
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

1-2007

A Hike through a Post-EJB J2EE Web Application Architecture, A Hike through a Post-EJB J2EE Web Application Architecture,

Part III, Part III,

Konstantin Laufer

George K. Thiruvathukal

Benjamin Gonzalez

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

I n this third article in a series about Web application de-
velopment—the first1 focused on the upper tiers, and the
second2 focused on the middle and lower tiers—we retro-

fit the entire architecture with support for automated testing.3

We continue here with our running example—linear re-
gression over a persistent set of points—and our familiar
blueprint of a typical post-Enterprise Java Beans (EJB) Java
2 Enterprise Edition (J2EE) Web application architecture
(see Figure 1). In past hikes, we first worked our way up
through the view and controller layers in the user interface
tier, and then made our way down through the application
and data model layers in the middle tier until we reached the
persistence tier at the bottom. We looked at typical tech-
nologies for each layer and used lightweight containers to
painlessly connect the various pieces.

In this article, we add support for automated compo-
nent, integration, and acceptance testing. We’ll test iso-
lated components in each tier and then do some
integration testing with other components. Once we get
all the way to the top, we’ll perform acceptance testing on
the entire Web application as the user would see it. Our
objective is to gain confidence in the correctness of all ap-
plication-specific components, their integration with each
other, and their integration with components from vari-
ous frameworks.

If you still need convincing about the important benefits
of test-driven development (TDD), please read Kent Beck
and Erich Gamma’s “Test Infected: Programmers Love
Writing Tests” (http://members.pingnet.ch/gamma/junit.
htm). Otherwise, let’s get started.

To follow a proper TDD approach, in which coding and
testing go hand in hand, we should build the testing instru-
mentation into our example code from the start. However,
to keep the presentation clear and simple, we kept testing
out of the earlier installments of this series and made it the
main focus of this one. To make the article as self-contained

as possible, we repeat some of the examples from the earlier
articles where appropriate. The example code is also avail-
able at http://snapshots.cs.luc.edu/338/LinearRegression
and :pserver:anonymous@cvs.cs.luc.edu:/root/laufer/338.

The Dependency Graph:
Figuring out the Best Route
Naturally, the first question is where to start, so let’s turn to
the equivalent of a trail map for this hike: an inter-package
dependency graph, which indicates compile-time depen-
dencies among the application’s various packages. In a Java
Web application, we typically have at least one package per
tier. In our running example, these packages include

• points.web, the application-specific components of the
user interface tier’s controller layer (the actions behind
the application’s dynamic behavior);

• points.biz, the application model in the middle tier’s
upper half (the service object that exposes linear regres-
sion functionality to the user interface tier); and

• points.hib, the data model in the middle tier’s lower
half (the data access object [DAO] manages application
data by mapping it to persistent storage).

Ideally, each tier in a tiered architecture depends only on
the next-lower level, so the dependency graph should re-
semble a linear chain. However, two issues arise on closer
inspection: first, where should the Point interface go? If we
put it in the data tier, the Web tier depends on the data tier
even though it should depend only on the business tier. But
if we put it in the business tier, the data tier depends on the
business tier, and we’ll have an undesirable cycle in the de-
pendency graph. Second, what if we want to switch data
model implementations without changing data model in-
terfaces? Fortunately, we can address both issues by intro-
ducing two more packages:

82 Copublished by the IEEE CS and the AIP 1521-9615/07/$20.00 © 2007 IEEE COMPUTING IN SCIENCE & ENGINEERING

A HIKE THROUGH A POST-EJB J2EE WEB
APPLICATION ARCHITECTURE, PART III
By Konstantin Läufer, George K. Thiruvathukal, and Benjamín González

Editors: George K. Thiruvathukal, gkt@cs.luc.edu

Konstantin Läufer, laufer@cs.luc.edu

S C I E N T I F I C P R O G R A M M I N G

By incorporating automated component, integration, and acceptance testing into the various tiers of a
lightweight Java 2 Enterprise Edition (J2EE) Web application architecture, developers can shorten the
development cycle and increase the quality of their work.

82 Copublished by the IEEE CS and the AIP 1521-9615/07/$20.00 © 2007 IEEE COMPUTING IN SCIENCE & ENGINEERING

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2007 83

• points.common, the interfaces used across various tiers
(in this case, only the Point interface); and

• points.dao, the data model’s implementation-indepen-
dent portion (that is, the DAO interface). By contrast, the
data model’s Hibernate-specific (www.hibernate.org) por-
tions stay in the points.hib package.

In general, we should attempt to make the inter-package de-
pendency graph acyclic by moving types between packages
or splitting up packages as needed.

Using the Metrics plug-in for Eclipse (http://metrics.
sourceforge.net), we can generate inter-package dependency
graphs for Java applications automatically, among other use-
ful things. Figure 2 shows the dependency graph for our lin-
ear regression example. The wider part of the connection
represents the base of the arrow, and the pointed part repre-
sents the tip. The tiny boxes with numbers in them indicate
additional dependencies on external packages. The portion
of the dependency graph corresponding to the Web, busi-
ness, and implementation-independent data tiers is a linear
chain pointing down as expected. The implementation-
specific data tier points up on the implementation-indepen-
dent data tier as expected because it implements that tier’s
interfaces. From a functionality viewpoint, of course, the
business tier also depends on the implementation-specific
data tier, so a cycle here doesn’t show up in the inter-package
dependency graph because the Spring framework (www.
springframework.org) manages this dependency at runtime.

The next step is to identify all the sinks in the dependency
graph—that is, those packages that don’t depend on any
other packages. Because the graph is non-empty and acyclic,
we’re guaranteed at least one sink. In this case, it’s the
points.common package, which contains the Point inter-
face. Because we can test only concrete classes, we have to
remove the node corresponding to this package and try
again. This leaves us with the points.dao package as the
next sink, which again contains only the PointsDAO inter-
face, so we have to remove it, too. As mentioned earlier, even
though the business tier doesn’t seem to depend explicitly
on the Hibernate tier, it has an implicit runtime dependency,
so we proceed with component and integration testing from
the lowest to the highest tier, in reverse order of dependency.

Testing on Specific Tiers
Let’s look at component and integration testing in the spe-
cific tiers, using additional technology beyond straight JUnit
(www.junit.org) where appropriate. Following common
practice, we put the tests for each tier in the corresponding

View

User
interface
tier

Middle
tier

Persistence
tier

Visual styles
Cascading Style Sheets

Layout
SiteMesh

Navigation
SiteMesh

i18n
Resource bundles

Presentation
Java Server Pages/Java Standard Tag Library

Controller

Validation
Struts declarative validation

Dynamic behavior
Struts servlet and actions

Lightweight container
Spring framework

Application model
POJOs providing business services

Data model
POJOs with Hibernate O/R mapping

Java Database Connectivity (JDBC) data source
Relational database

Authentication
J2EE declarative authentication

Figure 1. Architectural blueprint. The post-Enterprise Java
Beans (EJB) Java 2 Enterprise Edition (J2EE) Web application
architecture shows the typical tiers to include in a
comprehensive testing strategy.

Figure 2. Inter-package dependency graph for the linear
regression example. Each tier depends only on the next lower
tier and common interfaces; only the lowest tier depends on
the tier above it because it implements it.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

84 COMPUTING IN SCIENCE & ENGINEERING

package but physically place them in a separate source folder
called test. The data-access tier tests, for example, are in
the points.hib package in the test folder.

The Data-Access Tier
The points.hib package provides a Hibernate-specific im-
plementation of the points.dao.PointDAO interface. As the
dependency graph shows, this tier depends only on the inter-
faces in points.dao and points.common, which require no
testing, thus we start here. Let’s look first at the dependencies
among the classes and interfaces in this package. The sinks in
the intra-package dependency graph are the plain old Java ob-
jects (POJOs)—namely, DefaultPoint, which implements
the Point interface, and Color, on which DefaultPoint de-
pends. For convenience, we repeat the Point interface here:

public interface Point

extends Comparable<Point> {

int getId();

double getX();

double getY();

String getColor();

}

The Color class simply wraps around a color name imple-
mented as a String:

class Color implements Comparable<Color> {

private String name;

public Color(String name) {

this.name = name;

}

public String getName() { return name; }

protected void setName(String name) {

this.name = name;

}

// ...

}

Similarly, the DefaultPoint class is a straightforward im-
plementation of the Point interface:

class DefaultPoint implements Point {

private int id;

S C I E N T I F I C P R O G R A M M I N G

CHEZ THIRUVATHUKAL

To Reinvent or not to Reinvent:
Is It Even a Question?
Computer science is undergoing a bit of a transformation,
with several departments across the country rethinking their
CS curricula. A notable recent example is Georgia Tech,
which introduced the notion of CS
“threads.” At Loyola University
Chicago we, too, went through a simi-
lar exercise with the idea of broaden-
ing interest in CS—both at the
undergraduate and graduate levels—
and letting students explore more di-
verse trajectories. Not surprisingly, the
US National Science Foundation (NSF)
has recently issued a call for proposals
to refresh the CS curriculum, realizing
that there is indeed a need to rethink
the way CS works stateside, seeing that
interest isn’t trending in the positive di-
rection. Conversely, interest in CS, en-
gineering, and IT is trending way up in
China, India, and Latin/South America.

Redesigning undergraduate or grad-
uate curricula won’t change the land-
scape here in the US. I recall a visit with
the Indian side of my family in Decem-
ber 1994, when I presented a paper on my dissertation re-

search at what became known as the first high-performance
computing conference in Bangalore, India. This visit left an
indelible impression on me when I got a firsthand glimpse of
what’s happening there. My 12-year-old second cousin asked
me, “Can you help me understand the running time of these
three sorting algorithms?” Having developed an early interest
in CS myself at age 14, which I considered late, I was im-

pressed. But some of the questions she
asked me were at the level I’d expect
from advanced undergraduates or
graduate students. What the heck was
going on here? I pressed her to get an
understanding of whether she was in a
special program similar to what I expe-
rienced as a high-school student, in
which you had to be good in mathe-
matics just to sign up. She said some-
thing along the lines of, “No, these
courses are available to everyone in
my school. We all need to know this
for our future, whether that future is
here or elsewhere.” I proceeded to
help her with her homework questions
and was delighted to see that Indian
kids are learning this stuff and—more
important—women are encouraged
to do so as well! It’s no secret that CS
and engineering are experiencing

ever-decreasing interest among the female population in the

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2007 85

private double x, y;

// ...

}

We need a simple component-level unit test of the Color
class. For brevity, we show only one test method, which tests
the Color.getName() method:

public class TestColor extends TestCase {

// ...

public void testGetName() {

Color c = new Color(“orange”);

assertEquals(“orange”, c.getName());

}

// ...

}

We also need a simple test of the DefaultPoint class.
Again, we show only one test method, but the complete test
checks the various constructors, setter and getter meth-
ods, and comparison and other auxiliary methods:
public class TestDefaultPoint

extends TestCase {

// ...

public void testSetX() {

DefaultPoint p = new DefaultPoint();

p.setX(7);

assertEquals(7, p.getX(), 0);

}

// ...

}

The preceding tests convince us that the POJOs work, so
now it’s time to look at the DAO itself. As you recall, the
DAO interface looks like this, specifying the typical create,
read, update, and delete (CRUD) functionality, as we would
expect. Since the second hike,2 we’ve converted our exam-
ple code to Java Generics. Now, we can express more pre-
cisely that the result of the findAll() method is a collection
of points rather than arbitrary objects:

public interface PointDAO {

void init();

Point create(double x, double y,

US, despite the enormous career potential. Like most acade-
mics in the field, I have no shortage of possible explanations;
only time will tell whether any of them—mine included—are
plausible. But I’m convinced there’s something in my cousin’s
story that the NSF and the august institutions in America that
teach CS might want to know and understand better: how
do we get our secondary schools to realize that all our chil-
dren should learn about computers and not just view them as
glorified calculators?

I’m not convinced that CS—especially at the university
level—needs to be reinvented; perhaps refined but not rein-
vented. I see little harm in CS departments exploring more
creative programming and enhancing connections to science,
business, and the arts. However, we must rethink education
more generally and ask ourselves what ideas should be taught
from an early age. I just recently started teaching a new
course on the History of Computing as a core-knowledge
course here at Loyola University Chicago. The history of com-
puting and communication is a key component of “modern”
world history, although you’d be hard pressed to find any his-
torically focused course in secondary schools teaching these
ideas and connecting them to the historical transformation
that’s literally happening before our eyes—or in the last cen-
tury. Even a perusal of college history textbooks on western
civilization produces nary a mention of these ideas. We as
computing folk must do whatever we can to ensure the infor-
mation age is considered as important as the industrial revolu-
tion. If the ideas of computing aren’t worth teaching to
anyone besides us, then why does it matter at all?

SI Units
In the last issue, we discussed unit testing and presented an
example with symbolic expressions to represent units of
measurement. The idea is to make it possible to carry the
units of measurement the actual user is interested in main-
taining. The code in this article was intended primarily for
pedagogical purposes, but we’re expanding it into a com-
plete framework for dimensional analysis with full support
for all known units of measurement. We’ll see how far we
can get and (I hope) report on it in a future column.

As part of this effort, we’re also looking at an international
standard called Système International d’Unites (SI), which
breaks every quantity down into a combination of the di-
mensions mass, length (or position), time, charge, tempera-
ture, intensity, and angle. These SI units are a helpful tool for
the problem at hand because they let you focus on the prob-
lem more abstractly and worry about the specific mapping
to and from actual units later. Let’s say I want to talk about
an expression, meters/second^2. As “meters” fit into the SI
notion of “length” or “position” and “second” into the no-
tion of time, we can think of this expression’s dimensions as
length/time^2.

Note that it’s still of paramount importance to address the
problem of metric versus imperial units and to ensure that
the units are consistent when operations are performed. The
problem of adding “kg” and “pounds,” for example, must
be addressed when working with two different sets of mea-
surement units. Even in the same system, we must take care
to normalize the units to a common unit.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

86 COMPUTING IN SCIENCE & ENGINEERING

String color);

Point find(int id);

Collection<? extends Point> findAll();

void remove(int id);

void update(int id, double x, double y,

String color);

Collection<String> findColors();

}

It’s convenient to have a simple in-memory stub implementa-
tion of the DAO for two reasons: one, it provides a reference
implementation for writing DAO unit tests, which we can test
against until we’re confident that the test itself is good enough
before moving on to the real Hibernate-based implementa-
tion. Two, it lets us test some classes in the upper tiers without
involving an actual database. The stub implementation simply
stores the points in a hash map from the points’ IDs (Inte-
ger) to the actual points. The implementation is straightfor-
ward, so we show only a few sample methods:

public class InMemoryDAO implements PointDAO {

private Map<Integer, DefaultPoint> map =

new HashMap<Integer, DefaultPoint>();

private int currentId = 0;

public synchronized Point create(double x,

double y, String color) {

++ currentId;

DefaultPoint p =

new DefaultPoint(x, y,

new Color(color));

p.setId(currentId);

map.put(currentId, p);

return p;

}

public synchronized Point find(int id) {

return map.get(id);

}

public synchronized void remove(int id) {

map.remove(id);

}

// ...

}

The real Hibernate-based implementation is still the same
as in the second hike.2 It relies heavily on Spring in two
ways: the HibernateDaoSupport superclass painlessly ex-
poses Hibernate’s functionality, and the Application-
ContextAware interface explicitly tells Spring that this class
needs to look up other components:

public class HibernatePointDAO

extends HibernateDaoSupport

implements PointDAO, ApplicationContextAware

{

// ...

protected Point createPoint(double x,

double y, Color color) {

Point pt = new DefaultPoint(x, y, color);

getHibernateTemplate().save(pt);

return pt;

}

public Point create(double x, double y,

String color) {

Color col = (Color) getHibernateTemplate()

.get(Color.class, color);

return createPoint(x, y, col);

}

public Point find(final int id) {

return (Point) getHibernateTemplate()

.get(DefaultPoint.class,

new Integer(id));

}

// ...

}

To build confidence in the correctness of these DAOs,
we’ll want to test them with increasingly complex scenarios.
We start by unit testing the in-memory version of the DAO,
making sure first that a freshly created DAO is empty and
then checking whether we can find a point after creating it.
Figure 3 shows an example of this.

We continue by testing the real, Hibernate-based DAO
implementation. This integration test requires proper ac-
cess to the persistent data source to which Hibernate maps
our POJOs. In the Web application itself, we use Spring to
manage the various dependencies: the DAO depends on a
Hibernate session factory, which depends on a Java Data-
base Connectivity (JDBC) data source. The challenge is to

S C I E N T I F I C P R O G R A M M I N G

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2007 87

write the test case in a way that’s consistent with our deci-
sion to use Spring—that is, we also want Spring to inject de-
pendencies into the test.

Fortunately, this is a common situation, and Spring’s
AbstractTransactionalDataSourceSpringContext-

Tests class (perhaps we should call it A47S) is exactly the
right superclass for it. In the getConfigLocations()
method, we tell Spring where to look for the application
context definition files in which we specify the test case’s
various dependencies. The test case’s application context
definition file is almost the same as the one for the Web
application, except the former must refer directly to a lo-
cal data source, whereas the latter can use the servlet con-
tainer to find the data source via the Java Naming and
Directory Interface (JNDI). Concretely, this is just a mi-
nor change to the data source beans in the application
context file.

The A47S class provides automatic transaction rollback,
meaning we can test it against the production database with-
out having to worry about modifying it. Because we’re run-
ning in a test environment without real data, we explicitly
reinitialize the DAO to the empty state before running each
test method. We could also use DBUnit (http://dbunit.
sourceforge.net/) to prepopulate the database to a known
state before testing.

Unsurprisingly, the rest of the test case is the same as for
the in-memory DAO stub:

public class TestHibernatePointDAO

extends AbstractTransactionalDataSource-

SpringContextTests {

private PointDAO dao;

public void setPointDAO(PointDAO dao) {

this.dao = dao;

}

protected String[] getConfigLocations() {

return new String[] {

“classpath:points/hib/” +

“applicationContextHibernate.xml”

};

}

protected void onSetUpInTransaction()

throws Exception {

dao.init();

}

// same test cases as TestInMemoryDAO

}

If we run the JUnit tests in Eclipse, we get the test results
in the usual JUnit Eclipse view. Figure 4 shows the test re-
sults in the points.hib package.

The Business Tier
The points.biz package contains the interface and default
implementation of the service object that implements spe-
cific business functionalities on top of the data-access tier.
The service object’s interface is

public interface RegressionService {

void reset();

void addPoint(double x, double y,

String color);

Point getPoint(int id);

RegressionResult getResult();

void removePoint(int id);

void editPoint(int id, double x, double y,

String color);

Collection<String> getColors();

}

In this interface’s implementation, the CRUD methods
more or less directly invoke the corresponding DAO meth-
ods while the getResult() method performs the actual
linear regression. The result is an instance of a transfer ob-
ject interface:

public interface RegressionResult {

Collection<? extends Point> getPoints();

double getSlope();

double getYIntercept();

}

Using plain JUnit tests, we can test the service against the
in-memory stub object defined as part of the DAO tests. As
usual, we try to test the functionality thoroughly, working
our way from simple to complex scenarios (see Figure 5).

Assuming you’re a Spring fan by now, you’ll have noticed
that we explicitly set the DAO for the DefaultRegres-
sionService to be tested, which is acceptable for our pur-
poses. But if you’re wondering whether Spring can inject
this dependency for us, the answer is yes. Spring provides

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

88 COMPUTING IN SCIENCE & ENGINEERING

another class with a fairly long name, AbstractDepen-
dencyInjectionSpringContextTests (A45S?), for test
cases that obtain their dependencies from an application
context; we can rewrite the previous test case by extending
this class:

public class TestRegSvcInMemorySpring

extends AbstractDependencyInjection-

SpringContextTests {

private RegressionService service;

public void setRegressionService(

RegressionService service) {

this.service = service;

}

protected String[] getConfigLocations() {

return new String[] {

S C I E N T I F I C P R O G R A M M I N G

public class TestInMemoryDAO

extends TestCase {

private PointDAO dao;

protected void setUp() throws Exception {

super.setUp();

dao = new InMemoryDAO();

}

protected void tearDown() throws Exception {

dao = null;

super.tearDown();

}

public void testEmpty() {

assertTrue(dao.findAll().isEmpty());

}

public void testInit() {

dao.init();

assertTrue(dao.findAll().isEmpty());

}

public void testColors() {

Collection<String> colors =

dao.findColors();

assertEquals(3, colors.size());

assertTrue(

colors.contains(Color.RED.getName()));

// same for other predefined colors

}

public void testCreateFind() {

int size = dao.findAll().size();

Point p =

dao.create(2, 3, Color.RED.getName());

assertEquals(size + 1, dao.findAll().size());

assertEquals(p.getId(),

dao.find(p.getId()).getId());

assertTrue(dao.findAll().contains(p));

}

public void testCreateRemove() {

int size = dao.findAll().size();

Point p =

dao.create(2, 3, Color.RED.getName());

assertEquals(size + 1, dao.findAll().size());

assertEquals(p.getId(),

dao.find(p.getId()).getId());

assertTrue(dao.findAll().contains(p));

dao.remove(p.getId());

assertEquals(size, dao.findAll().size());

assertTrue(dao.find(p.getId()) == null);

assertFalse(dao.findAll().contains(p));

}

public void testCreateUpdate() {

int size = dao.findAll().size();

Point p =

dao.create(2, 3, Color.RED.getName());

assertEquals(size + 1,

dao.findAll().size());

assertEquals(p.getId(),

dao.find(p.getId()).getId());

Figure 3. Example of TestInMemoryDAO. This code unit-tests the in-memory stub implementation of the data access
object (DAO) using increasingly complex scenarios.

Figure 4. Test results in the Eclipse JUnit view. This view
shows the outcome of a particular test run as a tree.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2007 89

“classpath:points/hib/” +

“applicationContextInMemory.xml”,

“classpath:points/biz/” +

“applicationContext.xml”

};

}

public void onSetUp() { service.reset(); }

public void onTearDown() { service = null; }

// test methods exactly as before

}

To specify this test case’s dependencies, we use two appli-
cation context files, one that specifies which DAO to use
and one that is independent of DAO choice. Each is very
simple:

<beans>

<bean id=”pointDao”

class=”points.hib.InMemoryDAO”/>

</beans>

<beans>

<bean id=”regressionService”

class=”points.biz.DefaultRegressionService”>

<property name=”pointDAO” ref=”pointDao”/>

</bean>

</beans>

To integration-test the service object against the Hi-
bernate-based DAO, we do only two things: extend
AbstractTransactionalDataSourceSpringContext-

Tests and use an application context definition file that
provides the Hibernate-based DAO as shown in the sec-
ond hike:2

public class TestRegSvcHibernate

extends AbstractTransactionalDataSource-

SpringContextTests {

assertTrue(dao.findAll().contains(p));

dao.update(p.getId(), 4, 5,

Color.GREEN.getName());

Point q = dao.find(p.getId());

assertEquals(p.getId(), q.getId());

}

public void testCreateMultiple() {

Collection<Point> points =

new HashSet<Point>(dao.findAll());

int size = points.size();

Point p1 =

dao.create(2, 3, Color.RED.getName());

Point p2 =

dao.create(3, 4, Color.BLUE.getName());

Point p3 =

dao.create(4, 5, Color.GREEN.getName());

assertTrue(p1.getId() != p2.getId());

assertTrue(p2.getId() != p3.getId());

assertTrue(p1.getId() != p3.getId());

assertEquals(size + 3,

dao.findAll().size());

for (Point p :

new Point[] { p1, p2, p3 }) {

assertEquals(p.getId(),

dao.find(p.getId()).getId());

assertTrue(dao.findAll().contains(p));

assertFalse(points.contains(p));

}

}

public void testCreateRemoveMultiple() {

Collection<Point> points =

new HashSet<Point>(dao.findAll());

int size = points.size();

Point p1 =

dao.create(2, 3, Color.RED.getName());

Point p2 =

dao.create(3, 4, Color.BLUE.getName());

Point p3 =

dao.create(4, 5, Color.GREEN.getName());

assertTrue(p1.getId() != p2.getId());

assertTrue(p2.getId() != p3.getId());

assertTrue(p1.getId() != p3.getId());

assertEquals(size + 3,

dao.findAll().size());

for (Point p :

new Point[] { p1, p2, p3 }) {

assertEquals(p.getId(),

dao.find(p.getId()).getId());

assertTrue(dao.findAll().contains(p));

assertFalse(points.contains(p));

}

for (Point p :

new Point[] { p1, p2, p3 }) {

dao.remove(p.getId());

}

assertTrue(

points.containsAll(dao.findAll()));

assertTrue(

dao.findAll().containsAll(points));

}

}

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

90 COMPUTING IN SCIENCE & ENGINEERING

private RegressionService service;

public void setRegressionService(

RegressionService service) {

this.service = service;

}

protected String[] getConfigLocations() {

return new String[] {

“classpath:points/hib/” +

“applicationContextHibernate.xml”,

“classpath:points/biz/” +

“applicationContext.xml”

};

}

protected void onSetUpInTransaction()

throws Exception {

service.reset();

}

// test methods exactly as before

}

The Web Tier
The points.web package contains the Struts (http://
struts.apache.org) actions that provide the application’s dy-
namic behavior. In the Struts Web application framework,
actions are small components that plug into the controller,
which makes them hard to test in isolation using plain JUnit.
AddAction, for example, adds a point to the current collec-
tion and expects to receive the incoming data as part of a
Struts form, among other dependencies on the Struts con-
troller servlet:

public class AddAction

extends RegressionServiceActionSupport

implements Constants {

public ActionForward execute(...) ... {

// obtain arguments from form bean

double x = Double.parseDouble(BeanUtils

.getProperty(pointForm, PROPERTY_X));

double y = Double.parseDouble(BeanUtils

.getProperty(pointForm, PROPERTY_Y));

S C I E N T I F I C P R O G R A M M I N G

public class TestRegSvcInMemory

extends TestCase {

private DefaultRegressionService service;

protected void setUp() throws Exception {

super.setUp();

service = new DefaultRegressionService();

service.setPointDAO(new InMemoryDAO());

}

protected void tearDown() throws Exception {

service = null;

super.tearDown();

}

public void testAddTwo() {

service.addPoint(1, 3, “red”);

service.addPoint(2, 4, “blue”);

RegressionResult result =

service.getResult();

assertEquals(2, result.getPoints().size());

assertEquals(2.0, result.getYIntercept());

assertEquals(1.0, result.getSlope());

}

public void testAddRemoveMultiple() {

service.addPoint(1, 2, “red”);

service.addPoint(3, 4, “red”);

service.addPoint(4, 5, “red”);

RegressionResult r1 = service.getResult();

assertEquals(3, r1.getPoints().size());

for (Point p :

new ArrayList<Point>(r1.getPoints())) {

service.removePoint(p.getId());

}

RegressionResult r2 = service.getResult();

assertEquals(0, r2.getPoints().size());

}

public void testReset() {

service.addPoint(1, 2, “red”);

service.addPoint(3, 4, “red”);

service.addPoint(4, 5, “red”);

RegressionResult r1 = service.getResult();

assertEquals(3, r1.getPoints().size());

service.reset();

RegressionResult r2 = service.getResult();

assertEquals(0, r2.getPoints().size());

}

// ...

}

Figure 5. TestRegSvcInMemory example. This code unit-tests the default implementation of the registration service
against the in-memory stub implementation of the DAO.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2007 91

String color = BeanUtils.getProperty(

pointForm, PROPERTY_COLOR);

// interact with model

getRegressionService()

.addPoint(x, y, color);

request.setAttribute(

ATTRIBUTE_MESSAGE_KEY, “add.message”);

return mapping.findForward(

FORWARD_SUCCESS);

}

}

The StrutsTestCase framework (http://strutstestcase.
sourceforge.net) is an extension of JUnit that supports the
testing of Struts actions either in isolation or in their natural
habitat (a servlet container). Here, we focus on testing out-
side of the container, which is generally preferable for per-
formance and vendor independence. For this purpose, the
StrutsTestCase framework provides the MockStruts-
TestCase class, which simulates a Struts controller servlet
running in a servlet container. Our test case extends this
class; for brevity, we show only the test method that tests the
AddAction. The framework’s methods specifically support
the testing of Struts actions.

Because the StrutsTestCase framework has nothing
to do with the Spring framework, but Spring manages our
Struts actions, we must tie things together rather carefully
in the setUp() method. First, we need a Struts configu-
ration file that refers to suitable Spring application con-
text files. Second, we need to know where the
Spring–Struts connection—the ContextLoader-

Plugin—puts the Spring application context in the (sim-
ulated) servlet context. Finally, we pull the linear
regression service object out of the Spring application
context and are ready to go:

public class TestActionsInMemory

extends MockStrutsTestCase {

RegressionService service;

public void setUp() throws Exception {

super.setUp();

setContextDirectory(

new File(“WebContent”));

setConfigFile(“/WEB-INF/struts/test/” +

“struts-config-inmemory.xml”);

getActionServlet().init();

WebApplicationContext ctx =

(WebApplicationContext) getSession()

.getServletContext()

.getAttribute(ContextLoaderPlugIn

.SERVLET_CONTEXT_PREFIX);

service = (RegressionService)

ctx.getBean(“regressionService”);

service.reset();

}

public void tearDown() throws Exception {

service = null;

super.tearDown();

}

public void testAddSubmit() {

int size =

service.getResult().getPoints().size();

setRequestPathInfo(“/addSubmit”);

addRequestParameter(“x”, “7.7”);

addRequestParameter(“y”, “8.8”);

addRequestParameter(“color”, “red”);

actionPerform();

verifyForward(“success”);

verifyNoActionErrors();

Collection<? extends Point> points =

service.getResult().getPoints();

assertEquals(size + 1, points.size());

Point p = null;

for (Point q : points) { p = q; }

assertEquals(7.7, p.getX());

assertEquals(8.8, p.getY());

assertEquals(“red”, p.getColor());

}

// similar methods to test other

// actions and scenarios

}

The only difference between testing against the in-mem-
ory stub DAO and the Hibernate-based DAO is in the
corresponding Spring application context file. It’s conve-
nient to have two Struts configuration files for this pur-
pose, one that refers to the application context with the

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

92 COMPUTING IN SCIENCE & ENGINEERING

in-memory DAO and one to the application context with
the Hibernate-based DAO.

Code Coverage: How Well Are We Doing?
In the last issue,3 we mapped out the unit-testing design
space. Among other things, we discussed our testing strat-
egy’s transparency, ranging from black box to gray box to
white box. If we follow a pure black-box approach, we’ll be
satisfied by testing all the methods in the interface with var-
ious scenarios including boundary values. But we can’t be
sure that we tested each and every line of code of the classes
at least once.

If we take more of a white-box perspective, however, we
can use a code coverage tool to find out how thorough our
tests really are—for example, Coverlipse (http://coverlipse.
sourceforge.net) is an Eclipse plug-in that collects code cov-
erage data seamlessly during JUnit testing. It measures all-
uses coverage and statement coverage and visualizes the
collected data in two ways: source files with lines covered or
not covered, and percentages of coverage by package and
class. For example, as the upper-right part of Figure 6 shows,
we’ve forgotten to test the getPoint() method in the De-
faultRegressionService class. Consequently, our state-
ment coverage for this class is below 100 percent, with
coverage of the next-lower tier even less complete.

Acceptance-Testing the Web Application
So far, we’ve focused our testing efforts on interacting di-
rectly with the components to be tested, either unit-testing
them in isolation or integration-testing them with other
components. This approach is highly valuable for increas-
ing our confidence in component correctness, but we haven’t
yet tested the entire system as the user experiences it. In par-

ticular, we haven’t tested the user interface’s view tier. In this
section, we’ll look at two related approaches for automated
acceptance testing of the entire Web application: program-
matic testing and browser-based testing. Both interact with
the application via HTTP.

Programmatic Acceptance Testing
In programmatic acceptance testing, our test cases simu-
late interaction with the Web application by playing the
role of a user agent (such as a Web browser). In a typical
test case, we navigate to a page, follow a link (or fill out
and submit a form) on the page, and check the response
for correctness.

Several frameworks support this approach at different lev-
els of abstraction. We’ll look specifically at jWebUnit
(http://jwebunit.sourceforge.net), which has several advan-
tages. Above all, it supports relatively high-level interaction
with the Web application to be tested, so test cases can stay
concise and easy to understand.

Moreover, jWebUnit can use the same resource bundles
as the Web application under test, which is tremendously
useful. By following the approach outlined in the previous
hike2 and avoiding hard-coded text in the views in favor of
property files (such as Java resource bundles), we can easily
internationalize or otherwise change pieces of text in the
views. By setting up our test cases to use the same resource
bundles, the test cases become immune to such changes as
long as they’re done via resource bundles.

As an example, let’s consider the typical scenario of adding
a point to the regression, illustrated as a sequence of screen-
shots in Figure 7. To test this scenario using jWebUnit, we
extend WebTestCase. In the setUp() method, we specify
the base URL of the Web application under test as well as
the application resources (property file) used to look up any
text strings defined as properties. Closely following the sce-
nario, we start with the application’s default page, then click
the link for adding a point, fill out and submit the resulting
form, and verify that the application has added the point to
the current collection. The jWebUnit methods support
these steps rather directly:

public class TestAcceptance

extends WebTestCase {

public void setUp() throws Exception {

super.setUp();

getTestContext().setBaseUrl(

“http://localhost:8080/” +

S C I E N T I F I C P R O G R A M M I N G

Figure 6. Coverlipse plug-in for Eclipse. The tool helps us
visualize the code coverage in JUnit tests, both at the Java
source level and as a percentage by package/class.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2007 93

“LinearRegression”);

getTestContext().setResourceBundleName(

“points/web/ApplicationResources”);

}

public void tearDown() throws Exception {

super.tearDown();

}

public void testAddPoint() {

// start at the default page

beginAt(“/”);

assertKeyPresent(“index.heading”);

// follow the “Add point” link

clickLinkWithText(

getMessage(“navigation.link.add”));

assertKeyPresent(“add.heading”);

// fill out and submit the form

setTextField(“x”, “7.7”);

setTextField(“y”, “8.8”);

selectOption(“color”, “red”);

submit();

// ensure that the point was added

assertKeyPresent(“add.message”);

assertTablePresent(“pointsTable”);

assertTextInTable(“pointsTable”,

new String[] {

“1”, “7.7”, “8.8”, “red” });

}

// similar methods to test other

// scenarios

}

Browser-Based Acceptance Testing
Seasoned Web developers will probably tell you that they
spend a lot of time working out incompatibilities between
browsers because of different JavaScript, document object
model (DOM), or cascading style sheets (CSS) implemen-
tations. In some cases, the same browser behaves differently
across platforms (most notably Internet Explorer). Conse-
quently, the only way to iron out these differences is to test
the Web application in the browser itself.

Enter Selenium (www.openqa.org/selenium), a testing
tool for Web applications that runs test cases directly in the
browser. This is the closest we can get to making an actual
person execute the tests manually. Selenium is implemented
in JavaScript, so the Web browser itself runs Selenium. The

application runs in a separate iFrame and is manipulated via
DOM/JavaScript, as Figure 8 shows.

Because the tests are run in JavaScript, Selenium must be
hosted on the same server/port as the Web application, to
comply with JavaScript’s sandbox restrictions. Tests are cre-
ated as HTML tables, which are discovered via the DOM and
executed afterward. Test suites consist of tables as well, which
refer to test cases (tables) via links.

Following our previous example, we create a suite refer-
encing our two tests:

<table id=”suiteTable” ... class=”selenium”>

Figure 7. Screenshot sequence. Here, we add a point to the
regression, which we’re testing programmatically.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

94 COMPUTING IN SCIENCE & ENGINEERING

<tbody>

<tr><td>Test Suite</td></tr>

<tr><td>

testInit

</td></tr>

<tr><td>

TestAddPoint

</td></tr>

</tbody>

</table>

For the initialization test, we create the file

LinRegInit.html:

<table ...>

<tbody>

<tr><td colspan=”3”>testInit
</td></tr>

<tr>

<td>open</td>

<td>/LinearRegression</td>

<td> </td>

</tr>

<tr>

<td>verifyTitle</td>

<td>Points: Welcome</td>

<td></td>

</tr>

<tr>

<td>verifyBodyText</td>

<td>*Welcome*</td>

<td></td>

</tr>

<tr>

<td>click</td>

<td>link=Reinitialize data</td>

<td></td>

</tr>

<tr>

<td>waitForPageToLoad</td>

<td>3000</td>

<td></td>

</tr>

<tr>

<td>verifyTitle</td>

<td>Points: List</td>

<td></td>

</tr>

<tr>

<td>verifyBodyText</td>

<td>*No*points*found*</td>

<td></td>

</tr>

</tbody>

</table>

Note that after we click the link called “Reinitialize data,”
we instruct Selenium to wait for the page to load (with a
timeout of three seconds). If this instruction isn’t placed af-
ter each click/submit action, Selenium might report wrong
results or downright fail because the iFrame might not have
loaded, so Selenium is already trying to find/trigger ele-
ments inside it.

For our second test (LinRegAddPoint.html), we use
HTML code that incorporates the table in Figure 9. It tests
the same scenario as the jWebUnit acceptance test shown in
the preceding subsection.

Once we finish writing the tests, we can run them in any
browser that supports JavaScript. Selenium also offers an
unless condition for use in the <TR> element to filter test
suites known not to run in a particular browser:

<tr unless=”browserVersion.isKonqueror ||

browserVersion.isSafari”>...</tr>

Additionally, Selenium now includes support for pro-
grammatic tests. In this mode, Selenium runs as a jWebUnit
plug-in, so it’s no longer necessary to write tests in HTML
table form. The requirement, however, is that a Selenium
server must run on a machine with local installations of the
target browsers. Commands are sent via HTTP GET re-
quests, which lets developers write base test classes for many
languages, including Java. Deriving from these classes, we
can write tests cases in the same way as all our other exam-
ples in this article.

S C I E N T I F I C P R O G R A M M I N G

Figure 8. Selenium in action. The current test case is in the
middle of the top half, and the test runner is controlled via
the user interface in the top right section. Execution of
each test case is animated, and the browser shows exactly
what the test case is doing.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2007 95

I n this hike, we saw how to incorporate automated com-
ponent, integration, and acceptance testing into the var-

ious tiers of a lightweight J2EE Web application
architecture. However, numerous other frameworks and
tools are available to help with testing Web-based and other
applications in Java, including www.junit.org/news/
extension/web; http://java-source.net/open-source/web
-testing-tools; and http://java-source.net/open-source/code
-coverage.

Although these architectures are widely used, there’s a
growing trend toward more compositional, loosely cou-
pled architectures—for example, right now, service-
oriented architectures (SOAs) are all the rage. In an
upcoming hike, we plan to illustrate the SOA approach by
starting with our original architecture, breaking down the
business functionality into cohesive units, exposing them
as services, and building more complex services and appli-
cations on top of them.

References
1. K. Läufer, “A Hike through Post-EJB J2EE Web Application Architecture,”

Computing in Science & Eng., vol. 7, no. 5, 2005, pp. 80–88.

2. K. Läufer, “A Hike through Post-EJB J2EE Web Application Architecture,
Part II,” Computing in Science & Eng., vol. 8, no. 2, 2006, pp. 86–94.

3. G.K. Thiruvathukal, K. Läufer, and B. Gonzalez, “Unit Testing Consid-
ered Useful,” Computing in Science & Eng., vol. 8, no. 5, 2006, pp.
76–87.

Konstantin Läufer is a professor of computer science at Loyola Uni-

versity Chicago. His research interests include programming

languages, software architecture and frameworks, concurrent

and distributed systems, mobile and embedded computing, hu-

man–computer interaction, and educational technology. Läufer has

a PhD in computer science from the Courant Institute at New York

University. Contact him via http://people.cs.luc.edu/laufer.

George K. Thiruvathukal is an associate professor of computer sci-

ence at Loyola University Chicago. His research interests include pro-

gramming languages, operating systems, distributed systems,

architecture and design, computing history, and enhancing science

and computing education with emerging technologies. Thiru-

vathukal has a PhD from the Illinois Institute of Technology. He is a

member of the ACM and the IEEE Computer Society. Contact him

at gkt@cs.luc.edu or http://people.cs.luc.edu/gkt.

Benjamín González is a software developer intern at Hostway Cor-

poration. He also works as a research assistant at Loyola University

Chicago. His research interests include distributed systems, artificial

intelligence, software architecture, operating systems, and Web de-

velopment. González has an MS in computer science from Loyola

University Chicago. Contact him at bgonzalez@cs.luc.edu.

testAddPoint

open /LinearRegression

click link=Reinitialize data

waitForPageToLoad 1500

verifyTextPresent *No points found*

click link=Add point

waitForPageToLoad 1500

verifyTextPresent *Points: Add*

type name=x 7.7

type name=y 8.8

select name=color red

submit id=pointForm

waitForPageToLoad 1500

verifyTextPresent *Point added*

verifyElementPresent id=pointsTable

verifyText xpath=//table[@id=‘pointsTable’]//tr[2]/td[1] 1

verifyText xpath=//table[@id=‘pointsTable’]//tr[2]/td[2] 7.7

verifyText xpath=//table[@id=‘pointsTable’]//tr[2]/td[3] 8.8

verifyText xpath=//table[@id=‘pointsTable’]//tr[2]/td[4] red

Figure 9. Selenium test case for adding a point. The test case instructs the browser to navigate to the Web application,
add a point, and verify whether the point has been added.

Guest Editors:
Rick Szeliski, Microsoft
Research
Fredo Durand, MIT-CSAIL

Computational Photography
IEEE CG&A
March/April 2007

This special issue will present innovative
results in computational photography and video.

Authorized licensed use limited to: Loyola University Chicago. Downloaded on December 27,2020 at 04:40:37 UTC from IEEE Xplore. Restrictions apply.

	A Hike through a Post-EJB J2EE Web Application Architecture, Part III,
	c1sci.qxp

