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Abstract 

 

Trajectories in logarithmic potentials are investigated by taking as 

example the motion of an electron within a cylindrical capacitor. The 

solution of the equation of motion in plane polar coordinates, (r,φ) is 

attained by forming a series expansion of r and of 1/r as a function of φ. 

The terms of the series contain polynomials, the recurrence relation of 

which is given, together with some further characteristics. By the 

comparison-theorem of infinite series, the convergence of the solution is 

demonstraded. The simplest trajectories in logarithmic potentials are 

represented by rosette type orbits with a period of 4π/3, and by circular 

paths. 

 

 

1. Introduction 

 

The path of a point mass in a potential V(r) can be described by the diffe-

rential equation: 

 

2
2 2

dV(r)d 1 dr 1 m
r 0

d d r drr L

         
         

        
− + =− + =− + =− + =

ϕ ϕϕ ϕϕ ϕϕ ϕ
iiii                       (1) 

 

in accordance with classical mechanics. It is restricted to plane move-

ments [1, 2, 3]. L denotes the angular momentum, m the mass, and r and 

φ the plane polar coordinates. 

 

Closed solutions for differential equation (1) are known only for some 

special  potentials [1, 2, 3]. These are, for exemple, the harmonic oscilla-

tor: V(r) ~ r2, and the Kepler potential: V(r) ~ 1/r, which exist as power 

functions. In many other cases equation (1) can only be solved by 

numerical methods. Even for the logarithmic potential V(r) ~ In(r), only 
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numerical and no mathematical/analytical solutions exist up to now [1-11, 

18, 19]. 

 

In astronomy, the logarithmic potential is of special importance for the 

calculation of the orbits of single stars in the galaxy [3, 4]. A further 

illustrative example is to be found in the field of electronic optics, invol-

ving the determination of the electron orbit within the cylinder capacitor 

[12, 13]. Typical for orbits in logarthmic potentials is the determination of 

movement of a test charge q = -e in the cylinder capacitor. Formally this 

case can be treated by equation (1) by the substitution: m → q·m = -e·m.  

 

 

2. Equation of Motion for an Electron in a Cylinder Capacitor 

 

Apart from stray fields at the ends of the cylinder, the electric field pre-

vailing within a cylinder capacitor is 

 

(((( ))))
C r

2 1

U e
E

rln R R
====

������������
������������

iiii                                        (2). 

 

This electric field may be considered to be stationary. The constant k0 

contains the capacitor voltage UC and the inner and outer radii R1 and R2 

(see figure 1) 
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The electric potential for this is: 

 

(((( ))))0 1V(r) k ln r R==== iiii                                    (4), 

 

the potential of the inner radius R1, being put to zero. 

 

The following considerations assume that the electron enters the capa-

citor orthogonally to the z axis, and that the orbits to be calculated lie in 



 

 

- 3 -

the x-y plane (plane orbits). The motion along the z axis is a minor pro-

blem and will not be considered here. 

 

 

 

Fig. 1. Section in x-y plane through a cylinder capacitor with the inner 

and outer radii R1 and R2 

 

 

Newton´s equation of motion for a charge q in an electric field 
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gives, after the introduction of plane polar coordinates (r,φ) and sepa-

ration of the variables: 
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With 
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the conservation of the angular momentum in the z direction is obtained 
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as also the radial part of equation (6) 
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which yields, after elimination of time, in the equation of motion 
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The physical constants are combined in the parameter a2 
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Analytical solutions of the equation of motion (10) are up to now, un-

known [1-13, 18, 19].   

 

A first integral however, can be easily calculated as: 
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Here ρ is put equal to r/a. Taking ∈ℜA  and A>1 for the integration 

constant, equation (12) possesses two real roots for each A, denoted as 
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α1 and α2. This implies bound orbits, with the pericenter ρ = α1, and the 

apocenter ρ = α2. A closed integral of equation (12) is not known [14, 15, 

16]. 

 

The question whether there are closed orbits within logarithmic potentials 

will be discussed later. Figure 2 shows a typical plot of ρ ϕd /d . 

 

 

Fig. 2. Plot of ρ ϕd /d  in the interval α1 < ρ < α2  with  A=2.36495101,  

α1 = 0.5224713751 and α2 = 3.096694453 

 

 

After substitution of a/r by z in equation (10) and collection of the diffe-

rential quotients, an autonomous differential equation of the second 

order is obtained: 

2
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This differential equation can now be solved by separate power series for 

z and 1/z. 
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3. Solution as a Pair of Power Series 

 

The application of power series 
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is possible, if a0≠0 and b0≠0, and if both power series have a positive 

radius of convergence [17]. The coefficients ak and bk are related to one 

another, since 

1
z 1

z
====iiii                                               (15). 

This results in 
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and  

j j
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λλλλ

λ−λ−λ−λ−
====
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The question of convergence will be dealt with separately. If equations 

(14a) and (14b) are substituted into equation (13) 

 

(((( )))) (((( ))))k k k 2b a k 1 k 2 a ++++
= + + += + + += + + += + + +                         (18). 

 

Here  k  passes through values 0, 1, 2, 3, and so on. If the existence of 

bound orbits is a requirement, it is possible to set b1 = 0 without restric-

tion of the general validity. On the other hand equations (17) and (18), in 

general, yield: 

 

(((( )))) (((( ))))j j 2 j
j 0

a j 1 j 2 a a 0
λλλλ

+ λ−+ λ−+ λ−+ λ−
====

    
    

+ + + =+ + + =+ + + =+ + + =∑∑∑∑                       (19). 



 

 

- 7 -

With (18) and (19), it becomes clear, that the functions z(φ) and 1/z(φ) 

are even functions in φ, since the odd coefficients of the power series 

vanish: 

 

2k 1 2k 1a b 0+ ++ ++ ++ += == == == =                                        (20). 

 

The coefficients ak can be found from equation (19). The coefficients bk 

are fixed by equation (18). 

 

At this stage, it is convenient to express the power series (14a) and (14b) 

by the following equations 

 

(((( )))) (((( ))))
(((( ))))

(((( )))) (((( ))))
(((( ))))

2kk1

k
k 1

2kk

k
k 11

1 1 x 1 p (x)
2k !

1 1 x 1 q (x)
2k !

∞∞∞∞

====

∞∞∞∞

====

αααα ϕϕϕϕ
= + − −= + − −= + − −= + − −

ρρρρ

ρ ϕρ ϕρ ϕρ ϕ
= + − −= + − −= + − −= + − −

αααα

∑∑∑∑

∑∑∑∑
                 (21 a, b). 

 

Here again, ρ = r/a, x = α1
2 , and α1= b0. The symbols pk(x) and qk(x) 

denote polynomials in x, which can be determined from the recurrence 

relations (23a) and (23b), as follows:   

 

- Equations (13), (21a), and (21b) yield: 
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Whith the product of (21a) and (21b), and taking into account the equa-

tions (22a) and (22b), the desired recurrence relations may be obtained. 

Their validity is restricted to values for k>1. Therefore q1 and p1 must be 

calculated separately, giving:  q1 = -1 and p1 = 1.  
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There recurrence relations are: 
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For k=2 the summation in (23b) disappears. In the interests of clarity the 

following abbreviations have been chosen: 
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Tables 1 and 2 show the resulting polynomials up to k=5. Figure 3 shows 

the first five polynomials qk. It should be noted that 0 ≤ x ≤ 1. 

 

Table 1. The first five polynomials qk(x). 

q1 -1     

q2 5 -7 x    

q3 -61 +184 x -127 x2   

q4 1385 -6567 x +9543 x2 -4369 x3  

q5 -50521 +329768 x -746910  x2 +711296 x3 -243649 x4 

 

 

Table 2. The first five polynomials pk(x). 

p1 1     

p2 1 + x    

p3 1 -4 x +7 x2   

p4 1 +57 x -177 x2 +127 x3  

p5 1 -1328 x +6390  x2 -9416 x3 +4369 x4 
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Table 3. Special values, Ek,0 are the Euler numbers in equation (28a) 

 

qk(x=0) = Ek,0 

 

pk(x=0) = 1 

 

 

qk(x=1) = - 2k-1 

 

pk(x=1) =  2k-1 

 

 

For practical applications equations (23a) and (23b) are unwieldy, par-

ticularly with a high summation index k. Furthermore, the calculation of 

the polynomials requires only knowledge of the coefficients, enabling a 

general description of the coefficients to be derived. 

 

 

Fig. 3.  Plot of the polynomials qnk(x) = qk(x)/Ek,0 in the interval 0 ≤ x ≤ 1 

for k = 1 to 5, standardized according to Euler numbers Ek,0 , equation 

(28a) 
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4. General Description of the Polynomial Coefficients 

 

A general formulation of the polynomials can be expressed by 

 

k 1

k k,
0

k 1

k k,
0

p S

q E x

x

−−−−
κκκκ

κκκκ
κ=κ=κ=κ=

−−−−
κκκκ

κκκκ
κ=κ=κ=κ=

====

====

∑∑∑∑

∑∑∑∑
                                  (25 a, b). 

 

Because of (22b), Sk,κ are summations of Ek,κ , so that only consideration 

of the coefficients of the polynomials qk is required (cf. tables 1 and 2). 

 

The substitution of (25a) into (23a) results in: 
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Here abbreviations of the following form were used: 
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If the upper index of a summation exceeds the permissible range of va-

lues, the summation has to disappear. 

 

By ordering equation (26) in powers of x, a set of recurrence relations for 

Ek,κ  is obtained by comparison of coefficients. They are thus clearly 

defined, as with κ ≥ k   they disappear: 
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(28 a, b,c) 

 

Equation (28a) shows the recurrence relation for the Euler numbers. 

Equation (28c) is valid from κ = 2 upwards. 

 

 

Table 4.   Ek,κ  to k=5. 

  

k κ E k, κ 

1 0 -1 

2 0 

1 

5 

-7 

3 0 

1 

2 

-61 

184 

-127 

4 0 

1 

2 

3 

1385 

-6567 

9543 

-4369 

5 0 

1 

2 

3 

4 

-50521 

329768 

-746910 

711296 

-243649 

 

 

With the aid of a computer algebra programme the coefficients Ek,κ of the 

polynomials qk can be easily calculated up to any desired order.  
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5. Convergence 

 

Proof of convergence follows from the comparison-theorem of infinite 

series [17]. The maximum of 
k

q (x)  in the range of values 0 ≤ x ≤ 1 is at 

x=0, where 

k k,0q (x 0) E= == == == =                                          (29). 

 

From this follows 
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possesses positive terms: ϕ ϕ ϕ π≠ ± ∈ℕsc( ) =1/cos( ), n /2, n . Therefore 
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is also convergent, even absolutely convergent. The summation in (21b) 

is therefore convergent. As it is permissible to divide by convergent 

series, the summation in (21a) is also convergent [17]. 

 

 

6. Graphical Representation of the Orbits 

 

Of special interest is the form the trajectories take in logarithmic po-

tentials. A typical example will be considered, but first it has to be borne 

in mind, that if the integration constants in equation (12) are suitably 

chosen, closed orbits can also exist. If the angle φ is defined mathe-

matically positive, and if the pericenter of the orbit is defined to be the 

starting point  φStart = 0 and  ρStart = α1 , the graphical representation of 

the orbits according to equation (21b) presents no problem. 
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A numerical integration of equation (12) gives for the angle Φ of the 

apocenter ρ = α2 , the approximation: 
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The range of values of the half period Φ lies therefore between π / 2  and 

π / 2  , which means that for the first closed orbit Φ = 2π/3. The circular 

orbit ( dρ/dφ = 0, ρ = α1 = α2 = 1, A=1 ) represents the limiting case       

Φ ≈ π / 2 . Apart from the circular orbit, the simplest trajectory has a 

period of 2Φ = 4π/3. The plot of the standardized radius as a function of 

the angle in this case is illustrated in figure 4. 

 

 

Fig. 4.  Plot of period of ρ(φ) for the simplest closed trajectory. The 

period is 2Φ=4π/3. 
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Figure 5 shows the same closed orbit in plane polar coordinates. It has 

the shape of a rosette, similar to the three part hypocycloid. Apart from 

the circular orbit this is the simplest trajectory in a logarithmic potential. 

 

Fig. 5.  Closed trajectory with Φ=2π/3, the absides as well as the circles 

ρ = α1 and ρ = α2 are shown; A=2.36495101, α1 = 0.5224713751 and    

α2 = 3.096694453; see also [20] 

 

 

7. Conclusions 

 

The equation of motion af a point mass in a logarithmic potential leads to 

a quasi-harmonic autonomous second order differential equation of very 

simple structure. The solution of this differential equation by series ex-



 

 

- 15 - 

pansion of the radius vector according to the azimuth angle results in a 

system of coefficient polynomials. 

 

A first integral of the equation of motion shows that by suitable choice of 

the integration constants bound orbits exist. Apart from the circular orbit, 

the trajectory with period 4π/3 is the simplest closed orbit in the logarith-

mic potential. 

 

The exact calculation of the orbit periods and the possible assignation of 

the coefficient polynomials found to a known family of polynomials, e.g. 

the Euler polynomials, will be a subject of further investigations. 
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