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SUMMARY We propose a new design approach to improve the compu-
tational efficiency of an optimal design of optical waveguide devices utiliz-
ing coupled mode theory (CMT) and a neural network (NN). Recently, the
NN has begun to be used for efficient optimal design of optical devices. In
this paper, the eigenmode analysis required in the CMT is skipped by using
the NN, and optimization with an evolutionary algorithm can be efficiently
carried out. To verify usefulness of our approach, optimal design examples
of a wavelength insensitive 3 dB coupler, a 1 : 2 power splitter, and a wave-
length demultiplexer are shown and their transmission properties obtained
by the CMT with the NN (NN-CMT) are verified by comparing with those
calculated by a finite element beam propagation method (FE-BPM).
key words: neural network (NN), coupled mode theory (CMT), directional
coupler type photonic devices, optimal design, hybrid firefly algorithm

1. Introduction

With the rapid spread of the Internet and the development of
IoT, the demand for high-speed and large-capacity optical
communication systems is increasing. Nowadays, with the
development of computer simulation technology, it is possi-
ble to analyze and design optical devices required in optical
communication systems, on personal computers. The opti-
mization of the optical device is generally done by iterative
approach including evolutionary methods based on multi-
point search [1], gradient methods based on sensitivity anal-
ysis, or other approaches. Above all, evolutionary methods
require a large number of numerical simulations. For effi-
cient design, it is necessary to improve computational effi-
ciency of the optical device analysis.

Recently, machine learning with a neural network (NN)
has begun to be utilized in optimal design of optical de-
vices [2]–[6]. In [2] and [3], the NN is learning to predict
the output characteristics of an arbitrarily given device struc-
ture, and inverse design is performed to design the optimal
device structure by inputting the desired output. However,
in the inverse design, the solution non-uniqueness prob-
lem must be considered. It has been shown that this non-
uniqueness problem can be overcome using a tandem struc-
tured NN in some design problems [4]. On the other hand,
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in [6], the efficient optical property estimation of five kinds
of device models utilizing a relatively simple NN is demon-
strated. However, actual design example is not shown. Al-
though the inverse design network is constructed and used to
design photonic devices in [2]–[5], the applicability seems
to be limited and it seems to be still difficult to apply these
inverse design network to arbitrary multimodal problems.
On the other hand, it is relatively easy to evaluate device
properties of some basic optical components by using NN
as demonstrated in [6]. Therefore this kind of NN is able
to be used to improve computational efficiency of analyzing
more complicated optical devices and it leads to improve the
computational efficiency of automatic optimal design.

In this paper, we propose a new design approach to im-
prove the computational efficiency of the optimal design of
optical waveguide devices. In our design approach, an evo-
lutionary method as an optimization method and a coupled
mode theory (CMT) [7] as an numerical analysis method
are employed. Furthermore, in order to achieve an effi-
cient optimal design, the mode coupling coefficient and the
propagation-constant mismatch required in the CMT anal-
ysis are predicted utilizing a relatively simple NN without
time consuming numerical calculation.

In Sect. 2, we describe the behavior of the NN used in
our approach. In Sect. 3, we briefly review the CMT. In
Sect. 4, we describe an evolutionary method employed in
this study. In Sect. 5, the numerical accuracy of the NN-
CMT is illustrated. In Sect. 6, we design wavelength a in-
sensitive 3 dB coupler, a 1 : 2 power splitter, and a wave-
length demultiplexer as optimal design examples utilizing
our approach. In Sect. 7, we conclude this paper.

2. Neural Network

The NN is a mathematical model of neurons in the hu-
man brain. As shown in Fig. 1, neurons are connected
by synapses, and information is transmitted through the
synapses. The output of the NN is determined by the
weights, which is the strength of the synaptic connections
between each neuron. In the learning process, the weights
are adjusted so that various input/output relationships can be
expressed. There are hidden layers between the input layer
and the output layers, and a complex input/output relation-
ship can be expressed with increasing the hidden layers.

The behavior of a single neuron is shown in Fig. 2. One
neuron is weighted with the output from the neurons in the
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Fig. 1 Basic neural network.

Fig. 2 A neuron and synapses in neural network.

previous layer. The output of the neuron is determined by
the sum of these inputs and a bias. The output of the neuron
is expressed as follows:

y = f (x1w1 + x2w2 + · · · + xNwN + b) (1)

where xi (i = 1, 2, · · · ,N) is an input variable, wi is a weight,
b is a bias, and an output y is obtained through an activation
function f . In this study, the hyperbolic tangent function
is used as an activation function of the hidden layer and an
identity function is used in the output layer.

In order to construct the NN by machine learning, the
back-propagation method [8] is used. The cost function E is
defined as follows:

E =
1
2

NL+1∑
k=0

(yk − tk)2 (2)

and these weights are updated based on a gradient descent
method. Here, L is the number of hidden layers, yk is the
output from the NN, and tk is the known output used for
learning.

3. Coupled Mode Theory

In this study, we consider a directional coupler in which
the waveguide width and waveguide gap vary continuously
in the propagation direction. According to the CMT, the
evolution of the mode amplitude of each waveguide can
be obtained by solving the following mode coupling equa-
tion [10]:

Fig. 3 Isolated and coupled modes in a directional coupler. Isolated
system of (a) waveguide 1. and (b) waveguide 2. (c) Coupled system.

d
dz

[
A1(z)
A2(z)

]
= − j

[ −δ(z) κ(z)
κ(z) δ(z)

] [
A1(z)
A2(z)

]
(3)

where A1 and A2 represent the modal amplitude in iso-
lated waveguides 1 and 2, and δ and κ are the propagation-
constant mismatch and the mode coupling coefficient, re-
spectively. In this study, δ and κ vary along the z-direction
according to the longitudinal structural variation, and this
equation is solved by a finite difference scheme in the z-
direction. In the CMT analysis, it is necessary to know δ and
κ according to changes in the waveguide width and gap. δ
and κ can be calculated by eigenmode analysis of the wave-
guide at each cross section point in the z-direction. How-
ever, eigenmode analysis is usually time consuming process,
especially for three-dimensional waveguides. For this rea-
son, we employ the NN for estimation of δ and κ to improve
the computational efficiency of the CMT analysis.

The propagation-constant mismatch δ is defined as fol-
lows:

δ =
β1 − β2

2
(4)

where β1 and β2 are the propagation-constants of two iso-
lated waveguides, as shown in Fig. 3 (a) and (b).

The mode coupling coefficients which represent the
coupling strength in the coupled system can be obtained by

κ =

∫ ∞
−∞

∫ ∞
−∞
ωε0

(
n2 − n2

1

)
E∗2 · E1dxdy

∫ ∞
−∞

∫ ∞
−∞
(
E∗2 × H2 + E2 × H∗2

) · izdxdy
(5)

where ω is the angular frequency, ε0 is the dielectric con-
stant in vacuum, n is the refractive index distribution of the
coupled system, n1 is the refractive index of the isolated sys-
tem of the waveguide 1, Ei and Hi are the electric and mag-
netic fields of the eigenmode in the isolated system i, iz is
a unit vector in the propagation direction, and ∗ indicates a
complex conjugate.

4. Evolutionary Method

In this section, we illustrate evolutionary methods used in
this study. Since evolutionary methods are based on mul-
tipoint searching algorithm, it can be expected to find more
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global optimal solution. In evolutionary approach, first, vec-
tors of design parameter called individual vectors, xi (i ∈
[1,N]) are generated, where N is population size. By iter-
ating update procedure of the individuals, optimal point of
an objective function can be found. In this paper, we adopt
the hybrid firefly algorithm (HFA) [9] which is the hybrid
optimization approach of the firefly algorithm (FA) and the
differential evolution (DE). As an evolutionary approach,
many kinds of algorithm have been proposed and applied
to various kinds of design problems. Although we cannot
clearly mention which algorithm is superior, it is shown that
the HFA is relatively robust in the optimal design of pho-
tonic devices [1].

4.1 Differential Evolution (DE)

The DE is an algorithm that uses a difference vector to mu-
tate an individual. The mutated individual survives if it is
superior to the previous one. In the mutation, three parent
individuals xn

pi (i = 1, 2, 3) are selected randomly, and a mu-
tant individual xn

m of the base individual xn
p1 is generated

using the following formula:

xn
m = xn

p1 + F
(
xn

p2 − xn
p3

)
(6)

where F ∈ [0, 1] is a scale factor. A child individual xn+1
i

is generated between this mutant one and xn
i , and a supe-

rior one among xn
i and xn+1

i is left in the next generation.
Since the difference vector becomes smaller on average as
the search progresses, it is possible to continuously shift
from a global search to a local search.

4.2 Firefly Algorithm (FA)

The FA is an algorithm inspired by a habit of fireflies. A fire-
fly is attracted by others shining more strongly. Each firefly
is attracted to all the other fireflies that are more attractive
than itself. The attractive force is determined by their attrac-
tiveness and the distance from them. The update formula for
the individual xn

i is given by

xn+1
i = xn

i +
∑

j

u
(
β0, j − β0,i

)
β0, je

−γr2
i j

(
xn

j − xn
i

)
+ αδnε

(7)

where β0, j is the attractiveness of the j-th individual, ri j is
the distance between xn

i and xn
j , γ = 1/

√
L is the light ex-

tinction coefficient, and L is a quantity related to the search
range of each individual. u(ξ) is a unit step function that is
1 when ξ � 0 and 0 when ξ < 0. The third term on the
right-hand side of (7) is a term that adds randomness to the
search, where α is a scale factor, δ is an attenuation coeffi-
cient, and ε is a vector consists of random element. Each
element of ε, εi, is chosen to be |εi| < 1. Since random el-
ements decay continuously with iterations, it is possible to
gradually switch from global search to local search.

4.3 Hybrid Firefly Algorithm (HFA)

The HFA is a hybrid method of the DE and the FA. In
the HFA, the initial population is divided into half, each is
evolved by the DE and the FA within one generation, and
then individuals in both groups are mixed in the next gener-
ation. After that, the population is divided into two groups
again and the same evolution process is repeated. It can be
expected to find a better solution by utilizing the advantages
utilizing the advantages of both search algorithms.

5. Numerical Examples of Analysis for Directional
Coupler

To verify the effectiveness of our numerical approach based
on the NN and the CMT, we compare the results obtained
by the present method with those by more accurate FE-
BPM [12]. We consider a directional coupler as shown in
Fig. 4, in which the waveguide width, W1 and W2, and the
waveguide gap, D, vary continuously in the propagation di-
rection. Considering an application to silicon photonics, the
material in core and cladding is assumed to be silicon (Si)
and silica (SiO2), respectively, and their refractive indices
are set to be ncore = 3.4 and nclad = 1.45, respectively. The
incident wave is the fundamental TE wave with wavelength
of λ = 1.5 ∼ 1.6 μm. The longitudinal variation of W1, W2,
and D are defined as follows:

W1(z) = W2(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w0 (region 1, 3)

w1 + (w0 − w1)
|2z − L|
L − 2l

(region 2)

D(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d0 (region 1, 3)

d1 +
d0 − d1

2

⎧⎪⎪⎨⎪⎪⎩1 − cos

⎛⎜⎜⎜⎜⎝π|2z − L|
L − 2l

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (region 2)

where the device length is set to be L = 100 μm, l = 5 μm,
w0 = 0.3 μm, w1 = 0.5 μm, d0 = 1.0 μm, and d1 = 0.3 μm.

First, we construct an NN that outputs δ and κ for
the inputs of λ, W1, W2, and D. The training data for the
NN are created from random combinations in the range:
1.45 μm ≤ λ ≤ 1.65 μm, 0.2 μm ≤ W1,W2 ≤ 0.6 μm,

Fig. 4 Structure of a directional coupler for analysis example.
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Fig. 5 Accuracy of the estimated values by the NN: (a) the propagation-
constant mismatch δ and (b) the mode coupling coefficient κ.

0.2 μm ≤ D ≤ 1.1 μm. 20 test data which are created in-
dependently from the training data is used to verify the con-
structed NN. This NN consists of a single hidden layer with
7 units. 8,000 training data are used for machine learning,
and the learning rate and the epoch are set to be 0.001 and
50,000, respectively.

Figure 5 shows the accuracy of the estimated δ and κ
by the constructed NN for 20 test data. We can see that the
estimated values using the NN are in good agreement with
the exact values. The average relative errors are 0.47% and
0.05% for δ and κ, respectively.

Using this NN and the CMT, we analyze the directional
coupler shown in Fig. 4. Figure 6 shows the accuracy of the
present NN-CMT. The results by the NN-CMT are com-
pared with those by the FE-BPM. We can see that the rel-
ative computational error is about 0.1% within the wave-
length range of λ = 1.5 ∼ 1.6 μm and good accuracy to be
used in the optimal design is obtained.

6. Design Examples

The flowchart of the optimal design utilizing CMT and HFA
is shown in Fig. 7. In this design process shown in Fig. 7(a),
the evaluation of the transmission characteristics of all the
given device is the heaviest task and the computational ef-
ficiency is desired to be improved. In our design approach,
to evaluate transmission characteristics, CMT or NN-CMT

Fig. 6 Normalized power spectrum of directional coupler shown in
Fig. 4.

Fig. 7 The flowchart of optimal design, (a) main routine and (b) subrou-
tine for evaluating the characteristics of the devices utilizing the CMT and
the NN-CMT.

is employed. The flowchart of the subroutines of the ordinal
CMT and NN-CMT are shown in Fig. 7 (b) and 7 (c). In the
ordinal CMT, in order to evaluate δ and κ, eigenmode anal-
ysis and overlap integral between the obtained eigenmodes
are required at each propagation step. On the other hand, in
the NN-CMT, the eigenmode analysis can be skipped and
δ and κ are efficiently calculated by using the trained NN.
In the NN-CMT, NN has to be trained in advance. How-
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ever, the training is required only once before the entire op-
timization process and the design efficiency can be greatly
improved. Moreover, the trained NN can be used for an op-
timal design of other various types of devices.

6.1 Wavelength Insensitive 3 dB Coupler

As a first design example, we consider a wavelength insen-
sitive 3 dB coupler. Although a 3 dB coupler can be de-
signed by a symmetric directional coupler with half cou-
pling length, the splitting ratio strongly depends on the
wavelength due to the varying of the coupling length. How-
ever, wideband operation is desired in WDM systems and
several types of wavelength insensitive 3 dB coupler have
been reported [10], [11].

In this example, we consider a design model as shown
in Fig. 8 to design a wavelength insensitive 3 dB coupler.
The parameter settings are as follows: The device length
including input and output waveguides is set to be L =
100 μm. The width, gap, and length of the input and output
waveguides are win = wout = 0.3 μm, din = dout = 1.0 μm,
and l = 10 μm, respectively. The refractive indices of the
core and cladding are ncore = 3.4 and nclad = 1.45, re-
spectively. The fundamental TE mode operation within
λ = 1.5 ∼ 1.6 μm is assumed. The longitudinal structural
variation is expressed using the cubic spline function deter-
mined by the waveguide width and gap at the sampled points
with equal interval. The number of sampling points is set to
be N = 6. The objective function C is defined as follows:

Minimize C =
∑
λ∈Λ

∣∣∣|S 21(λ)|2 − |S 31(λ)|2
∣∣∣ (8)

Λ = {1.50, 1.55, 1.60 μm}
where S 21 and S 31 are the transmission amplitude from port
1 to port 2 and port 1 to port 3, respectively. We chose three
wavelength λ ∈ Λ in order to obtain wavelength insensitive
property within objective operation band. The transmission
property of this device is estimated by the NN-CMT and
the design variables are optimized by the HFA. The design
settings in the HFA are as follows: The number of individu-

Fig. 8 Design model of a directional coupler type optical device with
arbitrary longitudinal variation.

als is 128, the number of iterations is 1,000, and the design
variables can be selected within 0.3 ≤ w1i, w2i ≤ 0.5 μm,
0.3 ≤ di ≤ 1.0 μm (i = 1, 2, · · · ,N). Figure 9 shows the
structure obtained by this optimization and the propagating
fields at λ ∈ Λ obtained by the FE-BPM analysis, and it
is seen that each optimized structure can split the power
equally into two output waveguides. A simple directional
coupler with length of the half coupling length can also be
used as a 3 dB coupler at a specific wavelength and the de-
vice length is considerably shorter than that of the 3 dB cou-
pler optimized here. The propagating field in such a simple
3 dB coupler at λ = 1.55 μm is shown in Fig. 10 and its struc-
tural parameters are as follows: The waveguide width, gap,
and length in the coupling region is set to be 0.3 μm, 0.3 μm,
and 16.2 μm, respectively. The other parameters are selected
for it to operate as a 3 dB coupler at λ = 1.55 μm. Fig-
ure 11 shows the wavelength dependence of the optimized

Fig. 9 Optimized results of wavelength insensitive 3 dB coupler with
device length of 100 μm: (a) optimized structure, propagating field with
wavelength of (b) λ = 1.50 μm, (c) λ = 1.55 μm, and (d) λ = 1.60 μm.

Fig. 10 Propagating field of the simple directional coupler type 3 dB
coupler with device length of 42.2 μm.
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Fig. 11 Normalized power spectrum of 3 dB couplers shown in Fig. 10
and Fig. 9.

3 dB coupler and simple one. For the comparison of the nu-
merical accuracy, the results calculated by the present NN-
CMT, the conventional CMT, and the FE-BPM are shown
for the optimized 3 dB coupler. We can see that these re-
sults are in good agreement. From this result, we can also
see that the optimized device can be used as a 3 dB coupler
in the wider wavelength range compared with the simple di-
rectional coupler.

6.2 Wave length Insensitive 1 : 2 Power Splitter

As a second design example, we consider a wavelength in-
sensitive 1 : 2 power splitter. The design problem settings
are the same in the previous subsection except for the split-
ting ratio and the device length. The device length L is set to
be 150 μm and the objective function is defined as follows:

Minimize C =
∑
λ∈Λ

∣∣∣ 2 × |S 21(λ)|2 − |S 31(λ)|2
∣∣∣ (9)

Λ = {1.50, 1.55, 1.60 μm}
Figure 12 shows the optimized structure obtained by our de-
sign approach and the propagating fields at λ ∈ Λ obtained
by the FE-BPM analysis. We can see that the optimized
device works as a 1 : 2 power splitter at the designed wave-
lengths. A simple directional coupler with appropriate de-
vice length can also be used as a 1 : 2 coupler at specific
wavelength. The propagating field in this simple 1 : 2 cou-
pler at λ = 1.55 μm is shown in Fig. 13 and its structural
parameters are as follows: The waveguide width, gap, and
length in the coupling region is set to be 0.3 μm, 0.3 μm,
20.1 μm, respectively. The other parameters are selected for
it to operate as a 1 : 2 power splitter at λ = 1.55 μm. Fig-
ure 14 shows the wavelength dependence of the optimized
1 : 2 power splitter and the simple directional coupler based
one. For the optimized devices, the results obtained by
the NN-CMT, the conventional CMT, and the FE-BPM are
compared. We can see that these results are again in good
agreement. While the simple directional coupler based 1 : 2
power splitter has strong wavelength dependence, our opti-
mized device overcomes this defect and shows good trans-
parency.

Fig. 12 Optimized results of wavelength insensitive 1 : 2 power splitter
with device length of 150 μm: (a) optimized structure, propagating field
with wavelength of (b) λ = 1.50 μm, (c) λ = 1.55 μm, and (d) λ = 1.60 μm.

Fig. 13 Propagating field of the simple directional coupler type 1 : 2
power splitter with device length of 46.1 μm.

Fig. 14 Normalized spectrum of 1 : 2 power splitters shown in Fig. 13
and Fig. 12 (a).
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6.3 Wavelength Demultiplexer

As a last design example, considering a wavelength depen-
dent device, we design wavelength demultiplexer splitting
light with λ = 1.52 μm and λ = 1.58 μm. The design
problem settings are same in the previous subsection ex-
cept for the device length, and the search range of the de-
sign variables. The device length L is set to be 200 μm
and the search range of the waveguide width and gap are
set to be 0.25 ≤ w1i, w2i ≤ 0.5 μm, 0.25 ≤ di ≤ 1.0 μm
(i = 1, 2, · · · ,N). The objective function is defined as fol-
lows:

Minimize C =
∣∣∣1 − |S 21(λ1)|2

∣∣∣ + ∣∣∣1 − |S 31(λ2)|2
∣∣∣ (10)

where λ1 = 1.52 μm and λ2 = 1.58 μm. The device is
expected to be optimized so that the lights with λ1 and λ2

transmit from port 1 to port 2 and port 3, respectively. Fig-
ure 15 shows the structure obtained by this optimization and
the propagating field obtained by FE-BPM analysis at the
wavelength of λ1 and λ2. It is seen that wavelength demul-
tiplexing between λ1 and λ2 is achieved in the optimized
device. Figure 16 shows the wavelength dependence of the
optimized device, and the results obtained by the NN-CMT,
the conventional CMT, and the FE-BPM are compared. Al-
though these analysis results by different numerical methods
are slightly different from each other because of the error ac-
cumulation due to longer device length, we can see that the
designed device can be used as a wavelength demultiplexer
even based on the result by the FE-BPM.

As shown in these design examples, the NN con-
structed in advance can be reused for design of various di-
rectional coupler type optical devices. Since the NN-CMT
can skip an eigenmode analysis, it can reduce run time of

Fig. 15 Optimized results of wavelength demultiplexer: (a) optimized
structure, propagating field of (b) λ = 1.52 μm, and (c) λ = 1.58 μm.

optimization. It is expected that the reduction is significant
especially for 3D design problems.

In order to confirm the efficiency of our design ap-
proach using NN-CMT, we compare computational time for
analyzing a directional coupler by CMT and NN-CMT be-
cause time required in optimization by HFA is almost negli-
gible in the whole optimization process. As a numerical ex-
ample, we consider a directional coupler with device length
of 100 μm and discretize along propagating direction with
propagation step size of Δz = 0.1 μm. The average compu-
tational time of 1,000 times calculations are 17 seconds and
4 seconds in CMT and NN-CMT analysis, respectively, us-
ing a PC with a Intel R© CoreTM i7-3770 3.40 GHz processer.
All the programs are written in C-language by ourselves.
In the present optimization, 128 × 1,000 times waveguide
evaluation is required, then CMT takes 2,176 seconds for
evaluating transmission property. On the other hand, in NN-
CMT, although the additional computational time for train-
ing NN is required and it takes 365 seconds, the total time
including training NN and evaluating transmission property
is 877 seconds and the computational time of NN-CMT is
reduced to 40% compared with CMT. The training of NN
is required only once even if we design a lot of different
devices. The computational time of NN-CMT without the
process is reduced to 24% compared with CMT. It is ex-
pected that this reduction rate becomes greatly higher in a
design of more practical three-dimensional devices because
a computational cost of eigenmode analysis is greatly higher
in three-dimensional waveguide analysis.

7. Conclusion

In this paper, we proposed the NN-CMT as a new approach
to improve the computational efficiency of optical analysis
design. In the proposed the NN-CMT, the mode coupling
coefficient and the propagation-constant mismatch are effi-
ciently estimated by the NN without requiring modal anal-
ysis. Utilizing this NN-CMT and the HFA, we showed the
design examples of a wavelength insensitive 3 dB coupler,
a wavelength insensitive 1 : 2 power splitter, and a wave-
length demultiplexer and verified the effectiveness of our

Fig. 16 Transmittance spectrum of wavelength demultiplexer shown in
Fig. 15 (a).
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design approach. The computational efficiency is demon-
strated better than optimal design utilizing the CMT. The
extension of this design approach to 3D design problems is
now under consideration.
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