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Abstract—Academic courses focused on individual 
microcomputers or client/server applications are no longer 
sufficient for students to develop knowledge in embedded 
systems. Current and near-term industrial systems employ 
multiple interacting components and new network and security 
approaches; hence, academic preparation requires teaching 
students to develop realistic projects comparable to these real-
world products. However, the complexity, breadth, and technical 
variations of these real-world products are difficult to reproduce 
in the classroom. 

This paper outlines preliminary work on a framework 
architecture suitable for academic teaching of modern embedded 
systems including the Internet of Things.  It defines four layers, 
two of which are at the edges of the network, and not adequately 
covered in academia. For each layer of the architecture, specific 
technology and suitable devices are identified. Desired academic 
outcomes for courses using projects based on the architecture are 
identified. Feedback and comparison is sought on how effective 
student course and research activities based on the framework 
will be to real-world embedded systems developers.      

Keywords—embedded systems education; distributed 
architecture; personal area networks; wearable devices; Internet of 
Things; Bloom’s Taxonomy  

I. INTRODUCTION  
Computer science academic education needs to evolve to 

meet the needs of organizations producing real-world, 
industrial embedded systems [1]. Changes in computing 
technology that drive this development are described in Section 
II.   

Section III presents a broad framework architecture to 
establish a common approach and set of technology solutions 
applicable to multiple courses.  The architecture can support 
broad student learning without needing a different physical 
laboratory for each individual project; it spans a broad range 
from networked systems to local and wearable devices.  

The framework architecture presented here is novel and an 
attempt to improve academic preparation of students for the 
embedded systems industry. It is intended to be more diverse in 
terms of hardware and devices than some other approaches [2] 
and to prepare students for development of applications for the 
Internet of Things. Section IV discusses preliminary 
assessment ideas for evaluating student outcomes across 

multiple courses and projects based on the architecture with 
Bloom’s Taxonomy [3] and is an alternative to other models 
for evaluating learning [4, 5]. Section V briefly describes 
example projects using the architecture. 

II. CHANGING NEEDS 
For some time, academic preparation for computer science 

and engineering students has focused on individual embedded 
systems using microcontrollers [6, 7] and hardware prototypes 
at the level of individual stand-alone systems. More complex 
distributed systems were primarily studied through higher-level 
networked and distributed systems using client/server 
architectures, distributed databases, and the internet [8, 9]. 
Although still important, these approaches are no longer 
sufficient for students to gain skills in more sophisticated 
embedded systems being developed in industry today. 

First, many real-world products include multiple interacting 
intelligent elements.  These elements are often microcontrollers 
or custom hardware elements that need to interact to complete 
services or transactions in order to perform properly.  To 
control product cost these elements may be quite different from 
each other with disparate timing, interface, and power needs. 

Second, sometimes these elements are connected using 
network technologies (wired or wireless) that cover fairly small 
areas (at most a few meters using technologies such as 
Bluetooth). For cost, power, and possibly security reasons, 
these interconnections are often different than the usual internet 
and wide area networks used at higher levels. 

These two new knowledge areas must be added to student 
learning to prepare students for successful careers. It is 
necessary for academic course work to address these areas in 
addition to traditional client/server, internet, and database 
system development.  However, it is difficult to know how to 
adequately cover such topics in a typical academic course.   

In fact, several courses may be required to address the 
range of computing, network, and security aspects of these 
modern distributed systems.  Determining what theory, 
architectures, technologies, hardware, and software systems to 
use on a course-by-course basis is inefficient at best. Hence, a 
framework architecture seems a reasonable approach to ensure 
some consistency of approach across courses and to allow 
course, project, and research work to build upon each other.  



III. FRAMEWORK ARCHITECTURE AND KEY TECHNOLOGIES 
In this section, we outline a broad framework architecture 

for academic use in preparing students for successful entry into 
embedded systems careers. The architecture is a work in 
progress; it is a physical implementation of the more general 
IoT-A framework [10]. Feedback is sought from industry and 
academia on its contents and how to best apply it to ensuring 
good learning outcomes for students. 

The distributed embedded system framework architecture 
includes four main layers, of which two are newly identified to 
address the needs for multiple interacting intelligent devices 
and networks shown in section II.  Fig. 1 introduces the four 
layers of the architecture and highlights the characteristics of 
each layer.  Each layer is described here starting with the 
lowest or most specialized device layer. 

A. Functional Device Layer 4 
At the lowest level, the architecture provides devices that 

provide one or more functions to the user or other parts of the 
architecture.  These functional devices interact with the real 
world using sensors and actuators, they measure and monitor 
physical values, and may act autonomously and in real time 
once initiated.   

Such functional devices often have small size and weight, 
may be internally powered, and may or may not be aware of 
other devices in the same layer.  However, they all typically 
expect either periodic, on-demand, or continuous 
communication with devices or systems at higher layers of the 
architecture. They may report data to these higher levels, or 
receive inputs and information to use. 

Internal software for functional devices is often specialized, 
may be open or closed to inspection and modification, and 
usually requires stringent real time performance to properly 
measure, record, or respond to real world events and changes. 
Although some devices may have sophisticated and extensible 
software, others may be limited and highly optimized to reduce 
memory needs or power usage. 

For academic use in hands on courses, “tinkering” is highly 
effective for student learning.  At this layer some mechanism is 
required to allow interesting sensors or actuators to be 
connected to and controlled by software students create.  
Prototyping boards that allow general analog and digital 
connections allow this type of tinkering. 

Functional devices are the focus of much ongoing 
innovation including wearable devices and the Internet of 
Things. One way to envision these devices is that they are 
often designed for “set and forget”, once turned on, connected, 
and running, the user may forget about them (at least until the 
user wishes to use information they produce). 

B. Intelligent Device Layer 3 
The next layer includes larger, more visible, and more 

capable devices.  Devices at the Intelligent Device level have 
more general purpose or expandable capabilities than those in 
Layer 4.  Typical devices at this level include mobile phones, 
tablets, wearable computers, and other programmable 
computer devices; all typically have a separate operating 
system, are extensible by adding applications, and support 
various communication protocols for interacting with each 
other and across layers of the architecture. 

Devices at this layer of the architecture tend to be larger 
and have a more obvious presence than those at Layer 4. They 
may be mobile or fixed (possibly mounted on walls or inside 
automobiles).  They are usually capable of autonomous 
operation and can conduct meaningful activities on their own 
without communication to other devices.  However, in many 
applications they are expected to share information or results 
with other devices at various levels of the architecture. One 
specific role for devices at this layer is to manage and control a 
set of devices in Layer 4, often in a hierarchical architecture 
(e.g. a Bluetooth host device and its currently connected paired 
devices). 

 

Fig. 1. Academic Framework Architecture 



Software for Layer 3 devices is often open or extensible to 
enable easy addition of applications and interfaces to other 
devices. For academic use, some extensibility of this type is 
important to ease the development of meaningful student 
projects without requiring a complete build of a system from 
hardware to software. 

C. Personal Computer Layer 2 
The next layer of the architecture includes the traditional 

personal computer. Layer 2 (and Layer 1) of the architecture 
are more familiar and long established parts of many academic 
environments. 

Layer 2 devices may be mobile or fixed and are connected to 
an intranet within an organization or to the public internet. 
They have been the hands-on component of the majority of 
applications for decades.  While increased use of cloud 
computing applications has reduced the importance of 
applications that run completely on the personal computer, 
most users expect to be able to run complete applications 
within the architecture of their device. 

 While it could be argued that Layer 2 and Layer 3 devices 
are really the same thing (somewhat general purpose 
computers with operating systems that allow extensions), the 
framework architecture distinguishes them.  Some applications 
(e.g. a web browser) may be able to run on devices at both 
levels and perform similar functions.  However, the demand of 
distributed systems will increasingly require network, 
performance, and security distinctions between these two 
levels.  For example, a Layer 3 controller of several wearable 
body or environment sensors at Layer 4 may need to operate in 
environments such as airplanes when a networked personal 
computer will not be useable. 

D. Intelligent Internet Layer 1 
The top layer of the architecture is the familiar world of the 

Intelligent Internet including the ability to have broad access to 
multiple traditional servers, data base systems and cloud 
resources.  The Intelligent Internet will continue to evolve new 
applications and services including some to interconnect, serve, 
and integrate devices at layers 2 through 4 of the architecture. 

While many academic courses provide students an 
opportunity to learn and develop systems across layers 1 and 2, 
few now span all four layers of this proposed architecture.  
Thinking about architecture solutions, designing, 
programming, testing, and characterizing of applications across 
all four layers is key to student understanding of the current 
world of distributed embedded systems. 

E. Key Technologies and Typical Devices 
For successful use in academia, especially at institutions 

that do not have extensive hardware laboratories, the 
architecture must be readily realized using a combination of 
commercially available devices. Table I shows key 
technologies and example devices for Layer 3 and Layer 4 of 
the architecture.  Layers 2 and 1 use the well-established 
computing and internet hosted devices that are common to 
academic courses today. 

The requirements for Layer 3 and 4 devices are driven by 
the learning goals described in the next section; the key 
requirements are: 

• Low Cost: reasonably low hardware and operational 
costs to ensure adequate numbers of devices can be 
maintained on hand without requiring support staff. 

• Public Interfaces: published (at minimum) or open 
source definition of interfaces to allow devices to be 
incorporated into the architecture and interwork with 
other devices at one or more layers. 

• Development Tool Availability: one or more tool sets or 
tool chains must be available to allow creation of 
student software on the devices and customization of 
existing software. It is acceptable to have a unique tool 
set for each device and different programming 
languages for different devices. If fact, dealing with 
disparate languages, design approaches, and tools may 
add important student skills. 

Many of these requirements can be met by devices 
provided with various open source licenses.  Open source 
hardware [11] and software is well suited to the needs of 
academic use as it allows access to implementation details. 

Table I distinguishes fixed commercial devices 
(“Commercial Off The Shelf”, or COTS) and extensible 
devices that may be easily customized by students.  Much 
successful student project work can be done by incorporating 
COTS devices into a broader architecture.  

However, COTS devices may be of limited use in projects 
where their existing interfaces cannot be extended or modified.  
Students need to understand how to meld together different 
kinds of devices to fully appreciate the complexities of modern 
systems.  There are now several available prototyping systems 
that can provide accessible customization similar to the 
industrial environment (e.g. pcDuino, RaspberryPi, Arduino.) 

TABLE I.  TECHNOLOGY AND DEVICES 

Layer 
Framework Embedded Architecture 

Key 
Technologies COTS Devices Custom Devices 

3 – Intelligent 
Devices 

Touch screens, 
speech 

recognition, 
gesture 

recognition, 
motion sensing 

 
Mobile 

phones, tablet 
computers,  
heads-up 
displays / 
glasses, 
flexible 

keyboards 
 

Extensible 
computer 
boards,  

compute sticks, 
wearable 

computers 

4 – Functional 
Devices 

Diverse 
physical world 

sensors and 
actuators, real-

time 
computation for 

analysis 

Fitness 
trackers, smart 

watches, 
portable 
headsets, 

smart buttons, 
RFID tags, 
biometric 
sensors 

 
Microcontroller 

controller 
prototyping 

boards, 
wearable 
controller 
boards, 

programmable 
devices 

 



IV. LEARNING OUTCOMES 
To evaluate the architecture’s value for student learning, 

a formal assessment of learning outcomes is intended, based 
on Bloom’s Taxonomy. Bloom’s Taxonomy was conceived 
to improve communication and comparison of test results by 
giving better precision to terms such as “thinking” and 
“problem solving” [3] and later updated to support standards-
based curriculum planning and evaluation tools [12].  It has 
recently been used increasingly in computer science 
education [13, 14]. 

The six cognitive categories in Bloom’s Taxonomy 
represent increasingly complex and more sophisticated 
learning.  Example assessment topics for each category are: 

1) Remembering: ability to recognize communication 
software functions used in one or more layers of the 
architecture (e.g., BlueTooth, WiFi Direct). 

2) Understanding: ability to explain and contrast 
memory allocation methods at one or more layers of 
the architecture (e.g. RAM, flash memory, dedicated 
program memory). 

3) Application:  skill to apply suitable implementation 
techniques at one or more layers of the architecture 
(e.g. when to use software events or hardware 
interrupts). 

4) Analysis:  skill to select appropriate communication 
techniques between two or more layers of the 
architecture (e.g. when to use parity or other error 
detection / correction). 

5) Evaluating: ability to make judgements about 
alternative approaches using multiple devices (e.g. 
able to critique proposed architectural solutions for a 
given distributed application). 

6) Creating:  ability to define and construct custom 
applications using multiple devices and multiple 
levels of the architecture (e.g. ability to define and 
develop a complete capstone project). 

V. EXAMPLE PROJECTS 
The Android Wall Project [15] explores the application 

of Layer 2 communication clusters of commodity tablet 
devices to problems spanning a “trilogy” of concerns: 
sensing, computation, and visualization. The conjecture is 
that these clusters may provide a low-cost, energy-efficient, 
flexible, and ultimately effective platform to tackle a wide 
range of problems within this trilogy. Applications include 
environmental and security monitoring, calculating and 
visualizing the energy footprint of an organization, facial 
recognition involving multiple cameras, visualizing 
relationships among versions of a text, etc. 

The Smart Watch Integration project develops 
applications across several layers: programmable Android 
smart watch communicating locally with a tablet computer 
using Bluetooth; tablet connected to GPS and public internet 
to access location and map information. Interacting programs 

created to: receive periodic updates of local address text, 
display to user, and vibrate when arriving at desired address 
(on watch); to use current geo-location to retrieve nearest 
address from internet and send address to watch (on tablet). 
This project uses a (still rare) COTS smart watch that is 
extensible with user written programs [16]. 
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