
Refactoring of Automotive Models to Handle the Variant Problem

Cem Mengi and Manfred Nagl

Software Engineering, RWTH Aachen University, Germany

1 Introduction and Motivation

Models and model-based languages are more and more
used in the automotive domain [1] to define artifacts
for software (requirements, software and hardware ar-
chitectures, code structure and behavior) to run in a
car. Models and code reflect a remarkable complexity,
due to safety critical properties and the huge amount
of possible variants [2].

The big number of variants comes from simple or
elaborated functionality, different realizations of func-
tionality, combination of functionality, integration of
proprietary solutions, country-specific legality con-
straints, and alike. This presentation concentrates on
Simulink models [3], which are an essential part of the
model structure describing automotive software.

Especially, we show how to use refactoring [4] in or-
der to express commonalities and differences of mod-
els and, therefore, facilitate reuse and extensibility as
essential quality measures. Even more, refactoring is
also the means to handle the variant problem. The
presentation is based on a chapter of [5]. It remains
on an informal example by example basis.

2 The Approach

Software variants in the automotive domain are usu-
ally modeled incrementally and evolutionary by copy-
paste methods. These methods are unsystematic and
result in unclear designs, where abstraction is missing.
Especially, due to the increasing complexity, common
parts of the models are very hard to be identified.

The consequence is a decreasing quality according
to measures like reusability, extensibility, modifyabil-
ity etc. Refactoring is appropriate to overcome the
drawbacks. It consists of two main activities:

1. Differencing Simulink models to identify common
and variable parts.

2. Restructuring the models with variability mech-
anisms to improve quality, as they now express
commonalities and differences.

While tool-support for differencing is either automatic
or interactive, restructuring is rule-based and could
be supported by tools. In the following Section 3, we
describe the differencing of Simulink models. After
that, Section 4 deals with restructuring.

Difference Model

Commonality 
Model

Simulink Model Simulink Model

Difference Model

Figure 1: Overview of the differencing activity

3 Differencing Simulink Models

Figure 1 illustrates the differencing approach. The
differenciator function gets two Simulink models as
input and puts out three models, one commonality
model and two difference models. The commonality
model consists of Simulink blocks and connections,
which are common or similar in both input models.
Furthermore, it also comprises the points of variation.
These variation points are defined by the difference
models. Therfore, they include solely variant-specific
details.

In simple situations, differencing is done automati-
cally. More complicated situations are handled inter-
actively.

Having this information, the original Simulink
models can now be restructured in a way, that
reusability and exensibility can be significantly en-
hanced.

4 Restructuring Simulink Models

Our variability mechanisms are means to implement
variation points in Simulink. Mechanisms are If

Action Subsystems, Switch, Model Variants and
Variant Subsystems. It is important to know about
the properties of these mechanisms before using them
for restructuring models, as wrong decisions can lead
to further expensive restructuring.

We have analyzed and evaluated the above vari-



1
Out1

In1

In2

Out1

Block

2
In2

1
In1

2
Out2

1
Out1

In1

In2

Out1

Block

2
In2

1
In1

2
Out2

1
Out1

In1 Out1

MV:VarMech

In1

In2

Out1

Block

2
In2

1
In1

1
Out1Terminator Ground

1
In1

1
Out1

1
In1

Restructured 
Simulink model

Variant 1 Variant 2

Figure 2: Example of a restructuring rule

ability mechanisms by considering suitable underly-
ing control constructs, the operating mode, and their
advantages as well disadvantages on the basis of var-
ious criteria [5]. The outcome of this has shown
that Model Variants and Variant Subsystems can
be favored. Therefore, we recommend to restructure
Simulink models by mainly using one of these two
variability mechanisms.

To support the restructuring activity, we adopt a
rule-based approach, where each rule defines a recom-
mended action for a detected variation point. The
rules cover the interfaces of (root/inner) models and
blocks, block types and connections between blocks.
They can be applied for simple as well as complex
situations.

Figure 2 shows a simple (and non realistic) example
of a situation to be restructured. Both upper left and
right Simulink models share a lot of commonalities.
The only obvious variation point, which would also
be detected by the differentiator function, is the out-
interface.

An appropriate rule for this variation point can be
formulated as follows:

If there is a variation point at the out-interface,
then do the following in the restructured model:
1. Model the maximum out-interface.
2. Apply Model Variants/Variant Subsystems

to all variable ports in order to control the data
flow for each variant:
2.1 The data flow of a port, not existent in a

variant, is terminated with a Terminator-
block. To achieve adaptability, a dummy
signal is generated with a Ground-block and
forwarded to the variable port. (Both
simulate an empty connection.)

2.2 The data flow of a port, that exists in a
variant, is just forwarded.

In this way, we have formulated nine basic rules,
which can be combined to more complex rules in or-
der to handle complex variation points. Doing so,

the restructured models achieve a quality level, where
reusability is improved (commonalities are captured
and modeled once) and extensibility is enhanced (vari-
ability mechanisms).

5 Extensions

The example above was one model with two different
occurrences of variants. Of course, also multiple vari-
ants of that situation work in the same way. Even
more, the situation can be generalized such that two
or more dependent situations are handled: As exam-
ple we sketch in our presentation the car access sys-
tem (with a simple or an elaborated variant) and its
relation to the comfort system (adjusting the seat,
the mirrors, the heating/ air conditioning), again in a
simple and an elaborated form.

The approach can also be used for other models as
function networks, software architectures, code frag-
ments etc. On any of these models also dependency
situations can be handled. In [5] the variant problem
is studied on function network, Simulink, and code
level.

6 Summary

We showed that one key to the variant problem is
to be able to model commonalities and differences of
models, dependent models, and their combinations.
The approach can be used on different levels (function
networks, Simulink, software architectures, code), so
for all relevant modeling artifacts used in automotive
software.

This variant approach can be applied in a refac-
toring mode and thereby finding commonalities and
differences of given models, in a top-down approach
where we start with commonality/ difference model-
ing which is furthermore refined, or in a combination
of both. Therefore, also round-trip engineering is cov-
ered.

References

[1] Schäuffele, J. and Zurawka, T.: Automotive Soft-
ware Engineering - Grundlagen, Prozesse, Meth-
oden und Werkzeuge effizient einsetzen. Vieweg,
2006

[2] Clements, P. and Northrop, L. M.: Software
Product Lines: Practices and Patterns. Addison-
Wesley, 2007

[3] www.mathworks.de/products/simulink/

[4] Rech, J. and Bunse, C.: Model-Driven Software
Development: Integrating Quality Assurance. Idea
Group Reference, 2008

[5] Mengi, C.: Automotive Software - Prozesse und
Variabilität. Ph.D. Thesis, to appear


