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Abstract: A new efficient boundary condition of finite element method (FEM) by using
propagation operator is proposed. In this method, input, and output ports are terminated
on their own boundaries instead of using perfectly matched layer (PML) which requires
expanding the computational window. Moreover, this boundary condition can consider all
modes including radiation modes without mode expansion. The propagation operator is
efficiently calculated by Denman-Beavers iteration (DBI). The electromagnetic field on the
POM boundary can be accurately propagated outside the boundary by using the propa-
gation operator. In addition, we present a technique based on scattering operator method
which can reduce the computational complexity of FEM. Three numerical results show that
the present scheme is more accurate, and stable than conventional approximate boundary
conditions such as using Padé approximation in both TE, and TM modes.

Index Terms: Finite element method (FEM), propagation operator, boundary condition,
Denman-Beavers iteration, perfectly matched layer, scattering operator.

1. Introduction
Finite element method (FEM) [1] is one of the most powerful method for analysis and design of
optical devices and widely used to understand optical properties of waveguide discontinuities. In
order to obtain high accurate results in open system problems with large relative refractive index dif-
ferences, an appropriate boundary condition which represents arbitrary outgoing electromagnetic
fields is required.

A mode expansion technique [2] is used for representing infinite uniform waveguides connected
to the input and output ports of finite region. Although this technique can accurately consider both
guided and radiation modes, computational cost becomes enormous to calculate the required
modes. A simple boundary condition based on the paraxial approximation [3] is usually applied
to simple structures. This method requires less computational effort than the mode expansion
technique, however, it cannot handle the radiated field components. As an alternative scheme,
a boundary condition using Padé approximation [4] has been proposed to be more accurate
approach than paraxial approximation, and radiated fields can be evaluated approximately to some
extent. In this approach, arbitrariness of propagating field is restricted because the propagation be-
havior depends on a selected reference refractive index at each boundary. In time-domain analysis,
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Mur’s absorbing boundary condition (ABC) [5] is also well known and is similar to Padé boundary
condition, that is, in frequency domain, second order Mur’s ABC corresponds to Padé(1,0) or
Fresnel approximation. Although further higher order Mur’s ABC has been reported, Mur’s ABC also
cannot treat wide angle propagation [6]. On the other hand, a perfectly matched layer (PML) [7]–[9]
has been introduced for truncating computational windows by absorbing electromagnetic waves
while impedance matching conditions are satisfied. Replacing the end of the analysis region by
PML, the accurate analysis without mode expansion can be implemented. However, it is necessary
to expand the computational window to secure the PML region, and calculation cost becomes high.

Recently, propagation operator method (POM) [10]–[22] has been proposed for waveguide
discontinuity problems and it shows good performance for FEM in two- and three-dimensional
problems [18]–[22]. This method can deal with all modes at the waveguide discontinuity cross
section by calculating square root of the characteristic matrix. In [20], [21], we reported that
POM which employs Denman-Beavers iteration (DBI) for calculating the square root matrix
can accurately analyze strongly guiding waveguide discontinuity problems which causes a lot
of radiation and evanescent waves. It has been reported that Padé approximation which is
widely used to obtain the square root matrix so far, suffers from the numerical instability [15].
Although this instability cannot be avoided even though a branch-cut rotation in the complex
plane is used in Padé approximation, DBI can stably derive square root matrix via branch-cut
rotation. The same situation has occured in full-vectorial FEM [21]. Moreover, instability prob-
lem in Padé approximation is more serious when considering very high-index contrast discon-
tinuities such as surface plasmon polaritons (SPPs) waveguides [19]. According to our best
knowledge, a boundary condition of FEM using POM has not been reported in the literature
previously.

In this paper, we propose efficient and accurate boundary condition of FEM for terminating
computational domain by using propagation operator without extra PML absorbing region and
any mode expansion. Unlike Padé boundary condition which is based on slowly varying envelope
expression and Padé approximation of normal-derivative at the boundary, the proposed boundary
condition uses a numerically derived square root matrix. Thus, compared with Padé boundary
condition which cannot treat extremely wide angle propagation, the proposed boundary condition
can treat all modes including guided, radiation, and evanescent modes. The propagation operator
is effectively calculated by DBI. This operator does not need to be recalculated as long as the
structure on the port does not vary even if the structure inside the analysis region varies. Moreover,
this method can divide entire analysis region to arbitrary smaller regions because electromagnetic
fields on the POM boundary can be taken out. If it is connected to a continuous uniform
structure, we can obtain propagation characteristics with a slight additional calculation by using the
propagation operator. When arbitrary structures are connected in multiple stages, the input-output
response of the entire structure can be immediately obtained by constructing the scattering
matrices for each structure and calculating its star product [23]. As a result, only the scattering
matrix related to structural variation needs to be reconstructed, and that supports efficient design.
We derive the input-output response for an arbitrary structure based on the scattering matrix
method and examine its validity. In addition, since the previous boundary conditions in [3], [4] has
shown only the effectiveness of TE mode, we investigate for both TE and TM modes in this paper.
Three numerical results show that the present scheme is more accurate and stable than other
approximate boundary conditions such as using Padé approximation in both polarization. This
suggestion is an important step to solve problems of computational cost in analysis and design of
optical waveguides, and it is promising to extend for three-dimensional boundary conditions.

2. Finite Element Formulation
2.1 Basic Equation

We consider a two-dimensional (2-D) optical waveguide discontinuity problem as shown in Fig. 1,
where the computational window is in the xz plane and there is no variation along the y direction
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Fig. 1. Schematic diagram of FEM analysis. The analysis region �0 is surrounded by �1 − �4 with POM
boundary condition (POM-BC). Outside of the boundaries are assumed to be uniform waveguides.

(∂/∂y = 0). The analysis region �0 is surrounded by the boundaries �1−�4. Since PML which is
provided around the outside of the �0 requires expanding the computational window, PML absorber
is placed at both ends of the each boundary to be input or output port which are given by the region
�1−�4 in Fig. 1. From Maxwell’s equations, we obtain the following basic equation:

sz
∂

∂x

(
p
sx

∂�

∂x

)
+ sx

∂

∂z

(
p
sz

∂�

∂z

)
+ k2

0 qsx sz� = 0 (1)

where k0 is the free space wavenumber, and �, p and q are given by

� = Ey , p = 1, q = n2 for TE wave (2)

� = Hy , p = 1/n2, q = 1 for TM wave (3)

where Ey and Hy are y components of electric and magnetic fields, respectively, and n is the
refractive index. sl (l = x, z) represents the PML parameter and the value is taken as

sl =
{

1 in �0

1 − j (ρ/dl i )
2 tanδi in �i (i = 1, 2, 3, 4)

(4)

where ρ is the distance from the beginning of PML and δi is the loss angle at the end of PML
(ρ = dl i ).

2.2 FEM Analysis

Dividing the analysis region into quadratic (second-order) triangular elements, the fields � within
each elements can be approximated as

� = {N}T {�}e (5)

where {N} is the shape function vector for the quadratic triangular element and {�}e is the nodal �

vector for each element. Applying FEM based on Galerkin method to (1), integrating by parts,
considering (5), and assembling the complete matrix for entire analysis region by adding the
contributions of all the different elements, we obtain the following matrix equation:

[P]{�} = {u} (6)
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{u} =
4∑

i=1

(∑
ei

′
∫

e
p
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sm
{Ñ}i

∂�i

∂ni
d l

)
(8)

where the components of vector {�} are the values of � at all nodal points in entire analysis region,∑
e extends over all the different elements, and

∑′
ei

extends over the elements related to �i . {Ñ}i

is the shape function vector for quadratic line element at �i . ∂/∂ni represents the partial derivative
along the outward normal direction. l and m denote x and z, respectively, when i = 1 or 2, switching
x and z when i = 3 or 4. (6) can also be written in its extended version as⎡

⎢⎢⎢⎢⎢⎢⎣

[P]00 [P]01 [P]02 [P]03 [P]04

[P]10 [P]11 [P]12 [P]13 [P]14
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[P]30 [P]31 [P]32 [P]33 [P]34

[P]40 [P]41 [P]42 [P]43 [P]44

⎤
⎥⎥⎥⎥⎥⎥⎦
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⎢⎢⎢⎢⎢⎢⎣
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⎤
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=
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⎥⎥⎥⎥⎥⎥⎦

(9)

with

[M̃]i =
∑

ei

′
∫

e
psl {Ñ}i{Ñ}T

i d l (10)

{�}i = d{�}i

dni
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�i

(11)

where [M̃]i constructed by the line elements is a finite element mass matrix for eigenmode analysis
on the boundary �i .

2.3 POM Boundary Condition

In POM, {�}i (i = 1, 2, 3, 4) is governed by the following equation:

d2{�}i

dn2
i

+ [Q]2i {�}i = {0} (12)

where {0} is the null vector, and [Q]i is the characteristic matrix of each boundary written by

[Q]i =
√

[M̃]−1
i [K̃ ]i (13)

[K̃ ]i =
∑

ei

′
∫

e

[
k2

0 qsl {Ñ}i{Ñ}T
i − p

1
sl

d{Ñ}i

d l
d{Ñ}T

i

d l

]
d l (14)

where [K̃ ]i constructed by the line elements is a finite element stiffness matrix for eigenmode
analysis on the boundary �i . As a solution of the differential equation (12), {�}i can be formally
expressed as

{�}i = {φa}iexp( j [Q]i ni ) + {φb}iexp(− j [Q]i ni ) (15)

where {φa}i and {φb}i represent vectors standing for backward and forward propagation fields,
respectively, under the condition that the outward normal direction of the boundary is positive.
Differentiating (15) and eliminating {φb}i , we obtain

d{�}i

dni

∣∣∣∣
�i

= j2[Q]i{φa}iexp( j [Q]i ni ) − j [Q]i{�}i . (16)
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Assuming that the incident plane is �1 and is set as the phase reference (n1 = 0), {�}i in (11) can
be expressed as

{�}i =
{

j2[Q]1{φa}1 − j [Q]1{�}1 (i = 1)
− j [Q]i{�}i (else)

(17)

where {φa}1 is the incident field. From (9) and (17), we obtain the following final matrix equation:⎡
⎢⎢⎢⎢⎢⎢⎣

[P]00 [P]01 [P]02 [P]03 [P]04

[P]10 [P̃]11 [P]12 [P]13 [P]14
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[P]30 [P]31 [P]32 [P̃]33 [P]34

[P]40 [P]41 [P]42 [P]43 [P̃]44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
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{�}1
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{�}3

{�}4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

{0}
2[C]1{φa}1

{0}
{0}
{0}

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

with

[C]i = j [M̃]i [Q]i (19)

[P̃]i i = [P]i i + [C]i for i = 1 to 4. (20)

In order to evaluate the propagation property, input mode and output mode are calculated by FEM
with quadratic line elements.

For obtaining characteristic matrix [Q]i , DBI [21] which is an iterative scheme based on a
recurrence formula is employed and is given as follows:

[A]i,k+1 = [A]i,k + [B]−1
i,k

2
(21)

[B]i,k+1 = [B]i,k + [A]−1
i,k

2
(22)

[A]i,0 = [M̃]−1
i [K̃ ]i (23)

[B]i,0 = [I] (24)

where [A]i,0 and [B]i,0 represent initial values of the iterations, [I] is the unit matrix and k is a number
of iterations. [A]i,k and [B]i,k converge [Q]i (=

√
[A]i,0) and [Q]−1

i , respectively, for sufficiently large
k. Here, in order to avoid the instability of the DBI due to the initial matrix with nonpositive real
eigenvalues, branch-cut rotation technique is introduced to DBI. The target matrix is transformed
as √

[A]i = exp
(

j
α

2

)√
[A]iexp(− jα) (25)

where α is the rotation angle. Hence the DBI is applied to [A]iexp(− jα) instead of [A]i .

3. Scattering Operator Approach
Above mentioned analysis must be recalculated the simultaneous linear equations in every cases
the incident conditions are changed. On the other hand, once a scattering operator that expresses
relation between input and output ports is constructed, we can immediately calculate the reflected
and transmitted waves for any incident waves.

First, considering only two ports of �1 and �2 without the incidence condition, (18) can be
rewritten as ⎡

⎢⎣[P]00 [P]01 [P]02

[P]10 [P̃]11 [P]12

[P]20 [P]21 [P̃]22

⎤
⎥⎦
⎡
⎢⎣{�}0

{�}1

{�}2

⎤
⎥⎦ =

⎡
⎢⎣ {0}

2[C]1{φa}1

2[C]2{φa}2

⎤
⎥⎦ . (26)
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Fig. 2. Schematic of a transverse displacement.

Eliminating {�}0 from (26) and considering {�}i = {φa}i + {φb}i (i = 1, 2), we obtain,[
{φb}1

{φb}2

]
=
[

[S]11 [S]12

[S]21 [S]22

][
{φa}1

{φa}2

]
(27)

with

[S]i i = 2[T ]−1
i [C]i − [I] (28)

[S]i j = 2[U ]i [T ]−1
j [C] j (29)

[T ]i = [P̃ii ] − [Pi0][P00]−1([P0i ] + [P0 j ][U ] j ) (30)

[U ]i = ([P̃ii ] − [Pi0][P00]−1[P0i ])−1[Pi0][P00]−1[P0 j ]

(i, j = 1, 2, i �= j ). (31)

where [Si j ] is a component of scattering matrix. If backward wave {φa}2 from �2 is negligible, the
input-output response can be indicated as

{φb}2 = [S]21{φa}1 (32)

{φb}1 = [S]11{φa}1. (33)

4. Numerical Simulation Results
4.1 Transverse Displacement

First, we consider a transverse displacement at the junction of two slab waveguides as shown in
Fig. 2, where the refractive indices are nf = 3.2, nc = 1.0, and the structural parameters are set as
W = 4 μm, w = 0.2 μm, L = 3 μm, and d = 0.2 μm. The domain only in the region within l = 0.2 μm
including the discontinuity is discretized with triangular meshes. The field at the input and output
ends are calculated using the exponential terms in (15). Although eigenvalue decomposition of
[Q]i (i = 1, 2) is additionally required to calculate the exponential terms, there is little influence on
the calculation time because it can be computed in parallel with the matrix equation of FEM.
Fig. 3 shows electric and magnetic field amplitude in the fundamental TE mode and TM mode,
respectively, when, the operating wavelength is λ = 1.55 μm and a displacement is b/w = 1. In
Fig. 3(a) and (c), the field distributions are practically the same as the results obtained by placing
the PML surrounding the computational domain. In Fig. 3(b) and (d), it can be seen that the field
including radiation is accurately propagated from �i to input or output ends by using the exponential
terms. Fig. 4(a) and (b) show the relative transmitted and reflected power as a function of b/w,
respectively, when the TE fundamental mode is launched. For the sake of comparison, results
obtained by paraxial boundary condition (PBC) [3], and Padé boundary condition [4] are also
indicated in the same figure. The all results except for the PBC are almost analogous to the
results of the PML. On the other hand, in terms of transmitted and reflected powers of the TM
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Fig. 3. Propagation field amplitude obtained by FEM analysis with POM boundary conditions cor-
responding to the problem shown in Fig. 2: Fundamental TE mode: (a) electric field distribu-
tion and (b) cross-sectional amplitudes; Fundamental TM mode: (c) magnetic field distribution and
(d) cross-sectional amplitudes.

fundamental mode incidence cases shown in Fig. 4(c) and (d), there are significant differences
between PML and the conventional boundary conditions. These results also show that increasing
Padé order does not always improve accuracy. In addition, it is reported that the higher-order Padé
approximation may cause instability even though branch-cut technique is utilized. We think that this
is because there are poles corresponding to zeroes in denominator. In our preliminary calculation of
these problems, it was confirmed that the higher-order Padé approximation than Padé(3,3) causes
unstable behavior in power values and the accuracy could not be guaranteed. Therefore, it can be
said that the present method is more accurate and stable than the other approximate boundary
conditions for this discontinuity problem.

4.2 Waveguide End Facet

Next, we consider optical radiation problem from an end facet of the waveguide suspended in air as
shown in Fig. 5, where the refractive indices are nf = 3.6, nc = 1.0, and the structural parameters
are set as L = 3 μm, W = 3.5 μm, l = 1.5 μm, w = 0.5 μm, and d = 0.5 μm. Fig. 6(a) and (b) show
the electric field distributions in the fundamental TE mode incidence and the first-order mode
incidence, respectively, for operating wavelength λ = 1.55 μm. It can be seen that the radiated
fields that spread far away are properly terminated by each port. In this case, they propagate as
plane-wave-like mode at the output port, and it is relatively easy to analyze even by Padé boundary
condition. Considering the case where higher accuracy is required, the structural parameters are
changed to L = 0.2 μm and l = 0.1μm. For the sake of comparison with conventional FEM which
terminates by PML, Fig. 7 shows normalized reflected power as a function of the PML thickness
dz along the propagation direction. From this figure, it can be seen that the PML thickness of
dz = 0.12 μm is necessary to secure sufficient convergence. In this case, the calculation time of the
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Fig. 4. Relative powers as a function of b/w corresponding to the problem shown in Fig. 2. Fundamental
TE mode: (a) transmitted power and (b) reflected power; Fundamental TM mode: (c) transmitted power
and (d) reflected power.

Fig. 5. Optical radiation from end facet of waveguide suspended in air.

Fig. 6. Propagation field distribution obtained by FEM analysis with POM boundary conditions corre-
sponding to the problem shown in Fig. 5: (a) fundamental and (b) first higher order TE modes.
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Fig. 7. Normalized reflected power as a function of the PML thickness along the propagation direction.

Fig. 8. Cross-sectional electromagnetic field distribution corresponding to the problem shown in
Fig. 6. Fundamental TE mode: (a) transmitted wave and (b) reflected wave; Fundamental TM mode:
(c) transmitted wave and (d) reflected wave.

linear matrix equation required by the conventional FEM is 2.64 seconds, whereas the presented
method is 0.603 seconds. It takes 0.929 seconds to calculate the single propagation operator by
11 iterations of the DBI. Therefore, it can be said that FEM with the new boundary condition can
compute faster than conventional FEM. In addition, considering that the structure on each port
does not change even if the structure inside the analysis region varies, the propagation operators
do not need to be recalculated. It is more effective especially in a optimal design of photonic
devices [24]–[26].

Fig. 8 shows the analysis results of the transmitted and reflected amplitude. In order to efficiently
calculate the reflected and transmitted waves for the incident waves of the fundamental mode
and higher order modes, we employ (32) and (33). It is only necessary to calculate the scatter-
ing operator once without solving the linear equation of FEM. While Padé boundary conditions
cannot properly evaluate for radiation components even using third-order Padé approximation, the
proposed approach is in good agreement with PML boundary conditions.
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Fig. 9. Schematic of a T-shaped beam splitter.

Fig. 10. Modified PML for a corner between two ports. (a) Schematic explanation and the distribution
of (b) |Im(sx )| and (c) |Im(sz )| in relative-coordinate frame.

4.3 T-Shaped Beam Splitter

Finally, we consider a T-shaped beam splitter as shown in Fig. 9 where the refractive indices are
nf = 3.2, nc = 1.0, and structural parameters are set as W = 5 μm, w = 0.2 μm, h = 0.66 μm, s =
1.44 μm, and g = 0.87 μm. Due to the structural symmetry, the transmitted powers are equally
distributed in the two outputs. In the analysis of the T-shaped beam splitter in [4], considering that
influence of the radiation on the power evaluation is relatively small, stretching parameters of PML
at the corners of both ends of input ports were set to 1. However, absorbing conditions for obliquely
propagating wave are essential to evaluate including radiation components. If the conventional
PML shaped as a rectangle is imposed to a corner of the analysis region, the impedance matching
condition is not satisfied. Thus, the distribution of PML stretching parameters are modified as shown
in Fig. 10. In order to satisfy the impedance matching condition, the shape of the PML region is
made into a circle centered on the corner. The ratio of the imaginary part of the PML coefficient in
x- and the z-direction, namely |Im(si )| (i = x, z), corresponds with the magnitude ratio of the x and z
components of a vector oriented in the corner. Then, |Im(si )| is increased as the distance from the
corner is getting shorter. Since the corner is shared by two ports, sx and sz have to be the same
value at the corner. Thus we employ cosine function of the distance from the corner to determine
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Fig. 11. Propagation field distribution obtained by FEM when the fundamental TE mode is launched.
corresponding to the problem shown in Fig. 8. Boundary conditions for input and output ports are (a)
POM and (b) PML.

Fig. 12. Comparison of relative (a) transmitted power and (b) reflected power as a function of operating
wavelength corresponding to the problem shown in Fig. 8.

the magnitude of absorption, and sl (l = x, z) is modified as

sl =
{

1 when Ri > d

1 − j 1
2

[
1 − cos

(
2π Ri

d

)]
tanδi

(
ρl
Ri

)
when 0 ≤ Ri ≤ d

(34)

where Ri is distance from the corner, and ρl (l = x, z) is a local coordination shown in Fig. 10(a).
Fig. 11(a) and (b) show the electric field distributions obtained by POM boundary conditions and
the conventional PML, respectively, when the fundamental TE mode with operating wavelength
λ = 1.55 μm is launched. The field distribution obtained by the PML boundary condition is in good
agreement with the PML results including the radiation wave. Fig. 11(a) and (b) show relative
transmitted and reflected power as a function of operating wavelength, respectively. While the
reflected power is good agreement with PML, the transmitted power is slightly in disagreement.
This is because the radiation components generated at the corner between adjacent ports are
not sufficiently absorbed, and the reflection from the corners affect the modal power on the ports.
This effect can be suppressed by enlarging the corner PML region. In the case of structures which
radiation components are relatively large like shown in Fig. 5, radius of the circular PML have
to be considerably large. Therefore, the radius and absorption coefficient will need to be selected
appropriately depending on the problem. In order to reduce PML region as much as possible aiming
the computational efficiency is improved, POM boundary condition can also be imposed on all the
planar boundaries, In this case, the modified and approximated PML is required at each end of
the PML boundary, that is, around the corner of the computational domain. In the case that strong
radiated field reaches the corner of the computational domain, this boundary condition become
approximated one. In this paper, in order to derive more reliable scattering matrix operator, we
impose PML at the boundary excluding the input and output ends. However, in most of practical
cases, we think our POM is applicable to all planar boundaries.
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5. Conclusion
In order to improve computational efficiency for analysis of optical waveguides while maintaining its
accuracy, we proposed an FEM propagation analysis method using POM as a boundary condition.
The propagation operator was computed by DBI. In a numerical example of the transverse displace-
ment, we showed that the proposed method can secure sufficient analysis accuracy in both TE and
TM modes, while the PBC and Padé boundary condition are insufficient. In the analysis of the wave-
guide end facet, using scattering operator approach, reflection and transmission characteristics
corresponding to fundamental mode and higher order mode were calculated effectively. It suggests
possibility of extension to more efficient analysis by connection of optical waveguides in multiple
stages using the scattering operators. In the analysis of T-shaped beam splitter, the evaluation
including radiation in proposed method that using modified PML at corners of the analysis region is
comparable to conventional PML. We conclude that this method is a powerful boundary condition
that reduces computational resources and enables efficient analysis for problems that require high
analysis accuracy, and it is promising to extend for three-dimensional boundary conditions. In [21],
we have already reported POM for 3-D full-vectorial analysis of waveguide discontinuities using
triangular hybrid edge/nodal elements. We think this technique can be readily applicable to express
boundary condition in full-vectorial finite element analysis of 3-D waveguide discontinuity problems
because the input condition in 3-D full-vectorial FEM with PML has been already expressed using
these elements [27], [28]. We think this is probably the most powerful and simple approach and is
our future work.
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