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Abstract
Grapheme-to-Phoneme conversion (G2P) is usually used within
every state-of-the-art ASR system to generalize beyond a fixed
set of words. Although the performance is typically already
quite good (< 10% phoneme error rate) and pronunciations
of important words are checked by a linguist, further improve-
ments are still desirable, especially for end user customization.

In this work, we present and compare five methods/tools to
tackle the G2P task. Although most of the methods have already
been published and/or are available as open source software, the
reported experiments are done on large state-of-the-art tasks and
the used software is from the actual publications.

Besides an experimental comparison on text data for a range
of languages (i.e. measuring the G2P accuracy only), our focus
in this paper is measuring the effect of improved G2P modeling
on LVCSR performance for a challenging ASR task. Addition-
ally, the effect of using n-Best pronunciation variants instead of
single best is investigated briefly.
Index Terms: grapheme-to-phoneme conversion, G2P, ASR

1. Introduction
Over the years, many methods have been published to tackle the
grapheme-to-phoneme conversion (G2P) task. This task is usu-
ally defined as follows: Given an orthographic form of a word
(grapheme sequence g), the corresponding most likely pronun-
ciation (phoneme sequence ϕ) is:

ϕ(g) = argmax
ϕ′∈Φ∗

p(g,ϕ′)

Here, a grapheme g ∈ g is defined as a symbol used for writing
language (e.g. a letter) and a phoneme ϕ ∈ ϕ as the smallest
contrastive unit in the sound system of a language.

G2P is a task from the group of monotone string-to-string
translation problems, which also includes part-of-speech tag-
ging, name transliteration [1], and concept tagging (NLU)[2].
Thus, all the described methods could also be used to tackle
other tasks from this group.

Most of the published, statistical approaches to the G2P
task can be decomposed into three sub-problems. As training
material, usually a corpus is given containing corresponding
pairs of orthographies and phoneme sequences. In a first step,
an alignment is generated between graphemes and phonemes,
since it is usually not provided within the training data, e.g.:

“phoenix”
finIks
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The resulting blocks of aligned tokens are typically referred
to as joint-multigrams, grapheme-phonemes, graphonemes, or
graphones for short in the literature and have been introduced
in [3]. The length for the number of graphemes/phonemes per
graphone may be restricted and empty tokens may be allowed
on either side, depending on the alignment algorithm.

This alignment may be calculated prior to the training of
the statistical model and kept fix or a re-alignment step may be
included within the training process which would be the next
step. Here, mostly methods based on n-grams are used. The
final step is the decoding, which determines how a given model
is used to generate a phoneme sequence given a grapheme se-
quence.

One of the requirements of a G2P system for this work was
that training and decoding can be done in reasonable time on
large data sets. Thus, we did not use computational expensive
methods like discriminative methods based on e.g. Conditional
Random Fields (CRFs) [2] or online discriminative training as
presented in [4].

The remainder of the paper is structured as follows: in the
next section, we will present the theoretical background to the
five methods which we did compare. The following section will
present experimental findings, both, on text data only as well
as integrated into a contemporary LVCSR system. The paper
concludes with a summary of our findings.

2. Methods
In this section, we present the five methods used for the ex-
perimental comparison. The technical background is presented
briefly with pointers to reference publications except for the first
method which has been only documented in an in-house techni-
cal report. We applied the actual software used in the referenced
publications, which in some cases is also available to the public
(open source).

2.1. Combined n-Gram and Decision Tree Model (ngdt)

Within this in-house method proposed in [5], the alignment be-
tween graphemes and phonemes is generated using a variant
of the Baum-Welch expectation maximization (EM) algorithm.
The initialization resembles the first Baum-Welsh iteration with
uniform initial distributions. To obtain these distributions, all
possible alignments not mixing deletions and insertions are av-
eraged. Another constraint is that, for simplicity, only 1 : N ,
e.g. grapheme-unit phoneme-sequence alignments are allowed.
After convergence, the alignment and thus the resulting gra-
phones are kept fixed for the actual model training.

To build the n-gram model, maximum likelihood (ML) es-
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timators are used on graphone sequences q:

Pr(g,ϕ) = Pr(q) =

N∏
i=1

Pr(qi|qi−1, . . . , q1) (1)

= Png(i)(qi|qi−n+1, . . . , qi−1)

To incorporate lower-order n-grams, their ML estimators are
linearly interpolated using normalized interpolation scales αi:

Png(·) =
N∏
i=0

αiPng(i)(·),with
N∑
i=0

αi = 1

Within the (binary) decision tree, each leaf node C represents
a set of samples, where a sample S is a 1 : N pair from the
aligned lexicon. A question about the context of the sample is
associated with each non-leaf node. Two child nodes represent
the positive and negative cases to this question. A sample can
then be classified by traversing the tree and answering the ques-
tions at each node until the leaf node C(S) is reached. For this
node, we calculate

Pdt(ϕ|C) =
N(ϕ, C)

N(C)
,

whereN(ϕ, C) represents the number of samples in C produc-
ing ϕ and N(C) the total number of samples in C. As training
criterion, the entropy h is used:

−h :=
∑
S

logPdt(ϕ(S)|C(S))

The idea now is to find a tree which describes the training data
best. We start with a trivial tree consisting of one node and grow
the tree by splitting leaf-nodes using a question from a given set
of questions. At each split, we select the leaf node and question
which maximize the entropy.

Finally, the n-gram and decision tree model are log-linearly
combined, whereas the interpolation parameter α is chosen em-
pirically:

logPngdt(ϕ|g) = αlogPng(ϕ|g) + (1− α)logPdt(ϕ|g)

An overview about decision tree models for grapheme-to-
phoneme conversion is also given in [6, 7].

2.2. IBM Joint ME n-Gram Model (ibm)

In [8], a joint n-gram model is used to tackle the G2P task,
very similar to the n-gram model presented in the previous sec-
tion (cf. Eq. 1). The training schedule is somewhat different
though. First, a unigram model is trained on the graphones with
the conventional Baum-Welch EM algorithm. For all following
iterations, Viterbi EM is applied increasing n by one. Features
are added to the model for all n-grams occurring in the Viterbi
chunking of the training data. The training procedure is contin-
ued until convergence of the model, realigning the data in each
iteration.

2.3. Dragon Joint n-Gram Model (dra)

Within the method proposed in [9], the alignment is determined
in a preprocessing step. N : 1 graphones are selected via an
HMM mechanism. Starting form uniform distributions, max-
imum likelihood (ML) phoneme model distributions are esti-
mated using the Baum-Welch algorithm. After model training,

Viterbi is used to find the single-best alignment. A concatena-
tive unit refinement step is possible by joining the m highest-
ranking graphone pairs sorted by bigram frequency. For the ac-
tual model training, the joint probability Pr(g,ϕ) is calculated
in the following way:

Pr(g,ϕ) =
∑

q∈S(g,ϕ)

Pr(q)

= max
q∈S(g,ϕ)

|q|∏
i=1

p(qi|qi−1, . . . , q1)

Here S(g,ϕ) denotes the set of all co-segmentations of g and
ϕ. The decoding is finally done using a best-first multi-stack al-
gorithm, which is an approximation to the joint probability. For
more details, the reader is referred to the original publication.

2.4. Sequitur (seq)

Within the Sequitur G2P toolkit1 [7], again a joint n-gram
model is used. The graphonemic model p(qi|qi−1, . . . , q1) is
estimated using ML EM training on an existing pronunciation
dictionary. For the possibly non-unique segmentation into gra-
phones, a maximum approximation is applied.

2.5. Phonetisaurus (ps)

Phonetisaurus utilizes weighted finite-state transducers for de-
coding as a representation of a graphone-based n-gram LM
trained on data aligned by an advanced M :M alignment algo-
rithm [10]. This alignment is provided by a variant of the EM
algorithm [11]. The n-gram model is trained using the MIT LM
toolkit [12], in which Kneser-Ney discounting with interpola-
tion is used for smoothing. Decoding is done using OpenFST
[13] with the following sequence of operations:

nBest(π(oProj(W ◦M)))

Here, W denotes the input FSA, which is a graph represen-
tation of the input word including grapheme clusters seen in
training as alternative paths. M is the n-gram model encoded
as FST. The W and M FSTs are composed and a projection
onto the output symbols is performed. π denotes the removal of
unwanted symbols like epsilons or sentence begin/end markers.

3. Experimental Results
For a fair comparison of the various methods, we performed
model training and optimization on exactly the same data. As
performance measures, we use phoneme error rate (PER) and
word error rate (WER) to assess the quality of the G2P mod-
els on text data. They are defined as the Levenshtein distance
divided by the number of phonemes in the reference pronuncia-
tion resp. as the fraction of words containing at least one error.
Scoring is done using the NIST sclite scoring toolkit [14]. In
some of the used lexica, more than one reference pronuncia-
tion is given per word. A hypothesis is considered correct if
it equals one of the given reference variants. For the ASR ex-
periments, we report the usual word error rates. Note that for
both, G2P and ASR, the WER measure is used, but on a differ-
ent level. Whereas the errors for G2P are measured on phoneme
and word level, the corresponding levels in ASR would be word
and sentence level.

1http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html



Table 1: G2P results on the English Celex task. n denotes the
best performing context length.
method n PER/WER[%]

train dev test

ngdt 5 0.8 / 3.8 3.4 / 15.8 3.4 / 15.8
ibm 9 1.4 / 6.4 3.9 / 17.3 3.9 / 17.4
dra 5 0.3 / 1.5 3.5 / 15.5 3.4 / 15.2
seq 8 0.1 / 0.6 2.7 / 11.8 2.5 / 11.4
ps 6 1.0 / 6.2 3.6 / 18.0 3.4 / 16.7

ROVER 0.2 / 1.0 2.6 / 12.0 2.5 / 11.6

Table 2: Statistics for lexica in various languages.
language # symbols � word length # unique

source target source target words

English 76 50 8.8 7.6 283k
German 65 48 13.3 12.1 436k
French 72 38 10.3 7.7 319k
Italian 63 38 10.2 10.1 252k
Dutch 66 45 11.5 9.9 347k

3.1. Results on Text Data

First experiments have been performed on the publicly avail-
able, mid-sized, British-English Celex corpus[15]. It consists
of 40k training words, and a dev and test set with 5k and 15k
words respectively. 26 different graphemes and 58 phonemes
are used. The results are presented in Tab. 1.

The seq model performs best while the other models are in
the same range, except the IBM model is somewhat worse. It
is also interesting to see that the optimal n-gram context size
varies between 5 and 9. For the ngdt approach, the decision
tree context lengths are 4 and 1 on grapheme and phoneme
level respectively. We did also apply ROVER system combi-
nation [16], but there are no improvements. One reason might
be that the models are too similar (they all rely on graphone-
based n-grams). W.r.t. alignment restrictions, seq performed
best when using 0-1 symbols on grapheme and phoneme side
per graphone, while for ps it was 0-2 symbols each.

To get an idea how these methods perform on large state-
of-the-art tasks, we built some study sets for various languages.
The statistics for the data sets are given in Tab. 2. The average
number of pronunciations per word is < 1.09 for all lexica.
We randomly selected 5% from the data for dev and test set
each and kept these sets fixed for all experiments. Note that
the number of source symbols denotes symbols seen at least ten
times in the training data, including upper and lower case letters,
accented characters as well as punctuation marks. In total, 151
characters are included at least once per language.

In Tab. 3, the performance on the English data set is pre-
sented for the various methods. Here, sequitur achieves the best
performance, but the distance to phonetisaurus is only marginal.
For this task, ROVER gives a small improvement. Note that this
problem is harder than usual, since roughly five times as many
characters are allowed within the grapheme input, since the sys-
tems should be able to produce a phoneme sequence for more or
less any input character sequence (end user customization). In
Tab. 4, we present the error rates on the test set for the remain-
ing languages. Overall, seq and ps achieved the best results.
The baseline system will be used for the ASR experiments in
the next section and is included in the tables for reference.

Table 3: G2P results on the English data set. n denotes the best
performing context length.
method n PER/WER[%]

train dev test

baseline 3 6.1 / 26.9 9.2 / 38.8 9.0 / 38.2

ngdt 5 2.2 / 10.0 5.6 / 24.8 5.7 / 24.9
ibm 14 2.6 / 11.8 5.3 / 22.4 5.2 / 22.7
dra 6 0.4 / 2.0 5.6 / 23.7 5.7 / 24.9
seq 9 0.3 / 1.7 4.8 / 21.0 4.9 / 21.4
ps 8 0.4 / 1.3 4.8 / 20.6 5.0 / 21.4

ROVER 0.4 / 1.8 4.6 / 20.3 4.6 / 20.6

Table 4: G2P results on the remaining test data sets
(PER/WER[%]).
method German French Italian Dutch

baseline 6.1 / 47.8 2.7 / 13.3 3.0 / 21.8 2.8 / 18.4

ngdt 4.4 / 36.6 1.5 / 7.2 1.9 / 14.4 1.5 / 9.9
ibm 3.2 / 25.3 1.5 / 7.4 1.8 / 13.0 2.0 / 11.8
dra 3.6 / 27.1 1.9 / 9.1 1.8 / 12.1 1.5 / 9.9
seq 3.3 / 25.5 1.3 / 6.5 1.5 / 10.6 1.3 / 8.4
ps 3.1 / 23.7 1.3 / 6.4 1.6 / 11.0 1.2 / 7.8

ROVER 3.0 / 23.8 1.3 / 6.3 1.5 / 10.7 1.2 / 7.8

3.2. ASR Results

We used some of the optimized G2P systems on several study
sets to assess the effect on the ASR word error rate. Besides the
G2P system used to generate pronunciations for words where
no manual transcription is available, the system setup is exactly
the same per language. We apply a typical, contemporary two-
pass ASR system comprising speaker independent models and
adaptation on utterance level. Since we are mostly interested in
measuring the difference in recognition quality across various
G2P models, the exact ASR system setup is not so important to
interpret the experimental results.

The statistics for the test sets are given in Tab. 5. As one
can see, the ratio of words with automatically generated pro-
nunciations is small on the test sets. Thus, it might be difficult
to measure the effect of improved G2P modeling. Additionally,
we were particularly interested how the methods studied fared
against an established baseline system with accuracies > 90%.
(cf. Tab. 3 and 4).

In Tab. 6, we report recognition results for the baseline, the

Table 5: Data statistics for the various study sets. G2P ratio
denotes the portion of the test set for which the pronunciation(s)
in the recognition lexicon have been generated with the G2P
model.

total running vocab G2P OOV
data[h] words size ratio [%] ratio [%]

English 157.3 629k 39k 0.44 1.00
German 184.5 719k 81k 0.80 3.22
French 177.7 807k 126k 1.66 1.81
Italian 176.7 627k 54k 0.31 2.51
Dutch 31.3 231k 20k 1.24 2.35



Table 6: ASR recognition results on various LVCSR study sets. Lines starting with “+OOV” denote systems where all OOVs from the
test set have been added to the vocabulary (cheating experiment).

WER [%] on test set (WER on segs containing words with prons by G2P model|WER on segs with OOVs)
baseline dra seq seq-nBest

English 20.32 (28.74 |47.19) 20.32 (28.26 |47.10) 20.33 (28.38 |47.21) 20.29 (26.95 |46.95)
+OOV 19.84 (28.44 |36.40) 19.78 (27.94 |34.87) 19.78 (28.08 |34.56) 19.68 (26.69 |32.36)

German 21.30 (30.26 |29.97) 21.31 (30.32 |29.93) 21.29 (30.17 |29.94) 21.40 (29.62 |30.09)
+OOV 19.69 (28.85 |24.80) 19.66 (28.84 |24.71) 19.58 (28.59 |24.49) 19.53 (28.02 |24.03)

French 27.93 (36.68 |43.86) 27.88 (36.36 |43.78) 27.92 (36.63 |43.87) 27.87 (36.05 |43.70)
+OOV 27.31 (36.22 |38.89) 27.24 (35.92 |38.52) 27.24 (36.06 |38.35) 27.16 (35.56 |37.77)

Italian 24.79 (33.58 |41.23) 24.77 (33.17 |41.18) 24.77 (33.12 |41.18) 24.78 (32.46 |41.21)
+OOV 23.29 (32.52 |33.64) 23.22 (32.06 |33.14) 23.28 (31.99 |33.43) 23.11 (31.17 |32.42)

Dutch 28.17 (32.30 |35.95) 28.01 (32.01 |35.83) 28.08 (32.07 |35.90) 28.05 (31.71 |35.93)
+OOV 27.06 (31.58 |32.00) 26.89 (31.20 |31.68) 26.88 (31.27 |31.55) 26.88 (30.83 |31.18)

dra and the seq G2P system. Besides the WER on the com-
plete test sets, we also report the WER on two possibly over-
lapping subsets. The first one contains utterances with at least
one word with automatically generated pronunciation and the
second one utterances with at least one OOV. As already sus-
pected, the WER does not change much since only few words
are affected. Since our goal was to measure the quality of the
G2P systems, we did a cheating experiment and added all OOVs
to the ASR vocabulary and used the respective G2P system to
generate their pronunciations. These results can be found in
the same table (lines beginning with “+OOV”). Now, the effect
is stronger, especially when looking at the OOV segments only.
For example, for English, when the baseline G2P model is used,
the WER on OOV segments is 36.40 and drops to 34.56 when
the optimized seq model is used instead. We did one run of
experiments where we added nBest pronunciation variants for
all words where no manual pronunciation is available instead of
single-best. Here, we used the seq model and generated up to
three pronunciations, depending on the overall posterior prob-
ability mass of the generated variants, which has been thresh-
olded to < 0.75. When looking at the cheating experiment,
the variants seem to help. But the overall (non-cheating) error
rates do not necessarily improve, since more confusion may be
introduced (e.g. for German).

4. Conclusions
We have presented a comparison of various state-of-the-art G2P
models on large tasks on both, G2P accuracy and their effect
on ASR performance within contemporary LVCSR systems on
challenging tasks. The Sequitur and Phonetisaurus tools seem
to outperform the other tested methods. With a cheating ex-
periment where OOVs have been added, it could be shown that
improved G2P modeling can be measured within ASR systems
even over a highly competitive baseline. In any case, improving
G2P is always beneficial for end user customization.
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