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Abstract

An essential role for the description of correlated quantum many-particle systems is played

by impurity problems. These consist of a small number of localized orbitals, where the

electrons are subject to a Coulomb-interaction, coupled to noninteracting bath degrees of

freedom. Impurity models are used for the description of magnetic impurities in metals, of

quantum points in nanostructures, and in the context of the dynamical mean field theory

(DMFT). For their solution a large number of numerical methods exists. We mention

here quantum Monte Carlo methods, the numerical renormalization group, or the exact

diagonalization method.

In this thesis we introduce a new approach to impurity problems, which is based on the

functional renormalization group (fRG). In contrast to the methods mentioned above this

approach is only approximative, but it can be applied with comparatively lower numerical

effort. The aim of this thesis is to examine the advantages and limits of this method. An

important role in this connection is played by the single impurity Anderson model, which

is already understood very well with other methods and is seen as a prototype for models

with strong local correlations. The spin fluctuations of this model are governed by the

so-called Kondo energy scale and a central question of this thesis is whether this scale can

be reproduced with our approach.

We begin with a short introduction to the Green’s function formalism for correlated quan-

tum many particle systems. Then the fRG flow equations for the one-particle irreducible

vertex functions are deduced, and several approximation schemes are discussed. In con-

nection with this, we give a short summary of renormalization group methods in the

context of quantum impurity problems.

In chapter 4 we introduce the fRG scheme used in this thesis. At first the Anderson model

is mapped to a semi-infinite chain, in which the interacting orbital is given by the first site

of this chain. The system is then subdivided into two parts. The first part, which is called

“core”, consists of the interacting orbital and the first L bath sites. The remaining bath

sites form the second part. At the beginning both parts are decoupled from each other

such that the core can be solved exactly. Starting with this exact solution the coupling

between the core and the remaining bath sites is switched on slowly in a renormalization

group flow. This way it is possible to calculate the one-particle and two-particle correlation

functions on the correlated site. We call this flow scheme “hybridization flow”. The flow

equations are formulated in an effective theory on the first bath site outside the core, which

turnes out to be advantageous compared to other implementations of the hybridization

flow.

In chapter 5 this hybridization flow method is applied to the single impurity Anderson

model with semi-elliptic bath density of states. We discuss the differences which arise

for different core-sizes (L = 0, 1, 2, 3) and for different truncations of the renormalization

group flow equations. In the cases L = 0 and L = 2 the local Fermi liquid properties of



the Anderson model and particularly the associated Kondo scale can not be reproduced

in both approximation schemes. For the core sizes L = 1 and L = 3 the ground state

of the core is already a spin singlet state in the beginning of the flow and the Fermi

liquid properties are succesfully reproduced. The Kondo energy scale, which determines

the width of the central quasi-particle peak and the size of the local spin-susceptibility,

is however not accurately resolved. This is partly due to the finite temperature used in

our implementation such that for larger interaction strength the temperature is above the

Kondo energy scale.

The application of the hybridization flow method to quantum impurity problems in the

context of the dynamical mean field theory is discussed in chapter 6. In this approach

lattice models with a local interaction, like the Hubbard model, are mapped to an effective

impurity problem for a single lattice site embedded in a dynamical mean field representing

the influence of the other electrons. This scheme is exact in infinitely many dimensions

and a nonperturbative approximation method for finite-dimensional systems. In particu-

lar the Mott metal-insulator transition in the Hubbard model is succesfully described by

this method. One class of quantities, which is easily accessible from the hybridization flow

scheme, is given by the local two-particle correlation functions. These play an essential

role in non-local extensions of the DMFT. Therefore we mainly focus on these quantities.

At first we apply our flow scheme to the Hubbard model on the Bethe lattice in infinite

dimensions and calculate the local one-particle irreducible vertex functions in the insulat-

ing and the metallic phase in good agreement with previous calculations, which use the

exact diagonalization method as impurity solver. After this we extend our flow scheme to

a two-site cluster DMFT method, which includes short-range antiferromagnetic correla-

tions and calculate again the local and non-local vertex functions for the two-dimensional

Hubbard model. We compare these to the results of the single-site DMFT.



Zusammenfassung

Bei der Beschreibung korrelierter Quanten-Vielteilchensysteme spielen Störstellenproble-

me eine wesentliche Rolle. In diesen sind wenige lokalisierte Orbitale, auf denen die Elek-

tronen einer Coulomb-Wechselwirkung unterliegen, an ein wechselwirkungsfreies elektro-

nisches Bad gekoppelt. Diese Modelle werden beispielsweise für die Beschreibung magne-

tischer Störstellen in Metallen, von Quantenpunkten in Nanostrukturen oder im Kontext

der dynamischen Mean-Field-Theorie (DMFT) eingesetzt. Zur Behandlung von Störstel-

lenproblemen existiert eine große Zahl numerischer Verfahren, beispielsweise Quanten-

Monte-Carlo Methoden, die numerische Renormierungsgruppe oder die exakte Diagona-

lisierungsmethode.

In dieser Arbeit wird ein neuer Ansatz zur Beschreibung von Störstellenproblemen ein-

geführt, der auf der funktionalen Renormierungsgruppe (fRG) beruht. Im Unterschied zu

den oben genannten Verfahren ist dieser Ansatz approximativ, seine Anwendung ist dafür

mit geringerem numerischem Aufwand verbunden. Das Ziel dieser Arbeit ist, die Vor-

teile und Grenzen dieses Verfahrens zu untersuchen. Hierbei spielt das Anderson-Modell

für eine einzelne Störstelle eine wesentliche Rolle, da es bereits mit anderen Methoden

sehr gut verstanden ist und als Prototyp eines Modells für starke lokale Korrelationen

angesehen wird. Die Spin-Fluktuationen dieses Modells sind durch die sogenannte Kondo-

Energieskala bestimmt und eine zentrale Fragestellung dieser Arbeit ist, ob diese Skala

durch unseren Ansatz reproduziert werden kann.

Die Arbeit beginnt mit einer kurzen Einführung in den Formalismus Greenscher Funk-

tionen zur Beschreibung korrelierter Quanten-Vielteilchensysteme. Daran anschließend

leiten wir die fRG-Flussgleichungen für die Einteilchen-Irreduziblen Vertex-Funktionen

her und diskutieren verschiedene Approximationsverfahren dieser Gleichungen. In diesem

Zusammenhang geben wir einen kurzen Überblick über die Verwendung von Renormie-

rungsgruppenmethoden im Kontext von Störstellenproblemen.

In Kapitel 4 führen wir das in dieser Arbeit verwendete fRG-Schema ein. Hierbei wird das

Anderson-Modell zunächst auf eine semi-unendliche Kette abgebildet, wobei das wechsel-

wirkende Orbital den ersten Platz dieser Kette einnimmt. Das System wird dann in zwei

Bereiche unterteilt. Der erste Bereich, der sogenannte „core“, besteht hierbei aus dem wech-

selwirkenden Orbital und den ersten L Badplätzen. Die verbleibenden Badplätze bilden

den zweiten Bereich. Zu Beginn sind beide Bereiche voneinander entkoppelt, so dass der

core exakt gelöst werden kann. Ausgehend von dieser exakten Lösung wird dann die Kopp-

lung zwischen dem core und den verbleibenden Badplätzen im Renormierungsgruppenfluss

langsam eingeschaltet. Auf diese Weise ist es möglich die Einteilchen- und Zweiteilchen-

Korrelationsfunktionen auf dem korrelierten Platz zu berechnen. Dieses Fluss-Schema

bezeichnen wir im Folgenden als „Hybridisierungsfluss“. Die Flussgleichungen sind in ei-

ner effektiven Theorie auf dem ersten Badplatz außerhalb des cores formuliert, was sich

als vorteilhaft gegenüber anderen Implementierungen des Hybridisierungsflusses erweist.



In Kapitel 5 wird dieses Hybridisierungsfluss-Verfahren auf das Anderson-Modell für eine

einzelne Störstelle mit semi-elliptischer Bad-Zustandsdichte angewendet. Hierbei diskutie-

ren wir die Unterschiede, die sich bei verschiedener Größe des cores (L = 0, 1, 2, 3) und in

den unterschiedlichen Approximationsverfahren der fRG-Flussgleichungen ergeben. In den

Fällen L = 0 und L = 2 gelingt es in beiden Approximationsschemata nicht die lokalen

Fermi-Flüssigkeitseigenschaften des Anderson-Modells und insbesondere die damit asso-

ziierte Kondo-Skala zu reproduzieren. Für die core-Größen L = 1 und L = 3, bei denen

sich das System bereits zu Beginn des Flusses in einem Spin-Singlet Grundzustand befin-

det, kann das Fermi-Flüssigkeitsverhalten reproduziert werden. Die Kondo-Energieskala,

welche die Breite des zentralen Quasiteilchenpeaks und auch die Größe der lokalen Spin-

Suszeptibilität bestimmt, kann allerdings nicht akurat aufgelöst werden. Dies ist zum Teil

darauf zurückzuführen, dass die Methode bei endlichen Temperaturen implementiert ist,

welche für große Wechselwirkungsstärken höher als die entsprechende Kondo-Energieskala

liegen.

Die Anwendung der Hybridisierungsfluss-Methode zur Lösung des Störstellenproblems in

der dynamischen Mean-Field-Theorie wird in Kapitel 6 diskutiert. In dieser Theorie wer-

den Gitter-Modelle mit lokaler Wechselwirkung, wie beispielsweise das Hubbard-Modell,

auf ein effektives Störstellenproblem abgebildet. Dieses beschreibt einen einzelnen Git-

terplatz, welcher in ein dynamisches mittleres Feld eingebettet ist, das den Einfluss der

übrigen Elektronen repräsentiert. Dieses Schema ist in unendlich vielen Dimensionen ex-

akt und stellt eine nichtperturbative Näherungsmethode für endlich-dimensionale Syste-

me dar. Insbesondere der Mott Metall-Isolator Übergang im Hubbard-Modell kann mit

dieser Methode verstanden werden. Die Anwendung des Hybridisierungsfluss-Schemas er-

möglicht die Berechnung von Zwei-Teilchen-Korrelationsfunktionen mit geringerem nu-

merischem Aufwand als bei anderen Verfahren, so dass wir uns auf diesen Aspekt schwer-

punktmäßig konzentriert haben. Diese Korrelationsfunktionen spielen eine wesentliche

Rolle für nichtlokale Erweiterungen der DMFT. Zunächst wenden wir unser Fluss-Schema

auf das Hubbard-Modell auf dem unendlichdimensionalen Bethe-Gitter an und berechnen

die lokalen Einteilchen-Irreduziblen Vertex-Funktionen in der isolierenden und in der me-

tallischen Phase in guter Übereinstimmung mit bisherigen Berechnungen, bei denen das

Störstellenproblem mit Hilfe der exakten Diagonalisierungsmethode gelöst wurde. Hier-

nach erweitern wir unser Fluss-Schema zu einem Zwei-Platz Cluster-DMFT Verfahren,

bei dem kurzreichweitige antiferromagnetische Korrelationen mitberücksichtigt werden

und berechnen die lokalen und nichtlokalen Vertex-Funktionen für das zweidimensionale

Hubbard-Modell. Diese vergleichen wir mit den Ergebnissen aus der Ein-Platz DMFT.
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Chapter 1

Introduction

Since the development of quantum mechanics in the first half of the twentieth century

we know the underlying laws to which all phenomena of condensed matter physics and

chemistry can be reduced to. Even though this was a great success for the reductionist

viewpoint, it turned out that physical systems consisting of many interacting components,

although their interaction can be described by very simple laws, show new and unexpected

many body phenomena, which are not visible on the level of the fundamental description

[And72]. Regarding electrical and magnetic properties of solids these emergent phenomena

are often due to strong correlations appearing for example in materials with incomplete d-

or f-electron shells. Here interaction effects become important, and the electrons cannot

be understood in an effective single-electron picture. Prominent examples for this complex

behaviour are the Kondo effect in metals [Hew93], the heavy fermion materials [Ste84], the

high-temperature superconductivity in doped cuprates [LNW06], or the Mott Hubbard

metal-insulator transition [Mot68, Geb97].

The theoretical description of strongly correlated systems is very challenging and analyti-

cal solutions are only available for special models or points in the parameter space. Exact

statements can often be obtained by numerical methods, as for example the exact diago-

nalization method [Lan50], Quantum Monte Carlo (QMC) methods [FMNR01, GML+11],

or the Density Matrix Renormalization Group (DMRG) [Sch05]. However, these are still

limited to restricted parameter sets due to numerical limitations (like CPU-time or mem-

ory) or methodical constraints (like the sign problem in QMC). Therefore, the theoretical

challenge remains to develop approximative, but versatile and numerically inexpensive

methods, wich can describe a large class of models appearing in this field. In this con-

nection an important role is played by so-called impurity models, in which a small set of

interacting orbitals is coupled to noninteracting bath degrees of freedom. Such models

appear for example in the description of nanoscale devices, in which quantum dots are

coupled to metallic leads [AMS+10], and in the context of the dynamical mean field theory

(DMFT) [GKKR96].

1
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As a minimal impurity model we consider in this thesis the single impurity Anderson model

(SIAM), where the interacting region consists only of a single impurity site. Through

decades of theoretical research since its first proposal in the 1960s [And61] it has been thor-

oughly investigated. Exact results for thermodynamic properties are available from the

Bethe ansatz technique [AFL83, Hew93], and an accurate method to describe static and

dynamic properties is Wilson’s numerical renormalization group (NRG) [Wil75, BCP08].

Another approach to tackle impurity problems that has been developed is the functional

renormalization group (fRG) [Wet93, SH01, MSH+12]. Even though the fundamental

equation of this framework is exact most methods based on the fRG are perturbative.

Hence, so far it has been difficult to accurately resolve the nonperturbative Kondo physics.

However, the transparency and flexibility of the fRG can lead to useful applications in

more complex contexts, where, for instance, the NRG is difficult to apply. fRG approaches

to the Anderson model come already in some variety, for example, there are variants based

on a frequency cutoff [KEM06, HMPS04, KHP+08, AEKM08], on Hubbard-Stratonovich

fields representing spin fluctuations [BFCK09, IRB+10, SIK13], and on a flowing level

broadening [JPS10]. In addition, nonequilibrium situations are subject to current research

[GPM07, JMS07, KPBM10].

Until now all fRG approaches to the SIAM aimed at the development of an efficient and

reliable description of nanoelectronic and molecular systems, and fRG was never used as

impurity solver in the dynamical mean field theory. This method provides an exact de-

scription of the Mott Hubbard metal-insulator transition (MIT) in the infinite-dimensional

Hubbard model. In this limit all correlation effects are purely local [MV89], and the Hub-

bard model can be mapped to an efficient impurity problem coupled to a dynamical Weiss

field, which represents the influence of the other lattice electrons. It turned out that this

scheme can also be used as controlled approximation scheme for finite-dimensional mod-

els, and in combination with ab initio methods (LDA+DMFT) real materials has been

successfully described [KSH+06, Hel07]. There have been forceful and physically insight-

ful attempts to include non-local correlations in the DMFT setup, as for example cluster

extensions [MJPH05, KSPB01, LK00] and diagrammatic expansions around the local

DMFT solution like the dynamical vertex approximation [TKH07, HKT08, RTKH11],

the dual fermion method [RKL08, RKLG09], the one-particle irreducible functional ap-

proach [RTH+13], or multi-scale methods [SJMD09]. An important ingredient for the

diagrammatic methods are the local two-particle correlation functions calculated from

DMFT [RVT12], and in order to treat these approaches well, some insights about the

frequency structure of these functions will be helpful. Calculating two-particle correlation

functions with established impurity solvers like exact diagonalization or quantum Monte

Carlo represents a formidable growth of the numerical effort. Hence, it appears worthwile

to apply a fRG scheme as a numerically relatively inexpensive impurity solver, since the

fRG flow equations explicitly involve the one-particle irreducible vertex function. A better



3

understanding of the frequency structure of the two-particle vertex is also important for

improvements of the fRG scheme applied to lattice models. Here, the frequency depen-

dence of the vertex constitutes a severe complication when it has to be combined with a

wavevector or space dependence. For the latter part rather well working approximations

have been found [MSH+12, HS09, XWWL12, WLXW13], but on the frequency part, not

much is known beyond direct studies with rather large numerical effort [UH12] or boson

exchange parametrizations [GS12, KHP+08].

In this thesis we introduce and test a new fRG approach to the SIAM, and show that

it can serve as efficient and flexible impurity solver for the dynamical mean field theory.

In contrast to the previous approaches, our method starts with the exact solution of a

small system of a few sites, which is termed the core. The fRG flow then couples the core

adiabatically to a bath of noninteracting fermions in a “hybridization flow”. The main

motivation for this approach is the following. For practical purposes the hierarchy of the

fRG equations for the vertex functions has to be truncated by neglecting the higher-order

vertex functions, typically after the two-particle vertex. In the usual context without bare

higher-order interactions and in standard perturbation theory these higher-order vertices

would appear in higher orders in the bare interactions. Hence, the expectation is that the

truncation can only be good at weaker interactions. For a normal many fermion system

with a full Fermi surface, in the beginning of the fRG flow, the higher-order terms are

suppressed by these higher orders of the bare interactions, while at low scales, near the

Fermi surface, additional phase space arguments may limit their impact [SH01]. For strong

initial interactions no argument can be given that the impact of these neglected vertex

functions is negligible. Another expectation is, however, that these higher-order terms

are mainly determined by local physics and by degrees of freedom over a larger energy

range in terms of the free Hamiltonian. Therefore one may hope to arrive at a satisfactory

description also for stronger interaction by incorporating the higher-order vertices of only

a small system and by neglecting their change when the low energy physics is altered

during the fRG flow. Hence, in the present approach, we use the exact two-particle vertex

and self-energy of a small system as starting point for the hybridization flow. These

quantities have built in the effect of all orders in the interaction at least for this small

system. Now, performing the truncated fRG flow, the hybridization-induced change of

the back effect of the higher-order interactions on the two-particle and ultimately on the

self-energy will be missing, but this may still be better than ignoring the higher-order

physics completely.

Note that this strategy, which we are testing here for an impurity problem, could also

be extended to a lattice problem. One could imagine using the cluster self-energy and

two-particle vertices as initial condition for a flow in the band width or hopping amplitude

of a lattice dispersion. Similar strategies have already been pursued for bosonic problems

[RmcD11a, RmcD11b]. In this context, the present study can be seen as a first step in
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the exploration of such a procedure for fermions, with the benefit that in impurity models

quantitative benchmarking is possible. Another interesting approach in this context is the

recently introduced DMF2RG method [TAB+13], where, starting with the local DMFT

solution of the Hubbard model, non-local correlations are included via the functional

renormalization group.

The application of RG flow equations usually requires a controlled starting point in the

parameter space of the theory, where the vertices are well known. Then one can follow

the flow toward a nontrivial physical point of the theory. In our case the flow takes place

in the effective theory of the first bath site next to the impurity or correlated core system.

Initially, the bath is decoupled, and hence the bath site is noninteracting, providing a

well defined starting point. Then, in the RG flow, the coupling to the correlated core is

switched on and increased to the desired value. Thereby the bath theory becomes inter-

acting and the spectrum of the bath sites is modified. Employing exact relations between

the self-energy and the vertices of the effective theory to the corresponding quantities on

the dot site, we can study the signatures of Kondo physics in the Anderson model and,

using our scheme as DMFT solver, of Mott physics in the Hubbard model.

1.1 Structure of the thesis

This thesis is organized as follows: In chapter 2 we introduce the Green’s function for-

malism, which is used througout the following chapters. Especially symmetry properties

of the two-particle Green’s function and the Lehmann representation are discussed in

more detail. Chapter 3 contains a brief introduction to the renormalization group in the

context of quantum impurity models. The functional renormalization group equations for

the generating functional of the one-particle irreducible vertex functions are derived, and

different truncation schemes are discussed. In chapter 4 the hybridization flow method

for Anderson impurity models is introduced and the hybridization flow equations are de-

rived. The latter are applied to the Anderson model with semi-elliptic density of states

in chapter 5, where we concentrate on single-particle properties. We discuss and compare

different core sizes and approximations to the hybridization flow equations and investi-

gate if we can reproduce the nonperturbative Kondo scale with this setup. In chapter 6

we show that the hybridization flow method can be used as reliable impurity solver in

a DMFT setup. Here we concentrate on two-particle quantities and derive the density

and magnetic part of the one-particle irreducible vertex within single-site DMFT for the

insulating and the metallic phase. Then we consider a two-site cluster DMFT scheme

and again calculate the two-particle vertices. These are compared to the result of the

single-site DMFT. In the last chapter 7 we summarize our results and discuss possible

ideas for future projects.



Chapter 2

Formalism

For the description of correlated many body systems one needs quantum field theoretical

methods, especially the Green’s function formalism. These are presented extensively

in numerous textbooks on the subject [NO88, AS06], and we refer to these for a more

extensive introduction. The reader will find below a summary of the most important

properties of n-particle Green’s functions and their generating functionals. In particular,

symmetry properties and the so-called Lehmann representation are discussed in more

detail.

2.1 The partition function as a path integral

We consider a fermionic many particle system, described by the normal-ordered Hamil-

tonian Ĥ, which contains a free part Ĥ0 and an interaction part V̂ .

Ĥ = Ĥ0 + V̂

=
∑

i,j

a†i (Tij − µδij) aj +
1

4

∑

i,j,k,l

a†ia
†
jVijklalak (2.1)

The a(†)i denote fermionic annihilation and creation operators, which are characterized by

the multi-index i containing all quantum numbers (e.g. position, spin) of a single-particle

basis. The chemical potential µ is included in the free part of the Hamiltonian. The

interaction matrix element Vijkl is antisymmetrized, i.e. we have Vijkl = −Vjikl = −Vijlk.
The grand canonical partition function Z = Tr

[

exp
[

−βĤ
]]

can be written as a func-

tional integral over Grassmann fields ψ̄, ψ in the form

Z =

∫

D[ψ̄, ψ] exp
[
−S[ψ̄, ψ]

]
(2.2)

with the action S[ψ̄, ψ] given by

S[ψ̄, ψ] =

∫ β

0

dτ

[
∑

i

ψ̄i(τ + 0+)
dψi(τ)

dτ
+H(ψ̄, ψ)

]

, (2.3)

5
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where H is related to Ĥ by the replacement

H(ψ̄, ψ) = Ĥ(a†i → ψ̄i(τ + 0+), ai → ψi(τ)). (2.4)

The Grassmann fields obey the boundary conditions ψi(β) = −ψi(0) and ψ̄i(β) = −ψ̄i(0).

Therefore we can simplify the expression (2.3) by a Fourier transform defined as

ψi(τ) =
1

β

∑

iωn

e−iωnτψi(iωn), (2.5)

ψ̄i(τ) =
1

β

∑

iωn

eiωnτ ψ̄i(iωn). (2.6)

The iωn denote fermionic Matsubara frequencies iωn = i(2n + 1)π
β
. In frequency space

the action reads

S[ψ̄, ψ] = − 1

β

∑

iωn

∑

i,j

ψ̄i(iωn)Qij(iωn)ψj(iωn)

+
1

β3

∑

iωm,iωn
iω

m′ ,iωn′

∑

i,j,k,l

ψ̄i(iωm′)ψ̄j(iωn′)Vijklψl(iωm)ψk(iωn)δωm′+ωn′ ,ωm+ωn , (2.7)

with the matrix Q given by

Qij(iωn) = (iωn + µ)δij − Tij . (2.8)

2.2 Green’s functions and generating functionals

The n-particle Green’s functions in imaginary time are defined as time ordered 1 expec-

tation values by

G(n)(α1, τ1; ...;αn, τn|α1′ , τ1′ ; ...;αn′τn′)

=(−1)n〈Tτaα1(τ1)...aαn(τn)a
†
αn′

(τn′)...a†α1′
(τ1′)〉

=
(−1)n

Z
Tr
[

exp
(

−βĤ
)

Tτaα1(τ1)...aαn(τn)a
†
αn′

(τn′)...a†α1′
(τ1′)

]

(2.10)

with the time dependent Heisenberg operators

a
(†)
i (τ) = exp

(

τĤ
)

a
(†)
i exp

(

−τĤ
)

. (2.11)

1The time ordering Tτ of a product of fermionic time dependent operators is defined as

Tτ [Oα1
(τ1)Oα2

(τ2)...Oαn
(τn)] = (−1)POαP1

(τP1
)OαP2

(τP2
)...OαPn

(τPn
), (2.9)

where P is the permutation that orders the times in chronological order with the latest time to the left

and creation operators to the left of annihilation operators at equal time.
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The Green’s functions can be transformed to imaginary Matsubara frequencies by the

Fourier transform

G(n)(α1, τ1; ...;αn, τn|α1′ , τ1′ ; ...;αn′ , τn′) =
1

β2n

∑

iω1,...,iωn
iω1′ ,...,iωn′

e−
∑

j(iωjτj−iωj′τj′)

×G(n)(α1, iω1; ...;αn, iωn|α1′ , iω1′ ; ...;αn′ , iωn′),

(2.12)

G(n)(α1, iω1; ...;αn, iωn|α1′ , iω1′ ; ...;αn′ , iωn′) =

∫ β

0

dτ1...dτndτ1′ ...dτn′e
∑

j(iωjτj−iωj′τj′)

×G(n)(α1, τ1; ...;αn, τn|α1′ , τ1′ ; ...;αn′ , τn′).

(2.13)

Due to the cyclic invariance of the trace, one can eliminate the dependence of the Green’s

function (2.10) on the last time argument

G(n)(α1, τ1; ...;αn, τn|α1′ , τ1′ ; ...;αn′ , τn′) = G(n)(α1, τ1 − τn′ ; ...;αn, τn − τn′ |α1′ , τ1′ − τn′ ; ...;αn′).

(2.14)

This results in energy conservation

G(n)(α1, iω1; ...;αn, iωn|α1′ , iω1′ ; ...;αn′ , iωn′) =βδ∑
j(iωj−iωj′ ),0

×G(n)(α1, iω1; ...;αn, iωn|α1′ , iω1′ ; ...;αn′)

(2.15)

with

G(n)(α1, iω1; ...;αn, iωn|α1′ , iω1′ ; ...;αn′) =

∫ β

0

dτ1...dτndτ1′ ...dτn−1′e
∑n

j=1 iωjτje−
∑n−1

j=1 iωj′τj′

×G(n)(α1, τ1; ...;αn, τn|α1′ , τ1′ ; ...;αn′). (2.16)

In the following, if not stated otherwise, the multi-index αi stands for either (αi, τi) or

(αi, iωi). Written as a path integral, G(n) is given by

G(n)(α1, ..., αn|α1′ , ..., αn′) =
(−1)n

Z

∫

D[ψ̄, ψ]ψα1 ...ψαnψ̄αn′ ...ψ̄α1′
exp

[
−S[ψ̄, ψ]

]
. (2.17)

In this form the Green’s functions are obtained from the generating functional

Z [η̄, η] =
1

Z

∫

D[ψ̄, ψ] exp
[
−S[ψ̄, ψ]− (ψ̄, η)− (η̄, ψ)

]
(2.18)

as derivatives with respect to the Grassmann source fields η and η̄

G(n)(α1, ..., αn|α1′ , ..., αn′) =
δn

δη̄α1 ...δη̄αn

δn

δηαn′ ...δηα1′

Z [η̄, η]

∣
∣
∣
∣
∣
η=η̄=0

, (2.19)
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such that

Z [η̄, η] =
∞∑

n=0

(−1)n

n!2

∑

α1,...,αn
α1′ ,...,αn′

G(n) (α1, ..., αn|α1′ , ..., αn′) η̄α1 ...η̄αnηαn′ ...ηα1′
. (2.20)

In (2.18) we introduced the scalar product

(
ψ̄, φ

)
=

∫ β

0

dτ
∑

j

ψ̄j(τ)φj(τ) =
1

β

∑

iωn

∑

j

ψ̄j(iωn)φj(iωn). (2.21)

In the noninteracting case the functional (2.18) reduces to a Gaussian integral, which can

be evaluated exactly,

Z0 [η̄, η] =
1

Z0

∫

D[ψ̄, ψ] exp
[
(ψ̄, Qψ)− (ψ̄, η)− (η̄, ψ)

]

=exp
[
−
(
η̄, Q−1η

)]
. (2.22)

From Eq. (2.19) we can derive the noninteracting one-particle Green’s function, which

turns out to be equal to the inverse of the matrix (2.8),

G0 (α1, α1′) =
δ2Z0 [η̄, η]

δη̄α1δηα1′

=
δ2

δη̄α1δηα1′

exp
[
−
(
η̄, Q−1η

)]
=
[
Q−1

]

α1,α1′
. (2.23)

Similarly, the connected Green’s functions are generated from the functional

W [η̄, η] = ln [Z [η̄, η]] (2.24)

as

Gc,(n)(α1, ..., αn|α1′ , ..., αn′) =
δn

δη̄α1 ...δη̄αn

δn

δηαn′ ...δηα1′

W [η̄, η]

∣
∣
∣
∣
∣
η=η̄=0

. (2.25)

A straightforward calculation yields

Gc,(1)(α1|α1′) = G(1)(α1|α1′), (2.26)

and for n = 2 one gets

Gc,(2)(α1, α2|α1′ , α2′) = G(2)(α1, α2|α1′ , α2′)− G(1)(α1|α1′)G(1)(α2|α2′)

+ G(1)(α1|α2′)G(1)(α2|α1′). (2.27)

Another class of correlation functions, which play a central role in the fRG formalism,

are the one-particle irreducible (1PI) vertex functions. They consist of those diagrams

that cannot be disconnected by removing a single internal propagator. Their generating

functional depends on the Grassmann fields

φk(η̄, η) = − δ

δη̄k
W [η̄, η] , (2.28)

φ̄k(η̄, η) =
δ

δηk
W [η̄, η] (2.29)
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and is defined as the Legendre transform of W [η̄, η]

Γ
[
φ̄, φ

]
= −W [η̄, η]−

(
φ̄, η
)
− (η̄, φ) +

(
φ̄,G−1

0 φ
)
. (2.30)

The n-particle vertex functions are derivatives with respect to φ and φ̄,

γ(n)(α1, ..., αn|α1′ , ..., αn′) =
δn

δφ̄α1 ...δφ̄αn

δn

δφαn′ ...δφα1′

Γ
[
φ̄, φ

]

∣
∣
∣
∣
∣
φ=φ̄=0

. (2.31)

To get relations between the 1PI vertex functions and the connected Green’s functions,

we derivate Γ with respect to φ and φ̄:

δ

δφk

Γ
[
φ̄, φ

]
= η̄k −

∑

q

φ̄q

[
G−1
0

]

qk
(2.32)

δ

δφ̄k

Γ
[
φ̄, φ

]
= −ηk +

∑

q

[
G−1
0

]

kq
φq (2.33)

Using these derivatives one can show
(

δ2Γ
δφ̄δφ

+ G−1
0

δ2Γ
δφ̄δφ̄

δ2Γ
δφδφ

δ2Γ
δφδφ̄

−
[
G−1
0

]T

)(
δ2W
δη̄δη

− δ2W
δη̄δη̄

− δ2W
δηδη

δ2W
δηδη̄

)

= 1

⇒
(

δ2W
δη̄δη

− δ2W
δη̄δη̄

− δ2W
δηδη

δ2W
δηδη̄

)

=

(
δ2Γ
δφ̄δφ

+ G−1
0

δ2Γ
δφ̄δφ̄

δ2Γ
δφδφ

δ2Γ
δφδφ̄

−
[
G−1
0

]T

)−1

. (2.34)

If the Hamiltonian (2.1) is U(1) symmetric and no spontaneous symmetry breaking occurs,

we have δ2W
δηδη

∣
∣
∣
η=η̄=0

= δ2W
δη̄δη̄

∣
∣
∣
η=η̄=0

= 0 and δ2Γ
δφδφ

∣
∣
∣
φ=φ̄=0

= δ2Γ
δφ̄δφ̄

∣
∣
∣
φ=φ̄=0

= 0. It follows

Gc,(1)(α1|α1′) =
δ2W [η̄, η]

δη̄α1δηα1′

∣
∣
∣
∣
∣
η=η̄=0

=
[
γ(1) + G−1

0

]−1

α1,α1′
.

The one-particle vertex function defines the so-called self-energy

Σ = −γ(1) (2.35)

and with Eqs. (2.26) and (2.35) one gets the Dyson equation

Σ = G−1
0 −

[
G(1)

]−1
. (2.36)

The relation between the two-particle 1PI vertex function and the connected two-particle

Green’s function is given by

γ(2)(α1, α2|α1′ , α2′) = −
∑

β1,β2
β1′β2′

[
G(1)

]−1

α1,β1

[
G(1)

]−1

α2,β2
Gc,(2)(β1, β2|β1′ , β2′)

[
G(1)

]−1

β1′ ,α1′

[
G(1)

]−1

β2′ ,α2′
.

(2.37)
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2.3 Symmetries

In this section we discuss the most important symmetry properties of one- and two-particle

Green’s functions, i.e. the time reversal symmetry, the particle-hole symmetry, and the

spin rotation invariance. We will keep the discussion short and refer to textbooks (e.g.

[Mes79]) or the detailed discussion in [Saa11] for further details.

2.3.1 Complex conjugation

The complex conjugate of the one- and two-particle Green’s functions obey the following

relations, which follow from (2.10) and (2.13).

G(1)(α1, iω|α1′)
∗ = G(1)(α1′ ,−iω|α1) (2.38)

G(2)(α1, iω1;α2, iω2|α1′ , iω1′ ;α2′ , iω2′)
∗ = G(2)(α1′ ,−iω1′ ;α2′ ,−iω2′ |α1,−iω1;α2,−iω2)

(2.39)

Although these are not symmetry properties in the proper sense, these relations will be

important for the following considerations.

2.3.2 Time reversal symmetry

In the absence of spin-orbit coupling the Hamiltonian (2.1) is invariant under time reversal.

The time reversal symmetry is described by an antiunitary operator Θ with

〈Θ−1φ|ψ〉 = 〈φ|Θφ〉∗ (2.40)

for any two Hilbert space vectors |φ〉 and |ψ〉. The complex conjugation arises from the

antilinearity of Θ.

The transformation of creation and annihilation operators under time reversal is given by

[Mes79]

Θa†αi,σ
Θ−1 = eiπσ/2a†αi,σ̄ (2.41)

Θaαi,σΘ
−1 = e−iπσ/2aαi,σ̄, (2.42)

with σ ± 1 and σ̄ = −σ.

If the Hamiltonian is time reversal invariant, Ĥ = ΘĤΘ−1, the following relation for the

one-particle Green’s functions can be derived (see Ref. [Saa11] for details):

G(1) (α1, σ1, iω|α1′ , σ1′) = eiπ(σ1−σ1′ )/2G(1) (α1, σ̄1,−iω|α1′ , σ̄1′)
∗ . (2.43)

The two-particle Green’s function obeys

G(2) (α1, σ1, iω1;α2, σ2, iω2|α1′ , σ1′ , iω1′ ;α2′ , σ2′ , iω2′)

= eiπ(σ1+σ2−σ1′−σ2′ )/2G(2) (α1, σ̄1,−iω1;α2, σ̄2,−iω2|α1′ , σ̄1′ ,−iω1′ ;α2′ , σ̄2′ ,−iω2′)
∗ .

(2.44)
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From relation (2.39) one gets in addition

G(2) (α1, σ1, iω1;α2, σ2, iω2|α1′ , σ1′ , iω1′ ;α2′ , σ2′ , iω2′)

= eiπ(σ1+σ2−σ1′−σ2′ )/2G(2) (α1′ , σ̄1′ , iω1′ ;α2′ , σ̄2′ , iω2′ |α1, σ̄1, iω1;α2, σ̄2, iω2) . (2.45)

2.3.3 Particle-hole symmetry

In this section we assume, that the Hamiltonian (2.1) is defined on a bipartite lattice

(like e.g. the square or the honeycomb lattice), which can be divided into two sublattices

A and B so that neighbouring sites belong to different sublattices. The lattice sites are

denoted by αi. Then we can define a particle-hole transformation, accompanied by a sign

change on one of the two sublattices, by

Caαi,σC
−1 = ςαi

a†αi,σ
(2.46)

Ca†αi,σ
C−1 = ςαi

aαi,σ, (2.47)

with ςαi
= +1(−1) if αi ∈ A(B).

If the Hamiltonian (2.1) is symmetric with respect to this transformation, the one-particle

Green’s function obeys (see Ref. [Saa11] for details):

G(1)(α1, σ1, iω|α1′ , σ1′) = −ςα1,α1′
G(1)(α1′ , σ1′ ,−iω|α1, σ1). (2.48)

with ςα1,α1′
= ςα1ςα1′

. For the two-particle Green’s function one finds

G(2) (α1, σ1, iω1;α2, σ2, iω2|α1′ , σ1′ , iω1′ ;α2′ , σ2′ , iω2′)

= ςα1,α2,α1′ ,α2′
G(2) (α1′ , σ1′ ,−iω1′ ;α2′ , σ2′ ,−iω2′ |α1, σ1,−iω1;α2, σ2,−iω2) . (2.49)

with ςα1,α2,α1′ ,α2′
= ςα1ςα2ςα1′

ςα2′
.

2.3.4 Spin rotation invariance

If we assume that the Hamiltonian (2.1) is spin rotation invariant, the one-particle Green’s

function G(1) and the self-energy Σ are diagonal in spin space,

G(1) (α1, σ1, iω1|α1′ , σ1′) = G(1) (α1, iω1|α1′) δσ1,σ1′
. (2.50)

A general two-particle Green’s function can be parameterized in the following way:

G(2) (α1, σ1;α2, σ2|α1′ , σ1′ ;α2′ , σ2′) = A (α1, α2|α1′ , α2′) δσ1,σ1′
δσ2,σ2′

+ B (α1, α2|α1′ , α2′) δσ1,σ2′
δσ2,σ1′

. (2.51)

Since G(2)(1, 2|1′, 2′) is antisymmetric under the permutations 1 ↔ 2 and 1′ ↔ 2′ the

functions A and B obey the relation

A (α1, α2|α1′ , α2′) = −B (α1, α2|α2′ , α1′) = −B (α2, α1|α1′ , α2′) . (2.52)
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Using the identity

2δσ1,σ2′
δσ2,σ1′

= δσ1,σ1′
δσ2,σ2′

+ ~σσ1,σ1′
~σσ2,σ2′

, (2.53)

we write the two-particle Green’s function as

G(2) (α1, σ1;α2, σ2|α1′ , σ1′ ;α2′ , σ2′) = G(2)
d (α1, α2|α1′ , α2′) δσ1,σ1′

δσ2,σ2′

+ G(2)
m (α1, α2|α1′ , α2′)~σσ1,σ1′

~σσ2,σ2′
, (2.54)

with the density part G(2)
d and the magnetic part G(2)

m given by

G(2)
d (α1, α2|α1′ , α2′) = A (α1, α2|α1′ , α2′) +

1

2
B (α1, α2|α1′ , α2′)

=
1

2

[
G(2) (α1, ↑;α2, ↑ |α1′ , ↑;α2′ , ↑) + G(2) (α1, ↑;α2, ↓ |α1′ , ↑;α2′ , ↓)

]
,

(2.55)

G(2)
m (α1, α2|α1′ , α2′) =

1

2
B (α1, α2|α1′ , α2′)

=
1

2

[
G(2) (α1, ↑;α2, ↑ |α1′ , ↑;α2′ , ↑)− G(2) (α1, ↑;α2, ↓ |α1′ , ↑;α2′ , ↓)

]
.

(2.56)

In an analogue way one can define a density and magnetic part of the connected Green’s

function Gc,(2)
d/m and of the 1PI vertex function γ(2)d/m.

2.3.5 Consequences

Let us assume that the Hamiltonian (2.1) is spin rotation and time reversal invariant.

Then, Eqs. (2.43) and (2.50) lead to

G(1) (α1, iω|α1′) = G(1) (α1,−iω|α1′)
∗ . (2.57)

If an additional particle-hole symmetry holds, one gets from (2.48)

G(1) (α1, iω|α1′) = −ςα1,α1′
G(1) (α1′ ,−iω|α1)

= −ςα1,α1′
G(1) (α1, iω|α1′)

∗ . (2.58)

The same relations hold for the self-energy Σ.

If we assume that spin rotation invariance and particle-hole symmetry hold, we can deduce

the following relation for the two-particle Green’s function:

G(2)
d/m (α1, iω1;α2, iω2|α1′ , iω1′ ;α2′ , iω2′)

(2.49)
= ςα1,α2,α1′ ,α2′

G(2)
d/m (α1′ ,−iω1′ ;α2′ ,−iω2′ |α1,−iω1;α2,−iω2)

(2.39)
= ςα1,α2,α1′ ,α2′

G(2)
d/m (α1, iω1;α2, iω2|α1′ , iω1′ ;α2′ , iω2′)

∗ . (2.59)
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2.4 Lehmann Representation of Green’s functions

If the exact eigenstates |m〉 and energies Em of the Hamiltonian (2.1) are known, the

Green’s functions G(n) can be calculated using the so-called Lehmann representation.

For the one-particle Green’s function it is given by

G(1) (α1, τ1|α1′) = − 1

Z
Tr
[

e−βĤTτaα1(τ1)a
†
α1′

]

=







− 1
Z

∑

m,n e−βEmeτ1(Em−En) 〈m| aα1 |n〉 〈n| a†α1′
|m〉 for τ1 > 0

1
Z

∑

m,n e−βEme−τ1(Em−En) 〈m| a†α1′
|n〉 〈n| aα1 |m〉 for τ1 < 0

.

(2.60)

Here we evaluated the trace in the eigenbasis of the Hamiltonian and inserted an unity

operator 1 =
∑

n |n〉 〈n| between aα1 and a†α1′
. The expression (2.60) contains now only

the eigenenergies of the system and matrix elements of the creation and annihilation

operators in the corresponding eigenbasis. The Fourier transform is given by

G(1) (α1, iω1|α1′) =

∫ β

0

dτ1e
iω1τ1G(1) (α1, τ1|α1′)

=
1

Z

∑

m,n

e−βEm + e−βEn

iω1 − (En − Em)
〈m| aα1 |n〉 〈n| a†α1′

|m〉 . (2.61)

In a similar way one can derive a Lehmann representation of the two-particle Green’s

function [HJB+09]. It is given by

G(2) (α1, iω1;α2, iω2|α1′ , iω1′ ;α2′) =

∫ β

0

dτ1dτ2dτ1′e
iω1τ1+iω2τ2+iω1′τ1′

× G(2) (α1, τ1;α2, τ2|α1′ , τ1′ ;α2′)

=
1

Z

∑

i,j,k,l

∑

Π

φ (Ei, Ej , Ek, El, iωΠ1 , iωΠ2 , iωΠ3)

× sgn (Π) 〈i| OΠ1 |j〉 〈j| OΠ2 |k〉 〈k| OΠ3 |l〉 〈l| a†α2′
|i〉 .
(2.62)

Here, unlike in definition (2.16), the frequencies corresponding to annihilation and creation

operators have the same sign, which makes the expression more compact. The operators

Oi are defined by O1 = aα1 , O2 = aα2 and O3 = a†α1′
. Π denotes the permutation
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(Π1,Π2,Π3) of (1, 2, 3). The function φ is given by

φ(Ei, Ej , Ek, El, ω1, ω2, ω3) =
1

iω3 + Ek − El

×
[






( Eij
(iω1+Ei−Ej)2

− β e−βEj

iω1+Ei−Ej

)
for ω2 = −ω3 and Ej = El

1
iω2+iω3+Ej−El

( Eij
iω1+Ei−Ej

− Eil
i(ω1+ω2+ω3)+Ei−El

)
else

− 1

iω2 + Ej − Ek

( Eij
iω1 + Ei − Ej

−







βe−βEi for ω1 = −ω2 and Ei = Ek

Oik

iω1+iω2+Ei−Ek
else

)]

(2.63)

with

Eij = exp(−βEi) + exp(−βEj), (2.64)

Oij = exp(−βEi)− exp(−βEj). (2.65)

Due to the exponential growth of the Hilbert space, a large numerical effort is required

to calculate the multidimensional sum in (2.62), which can be reduced by using particle

number and spin conservation and also by calculating the exponential factors (2.64) and

(2.65) in advance. But nevertheless, calculating this quantity within a reasonable time

can only be performed for a small number of orbitals. In this thesis the largest system

included 4 orbitals.

2.5 Real frequency quantities

Up to now all quantities were defined in imaginary time or imaginary Matsubara frequency

respectively. This has the advantage that calculating these quantities is much easier

than doing the calculations directly in real time or on the real frequency axis. However,

experiments are done in real time and to describe them one eventually needs the real

time/ real frequency quantities.

As can be seen from the Lehmann representation of the one-particle Green’s function

(2.61), its poles lie on the real frequency axis and it is fully analytic in the upper and the

lower half of the complex plane. Let us denote the analytic continuation of the Matsubara

Green’s function as G(1) (z) , z ∈ C\R.

The analytic continuation of the one-particle Green’s function to the upper half of the

complex plane evaluated at z = ω + i0+ is the retarded one-particle Green’s function,

G(1)
ret (α1, α1′ , ω) = G(1)

(
α1, z = ω + i0+|α1′

)

(2.61)
=

1

Z

∑

m,n

e−βEm + e−βEn

ω + i0+ − (En − Em)
〈m| aα1 |n〉 〈n| a†α1′

|m〉 . (2.66)
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In the following we choose the single-particle basis in such a way that G(1)
ret is diagonal, i.e.

we have G(1)
ret (α1, α1′ , ω) = G(1)

ret (α1, ω) δα1,α1′
. The imaginary part of G(1)

ret (α1, ω) defines

the so-called spectral density A (α1, ω). From the relation 1
ω−a+i0+

= P 1
ω−a

− iπδ (ω − a)

one gets

A (α1, ω) =− 1

π
Im G(1)

ret (α1, ω)

=
1

Z

∑

m,n

(
e−βEm + e−βEn

)
〈m| aα1 |n〉 〈n| a†α1

|m〉 δ (ω − (En − Em)) . (2.67)

The spectral density is normalized to unity, which follows from
∫

dωA (α1, ω) = 〈{aα1 , a
†
α1
}〉 = δα1,α1 = 1. (2.68)

Together with the positivity A (α1, ω) ≥ 0, which is obvious from the definition (2.67), the

normalization property allows the interpretation of A (α1, ω) as a propability distribution,

describing the spread of the spectral weight associated with the state a†α1
|m〉 over the

many body states |n〉. As the spectral density is related to the inelastic scattering cross-

section, it is useful for the interpretation of a large class of experiments, like for example

scattering experiments in solids or transport measurements in nanoscale devices [AS06].

If the Matsubara Green’s function G(1)(iωn) is only known numerically, the analytic con-

tinuation, which is required to calculate the retarded Green’s function, becomes mathe-

matically an ill-defined problem. One possible (however criticizable [BGM00]) approach

to this problem is the so-called Padé approximation method, where the data is fitted by

ratios of polynomials. The analytic continuation is then applied to the fitted functions.

In this thesis, we use a Padé scheme, introduced by Vidberg and Serene [VS77]. Apply-

ing this scheme one has to be very careful, since the results often depend on the used

frequency grid and for many parameter sets unphysical artifacts like negative spectral

weights are obtained. To test the reliability of our results, we checked if the shape of the

spectral density changes significantly by including more frequencies in the frequency grid.

In most cases we obtained only stable results for the spectral density at small frequencies,

and the high frequency behaviour could only resolved on a qualitative level.
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Chapter 3

Functional Renormalization Group

Renormalization group (RG) methods are a powerful tool for the description of quantum

many particle systems. Based on the pioneering works of Wilson, who used RG ideas to

understand the universality of critical phenomena [Wil71, WK74], the so-called functional

renormalization group (fRG) [Pol84, Wet93, SH01] has become a widely used scheme for

the investigation of interacting Fermi and Bose systems. The term “functional” indicates

that it is based on an exact flow equation for a generating functional. A recent review

of this method can be found in Ref. [MSH+12] and a detailed introduction is given in

[KBS10].

In the context of impurity models RG methods are used since the early seventies. To

explain the spin screening physics of the Kondo model, Anderson developed a “poor man’s

scaling” procedure [And70], which corresponds to a RG approach where the conduction

electron bandwidth W is systematically reduced. When W approaches the Kondo scale

TK , the antiferromagnetic coupling strength J diverges, which marks the crossover to a

strong coupling fixed point in the RG flow, associated with a spin compensated ground

state. However Anderson’s argument relies on a perturbational description, and can not

describe this low energy state directly. In 1975, Wilson developed his numerical RG

method (NRG), which allows for a non-perturbative description of the Kondo problem

on all energy scales. Initially it was applied to the Kondo model [Wil75] and later also

extended to the Anderson Impurity model [KmWW80a, KmWW80b]. A review of the

NRG method is given in Ref. [BCP08] and in the book of Hewson [Hew93].

Although more complex impurity setups can be described by the NRG as well, this re-

quires a significant increase of the computational effort. This motivated several groups

in the last decade to develop fRG approaches, which can be applied to a large class

of impurity problems with a reasonable level of numerical expense. These approaches

[KEM06, BFCK09, JPS10], although they differ in the used cutoff or regularization

scheme, base on the same fRG flow equation for the generating functional of the 1PI

vertex functions. In this chapter we derive this equation without specifiying the used

17
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cutoff and dicuss possible approximation schemes. Our derivation mainly follows Ref.

[Med06].

3.1 General fRG formalism

The fRG flow equation for the generating functional of the 1PI vertex functions is a

differential equation with respect to a flow parameter Λ, that is introduced in the free

propagator

G0 → GΛ
0 , (3.1)

in such a way that GΛ0
0 ≡ 0 and GΛend

0 ≡ G0. This condition leads to a simple initial

condition of the fRG flow equations.

The generating functional (2.18) becomes then Λ-dependent,

ZΛ [η̄, η] =
1

ZΛ
0

∫

D[ψ̄, ψ] exp
[
(ψ̄, QΛψ)− V(ψ̄, ψ)− (ψ̄, η)− (η̄, ψ)

]
, (3.2)

where V is the interaction part of H. In comparison to (2.18) the functional integral in

(3.2) is normalized with the free partition function ZΛ
0 = det(−QΛ). This change leads

only to an additional term ln (Z0) in the generating functionals W and Γ, and does not

influence the definition of the n-particle vertex functions.

The generating functional for the Λ-dependent connected Green’s functions WΛ is ob-

tained as

eW
Λ[η̄,η] = ZΛ [η̄, η] (3.3)

After differentiating (3.3) with respect to Λ we get

dWΛ [η̄, η]

dΛ
eW

Λ[η̄,η] =− Tr
[

Q̇ΛGΛ
0

]

eW
Λ[η̄,η]

+
1

ZΛ
0

∫

D[ψ̄, ψ](ψ̄, Q̇Λψ) exp
[
(ψ̄, QΛψ)− V(ψ̄, ψ)− (ψ̄, η)− (η̄, ψ)

]

=−
[

Tr
(

GΛ
0 Q̇

Λ
)

+∆Q̇Λ

]

eW
Λ[η̄,η], (3.4)

with the Laplace operator ∆Q defined by

∆Q =

(
δ

δη
,Q

δ

δη̄

)

. (3.5)

We finally arrive at a flow equation for the functional WΛ [η̄, η]

dWΛ [η̄, η]

dΛ
= −Tr

(

GΛ
0 Q̇

Λ
)

+ Tr

(

Q̇Λ δ
2WΛ [η̄, η]

δηδη̄

)

−
(
δWΛ [η̄, η]

δη
, Q̇Λ δWΛ [η̄, η]

δη̄

)

.

(3.6)
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As discussed in Ref. [Med06] this equation is no well-defined initial value problem and can

only be used as intermediate step in the derivation of a more convenient flow equation.

Using Eq. (2.30) we obtain

dΓΛ
[
φ̄, φ

]

dΛ
= −dW

Λ [η̄, η]

dΛ
+
(

φ̄, Q̇Λφ
)

= Tr

[

Q̇Λ

(
δ2WΛ [η̄, η]

δηδη̄
+ GΛ

0

)]

= Tr



Q̇Λ





(

δ2ΓΛ
[
φ̄, φ

]

δφ̄δφ
+QΛ

)−1

+ GΛ
0







 . (3.7)

Eq. (3.7) is an exact flow equation for the generating functional of the 1PI vertices at

scale Λ. Being formally exact, it depends on all orders of the fields and an exact solution

is far out of reach. Therefore truncations are unavoidable. In the next section we will

expand the generating functional ΓΛ with respect to the fields, and derive flow equations

for the 1PI vertex functions, which can be systematically truncated.

3.2 Flow equations for the 1PI vertices

In analogy to Eq. (2.31), we define the Λ-dependent 1PI vertex functions

ΓΛ
[
φ̄, φ

]
=

∞∑

n=0

(−1)n

n!2

∑

α1,...,αn
α1′ ,...,αn′

γ(n),Λ (α1, ..., αn|α1′ , ..., αn′) φ̄α1 ...φ̄αnφαn′ ...φα1′
. (3.8)

Inserting this expansion into Eq. (3.7) leads to an infinite set of flow equations for the

Λ-dependent vertex functions γ(n),Λ. The flow equations for the self-energy ΣΛ ≡ −γ(1),Λ
and the two-particle vertex γ(2),Λ are

d

dΛ
ΣΛ(α1|α1′) =− Tr

[
SΛγ(2),Λ(α1, .|α1′ , .)

]
, (3.9)

d

dΛ
γ(2),Λ(α1, α2|α1′ , α2′) =Tr

[
SΛγ(3),Λ(α1, α2, .|α1′ , α2′ , .)

]

− Tr
[
SΛγ(2),Λ(., .|α1′ , α2′)[GΛ]Tγ(2),Λ(α1, α2|., .)

]

− Tr
[
SΛγ(2),Λ(α1, .|α1′ , .)GΛγ(2),Λ(α2, .|α2′ , .)

]

− [α1 ↔ α2]− [α1′ ↔ α2′ ] + [α1 ↔ α2, α1′ ↔ α2′ ], (3.10)

where SΛ is the so-called single scale propagator defined as

SΛ = GΛ d

dΛ

[
QΛ
]
GΛ, (3.11)

and GΛ =
[
QΛ − ΣΛ

]−1
is the full Λ-dependent Green’s function.
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Figure 3.1: Diagrammatic representation of the flow equations (3.9) and (3.10). The line

with a slash denotes the single scale propagator SΛ and the other line represents the full

Λ-dependent Green’s function GΛ.

In Fig. 3.1 we show a diagrammatic representation of the flow equations (3.9) and (3.10).

The terms on the right hand side of the flow equation for γ(2),Λ appear in the same order

as in equation (3.10). The first term includes the three-particle vertex γ(3),Λ, while the

other terms (so-called one-loop diagrams) only depend on γ(1),Λ and γ(2),Λ. The second

term is called particle-particle graph and the terms in the second line are particle-hole

graphs. The terms 3 and 6 are called direct particle-hole graphs and the terms 4 and 5

crossed particle-hole graphs.

At the initial scale Λ0 the free propagator of the theory (3.1) vanishes, such that only the

bare vertices remain. For the Hamiltonian (2.1) this leads to the initial conditions

ΣΛ0(α1, α1′) = 0, (3.12)

γ(2),Λ0(α1, α2|α1′ , α2′) = Vα1α2α1′α2′
, (3.13)

γ(n≥3),Λ0(α1, ..., αn|α1′ , ..., αn′) = 0. (3.14)

In each integration step more and more degrees of freedom are included until for Λ = Λend

the original theory is recovered.
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3.3 Truncations

Although the infinite set of flow equations for the 1PI vertices is formally exact, it is

practically impossible to solve it due to the infinite number of involved degrees of freedom.

Therefore one has to apply a truncation procedure leading to a finite set of equations,

which can be solved at least numerically. In this section we discuss two such truncation

schemes, which we call approximation 1 and approximation 2 respectively.

In the flow equations (3.9) and (3.10) the flow of γ(1),Λ depends only on γ(1),Λ and γ(2),Λ,

while the flow of γ(2),Λ is determined by γ(1),Λ, γ(2),Λ and γ(3),Λ. This structure continues

in the flow equations for the higher vertices γ(n),Λ with n ≥ 3 in which the right hand side

only depends on vertices γ(i),Λ with i ≤ n+ 1.

This observation motivates the following truncation scheme: Neglecting the flow of γ(n+1),Λ

and all higher vertex functions leads to a closed system of differential equations for the ver-

tex functions γ(1),Λ, ..., γ(n),Λ. As the neglected higher vertex functions depend on higher

orders of the bare interaction, this truncation scheme can be justified by perturbational

arguments. However, we want to emphasize that integrating the reduced set of flow equa-

tions involves contributions from arbitrary high orders and the final result will in general

be much better than simple perturbation theory.

In the case n = 1 (in the following called approximation 1) one is left with Eq. (3.9),

where γ(2),Λ is set to the initial interaction

d

dΛ
ΣΛ(α1|α1′) = −

∑

α2,α2′

SΛ(α2|α2′)V (α1, α2|α1′ , α2′). (3.15)

If one neglects the feedback of ΣΛ on the right hand side of the flow equation, the single

scale propagator SΛ is given by SΛ = − d
dΛ
GΛ
0 . Integrating this equation corresponds then

to first order perturbation theory. From this consideration one explicitly sees that the

solution of the full equation (3.15) includes diagrams beyond the lowest order perturbation

theory, although no vertex corrections are considered at this level of the approximation.

The latter come into play in the case n = 2 (which we call approximation 2 or one-loop

approximation). Here one considers the equations (3.9) and (3.10), whereat we neglect

the flow of the three-particle vertex γ(3),Λ. Since it vanishes in the beginning for Λ = Λ0

the first term of Eq. (3.10) then remains zero during the whole flow. Motivated by the

fulfillment of Ward identities in the fRG flow, the following replacement in Eq. (3.10) was

proposed [Kat04],

SΛ → −dG
Λ

dΛ
= SΛ − GΛdΣ

Λ

dΛ
GΛ . (3.16)

Using this replacement, additional diagrams contribute to the flow of the two-particle

vertex. As an example we show in Fig. 3.2 the particle-particle diagram, where the single

scale propagator is replaced by the term GΛ dΣΛ

dΛ
GΛ. The latter can be expressed by the
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Figure 3.2: Using the replacement (3.16) in the flow equation (3.10), additional diagrams,

which originate from the flow of the three-particle vertex, and would be neglected on this

approximation level otherwise, are included in the flow of the two-particle vertex. In the

figure we show one such diagram, which is generated from the particle-particle diagram

with the replacement (3.16).

right hand side of the flow equation for the self-energy (3.9), leading to a diagram that

is of third order in the two-particle vertex. Similar diagrams are also generated in the

particle-hole channels. In the original flow scheme they appear on the right hand side of

the flow equation of γ(3),Λ, such that using the replacement (3.16), contributions from the

three-particle vertex are included on the level of the one-loop approximation.



Chapter 4

Hybridization flow

In this chapter we introduce the hybridization flow concept, which is applied in the fol-

lowing chapters. We begin with a brief introduction to the Anderson impurity model, and

show, how a general bath can be mapped onto a semi-infinite chain. In the next step this

chain is then divided into two parts: The core contains the correlated site and the first L

bath sites and the bath includes the remaining bath sites. Both parts are coupled by a flow

parameter Λ. The idea of the hybridization flow is now, to turn on the coupling between

core and bath slowly, starting from the exactly solvable core. Our scheme is implemented

in an effective bath theory on the first bath site next to the core. The fRG flow equations

for this effective bath theory are derived and compared with other implementations of the

hybridization flow. A generalization of the hybridization flow scheme to multi-impurity

problems, which appear in the context of cluster DMFT (cf. chapter 6), can be found in

appendix D.

Parts of this chapter are already published in

M. Kinza, J. Ortloff, J. Bauer, and C. Honerkamp. Alternative functional renormal-

ization group approach to the single impurity Anderson model. Phys. Rev. B, 87:035111,

Jan 2013

4.1 Anderson Impurity model

The single impurity Anderson model [And61] is a minimal model to describe the interplay

of charge and spin fluctuations of a localized interacting impurity in a metallic environ-

ment. This impurity could be for example the d- or f-level of a transition metal atom

such as Fe embedded in a nonmagnetic metal. In such systems one observes an anoma-

lous minimum in the electrical resisitivity at very low temperatures, which is caused by

the interaction of the conduction electrons with the impurities [dHdBvdB34]. It was first

23
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explained by Jun Kondo in 1964 [Kon64], based on the so-called Kondo model, which

describes a local magnetic moment associated with a spin S, coupled by an antiferromag-

netic exchange interaction J to the conduction electrons. In a certain parameter regime

it can be deduced from the Anderson model. Another experimental sitation that can be

described by the Anderson model is found in nanoscale devices, in which quantum dots

are coupled to metallic leads. In certain cases they can be described by the Anderson

model and the Kondo effect was observed [GGSM+97]. Finally, the Anderson model is

an important ingredient of the dynamical mean field theory for correlated lattice models,

which will be further discussed in chapter 6.

The Hamiltonian of the SIAM consists of three parts

Ĥ = Ĥdot + Ĥbath + Ĥhybridization . (4.1)

Ĥdot describes the interacting electron level and is given by

Ĥdot =
∑

σ

(ǫd,σ − µ) d†σdσ + U nd,↑nd,↓ . (4.2)

The operators d†σ and dσ create and annihilate electrons on the dot level with spin com-

ponent σ = ±1 and nd,σ = d†σdσ is the particle number operator. Occupying the dot level

with two electrons costs a repulsive interaction energy U > 0 caused by the Coulomb

Interaction. The onsite energy is given by

ǫd,σ − µ = −U
2
+ Vg +Bσ . (4.3)

including a magnetic field B and a gate voltage Vg. The term −U
2

is choosen such that

Vg = 0 corresponds to the particle-hole symmetric point.

The bath is modeled as a noninteracting electron gas

Ĥbath =
∑

s=L,R

∑

~k,σ

(

ǫ~k,σ − µ
)

b†~k,σ,sb~k,σ,s. (4.4)

Here the index s distinguishes between different channels “left” (L) and “right” (R), which

is the typical situation in a quantum dot setup. The operators b†~k,σ,s and b~k,σ,s create and

annihilate electrons with wave vector ~k and spin component σ in channel s.

The coupling of the dot and the bath levels due to hybridization is described by the

Hamiltonian

Ĥhybridization = −
∑

s=L,R

∑

~k,σ

(

V~k,s d
†
σb~k,σ,s + V ∗

~k,s
b†~k,σ,sdσ

)

. (4.5)

We can do an unitary transformation
(

b~k,σ,even

b~k,σ,odd

)

=
1

√

|V~k,L|2 + |V~k,R|2

(

V~k,L V~k,R
V ∗
~k,R

−V ∗
~k,L

)(

b~k,σ,L
b~k,σ,R

)

, (4.6)
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such that only the even combination couples to the dot site, since the left and right part

of the chain possess the same chemical potential

Ĥhybridization = −
∑

~k,σ

v~k

(

d†σb~k,σ,even + b†~k,σ,even
dσ

)

(4.7)

where v~k =
√

|V~k,L|2 + |V~k,R|2. Ĥbath remains formally unchanged. In the following we

ignore the decoupled odd bath, and skip the index “even” on the remaining even bath.

Although the Hamiltonian (4.1) looks very simple, it turns out to be a non-trivial many

body problem, whose physical behaviour emerges from the competition of the bare energy

scales, i.e. the onsite interaction U , the dot level position ǫd,σ, the bandwidth of the bath

W , and the hybridization strength ∆, which is quantified by the hybridization function

∆(iω) =
∑

~k

v2~k
iω − ǫk

. (4.8)

This hybridization function enters the local noninteracting (U = 0) Green’s function on

the dot site via1

G0 (iω, d, d) =
1

iω − ǫd −∆(iω)
(4.9)

For a particle-hole symmetric bath dispersion the hybridization function is purely imag-

inary, and we assume that it is nearly constant at small frequencies, i.e. we have

∆(iω) ≈ −i∆0 sign(ω). This leads to a Lorentz-shaped central resonance in the spectral

density, given by

Adot,0(ω) = − 1

π
Im G0(ω + i0+, d, d)

≈ 1

π

∆0

(ω − ǫd)2 +∆2
0

for small ω. (4.10)

Its width is determined by the hybridization strength ∆0. For large interactions U ≫
∆0 the spectrum exhibits a three-peak structure. Beside a central resonance at ω =

0 (the so-called Kondo resonance), one finds additional peaks at ǫd and ǫd + U that

are due to charge fluctuations, the so-called Hubbard bands. If ǫd ≪ 0, ǫd + U ≫
0 and |ǫd + U |, |ǫd| ≫ ∆0 these charge fluctuations are negligable and the Anderson

model can be mapped to the Kondo model [SW66], which describes a single localized spin

coupled by an antiferromagnetic exchange coupling J to the conduction electrons. At low

enough temperatures the spin fluctuations are governed by a new energy scale, which is

exponentially small in the bare interaction strength U , the so-called Kondo scale [Hew93]

TK = W

√

2∆0

πU
exp

(

− πU

8∆0

)

. (4.11)

1Here and in the rest of the section we set B = 0 and skip the spin index.
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In the Kondo regime the SIAM is described by a local Fermi liquid [Noz74], with quasi-

particle weight Z defined as

Z−1 = 1− dImΣdot (iω)

dω

∣
∣
∣
∣
ω=0+

. (4.12)

Σdot (iω) is the dot self-energy. The width of the central Kondo resonance is determined

by the quasi-particle weight Z as Z∆0 and Z is proportional to the Kondo scale Z ∝ TK .

The spectral density at ω = 0 is pinned to the value

Adot (ω = 0) =
sin2 (η(ω = 0))

π∆0

(4.13)

with the phase-shift η(ω = 0), which is determined by Friedel’s sum rule η(ω = 0) =

π〈nd,σ〉 [Lan66]. At particle-hole symmetry we have 〈nd,σ〉 = 1/2, such that Adot (ω = 0) =
1

π∆0
, independent of the interaction U .

4.1.1 Mapping to a linear chain

In order to apply our hybridization flow scheme, we have to map the SIAM to a semi-

infinite tight binding chain. This can be achieved by the Lanczos algorithm, described for

example in chapter 4.2 of Ref. [Hew93].

We write the hybridization matrix-element in the form v~k = vα~k, such that
∑

~k α
2
~k
= 1.

With this we introduce the state |b1〉 with the creation operator

b†1,σ =
∑

k

αkb
†
~k,σ
. (4.14)

The part of the Hamiltonian, that describes the hybridization between the bath and the

dot (4.7) is then given by

Ĥhybridization = −v
∑

σ

(

d†σb1,σ + b†1,σdσ

)

, (4.15)

i.e. the dot site couples directly to the localized state |b1〉. Starting from |b1〉 we construct a

new basis for the bath from the states |b1〉 , Ĥbath |b1〉 , Ĥ2
bath |b1〉 , Ĥ3

bath |b1〉 , ... by Schmidt

orthogonalization. In this new basis Ĥbath is tridiagonal and corresponds to a semi-infinite

tight binding chain with nearest neighbour hopping only. The new basis is given by the

states

|b2〉 =
1

t1

(

Ĥbath |b1〉 − |b1〉 〈b1| Ĥbath |b1〉
)

,

|b3〉 =
1

t2

(

Ĥbath |b2〉 − |b2〉 〈b2| Ĥbath |b2〉 − |b1〉 〈b1| Ĥbath |b2〉
)

,

...,

|bn+1〉 =
1

tn

(

Ĥbath |bn〉 − |bn〉 〈bn| Ĥbath |bn〉 − |bn−1〉 〈bn−1| Ĥbath |bn〉
)

,
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Figure 4.1: The single impurity Anderson model in the form of a semi-infinite tight binding

chain, corresponding to Hamiltonian (4.16). The first site (d) is the correlated impurity

site and the other sites (bi) are the bath sites.

with tn = 〈bn+1| Ĥbath |bn〉. If we define ǫn = 〈bn| Ĥbath |bn〉, we can write Ĥbath in the form

Ĥbath =
∑

n,σ

ǫnb
†
n,σbn,σ +

∑

n,σ

(

tnb
†
n,σbn+1,σ + t∗nb

†
n+1,σbn,σ

)

, (4.16)

which is illustrated in Fig. 4.1.

4.1.2 Green’s function of the SIAM

The inverse free Green’s function Q (iω) = G0 (iω)
−1 on the imaginary frequency axis is

given by Q (iω) = iω1−Ĥ0, where Ĥ0 is the noninteracting part of the Hamiltonian (4.1),

ignoring the odd bath (cf. Eq. (2.8)). Written as a matrix it is given by

Q (iω) =

[

Q↑ (iω) 0

0 Q↓ (iω)

]

(4.17)

Qσ (iω) =













d b1 b2 b3 · · ·
d iω + µ− ǫd,σ v

b1 v iω + µ− ǫ1 t1

b2 t∗1 iω + µ− ǫ2 t2

b3 t∗2 iω + µ− ǫ3 · · ·
· · · · · · · · ·













. (4.18)

The inverse of Qσ (iω) can be calculated by using the identity

[

A B

C D

]−1

=

[

(A−BD−1C)
−1 −(A−BD−1C)−1BD−1

−D−1C (A− BD−1C)
−1

(D − CA−1B)−1

]

, (4.19)
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which is valid for arbitrary invertible matrices A, B, C and D. If we introduce the bath

Green’s function gb1,b2,... (iω) by

g−1
b1,b2,...

(iω) =











b1 b2 b3 · · ·
b1 iω + µ− ǫ1 t1

b2 t∗1 iω + µ− ǫ2 t2

b3 t∗2 iω + µ− ǫ3 · · ·
· · · · · · · · ·











, (4.20)

we can derive the free Green’s function on the dot site by the identity (4.19)

G0,σ (iω, d, d) = [iω + µ− ǫd,σ −∆(iω)]−1 . (4.21)

Here ∆(iω) is the hybridization function, which is given by

∆(iω) = v2gb1,b2,... (iω, b1, b1) . (4.22)

By the Dyson equation (2.36) the full Green’s function is related to Qσ(iω) and the

self-energy

Gσ (iω)
−1 =Qσ (iω)− Σσ (iω)

=













d b1 b2 b3 · · ·
d iω + µ− ǫd,σ − Σdot,σ(iω) v

b1 v iω + µ− ǫ1 t1

b2 t∗1 iω + µ− ǫ2 t2

b3 t∗2 iω + µ− ǫ3 · · ·
· · · · · · · · ·













.

(4.23)

Note that the self-energy is located on the dot site, since the bath sites are noninteracting.

Inverting the matrix (4.23), using the identity (4.19), gives the full Green’s function on

the dot

Gσ (iω, d, d) = [iω + µ− ǫd,σ − Σdot,σ(iω)−∆(iω)]−1 . (4.24)

In the same way one gets the Green’s function for the first and second bath site,

Gσ (iω, b1, b1) =

[

iω + µ− ǫ1 −
v2

iω + µ− ǫd,σ − Σdot,σ (iω)
− |t1|2 gb2,b3,... (iω, b2, b2)

]−1

,

(4.25)

Gσ (iω, b2, b2) =

[

iω + µ− ǫ2 −
|t1|2

iω + µ− ǫ1 − v2

iω+µ−ǫd,σ−Σdot,σ(iω)

− |t2|2 gb3,b4,... (iω, b3, b3)
]−1

.

(4.26)



4.2. EFFECTIVE THEORY FOR THE BATH 29

The Green’s function gb2,b3,... and gb3,b4,... are defined analogous to (4.20). For the other

bath sites with site index > 2, analogous expressions can be derived.

Up to this point we did not make any assumptions about the form of the bath dispersion

ǫk. The above expressions can be simplified, if we choose the bath parameters of the

Hamiltonian (4.16) in the form

ǫn = 0, tn = t for all n. (4.27)

In this case one has gb1,b2,... = gb2,b3,... = ... ≡ gB, and from (4.19) one gets the following

relation for gB(iω) ≡ gB(iω, b1, b1)

gB(iω) =
[
iω + µ− t2gB(iω)

]−1
. (4.28)

This equation can be used to derive an explicit expression for gB(iω),

gB(iω) =
1

2t2

(

iω + µ− isgn(ω)
√

4t2 − (iω + µ)2
)

. (4.29)

The retarded Green’s function on the first bath site is given by

gB
(
ω + i0+

)
=

1

2t2

(

ω + µ− i
√

4t2 − (ω + µ)2Θ(2t− |ω + µ|)

−
√

(ω + µ)2 − 4t2Θ(|ω + µ| − 2t) sgn(ω + µ)
)

. (4.30)

The density of states on the first bath site is then semi-elliptic

ρB (ω) = − 1

π
Im gB

(
ω + i0+

)

=
1

2πt2

√

4t2 − (ω + µ)2Θ(2t− |ω + µ|) , (4.31)

with bandwidth W = 4t. As a measure for the hybridization strength we define the

quantity

∆0 = πv2ρB (−µ) = v2

t
. (4.32)

4.2 Effective theory for the bath

4.2.1 Integrating out the core

We now separate the system into two parts as illustrated in Fig. 4.2. One part (called

“core” in the following) contains the correlated site and the first L bath sites of the

noninteracting tight binding chain (L = 0, 1, 2, 3). The other part (called “bath”) contains

all bath sites of the tight binding chain with index n ≥ L+1. In the following we integrate
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Figure 4.2: The semi-infinite tight binding chain is separated into two parts: The core

includes the correlated site and the first L bath sites and the bath consists of the remaining

bath sites. The two parts are coupled by a hopping term which is proportional to the

parameter Λ.

out the core in a functional integral representation of our model, leading to an effective

theory for the bath1.

Our model is described by the grandcanonical partition function

Z =

∫

D
[
b̄, b
]
exp

[
−S

[
b̄, b
]]

(4.33)

with the action

S
[
b̄, b
]
=Score

[
b̄0, b0, b̄1, b1, ..., b̄L, bL

]
+ Sbath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]

+ SΛ
coupling

[
b̄L, bL, b̄L+1, bL+1

]
. (4.34)

To make the notation more compact, we denote the dot site d as the 0th bath site b0 and

set t0 ≡ v and ǫ0 ≡ ǫd,σ. Score and Sbath are given by

Score

[
b̄0, b0, b̄1, b1, ..., b̄L, bL

]
=

L∑

n=0

(
b̄n, (∂τ + ǫn − µ) bn

)
−

L−1∑

n=0

[
tn
(
b̄n, bn+1

)
+H.c.

]

+ U

∫ β

0

dτ n↑ (τ)n↓ (τ) , (4.35)

Sbath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]
=

∞∑

n=L+1

(
b̄n, (∂τ + ǫn − µ) bn

)
−

∞∑

n=L+1

[
tn
(
b̄n, bn+1

)
+H.c.

]
,

1The idea of integrating out the correlated site to reduce the Anderson model to an effective bath

theory is for the case L = 0 worked out in Ref. [Joe10]. In this work analytic results that are perturbative
in the effective bath interaction as well as fRG results are presented. These served as benchmark to our

numerical results.
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where we introduced nσ (τ) = b̄0,σ (τ) b0,σ (τ). The coupling between the core and the

bath is descibed by

SΛ
coupling

[
b̄L, bL, b̄L+1, bL+1

]
= −Λ

[
tL
(
b̄L, bL+1

)
+H.c.

]
. (4.36)

We introduced the flow parameter Λ. The original model (4.1) corresponds to Λ = 1, and

for Λ = 0 core and bath are decoupled.

With the definition of the (L+ 1)-component fields

c = (b0, b1, b2, ..., bL) , (4.37)

χ = (0, 0, ..., tLbL+1) (4.38)

we can rewrite the action (4.34) as

S = Score [c̄, c] + Sbath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]
−

L∑

n=0

(c̄n,Λχn)−H.c. (4.39)

Now we can formally integrate out the c-fields,

∫

D [c̄, c] exp

[

−Score [c̄, c] +
L∑

n=0

(c̄n,Λχn) +H.c.

]

= Zcore exp [Wcore [Λχ̄,Λχ]] . (4.40)

Zcore is the partition function of the core problem given by

Zcore =

∫

D [c̄, c] exp [−Score [c̄, c]] . (4.41)

and Wcore is the generating functional for the connected core Green’s functions. This

yields an effective action for the bath

Z =

∫

D
[
c̄, c, b̄L+1, bL+1, ...

]
exp

[

−Score [c̄, c] +
L∑

n=0

(c̄n,Λχn) +H.c.− Sbath

[
b̄L+1, bL+1, ...

]

]

∝
∫

D
[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]
exp

[
−Seff

bath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]]
.

When we expand Wcore (Λχ̄,Λχ) in the χ̄, χ-fields, the effective action has the following

form

Seff
bath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]

=Sbath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]
−Wcore [Λχ̄,Λχ]

=Sbath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]
−

∞∑

n=0

(−1)nΛ2n

n!2

∑

i1,...,in
i′1,...,i

′
n

∫ β

0

dτ1...dτndτ
′
1...dτ

′
n

×Gc,(n)
core (i1, τ1; ...; in, τn|i′1, τ1; , ...; i′n, τ ′n) χ̄i1(τ1)...χ̄in(τn)χi′n(τ

′
n)...χi′1

(τ ′1) .
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In the following we neglect the term with n = 0, which does not contain any fields.

Furthermore, we truncate the sum over n after n = 2. This means we consider only the

first and second order of the expansion and neglect all correlation-functions Gc,(≥3)
core .

In Matsubara space we get

Seff
bath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]

=Sbath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]
+

Λ2

β

∑

iω

∑

i1,i′1

χ̄i1(iω)Gc,(1)
core (iω, i1, i

′
1)χi′1

(iω)

− Λ4

4β3

∑

iω1,iω2,

iω′
1,iω

′
2

∑

i1,i2,

i′1,i
′
2

χ̄i1(iω1)χ̄i2(iω2)Gc,(2)
core (iω1, i1; iω2, i2|iω′

1, i
′
1; iω

′
2, i

′
2)

× χi′1
(iω′

1)χi′2
(iω′

2)δω1+ω2,ω′
1+ω′

2

=Sbath

[
b̄L+1, bL+1, b̄L+2, bL+2, ...

]
+

(Λ|tL|)2
β

∑

iω

∑

σ

b̄L+1,σ(iω)Gc,(1)
core,σ (iω, bL, bL) bL+1,σ(iω)

− (Λ|tL|)4
4β3

∑

iω1,iω2,

iω′
1,iω

′
2

∑

σ1,σ2,

σ′
1,σ

′
2

b̄L+1,σ1(iω1)b̄L+1,σ2(iω2)

× Gc,(2)
core (iω1, bL, σ1; iω2, bL, σ2|iω′

1, bL, σ
′
1; iω

′
2, bL, σ

′
2)

× bL+1,σ′
1
(iω′

1)bL+1,σ′
2
(iω′

2)δω1+ω2,ω′
1+ω′

2
δσ1+σ2,σ′

1+σ′
2
.

In the effective bath theory there is a local interaction on bath site L+1. The other bath

sites (L+2,L+3,...) remain noninteracting and can be integrated out. This leads to the

local effective action

Seff
bath

[
b̄L+1, bL+1

]
=− 1

β

∑

iω

∑

σ

b̄L+1,σ(iω)Q
eff,Λ
σ (iω) bL+1,σ (iω)

− (Λ|tL|)4
4β3

∑

iω1,iω2,

iω′
1,iω

′
2

∑

σ1,σ2,

σ′
1,σ

′
2

b̄L+1,σ1(iω1)b̄L+1,σ2(iω2)

× Gc,(2)
core (iω1, bL, σ1; iω2, bL, σ2|iω′

1, bL, σ
′
1; iω

′
2, bL, σ

′
2)

× bL+1,σ′
1
(iω′

1)bL+1,σ′
2
(iω′

2)δω1+ω2,ω′
1+ω′

2
δσ1+σ2,σ′

1+σ′
2
. (4.42)

with

Qeff,Λ
σ (iω) = iω + µ− ǫL+1 − (Λ|tL|)2Gc,(1)

core,σ (iω, bL, bL)− |tL+1|2gbL+2,bL+3,... (iω, bL+2, bL+2) .

(4.43)

The Green’s functions Gc,(1)
core,σ (iω, bL, bL) and Gc,(2)

core (iω1, bL, σ1; iω2, bL, σ2|iω′
1, bL, σ

′
1; iω

′
2, bL, σ

′
2)

are calculated from the Lehmann representation (2.61) and (2.62). Note that an addi-

tional frequency dependent local term, as for example the local self-energy that arise in a

DMFT cycle (cf. chapter 6), can be easily included in Qeff,Λ
σ (iω).
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4.2.2 Relation to the dot self-energy and the dot two-particle

vertex

In the effective theory (4.42) the bath site L + 1 is now interacting with a frequency

dependent term, while in the original theory (4.34) it was noninteracting. The self-

energy and all higher irreducible vertex functions are local on the dot site by construction.

Nevertheless the local Green’s function of the coupled problem on bath site L + 1 is

nontrivial and depends on the dot self-energy, as can be seen in (4.25) or (4.26). This

Green’s function can also be derived in the setup of the effective theory and one can use

the identity GΛ
σ (iω, bL+1, bL+1) = Geff,Λ

σ (iω, bL+1, bL+1) with

Geff,Λ
σ (iω, bL+1, bL+1) =

[
Qeff,Λ

σ (iω)− Σeff,Λ
σ (iω)

]−1
(4.44)

to get a relation between the dot self-energy and the effective self-energy Σeff,Λ
σ on bath

site L+ 1. These relations depend on L and for L = 0, 1, 2, 3 we get the relations:

L = 0 : ΣΛ
dot,σ (iω) = iω + µ− ǫd,σ −

(Λv)2

Σeff,Λ
σ (iω) + (Λv)2 Gc,(1)

core,σ (iω, b0, b0)
, (4.45)

L = 1 : ΣΛ
dot,σ (iω) = iω + µ− ǫd,σ −

v2

iω + µ− ǫ1 − (Λ|t1|)2
Σeff,Λ

σ (iω)+(Λ|t1|)2 Gc,(1)
core,σ(iω,b1,b1)

, (4.46)

L = 2 : ΣΛ
dot,σ (iω) = iω + µ− ǫd,σ

− v2

iω + µ− ǫ1 − |t1|2

iω+µ−ǫ2− (Λ|t2|)
2

Σ
eff,Λ
σ (iω)+(Λ|t2|)

2 G
c,(1)
core,σ(iω,b2,b2)

, (4.47)

L = 3 : ΣΛ
dot,σ (iω) = iω + µ− ǫd,σ

− v2

iω + µ− ǫ1 − |t1|2

iω+µ−ǫ2− |t2|
2

iω+µ−ǫ3−
(Λ|t3|)

2

Σ
eff,Λ
σ (iω)+(Λ|t3|)

2G
c,(1)
core,σ(iω,b3,b3)

. (4.48)

In a similar way one gets the local 1PI vertex function on the dot site from the vertex

function of the effective bath theory γ(2),eff,Λ=1 ≡ γ(2),eff. The connected two-particle

Green’s function on site bL+1 is given by

Gc,(2) (iω1, bL+1, σ1; iω2, bL+1, σ2|iω1′ , bL+1, σ1′ ; iω2′ , bL+1, σ2′)

= −
2∏

k=1

G(iωk, bL+1, bL+1)γ
(2),eff (iω1, bL+1, σ1; iω2, bL+1, σ2|iω1′ , bL+1, σ1′ ; iω2′ , bL+1, σ2′)

×
2∏

k=1

G(iωk′ , bL+1, bL+1). (4.49)
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By amputing the Green’s function that connect the dot site with site bL+1 one gets the

vertex function on the dot site

γ
(2)
dot (iω1, d, σ1; iω2, d, σ2|iω1′ , d, σ1′ ; iω2′ , d, σ2′)

= −
2∏

k=1

[G(iωk, bL+1, d)]
−1 Gc,(2) (iω1, bL+1, σ1; iω2, bL+1, σ2|iω1′ , bL+1, σ1′ ; iω2′ , bL+1, σ2′)

×
2∏

k=1

[G(iωk′ , d, bL+1)]
−1 . (4.50)

4.3 Hybridization flow equations

The effective action in Eq. (4.42) reduces to a noninteracting model for Λ = 0, because

the interaction term is proportional to Λ4. This represents a simple starting point for a

fRG flow in Λ, similar to the interaction flow scheme introduced in [HRAE04]. In order

to use the fRG formalism for the 1PI vertices, the flow parameter Λ should only occur in

the quadratic part of the action (cf. chapter 3.1). This can be achieved for any Λ 6= 0 by

rescaling the fields bL+1 → bL+1/Λ and b̄L+1 → b̄L+1/Λ. This leads to the quadratic part

of the effective action,

Seff,0
bath

[
b̄L+1, bL+1

]
= − 1

β

∑

iω

∑

σ

b̄L+1,σ(iω)Q̃
eff,Λ
σ (iω) bL+1,σ (iω) .

with

Q̃eff,Λ
σ (iω) =

1

Λ2
Qeff,Λ

σ (iω)

=
iω + µ− ǫL+1

Λ2
− |tL|2Gc,(1)

core,σ (iω, bL, bL)−
|tL+1|2
Λ2

gbL+2,bL+3,... (iω, bL+2, bL+2) ,

(4.51)

and a quartic part which does not depend on Λ anymore. We denote rescaled operators

by a tilde. Note that the rescaling changes correlation functions of different order in the

fields differently, but in the end we will study the case Λ = 1.

The single scale propagator (3.11) follows as

S̃eff,Λ
σ (iω) = G̃eff,Λ

σ (iω, bL+1, bL+1)
d

dΛ

[

Q̃eff,Λ
σ (iω)

]

G̃eff,Λ
σ (iω, bL+1, bL+1)

=
−2Λ[iω+µ−ǫL+1−|tL+1|2gbL+2,bL+3,...

(iω,bL+2,bL+2)]
[

iω+µ−ǫL+1−(Λ|tL|)2Gc,(1)
core,σ(iω,bL,bL)−|tL+1|2gbL+2,bL+3,...

(iω,bL+2,bL+2)−Λ2Σ̃eff,Λ
σ (iω)

]2 .

(4.52)

In the following we present the flow equations for the SU(2) symmetric case. Using the

spin conservation, the two-particle vertex can be parameterized in analogy to (2.51) as

γ̃(2),eff,Λ (iω1, bL+1, σ1; iω2, bL+1, σ2|iω1′ , bL+1, σ1′ ; iω2′ , bL+1, σ2′)

=Ṽ eff,Λ(iω1; iω2|iω1′ , iω2′)δσ1,σ1′
δσ2,σ2′

− ¯̃V eff,Λ(iω1; iω2|iω1′ , iω2′)δσ1,σ2′
δσ2,σ1′

. (4.53)
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From the antisymmetry of γ̃(2),eff,Λ (1, 2|1′, 2′) under the permutations 1′ ↔ 2′ and 1 ↔ 2,

it follows that the functions Ṽ eff,Λ and ¯̃V eff,Λ are related by

Ṽ eff,Λ (iω1, iω2|iω1′ , iω2′) =
¯̃V eff,Λ (iω2, iω1|iω1′ , iω2′) =

¯̃V eff,Λ (iω1, iω2|iω2′ , iω1′) . (4.54)

Using this parametrization we get the flow equation

d

dΛ
Σ̃eff,Λ(iω) = − 1

β

∑

iω′

S̃eff,Λ(iω′)
[
2Ṽ eff,Λ(iω, iω′|iω)− Ṽ eff,Λ(iω, iω′|iω′)

]

(4.55)

d

dΛ
Ṽ eff,Λ(iω1, iω2|iω1′) = T Λ

pp(iω1, iω2|iω1′) + T Λ
dph(iω1, iω2|iω1′) + T Λ

crph(iω1, iω2|iω1′)

(4.56)

with

T Λ
pp(iω1, iω2|iω1′) =

1

β

∑

iω3

LΛ (iω3, iω1 + iω2 − iω3) (4.57)

× Ṽ eff,Λ(iω1, iω2|iω3)Ṽ
eff,Λ(iω3, iω1 + iω2 − iω3|iω1′)

T Λ
dph(iω1, iω2|iω′

1) =
1

β

∑

iω3

LΛ (iω3, iω1 − iω1′ + iω3) (4.58)

×
[
− 2Ṽ eff,Λ(iω1, iω3|iω1′)Ṽ

eff,Λ(iω1 − iω1′ + iω3, iω2|iω3)

+ Ṽ eff,Λ(iω3, iω1|iω1′)Ṽ
eff,Λ(iω1 − iω1′ + iω3, iω2|iω3)

+ Ṽ eff,Λ(iω1, iω3|iω1′)Ṽ
eff,Λ(iω2, iω1 − iω1′ + iω3|iω3)

]

T Λ
crph(iω1, iω2|iω1′) =

1

β

∑

iω3

LΛ (iω3, iω2 − iω1′ + iω3) (4.59)

× Ṽ eff,Λ(iω3, iω2|iω1′)Ṽ
eff,Λ(iω1, iω2 − iω1′ + iω3|iω3).

Here LΛ is given by

LΛ(iω1, iω2) = G̃eff,Λ(iω1)S̃
eff,Λ(iω2) + S̃eff,Λ(iω1)G̃eff,Λ(iω2). (4.60)

The initial conditions of the flow equations follow from (3.12) - (3.14) as

Σ̃eff,Λ=0
σ (iω) = 0, (4.61)

Ṽ eff,Λ=0 (iω1, iω2|iω1′ , iω2′) = |tL|4Gc,(2)
core (iω1, bL, ↑; iω2, bL, ↓ |iω1′ , bL, ↑; iω2′ , bL, ↓) . (4.62)

The bare interaction of the effective theory is given by a connected two-particle Green’s

function and is therefore strongly frequency dependent. Due to its suppression at large

frequencies (cf. Fig. 4.3), we can restrict the frequency grid to the first N positive

frequencies. Typically we took N = 100 at β = 30/∆0. Note that for a constant frequency

independent interaction a larger grid is needed to obtain converged results (cf. Ref.

[IRB+10]). The flow equations can then be integrated by using standard DEQ-solvers.
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Figure 4.3: Density part of the connected Green’s function

G(2),c
d (iω1, bL; iω2, bL|iω1, bL; iω2, bL) (real part) for U = 8∆0, β = 30/∆0 (Left:

L = 0, Right: L = 1), which appears in the integral kernel on the right hand side of the

flow equation for the self-energy of the effective bath theory (4.55). Note the suppression

of the interaction at high frequencies.

4.4 Flow equation for the dot self-energy

Instead of doing the fRG flow in the effective bath theory (4.51), one could also derive

flow equations directly for the dot self-energy and the two-particle 1PI vertex function on

the dot site with the core 1PI vertex functions as initial condition. For L > 0 these flow

equations have a more complicated structure, and in our case the expressions are more

compact. In the following we derive the flow equation for L = 0 and approximation 1,

and discuss its relation to the flow equation for Σ̃eff,Λ.

For the particle-hole symmetric case the Λ-dependent inverse free propagator on the dot

site is given by1

QΛ(iω) = iω +
U

2
− Λ2∆(iω) (4.63)

with the hybridization function (4.22). The full Green’s function is then GΛ(iω, d, d) =
[
QΛ(iω)− ΣΛ

dot(iω)
]−1

and the single scale propagator comes out as

SΛ
dot(iω) = GΛ(iω, d, d)

d
dΛ

[
QΛ(iω)

]
GΛ(iω, d, d)

=
−2Λv2gb1,b2,...(iω, b1, b1)

[
iω + U

2
− ΣΛ

dot(iω)− (Λv)2gb1,b2,...(iω, b1, b1)
]2 . (4.64)

In approximation 1 the flow equation for the self-energy on the dot site is then given by

d
dΛ

ΣΛ
dot(iω) = − 1

β

∑

iω′

SΛ
dot(iω

′)
[

2γ
(2)
dot(iω, ↑; iω′, ↓ |iω, ↑; ↓)− γ

(2)
dot(iω, ↑; iω′, ↓ |iω′, ↑; ↓)

]

(4.65)

1In the following we skip the spin-index.
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with the initial condition (cf. appendix B.1 , Eq. (B.3))

ΣΛ=0
dot (iω) =

U

2
+
U2

4iω
. (4.66)

γ
(2)
dot is the 1PI vertex function of the isolated Hubbard site, explicitly written out in Eq.

(B.4). Eq. (4.65) can be related to the flow equation for the rescaled effective bath self-

energy Σ̃eff,Λ(iω) = 1
Λ2Σ

eff,Λ(iω). Therefore we write the single scale propagator (4.52)

with Eq. (4.45) as

S̃eff,Λ(iω) =
−2Λgb1,b2,...(iω, b1, b1)

[
iω + U

2
− ΣΛ

dot(iω)
]2

[
iω + U

2
− ΣΛ

dot(iω)− (Λv)2gb1,b2,...(iω, b1, b1)
]2

=
1

v2

[

iω +
U

2
− ΣΛ

dot(iω)

]2

SΛ
dot(iω). (4.67)

The derivation of ΣΛ
dot with respect to Λ is given by

d
dΛ

ΣΛ
dot(iω) = v2

[

Σ̃eff,Λ(iω) + v2Gc,(1)
core (iω, b0, b0)

]−2 d
dΛ

Σ̃eff,Λ(iω)

=
1

v2

[

iω +
U

2
− ΣΛ

dot(iω)

]2 d
dΛ

Σ̃eff,Λ(iω). (4.68)

We express the derivative d
dΛ
Σ̃eff,Λ(iω) by the flow equation (4.55) in approximation 1,

d
dΛ

Σ̃eff,Λ(iω) = −v
4

β

∑

iω′

S̃eff,Λ(iω′)
[

2Gc,(2)
dot (iω, ↑; iω′, ↓ |iω, ↑; ↓)− Gc,(2)

dot (iω, ↑; iω′, ↓ |iω′, ↑; ↓)
]

.

(4.69)

Inserting (4.67) and (4.69) into (4.68) leads to

d
dΛ

ΣΛ
dot(iω) =− 1

β

[

iω +
U

2
− ΣΛ

dot(iω)

]2

×
∑

iω′

[

iω′ +
U

2
− ΣΛ

dot(iω
′)

]2

SΛ
dot(iω

′)

×
[

2Gc,(2)
dot (iω, ↑; iω′, ↓ |iω, ↑; ↓)− Gc,(2)

dot (iω, ↑; iω′, ↓ |iω′, ↑; ↓)
]

=− 1

β

[

iω + U
2
− ΣΛ

dot(iω)

iω + U
2
− ΣΛ=0

d (iω)

]2

×
∑

iω′

[

iω′ + U
2
− ΣΛ

dot(iω
′)

iω′ + U
2
− ΣΛ=0

dot (iω′)

]2

SΛ
dot(iω

′)

×
[

2γ
(2)
dot(iω, ↑; iω′, ↓ |iω, ↑; ↓)− γ

(2)
dot(iω, ↑; iω′, ↓ |iω′, ↑; ↓)

]

. (4.70)

Compared to the flow equation (4.65), the interaction term is at each leg multiplied by a

faktor
iω+U

2
−ΣΛ

dot
(iω)

iω+U
2
−ΣΛ=0

dot
(iω)

. In the beginning of the flow this factor is equal to one, but it will
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change especially at low frequencies during the flow, since ΣΛ=0
dot is diverging at iω = 0. In

section 5.1 we will see that the flow equation (4.70) delivers the better results as the flow

equation (4.65), which justifies doing the calculations in the effective bath theory.



Chapter 5

Results for the Single Impurity

Anderson Model

In the following we present our results for the Single Impurity Anderson model with dif-

ferent core sizes (L = 0, 1, 2, 3). As described in chapter 4.1.2, we choose the hopping

terms in the semi-infinite tight binding chain as constant leading to a semi-elliptic density

of states (4.31). In most cases we consider particle-hole symmetry, ǫd = −U/2. In most

studies of the SIAM in the literature one considers a constant density of states and the

wide band limit, i.e., W is much larger than all other scales of the problem. Then the

physics for the symmetric model mostly depends on the ratio of the interaction strength

U and the hybridization scale ∆. Here we keep the ω-dependence of the hybridization

function. The hybridization strength (4.32) is given by ∆0 =
v2

t
. We choose for simplicity

v = t, so that ∆0 = t. This means that we do not have two independent parameters

for bandwidth and hybridization, as it is usual in studies of the SIAM, and the finite

bandwidth actually enters the problem. Therefore, our results differ quantitatively from

the wide limit, which is common in the literature. We take ∆0 = t as reference energy

scale in the following.

Parts of this chapter are published in

M. Kinza, J. Ortloff, J. Bauer, and C. Honerkamp. Alternative functional renormal-

ization group approach to the single impurity Anderson model. Phys. Rev. B, 87:035111,

Jan 2013.
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5.1 The case L = 0

For L = 0 the core is given by an isolated dot site with the Hamiltonian

Ĥcore = ǫd
∑

σ

d†σdσ + Und,↑nd,↓ (5.1)

In this case the core correlation functions can be calculated analytically (cf. appendix

B.1), and one can also derive analytical results in the setup of the effective bath theory

[Joe10].

The initial self-energy at Λ = 0 for ǫd = −U/2 (i.e. particle-hole symmetry) is given by

Σdot (iω) =
U

2
+
U2

4iω
, (5.2)

which is the atomic limit result (B.3). Σdot (iω) diverges at iω = 0. Note that the spectral

density on the dot site for ω = 0 is determined by the self-energy via

Adot(ω = 0) = − 1

π
Im G(i0+) = − 1

π ImΣ(i0+)
. (5.3)

Equation (5.3) shows that a divergent self-energy (5.2) leads to a vanishing spectral weight

at ω = 0. In Fig. 5.1 we show the iω-dependence of the self-energy at the end of the

flow for Λ = 1 on the dot for U = 10∆0, β = 30/∆0 and ǫd = −U/2 computed with the

described fRG flow in both approximations 1 and 2. The divergence of the self-energy

at iω = 0 has disappeared, but there is still a discontinuity, which is not cured by the

flow. Because of this discontinuity we do not obtain a finite quasi-particle weight (4.12),

and hence the flow equations are not able to restore the expected local Fermi liquid

properties of the SIAM, if we start with the atomic solution. The height of the unphysical

discontinuity becomes however smaller in approximation 2 compared to approximation 1

leading to an increased spectral density Adot(ω = 0).

Let us come back to the flow equation for the dot self-energy (4.65). The right hand side

of this equation diverges at iω = 0 at each scale Λ, which follows from the frequency

structure of the core 1PI vertex function, given in Eq. (B.4). Therefore the self-energy

keeps divergent at iω = 0 during the flow. This is different in the flow equation of the

effective bath theory, which is in approximation 1 equivalent to Eq. (4.70) for the dot self-

energy. Here the local vertex (B.4) is at each leg multiplied by a factor
iω+U

2
−ΣΛ

dot
(iω)

iω+U
2
−ΣΛ=0

dot
(iω)

. Due

to the divergence of ΣΛ=0
dot at zero frequency this factor is supressed at small frequencies,

which softens the divergence of the vertex and leads to a non-divergent self-energy. In the

spectral density derived from a Padé-approximation to our numerical data at half filling

(not shown) two slightly broadened atomic limit peaks at ±U/2 appear. As expected

from our Matsubara data we find a small portion of spectral weight at ω = 0, but no

central Kondo resonance with a Lorentzian shape as in Eq. (4.10) is obtained. Hence
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Figure 5.1: Comparison of approximations 1 and 2 to the Matsubara self-energy for

U = 10∆0, β = 30/∆0 and L = 0. At iω = 0 one gets a discontinuity of ImΣdot(iωn),

which is reduced if one increases the level of approximation. The finite step leads to a

finite spectral density at ω = 0. However, no coherent quasi-particle, which would require

a continuous self-energy at iω = 0, is observed on this level of the approximation.

the L = 0 approximation fails to describe the screening of the local spin 1/2 moment

by the conduction electrons. This screening and singlet formation should develop when

Λ is switched on, while at Λ = 0 the local moment is unscreened. We assume that

this strong mismatch is the reason for the non-occurence of the Kondo resonance in this

approximation.

Our results are consistent with the findings in Ref. [HJB+09], where a superperturbation

approach to the Anderson model is developed. In this approach a finite local cluster

containing the correlated dot site is solved exactly. The correlation functions of this

cluster then serve as input for an effective theory of so-called dual fermion fields, which

are introduced by a Hubbard-Stratonovich decoupling of the original theory. This dual

fermion theory is treated by self-consistent perturbation theory and finally one can use

exact relations to obtain the original self-energy on the dot site. Like in our setup, no

Kondo resonance is observed, when the cluster contains only the correlated bath site.
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5.2 The cases L = 1, 2 and 3

In the case L = 1 the isolated core consists of an interacting site coupled by a hopping

term v to a noninteracting bath site.

Ĥcore = ǫd
∑

σ

n̂d,σ + Un̂d,↑n̂d,↓ − v
∑

σ

(
d†σbσ +H.c.

)
(5.4)

This model is still analytically solvable (cf. appendix B.2). The ground state at half filling

is a spin singlet state. For ǫd = −U/2 and in the limit v ≪ U this state is given by

|N = 2;S = 0; 1〉 = 4v

U
(|↑↓, e〉+ |e, ↑↓〉)−

(

1− 8v2

U2

)

(|↑, ↓〉 − |↓, ↑〉) (5.5)

with energy 1
4

(
−U −

√
U2 + 64v2

) v≪U≈ −U
2
− 8v2

U
. The first entry in |., .〉 is the correlated

site, the second the additional uncorrelated core site. e stands for an empty site. Now,

in contrast to the case L = 0, the local moment on the dot is already in a singlet state

for Λ = 0. This is a much better starting point to describe features of the Kondo effect.

In Fig. 5.2 the Matsubara self-energy calculated in approximation 1 and 2 is shown.

In approximation 1 the self-energy is continuous for small frequencies and the derivative
dImΣdot(iω)

dω

∣
∣
∣
ω=0+

is negative, which leads to a central resonance with reduced width Z∆0

compared to the non-interacting case. As shown in the inset of Fig. 5.2 we obtain a small

step between positive and negative Matsubara frequencies in approximation 2. This step

leads to a slight broadening of the central resonance, which decreases with decreasing

temperature. Therefore it can be understood as a physically sensible finite temperature

effect.

For L = 2 the isolated core self-energy has a similar shape as in the L = 0 - case and

for Λ = 1 we again get a finite step between positive and negative Matsubara frequencies

in both approximations 1 and 2. In its ground state the core carries a finite s = 1/2-

moment, doublet ground state, in this case which does not become screened when we

switch on the coupling to the bath in the fRG flow. This shows once more the importance

of choosing a core with singlet ground state for an at least qualitatively correct description

of Kondo screening in this setup. The next larger core size with a singlet ground state

contains L = 3 bath sites. Numerically the calculation of the two-particle vertex function

is limited due to the exponential growth of the core Hilbert space (cf. chapter 2.4). We

just used approximation 1 in the L = 3 case, because here we only need to calculate the

vertex for two instead of three independent frequencies.

Let us discuss the numerical results in more detail. The spectrum of the isolated core

with L = 1 (B.22) consists of four delta-peaks. Two of them are located at ±ǫ1 =

±1
4

(√
U2 + 64v2 +

√
U2 + 16v2

) v≪U≈ ±
(

U
2
+ 10v2

U

)

, which belong to excitations from the

ground state (5.5) to the one-particle states |N = 1; sz = σ; 1〉 = 2v
U
|σ, e〉+

(

1− 2v2

U2

)

|e, σ〉
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Figure 5.2: Comparison of approximations 1 and 2 to the Matsubara self-energy for

U = 10∆0, β = 30/∆0 and L = 1. The self-energy is continuous at small frequencies. As

shown in the inset one obtains a small step between positive and negative frequencies in

approximation 2, which is interpretated as finite temperature effect.

(v ≪ U) and their corresponding three-particle states |N = 3;S = 1/2;Sz = σ; 1〉, which

are connected by a particle-hole transformation. In the limit v → 0 they are equal

to the atomic ±U/2-excitations of the L = 0-core. When we switch on the coupling

to the bath in the fRG flow, they evolve into hybridization broadened peaks. The

other two peaks in the spectrum of the L = 1-core lie close to ω = 0 at ±ǫ2 =

±1
4

(√
U2 + 64v2 −

√
U2 + 16v2

) v≪U≈ ±6v2

U
. They belong to excitations from the ground

state to the one-particle states |N = 1; sz = σ; 2〉 = 2v
U
|σ, e〉+

(

1− 2v2

U2

)

|e, σ〉 (v ≪ U)

and their corresponding three-particle states |N = 3;S = 1/2;Sz = σ; 2〉. The spectral

weight of this excitations follows from (B.20) for v ≪ U as 2a1 = 36v2

U2 . This is in this

limit equal to the quasi-particle spectral weight Z, which follows from the self-energy

(B.24) as

Z =

[

1− dImΣdot (iω)

dω

∣
∣
∣
∣
ω=0+

]−1

=
1

1 + U2

36v2

≈ 36v2

U2
. (5.6)

To obtain the spectral density on the dot site Adot(ω) we performed an analytic contin-

uation of our Matsubara data G (iωn, d, d) → G (ω + i0+, d, d) to the real frequency axis

using a Padé-algorithm (cf. chapter 2.5). It turns out that already in the most simple

approximation 1 we get a quasi-particle resonance at ω = 0. The change of the spectrum

for different values of Λ is shown in Fig. 5.3 for U = 6∆0 and β = 50/∆0.
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Figure 5.3: L = 1 dot spectra for several values of Λ at half filling and U = 6∆0 and

β = 50/∆0, obtained from a Padé-approximation to our numerical data on the imagi-

nary frequency axis. The atomic limit peaks become slightly broadened and their posi-

tion changes from 4.2∆0 to 3.9∆0. At small frequencies a central resonance with height

Adot(ω = 0) = 1/π∆0 is emerging during the fRG flow from Λ = 0 to Λ = 1.

The peaks ǫ1,2 become slightly broadened, but their positions does not change signifi-

cantly. In the end of the flow (for Λ = 1) their maxima are not located at ±U/2 = ±3∆0,

the position usually expected in the wide band limit with a purely imaginary hybridiza-

tion function ∆(ω) on the real frequency axis. However, in the present case where the

bandwidth is less than U the hybridization function ∆(ω) has a finite real part, which

renormalizes this position. The small broadening of these high-energy peaks is related

to the fact that they lie outside the bandwidth (−2∆0, 2∆0) of the bath, such that the

width is purely due to self-energy effects. During the flow, already for small values of

Λ, the low-energy peaks ǫ3,4 become broadened and a central resonance at ω = 0 with

Adot(ω = 0) = 1
π∆0

emerges. Note that at the end of the flow, for Λ = 1, there are still

remnants of the peaks ǫ3,4, which is interpreted as an artefact of the approximation.

In Fig. 5.4 we show the dot spectra for U = 6/∆0 and β = 30/∆0 calculated for L = 1,

approximation 1 and 2 and L = 3, approximation 1 in comparison with a NRG spectrum

calculated at T = 0. In the NRG spectrum the Hubbard peaks are located at ±3.9∆0,

which is comparable to the result of the fRG calculation. One can see that the position

of the Hubbard peaks moves closer to the position found in the NRG calculation when

we increase the approximation-level of the fRG flow or the size of the core. The Hubbard

peaks found in the NRG calculation are much more broader compared to the fRG calcu-
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Figure 5.4: Dot spectra for U = 6∆0 and β = 30/∆0, calculated for L = 1, approximation

1 and 2 and L = 3, approximation 1 in comparison with a NRG spectrum calculated at

T = 0 for the same semi-elliptic density of states.

lation, which is partly due to the logarithmic broadening of the conduction band in the

NRG setup. The peaks at the shoulders of the central resonance, which are interpretated

as remnants of the discrete core spectrum, are also visible in the L = 3-spectrum. For

approximation 2 of the L = 1-core they have disappeared, although this is not generic

for all parameter sets. At T = 0 one have Adot(ω = 0) = 1
π∆0

as expected from Friedel’s

sum rule (4.13). This is indeed fulfilled in approximation 1. In approximation 2 there

is a small deviation which corresponds to the small step in the Matsubara self-energy at

iω = 0. This deviation is again due to finite temperature.

5.2.1 Results for the effective mass in comparison

To investigate if the Kondo scale (4.11) is present in our approach, we calculated the

effective mass m∗ which is defined as the inverse quasi-particle weight Z.

m∗ = Z−1 = 1− dImΣdot (iω)

dω

∣
∣
∣
∣
ω=0+

. (5.7)

In the Kondo regime the quasi-particle weight Z determines the width of the Kondo

resonance and is expected to scale exponentially with the interaction strength Z ∝ TK

(cf. chapter 4.1).

In Fig. 5.5 we show the effective mass for L = 1, approximation 1 and 2 and L = 3,

approximation 1 in comparison with NRG data as function of the interaction strength
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Figure 5.5: Effective mass (β = 30, 50/∆0) for L = 1, approximation 1 and 2 and for

L = 3, approximation 1 in comparison with NRG data. The NRG data are calculated for

a bath with semi-elliptic density of states.

U . The NRG data are calculated at T = 0 for a semi-elliptic bath density of states.

While the qualitative behaviour is similar, the effective mass from the fRG calculations

is systematically too small compared with the NRG data and we can not reproduce the

exponential Kondo scale quantitatively. For interaction strengths U ∼ 8−9∆0 the Kondo

scale (4.11) becomes comparable with the temperature TK ≈ 1
β
, which we expect to be

part of the reason for the deviations from the NRG result at large values of U . Note the

slight increase of m∗ with decreasing temperature in Fig. 5.5.

Our results for the effective mass fall in the range of other fermionic fRG approaches to

the Anderson model [KHP+08, JPS10] (cf. Fig. 5.6), that are calculated for a bath in the

wide band limit. A direct comparison of the data needs to take into account the fact that,

as can be seen from the NRG data in Fig. 5.6, the effective mass ∝ T−1
k for a semielliptic

density of states with finite bandwidth is in general larger than for a bath in the wide

band limit. For a small bandwidth W ≪ U the Kondo scale is ∝ W as in Eq. (4.11).

Towards larger values of W it increases and reaches in the wide band limit W ≫ U a

constant, which is given by TK =
√

U∆0

2
exp

[

− πU
8∆0

]

[Hew93], independent of W .

The failure in reproducing the exponential Kondo scale in the effective mass precisely is

however common to all finite-frequency fRG approaches to the Anderson model. Note,

that all fRG approaches truncate the hierarchy of flow equations after the two-particle

level. Hence, we expect that this approximation is the reason for this deviation.
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Figure 5.6: Effective mass (β = 30/∆0) for L = 3, approximation 1 in comparison with

fRG data from Ref. [JPS10] and approximation 1 in Ref. [KHP+08]. As reference data

we show NRG calculations for a semielliptic density of states and in the wide band limit.

5.2.2 Results for the conductance

We furthermore calculated the linear conductance of the dot G =
∑

σ Gσ given by (we

set ~ = e2 = 1) [MW92]

Gσ =
1

2
πv2

∫

dωAd,σ (ω) ρb (ω)

(

−∂nF (ω)

∂ω

)

≃1

2
∆0

∫

dωAd,σ (ω)

(

−∂nF (ω)

∂ω

)

. (5.8)

In the second line we used that the derivative of the Fermi function is sharply peaked at

low temperature at ω = 0 so that the ω-dependence of ρb(ω) can be neglected. Especially

at zero temperature the derivative is given by a delta function and from Friedel’s sum

rule (4.13) one gets

G = ∆0Ad(0) =
sin2 (π 〈nd,σ〉)

π
(5.9)

In the Kondo regime, i.e. for gate voltages between −U
2

and U
2
, the dot is occupied by a

single electron, 〈nd,σ〉 = 1/2, leading to G = 1
π
= 2G0, which is the unitary limit value1.

The conductance is derived by an integral over the real frequency axis and at first sight

one has to perform an analytic continuation. To circumvent this, we follow an approach,

1In physical units one has G0 = e
2

h
.
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temperature.

proposed in Ref. [KMS10], which does not require an analytic continuation. In this

approach G follows from the formula

Gσ ≃ ∆0T
∑

α>0

RαIm
dGσ(iω̃α)

dω̃α

, (5.10)

where the imaginary frequencies iω̃α and the weights Rα are defined in Ref. [KMS10]. The

frequencies iω̃α differ from the original Matsubara frequencies and we determine dGσ(iω̃α)
dω̃α

from a Padé-approximation.

In Fig. 5.7 we show G as function of the gate voltage Vg for several temperatures and

U = 8∆0. At low temperatures β = 50/∆0 we get a plateau in the conductance for gate

voltages between −U
2

and U
2
, as expected from Friedel’s sum rule. For higher temperatures

the conductance at Vg = 0 decreases quadratically with the temperature.

In Fig. 5.8 the linear conductance derived in the two approximation schemes 1 and 2

is shown. In approximation 2 the linear conductance for small gate voltages is reduced

in comparison with approximation 1. We understand this again as a finite temperature

effect. In approximation 2, the Kondo peak gets narrower, i.e. the effective Kondo scale

comes out smaller. Hence, in this approximation the actual temperature β−1 is closer

to TK as in approximation 1 and the conductivity shows a stronger finite temperature

suppression.

Fig. 5.9 shows the suppression of the gate voltage at VG = 0 due to a finite magnetic
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field. As shown in Ref. [KEM06] one can extract the Kondo scale from this supression

within a frequency independent fRG scheme with frequency cutoff. Therefore one defines

the Kondo scale TK as equal to the magnetic field B1/2 that is required to suppress the

gate voltage G(VG = 0) to G0 = e2/h, which is one half of the unitary limit.

In the right part of Fig. 5.9 we show B1/2 as function of U . As shown the data for small

U can be fitted to an exponential curve of the form a exp (−b U/∆0). This behaviour

is expected in the Kondo regime. Here we find it already for these intermediate values

of U . For larger U there are systematic deviations from exponential behaviour. These

deviations begin at U ∼ 8 − 9∆0, where the Kondo scale according to this association

becomes comparable to the temperature, TK ≈ 1
β
= ∆0

30
. From our fit we get b ≈ 0.32, in

good agreement with the exact value b = π/8 ≈ 0.39 (cf. Eq. (4.11)).

5.2.3 Results for the spin suseptibility and Wilson ratio

We also calculated the static spin susceptibility, which is defined by

χs =
d (〈n↑〉 − 〈n↓〉)

dB

∣
∣
∣
∣
B=0

. (5.11)

Here 〈nσ〉 is the average occupation of electrons with spin σ, which is calculated by

〈nσ〉 =
1

2
+ 2T

∑

α>0

RαRe Gσ(iω̃α) (5.12)
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Figure 5.9: Left: Linear conductance for U = 8∆0, β = 30/∆0, calculated in approxi-

mation 1. For a finite magnetic field B = 0.05∆0 the linear conductance for small gate

voltages is reduced in comparison with zero magnetic field. Right: B1/2, i.e. the magnetic

field that is required to supress G(VG = 0) to G0 = e2/h, as function of U , β = 30/∆0,

approximation 1, together with an exponential fit curve a exp(−bU/∆0).

with the same Rα and ω̃α as in Eq. (5.10).

In Fig. 5.10 we show the spin susceptibility in comparison with NRG data. For large

values of U the spin susceptibility is expected to be inversely proportional to the Kondo

temperature χs ∼ 1/TK [Hew93]. Therefore one expects an exponential dependence on

the interaction strength. While the susceptibility definitely rises with increasing U , the

exponential behaviour is not found in our fRG approach. A part of this deviation might

again be a thermal effect, as for U & 8 − 9∆0 the Kondo temperature falls below β−1

where the calculation takes place.

In Fig. 5.11 we show the Wilson ratio, which is defined as R = π2

3
χs

γ
, whereat γ is

the linear coefficient of the specific heat C, i.e. C = γT . In the Anderson impurity

model one has γ = 2π
3

m∗

∆0
[Hew93], such that we can calculate R from our data of the

effective mass and the spin susceptibility. With the relation 1
m∗ = 4

π∆0(χs+χc)
, which follow

from the Yamada-Yosida Ward Identities [Hew93, KBC+10], we get R = 2χs

χs+χc
with the

charge susceptibility χc = limµ→0

∑

σ
d〈nσ〉
dµ

. In the Kondo regime charge fluctuations are

completely suppressed, i.e. χc = 0, which leads to R = 2. As seen in Fig. 5.11, for

U & 8∆0 the fRG data come out very close to R = 2 even though χs is too small in the

fRG. This points to advantageous cancellations of errors for this ratio in the fRG. Indeed

m∗ comes out too small as well. The slight decrease of R for U > 9∆0 might be again

due to effects of finite temperature.
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5.3 Conclusion

In this chapter we applied the fRG hybridization flow scheme to the single impurity

Anderson model with a semi-elliptic bath density of states. The results show a pronounced

even-odd effect. In the case L = 0 we were not able to describe the local Fermi liquid

properties of the Anderson model, although the divergence of the self-energy Σdot(iω)

at iω = 0 was cured by the flow. Similar results were obtained in the case L = 2. In

contrast with this, the numerical results for clusters with an odd number of sites (L = 1

and L = 3) showed that the flow equations are able to recover the Fermi liquid behaviour.

This even-odd disparity is interpreted as an effect of the total spin of the initial condition,

i.e. the isolated core. Apparently, the truncated flow scheme is not able to change the

system from a nonzero moment to a screened moment. The dependence of the quasi-

particle weight Z with increasing U is quantitatively different from NRG results and we

were not able to reproduce the correct exponential dependence. The deviations at large U

might be partly due to the finite temperature, for which our scheme is implemented. We

also derived the linear conductance as function of the gate voltage and could reproduce

the conductance plateau, which is expected in the Kondo regime from Friedel’s sum rule.

The suppression of the plateau value G(Vg = 0) by a finite magnetic field showed signs

of exponential behaviour, although a clear statement is again difficult due to the finite

temperature scale in our calculations. A similar statement holds for the spin susceptibility,

where the exponential behaviour in the Kondo regime could not be reproduced correctly.

The Wilson ratio was for large values of U approximately equal to 2, which is the expected

value in the Kondo regime. Summarizing these findings, we state that the hybridization

flow for an even number of core sites provides a qualitatively correct description of the

Kondo physics in the SIAM. Quantitatively the method cannot compete with established

solvers, but as the fRG is a versatile method, it may still be useful to explore the uses of

the proposed scheme further.



Chapter 6

Hybridization Flow and Dynamical

Mean Field Theory

In this chapter we show that the hybridization flow setup can be used as impurity solver

in the dynamical mean field theory, i.e. in DMFT(fRG). Primarily, the fRG is still a rel-

atively cheap impurity solver in terms of numerical effort, so studying its applicability in

the DMFT framework may be useful. Furthermore, the fRG is a flexible and transparent

method that nicely illustrates how non-local correlations emerge from local interactions,

so using the fRG to build in correlations beyond the local physics may be rewarding. If

one wants to pursue this line, one should check how well the fRG works for small cores.

We will see, that in DMFT(fRG) the hallmarks of the Mott transition can be reproduced,

but also notice some technical complications, that may require further improvements of

the fRG scheme in order for the method to become truly competitive with other estab-

lished solvers. But as the results are qualitatively reasonable and the numerical effort

is rather manageable, we can go to a second field of interest, the frequency structure

of the local and non-local effective interaction vertices, which explicitly appear in our

DMFT(fRG) scheme. As already mentioned these quantities play an important role in

non-local extensions of the single-site DMFT setup. We find that the effective vertices

exhibit “boson-like” frequency features, but also other “loop-coupling” features, that are

not easily captured by simple parameterizations of the frequency dependence in terms

of frequency transfers or the total frequency. Here, our findings confirm results by the

Vienna group [RVT12] for the local vertex, obtained with DMFT using exact diagonal-

ization (ED) as impurity solver, and expand them to the non-local situation.

Parts of this chapter are already presented in

Michael Kinza and Carsten Honerkamp. Two-particle correlations in a functional renor-

malization group scheme using a dynamical mean-field theory approach. Phys. Rev. B,

88:195136, Nov 2013
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6.1 The Hubbard model

The one-band Hubbard model [Hub63, Gut63, Kan63] is a conceptually simple, but nev-

ertheless highly nontrivial model to describe correlated lattice fermions. At half filling it

is given by

Ĥ = Ĥt + ĤU , (6.1)

Ĥt =
∑

i,j,σ

tijc
†
i,σcj,σ (6.2)

ĤU = U
∑

i

(n̂i,↑ − 1/2) (n̂i,↓ − 1/2) , (6.3)

where c†i,σ(ci,σ) create (annihilate) electrons with spin σ on site i and n̂i,σ = c†i,σci,σ. tij
is the hopping amplitude between lattice sites i and j and U > 0 is the onsite Coulomb

repulsion. If the model is defined on a bipartite lattice, the interaction part of the Hamil-

tonian (6.3) is particle-hole symmetric.

The Hubbard model describes a complex many body problem, which except for dimension

D = 1 [LW68] cannot be solved analytically. The physical behaviour of this model is

determined by the competition between the kinetic energy Ĥt and the local interaction-

energy ĤU . Due to the kinetic energy electrons hop from one lattice site to the next,

which leads to doubly occupied sites. These have to be paid by an onsite repulsion energy

U . For a better understanding of the interplay between these two effects, it is instructive

to have a look at two limiting cases:

For U = 0 the electrons behave as delocalized Bloch electrons with band dispersion

ǫ~k = 1
N

∑

i,j ei~k(~Ri−~Rj)tij. If we assume that the model is defined on a two-dimensional

squarelattice and that tij = −t for nearest neighbours 〈i, j〉 and tij = 0 else, the band

dispersion is given by

ǫ~k = −2t [cos(kx) + cos(ky)] (6.4)

with bandwidth W = 8t. At half filling the system is metallic. At small U ≪ t the system

remains in a Fermi liquid state with a coherent quasi-particle weight (cf. upper part of

Fig. 6.1.a).

For a large local repulsion U ≫ t doubly occupied sites become energetically costly, and

hence the system will minimize its energy by localizing the electrons leading to one spin 1/2

degree of freedom on each lattice site. Due to the large Coulomb-repulsion the mobility of

the electrons is thereby strongly supressed resulting in a correlated Mott Insulator state.

The spectral density splits into a lower (LHB) and an upper Hubbard band (UHB) (cf.

lower part of Fig. 6.1.a), that are separated by the energy scale U .

Fluctuations of the localized spins are well described by the antiferromagnetic spin 1/2

Heisenberg model with exchange energy J ∝ t2/U [AS06], which follows as effective model
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Figure 6.1: Schematic illustration of the Mott metal-insulator transition in the infinite-

dimensional Hubbard model. (a.) For U ≪ t and for suppressed magnetic order the

system is metallic with a finite quasi-particle weight. In the case U ≫ t the spectrum splits

into a lower (LHB) and an upper Hubbard band (UHB), separated by a gap proportional

to the interaction energy U . The system is in a correlated Mott insulator state. (b.)

Phase-diagram of the Mott metal-insulator transition in the U -T plane. Below a critical

end point Tc one finds a coexistence region Uc1(T ) < U < Uc2(T ) where metallic and

insulating solutions coexist. At Uc(T ) a first order phase transition occurs.

from the Hubbard model in this limit. On bipartite lattices the Heisenberg model shows

long-range antiferromagnetic order with finite Tc for D > 2 [DLS78, KLS88] and with

Tc = 0 in D = 2 [Hoh67, MW66].

In between these two limiting cases one finds a Mott metal-insulator transition (MIT)

with critical interaction strength Uc ∼ W [Mot68, Geb97]. In the transition region one

has 〈Ĥt〉 ≈ 〈ĤU〉, and to find reliable, controlled approximation schemes, which can de-

scribe this transition, is therefore very challenging. Early attempts use a Green’s function

decoupling scheme [Hub63, Hub64], which can describe the splitting into a lower and an

upper Hubbard band in the insulating region, but fails in describing the low energy quasi-

particle behaviour in the metallic phase. On the contrary, the latter is well described

by the Gutzwiller-Brinkman-Rice approach [Gut63, Gut65, BR70] without reproducing

the lower and upper Hubbard bands. A numerically controlled access to the Mott MIT,

which bases on the limit of infinite dimensions, and a quantitative theory of models and

materials near or in the Mott state can be given by the various forms of the dynamical

mean field theory (DMFT) [GKKR96, PJF95, KV04]. A detailed introduction into this

method can be found in the next section.

In Fig. 6.1.b we show the DMFT phase-diagram of the Mott transition in the infinite-

dimensional Hubbard model (in the paramagnetic case, i.e. for suppressed magnetic

order). Below a critical temperature Tc one finds a coexistence region Uc1(T ) < U <
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Uc2(T ), where the DMFT equations allow for both, a metallic and an insulating solution.

The width of the quasi-particle in the metallic solution ceases to exist at the line Uc2(T ),

while the insulating gap vanishes at Uc1(T ). The first-order phase transition occurs at the

line Uc(T ), where the free energies of both phases are equal. At the critical end points

Uc(0) and Uc(Tc) the phase transition is second order.

6.2 Dynamical Mean Field Theory

The theoretical description of classical and quantum mechanical systems can be simplified,

if one considers the limit of high spatial dimension or high coordination number respec-

tively. In this limit mean field theories become exact, as for example the Weiss mean

field theory for the classical Ising model, in which a single localized spin is only influenced

by the other spins via a static magnetization [Bax82]. To describe correlation effects in

quantum mechanical fermion systems such a static mean field approach (like for example

the Hartree-Fock theory) is not sufficient, and one has to apply a dynamical mean field

theory. Here, a local problem for a subset of the full lattice, augmented by a dynamical

Weiss field that represents the influence of the environment, is solved exactly by means

of an impurity solver. Then the solution of this local problem is proliferated to the whole

lattice, from which a new Weiss field is determined and the local problem is solved again.

This procedure is iterated until the Weiss field and the local properties converge. In the

following we deduce the DMFT selfconsistency equations for the single-band Hubbard

model.

6.2.1 Single-site DMFT

We study the Hubbard model (6.1) on a Bethe lattice with infinite connectivity z → ∞.

To make sure that it is physically meaningful we have to scale the hopping parameter t

like t∗√
z

with constant t∗ [MV89]. The local density of states (DOS) is then semi-elliptic

[Eco06]

DOS (ω) =
1

2πt2

√
4t2 − ω2 Θ(2t− |ω|) (6.5)

with bandwidth W = 4t 1. The self-energy becomes a purely local quantity i.e. Σij (iω) =

Σi (iω) δij and because of translational invariance it is site-independent Σi (iω) = Σ (iω).

The local lattice Green’s function is then given by

G(iω) =
∫

dǫ
DOS(ǫ)

iω − Σ(iω)− ǫ
= G0(iω − Σ(iω)) (6.6)

with the free local lattice Green’s function G0.

1Here and in the following we denote t∗ by t.
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The local self-energy can be written as a functional of the local lattice Green’s function

Σ = S [G] in terms of skeleton diagrams [GK92, Jar92]. This can be used to map the

Hubbard model to a single impurity Anderson model (4.1), which describes a dot level

with onsite energy ǫd and local interaction U that is coupled by a hybridization-term V~k
to uncorrelated bath levels with energy ǫ~k.

The local dot Green’s function is given by

Gdot(iω) =
1

iω − ǫd − Σdot(iω)−∆(iω)
(6.7)

with the hybridization function

∆(iω) =
∑

~k

|V~k|2
iω − ǫ~k

. (6.8)

The self-energy is by construction local on the dot level and it has the same functional

dependence on the dot Green’s function as in the Hubbard model Σdot = S [Gdot]. If we

now choose the parameters V~k and ǫ~k such that

∆(iω) = iω − ǫd − Σdot(iω)− G(iω)−1 (6.9)

holds, we arrive at

Σdot(iω) = Σ(iω). (6.10)

With Eqs.(6.6), (6.9) and (6.10) we can express ∆(iω) by the free hybridization function

∆0(iω) = iω − ǫd − G0(iω)
−1 via

∆(iω) = ∆0(iω − Σ(iω)). (6.11)

The Eqs. (6.6), (6.9) and (6.10) form a set of self-consistency equations for the local

self-energy Σ(iω) (cf. Fig. 6.2). To solve the SIAM a large class of impurity solvers

is available, like for instance the numerical renormalization group [BHP98, Bul99], the

quantum Monte Carlo [Jar92, RZK92] or the exact diagonalization method [CK94, LI12].

6.2.2 Hybridization flow scheme as impurity solver

In the following we use the hybridization flow fRG scheme as impurity solver in the

DMFT. In order to apply this scheme we have to map the bath of the Anderson model

to a semi-infinite tight binding chain in which its first site is connected to the impurity

site (cf. chapter 4.1.1).

ĤAnd =ǫd
∑

σ

d†σdσ + U
∑

σ

(n̂d,↑ − 1/2) (n̂d,↓ − 1/2)− v
∑

σ

(
d†σb1,σ +H.c.

)

−
∞∑

i=1

∑

σ

ti

(

b†i,σbi+1,σ +H.c.
)

+
∞∑

i=1

∑

σ

ǫib
†
i,σbi,σ (6.12)
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Figure 6.2: The picture illustrates the DMFT self-consistency cycle that involves the Eqs.

(6.6), (6.9) and (6.10)

For a semi-elliptic local DOS (6.5) we have to choose ǫi = 0 and ti = t for all i. Then the

free hybridization function has the form

∆0(iω) =v
2gt (iω)

with gt (iω) =
1

2t2

(

iω − isgn(ω)
√

4t2 − (iω)2
)

. (6.13)

If we now additionally choose ǫd = 0 and v = t the free local dot Green’s function G0 is

given by gt and the local DOS(ω) = − 1
π
Im G0 (iω → ω + i0+) is semi-elliptic (cf. chapter

4.1.2).

Insulating phase

We saw in chapter 5.1 that our fRG scheme is not able to reproduce the Fermi liquid

properties of the SIAM, if the core consists only in the impurity site (case L = 0). This

choice of the core is therefore not suitable to describe the metallic phase of the Hubbard

model, which can be characterized by a finite quasi-particle weight Z. However one can

still hope to arrive at a reasonable description of the insulating phase even with this

simplest choice for the core. Below we see that this indeed works.

The full hybridization function ∆(iω) is given by Eq. (6.11). It corresponds to a semi-

infinite tight binding chain with a local term Σ(iω) on each lattice site (cf. Fig. 6.3).

To get an estimate for which interactions U this approach delivers a reasonable description

of an insulating phase, we show in Fig. 6.5 the gap ∆ as function of U for β = 30/t. The
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Figure 6.3: Anderson model for the case L = 0. The hybridization function ∆(iω) =

∆0(iω−Σ(iω)) corresponds to a semi-infinite tight binding chain with a local term Σ(iω)

on each lattice site.

gap-sizes ∆ are obtained from the spectral density calculated in approximation 1 of the

fRG flow equations. The gap vanishes at Uc ≈ 3.8t.

Metallic phase

In order to describe the metallic phase of the Hubbard model, the L = 1-core, containing

the correlated site and one bath site is an appropriate starting point, as this core also

successfully reproduced the Kondo central peak in the SIAM setup (cf. chapter 5.2). In

the spectrum of the decoupled core one obtains two peaks near zero energy which leads

to a continuous Matsubara self-energy at iω = 0 resulting with Eq. (5.7) in a finite

quasi-particle weight Z.

The full hybridization function is again given by ∆(iω) = ∆0(iω − Σ(iω)), but oppo-

site to the L = 0-case a local self-energy term on the first bath site, which is part of

the L = 1-core, is forbidden, because the exact diagonalization of the core requires a

frequency independent core-Hamiltonian. To circumvent this we approximate Σ(iω) for

small frequencies as Σ(iω) ≈ (1− Z−1) iω, with the quasi-particle weight Z. The full

hybridization function ∆(iω) is then given by

∆(iω) = ∆0(iω − Σ(iω)) ≈ ∆0(iω/Z)

=
v2

2t2




iω

Z
− isgn(ω)

√

4t2 −
(
iω

Z

)2




=
(
√
Zv)2

2(Zt)2

(

iω − isgn(ω)
√

4(Zt)2 − (iω)2
)

= (
√
Zv)2gZt(iω) (6.14)
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Figure 6.4: The Anderson model for the case L = 1. It corresponds to a semi-infinite

tight binding chain with hopping Zt and impurity-bath coupling
√
Zt.

It corresponds to a semi-infinite tight binding chain with hopping Zt and impurity-bath

coupling
√
Zv (cf. Fig. 6.4). In each selfconsistency-cycle of the DMFT equations

one calculates the quasi-particle weight Z from the local self-energy, which defines the

new hopping-parameters in the next cycle. For Λ = 0, i.e. without solving the fRG

flow equations, this scheme is equivalent to the two-site DMFT scheme1, introduced in

Ref. [Pot01]. This two-site DMFT scheme yields a satisfactory description of the Mott

transition and the Fermi liquid state in the single-band Hubbard model at T = 0. The

quasi-particle weight is predicted as Z = 1− U2/U2
c with Uc = 1.5W , which is very close

to the result of the numerical renormalization group [Bul99]. For values of U larger than

Uc this scheme reduces to the Hubbard-I-approximation [Hub63]. Our extended scheme

is implemented at finite temperatures. In Fig. 6.5 we show the quasi-particle weight

Z as function of U at β = 30/t and β = 50/t (calculated in approximation 1). These

temperatures are still lower than the critical end point of the MIT phase diagram. The

quasi-particle weight Z vanishes discontinuous at certain values Uc(T ), which marks the

breakdown of the metallic state. For larger values of U the quasi-particle weight decreases

in the DMFT cycle until a linearization of the self-energy is no more possible. Compared

to the literature [Blu03], the obtained values Uc(T ) come out too small. Note that the

approximation for the hybridization function (6.14) becomes very bad at large frequencies

especially for small quasi-particle weights near the phase transition. The obtained Uc is

larger than the interaction strength, where the gap ∆ vanishes (cf. Fig. 6.5). Although

one expects a hysteresis region at the phase transition and the two values are indeed

different, a direct comparison is of course problematic due to the distinct approaches used

to describe the insulating and the metallic phase.

1Not to be confused with the two-site cluster DMFT.
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Figure 6.5: The plot shows the gap-size ∆ in the insulating phase and the quasi-particle

weight Z in the metallic phase as function of the interaction-strength U at several tem-

peratures, calculated in single-site DMFT(fRG). The gap-sizes are estimated from the

spectral density calculated in approximation 1 of the fRG flow equations. Compared to

the literature [Blu03] the quasi-particle weight Z goes down too slowly, which is consistent

with the behavior found in the Anderson Impurity case.

Note that unlike in the Anderson model, in the DMFT solution of the Hubbard model

the quasi-particle weight Z is different from the effective Kondo energy scale, where

the crossover to the strong coupling fix point in the renormalization group flow occurs

[HPT13]. We expect this to be the reason, why we get a reasonable description of the

metallic state in the Hubbard model, although the Kondo energy scale is not accurately

resolved by the fRG hybridization flow setup (cf. chapter 5.2.1). As shown in Ref.

[HPT13], the effective Kondo scale is connected with another energy scale in the Hubbard

model, where kinks in the energy-momentum distribution [BKH+07] and in the specific

heat [TCCH09] occur. This second energy scale is probably absent in our fRG approach.

6.2.3 Two-site cluster DMFT

Although the DMFT is only exact in the limit of infinite dimensions, it turnes out to be

an extremely useful approximation scheme for systems with finite dimension. In these

systems non-local correlation effects like e.g. antiferromagnetic fluctuations or supercon-

ducting d-wave pairing play an important role and several extensions of the simple DMFT
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Figure 6.6: Tiling of the square lattice with two-site clusters. Each lattice site can be

uniquely described by a cluster vector and the site within the cluster ~Rj. Note that other

periodic arrangements of the two-site clusters, corresponding to a different choice of the

superlattice, would be also possible. However, this would only lead to another equivalent

description of our problem and with our choice the quantities in the reciprocal superlattice

acquire the most compact form.

framework exist that capture these effects. Important examples are perturbational ex-

pansions arround the local DMFT solution [SK04, TKH07, HKT08, RKL08, RKLG09] or

numerical cluster DMFT schemes, where short-ranged correlations within a finite cluster

are included [LK00, KSPB01, MJPH05].

In the following we extend our setup to a cluster DMFT scheme for the Hubbard model

on a two-dimensional squarelattice with tight binding dispersion (6.4). As shown in Fig.

6.6 we divide the lattice into plaquettes with L = 2 sites. This breaks the translational

invariance of the original lattice problem and introduces a superlattice Γ of clusters, whose

sites form a subset of the original lattice γ. Each lattice site of the original lattice ~ri can

then be uniquely described by a cluster-vector ~rm and the site within the cluster ~Rj as

~ri = ~rm + ~Rj
1.

The Brillouin zone of the original lattice (BZγ) contains L points of the reciprocal su-

perlattice Γ∗. For the two-site clusters these are ~K1 = (0, 0) and ~K2 = (π, π). Any

wavevector ~k ∈ BZγ can be uniquely written as ~k = ~K + ~̃k, with ~K ∈ { ~K1, ~K2} and ~̃k

1Here we follow the notation of chapter 8 and 12 in [AM12].
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Figure 6.7: Reciprocal lattice γ∗ with the first Brillouin zone BZγ and reciprocal super-

lattice Γ∗ with Brillouin zone BZΓ. Any wavevector ~k ∈ BZγ can be uniquely written as
~k = ~K + ~̃k with ~̃k ∈ BZΓ and ~K ∈ BZγ ∧ ∈ Γ∗.

belonging to the Brillouin zone of the superlattice (BZΓ) (cf. Fig. 6.7).

The hopping amplitude between two sites of the same cluster ~Ra and ~Rb can be obtained

from the dispersion relation by the Fourier transformation

tab =
1

N

∑

~k

ei
~k(~Ra−~Rb)ǫ~k

=
1

N

∑

~K,
~̃
k

ei(
~K+

~̃
k)(~Ra−~Rb)ǫ ~K+

~̃
k

=
L

N

∑

~̃
k

ei
~̃
k(~Ra−~Rb)

1

L

∑

~K

ei
~K(~Ra−~Rb)ǫ ~K+

~̃
k

︸ ︷︷ ︸

t̂ab(~̃k)

. (6.15)

t̂(~̃k) is the partial Fourier transformation of the band dispersion, i.e. a matrix in the

cluster space, which depends on the wavevector ~̃k of the reciprocal superlattice. For the

tight binding dispersion (6.4) it is given by

t̂(~̃k) =

[

0 e−ik̃yǫ~̃
k

eik̃yǫ~̃
k

0

]

. (6.16)

The main approximation of cluster DMFT is now the assumption that the self-energy is

local on each cluster, i.e. independent of ~̃k. Then we obtain the ~̃k-dependent Green’s

function as

Ĝ(iω, ~̃k) =
[

iω1 − t̂(~̃k)− Σ̂(iω)
]−1

. (6.17)
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A partial Fourier transform back to real space leads to

Ĝ (iω) =
L

N

∑

~̃
k

Ĝ(iω, ~̃k) = Ĝ0

(

iω1 − Σ̂(iω)
)

. (6.18)

This can be interpretated as the local Green’s function of a two-impurity Anderson model

with hybridization function

∆̂(iω) = iω1 − t̂− Σ̂(iω)− Ĝ(iω)−1 = ∆̂0

(

iω1 − Σ̂(iω)
)

. (6.19)

The free hybridization function ∆̂0 is given by

∆̂0(iω) = iω1 − t̂− Ĝ0(iω)
−1. (6.20)

t̂ is the cluster hopping matrix defined by

t̂ =

[

0 −t
−t 0

]

. (6.21)

To apply our fRG scheme the two-impurity Anderson model must have the form of a two-

chain ladder as shown in Fig. D.1 with Hamiltonian (D.1). To determine the parameters

of the two-chain ladder we fit the eigenvalues of the free hybridization function, ∆(1)
0 (iω)

and ∆
(2)
0 (iω), to a discretized hybridization function of the form

∆
N,(i)
0 (iω) =

N∑

i=1

|vi|2
iω − ǫi

, (6.22)

where the fit-parameters vi and ǫi are calculated by a conjugate gradient minimization

[GKKR96] of the distance function

d =
1

ωmax

∑

ω

|∆(i)
0 (iω)−∆

N,(i)
0 (iω)|2. (6.23)

Note that the fit-parameters for the two eigenvalues are not independent because it is

∆
(2)
0 (iω) = −∆

(1)
0 (iω)∗, which is a consequence of particle-hole symmetry and can be

deduced from Eq. (2.58). The finite bath can then be transformed to a tridiagonal form

by the Lanczos algorithm, which determines the hopping-parameters of the two-chain

ladder (cf. chapter 4.1.1).

6.3 Results

6.3.1 Single-site DMFT

First let us discuss the results for using the hybridization flow as DMFT solver for the

case of single-site DMFT, embedded in a Bethe lattice. We show that the approach can

reasonably describe both the insulating as well as the metallic phase, and give results for

the effective interaction vertices in these phases.
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Figure 6.8: Spectral density in the insulating phase for U = 4.8t, 5t, 5.2t, 5.6t at β =

30/t. At ω = 0 a Mott-gap opens with an average center-to-center separation of the two

Hubbard bands of ∼ U .

Insulating phase

From our numerical data for the self-energy on the Matsubara frequency axis we obtain

the spectral density A(ω) = − 1
π
Im G(ω+ i0+) by an analytical continuation using a Padé-

algorithm. The spectral density for several values of U/t is shown in Fig. 6.8. One obtains

an opening of a Mott-gap arround ω = 0 with an average center-to-center separation of

the two Hubbard bands of ∼ U . The width of the Hubbard bands for these moderate

U -values is only a little smaller than the band width of the non-interacting problem,

W = 4t. The rich multi-peak structure of the Hubbard bands (with a variable number

of maxima) is propably an artifact of our approximation, most likely due to the discrete

core used in the initial condition of the flow equation.

Next let us discuss the frequency structure of the local, 1PI interaction vertex at the

converged DMFT solution as it comes out of the fRG flow that embeds the core into the

lattice. In Fig. 6.9 we show the density part of this 1PI local vertex, |γd(iω1, iω2|iω1 −
iν, iω2+iν)−U/2|, and the magnetic part, |γm(iω1, iω2|iω1−iν, iω2+iν)+U/2|, for U = 5t

and β = 30/t as functions of the incoming frequencies ω1 (x-axis) and ω2 (y-axis). The

decomposition of the general vertex into density and magnetic part is described in chapter

2.3.4, in Eqs. (2.55) and (2.56). The outgoing frequencies are parametrized by the bosonic

Matsubara frequency ν and we show the two cases ν = 0 and ν = 40π
β
. To visualize the
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Figure 6.9: Absolute values of the vertex functions for U = 5t, β = 30/t. Density

part |γd(iω1, iω2|iω1 − iν) − U/2| (left) and magnetic part |γm(iω1, iω2|iω1 − iν) + U/2|
(right). Upper panel: ν = 0, Lower panel: ν = 40π

β
. The frequencies are signed by their

Matsubara index.

frequency structure better we subtracted the frequency independent term U/2 (−U/2)
from the density (magnetic) part. Because of particle-hole symmetry the vertices are

purely real (cf. Eq. (2.59)). As explained in appendix C they are mirror-symmetric with

respect to the lines A: ω2 = ω1 − ν and B: ω2 = −ω1.

Note that the connected part of the dynamic charge and spin susceptibilities χcharge/spin,c(iν)

is obtained from the connected two-particle Green’s function Gc,(2)
d/m (iω1, iω2|iω1− iν, iω2+

iν) by summations with respect to ω1 and ω2 (cf. appendix A, Eqs. (A.3) and (A.8)).

Gc,(2)
d/m and γd/m are connected by Eq. (2.37), from which follows that the frequency struc-

ture of γd/m determines the local charge and spin response of the system.

The main features of the obtained frequency structure correspond to those that are already

visible in the single-site Hubbard vertex (B.7) and (B.8) at half filling that describes the

response of a free spin 1/2. This is of course expected, because the insulating phase in the

single-site DMFT is given by a paramagnetic insulator with local uncoupled spin degrees

of freedom.

In all vertices of Fig. 6.9 one recognizes a sharply peaked diagonal structure for ω2 =
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ω1 − ν. In the single-site Hubbard vertex (B.7) and (B.8) this corresponds to the term

proportional to δω2,ω1′
. In the DMFT vertex it remains very sharp and no broadening is

observed. As discussed in Ref. [RVT12] it diverges in the Mott phase for T → 0, which

explains the strong enhancement of this structure.

The first δ-term in the single-site Hubbard vertex (B.7) and (B.8), which is proportional

to δω1,−ω2 , would lead to an additional peak structure on the secondary diagonal in the

ω1, ω2-plane. But for repulsive interactions U > 0 it is exponentially suppressed already

for the single-site and also in the DMFT vertex no such structure is obtained.

The last term in the single-site Hubbard vertex (B.7) and (B.8) proportional to δω1,ω1′

only gives a contribution for ν = 0. In the density part this contribution is not visible,

because this term is again exponentially suppressed. In the magnetic part it is finite and

occurs in the DMFT vertex as large difference in the offset between ν = 0 and ν 6= 0

(right column of Fig. 6.9). This difference leads to a term ∝ δν,0 in the spin-susceptibility,

which will be discussed further below.

Furthermore there is a +-shaped cross structure in the DMFT vertex, that is centered

at (ω1 = 0, ω2 = 0) (for ν = 0). At nonzero ν = 40π
β

four of those structures can be

found, centered at (0, 0), (−ν, 0), (−ν, ν) and (0, ν). In the local Hubbard vertex these

correspond to the terms proportional to U3 and U5.

Summarizing these observations we can state that the 1PI interaction vertex is by no

means a simple object. At least for this insulating regime it appears difficult to parametrize

the vertex in a simple way. In particular, the cross structures indicate that a parametriza-

tion in terms of bosonic transfer frequencies does not capture the vertex in all aspects. In

order to see that these vertices make physical sense, we now compute the local dynamical

spin susceptibility from the 1PI vertex, by Eq. (A.8). Due to our finite frequency patch-

ing (we included 100 positive Matsubara frequencies at β = 30/t) our results become

inaccurate especially for large frequencies because of the different speed of convergence

of the connected and the disconnected part of the susceptibility. Nevertheless we obtain

reasonable results by an analytical continuation of our data at least at low frequencies.

In Fig .6.10 we show the real part of the spin susceptibility on the Matsubara axis (the

imaginary part vanishes due to particle-hole symmetry). Beside a continuous frequency

dependence at nonzero frequencies we obtain an additional term proportional to δν,0,

which is characteristic for a free spin-degree of freedom. This feature is already visible

in the spin susceptibility of the local Hubbard model (B.14). It does not occur in the

imaginary part of the spin susceptibility on the real frequency axis, because this vanishes

at ω = 0 due to Im χspin(iω) = −Im χspin(−iω). To obtain stable Padé-results from our

data was only possible for a few set of parameters. This showed a broad spectrum of spin

excitations with an onset of twice the single-particle gap in agreement with Ref. [RU09]

or the data shown in Fig. 6.8. Note that in this single-site DMFT approach non-local

collective spin excitations that should appear below the particle-hole continuum are not
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Figure 6.10: Real part of the Matsubara local spin susceptibility in the insulating regime

of single-site DMFT(fRG) for U = 4.8t, 5t, 5.2t, 5.6t, 6t at β = 30/t.

included.

Metallic phase

Next let us explore the results of single-site DMFT(fRG) for the metallic regime of the

Bethe lattice Hubbard model, using the scheme presented in Subsection 6.2.2. In Fig.

6.11 we show the spectral density for U = 1t, 2t, 3t at β = 30/t. In all cases we get only

stable Padé-results for frequencies |ω| < 2t. The spectral weight at ω = 0 is pinned to

the noninteracting value A(ω = 0) = DOS(ω = 0) = 1
πt

, which is for T = 0 expected

from Luttinger’s theorem [MH89a, MH89b]. Here we find it also for nonzero temperature

values. The shoulders at the side of the quasi-particle are located near the position of the

low energy peaks at energies ±1
4

(√

U2 + 64z(U)v2 −
√

U2 + 16z(U)v2
)

in the spectrum

of the L = 1-core and remain as artifacts in the DMFT spectra (cf. the discussion in

chapter 5.2).

In Fig. 6.12 the density part γd(iω1, iω2|iω1 − iν, iω2 + iν)− U/2 and the magnetic part

γm(iω1, iω2|iω1 − iν, iω2 + iν) + U/2 of the 1PI vertex function for U = 2t and β = 30/t

is shown. Again, the vertices are purely real due to particle-hole symmetry.

The main features of the frequency structure described above for the insulating phase are

also visible in the metallic phase, but there are also certain differences. It can be clearly

seen that now the vertices are continuos in the whole frequency plane and no sharp δ-like
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Figure 6.11: Spectral density for U = 1t, 2t, 3t at β = 30/t. We get only stable Padé-

results for |ω| < 2. The kinks at the side of the quasi-particle peaks are located near the

position of the low-energy peaks in the spectrum of the L = 1-core and remain as artifacts

in the DMFT spectra.

features or singularities, as in the insulating phase, occur.

On the main diagonal at ω2 = ω1 − ν one observes again a pronounced structure, which

is much more broadened compared to the insulating phase. In addition there is a similar

structure on the secondary diagonal at ω1 = −ω2, which was absent in the insulating

phase. As discussed in Ref. [RVT12] these features stem diagrammatically from particle-

hole and particle-particle scattering processes respectively. Both are already visible in the

vertices of the L = 1-core (cf. Fig. 6.13) and become only more pronounced in the fRG

flow.

There is also a +-shaped structure at the same position as in the insulating phase. As

seen in the lower panel of Fig. 6.12 this structure evolves into a band with width |ν|
for ν = 40π

β
. In perturbation theory these structures correspond to third-order diagrams

[RVT12], which involve mixing of particle-particle and particle-hole bubbles. No such

structures occur in the vertices of the L = 1-core (Fig. 6.13). This means that they are

generated entirely in the fRG flow that accomplishes the embedding into the lattice.

We compared our vertex data with DMFT(ED) vertices, calculated by the Vienna group

[RVT12] for the same set of parameters (cf. Fig. 6.14). All described features are also

visible in the frequency structure of the DMFT(ED) vertices and even their relative size

and sign are qualitatively reproduced in our scheme. Quantitatively there are differences.
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Figure 6.12: Vertex functions for U = 2t, β = 30/t. Density part γd(iω1, iω2|iω1−iν)−U/2
(left) and magnetic part γm(iω1, iω2|iω1 − iν) + U/2 (right). Upper panel: ν = 0, Lower

panel: ν = 40π
β
. The frequencies are signed by their Matsubara index.

For example the vertical structure at ω2 = ω1−ν is broadened and its absolute size comes

out smaller in our scheme.

Summarizing the description of the single-site vertices, we can state that both in insulating

as well as in the metallic state, the interaction vertices exhibit a lot of structure. The

bosonic (diagonal) features could be captured by simpler parametrizations using functions

depending on certain transfer frequencies only (cf. Ref. [KHP+08]), but other features

like the +-structures would not be captured by that. In Ref. [RVT12] the decomposition

of the 1PI vertex into two-particle irreducible (2PI) vertices and the fully irreducible

vertex is discussed. We have reproduced this reasoning for some examples. In the 2PI

vertices, certain bosonic features are removed, but other bosonic features due to the

channel coupling remain, e.g. in the particle-particle 2PI vertices one still sees sharp

features for specific frequency transfers that originate from particle-hole insertions. The

fully irreducible vertex has a nontrivial frequency structure as well [RVT12, SRG+13].



6.3. RESULTS 71

−30 −20 −10 0 10 20 30 40

−30

−20

−10

0

10

20

30

40

ω
1

ω
2

 

 

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−30 −20 −10 0 10 20 30 40

−30

−20

−10

0

10

20

30

40

ω
1

ω
2

 

 

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Figure 6.13: Vertex functions of the L = 0-core for U = 2t, β = 30/t. Density part

γd(iω1, iω2|iω1)− U/2 (left) and magnetic part γm(iω1, iω2|iω1) + U/2 (right).
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Figure 6.14: Vertex functions from DMFT(ED) for U = 2t, β = 30/t, calculated by

the Vienna group [RVT12]. Density part γd(iω1, iω2|iω1)− U/2 (left) and magnetic part

γm(iω1, iω2|iω1) + U/2 (right).

6.3.2 Two-site cluster DMFT

In Fig. 6.15 we show the local spectral density A(ω) = − 1
π
Im Gii(ω+ i0+) for U = 4t and

U = 10t at β = 30/t. Unlike for the single-site DMFT(fRG) scheme, using the two-site

cluster as core, we can describe metallic and insulating behaviour with the same fRG

scheme, without having to parametrize the self-energy by a Z-factor. For U = 10t we find

an insulating spectrum with two Hubbard bands at ω = ±5t separated by a gap. In the

metallic spectrum for U = 4t these Hubbard bands are still visible as weakly pronounced

shoulders at ω = ±2t. The sharp peak at ω = 0 is due to the van Hove singularity in

the free density of states of the two-dimensional square lattice. Hence the single-particle

spectra are qualitatively correct and show the expected energy scales. This gives us a

robust starting point for studying the 1PI interaction vertex for the two-site core, now

including its non-local part.



72CHAPTER 6. HYBRIDIZATION FLOW AND DYNAMICAL MEAN FIELD THEORY

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
ω / t

0

0.05

0.1

0.15

0.2

0.25

A
(ω

) 
t

U = 4 t, β = 30 / t
U = 10 t, β = 30 / t

Figure 6.15: Local single-particle spectral density A(ω) = − 1
π
Im Gii(ω + i0+) for U = 4t

and U = 10t at β = 30/t, obtained by two-site cluster DMFT(fRG).

As for the single-site DMFT, we discuss the frequency structure of the 1PI vertex functions

for the insulating and the metallic phase in terms of the density and magnetic parts. Note

that in units of the bandwidth W , the onsite interaction U is in both cases the same as in

the data shown for the single-site DMFT. Therefore, the vertices can be directly compared

to each other on the energy axis1. Opposite to the single-site DMFT, the two-site cluster

DMFT includes antiferromagnetic fluctuations between neighbored sites. These should

characterized by the energy scale J that is for large U given by J ∼ 4 t2

U
.

By the Fourier transformation U ~Ki, ~Rj
= 1√

2
exp(i ~Ki

~Rj) we transform the vertices to cluster

momentum space with the cluster momenta ~K1 = (0, 0) and ~K2 = (π, π). ~R1 = (0, 0) and
~R2 = (0, 1) are shown in Fig. 6.6. Due to momentum conservation the only non-negative

contributions are given by

Γd/m( ~K1, iω1; ~K1, iω2| ~K1, iω1′ ; ~K1, iω2′) ≡ Γ1111
d/m(iω1; iω2|iω1′ ; iω2′),

Γd/m( ~K1, iω1; ~K2, iω2| ~K1, iω1′ ; ~K2, iω2′) ≡ Γ1212
d/m(iω1; iω2|iω1′ ; iω2′),

Γd/m( ~K1, iω1; ~K2, iω2| ~K2, iω1′ ; ~K1, iω2′) ≡ Γ1221
d/m(iω1; iω2|iω1′ ; iω2′),

Γd/m( ~K1, iω1; ~K1, iω2| ~K2, iω1′ ; ~K2, iω2′) ≡ Γ1122
d/m(iω1; iω2|iω1′ ; iω2′)

and the same quantities with ~K1 ↔ ~K2 respectively. Due to particle-hole symmetry one

1To be more precise, one should compare the ratio U

σ
, where σ is the standard deviation of the

noninteracting density of states. Anyhow, one has σ = t for the Bethe lattice and σ = 2t for the

two-dimensional square lattice, so that both criteria are equivalent in our case.
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Table 6.1: In the ω1 − ω2-plane there are two symmetry axes: (A) at ω2 = ω1 − ν and

(B) at ω1 = −ω2 with the corresponding mirror operators MA and MB respectively. In

the table we show the transformation behaviour of Γ#1#2#3#4

d/m (iω1; iω2|iω1 − iν; iω2 + iν)

under MA and MB.
MA MB

Γ1111
d/m Γ1111

d/m

(

Γ1111
d/m

)∗

Γ1212
d/m

(

Γ1212
d/m

)∗
Γ1212
d/m

Γ1221
d/m Γ1221

d/m Γ1221
d/m

Γ1122
d/m

(

Γ1122
d/m

)∗ (

Γ1122
d/m

)∗

has Γ2222
d/m =

(

Γ1111
d/m

)∗
, Γ2121

d/m =
(

Γ1212
d/m

)∗
, Γ2112

d/m =
(

Γ1221
d/m

)∗
and Γ2211

d/m =
(

Γ1122
d/m

)∗
. Hence we

can restrict the discussion to the former vertices.

If we plot Γ#1#2#3#4

d/m (iω1; iω2|iω1− iν; iω2+ iν) in the ω1−ω2-plane we have the symmetry

axes (A) at ω2 = ω1 − ν and (B) at ω1 = −ω2. MA and MB are mirror operators at axis

(A) and (B) respectively. In Table 6.1 we show the transformation behaviour of Γ1111
d/m ,

Γ1212
d/m , Γ1221

d/m and Γ1122
d/m under MA and MB which follows from time-reversal symmetry and

particle-hole symmetry (cf. appendix C). For ν = 0 one can furthermore show that

Γ1221
d/m ∈ R and Γ1122

d/m ∈ R. In presenting the data, we will restrict the discussion to the case

of zero transfer frequencies ν, either for the charge or the magnetic channel. Based on the

experience from the single-site vertex, this data contains the main features, which would

get shifted or split, but not changed drastically in the case of finite frequency transfer.

Insulating phase

In Fig. 6.16 we show the vertices |Γ1111
d/m (iω1; iω2|iω1; iω2)∓U/4|, |Γ1212

d/m(iω1; iω2|iω1; iω2)∓
U/4|, Γ1221

d/m(iω1; iω2|iω1; iω2) ∓ U/4 and Γ1122
d/m (iω1; iω2|iω1; iω2) ∓ U/4 for U = 10t and

β = 30/t. Since Γ1111 and Γ1212 are complex-valued we plot their absolute values.

In the density and magnetic part of Γ1111 and Γ1221, the only apparent feature is a +-

shaped structure, which reaches its maximum in the center at (ω1 = 0, ω2 = 0). It is much

more broadened compared to the single-site DMFT (Fig. 6.9) and its width increases with

the interaction U .

The density and magnetic part of Γ1212 and Γ1122 are dominated by a peaked diagonal

frequency structure at ω1 = ω2, which reaches its maximum at (ω1 = 0, ω2 = 0). Except

for the magnetic part of Γ1122, an additional +-shaped structure is only very weakly

pronounced. Snapshots of the peaked structure at ω1 = ω2 along or parallel to the main

diagonal can be described by a Lorentzian with width ≈ J . This should be compared

to the local vertex of the single-site DMFT (cf. Fig. 6.9). Here the antiferromagnetic

coupling J is absent and also the peaked structure at ω2 = ω1 is δ-shaped, i.e. its width
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Table 6.2: Spin excitation energies ∆Espin
11 and ∆Espin

12 obtained from the data in Fig. 6.17

in comparison with the two-site Hubbard model ∆Espin
2-site = J2-site =

(√
U2 + 16t2 − U

)
/2.

U/t ∆Espin
11 /t ∆Espin

12 /t ∆Espin
2-site/t

10 0.351 0.357 0.385

12 0.310 0.316 0.325

14 0.274 0.280 0.280

is equal to zero. This difference is mainly caused by the fact that in the two-site core,

the localized spins couple antiferromagnetically and form a singlet. The embedding of

this core in the gapped bath only leads to quantitative changes, but without allowing for

longer-ranged spin correlations in this cluster DMFT framework, the singlet character does

not change. Therefore, qualitatively, the important features in the frequency structure

of the embedded vertex are already visible in the vertex of the isolated two-site Hubbard

model, which serves as core in our cluster DMFT scheme. Hence, if one tries to describe a

short-range correlated system, using a finite-site vertex of a core with qualitatively similar

properties may be a good approximation or guide to look for viable parametrizations. Near

phase transitions the picture may become more complicated [RTKH11].

In Fig. 6.17 we show the local and next-neighbor spin susceptibilities on the Matsubara

axis. In contrast to the single-site DMFT (cf. Fig. 6.10) no term ∝ δν,0 occurs in the

local spin susceptibility, which was characteristic for a free spin degree of freedom. Now,

the spin moments are screened by an antiferromagnetic exchange interaction. The Padé-

spectra show sharp spin excitations at certain values ±∆Espin
ij and the Matsubara data are

consistent with a functional dependence of the form χspin
ij (iν) ∼ (−1)(i−j) ∆Espin

ij

ν2+(∆Espin
ij )2

. The

spin excitation energy in the two-site Hubbard model is given by ∆Espin
2-site,11 = ∆Espin

2-site,12 =

∆Espin
2-site =

(√
U2 + 16t2 − U

)
/2 (corresponding to spin fluctuations between the ground

state |N = 2;S = 0; 1〉 and the triplet sector, compare appendix B.3). It is equal to the

antiferromagnetic exchange energy J2-site in the corresponding two-site Heisenberg model.

In Table 6.2 we present the fitted values ∆Espin
11 , ∆Espin

12 and ∆Espin
2-site for the data in

Fig. 6.17. Not unexpectedly, the trend shows that for increasing insulating character, i.e.

larger U , the excitation energies come closer to the value of the isolated two-site cluster.

Metallic phase

In Fig. 6.18 we show the vertices |Γ1111
d/m (iω1; iω2|iω1; iω2)∓U/4|, |Γ1212

d/m (iω1; iω2|iω1; iω2)∓
U/4|, Γ1221

d/m(iω1; iω2|iω1; iω2) ∓ U/4 and Γ1122
d/m(iω1; iω2|iω1; iω2) ∓ U/4 for U = 4t and

β = 30/t, i.e. in the metallic phase.

Compared to the insulating phase, the obtained frequency structures are now even richer.

The density and magnetic parts of Γ1111 and the density part of Γ1221 are beyond a
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Figure 6.16: Vertex functions |Γ1111
d/m (iω1; iω2|iω1; iω2) ∓ U/4|, |Γ1212

d/m (iω1; iω2|iω1; iω2) ∓
U/4|, Γ1221

d/m (iω1; iω2|iω1; iω2)∓U/4 and Γ1122
d/m(iω1; iω2|iω1; iω2)∓U/4 for U = 10t, β = 30/t,

obtained in two-site cluster DMFT(fRG). Left column: density part. Right column:

magnetic part. The frequencies are signed by their Matsubara index.
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Figure 6.17: Spin susceptibility χspin
ij (iν) on the Matsubara axis, obtained in the insulating

regime of the two-site cluster DMFT(fRG) for the Hubbard model on the square lattice.

Left plot: local spin susceptibility. Right plot: next-neighbor spin susceptibility.

simple description and posses rather detailed structures along the ω1 = ω2 and ω1 = −ω2

lines, overlaid by an additional +-shaped structure. Opposite to the insulating case, the

vertices become minimal in their absolute values at this +-shaped structure, especially

at the point (ω1 = 0, ω2 = 0), rather than reaching a maximum. This is best visible in

the magnetic part of Γ1221, which is determined solely by this structure. Except to this

different behaviour at the +-shaped structure, the vertices Γ1212 and Γ1122 are similar to

the corresponding vertices in the insulating phase.

6.3.3 Summary of the vertex analyis

Quite generally, our data supports the findings of Ref. [RVT12] that the vertices show rich

structure, including +-structures that cannot be parametrized in terms of the “bosonic”

transfer frequencies. While the physical meaning of these structures beyond a connection

to higher-order diagrams is not obvious, they represent a formidable challenges for the

above mentioned approaches that want to use the DMFT vertices as input in order to

explore correlations on longer scales, in particular if wave vector dependencies are sup-

posed to be added. Beyond this principal statement, we can use our data to make two

valuable comparisons. First we can study the a) difference between the vertices in the

metallic and the insulating phase. Second we can b) scrutinize what changes occur when

non-local correlations are included.

Regarding comparison a), we find much milder frequency dependences in the metallic case.

In particular, the sharp bosonic features of the single-site solution are smeared out, and

the +-structures are broadened as well. Furthermore, many (but not all) cross sections of

the vertices in the metallic phase show a reduction at low frequencies compared to high

frequencies which points to a screening effect. In the insulating state, the opposite is found.
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Figure 6.18: Vertex functions |Γ1111
d/m (iω1; iω2|iω1; iω2) ∓ U/4|, |Γ1212

d/m (iω1; iω2|iω1; iω2) ∓
U/4|, Γ1221

d/m(iω1; iω2|iω1; iω2)∓U/4 and Γ1122
d/m(iω1; iω2|iω1; iω2)∓U/4 for U = 4t, β = 30/t.

Left column: density part. Right column: magnetic part. The frequencies are signed by

their Matsubara index.
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Here, the low frequency vertices are mostly enhanced. Finally, in the metallic phase of the

single-site solution one can also find enhancement features at zero incoming frequency,

pointing to the role of pairing fluctuations. These cannot be seen in the insulating state,

and these features are also much weaker in the two-site solution, possibly due to the spin

gap. Note that the possible soft collective fluctuations, which are not captured by the

present cluster schemes, could lead to additional frequency structures. Their systematics

should however be correspond to what is known from random-phase approximation or

related approaches.

Comparison b) between single-site and two-site DMFT vertices shows on one hand that

new features and energy scales can come in. Our data describes how the sharp diago-

nal features for fixed frequency transfer get broadened, and displays the exchange energy

scale J . Beyond these expected changes, the frequency structures are definitely disper-

sive, as can be seen from the vertices for different wavevector combinations. From our

work one can only see that non-local correlations have a definite effect on the vertices.

However, we are far away from understanding how far one should go in the cluster size

to obtain convergence, e.g., of the local vertex. Yet, at least for larger U , the behaviour

on a nearest-neighbor bond captured in our results should contain the dominant strong

coupling physics, unless phase transitions with diverging length scales or geometric frus-

tration come into play.

To obtain the local dynamic charge and spin susceptibilites from our vertex data is more

challenging due to the finite frequency patching and the different speed of convergence

of the connected and disconnected parts of the susceptibilities, but we still managed to

estimate effective exchange coupling from the data. Yet, the analytical continuation by a

Padé-algorithm does not deliver meaningful results for all sets of parameters. One might

try to achieve better results by an appropriate parametrization of the vertex function in

the lines of Ref. [Ort]. Note, that frequency dependent vertex corrections are found to

be essential for understanding experimentally observed dynamic susceptibilites in realistic

material calculations, as for example in the case of iron-based superconductors [PHK11,

TAH+12, LHL+12]. Therefore, there is a great need for developing new flexible solvers,

which facilitate the heavy calculation of these quantities in realistic multi-orbital cases.



Chapter 7

Conclusion and outlook

In this thesis we developed a new renormalization group approach to the single impurity

Anderson model, and showed that it can serve as an efficient and flexible impurity solver

for the dynamical mean-field theory.

The starting point was the exact result for the one- and two-particle correlation functions

of a small subsystem (core) containing the correlated impurity site. Then we tracked

the evolution of these functions when the coupling to the bath is switched on slowly.

In this way, the solution of the small isolated cluster was implemented exactly, and the

flow generated changes of infinite order in the hybridization with the bath. The main

approximation was the truncation of the flow equations after the two-particle vertex. In

the present case this means that the change of the higher-order vertices (three-particle,

four-particle, etc.) upon coupling to the bath is not allowed to influence the lower order

vertices, i.e. the two-particle vertex and the self-energy. Yet, the idea that led us take this

avenue was that starting with the exact self-energy and two-particle vertex of the small

core contains enough strong correlation physics in order to give physically reasonable

results. The local interaction physics, such as the atomic scales, were well represented in

our approach. However, the Kondo effect requires to describe the subtle interplay with

a continuum of states including many energy scales and our approach captured this only

qualitatively, but not quantitatively.

In chapter 5 we applied our approach to the single impurity Anderson model with a semi-

elliptic bath density of states. The numerical results for clusters with an odd number of

sites (L = 1 and L = 3) showed that the flow equations produce qualitatively correct

results, whereas for even numbers the Fermi liquid behaviour was not recovered. The

dependence of the width of the Kondo peak on increasing U was quantitatively different

from NRG results, i.e. the correct exponential dependence was not reproduced. For

larger U the Kondo scale becomes smaller than the nonzero temperatures, for which the

fRG scheme is feasible. Hence no clear statement could be made regarding the large-U

behaviour. However, in the interesting intermediate coupling regime, the deviations may

79
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be tolerable. In this sense, embedding this new impurity solver in a different context to

describe itinerant and strongly coupled physics qualitatively correct (see discussion below)

seems a viable possibility.

In comparison with other finite-frequency functional RG techniques, e.g. those that are

perturbative in U , our data end up in the same range, as shown in Fig. 5.6. Since the

ground state for weak and strong coupling remains the same, it is not entirely surprising

that approaches starting at the opposite ends lead to qualitatively similar results. The

quantitative agreement could potentially be interpreted as a measure of the error, that is

introduced by the truncation after the two-particle vertex, which is common to both lines

of approach. Note that in a recent paper Streib et al. [SIK13] were able to reproduce the

exponential Kondo scale, using a fRG scheme with partial bosonization of the transverse

spin-fluctations. By using Ward identities they were able to avoid further truncations of

the flow equations. In this way they obtained the spin susceptibility and the effective

mass in good agreement with the exact Bethe ansatz solution.

One could think of a possible generalization of our fRG method to correlated lattice sys-

tems (i.e. with more than one correlated site, like the two-dimensional Hubbard model).

In this case, both self-energy and interaction vertex will become increasingly non-local

during the flow, and suitable approximations would have to be found in order to keep

the amount of information manageable. For example, small correlated cluster cores can

be coupled together during the flow by switching on the hopping amplitude between the

clusters from 0 to the original value. The solution of the core will then provide the spectral

weight transfers on the energy scale U and the accompanying reduction of the spectral

weight near the Fermi level. Together with the core interaction vertex, this spectrum will

serve as an effective action of a strongly correlated Fermi liquid, which then can undergo a

longrange ordering transition when the cores are coupled together. Note that in extension

of earlier ideas in the vein of cluster perturbation theory (see, e.g. Refs. [GV93, SPP02]),

the fRG scheme also allows one to determine the non-local hybridization effects on the

interaction, which has direct consequences for the character and scale of low-temperature

instabilities such as unconventional superconductivity. This way one could possibly ex-

tend the successful functional RG instability analysis for weakly correlated fermions to

the more strongly correlated regime. The high-energy physics of a strongly interact-

ing Hubbard-like system is certainly more local than the low-energy physics of collective

ordering. Hence, the break-up into small cores and subsequent coupling together also

closely follows the physical intuition of first solving the problem with the largest energy

scale before the low-energy end is considered. One approach that follows this direction is

the recently proposed DMF2RG method [TAB+13]. Here, starting from the local DMFT

solution of the two-dimensional Hubbard model, non-local correlations are built in via

the functional renormalization group. This way, divergences of the two-particle vertex,

that occur in weak-coupling fRG, are shifted to lower temperatures and also non-local
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Figure 7.1: Extension of our cluster DMFT scheme to four-site clusters.

corrections to the DMFT self-energy are found.

In chapter 6 we demonstrated that our hybridization flow scheme can serve as a fast and

numerically inexpensive impurity solver in the DMFT setup. Using this new impurity

solver, we studied at first the half-filled Hubbard model on a Bethe lattice in infinite

dimension. We were able to reproduce the hallmarks of metallic and insulating phases,

although the transition region could not be resolved very clearly, at least with the cur-

rent implementation. While we think that it is interesting and important to explore new

impurity solvers, we certainly do not claim that the current version of the hybridization

flow impurity solver is superior to established techniques with respect to single-particle

properties. However, a quantity that has not been investigated thoroughly in the past but

that is quite easily accessible in the fRG impurity solver is the local 1PI vertex function.

It explicitly appears in the fRG solution of the impurity problem and is hence obtained at

no additional cost. We obtained its density and magnetic part for the insulating and the

metallic phase in good qualitative agreement with recent calculations using DMFT with

exact diagonalization as impurity solver [RVT12]. Understanding the frequency structure

of this vertex function in DMFT is important for several reasons. On the one hand it is

an important ingredient of perturbative DMFT extensions, that include non-local degrees

of freedom [SK04, TKH07, HKT08, RKL08, RKLG09, RTH+13, TAB+13], but also in

the single-site DMFT two-particle correlation functions can be used to identify nonper-

turbative precursors of the Mott physics inside the metallic phase of the MIT [SRG+13].

Furthermore the frequency-structure of the two-particle interaction is important for realis-

tic material calculations, where the bare Hubbard U already gains a frequency-dependence

due to screening effects [ATMS09]. This additional frequency-dependence strongly influ-

ences the single-site DMFT results [WM10]. Note that there are further ways to separate

the 1PI vertex into other parts, like the fully irreducible vertex and 2PI vertices, see Ref.

[RVT12]. As shown in this reference, these other vertices show slightly reduced complexity

in their frequency structures, but also remain nontrivial functions of the frequencies. In

order to keep the discussion manageable, we have not taken this road and only presented

data for the 1PI vertex.
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Since we got reasonable results in the single-site case, we extended our scheme to a

two-site cluster DMFT approach and studied the two-dimensional Hubbard model on

a square lattice. In this case, antiferromagnetic fluctuations between nearest neighbor

sites are included. We obtained the density and magnetic part of the cluster vertex

functions for the insulating and the metallic phase. From the local and next-neighbor

spin susceptibility we obtained the spin-spin coupling J as function of U in the insulating

phase. This exchange energy could also be identified in the frequency structure of the

cluster vertices.

A possibility for a future project would be to use our hybridization flow scheme as im-

purity solver in a four-site cluster DMFT calculation (cf. Fig. 7.1), although calculating

the initial two-particle Green’s function for the four-site cluster requires already a huge

amount of numerical effort [RVT12, Lui12].



Appendix A

Dynamic susceptibilities

A.1 charge susceptibility

The dynamic charge-susceptibility is defined as the Fourier-transform of the density-

density correlation function

χcharge
ij (iν) =

∫ β

0

dτeiντ [〈Tτ ρ̂i(τ)ρ̂j(0)〉 − 〈ρ̂i〉〈ρ̂j〉] (A.1)

with the density-operator

ρ̂i =
∑

σ

c†iσciσ. (A.2)

The expectation-value can be written as sum over a two-particle Green’s function

χcharge
ij (iν) =

∫ β

0

dτeiντ
∑

σ,σ′

G(2)
(
i, σ, τ ; j, σ′, 0−|i, σ, τ ; j, σ′)− βδν,0〈ρ̂i〉〈ρ̂j〉

=
1

β2

∑

iω1,iω2

∑

σ,σ′

G(2) (i, σ, iω1; j, σ
′, iω2|i, σ, iω1 − iν; j, σ′)− βδν,0〈ρ̂i〉〈ρ̂j〉

=
4

β2

∑

iω1,iω2

G(2)
d (i, iω1; j, iω2|i, iω1 − iν; j)− βδν,0〈ρ̂i〉〈ρ̂j〉

=
4

β2

∑

iω1,iω2

Gc,(2)
d (i, iω1; j, iω2|i, iω1 − iν; j)− 2

β

∑

iω

G (iω, i, j)G (iω − iν, j, i)

=χcharge,c
ij (iν) + χcharge,dc

ij (iν) (A.3)

Here we used

〈ρ̂i〉 =
2

β

∑

iω

eiω0
+G (iω, i, i) . (A.4)
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A.2 spin susceptibility

The dynamic spin-susceptibility follows from the spin-spin correlation function

χspin
ij (iν) =

∫ β

0

dτeiντ
〈

Tτ Ŝ
+
i (τ)Ŝ

−
j (0)

〉

(A.5)

with the spin operators

Ŝ+
i (τ) = c†i↑(τ)ci↓(τ), (A.6)

Ŝ−
i (τ) = c†i↓(τ)ci↑(τ). (A.7)

The expectation value is again given by a two-particle Green’s function

χspin
ij (iν) =−

∫ β

0

dτeiντG(2)
(
j, ↑, 0−; i, ↓, τ |i, ↑, τ ; j, ↓

)

=− 1

β2

∑

iω1,iω2

G(2) (j, ↑, iω1; i, ↓, iω2|i, ↑, iω2 − iν; j, ↓)

=
2

β2

∑

iω1,iω2

G(2)
m (i, iω2; j, iω1|i, iω2 − iν; j)

=
2

β2

∑

iω1,iω2

Gc,(2)
m (i, iω2; j, iω1|i, iω2 − iν; j)

− 1

β

∑

iω

G (iω, i, j)G (iω − iν, j, i)

=χspin,c
ij (iν) + χspin,dc

ij (iν) (A.8)



Appendix B

Exact diagonalization of the

core-Hamiltonians

B.1 L=0-core

The Hamiltonian of the one-site Hubbard model (for ǫd = −U/2, i.e. particle-hole sym-

metry) is given by

Ĥ = −U
2

∑

σ

nσ + Un↑n↓. (B.1)

There are four eigenstates given by

• the vacuum state |0〉 with energy E0 = 0.

• |N = 1, sz = σ〉 = d†σ |0〉 with energy EN=1,sz=σ = −U/2.

• |N = 2, S = 0〉 = d†↑d
†
↓ |0〉 with energy EN=2,S=0 = 0.

The one-particle Green’s function can be calculated from the Lehmann representation

(2.61).

G(iω) = iω

(iω)2 − U2

4

=
1

iω + U/2− Σdot(iω)
(B.2)

and the self-energy is obtained as

Σdot(iω) =
U

2
+
U2

4iω
. (B.3)
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The two-particle 1PI vertex function follows from the Lehmann representation (2.62) and

equations (2.27) and (2.37). It is given by [HJB+09]

γ(2) (↑, iω1; ↑, iω2| ↑, iω′
1; ↑) =− β

U2

4

δω1,ω′
1
− δω2,ω′

1

(iω1)2(iω2)2

[

(iω1)
2 − U2

4

] [

(iω2)
2 − U2

4

]

(B.4)

γ(2) (↑, iω1; ↓, iω2| ↑, iω′
1; ↓) =U +

(
U

2

)3
∑

i=1,2,1′,2′(iωi)
2

∏

i=1,2,1′,2′(iωi)
− 6

(
U

2

)5 ∏

i=1,2,1′,2′

1

(iωi)

− βδω1,−ω2

U2

2
nF

(
U

2

)
[

(iω1)
2 − U2

4

] [

(iω1′)
2 − U2

4

]

(iω1)2(iω1′)2

+ βδω2,ω′
1

U2

2
nF

(

−U
2

)
[

(iω1)
2 − U2

4

] [

(iω1′)
2 − U2

4

]

(iω1)2(iω1′)2

− βδω1,ω′
1

U2

4

[

nF

(
U

2

)

− nF

(

−U
2

)]
[

(iω1)
2 − U2

4

] [

(iω2)
2 − U2

4

]

(iω1)2(iω2)2

(B.5)

with ω′
2 = ω1 + ω2 − ω′

1 and the Fermi function

nF (x) =
1

1 + exp (βx)
(B.6)

The density- and magnetic part of γ follow with Eqs. (2.55) and (2.56) as

γd (iω1, iω2|iω1′) =
1

2
[γ (↑, iω1; ↑, iω2| ↑, iω′

1; ↑) + γ (↑, iω1; ↓, iω2| ↑, iω′
1; ↓)]

=
U

2
+

1

2

(
U

2

)3
∑

i=1,2,1′,2′(iωi)
2

∏

i=1,2,1′,2′(iωi)
− 3

(
U

2

)5 ∏

i=1,2,1′,2′

1

(iωi)

− βδω1,−ω2

U2

4
nF

(
U

2

)
[

(iω1)
2 − U2

4

] [

(iω1′)
2 − U2

4

]

(iω1)2(iω1′)2

+ βδω2,ω1′

U2

4

[
1

2
+ nF

(

−U
2

)]
[

(iω1)
2 − U2

4

] [

(iω2)
2 − U2

4

]

(iω1)2(iω2)2

− βδω1,ω1′

U2

4
nF

(
U

2

)
[

(iω1)
2 − U2

4

] [

(iω2)
2 − U2

4

]

(iω1)2(iω2)2
(B.7)
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γm (iω1, iω2|iω1′) =
1

2
[γ (↑, iω1; ↑, iω2| ↑, iω′

1; ↑)− γ (↑, iω1; ↓, iω2| ↑, iω′
1; ↓)]

=− U

2
− 1

2

(
U

2

)3
∑

i=1,2,1′,2′(iωi)
2

∏

i=1,2,1′,2′(iωi)
+ 3

(
U

2

)5 ∏

i=1,2,1′,2′

1

(iωi)

+ βδω1,−ω2

U2

4
nF

(
U

2

)
[

(iω1)
2 − U2

4

] [

(iω1′)
2 − U2

4

]

(iω1)2(iω1′)2

+ βδω2,ω1′

U2

4

[
1

2
− nF

(

−U
2

)]
[

(iω1)
2 − U2

4

] [

(iω2)
2 − U2

4

]

(iω1)2(iω2)2

− βδω1,ω1′

U2

4
nF

(

−U
2

)
[

(iω1)
2 − U2

4

] [

(iω2)
2 − U2

4

]

(iω1)2(iω2)2
(B.8)

with ω′
2 = ω1 + ω2 − ω′

1.

With Eq. (A.3) one gets the dynamic charge-susceptibility

χcharge,c (iν) = −U nF

(
U
2

)
− nF

(
−U

2

)

(iν)2 − U2
+ βδν,0nF

(
U

2

)2

, (B.9)

χcharge,dc (iν) = U
nF

(
U
2

)
− nF

(
−U

2

)

(iν)2 − U2
+ βδν,0nF

(
U

2

)

nF

(

−U
2

)

, (B.10)

χcharge (iν) = βδν,0nF

(
U

2

)

. (B.11)

With Eq. (A.8) one gets the dynamic spin-susceptibility

χspin,c (iν) = −U
2

nF

(
U
2

)
− nF

(
−U

2

)

(iν)2 − U2
+ βδν,0

1

2
nF

(

−U
2

)2

, (B.12)

χspin,dc (iν) =
U

2

nF

(
U
2

)
− nF

(
−U

2

)

(iν)2 − U2
+ βδν,0

1

2
nF

(
U

2

)

nF

(

−U
2

)

, (B.13)

χspin (iν) = βδν,0
1

2
nF

(

−U
2

)

. (B.14)

B.2 L=1-core

The L = 1-core consists of an interacting dot site connected to a noninteracting bath site.

It is described by the Hamiltonian

Ĥ = ǫd
∑

σ

n̂d,σ + Un̂d,↑n̂d,↓ − v
∑

σ

(
d†σbσ + b†σdσ

)
(B.15)

Written as a matrix in Fock space it can be diagonalized analytically and in the following

we list the eigenstates and corresponding energies. Denoting the Vacuum-state by |0〉,
the one-particle states are given by (unnormalized)
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• |N = 1; sz = σ; 1〉 =
[(

ǫd −
√

4v2 + ǫ2d

)

d†σ − 2vb†σ

]

|0〉

with energy EN=1;1 =
1
2

(

ǫd −
√

4v2 + ǫ2d

)

.

• |N = 1; sz = σ; 2〉 =
[(

ǫd +
√

4v2 + ǫ2d

)

d†σ − 2vb†σ

]

|0〉

with energy EN=1;2 =
1
2

(

ǫd +
√

4v2 + ǫ2d

)

.

The two-particle states can be classified by their total spin. There are three triplet-states

given by

• |N = 2;S = 1;Sz = +1〉 = d†↑b
†
↑ |0〉

• |N = 2;S = 1;Sz = 0〉 = 1√
2

[

d†↑b
†
↓ + d†↓b

†
↑

]

|0〉

• |N = 2;S = 1;Sz = −1〉 = d†↓b
†
↓ |0〉

The energy of the triplet-states is EN=2;S=1 = ǫd.

To construct the remaining singlet-states we use the base {d†↑d
†
↓ |0〉 , 1√

2

(

d†↑b
†
↓ − d†↓b

†
↑

)

|0〉 , b†↑b
†
↓ |0〉}.

In this base the Hamiltonian (B.15) is given by






U + 2ǫd −
√
2v 0

−
√
2v ǫd −

√
2v

0 −
√
2v 0




 (B.16)

The eigenvalues of this matrix have a complicated form and are not shown here. We

concentrate on the particle-hole symmetric point, where ǫd = −U/2. In this case the

three singlet-states are given by (unnormalized)

• |N = 2;S = 0; 1〉 =
[

8v
(

d†↑d
†
↓ + b†↑b

†
↓

)

+
(
U +

√
U2 + 64v2

) (

d†↑b
†
↓ − d†↓b

†
↑

)]

|0〉
with energy EN=2;S=0;1 =

1
4

(
−U −

√
U2 + 64v2

)

• |N = 2;S = 0; 2〉 = 1√
2

[

d†↑d
†
↓ − b†↑b

†
↓

]

|0〉 with energy EN=2;S=0;2 = 0.

• |N = 2;S = 0; 3〉 =
[

8v
(

d†↑d
†
↓ + b†↑b

†
↓

)

+
(
U −

√
U2 + 64v2

) (

d†↑b
†
↓ − d†↓b

†
↑

)]

|0〉
with energy EN=2;S=0;3 =

1
4

(
−U +

√
U2 + 64v2

)

The three-particle states are given by (unnormalized)

• |N = 3;S = 1/2;Sz = σ; 1〉 =
[(

U + ǫd −
√

4v2 + (U + ǫd)2
)

d†σb
†
↑b

†
↓ + 2vd†↑d

†
↓b

†
σ

]

|0〉

with energy EN=3;S=1/2;1 =
1
2

(

U + 3ǫd −
√

4v2 + (U + ǫd)2
)

.

• |N = 3;S = 1/2;Sz = σ; 2〉 =
[(

U + ǫd +
√

4v2 + (U + ǫd)2
)

d†σb
†
↑b

†
↓ + 2vd†↑d

†
↓b

†
σ

]

|0〉

with energy EN=3;S=1/2;2 =
1
2

(

U + 3ǫd +
√

4v2 + (U + ǫd)2
)

.
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Finally, the four-particle state is given by |N = 4, S = 0〉 = d†↑d
†
↓b

†
↑b

†
↓ |0〉 with energy

EN=4,S=0 = U + 2ǫd.

The one-partice Green’s function on the dot site is given by [Lan98]

G(iω) =
2∑

m=1

(
am

iω − ǫm
+

am
iω + ǫm

)

, (B.17)

ǫ1 =
1

4

(√
U2 + 64v2 −

√
U2 + 16v2

)

, (B.18)

ǫ2 =
1

4

(√
U2 + 64v2 +

√
U2 + 16v2

)

, (B.19)

a1 =
1

4

(

1− U2 − 32v2
√

(U2 + 64v2)(U2 + 16v2)

)

, (B.20)

a2 =
1

2
− a1 (B.21)

In the spectral density A(ω) = − 1
π
Im G(iω → ω + i0+) one finds four delta-peaks

A(ω) =
2∑

m=1

am [δ(ω + ǫm) + δ(ω − ǫm)] (B.22)

From the noninteracting Green’s function

G0(iω) =
1

2

(
1

iω − v
+

1

iω + v

)

(B.23)

follows the self-energy by the Dyson equation Σdot (iω) = G−1
0 (iω)− G−1(iω)

Σdot (iω) =
U2

8

(
1

iω − 3v
+

1

iω + 3v

)

(B.24)

B.3 Two-site Hubbard model

The two-site Hubbard model is described by the Hamiltonian

Ĥ = ǫd
∑

σ

2∑

i=1

n̂i,σ + U
2∑

i=1

n̂i,↑n̂i,↓ − t
∑

σ

(

d†1,σd2,σ + d†2,σd1,σ

)

(B.25)

Denoting the Vacuum-state by |0〉, the one-particle states are given by

• |N = 1; sz = σ; 1〉 = 1√
2

[

d†1,σ + d†2,σ

]

|0〉 with energy EN=1;sz=σ;1 = ǫd − t.

• |N = 1; sz = σ; 2〉 = 1√
2

[

d†1,σ − d†2,σ

]

|0〉 with energy EN=1;sz=σ;2 = ǫd + t.

The two-particle states can be classified by their total spin. There are three triplet-states

given by
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• |N = 2;S = 1;Sz = +1〉 = d†1,↑d
†
2,↑ |0〉

• |N = 2;S = 1;Sz = 0〉 = 1√
2

[

d†1,↑d
†
2,↓ + d†1,↓d

†
2,↑

]

|0〉

• |N = 2;S = 1;Sz = −1〉 = d†1,↓d
†
2,↓ |0〉

The energy of the triplet-states is EN=2;S=1 = 2ǫd.

To construct the remaining singlet-states we use the base

{ 1√
2

(

d†1,↑d
†
1,↓ + d†2,↑d

†
2,↓

)

|0〉 , 1√
2

(

d†1,↑d
†
2,↓ − d†1,↓d

†
2,↑

)

|0〉 , 1√
2

(

d†1,↑d
†
1,↓ − d†2,↑d

†
2,↓

)

|0〉}.
In this base the Hamiltonian (B.25) is given by






2ǫd + U −2t 0

−2t 2ǫd 0

0 0 2ǫd + U




 (B.26)

The three singlet-states are given by (γ =
√
U2+16t2

U
)

• |N = 2;S = 0; 1〉 =
1√

16t2+U2(1+γ)2

[

2
√
2t
(

d†1,↑d
†
2,↓ − d†1,↓d

†
2,↑

)

− U√
2
(1− γ)

(

d†1,↑d
†
1,↓ + d†2,↑d

†
2,↓

)]

|0〉

with energy EN=2;S=0;1 = 2ǫd +
U
2
(1− γ).

• |N = 2;S = 0; 2〉 =
1√

16t2+U2(1+γ)2

[

2
√
2t
(

d†1,↑d
†
2,↓ − d†1,↓d

†
2,↑

)

− U√
2
(1 + γ)

(

d†1,↑d
†
1,↓ + d†2,↑d

†
2,↓

)]

|0〉

with energy EN=2;S=0;2 = 2ǫd +
U
2
(1 + γ).

• |N = 2;S = 0; 3〉 = 1√
2

(

d†1,↑d
†
1,↓ − d†2,↑d

†
2,↓

)

|0〉 with energy EN=2;S=0;3 = 2ǫd + U

The three-particle states are given by

• |N = 3;S = 1/2;Sz = σ, 1〉 = 1√
2

[

d†1,↑d
†
1,↓d

†
2,σ + d†1,σd

†
2,↑d

†
2,↓

]

|0〉
with energy EN=3;S=1/2;Sz=σ,1 = 3ǫd + U + t.

• |N = 3;S = 1/2;Sz = σ, 2〉 = 1√
2

[

d†1,↑d
†
1,↓d

†
2,σ − d†1,σd

†
2,↑d

†
2,↓

]

|0〉
with energy EN=3;S=1/2;Sz=σ,2 = 3ǫd + U − t.

Finally, the four-particle state is given by |N = 4;S = 0〉 = d†1,↑d
†
1,↓d

†
2,↑d

†
2,↓ |0〉 with energy

EN=4;S=0 = 4ǫd + 2U .



Appendix C

Symmetries of the two-particle vertex

C.1 Single-site vertices

Figure C.1: Schematic plot of γd/m (α1, iω1;α2, iω2|α1′ , iω1 − iν;α2′ , iω2 + iν) with the

symmetry axes A and B.

If we plot the local vertex γd/m (iω1; iω2|iω1 − iν; iω2 + iν) in the ω1 − ω2-plane, we have

the symmetry axes A : ω2 = ω1 − ν and B : ω2 = −ω1 (cf. Fig. C.1). MA and MB are

mirror operators at axis A and B respectively.

Mirror symmetry at axis A

By mirroring at axis A, the point (ω1, ω2) is mapped to the point (ω2 + ν, ω1 − ν). For

a time reversal invariant Hamiltonian the vertex γd/m is symmetric with respect to this
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transformation, which follows from

γd/m (iω1; iω2|iω1 − iν; iω2 + iν)
MA→ γd/m (iω2 + iν; iω1 − iν|iω2; iω1)

(2.45)
= γd/m (iω2; iω1|iω2 + iν; iω1 − iν)

= γd/m (iω1; iω2|iω1 − iν; iω2 + iν) . (C.1)

Mirror symmetry at axis B

Mirroring at axis B maps the point (ω1, ω2) to the point (−ω2,−ω1). The transformation

behaviour of γd/m with respect to MB is again related to time reversion symmetry.

γd/m (iω1; iω2|iω1 − iν; iω2 + iν)
MB→ γd/m (−iω2;−iω1| − iω2 − iν;−iω1 + iν)

(2.44)
= γd/m (iω2; iω1|iω2 + iν; iω1 − iν)∗

= γd/m (iω1; iω2|iω1 − iν; iω2 + iν)∗ . (C.2)

In the particle-hole symmetric case one has additionally γd/m (iω1; iω2|iω1 − iν; iω2 + iν)∗ =

γd/m (iω1; iω2|iω1 − iν; iω2 + iν) (cf. Eq. (2.59)) and the vertex is symmetric with respect

to MB.

C.2 Cluster vertices

For the cluster vertices the transformation behaviour is more complex. By the Fourier

Transform U ~Ki, ~Rj
= 1√

2
exp

[

i ~Ki
~Rj

]

with ~K1 = (0, 0) and ~K2 = (π, π) we transform the

vertices to cluster-momentum space

γd/m

[

~Q1, iω1; ~Q2, iω2| ~Q1′ , iω1 − iν; ~Q2′ , iω2 + iν
]

=
1

4

∑

~R1,
~R2,

~R1′ ,
~R2′

exp
[

i ~Q1
~R1 + i ~Q2

~R2 − i ~Q1′
~R1′ − i ~Q2′

~R2′

]

× γd/m

[

~R1, iω1; ~R2, iω2|~R1′ , iω1 − iν; ~R2′ , iω2 + iν
]

. (C.3)

Here we have ~Qi(′) ∈ { ~K1, ~K2} and ~R1 and ~R2 are defined in Fig. 6.6.
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If we assume time-reversion and particle-holy symmetry we have from Eq. (2.59)

γd/m

[

~Q1, iω1; ~Q2, iω2| ~Q1′ , iω1 − iν; ~Q2′ , iω2 + iν
]∗

=
1

4

∑

~R1,
~R2,

~R1′ ,
~R2′

exp
[

−i ~Q1
~R1 − i ~Q2

~R2 + i ~Q1′
~R1′ + i ~Q2′

~R2′

]

×γd/m
[

~R1, iω1; ~R2, iω2|~R1′ , iω1 − iν; ~R2′ , iω2 + iν
]∗

(2.59)
=

1

4

∑

~R1,
~R2,

~R1′ ,
~R2′

exp
[

−i ~Q1
~R1 − i ~Q2

~R2 + i ~Q1′
~R1′ + i ~Q2′

~R2′

]

×ς~R1
~R2

~R1′
~R2′
γd/m

[

~R1, iω1; ~R2, iω2|~R1′ , iω1 − iν; ~R2′ , iω2 + iν
]

=
1

4

∑

~R1,
~R2,

~R1′ ,
~R2′

exp
[

−i ~̄Q1
~R1 − i ~̄Q2

~R2 + i ~̄Q1′
~R1′ + i ~̄Q2′

~R2′

]

×γd/m
[

~R1, iω1; ~R2, iω2|~R1′ , iω1 − iν; ~R2′ , iω2 + iν
]

= γd/m

[
~̄Q1, iω1;

~̄Q2, iω2| ~̄Q1′ , iω1 − iν; ~̄Q2′ , iω2 + iν
]

(C.4)

with ~̄K1 = ~K2 and ~̄K2 = ~K1.

As already pointed out in chapter 6.3.2 the only nonnegative contributions are given by

γd/m( ~K1, iω1; ~K1, iω2| ~K1, iω1′ ; ~K1, iω2′) ≡ γ1111d/m (iω1; iω2|iω1′ ; iω2′),

γd/m( ~K1, iω1; ~K2, iω2| ~K1, iω1′ ; ~K2, iω2′) ≡ γ1212d/m (iω1; iω2|iω1′ ; iω2′),

γd/m( ~K1, iω1; ~K2, iω2| ~K2, iω1′ ; ~K1, iω2′) ≡ γ1221d/m (iω1; iω2|iω1′ ; iω2′),

γd/m( ~K1, iω1; ~K1, iω2| ~K2, iω1′ ; ~K2, iω2′) ≡ γ1122d/m (iω1; iω2|iω1′ ; iω2′)

and the same quantities with ~K1 ↔ ~K2 respectively. Due to Eq. (C.4) we can restrict

the discussion to the former vertices. The transformation behaviour under MA and MB

follows as:

Mirror symmetry at axis A

γ1111d/m [iω1; iω2|iω1 − iν; iω2 + iν]
MA→ γ1111d/m [iω2 + iν; iω1 − iν|iω2; iω1]

(2.45)
= γ1111d/m [iω2; iω1|iω2 + iν; iω1 − iν]

= γ1111d/m [iω1; iω2|iω1 − iν; iω2 + iν] (C.5)
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γ1212d/m [iω1; iω2|iω1 − iν; iω2 + iν] MA

→ γ1212d/m [iω2 + iν; iω1 − iν|iω2; iω1]

(2.45)
= γ1212d/m [iω2; iω1|iω2 + iν; iω1 − iν]

= γ2121d/m [iω1; iω2|iω1 − iν; iω2 + iν]

(C.4)
= γ1212d/m [iω1; iω2|iω1 − iν; iω2 + iν]∗ (C.6)

γ1221d/m [iω1; iω2|iω1 − iν; iω2 + iν] MA

→ γ1221d/m [iω2 + iν; iω1 − iν|iω2; iω1]

(2.45)
= γ2112d/m [iω2; iω1|iω2 + iν; iω1 − iν]

= γ1221d/m [iω1; iω2|iω1 − iν; iω2 + iν] (C.7)

γ1122d/m [iω1; iω2|iω1 − iν; iω2 + iν] MA

→ γ1122d/m [iω2 + iν; iω1 − iν|iω2; iω1]

(2.45)
= γ2211d/m [iω2; iω1|iω2 + iν; iω1 − iν]

= γ2211d/m [iω1; iω2|iω1 − iν; iω2 + iν]

(C.4)
= γ1122d/m [iω1; iω2|iω1 − iν; iω2 + iν]∗ (C.8)

Mirror symmetry at axis B

γ1111d/m [iω1; iω2|iω1 − iν; iω2 + iν]
MB→ γ1111d/m [−iω2;−iω1| − iω2 − iν;−iω1 + iν]

(2.44)
= γ1111d/m [iω2; iω1|iω2 + iν; iω1 − iν]∗

= γ1111d/m [iω1; iω2|iω1 − iν; iω2 + iν]∗ (C.9)

γ1212d/m [iω1; iω2|iω1 − iν; iω2 + iν]
MB→ γ1212d/m [−iω2;−iω1| − iω2 − iν;−iω1 + iν]

(2.44)
= γ1212d/m [iω2; iω1|iω2 + iν; iω1 − iν]∗

= γ2121d/m [iω1; iω2|iω1 − iν; iω2 + iν]∗

(C.4)
= γ1212d/m [iω1; iω2|iω1 − iν; iω2 + iν] (C.10)

γ1221d/m [iω1; iω2|iω1 − iν; iω2 + iν]
MB→ γ1221d/m [−iω2;−iω1| − iω2 − iν;−iω1 + iν]

(2.44)
= γ1221d/m [iω2; iω1|iω2 + iν; iω1 − iν]∗

= γ2112d/m [iω1; iω2|iω1 − iν; iω2 + iν]∗

(C.4)
= γ1221d/m [iω1; iω2|iω1 − iν; iω2 + iν] (C.11)

γ1122d/m [iω1; iω2|iω1 − iν; iω2 + iν]
MB→ γ1122d/m [−iω2;−iω1| − iω2 − iν;−iω1 + iν]

(2.44)
= γ1122d/m [iω2; iω1|iω2 + iν; iω1 − iν]∗

= γ1122d/m [iω1; iω2|iω1 − iν; iω2 + iν]∗ (C.12)

For ν = 0 the vertices γ1221d/m [iω1; iω2|iω1; iω2] and γ1122d/m [iω1; iω2|iω1; iω2] are purely real,
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due to

γ1221d/m [iω1; iω2|iω1; iω2]
(2.45)
= γ2112d/m [iω1; iω2|iω1; iω2]

(C.4)
= γ1221d/m [iω1; iω2|iω1; iω2]

∗ , (C.13)

γ1122d/m [iω1; iω2|iω1; iω2]
(2.45)
= γ2211d/m [iω1; iω2|iω1; iω2]

(C.4)
= γ1122d/m [iω1; iω2|iω1; iω2]

∗ . (C.14)
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Appendix D

Hybridization flow for N-chain ladders

In the following we show that the hybridization flow formalism can be generalized to

multi-impurity problems in the form of a semi-infinite N -chain ladder as shown in Fig.

D.1 for the case N = 2. The derivation is completely analogue to the single impurity,

presented in chapter 4, and we just present the important steps

The Hamiltonian of a N -chain ladder with a local interaction on the first rung is given by

ĤN-site-And =U
∑

σ

N∑

j=1

n̂d,j,↑n̂d,j,↓ − t⊥0

N−1∑

j=1

∑

σ

(

d†j,σdj+1,σ +H.c.
)

− t0
∑

σ

N∑

j=1

(

d†j,σb1,j,σ +H.c.
)

−
∞∑

i=1

N∑

j=1

∑

σ

ti

(

b†i,j,σbi+1,j,σ +H.c.
)

−
∞∑

i=1

N−1∑

j=1

∑

σ

t⊥i

(

b†i,j,σbi,j+1,σ +H.c.
)

.

(D.1)

As shown in Fig. D.1 the system is again divided into two parts: The “core” consists of

the correlated rung and the first L bath rungs and the “bath” includes the remaining bath

rungs with index i > L. We mulitiply the hopping between the core and bath by a factor

Λ, i.e. tL → ΛtL.

The fRG flow is implemented in an effective theory on the bath rung bL+1 which follows

from the original theory (D.1) by integrating out the core and all bath rungs with index

i > 1 in a functional integral representation. Up to the fourth order in the fields, the

effective action is given by

Seff
[
b̄L+1, bL+1

]
=− 1

β

∑

iω

∑

σ

b̄L+1,σ(iω)Q̂
eff,Λ
σ (iω)bL+1,σ(iω)

− (ΛtL)
4

4β3

∑

iω1,iω2,
iω1′ ,iω2′

∑

i1,i2,
i1′ ,i2′

∑

σ1,σ2,
σ1′ ,σ2′

b̄L+1,i1,σ1(iω1)b̄L+1,i2,σ2(iω2)

× Gc,(2)
core (iω1, bL, i1, σ1; iω2, bL, i2, σ2|iω1′ , bL, i1′ , σ1′ ; iω2′ , bL, i2′ , σ2′)

× bL+1,i1′ ,σ1′
(iω1′)bL+1,i2′ ,σ2′

(iω2′)δω1+ω2,ω1′+ω2′
δσ1+σ2,σ1′+σ2′

(D.2)
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Figure D.1: Two-site Anderson model in the form of a semi-infinite two-chain ladder,

corresponding to the Hamiltonian (D.1). The system is divided into two parts: The core

consists of the correlated rung and the first L bath rungs (The figure shows the case

L = 0) and the bath includes the remaining bath rungs.

with

Q̂eff,Λ
σ (iω) = iω1 − t̂⊥L+1 − (ΛtL)

2Ĝc,(1)
core,σ(iω, bL, bL)− t2L+1ĝbL+2,bL+3,...(iω, bL+2, bL+2).

(D.3)

Here we used the abbreviation b̄L+1,σ =
(
b̄L+1,1,σ, b̄L+1,2,σ, ..., b̄L+1,N,σ

)
for vectors in the

bL+1-rung subspace. Matrices in this space are denoted by a hat. Gc,(n)
core is the connected

n-particle Green’s function of the isolated core and gbL+2,bL+3,... the one-particle Green’s

function of the bath. t̂⊥L+1 is the free hopping matrix on rung L+ 1.

As in the single impurity case one can derive fRG flow equations with respect to the

parameter Λ, which are truncated by neglecting the flow of the three-particle vertex and

all higher vertex functions. We are left with a coupled set of flow equations for the self-

energy ΣΛ
eff and the two-particle vertex ΓΛ

eff. The latter can be separated into two different

spin channels like in Eq.(2.51) and we denote the direct part as V Λ
eff. The flow equations

are given by

d

dΛ
ΣΛ

eff (iω, i1, i1′) =− 1

β

∑

iω′

∑

i2,i2′

SΛ
eff (iω

′, i2′ , i2)

×
[
2V Λ

eff (i1, iω; i2, iω
′|i1′ , iω; i2′)

− V Λ
eff (i1, iω; i2, iω

′|i2′ , iω′; i1′)
]
, (D.4)

d

dΛ
V Λ

eff (i1, iω1; i2, iω2|i1′ , iω1′ ; i2′) =T Λ
pp (i1, iω1; i2, iω2|i1′ , iω1′ ; i2′)

+ T Λ
dph (i1, iω1; i2, iω2|i1′ , iω1′ ; i2′)

+ T Λ
crph (i1, iω1; i2, iω2|i1′ , iω1′ ; i2′) (D.5)
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with

T Λ
pp (i1, iω1; i2, iω2|i1′ , iω1′ ; i2′) =

1

β

∑

iω3

∑

i3,i4
i3′ ,i4′

LΛ (iω3, iω1 + iω2 − iω3, i3′ , i3, i4′ , i4)

× V Λ
eff (i3, iω3; i4, iω1 + iω2 − iω3|i1′ , iω1′ ; i2′)

× V Λ
eff (i1, iω1; i2, iω2|i3′ , iω3; i4′) , (D.6)

T Λ
dph (i1, iω1; i2, iω2|i1′ , iω1′ ; i2′) = − 1

β

∑

iω3

∑

i3,i4
i3′ ,i4′

LΛ (iω3, iω1 − iω1′ + iω3, i3′ , i3, i4′ , i4)

×
[
2V Λ

eff (i1, iω1; i3, iω3|i1′ , iω1′ ; i4′)

× V Λ
eff (i4, iω1 − iω1′ + iω3; i2, iω2|i3′ , iω3; i2′)

− V Λ
eff (i1, iω1; i3, iω3|i1′ , iω1′ ; i4′)

× V Λ
eff (i2, iω2; i4, iω1 − iω1′ + iω3|i3′ , iω3; i2′)

− V Λ
eff (i3, iω3; i1, iω1|i1′ , iω1′ ; i4′)

× V Λ
eff (i4, iω1 − iω1′ + iω3; i2, iω2|i3′ , iω3; i2′)

]
, (D.7)

T Λ
crph (i1, iω1; i2, iω2|i1′ , iω1′ ; i2′) =

1

β

∑

iω3

∑

i3,i4
i3′ ,i4′

LΛ (iω3, iω2 − iω1′ + iω3, i3′ , i3, i4′ , i4)

× V Λ
eff (i3, iω3; i2, iω2|i1′ , iω1′ ; i4′ , iω4)

× V Λ
eff (i1, iω1; i4, iω2 − iω1′ + iω3|i3′ , iω3; i2′) (D.8)

and the single-scale propagator

ŜΛ
eff(iω) = ĜΛ

eff(iω)
d

dΛ

[

Q̂eff,Λ(iω)
]

ĜΛ
eff(iω). (D.9)

The function LΛ is defined as

LΛ (iω1, iω2, i1, i2, i3, i4) = GΛ
eff (iω1, i1, i2)S

Λ
eff (iω2, i3, i4) + SΛ

eff (iω1, i1, i2)GΛ
eff (iω2, i3, i4)

(D.10)

with the Green’s function
[

ĜΛ
eff(iω)

]−1

= Q̂eff,Λ(iω)− Σ̂Λ
eff(iω). (D.11)

In the flow equation for the vertex function (D.5) we use the Katanin-replacement [Kat04]

ŜΛ
eff → −dĜ

Λ
eff

dΛ
= ŜΛ

eff − ĜΛ
eff

dΣ̂Λ
eff

dΛ
. (D.12)

The initial conditions for Λ = 0 are

ΣΛ=0
eff (iω, i1, i1′) = 0, (D.13)

V Λ
eff (i1, iω1; i2, iω2|i1′ , iω1′ ; i2′) = t4LGc,(2)

core (bL, i1, ↑, iω1; bL, i2, ↓, iω2|bL, i1′ , ↑, iω1′ ; bL, i2′ , ↓) .
(D.14)
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