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Abstract
One of the main challenges in automatic speech

recognition is recognizing an open, partly unseen vo-
cabulary. To implicitly reduce the out-of-vocabulary
(OOV) rate, hybrid vocabularies consisting of full-words
and sub-words are used. Nevertheless, when using sub-
words, OOV rates are not necessarily zero. In this work,
we propose the use of separate character level graphones
(orthography and phoneme sequence pair) as sub-words
to effectively obtain zero OOV rate. To minimize neg-
ative effects on the core vocabulary of the most frequent
words, a hierarchical language modeling approach is pro-
posed. We augment the first level hybrid language model
with an OOV word class, which is replaced by charac-
ter level graphone sequences using a second-level gra-
phone based character language and acoustic model dur-
ing search. This approach is realized on-the-fly using
weighted finite state transducers. We recognize a signifi-
cant fraction of OOVs on the Wall Street Journal corpus,
compared to the full-word and former hybrid language
model based approaches.
Index Terms: open vocabulary, OOV, language model,
filler models

1. Introduction
In automatic speech recognition (ASR) system, the words
which are not present in the recognition vocabulary are
OOV words. Hence, using full-word vocabulary, we can-
not recognize them. Currently, most of the state-of-the-
art open vocabulary ASRs operate with a hybrid vocabu-
lary containing full-words and sub-words. Though, they
would correctly recognize most of the OOVs using sub-
words, they still fail to recognize constantly changing
words due to limited sub-word vocabularies, high lexi-
cal variety e.t.c.,. Moreover, during recognition, an OOV
word could be substituted by some in-vocabulary word,
leading to neighboring word errors.

In the literature, some of the recent methods focus
on OOV detection using confidence scores [1, 2, 3].
Other methods explicitly model OOVs using filler models
[4, 5, 6]. The combination of these two methods is ana-
lyzed in [7]. In general, confidence based methods are

commonly used to detect the correctness of hypothesized
words. The filler models focus on explicit modeling of
the OOVs using hybrid language models.

In [7] it is also demonstrated that the explicit OOV
modeling approach is better for OOV detection, and con-
fidence scoring methods perform better in detecting mis-
recognitions. Though filler models perform better in rec-
ognizing OOVs, OOV rates are not necessarily reduced to
zero. Some of the main reasons for non-zero OOV rates
are limitations on vocabulary size, and huge lexical vari-
eties leading to data sparseness. Moreover, if the OOVs
are directly modeled using characters as sub-words in the
language model (LM), this would lead to additional in-
vocabulary mis-recognitions.
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Figure 1: Word categorization in a text corpus

On the other hand, according to Zipf’s law [8], in a
given natural language text, the frequency of a word is
inversely proportional to its rank in the frequency table.
Thus, we categorize words as most-frequent, frequent
and rare words. Examples of most-frequent words are
functional words, verbs and adjectives. Frequent words
are content or lexical words. Rare words are typical
OOVs like proper names, foreign words e.t.c.,. As shown
in Figure 1, rare words could be distinguished from fre-
quent words using an experimentally derived cut-off fre-
quency Fth. Normally, when unigram counts are com-
puted for the corpus, rare words are found as a long tail
(least frequent words). For example, in any LM training
corpus, usually a major part of the rare words (≈ 40%)
are singletons.
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Thus, when N -gram full-word LMs are created,
lower probability masses are observed for the rare words
(weak N-gram context regions) whose frequency is low
due to data sparsity. Similarly, N -gram hybrid LMs also
suffer from data sparsity in rare word regions though they
can recognize OOVs as sequences of sub-words. There-
fore, rare words cannot be effectively utilized in conven-
tional full-word/hybrid LMs. In addition, in the rare word
regions, the ASR depends highly on the quality of the
acoustic model, leading to phoneme errors.

2. Proposed Method
In this paper, as we focus on a zero OOV rate single
pass system, we effectively try to cover all words, i.e.,
including words unseen in training. Our general concept
is similar to [9], who used part-of-speech based multi-
class modeling for OOV recognition. In the conventional
hybrid LM system, the hybrid vocabulary consists of a
selected number of full words (most-frequent) and sub-
words from segmented frequent and rare words. Never-
theless, even hybrid vocabularies containing sub-words
to not guarantee zero OOV rate in any case, unless the
set of all individual characters, or, alternatively all possi-
ble combinations thereof for longer sub-word unit lengths
are covered in the vocabulary.

Rare words can be effectively represented by se-
quences of single characters. Nevertheless, we still want
to take advantage of modeling words and sub-words ob-
served frequently during LM training. To enable model-
ing of any unknown word, which cannot be represented
by the existing hybrid vocabulary of full-words and sub-
words, we introduce a character-based LM in a hierar-
chical way. A first-level hybrid LM comprising frequent
full-words and graphone sub-words is augmented with an
unknown-word class, which can be hypothesized by the
recognizer. Every time the recognizer starts a hypoth-
esis for the unknown-word class, a second-level LM is
applied, which hypothesizes on a character by character
level using a separate, graphone based character-only LM
and corresponding acoustic models. Thus, we refer to our
proposed approach as Hierarchical Hybrid LM.

3. Methodology
3.1. Graphone Generation
A graphone is a sub-word unit derived from aligning a
grapheme with its corresponding phoneme sequence. To
generate sub-word graphones, we train a statistical joint-
sequence grapheme to phoneme (G2P) model. We com-
pute the most likely pronunciation ϕ∈Φ∗ for a given or-

thographic form g ∈ G∗, where Φ and G are the sets of
phonemes and characters respectively as in Eq. 1.

ϕ(g) = arg max
ϕ́∈Φ∗

p(ϕ̄, g) (1)

A graphone is represented as a pair of phoneme and
grapheme sequences q = (g, ϕ) ∈ Q ⊆ G∗ × Φ∗. The
joint phoneme and grapheme sequence probability dis-
tribution p(ϕ, g) is reduced to a probability distribution
(M -gram ) over graphone (sub)sequences qR1 as:

p(qR1 ) =

R∏
i=1

p(qi|qi−1, ..., qi−M+1) (2)

If the number of characters and phonemes are in the range
zero and an upper limit ’L’, the M -gram model is trained
using Maximum Likelihood (ML) training using the Ex-
pectation Maximization (EM) algorithm as :

p(ϕ, g) ≈ max
q∈S(g,ϕ)

p(q1, ..., qL) (3)

where S(g,ϕ) is the set of co-segmentations of g and ϕ.
In our experiments, we use an open-source G2P tool [10]
for training G2P models. we use M -gram length, M=3.
If L is the maximum length of the sub-word grapheme,
we generate graphone inventories for 5k, 20k and 64k
vocabularies using L = 4, 4, 3 respectively. In addition,
we generate single character graphone inventory (using
L=1) for the aforementioned vocabularies.

3.2. Decision Rule

We distinguish the hybrid word/sub-word vocabularyW
and the separate character vocabulary C. Consider a word
sequence of length n: wn

1 = w1...wn with wi ∈ W ∀ i =
1, . . . , n. Each word or sub-word wi ∈ W is represented
by a character sequence Ci = c

|Ci|
i,1 ∈ C∗ with characters

ci,l ∈ C ∀ i = 1, . . . , n ∧ l = 1, . . . , |Ci|. The function
C:W → C∗ maps words/sub-words w to their respective
character sequences C(w). We represent N and M as the
length of the history for the hybrid LM and the second-
level character based LM respectively.

Further, we define the acoustic model distribution
p(xT

1 |wn
1 , C

n
1 ) for an acoustic observation sequence

xT
1 = x1, . . . , xT given both a word/sub-word and corre-

sponding character sequence. Formally, the character se-
quence is added here, to enable modeling words from the
unknown-word class woov by character sequences. For
words/sub-words from the hybrid vocabulary the corre-
sponding character sequence aligned to the same word
position can be ignored. We then define a hierarchical de-
cision rule to enable recognition with zero OOV, i.e. the
recognition of arbitrary character sequences, as given in

r(xT
1 )=argmax

n,Cn
1

max
wn

1

p(xT
1 |wn

1 , C
n
1 )

n∏
l=1

p(wl|wl−1
l−N+1)


∏|Cl|

m=1 p(cl,m|c m−1
l,m−M+1) iff wl = woov

1 iff wl 6= woov ∧ C(wl) = Cl

0 otherwise
(4)



   
 

Base hybrid LM 

 

Character level hybrid LM 

mr     smith's nice 

#s 

 s:s m:m 

#e 

mr nice 

's:s i:I t:T h:-- l:l o:oU f:f 

OOV 
start 

 

OOV 

end 

port+ : p_O_t 

 
io : i_oU 

OOV 
start 

 

OOV 

end 

   portfolio Full-word sequence : 

#e #s 

Figure 2: An example of hierarchical hybrid LM (SAMPA phoneme set notation is used for pronunciations, ‘:’ is a
separator between orthography and phoneme sequence in a graphone)

Eq. 4. The condition in Eq. 4 makes sure, that words/sub-
words within the vocabulary are only aligned to their re-
spective character sequences, whereas unknown words
can be represented by arbitrary character sequences.

3.3. Decoding using WFST

We use a WFST-based dynamic network decoder, which
integrates the LM dynamically as needed during recogni-
tion. The composition of the language model transducer
G and the expanded lexicon transducer C◦L (L is derived
from the pronunciation dictionary, C encodes the context
dependency of the acoustic model) is computed on de-
mand using composition filters for on-the-fly pushing of
labels and weights as shown by Allauzen in [11]. A de-
tailed description of the decoder can be found in [12] as
shown by Rybach.

Here we need to integrate two LMs: the hybrid lan-
guage model as the base LM and the graphone based
character language model for OOVs. Each of these LMs
is compiled into a separate weighted automaton. The base
LM contains arcs labeled with “unknown” word class.
These arcs are replaced by the second-level sub-LM au-
tomaton. The fully expanded LM automaton would be
too large to be kept in memory. Therefore, we expand
these arcs dynamically using OpenFst’s ReplaceFst
[13].

3.4. Basic Example

Using Eq. 4, as shown in Figure 2, we show a basic idea
behind hierarchical hybrid LM decoding. In the recogni-
tion vocabulary, the most-frequent words like {mr, nice}

are preserved as full-words. The sub-word graphones like
{port+, io} are used as sub-word vocabulary. The rare-
word OOVs are {alexander’s, fol+}. The symbols ‘#s

and #e’ represents character sequence start or end states
respectively. During search, the weighted transition to the
character LM is hypothesized for the “unknown (OOV)”
word class.

For easy recovery of full-words from sub-words, we
mark a ‘+’ sign at the end of the non-boundary sub-words
in the base hybrid LM. An example is the word ‘portfo-
lio’, which is decomposed into ‘port+ fol+ io’. Similarly,
we also mark the non-boundary characters in the charac-
ter based LM. In the final step, to form full words, all the
recognized sub-word (or character) sequences are post-
processed by combining the non-boundary sub-words un-
til the boundary of the sub-word is observed.

In rare cases, half-words could be recognized as a
sub-words during recognition. For example, the word
like ‘(ev-) every’ could be recognized as ‘ev+ every’,
leading to a word error after post-processing.

4. Experimental Setup
In this work, we try to evaluate our proposed hierarchical
hybrid LM systems by comparing to one of the state-of-
the-art hybrid LMs in the literature, as shown by Bisani
in [5].

Our speech recognizer works in a single pass. We
train across-word, triphone based acoustic models us-
ing Minimum Classification Error (MCE) method as de-
scribed by Macherey in [14] using about 80 hours of
Nov. ’94 North American Business (NAB) audio training



corpus. To create LMs, we use the Wall Street Journal
(WSJ) corpus consisting of around 10 Million running
full-words. We select 5k, 20k and 64k full-word vocab-
ularies based on word frequency to estimate back-off N -
gram LMs using modified Kneser-Ney smoothing by the
SRILM toolkit [15].

For recognition evaluation, we select the WSJ corpus
comprising of ARPA 1993 and Hub-1 development data,
combinedly referred to as “dev 93+94” (812 sentences).
The results are also compared on a selected subset (406
sentences) corpus called “dev rare”, where the sentences
contain rarest words. We use the “dev 93+94” and “dev
rare” corpus as test data. Alternatively, We use WSJ eval-
uation 1995 (300 sentences) corpus as development cor-
pus to differentiate rare words.

5. Differentiating Rare Words
We use a word-frequency based method to empirically
identify rare words in the LM training corpora. We also
utilize a conventional hybrid LM to determine the rare
word cut-off frequency, Fth for the full-words as shown
in Figure 1. For all the unique words in the full-word LM
training corpus, we preserve the top most N words and
convert all the remaining OOVs into sub-word graphone
sequences to create hybrid LM corpus. We select a hybrid
vocabulary (Uv: 5k full-words and 4k graphones) based
on word frequencies. We report an OOV Rate of 12.1 [%]
for the WSJ 1995 corpus, as the selected vocabulary, Uv

do not represent all the words.
We create a hybrid LM (experiment 1) using vocab-

ulary Uv . In the next step, we exclude the singletons
(counts = 1) from the full-word LM training corpus by
explicitly mapping them to ‘unknown’ and convert the
remaining OOVs into sub-word graphone sequences to
create an another hybrid LM (experiment 2) using the
same vocabulary Uv . Similarly, we exclude the words
with counts ≤ 2 from the full-word LM training corpus
and convert the remaining OOVs into sub-word graphone
sequences to create the other hybrid LM (experiment 3)
using vocabulary Uv . Using these various hybrid LMs,
we run the recognition over WSJ 1995 corpus.

Table 1: Initial recognitions to determine Fth using vo-
cabulary [Uv: 5k full-words and 4k graphones] (expt:
Experiment, counts: Unigram counts, WER: Word error
rate [%])

expt OOVs converted into graphones WER
in full-word LM corpus [%]

to create hybrid LM
1 all 18.6
2 counts > 1 18.7
3 counts > 2 18.8

As shown in the Table 1, it is observed that all the

OOV words converted to graphones in the hybrid LM as
in experiment 1 are not much useful. Exclusion of full-
word singletons in experiment 2 produced a marginally
degraded WER. As WER is further degraded for hybrid
LM in experiment 3, we hypothesize that full-word sin-
gletons as rare words for our main hierarchical hybrid
LM experiments.

6. Experiments
We conduct a baseline recognition experiments for 5k,
20k and 64k full-word vocabularies. Results are shown
in Table 2.

Table 2: Full-word baseline results (sys: system, OOV:
out of vocabulary rate [%], WER: word error rate [%])

sys. dev 93+94 dev rare
OOV WER OOV WER

5k 11.2 24.2 15.6 32.0
20k 2.6 11.2 4.6 15.1
64k 0.5 8.8 0.8 10.4

We repeat the hybrid LM experiments, as described
by Bisani in [5], which are best in terms of WER and re-
fer them as reference hybrid LM. On the other hand, we
explicitly exclude all the rare words by mapping them to
unknown token during LM training in the reference hy-
brid LM and refer it as Optimized reference hybrid LM
system.

For the hierarchical hybrid LM experiments, we
group all the rare words and sub-word OOVs as a sin-
gle ‘unknown’ word category. For the first hierarchical
LM experiment, we use the separate sub-word level hy-
brid LM for the ‘unknown’ tagged words. All the words
in the corpus are converted into ‘sub-word graphone se-
quences’ to create separate sub-word level hybrid LM.
We use the hybrid vocabulary Uv [Uv: N full-words and
K graphones] to create base hybrid LM and the partial
hybrid vocabulary [K graphones] to create the sub-word
level hybrid LM.

For the second hierarchical LM experiment, we use
the separate character level hybrid LM for the ‘unknown’
tagged words. All the words in the corpus are converted
into ‘single character graphone sequences’ to create sep-
arate character level hybrid LM. Here, we use the hybrid
vocabulary Uv to create base hybrid LM and the sepa-
rate graphone character level vocabulary [C graphones]
to create the character level hybrid LM.

We construct a 3-gram full-word LMs. Similarly, we
use 6-grams for constructing the base hybrid LMs, gra-
phone based sub-word LMs and the graphone based char-
acter LMs. Empirically N -gram lengths are optimized.
We experiment with 5k, 20k and 64k full-word vocabu-
laries as base vocabularies. The recognition results for all
the experiments are shown in Table 3. We also report real
time factors (RTF) for the hierarchical hybrid LM exper-



iments, as shown in Table 3.

7. Results
In this section, for all the vocabularies, we analyze word
error rates, in-vocabulary word error rates followed by
OOV recognition accuracy.

7.1. WER Comparison

As shown in Table 3, for the 5k and 20k experiments, the
hierarchical hybrid LM system using the characters in the
second-level LM is the best in terms of WER. we obtain
the relative WER reductions of 6.9% and 6.6% for the dev
93+94 and dev rare corpus respectively compared to the
hybrid LM system in which the rare-words are included
in the LM training corpora. Moreover, we report the rel-
ative WER reductions of around 4.5% for both the dev
93+94 and dev rare corpus compared to the hybrid LM
system in which the rare-words are excluded in the LM
training corpora. Similarly, for 20k experiment, using the
best system, we achieve the relative WER reductions of
6.3% and 5.7% for the dev 93+94 and dev rare corpus re-
spectively compared to the hybrid LM system in which
the rare-words are included in the LM training corpora.
In addition, we obtain relative WER reductions of around
3.5% for both the dev 93+94 and dev rare corpus com-
pared to the hybrid LM system in which the rare-words
are excluded in the LM training corpora.

We notice that hierarchical hybrid LMs performed
better for the systems, 5k and 20k having significant OOV
rate in the base hybrid LM. We also notice that, the char-
acter based second-level LM is more useful than using
the sub-word LM, as the rare words can be better rep-
resented using the characters, thus minimizing the data
sparsity problem in the language model. For the 64k sys-
tem, as the base hybrid LM has low OOV rate (≈ 0.5%),
we could not obtain improvements.

7.2. In-vocabulary Word Error Comparison

A word is considered as an in-vocabulary, if it is found
in the baseline full-word vocabulary. We compute the
number of in-vocabulary words misrecognized w.r.t. the
baseline full-word vocabulary. As shown in Table 3, for
the 5k and 20k experiments, the hierarchical hybrid LM
system using the characters in the second-level LM is the
best in terms of low in-vocabulary error rates. It is worth
noting that all the rare words are not useful to model as
the graphone sequences. For the rare words, it is often
difficult to obtain the correct pronunciations. For the 64k
hierarchical hybrid LM systems, we noticed an increase
in the number of in-vocabulary word errors due to low
OOV rates in the base hybrid LM.

7.3. OOV Word Recognition Accuracy

As shown in Table 3, for the 5k and 20k experiments, the
hierarchical hybrid LM systems recognized more num-

ber of OOVs compared to hybrid LMs. For the 20k ex-
periment, though we recognize marginally more number
of OOVs using the second-level sub-word LM, we select
the system using second-level character LM as the best
system as the performance is better in terms of WER.

As shown in Table 3, for the 5k experiment, using the
best system, we recognize around 40% and 37% of the
OOVs (absolute) compared to its full-word system on dev
93+94 and dev rare corpus respectively. Moreover, we
recognized around 17% more OOVs (relative) compared
to the to the hybrid LM system in which the rare-words
are included, in the LM training corpora, for both the dev
93+94 and dev rare corpus. Similarly, for 20k experi-
ment, using the best system, we recognize around 36% of
the OOVs (absolute) compared to its full-word system for
both the dev 93+94 and dev rare corpus. Also, we recog-
nize approximately 23% more OOVs (relative) compared
to the hybrid LM system in which the rare-words are in-
cluded, for both the dev 93+94 and dev rare corpus.

We notice that, preferring characters over sub-words
in second-level LM is more useful to recognize signif-
icant number of OOVs, provided the OOV rates in the
base hybrid LM are high. As the characters (graphone)
cover all the types of words in the LM training corpora,
data sparsity is reduced, further increasing the richness
in N -gram context in the LM. On the other hand, for the
64k experiments, we could not recognize more number
of the OOVs due to low OOV rate in the base hybrid LM.

8. Conclusions
In this paper, we investigated the use of the hierarchical
hybrid LMs, utilizing two different hybrid LMs in a sin-
gle LM structure, effectively to obtain zero OOV rate. We
separately handled the rarely observed OOVs by empir-
ically differentiating them from the frequently occurring
OOVs in the full-word LM training corpus. From our ex-
periments, we have shown that using a second-level (gra-
phone) character LM is highly useful to recognize the
rarely observed OOVs as well as the sub-word OOVs.
We recognized a significant more number of OOVs us-
ing proposed hierarchical hybrid LM systems compared
to the one of the state-of-the-art hybrid LM systems. We
also obtain consistent improvements in terms of WER
for different vocabularies. In addition, the proposed LM
structure is configurable to exploit various types of LMs
in a single-pass with different vocabularies for different
word categories.
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Table 3: Recognition results in detail (expt: Experiment, FW voc: Full-word vocabulary, frag: Number of fragments in
the vocabulary, WER: Word error rate, IER: Fraction of in-vocabulary words mis-recognized, ORA: OOVs recognized
w.r.t. full-word baseline system, Hybrid LM: LM containing full-words along with sub-word graphones, hyb: Hybrid LM,
Hierarc. LM: Hierarchical hybrid LM, sub-wrd: Graphone based sub-word LM, char: Graphone based character LM,
RTF: Approximate real time factors (using WFST decoder), Y/N: Yes/No)

Base Hybrid LM Hierarc. LM Dev 93+94 Dev rare
FW exclude 1st 2nd
voc. rare level level frag. WER IER ORA RTF WER IER ORA RTF

OOVs LM LM [%] [%] [%] [%] [%] [%]
(Y/N)

5k – – – – – 24.2 8.1 – – 32.0 9.8 – –
Y N – – 4085 16.0 9.7 33.5 3.6 21.2 12.2 30.4 4.1
Y Y – – 15.7 9.5 35.1 – 20.7 12.0 32.1 –
– – hyb sub-wrd 15.4 9.4 36.7 6.4 20.3 11.8 33.6 7.4
– – hyb char 4234 14.9 9.2 39.3 6.1 19.8 11.7 36.4 6.9

20k – – – – – 11.2 6.8 – – 15.1 7.9 – –
Y N – – 11622 9.6 8.0 29.4 2.8 12.2 9.4 29.9 3.0
Y Y – – 9.4 7.9 32.7 – 11.8 9.1 33.2 –
– – hyb sub-wrd 9.1 7.7 36.7 4.9 11.6 9.1 37.3 5.4
– – hyb char 11827 9.0 7.6 36.4 4.2 11.5 9.0 37.1 4.4

64k – – – – – 8.8 7.3 – – 10.4 8.2 – –
Y N – – 14346 8.4 8.2 20.8 3.1 10.0 9.4 21.7 3.3
Y Y – – 8.3 8.1 22.2 – 9.8 9.2 23.1 –
– – hyb sub-wrd 8.5 8.3 22.2 5.4 10.2 9.6 23.1 6.0
– – hyb char 14613 8.5 8.3 20.8 4.7 10.1 9.5 23.1 5.0
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