
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

6-8-2015

A Framework Architecture for Student Learning in Distributed A Framework Architecture for Student Learning in Distributed

Embedded Systems Embedded Systems

William L. Honig

Konstantin Läufer

George K. Thiruvathukal

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/365590338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

978-1-4673-7711-9/15/$31.00 ©2015 IEEE

A Framework Architecture for Student Learning in
Distributed Embedded Systems

William L. Honig, Konstantin Läufer, George K. Thiruvathukal
Department of Computer Science

 Loyola University Chicago
Chicago, Illinois, United States of America

whonig@luc.edu, laufer@cs.luc.edu, gkt@cs.luc.edu

Abstract—Academic courses focused on individual
microcomputers or client/server applications are no longer
sufficient for students to develop knowledge in embedded
systems. Current and near-term industrial systems employ
multiple interacting components and new network and security
approaches; hence, academic preparation requires teaching
students to develop realistic projects comparable to these real-
world products. However, the complexity, breadth, and technical
variations of these real-world products are difficult to reproduce
in the classroom.

This paper outlines preliminary work on a framework
architecture suitable for academic teaching of modern embedded
systems including the Internet of Things. It defines four layers,
two of which are at the edges of the network, and not adequately
covered in academia. For each layer of the architecture, specific
technology and suitable devices are identified. Desired academic
outcomes for courses using projects based on the architecture are
identified. Feedback and comparison is sought on how effective
student course and research activities based on the framework
will be to real-world embedded systems developers.

Keywords—embedded systems education; distributed
architecture; personal area networks; wearable devices; Internet of
Things; Bloom’s Taxonomy

I. INTRODUCTION
Computer science academic education needs to evolve to

meet the needs of organizations producing real-world,
industrial embedded systems [1]. Changes in computing
technology that drive this development are described in Section
II.

Section III presents a broad framework architecture to
establish a common approach and set of technology solutions
applicable to multiple courses. The architecture can support
broad student learning without needing a different physical
laboratory for each individual project; it spans a broad range
from networked systems to local and wearable devices.

The framework architecture presented here is novel and an
attempt to improve academic preparation of students for the
embedded systems industry. It is intended to be more diverse in
terms of hardware and devices than some other approaches [2]
and to prepare students for development of applications for the
Internet of Things. Section IV discusses preliminary
assessment ideas for evaluating student outcomes across

multiple courses and projects based on the architecture with
Bloom’s Taxonomy [3] and is an alternative to other models
for evaluating learning [4, 5]. Section V briefly describes
example projects using the architecture.

II. CHANGING NEEDS
For some time, academic preparation for computer science

and engineering students has focused on individual embedded
systems using microcontrollers [6, 7] and hardware prototypes
at the level of individual stand-alone systems. More complex
distributed systems were primarily studied through higher-level
networked and distributed systems using client/server
architectures, distributed databases, and the internet [8, 9].
Although still important, these approaches are no longer
sufficient for students to gain skills in more sophisticated
embedded systems being developed in industry today.

First, many real-world products include multiple interacting
intelligent elements. These elements are often microcontrollers
or custom hardware elements that need to interact to complete
services or transactions in order to perform properly. To
control product cost these elements may be quite different from
each other with disparate timing, interface, and power needs.

Second, sometimes these elements are connected using
network technologies (wired or wireless) that cover fairly small
areas (at most a few meters using technologies such as
Bluetooth). For cost, power, and possibly security reasons,
these interconnections are often different than the usual internet
and wide area networks used at higher levels.

These two new knowledge areas must be added to student
learning to prepare students for successful careers. It is
necessary for academic course work to address these areas in
addition to traditional client/server, internet, and database
system development. However, it is difficult to know how to
adequately cover such topics in a typical academic course.

In fact, several courses may be required to address the
range of computing, network, and security aspects of these
modern distributed systems. Determining what theory,
architectures, technologies, hardware, and software systems to
use on a course-by-course basis is inefficient at best. Hence, a
framework architecture seems a reasonable approach to ensure
some consistency of approach across courses and to allow
course, project, and research work to build upon each other.

III. FRAMEWORK ARCHITECTURE AND KEY TECHNOLOGIES
In this section, we outline a broad framework architecture

for academic use in preparing students for successful entry into
embedded systems careers. The architecture is a work in
progress; it is a physical implementation of the more general
IoT-A framework [10]. Feedback is sought from industry and
academia on its contents and how to best apply it to ensuring
good learning outcomes for students.

The distributed embedded system framework architecture
includes four main layers, of which two are newly identified to
address the needs for multiple interacting intelligent devices
and networks shown in section II. Fig. 1 introduces the four
layers of the architecture and highlights the characteristics of
each layer. Each layer is described here starting with the
lowest or most specialized device layer.

A. Functional Device Layer 4
At the lowest level, the architecture provides devices that

provide one or more functions to the user or other parts of the
architecture. These functional devices interact with the real
world using sensors and actuators, they measure and monitor
physical values, and may act autonomously and in real time
once initiated.

Such functional devices often have small size and weight,
may be internally powered, and may or may not be aware of
other devices in the same layer. However, they all typically
expect either periodic, on-demand, or continuous
communication with devices or systems at higher layers of the
architecture. They may report data to these higher levels, or
receive inputs and information to use.

Internal software for functional devices is often specialized,
may be open or closed to inspection and modification, and
usually requires stringent real time performance to properly
measure, record, or respond to real world events and changes.
Although some devices may have sophisticated and extensible
software, others may be limited and highly optimized to reduce
memory needs or power usage.

For academic use in hands on courses, “tinkering” is highly
effective for student learning. At this layer some mechanism is
required to allow interesting sensors or actuators to be
connected to and controlled by software students create.
Prototyping boards that allow general analog and digital
connections allow this type of tinkering.

Functional devices are the focus of much ongoing
innovation including wearable devices and the Internet of
Things. One way to envision these devices is that they are
often designed for “set and forget”, once turned on, connected,
and running, the user may forget about them (at least until the
user wishes to use information they produce).

B. Intelligent Device Layer 3
The next layer includes larger, more visible, and more

capable devices. Devices at the Intelligent Device level have
more general purpose or expandable capabilities than those in
Layer 4. Typical devices at this level include mobile phones,
tablets, wearable computers, and other programmable
computer devices; all typically have a separate operating
system, are extensible by adding applications, and support
various communication protocols for interacting with each
other and across layers of the architecture.

Devices at this layer of the architecture tend to be larger
and have a more obvious presence than those at Layer 4. They
may be mobile or fixed (possibly mounted on walls or inside
automobiles). They are usually capable of autonomous
operation and can conduct meaningful activities on their own
without communication to other devices. However, in many
applications they are expected to share information or results
with other devices at various levels of the architecture. One
specific role for devices at this layer is to manage and control a
set of devices in Layer 4, often in a hierarchical architecture
(e.g. a Bluetooth host device and its currently connected paired
devices).

Fig. 1. Academic Framework Architecture

Software for Layer 3 devices is often open or extensible to
enable easy addition of applications and interfaces to other
devices. For academic use, some extensibility of this type is
important to ease the development of meaningful student
projects without requiring a complete build of a system from
hardware to software.

C. Personal Computer Layer 2
The next layer of the architecture includes the traditional

personal computer. Layer 2 (and Layer 1) of the architecture
are more familiar and long established parts of many academic
environments.

Layer 2 devices may be mobile or fixed and are connected to
an intranet within an organization or to the public internet.
They have been the hands-on component of the majority of
applications for decades. While increased use of cloud
computing applications has reduced the importance of
applications that run completely on the personal computer,
most users expect to be able to run complete applications
within the architecture of their device.

 While it could be argued that Layer 2 and Layer 3 devices
are really the same thing (somewhat general purpose
computers with operating systems that allow extensions), the
framework architecture distinguishes them. Some applications
(e.g. a web browser) may be able to run on devices at both
levels and perform similar functions. However, the demand of
distributed systems will increasingly require network,
performance, and security distinctions between these two
levels. For example, a Layer 3 controller of several wearable
body or environment sensors at Layer 4 may need to operate in
environments such as airplanes when a networked personal
computer will not be useable.

D. Intelligent Internet Layer 1
The top layer of the architecture is the familiar world of the

Intelligent Internet including the ability to have broad access to
multiple traditional servers, data base systems and cloud
resources. The Intelligent Internet will continue to evolve new
applications and services including some to interconnect, serve,
and integrate devices at layers 2 through 4 of the architecture.

While many academic courses provide students an
opportunity to learn and develop systems across layers 1 and 2,
few now span all four layers of this proposed architecture.
Thinking about architecture solutions, designing,
programming, testing, and characterizing of applications across
all four layers is key to student understanding of the current
world of distributed embedded systems.

E. Key Technologies and Typical Devices
For successful use in academia, especially at institutions

that do not have extensive hardware laboratories, the
architecture must be readily realized using a combination of
commercially available devices. Table I shows key
technologies and example devices for Layer 3 and Layer 4 of
the architecture. Layers 2 and 1 use the well-established
computing and internet hosted devices that are common to
academic courses today.

The requirements for Layer 3 and 4 devices are driven by
the learning goals described in the next section; the key
requirements are:

• Low Cost: reasonably low hardware and operational
costs to ensure adequate numbers of devices can be
maintained on hand without requiring support staff.

• Public Interfaces: published (at minimum) or open
source definition of interfaces to allow devices to be
incorporated into the architecture and interwork with
other devices at one or more layers.

• Development Tool Availability: one or more tool sets or
tool chains must be available to allow creation of
student software on the devices and customization of
existing software. It is acceptable to have a unique tool
set for each device and different programming
languages for different devices. If fact, dealing with
disparate languages, design approaches, and tools may
add important student skills.

Many of these requirements can be met by devices
provided with various open source licenses. Open source
hardware [11] and software is well suited to the needs of
academic use as it allows access to implementation details.

Table I distinguishes fixed commercial devices
(“Commercial Off The Shelf”, or COTS) and extensible
devices that may be easily customized by students. Much
successful student project work can be done by incorporating
COTS devices into a broader architecture.

However, COTS devices may be of limited use in projects
where their existing interfaces cannot be extended or modified.
Students need to understand how to meld together different
kinds of devices to fully appreciate the complexities of modern
systems. There are now several available prototyping systems
that can provide accessible customization similar to the
industrial environment (e.g. pcDuino, RaspberryPi, Arduino.)

TABLE I. TECHNOLOGY AND DEVICES

Layer
Framework Embedded Architecture

Key
Technologies COTS Devices Custom Devices

3 – Intelligent
Devices

Touch screens,
speech

recognition,
gesture

recognition,
motion sensing

Mobile

phones, tablet
computers,
heads-up
displays /
glasses,
flexible

keyboards

Extensible
computer
boards,

compute sticks,
wearable

computers

4 – Functional
Devices

Diverse
physical world

sensors and
actuators, real-

time
computation for

analysis

Fitness
trackers, smart

watches,
portable
headsets,

smart buttons,
RFID tags,
biometric
sensors

Microcontroller

controller
prototyping

boards,
wearable
controller
boards,

programmable
devices

IV. LEARNING OUTCOMES
To evaluate the architecture’s value for student learning,

a formal assessment of learning outcomes is intended, based
on Bloom’s Taxonomy. Bloom’s Taxonomy was conceived
to improve communication and comparison of test results by
giving better precision to terms such as “thinking” and
“problem solving” [3] and later updated to support standards-
based curriculum planning and evaluation tools [12]. It has
recently been used increasingly in computer science
education [13, 14].

The six cognitive categories in Bloom’s Taxonomy
represent increasingly complex and more sophisticated
learning. Example assessment topics for each category are:

1) Remembering: ability to recognize communication
software functions used in one or more layers of the
architecture (e.g., BlueTooth, WiFi Direct).

2) Understanding: ability to explain and contrast
memory allocation methods at one or more layers of
the architecture (e.g. RAM, flash memory, dedicated
program memory).

3) Application: skill to apply suitable implementation
techniques at one or more layers of the architecture
(e.g. when to use software events or hardware
interrupts).

4) Analysis: skill to select appropriate communication
techniques between two or more layers of the
architecture (e.g. when to use parity or other error
detection / correction).

5) Evaluating: ability to make judgements about
alternative approaches using multiple devices (e.g.
able to critique proposed architectural solutions for a
given distributed application).

6) Creating: ability to define and construct custom
applications using multiple devices and multiple
levels of the architecture (e.g. ability to define and
develop a complete capstone project).

V. EXAMPLE PROJECTS
The Android Wall Project [15] explores the application

of Layer 2 communication clusters of commodity tablet
devices to problems spanning a “trilogy” of concerns:
sensing, computation, and visualization. The conjecture is
that these clusters may provide a low-cost, energy-efficient,
flexible, and ultimately effective platform to tackle a wide
range of problems within this trilogy. Applications include
environmental and security monitoring, calculating and
visualizing the energy footprint of an organization, facial
recognition involving multiple cameras, visualizing
relationships among versions of a text, etc.

The Smart Watch Integration project develops
applications across several layers: programmable Android
smart watch communicating locally with a tablet computer
using Bluetooth; tablet connected to GPS and public internet
to access location and map information. Interacting programs

created to: receive periodic updates of local address text,
display to user, and vibrate when arriving at desired address
(on watch); to use current geo-location to retrieve nearest
address from internet and send address to watch (on tablet).
This project uses a (still rare) COTS smart watch that is
extensible with user written programs [16].

REFERENCES

[1] W. Wolf, “What and why about architecture for embedded systems,”
Proceedings WCAE ’00 Workshop on Computer Architecture
Education, ACM, 2000, doi>10.1145/1275240.1275243.

[2] A. Azzarà, D. Alessandrelli, M. Petracca, P. Pagano,
“Demonstration abstract: PyoT, a macroprogramming framework for
the IoT”, Proceedings 13th International Symposium on Information
Processing in Sensor Networks, IEEE, April 2014.

[3] B. Bloom, M. Engelhart, E. Furst, W. Hill, and D. Krathwohl,
Taxonomy of Educational Objectives Handbook 1: Cognitive
Domain, Longman, New York, 1956

[4] A. Schaefer, et al., “The empirically refined competence structure
model for embedded micro- and nanosystems,” Proceedings 17th
Annual Conference of Innovation and Technology in Computer
Science Education, pp. 57-62, ACM,
doi>10.1145/2325296.2325314.

[5] S. Jaschke, et al., “Competence research: teaching embedded
micro/nano systems,” WESE ’11, Proceedings 6th Workshop on
Embedded Systems Education, pp. 17-24, ACM,
doi>10.1145/2077370.2077373.

[6] L. Sousa, S. Antao, J. Germano, “A lab project on the design and
implementation of programmable and configurable embedded
systems,” IEEE Transactions of Education, vol. 56, issue 3, pp. 322-
328, August 2013, doi>10.1109/TE.2012.2222411.

[7] E. Brand, W. Honig, and M. Wojtowicz, “Intelligent systems
development in a non engineering curriculum”, Proceedings 16th
Annual Joint Conference on Innovation and Technology in
Computer Science Education (ITiCSE '11), pp.48-52, ACM,
doi>10.1145/1999747.1999764.

[8] G. K. Thiruvathukal, Distributed Sysems Course Materials,
http://distributed.cs.luc.edu/html/ , retrieved 4/11/2015.

[9] R. Brandon (ed), “Requirements for internet hosts – communication
layers”, Internet Engineering Task Force, 1989,
https://tools.ietf.org/html/rfc1122 , retrieved 4/11/2015.

[10] NEW: IoT-A, Internet of Things Architecture, http://www.iot-
a.eu/public, retrieved 5/12/2015.

[11] R. Stallman, “Why we need free digital hardware designs”, Wired,
March 2015, http://www.wired.com/2015/03/need-free-digital-
hardware-designs/, retrieved 4/11/2015.

[12] L. Anderson., D. Krathwohl, P. Airasian,, K. Cruikshank, R. Mayer,
P. Pintrich, J. Raths, and M. Wittrock, Taxonomy for Learning,
Teaching, and Assessing. Pearson, New York, 2000.

[13] W. Honig, “Teaching and assessing programming fundamentals for
non majors with visual programming”, ITiCSE '13, Proceedings
18th ACM Conference on Innovation and Technology in Computer
Science Education, pp. 40-45, ACM,
doi>10.1145/2462476.2462492.

[14] C. Starr, B. Manaris, and R. Stalvey, “Bloom's taxonomy revisited:
specifying assessable learning objectives in computer science”,
SIGCSE Bull. 40, 1 (March 2008), 261-265,
doi>10.1145/1352322.1352227.

[15] T. Delgado Dias, X. Yan, K. Läufer, and G. K. Thiruvathukal,
“Building capable, energy-efficient, flexible visualization and
sensing clusters from commodity tablets: position statement and
preliminary progress report”, 2nd Greater Chicago Area System
Research Workshop (GCASR), May 3, 2013, Evanston, IL, USA,
http://ecommons.luc.edu/cs_facpubs/66/ , retrieved 4/11/2015.

[16] i’m SpA, i’m Watch, http://www.imsmart.com/en , retrieved
4/11/1015.

	A Framework Architecture for Student Learning in Distributed Embedded Systems
	Author Manuscript

	untitled

