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Abstract 

Production systems no longer have to pursue one, but a set of goals. Classic optimization regarding lead time 
or capacity utilization is still sought after, but was extended by factors such as energy consumption or use of 
cooling lubricants. Thus the models of dependencies and system behavior become more complex, hampering 
optimization by classic algorithmic approaches. 
One subdomain of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” 

examines the potential of cognitive self-optimization as a way of handling technical complexity. This paper 
analyses the constraints and dependencies that have to be considered to find overall optima for process 
chains and gives an assumption of the associated complexity. This builds the base for future implementations 
of self-optimization to boost overall resource- and energy-efficiency in process chains. Furthermore, examples 
are presented on how optimization can be realized by using cognition and self-optimization. 
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1 INTRODUCTION 

The determination of optimal sequences of jobs that need to 
be conducted on a group of machines is called “Job Shop 

Scheduling” (JSP) and has been one of the classic 

optimization tasks in mathematical production research ever 
since [1]. The basic problem of JSP can be described as 
follows: For a specific group of components, all with individual 
subsequent production steps, an optimal overall sequence of 
conducting these on a specific group of machines, needs to 
be found. Usually, the overall production time (“makespan”) is 

the optimization goal that is meant to be minimized. An 
example of a 3-machine 3-component problem, where each 
component has to be processed on each machine, but in 
differing sequences, is presented in figure 1. 

 
Figure 1: A basic job shop schedule 

Every one of the nine jobs has a specific length, cutting down 
the problem to finding the optimal starting time for each job, 
determined by the completion of the previous job and the 
availability of the machine. Even though these problems often 

appear quite easy, the mathematical complexity connected 
with finding an optimal (or, at least, “good enough”) order, 

rises exponentially. Hence, for problems including more than 
four to six machines and components, instead of 
systematically testing all possible sequences (“brute-force”) 

regarding the desired objective (makespan, capacity usage 
etc.), other approaches have to be considered. As for the 
classic JSP discussed above, heuristics such as the nearest-
neighborhood algorithm [2] or more advanced approaches 
such as artificial neural networks [3], agent-based-networks 
[4], genetic algorithms [2] or ant-colony-optimization [5] have 
been used successfully. 
When considering more options for each job, e.g. the process 
velocity to influence energy consumption, the number of 
options (and thus the mathematical complexity) manifolds. 
Still, such variables need to be regarded to find overall optima 
for process chains. Therefore, this paper analyses the 
constraints and dependencies that have to be considered and 
gives an assumption of the associated complexity. 
Furthermore, examples are presented on how optimization 
can be realized by using cognition and self-optimization, 
which is one of the main topics of the Cluster of Excellence 
“Integrative Production Technology for High-Wage Countries” 
in Aachen. 
 
2 OPTIMIZATION GOALS FOR PRODUCTION SYSTEMS 

Due to a study conducted in [6], the lifecycle cost of a 
machine tool is mainly composed of operating expenses, as 
the purchase price only makes up for 20% of the total. 
Furthermore, 40% of the operating expenses are caused by 
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the consumables electrical energy, coolant lubricants and 
pressurized air, as shown in fig. 2. As their consumption 
strongly depends on the process parameters, the 
consideration of machine variables in scheduling has an 
enormous influence on total costs of a process chain as well 
as its resource- and eco-efficiency. 

 
Figure 2: Lifecycle-cost for a tool machine [6] 

Besides economic considerations, ecologic objectives can be 
included into the goal system of production processes [7]. The 
impact assessment and the evaluation of process inputs and 
outputs can be achieved by metrics such as the carbon 
footprint. Ecological assessments have been widely in use in 
certain industries with a high amount of resource consumption 
and pollution potential, e.g. energy production or the chemical 
industry. Several examples of the integration of LCA methods 
for production processes into multi-dimensional optimization 
approaches can be found in the scientific literature [8], [9]. 
Including single machine variables and behavior into Job 
Shop Scheduling indicates three major challenges: optima for 
single machines and complete process chains may differ, the 
determination of in- and outputs for each machine model 
need to be known and the complexity of the planning 
algorithm manifolds. Hence these issues are discussed in the 
following sections. 
2.1 Optimization of single processes vs. process 

chains 

For a single process, the economically and - most of the time 
also - ecologically optimum operating point for a single tool 
machine is the maximum operating speed. This is mainly due 
to the high amount of auxiliary units, e.g. pumps or 
electronics, which constantly consume electrical energy 
regardless of the machine being idle or running at full speed 
[10], [11]. For an entire process chain, priorities can differ: 
E.g. the electricity cost for industrial companies is normally 
determined by two major components: the total energy 
consumed, and the maximum load peak required. So instead 
of having several machines operating at maximum speed, it 
can be more cost-efficient to reduce process velocity when 
operating close to an energy peak load [12]. 
The same metric applies to the consumption of cooling fluids 
and tool lifetime for chipping operations such as milling or 
drilling. Most machines use closed cycles, so that fluids are 
not lost but filtered and re-used. Still, a large share is lost due 
to vaporization [13]. The need for cooling corresponds to the 
heat development at the tool cutting edge and thus the 

material removal rate. Reducing cutting speed where possible 
can minimize the need for cooling lubricants and extend the 
tool life. On the other hand, it increases the total energy 
consumption [10] and, if the decelerated process causes 
subsequent jobs to start later, deteriorates the overall process 
chain efficiency. 
Thus, the optimum for single processes and complete 
process chains can differ, depending on the system 
boundaries and the applied metrics for the evaluation of an 
operating point.  
2.2 Machine tool behavior and dependencies 

The prediction of machine tools behavior e.g. regarding their 
energy consumption has been subject to various scientific 
projects and approaches (see [14], [15], [16] or [17]). Results 
show that these models are able to predict the machine 
behavior within very close limits and thus can contribute to 
realize process optimization. Fig. 3 illustrates some of the 
dependencies of the resource consumption and output 
parameters of a cutting machine from in-machine units and 
the input control variables. More important than the exact 
determination of each dependency is the insight that when 
starting to consider in- and output parameters for each job to 
determine e.g. the consumption of electrical energy, the 
original Job Shop Scheduling problem expands significantly.   
 

 
Figure 3:control parameters and dependend factors for a 

machine tool 
For the basic scheduling problem, the sequence of jobs was 
the only focus, thus reducing the optimization to only one 
parameter per job – its position within the schedule. 
Considering machine behaviour models as presented above 
now leaves a whole set of options for each sequence. To 
evaluate the implied consequences for scheduling algorithms, 
the expanditure of the original problem is examined in the 
following section. 
 
2.3 Complexity of the central planning approach 

When looking at the intermediate units and interdependencies 
presented in the section above, it becomes clear that 
deterministically planning the control parameters for each 
machine even on a medium sized shop floor becomes more 
complex.  
A classic job shop scheduling problem consisting of 10 
machines and 10 components was introduced by [18] in 1967 
and has since been a major benchmark for solving 
algorithms. In 2009, Schwindl [19] calculated the number of 
possible sequences for this problem to be (10!)10 
(= 3.95 x 1065), blocking the then known world’s most 
powerful computer for several millions years if trying to solve 
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if by a “brute force”-approach. Even though near-optimal 
sequences for this classic JSP-benchmark can be found 
within minutes using advanced approaches such as genetic 
algorithms, it becomes clear that the complexity quickly 
manifolds with the number of machines, components or other 
options.  
When considering machine parameters, the number of 
possible set-ups for each sequence rises. As discussed 
above, a machine tool has several input parameters (m), each 
of which has several values (n). To reduce the number of 
options, the input parameters are regarded as discrete 
values, e.g. low-medium-high, or 1-5. So for a job shop 
scheduling problem with k machines and l components, the 
number of possible set-ups for each sequence adds up to: 
 

(𝑛𝑚)𝑘×𝑙 = 𝑛 𝑚×𝑘×𝑙 
 

Taking the benchmark problem into account (10 machines 
and 10 components, adding up to 100 single jobs) and 
assuming machines with three parameters (e.g. feed, speed 
and cutting depth), each with only three values (low – medium 
– high), this ends up to 1,37x10143 possible set-ups for each 
sequence. As shown by [19], there are 3,95 x 1065 possible 
sequences for this standard JSP-benchmark. 
As discussed in section 2.1, most processes will normally be 
conducted at the maximum possible rate and reduced only 
when necessary. Still, as the number of machine parameters 
can be higher and discretization will normally be conducted in 
much finer steps than three, complexity can be said to be 
beyond the reasonable application of “brute force”-
approaches. Hence more advanced approaches to realize the 
inclusion of machine parameters and models into Job Shop 
Scheduling are discussed in the following section. 
 
3 APPROACHES TO INCLUDE RESOURCE 

CONSUMPTION INTO JOB SHOP SCHEDULING 

First approaches to include the resource consumption of tool 
machine into Job Shop Scheduling can be found in [20], [21] 
and [22]. As the complexity of the induced mathematical 
problems rises [21], more advanced approaches such as 
combined local search algorithms [22] or ant-colony-
optimization [23] are applied to find more optimal solutions.  
To overcome the complexity problem when combining Job 
Shop Scheduling and resource consumption as described 
above, distributed decision making with agent-based 
algorithms [24] and self-optimization appear to be two 
promising approaches. In the following section, these are 
examined more closely.  
3.1 Agent-based distributed decision making 

When handling job shop problems with a high complexity, one 
promising approach is the development of distributed, agent-
based networks [4]. A good introduction to this topic can be 
found in [25] and [26]. First attempts of distributed, agent-
based decision-making go back to the 1980s [27]. The 
number of its successful applications has since multiplied, a 
good overview can be found in [28] and [29]. Advantages of 
the distributed, agent-based network approach are its 
robustness and the ability to find near optimal solutions even 
for complex problems within an acceptable calculation time 
[30]. The emergence of cyber-physical systems in the 

scientific spotlight underlines the future role of this approach, 
as CPS mainly resemble distributed networks of interacting 
and communicating machines [31]. 
Another advantage of distributed networks is the possibility to 
add and withdraw subsystems (e.g. single machine tools) 
dynamically, e.g. in case of a technical failure. So when a 
single machine within a cooperating network breaks down, 
the remaining production system can continue without 
rearrangement of the control structure. This, of course, 
requires the existence of standardized communication 
protocols. Furthermore, agents in distributed networks can be 
equipped with the ability to learn, thus react to changed 
boundary conditions and system statuses. Learning is always 
conducted by comparing the achievement of an action and its 
intended goal. Thus, the goal needs to be known and 
quantifiable. 
3.2 Self-optimizing process chains 

Self-optimizing process chains resemble another promising 
approach to overcome the complexity problems discussed 
above. A good introduction to the concept of self-optimization 
as a way of setting up the control structure of more 
autonomous machines can be found in [32]. Basically, it 
resembles a procedure of three major steps: 

i. analysis of the current system situation, 
ii. determination of (new) system objectives and 
iii. adaptation of the system’s behavior to the new 

surrounding conditions [33]. 
System objectives can either resemble single physical units 
such as vibration [34] or a specific torque [35] or multi-
dimensional goals, e.g. a combination of the handling 
characteristics of a systems and its energy consumption, 
requiring multi-objective decision making and optimization 
[36].   
The concept of self-optimization has been applied 
successfully to the control of demonstrator objects such as 
trains and robots [32] as well as real production processes 
such as laser resonator alignment [33], laser cutting or 
weaving [37]. 
Self-optimization can be used on various levels: on the level 
of a single machine, it can be applied to influence its 
parameters to achieve a local process optimum, as in the 
examples discussed above. On a shop floor or even factory 
level, the concept of self-optimization can help to reduce 
planning efforts and complexity by offering the option of 
cascading control loops [38], [39]. Instead of taking all 
decisions on one level, e.g. the factory control, goal vectors 
are used as a way of communicating between the different 
control loops, as presented in figure 4: On a factory level, 
certain jobs, boundary conditions and goals are assigned to a 
process chain. Here, these are enhanced with further 
information and split to be assigned to different machines. 
The tool machine will thus be allowed to optimize itself within 
its constraints and boundary conditions to achieve its 
assigned goals as good as possible. This way of arranging 
self-optimization on different levels within the factory 
infrastructure resembles the approach of cascading quality 
control loops as can be found in [40] and [41].  
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Figure 4: schematic diagram of cascading, self-optimizing 

control loops 
An example of a goal vectors could be a specific job with the 
additional constraint not to exceed a certain peak load, total 
energy and lubrication consumption as well as a latest time of 
job completion. 
 
4 NEED FOR FUTURE SCIENTIFIC WORK 

As discussed above, distributed, agent-based decision 
making and self-optimizing process chain optimization can be 
a successful way of overcoming the induced complexity of a 
job shop scheduling problem that is expanded by modifiable 
machine parameters and thus contribute to achieve more 
global process chain optima.  
Implementing these approaches causes two major demands 
that will thus be subject to further scientific work within the 
Cluster of Excellence: a well-known and quantifiable goal 
system and structures and protocols for inter-machine-
communication.   
4.1 Multi-dimensional goal systems 

The major requirement for any kind of optimization algorithm 
is a known and quantifiable goal. To achieve a general 
optimum for a process chain, a larger group of goals needs to 
be considered. In addition to the makespan, that typically 
formed the optimization parameter for classic scheduling 
approaches, other process characteristics as e.g. resource 
consumption of electricity or cooling fluids have to be taken 
into account. Alongside a costing approach, these can also 
be evaluated in other metrics, e.g. reflecting ecological 
considerations. Thus, goals with differing physical units and 
scales would have to be compared to one another. 
Representing all of these goals in a quantifiable way requires 
the use of a multidimensional goal system that can be 
interpreted and used by a computer-based system or 
network. One major focus of the future scientific work thus 
needs to be the development of a complex goal system that 
represents economic, ecologic and socio-economic goals, 
resembling the three major perspectives (and thus 
assessments) that are taken into account when evaluating 
processes or products. A goal system has to enable trade-offs 
between the different performance measures and goals 
indicated by those assessments in a quantifiable way to 
support multi-dimensional decision making and optimization. 
4.2 Communication networks and protocols 

As discussed above, the application of self-optimizing process 
chains and distributed, agent-based production networks 
manifold the need for inter-machine communication. Different 
machines, factory and administration levels and networks 
have to exchange information and communicate goals and 

restrictions to enable cooperation. Thus, one focus of future 
scientific work will be to research effective communication 
networks and protocols to enable information exchange 
between single machines as well as superior planning and 
administration systems.   
 
5 CONCLUSION 

Production systems no longer have to pursue one, but a set 
of goals. Classic optimization regarding lead time or capacity 
utilization is still sought after, but needs to be extended by 
factors such as energy consumption or use of cooling 
lubricants to achieve overall system optima. Thus the models 
of interconnections and system dependencies of single 
machines and machine networks become more complex, 
hampering optimization by classic algorithmic approaches. 
Promising approaches to overcome the induced complexity, 
such as distributed agent-based networks and self-
optimization, exist. Finding ways to enable inter-system-
communication and developing goal systems for the 
evaluation of overall system optima are two major issues that 
will be taken into the focus of future scientific work. 
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