target 

proteins. 
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10 Appendix 

10.1 QuikChange Mutagenesis primers 

Table 10-1 Individual primer sequences for site-directed QuikChange Mutagenesis 

Clone Forward primer  5'--> 3' Reverse primer  5'-->3' 

A3 
GGGTCTCACAGATTAATCCTAATG 

GTCAGCCGACAAAGTACGC 

GCGTACTTTGTCGGCTGACCATTAGG 

ATTAATCTGTGAGACCC 

C5 
GGTTCTAGTACATCTCAGGCAG 

ACTCCGTGAAGGGCCGG 

CCGGCCCTTCACGGAGTCTGCCTG 

AGATGTACTAGAACC 

D1 
GGGAAGGGGCTGGAGTGGGTC 

TCAAGTATTTCTAATTATGG 

CCATAATTAGAAATACTTGAGAC 

CCACTCCAGCCCCTTCCC 

D4 No stop codon! 

D5 
CGGGAGGGTCAGAGGACAAGTTAC 

GCAGACTCCG 

CGGAGTCTGCGTAACTTGTCCTCTGA 

CCCTCCCG 

D6 
GGGAAAGGGCTGGAGTGGGTCTC 

AACGATTGAGTATCGG 

CCGATACTCAATCGTTGAGACCCACT 

CCAGCCCTTTCCC 

D9 
GGGTCTCAAATATTTATCGGGAGG 

GTCAGAGGACAAGTTACGCAAACTCC 

GGAGTTTGCGTAACTTGTCCTCTGAC 

CCTCCCGATAAATATTTGAGACCC 

D12 
GGGTCTCAGGTATTTGGCAGCG 

GGGTTCTACTACAGC 

GCTGTAGTAGAACCCCGCTGCCA 

AATACCTGAGACCC 

E3 No stop codon! 

E5 
GGGAAGGGGCTGGAGTGGGTCT 

CAGATATTTCTACTGCTGG 

CCAGCAGTAGAAATATCTGAGACC 

CACTCCAGCCCCTTCCC 

E7 
GGGTCCCTGAGACTCTCCTGCG 

CAGCCTCTGGATTCACC 

GGTGAATCCAGAGGCTGCGCAGG 

AGAGTCTCAGGGACCC 

E8 
CCAGGGAAGGGGCTGGAGTGGG 

TCTCAGTTATTGGG 

CCCAATAACTGAGACCCACTCCAG 

CCCCTTCCCTGG 

F1 
GGGCTGGAGTGGGTCTCAAGTAT 

TTATTCGCAGGGTAATCTTACAATTTACGC 

GCGTAAATTGTAAGATTACCCTGCG 

AATAAATACTTGAGACCCACTCCAGCCC 

F3 
GCGAAAAGTGCTACTCAGTTTG 

ACTACTGGGGCCAGGG 

CCCTGGCCCCAGTAGTCAAACTG 

AGTAGCACTTTTCGC 

F11 
GGGAAGGGGCTGGAGTGGGTCT 

CAGCTATTAGTACTTCTGG 

CCAGAAGTACTAATAGCTGAGACC 

CACTCCAGCCCCTTCCC 

 

Table 10-2 Overview of amber and ochre stop codons found in isolated scFv antibody fragments. 

Clone Length Stop codon Location of stop GC content Tm temperature 

A3 43 bp TAG-->CAG CDR2 46,50% 82,6 °C 

C5 39 bp TAA-->CAG CDR2 59,00% 85,8 °C 

D1 41 bp TGA-->TGG FWR2 48,78% 82,6 °C 

D4 No stop codon! 

D5 34 bp TAG-->CAG CDR2 58,80% 82,8 °C 

D6 39 bp TGA-->TGG FWR2 53,80% 83,7 °C 

D9 50 bp TAG-->CAG CDR2 46,00% 84,7 °C 

D12 37 bp TAG-->CAG CDR2 54,05% 82,7 °C 

E3 No stop codon! 

E5 41 bp TGA-->TGG FWR2 53,60% 84,6 °C 

E7 39 bp TGA-->TGC FWR1 64,10% 87,9 °C 

E8 36 bp TGA-->TGG FWR2 58,30% 83,9 °C 

F1 53 bp TAG-->CAG CDR2 43,40% 84,7 °C 

F3 38 bp TAG-->CAG CDR3 52,63% 82,6 °C 

F11 41 bp TGA-->TGG FWR2 53,60% 84,6 °C 
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10.2 Amino acids (IUPC letter codes) 

Table 10-3 Overview of codes for amino acids 

Amino acid 3-letter code 1-letter code Triplets coding for amino acid 

Alanine Ala A GCT, GCC, GCA, GCG 

Arginine Arg R CGT, CGC, CGA, CGG, AGA, AGG 

Asparagine Asn N AAT, AAC, 

Aspartic acid Asp D GAT, GAC 

Cysteine Cys C TGT, TGC, 

Glutamine Gln Q CAG, CAA, 

Glutamic acid Glu E GAA, GAG 

Glycine Gly G GGT, GGC, GGA, GGG 

Histidine His H CAT, CAC, 

Isoleucine Ile I ATT, ATC, ATA 

Leucine Leu L CTT, CTC, CTA, CTG 

Lysine Lys K AAA, AAG 

Methionine Met M ATG 

Phenylalanine Phe F TTT, TTC, 

Proline Pro P CCT, CCC, CCA, CCG 

Serine Ser S TCT, TCC, AGT, AGC 

Threonine Thr T ACT, ACC, ACA, ACG 

Tryptophan Trp W TGG 

Tyrosine Tyr Y TAT, TAC, 

Valine Val V GTT, GTC, GTA, GTG 

10.3 List of approved therapeutic mABs in Germany 

Table 10-4 List of recombinant antibodies approved for treatment in Europe. [77] 

Name of mAB Type Target of Action Condition Approved 

Arzerra 

(Ofatumumab) 
Human Anti-CD20 Chronic lymphatic leukemia 2010 

Avastin 

(Bevacizumab) 
Humanized Anti-VEGF 

Advanced colorectal, lung, breast, 

kidney and cervix carcinoma 
2005 

Benlysta 

(Belimumab) 
Human 

Inhibits B-cell 

activating factor 

(BAFF) 

Systemic lupus erythematous 2011 

Cimzia 

(Certolizumab) 
Humanized Fab Anti-TNFα 

Inflammatory gastro-intestinal 

disease, Crohn’s disease, 

rheumatoid arthritis 

2009 

Erbitux 

(Cetuximab) 
Chimeric Anti-EGFR 

Metastatic colorectal cancer, and 

head and neck cancer 
2004 

Herceptin 

(Trastuzumab) 
Humanized Anti-HER2 Breast cancer and stomach cancer 2000 

Humira 

(Adalimumab) 
Human Anti-TNFα 

Rheumatoid arthritis, psoriasis-

arthritis, spondylitis aknylosans, 

Crohn’s disease, colitis ulcerosa 

2003 

ILARIS 

(Canakinumab) 
Human Anti-IL-1ȕ 

autoinflammatory syndromes 

including familial cold 

autoinflammatory syndrome, 

Muckle–Wells syndrome, and 

neonatal-onset multisystem 

inflammatory disease 

2009 

Lucentis 

(Ranibizumab) 
Mouse Fab Anti-VEGF 

"wet" type of age-related macular 

degeneration (AMD, also ARMD), 

a common form of age-related 

2007 
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vision loss 

MabCampath 

(Alemtuzumab) 
Humanized Anti-CD52 

chronic lymphocytic leukemia, 

cutaneous T-cell lymphoma and T-

cell lymphoma, conditioning 

regimens for bone marrow 

transplantation, kidney 

transplantation and Islet cell 

transplantation 

2001 

Mabthera 

(Rituximab) 
chimeric Anti-CD20 

Attacks B-cells, lymphomas, 

leukemias, transplant rejection, and 

some autoimmune disorders 

1998 

Prolia 

(Denosumab) 
Human Anti-RANKL 

osteoporosis, treatment-induced 

bone loss, bone metastases, 

rheumatoid arthritis, multiple 

myeloma, and giant cell tumor of 

bone 

2010 

Remicade 

(Infliximab) 
Chimeric Anti-TNFα Autoimmune diseases 1999 

Removab 

(Catumaxomab) 
Hybrid 

Bispecific anti-CD3, 

anti-EpCAM 

malignant ascites, a condition 

occurring in patients with 

metastasizing cancer 

2009 

Reopro 

(Abciximab) 
Chimeric Anti-GPIIb/IIIa 

platelet aggregation inhibitor 

during and after coronary artery 

procedures like angioplasty to 

prevent blood clots formation 

within the coronary artery 

1995/2005 

Rilonacept 

Regeneron 
Dimer 

IL-1  

receptor inhibitor 

cryopyrin-associated periodic 

syndromes, including familial cold 

autoinflammatory syndrome, 

Muckle-Wells syndrome and 

neonatal onset multisystem 

inflammatory disease 

2009 

RoActemra 

(Tocilizumab) 
Humanized Anti-IL-6 

rheumatoid arthritis and systemic 

juvenile idiopathic arthritis 
2009 

Simponi 

(Golimumab) 
Human Anti-TNFα 

severely active rheumatoid 

arthritis, psoriatic arthritis, and 

ankylosing spondylitis 

2009 

Simulect 

(Basiliximab) 
Chimeric Anti-CD25 

prevent rejection in organ 

transplantation (kidney transplants) 
1998 

Soliris 

(Eculizumab) 
Humanized Anti-complement C5 

paroxysmal nocturnal 

hemoglobinuria (PNH), atypical 

hemolytic-uremic syndrome 

2007 

Stelara 

(Ustekinumab) 
Human Anti-IL-12/23 moderate to severe plaque psoriasis 2009 

Synagis 

(Palivizumab) 
Humanized Anti-RS-virus 

prevention of respiratory syncytial 

virus infections 
1999 

Tysabri 

(Natalizumab) 
Humanized Anti-α4-integrin 

multiple sclerosis and Crohn's 

disease 
2006 

Vectibix 

(Panitumumab) 
Human Anti-EGFR 

EGFR-expressing metastatic 

colorectal cancer 
2007 

Xgeva 

(Denosumab) 
Human Anti-RANKL 

osteoporosis, treatment-induced 

bone loss, bone metastases, 

rheumatoid arthritis, multiple 

myeloma, and giant cell tumor of 

bone 

2011 

Xolair 

(Omalizumab) 
Humanized Anti-IgE severe, persistent allergic asthma 2005 

Yervoy 

(Ipilimumab) 
Human Anti-CTLA-4 

turns off this inhibitory mechanism 

in cells and allows cytotoxic T-

lymphocytes to continue to destroy 

cancer cells 

2011 

Zevalin 

(Ibritumomab) 
Mouse Anti-CD20 

radioimmunotherapy treatment for 

relapsed or refractory, low grade or 

transformed B cell non-Hodgkin's 

lymphoma 

2004 

(12 approved recombinant antibodies against carcinoma are marked in grey) 



Appendix 

 

 

181 

10.4 Abbreviations 

Abbreviation Explanation 

♀ Female 

♂ Male 

 percent 

x g times gravity 

< smaller 

> larger 

°C degree Celsius 

∞ infinite 

2D two-dimensional 

2 squared 

3D three-dimensional 

α alpha 

ȕ beta 

Δ delta 

Ȝ lamda 

µ micro 

Ω ohm 

A adenine 

ABTS 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) 

ad fill volume up to 

ADC antibody-drug-conjugate 

AE actual enrichment 

AF Alexa Fluor 

AG antigen 

AIDA Advanced Image Data Analyzer 

AJCC American Joint Committee on Cancer 

AME Institute for Applied Biomedical Engineering 

amp Ampicillin 

AmpR Ampicillin resistance 

APS ammonium persulfate 

ATP adenosine triphosphate 

AUG RNA triplet coding for methionine 

BC bicinchoninic acid (also: BCA) 

BG benzylguanine 

bp base pairs 

BSA bovine serum albumine 

C cytosine 

CA carbohydrate antigen 

CAG DNA tripet coding for glutamine 

CD cluster of differentiation 

cDNA copy DNA 

CDR complementarity determining region 

CEA carcinoembryonic antigen 

CFP cyan fluorescent protein 

cm centi meter 
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CMV cytomegalovirus 

ColE1 origin of replication for E.coli 

CSC cancer stem cells 

CT computed tomography scan 

CTR carbon dioxide transfer rate 

Da Dalton 

DAB 3,3’,4,4’-Tetraaminobiphenyltetrahydrochlorid 

DAPI 4’,6-diamidino-2-phenylindole 

DAPK death-associated protein kinase 

ddH2O bi-destilled/double destilled water 

DF dilution factor 

DMEM Dulbecco’s Modified Eagle Medium 

DMSO Dimethylsuloxide 

DNA desoxyribonucleic acid 

dNTP desoxyribonucleoside triphosphate 

DOT dissolved oxygen tension 

DPBS Dulbecco’s Phosphate Buffered Saline 

dsDNA double-stranded DNA 

DTT dithiothreitol 

DVT D = adenine, guanine or thymine, V = adenine, guanine or cytosine, T = thymine 

E405 extinction measured at 405 nm 

EC expression control 

E.coli Escherichia coli bacterial strain 

EDTA ethylenediaminetetraacetic acid 

EF enrichment factor 

e.g. “exempli gratia” (for example) 

eGFP enhanced green fluorescenct protein 

EGFR epidermal growth factor receptor 

EK enterokinase 

ELISA enzyme-linked immunosorbent assay 

ER endoplasmic reticulum 

ESI/MS electrospray ionization mass spectroscopy 

ETA’ trunated version of Pseudomonas Exotoxin A 

EtOH ethanol 

EU/mL endotoxin units per mL 

F fertility factor 

f1 ori origin of replication for f1 phage 

Fab fragment antigen binding 

FACS Fluorescence activated cell sorting 

FbFP FMN-based fluorescent protein 

FBS fetal bovine serum 

Fc fragment crystallizable 

FDA Food and Drug Association 

FhG Fraunhofer Gesellschaft 

FITC fluorescein isothiocyanate 

FMN flavin mononucleotide-binding protein 

FP fluorescent protein 

FU fluorouracil 
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FWR framework region 

g gram 

G guanine 

GAM goat-anti-mouse 

GFP green fluorescent protein 

gluc glucose 

G-mean geometrical mean 

GS-linker glycine-serine linker 

h hour 

HACA human anti-chimeric antibody 

hAGT human O6-alkylguanine DNA alkyltransferase repair enzyme 

HAHA human anti-human antibody 

HAMA human anti-mouse antibody 

HEK human embryo kidney 

His histidine 

His6-tag protein affinity tag consisting of six histidine residues 

HPLC high pressure liquid chromatography 

HRP horseradish peroxidase 

I intensity 

IDA iminodiacetic acid 

i.e. “id est” (that is) 

IgG immunoglobulin G 

IF immunofluorescence 

IHC immunohistochemistry 

IMAC Immobilized metal-ion affinity chromatography 

IME Institute for Molecular Biology and Ecology 

IMRT intensity-modulated radiation therapy 

IPTG isopropyl ȕ-D-1-thiogalactopyranoside 

IRES internal ribosomal entry sequence 

IT immunotoxin 

IVS intervening sequence 

kan Kanamycin 

KanR Kanamycin resistance 

kb kilo bases 

KBE/mL “koloniebildende Einheiten“ per mL 

L liter 

LB medium Lysogeny Broth  medium 

LOV light-oxygen-voltage 

Luc cell line transfected with click-beetle red luciferase 

m milli 

M mega 

M molar 

mAB monoclonal antibody 

MFI mean fluorescence intensity 

min minute 

MOI multiplicity of infection 

mol moles 

MOPS 3-(N-morpholino)propanesulfonic acid 
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MRC Medical Research Council 

MRD minimal residual disease 

MRI magnetic resonance imaging 

MTP microtiter plate 

MW molecular weight 

myc myelocytomatosis oncogen 

n nano 

NC negative control 

NNK N = refers to any base, K = cytosine or guanine 

NOD non-obese diabetic 

NTA Nitrilotriacetic acid 

OD600 optical density measured at 600 nm 

O/N over night 

OPERA Oscillation Project with Emulsion-tRacking Apparatus 

ORF open reading frame 

OTR oxygen transfer rate 

p pico 

p p-value, probability, statistical significance 

pI – pXI M13 phage coat proteins 

PAA polyacrylamide 

PCR polymerase chain reaction 

pelB pectate lyase B 

PET positron emission tomography 

PBMC peripheral blood mononuclear cell 

PBS phosphate buffered saline 

PBST Phosphate buffered saline supplemented with 0.05% Tween20 

PCR polymerase chain reaction 

PEG polyethylene glycol 

PFA paraformaldehyde 

pfu plaque forming unit 

pfuTurbo DNA polymerase from Pyrococcus furiosus 

PO peroxidase 

pSV40 origin of replication for SV40 

Q-TOF quadrupole time-of-flight mass analyzer 

RAMOS Respiration Activity Monitoring System 

RB retinoblastoma-associated 

RBS ribosomal binding site 

RNA ribonucleic acid 

rpm revolutions per minute 

RPMI Roswell Park Memorial Institute 

RQ respiratory quotient 

RT room temperature 

s second 

SBP streptavidin binding peptide 

scFv Single chain fragment variable 

SCID Severe Combined Immunodeficiency 

SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis 

SOC SOB (Super Optimal Broth) containing 20 mM glucose 
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SOE Splicing by overlap extension 

SR selection round 

ssDNA single-stranded DNA 

SV40 Simian vacuolating virus 40 

SV40 pA SV40 polyadenylation signal 

t time 

T temperature 

T thymine 

TAA tumor-associated antigen 

TAE Tris-Acetate-EDTA buffer 

TAG amber stop codon 

TCSN tissue culture supernatant 

TEA triethylamide 

TEMED tetramethylethylenediamine 

TES Tris-EDTA-sucrose buffer 

TGA ochre stop codon 

TGG DNA triplet coding for tryptophan 

Tm melting temperature 

TSP-1 thromospondin-1 

TY medium tryptone-yeast medium 

UKA University Hospital Aachen 

UKGM University Hospital Giessen and Marburg 

UV ultraviolet 

V volt 

VEGF-A vascular endothelial growth factor A 

VG Vista Green 

VH heavy chain variable region 

VL light chain variable region 

vs. versus 

v/v volume per volume 

v/w volume per weight 

W tryptophan 

W1 – W5 one to five tryptophan 

Wx-tag short reporter tag containing accumulated tryptophan 

WB Western blot 

w/v weight per volume 

XTT 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt 

YFP yellow fluorescent protein 

Zeo Zeocin 

ZeoR Zeocin resistance 
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