
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

11-30-2000

Java on Networks of Workstations (JavaNOW): A Parallel Java on Networks of Workstations (JavaNOW): A Parallel

Computing Framework Inspired by Linda and the Message Computing Framework Inspired by Linda and the Message

Passing Interface (MPI) Passing Interface (MPI)

George K. Thiruvathukal

Phil M. Dickens

Shahzad Bhatti

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/365590337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Java on Networks of Workstations (JavaNOW): A Parallel
Computing Framework Inspired by Linda and the Message
Passing Interface (MPI)

George K. Thiruvathukal1, Phil M. Dickens2, and Shahzad Bhatti3

DePaul University, JHPC Research Laboratory, School of CTI

Abstract
Networks of workstations are a dominant force in the distributed computing arena, due
primarily to the excellent price/performance ratio of such systems when compared to
traditionally massively parallel architectures. It is therefore critical to develop
programming languages and environments that can potentially harness the raw
computational power availab

le on these systems. In this article, we present JavaNOW (Java on Networks of
Workstations), a Java based framework for parallel programming on networks of
workstations. It creates a virtual parallel machine similar to the MPI (Message Passing
Interface) model, and provides distributed associative shared memory similar to Linda
memory model but with a flexible set of primitive operations.

JavaNOW provides a simple yet powerful framework for performing computation on
networks of workstations. In addition to the Linda memory model, it provides for shared
objects, implicit multithreading, implicit synchronization, object dataflow, and
collective communications similar to those defined in MPI. JavaNOW is also a
component of the Computational Neighborhood [63], a Java-enabled suite of services
for desktop computational sharing. The intent of JavaNOW is to present an environment
for parallel computing that is both expressive and reliable and ultimately can deliver
good to excellent performance. As JavaNOW is a work in progress, this article
emphasizes the expressive potential of the JavaNOW environment and presents
preliminary performance results only.

Keywords
Desktop supercomputing, sharing, resource management, contention scheduling, relational databases

1 Introduction

Java is rapidly being adopted as one of the preferred languages for writing distributed
applications due to its excellent support for programming on distributed platforms. In particular,
Java provides automatic garbage collection alleviating programmers from memory management.
Also, Java provides compile time and runtime security that can be used as the basis for writing
secure applications. Additionally, Java provides excellent support for multithreading, and current
Java releases support kernel-level threads allowing the overlapping of computation with
communication and I/O. Java can save the state of an object and recreate that object on another
machine, supporting both persistent objects and object migration. Recently, a number of
distributed frameworks have been developed by Sun, such as Remote Method Invocation (RMI,
a client/server remote procedure calling framework), JavaSpaces (a tuple space framework), and

1 Please visit our main web sites at http://www.jhpc.cs.depaul.edu for more information on CN and our various
activities and projects.

2 Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616
3 PlexObject Technologies, Chicago, IL

Jini (a directory and services framework). Perhaps the greatest benefit of Java is its portability; a
Java application can be run on any machine with Java support without recompilation.

Concurrent with the emergence of Java as a preferred language for distributed programming has
been the emergence of networks of workstations as a preferred platform for distributed
computation. The primary reason workstation clusters have become so important is the excellent
price/performance ratio of such systems when compared to traditional massively parallel
multi-computers. It is thus natural to explore approaches by which Java can be used to form a
virtual parallel machine using ordinary networks of workstations. JavaNOW is one such attempt.

While using networks of workstations as a virtual parallel computer is not a completely new idea,
there are many features of JavaNOW which make it unique among message passing systems with
similar features. JavaNOW is a pure Java-based system that can execute on any architecture with
Java Virtual Machine (JVM) support without recompilation. This is in contrast to other more
traditional network-based frameworks, such as MPI [43], PVM [59], Network Linda System [6],
and Memo [17] that require architecture-specific binary libraries and executables to be installed
on each machine on which the virtual parallel computer will execute. In addition to traditional
systems, there are a number of competing pure-Java frameworks (most notably Sun
JavaSpaces™) that have also been inspired by the Linda tuple space model; however, these
systems have not been designed with high-performance distributed computing in mind and are
missing some key features that would enable higher performance, including active tuple
evaluation and collective communication facilities. Additionally, most network-based
frameworks are based on heavyweight processes, while JavaNOW supports both process-based
and thread-based computation. Furthermore, most other network-based systems are strictly
message-passing systems, while JavaNOW provides both a message-passing model and a
Linda-like distributed shared associative memory for inter-process communication and for
mutually exclusive access to distributed shared objects. JavaNOW extends the Linda model (in
a significant way) by providing a rich set of collective communication and computation
primitives similar to those found in MPI. Finally, JavaNOW augments both Linda and MPI by
supporting a data flow model of computation.

In this paper, we provide a detailed discussion of the design and implementation of the JavaNOW
computational framework. We begin by comparing JavaNOW to other network-based and
Linda-like frameworks. We then discuss the distributed shared associative memory at the core
of JavaNOW, and show how it can be used to support MPI-like collective communication and
computation, a data flow model of computation, and synchronization primitives such as locks,
barriers, and semaphores. Finally, we provide preliminary performance results and conclude
with a discussion of the significance of the JavaNOW system.

2 Overview of JavaNOW and its Relation to Linda, PVM and MPI

In many respects, JavaNOW can be viewed as a hybrid system: some PVM (Parallel Virtual
Machine [59]), some Linda [13], some MPI (Message Passing Interface [44][46]), and some
experimental components. From a usage standpoint, JavaNOW provides a simple facility for
starting tasks that is reminiscent of the PVM software. From a programming standpoint,
JavaNOW has much in common with Linda and MPI, having a small number of primitives to
support producer/consumer style communication (as found in Linda) and collective operations
that can be performed on shared objects (as found in MPI).

JavaNOW supports the notion of virtual processors, a technique first used in data-parallel
computing languages, such as C*, PVM and MPI. This approach is still used in other projects,

such as Globus [24] and Legion [34], and thus has proven value in the community to this day.
(A virtual processor is emulated as a process--among a group of processes--that are spawned
prior to actually doing communication using the message-passing primitives of JavaNow.) Thus,
at the core, JavaNOW supports a SPMD model of computation. It should be noted however that
the decision to use Java in fact enables the possibility of an MPMD style of programming since
a Java program can dynamically load classes at anytime. This possibility will not be discussed
further in this paper, due to space considerations and being slightly beyond the intended scope.
It should also be noted that the daemon processes in JavaNOW spawn light-weight threads rather
than heavy-weight processes thus providing parallelism in a much more efficient manner.

2.1 Distributed Logically-Shared and Associative Memory

Application processes coordinate and communicate through distributed associative shared
memory similar to the global tuple space model found in Linda. We emphasize that it is only a
similarity since there are significant differences as discussed below. In JavaNOW, the shared
objects are referred to as Entities and the repository where these objects are stored is termed the
EntitySpace. Each Entity in the JavaNOW system consists of two components: the name of the
Entity and its value. It is important to note that name and value both denote Java objects, which
unlike Linda objects, carry both state and behavior information.

We chose to incorporate into JavaNOW a Linda-like memory model for three reasons: First, the
Linda memory model has been available for a number of years and has been proven to provide
powerful semantics for writing parallel applications. Secondly, it is widely accepted that
programming in a shared memory system is easier than programming in a message passing
system. Thirdly, a Linda-like shared memory model can be implemented much more efficiently
and provide better performance than traditional distributed shared memory architectures. This is
because traditional distributed shared memory systems implement sharing at the level of a page
which can lead to false sharing and prohibitive communication costs [52].

However, the JavaNOW memory model is distinct from the tuple space model found in Linda.
One difference is that JavaNOW allows multiple EntitySpaces rather than the single tuple space
supported by Linda. This allows localized name spaces for shared data and the creation of private
channels for inter-process communication. Also, the distribution of the EntitySpace in JavaNOW
is quite distinct from the implementation of the tuple space in Linda. Conceptually, JavaNOW
employs a distributed hash table abstraction to implement a transparent set of entity spaces. It is
important to note that a key difference between the JavaNOW abstraction and a distributed hash
table does exist—the entries of the hash table are unordered queues of objects and a single
instance as found in the Java Hashtable class. JavaNOW also provides excellent support for
placement control, which allows for precise placement of distributed data structures. This
placement control can be achieved to a large extent because the Java language Object class
provides a default definition of a hashcode() method, which guarantees that any intrinsic or
user-defined class that is used to create objects will produce a hash value, albeit not a
well-conditioned hash value. Precise placement control can be very easily achieved in JavaNOW
due to a design decision that was made to clearly isolate the key from the rest of the tuple, which
was first done in previous work published by one of the authors on the Memo system [17][18].
The way precise placement control is achieved (discussed in detail later) is to provide a custom
hashcode() function that can be used to compute (mod the number of contexts) the precise
destination for an entity. Linda implementations generally replicate the tuple space among the
available processors thus incurring the high costs of coherence protocols and unpredictable
latency for even the most basic communication primitives.

We stress that JavaNOW is not “yet another tuple space” implementation or “yet another
language.” It occupies a unique space in its ability to support a number of other message passing
“personalities.” Programmer familiar with MPI, PVM, and Actors-derived systems (such as
Charm++) will find a number of familiar features that make the system eminently usable. We
also stress that the choice of tuple spaces in part is validated by Sun’s decision to incorporate
similar principles in their JavaSpaces and Jini designs; however, these offerings from Sun do not
appear to be a sound basis for high-performance computing as many functions clearly missing
from the original Linda specification (active tuples) and MPI (collective operations). Emulating
these missing operations is somewhat difficult without primitives that support overlapped
computation and communication, which is directly supported by active entities, which we
discuss in detail in Section 4.2.

2.2 Mutual Exclusion, Blocking and Non-Blocking Primitives

Similar to Linda, MPI, and PVM, the JavaNOW environment provides support for blocking and
non-blocking primitives. In particular, JavaNOW defines two operations, put and get, that allow
a producer/consumer relationship to be established between two tasks. There is both a blocking
and non-blocking form of the get operation. In the blocking form, the get operation is guaranteed
to block forever if a corresponding put method is never posted. In the non-blocking form, the get
operation will return immediately if no corresponding put operation has been performed.

All put and get operations that manipulate the same Entity are guaranteed to be mutually
exclusive freeing the programmer from concerns related to the synchronization of the
EntitySpace. While a detailed description of the implicit synchronization mechanism is beyond
the scope of this paper, we note that it is based on an abstraction called a shared directory of
unordered queues (a shared data structure that guarantees mutual exclusion and has entries with
mutually-exclusive access), which was discussed in two of our earlier papers on Memo [17] and
Enhanced Actors [62].

2.3 Collective Communication and Computation Operators

JavaNOW supports collective communication and computation operators similar to those
defined in MPI. Such operations are arguably among the most important features of the MPI
framework and are supported in MPI by the following two features:

1. collective operators – communication + an operation to be performed.

2. communicators – an abstraction that allows a group of processes to participate in a
collective operation.

A predefined communicator, MPI_COMM_WORLD, exists to allow all processes (the normal
case in MPI programming) to participate in a collective operation. A number of primitives exist
to allow new communicators to be defined to include/exclude processes in/from a
communicator.

JavaNOW takes a different approach and supports collective communication using what are
termed active Entities. An active entity (class ActiveEntity in the JavaNOW library), which is
very similar to the notion of a future in data flow languages, is an object that performs a
computation (a detached task) and then converts itself into a passive Entity (or result). We
emphasize the word similar; as defined here, futures should not be confused as being
semantically equivalent to lazy evaluation and closures. (We do have plans to support this in a
future implementation of JavaNOW. Christopher and Thiruvathukal—one of the authors—are
discussing futures in a forthcoming book on High Performance Java Computing.) The active

entity is similar in principle to a future in the respect that a reader can block on the future until
the value has been written; however, the difference is that the value can be written multiple times,
which does not follow the established definition of futures described in the functional
programming literature. Using active entities, collective operations can be easily defined. For
example, the reduction operator can be implemented as a task that awaits a certain number of
Entities. As the Entities are computed, the ActiveEntity can consume them one at a time to
produce a curried result. When the result is finally computed, the ActiveEntity becomes a
passive Entity (whose value is the final result) and is inserted into the EntitySpace. It should be
noted that this example is based on the common use of reduce, which supports commutative
operations such as addition. A slight modification is required for non-commutative operations
which can also be implemented asynchronously and efficiently. JavaNOW also supports
collective communication operations such as reduce, scatter, gather, and barrier, all of which are
implemented using the same notion of active Entities.

2.4 Abstract Provider Architecture

Similar to the MPI implementation developed at Argonne National Laboratory, JavaNOW uses
abstract factories allowing JavaNOW to be layered on top of any communication mechanism. In
JavaNOW however, the design allows the decision of the underlying communication scheme to
be deferred until run time. Our early experiences with this mechanism have included TCP/IP
sockets, Java Remote Method Invocation (RMI), and the Common Object Request Broker
Architecture (CORBA).

2.5 Data Flow

JavaNOW also supports features that are not available in either Linda, MPI or PVM. One such
example is a coarse-grained dataflow model of computation. In this model, operations are
executed when their data becomes available rather than when dictated by control flow statements.
This support for data flow also comes from the concept of the ActiveEntity which, as noted
above, is very similar to the notion of a future. This similarity is important since futures have
been shown to be useful in many programming paradigms (even outside of high-performance
computing) such as suspended evaluation, lazy evaluation, task graphs, and other commonly
used techniques for high-performance parallel and distributed computing.

3 Other Related Work

Several other projects are using networks of workstations for building parallel applications. Most
of the network-based parallel processing systems are built on top of a message passing layer such
as PVM [59] or MPI [43]. Such systems include ORCA [3], Piranha [30] and Legion [34]. Other
systems are based on a global address space or distributed-shared memory and include Ivy [42],
Munin [12] and TreadMarks [40]. These systems allow networked workstations to be treated as
a multiprocessor system with the underlying software providing coherent memory. However,
such systems suffer from page shuttling, false sharing, the need for distributed locking, and the
lack of fault tolerance [20].

Other parallel frameworks based on Linda and the shared tuple space include C-Linda [48],
Glenda [55], and JavaSpaces [61]. C-Linda is a C based implementation of Linda. Glenda is a
Linda implementation on top of PVM. Memo is a C library that implements Linda like data
structures for storing associative-shared memory. None of these systems (except JavaSpaces as
discussed below) take advantage of the power and flexibility of the Java language.

JavaSpaces is a Linda-inspired framework written in Java. JavaSpaces uses a server object to
manage a space (which is similar to a tuple space or EntitySpace) and, similar to the JavaNOW
system, allows the creation of multiple spaces; however, JavaSpaces does not offer the concept
of an active entity and does not easily support alternative transport protocols to Remove Method
Invocation (RMI). Additionally, JavaSpaces supports even fewer communication primitives than
Linda, the most notable being primitives for non-blocking communication. JavaSpaces also has
the limitation that actual objects are not stored in the tuple space. Instead, user-defined classes
must make use of public instance variables that are then cloned and entered into the space. This
can be argued to be an implementation detail; however, it is a rather sloppy design decision that,
ironically, is not nearly as clean, elegant, and simple as the original Linda C implementations.
Requiring classes to expose member variables violates many of the principles of the object
paradigm and cannot be considered much different that programming with global variables in,
say, FORTRAN or C. Finally, JavaSpaces does not support many of the most useful features of
JavaNOW, most notably placement control and collective communication, which are of proven
value in high-performance computing applications written using the Message Passing Interface
(MPI) library.

There are a number of other Java-based frameworks for parallel computing. Most of these
frameworks can be separated into five different categories. The first category consists of
frameworks that use Java as a graphical based coordination system to submit parallel
applications to specialized hardware. These systems are generally built on top of either PVM or
MPI and include JavaDC [15], and SARA [1]. The second category uses Java as wrapper for
existing frameworks. These systems include Java/DSM [65], JavaPVM [64], and the Java
wrapper for MPI [47]. The third category consists of Java based languages and frameworks that
extend the Java language with new keywords. Some of these systems use a preprocessor to create
Java code, others use their own compiler to create Java byte code, and still others create
executable programs that lose the portability of Java. These Java based languages include the E
language [22], JavaParty [51], and Titanium [54]. The fourth category of Java-based frameworks
consists of systems that are Web oriented and use Java applets to execute parallel tasks. As Java
applets execute under strict security requirements, most of these systems use a broker for
inter-process communication. Such Web-based frameworks are mostly targeted for large-grained
parallel applications since network latency between machines connected over a Wide Area
Network (WAN) is significantly higher than the latency for machines located on a local area
network. These systems include ParaWeb [9], Bayanihan [53], IceT [33], Javelin [16] and
Javelin++ [49] and KnittingFactory [5].

The authors believe web-based computing is an interesting direction that presents interesting
problems; however, for web-based computing to become viable, the quality of web browser
implementations will need to increase significantly. Most web browsers (including the best
implementations, which all run on the Windows™ operating system) are crash suddenly when
running Java and embedded scripts, except for the most trivial computations. Unix
implementations of Netscape crash frequently when doing something as mundane as reading
e-mail, let alone when running Java. And virtually all implementations of web browsers do not
support the latest versions of the Java Development Kit, and this is not likely to change due to
business politics. JavaNOW is not currently a web-based approach; however, there is nothing in
its fundamental design that would preclude its use to support web-based computing (in particular
the server side). We have no immediate plans to support web-based computing using JavaNOW
until the issues described in this paragraph are overcome.

The fifth category, and the one in which JavaNOW would be placed, consists of Java-based
frameworks that use pure Java libraries to support parallel and distributed applications. This
category also includes JavaSpaces [61], JPVM [23], Ninflet [45], and Java//. [10].

4 Fundamental Abstractions

In the previous section we introduced some of the key ideas behind the JavaNOW system. In this
section, we present each of these abstractions in greater detail with some clarifying examples.

4.1 Entity

Probably the most fundamental concept in JavaNOW is the Entity. An Entity is the basic unit of
storage in the JavaNOW system and is stored in the associative and logically-shared repository
termed the EntitySpace. Entities consist of a key and a value as a pair, where both the key and
value can be an instance of any (serializable) Java object. A user creates an Entity instance as
follows:

Integer i = new Integer(10);
String s = new String(“Data component”);
Entity t = new Entity(i, s);

In above code, an Entity is defined with the key equal to the integer value “10” and a value equal
to the string “Data component”. When there is a need to subsequently retrieve this Entity, the key
field (the Integer “10”) is all that would be needed to match and retrieve it. It should be noted that
the above code just creates the Entity and does not add it to the EntitySpace.

We provide a few words about the semantics of creating a key, such as new Integer(10) in the
fragment of code shown above. Java’s Object class provides a function called hashcode(), which
is usually defined on a per class basis and is intended for placing instances in a hashed collection,
such as a Hashtable. We use the hash code to determine a destination for the Entity having a
particular key. On average (from previous work on Memo) the distribution achieved by using a
hashing scheme tends to be nearly uniform in practice. The approach of having a particular
destination is transparent to users; however, any user-defined Entity can override the hashcode()
function to customize precisely how the key is mapped to a destination virtual processor.

4.2 Active Entities

An ActiveEntity is derived from an Entity and defines an abstract method execute() that is
overridden with user-defined computation. An ActiveEntity is executed as a consequence of
executing the eval() operation discussed below. An instance of an ActiveEntity is passed to the
eval function, indicating that the ActiveEntity is to be executed. Once its execution is completed,
the ActiveEntity instance becomes a (passive) Entity, and the result of the user-defined
compuation is stored in the EntitySpace in association with the specified key.

The following code shows the use of subclasses to create a new kind of ActiveEntity called Task.

public class Task extends ActiveEntity {
 public Object execute(Object arg, JavaNOWAPI api) {
 Object o;
 int myid = ((Integer)arg).intValue();
 ...
 return o;
 }
}

This code fragment shows how to evaluate an ActiveEntity:

ActiveEntity task = new Task(new Integer(10));
GetJavaNOWAPI().eval(new EntitySpace(“ESKEY”), task, new Integer(1));

The semantics of active entities are a bit involved. The ActiveEntity differs from an Entity in only
one major respect: it has an execute() method, which represents the “active” aspect of the Entity.
We faced two design choices:

• After the execute() method has completed execution, just leave the entire object behind as
the result. (i.e. the ActiveEntity instance itself)

• Alternatively, return the result (an Object) and use it to create a new Entity.

Ultimately, we opted for the latter option. Our experience with Actors-derived systems and the
concept of a replacement operation led us to the conclusion that an in-place operation is a largely
unfamiliar programming technique, especially in scientific programming, where procedural
abstraction remains the norm, and programmers are more comfortable with the notion of an
invocation having a return value. It is entirely possible to support both designs; however, we are
hoping to gain more experience with actual applications before adding more features than
necessary.

4.3 Entity Space

An EntitySpace stores shared Entities and is accessed by a unique key which can be any
(Serializable) Java object. (We enforce the Serializable restriction, because our current
implementation relies on Java Object Serialization and RMI for communication.) As noted
above, there is no limit to the number of EntitySpaces that can be defined. JavaNOW distributes
the contents of an EntitySpace among the hosts participating in computation using a simple
hashing scheme. Note that the EntitySpace itself does not provide the actual storage for the
Entities but rather links them onto lists called folders. When an entity is inserted or retrieved, the
EntitySpace hashes its key into a number that determines the folder into which the Entity will be
linked. Whenever an Entity is inserted, retrieved or removed from a folder it is locked to support
the mutual exclusion principle discussed earlier.

4.4 JavaNOWApplication

A JavaNOW application must be derived from the JavaNOWApplication class, which stores a
JavaNOWAPI handle as a member. This handle is accessed by the user application. The
JavaNOWApplication class defines the two following abstract methods that are overridden by the
user:

void master()
void slave(int id)

Given N processes, the process with ID 0 invokes the master() method, and the other (N-1)
processes invoke the slave() method. Note that additional heavyweight processes cannot be
dispatched in the present design. However, additional tasks can be created at any time by creating
an instance of an ActiveEntity which, when passed to the eval operator, will create a new thread
to execute the user-defined computation.

The following code demonstrates the use of the JavaNOWApplication class:

public class AnApp extends JavaNOWApplication implements java.io.Serializable {
public static void main(String args[]) {
 AnApp app = new AnApp(args[0]);
 }

public Hello(String propertyFile) {
 super(PropertyFile);
 // local initialization

 applicationIsReady();
 }
 public void master() {
 // . .
 }
 public void slave(int myid) {
 //. . .
 }

The above code can be construed as a skeleton of the minimum code one would need to create a
JavaNOW application. After the application completes its initialization, the
applicationIsReady() method is invoked and the JavaNOW Spawner (discussed below) is used
to create a virtual processor on each host specified by the user.

5 JavaNOW Architecture

JavaNOW is a component-based architecture, wherein each component is designed using a set
of Java interfaces. This design was chosen to facilitate different implementation options for the
same component. One example of this capability was noted above: the Abstract Provider
Architecture can be implemented using a variety of communication mechanisms. Throughout
the design of JavaNOW, similar decisions have made to facilitate design changes and to support
performance tuning.

The primary components of JavaNOW include a lightweight Object Request Broker (ORB), a
virtual processor (VP) factory, the spawner, virtual processes, the kernel, and the application and
user interfaces. The overall structure of JavaNOW is shown in Figure 1 and we discuss each of
these components in the following sections.

Figure 1: Java Now Architecture

5.1 Lightweight ORB Component

The Remote Method Invocation (RMI) framework provides a simple and elegant solution for
creating and accessing remote objects and is one approach supported in JavaNOW. In this
implementation, JavaNOW uses the RMI programming interfaces to register and discover
remote servers. In the socket-based implementation, lower level sockets are used to build a
lightweight ORB that provides interfaces to register and lookup remote objects (similar to the
designs used in RMI and CORBA). As noted above, JavaNOW can be extended to support other
transport mechanisms as well.

5.2 Factory Component

The Factory Component is started on each machine that will participate in the computation and
defines an interface to register and start a virtual process (VP) on the local machines. In the RMI
implementation of JavaNOW, when the factory component is started it registers itself in the RMI
registry. In the socket-based implementation, the registration takes place in a customized registry.

5.3 Spawner Component

When a user submits an application to JavaNOW, the Spawner Component gathers information
about the user application including the number of application processes and the list of machines
on which the application processes will be executed. The application is then assigned a unique
identifier. Next, the Spawner looks for the factory on each participating machine and sends it a
request to start the VPs that will execute on that machine. The number of VPs spawned by the
JavaNOW Spawner is equal to the number of processes specified by the user (which may involve
multiplexing more than one VP on a given processor). Each VP is then assigned a logical host

Lightweight ORB

JVP

API JavaNow

Application

JN Factory

JavaNOW Application

Machine 1 Machine 2

Lightweight ORB

JVP

API JavaNow

Application

JN Factory

JN = JavaNOW, JVP = Java Virtual Processor, API = Application Programming Interface

number (much the same as done in MPI and other systems) that is used to uniquely identify the
VP within the application. The application id and VP id can be used to establish a unique context
identifier (something that is useful when running multiple applications that may need to
coordinate beyond the “boundary” of a running application). Finally, a Kernel process is
spawned on each processor involved in the computation.

5.4 Kernel

The Kernel Component defines an interface to support the core primitive operations of
JavaNOW. (It is at this low-level that JavaNOW appears to be very similar to Linda.) The
following is the list of core operations supported in the Kernel Component:

1. put—Inserts an Entity into an EntitySpace. Recall that an Entity consists of two contained
objects, key and value. Multiple values can be stored in association with a common key.
(Recall from the earlier discussion that the entity space is an implementation of the shared
directory of unordered queues abstraction, which is a 1 to N associative map that has a
distributed implementation.)

2. eval—The eval operation starts a thread to perform a user-defined operation
asynchronously. The operation is defined by extending the ActiveEntity class and
overriding the execute() method. The ActiveEntity instance is run (usually, as a separate
thread) and leaves the result of the operation after its execution is complete.

3. get/getIfExists—Removes an Entity from a given EntitySpace. If the Entity is not present
in the EntitySpace, the get operation blocks until another thread puts the Entity in the
EntitySpace. The getIfExists function tries to remove an Entity from the EntitySpace
without blocking. If the Entity does not exist a value of null is returned.

4. read/readIfExists—The read and readIfExists operations are similar to get/getIfExists
except that instead of removing the Entity from the EntitySpace a copy of the Entity is
returned.

5. size—The size operation returns number of Entities in the EntitySpace.

6. clear—The clear operation removes all Entities from the EntitySpace.

5.5 User Interface (UI)

The User Interface component defines a set of operations to manage shared data and create new
computation tasks. It provides these services by utilizing the Kernel Component. The User
Interface is discussed in detail below.

5.6 User Application

The User Application is not exactly a component but acts as an abstract base class for deriving
one’s own JavaNOW applications. As noted above, it defines two abstract methods that are
implemented by the user: master() and slave().

6 JavaNOW User Interface

The JavaNOW User Interface defines a set of operations that applications use to manipulate the
EntitySpace(s) and to start new threads to perform user-defined computation. The User Interface
in turn calls on the services of the JavaNOW Kernel to perform these primitive operations. Given

the importance of the User Interface it is worth while to elaborate on the many services it
provides.

6.1 Defining EntitySpaces and Entities

The user can declare multiple EntitySpaces each of which is identified by a unique key, where
the key can be any serializable Java object. As an example consider the following program
fragment:

EntitySpace ts = new EntitySpace(new “JOBJAR”);

In this example, JavaNOW creates an EntitySpace ts with the key “JOBJAR”. An Entity is
created in a similar manner:

Entity e = new Entity(“KEY”, “VALUE”);

In this example an Entity with key “KEY” and value “VALUE” is created.

6.2 Inserting an Entity in the EntitySpace

The JavaNOW User Interface defines a put operation to insert an Entity into an EntitySpace. The
prototype of the put operation is:

void put(EntitySpace es, Entity e)

This operation could be used as follows:

EntitySpace es = new EntitySpace(“SHARED DATA”);
Entity e = new Entity(“KEY”, new Integer(100));
getJavaNOWAPI().put(es, e);

The getJavaNOWAPI() method is defined in the JavaNOWApplication class and returns a handle
to the JavaNOW User Interface. The machine on which the inserted Entity will reside is
determined by a simple hashing function as previously discussed.

6.2 Retrieving an Entity from the EntitySpace

A user can either retrieve and remove an Entity from an EntitySpace or simply retrieve a copy of
the Entity. (Retrieving a copy depends on whether the operation is determined to be local or
remote--transparent to the user. In the case of local a deep-clone is performed; otherwise, Object
Serialization is used to serialize and deserialize the object from its remote location.)

The following form of the get function actually removes the Entity:

Entity get(EntitySpace es, Entity e)

The get function can be used as follows:

EntitySpace es = new EntitySpace(“SHARED DATA”);
Entity ek = new Entity(“KEY”);
Entity e = getJavaNOWAPI().get(es, ek);
Integer I = (Integer) e.getEntityValue();

The above code defines an EntitySpace with the key “SHARED DATA” and attempts to remove
an Entity with the key “KEY” from that EntitySpace. The get operation is a blocking operation,
so if the Entity does not exist in the EntitySpace the operation will block until the Entity becomes

available. If, on the other hand, there are multiple Entities matching the Entity key, the get
operation will return the Entity in FIFO order.

The JavaNOW User Interface also provides a non-blocking version of the get operation that
returns the Entity if it exist in the EntitySpace and otherwise returns null. Here is the prototype
for the non-blocking get operation:

Entity getIfExists(EntitySpace es, Entity e)

The following code illustrates the use of the getIfExists operation:

EntitySpace es = new EntitySpace(“SHARED DATA”);
Entity ek = new Entity(“KEY”);
Entity e = getJavaNOWAPI().getIfExists(es, ek);
if (e != null) {
 Integer I = (Integer) e.getEntityValue();
}

In this example, the getIfExists function tries to find an Entity with the key “KEY” in an
EntitySpace with the key “SHARED DATA” and returns null if there is no matching Entity.

Another useful operation defined in JavaNOW is the read operation which returns a copy of the
requested Entity but does not remove it from the EntitySpace. The prototype for this operation is:

Entity read(EntitySpace es, Entity e)

The following is an example of how the read operation can be used:

EntitySpace es = new EntitySpace(“SHARED DATA”);
Entity ek = new Entity(“KEY”);
Entity e = getJavaNOWAPI().read(es, ek);
Integer I = (Integer) e.getEntityValue();

The read operation is a blocking operation, so if the sought after Entity does not exist in the
EntitySpace, the caller will block until the Entity becomes available.

The JavaNOW User Interface also defines a non-blocking version of the read operation:

Entity readIfExists(EntitySpace es, Entity e)

The readIfExists operation is used in a manner analogous to the read operation except that it
does not block is the Entity does not exist.

6.3 Using an ActiveEntity to Create New Threads of Execution

JavaNOW provides the eval operation to spawn a thread to execute user-defined computation:

void eval(EntitySpace es, ActiveEnttiy e, Object arg)

The user defines the computation by providing the execute method within the ActiveEntity class.
The eval operation is then passed an instance of ActiveEntity which contains the user-defined
method. The following example illustrates how a new thread is created and executed:

public class ATask extends ActiveEnttiy {
 public Object execute(Object arg, JavaNOWAPI JavaNOW) {
 //...
 return someObject;
 }
}

EntitySpace es = new EntitySpace(“SHARED DATA”);

ATask task = new ATask(“KEY”);
GetJavaNOWAPI().eval (es, task,”USER ARGUMENT”);
Integer I = (Integer) getJavaNOWAPI().get(es, ek).getEntityValue();

The above code creates an instance of the ActiveEntity class and passes that instance to the eval
operation. The eval operation creates a thread to process the user-defined execute method and
then stores the result as the value of that Entity. The user then retrieves the result by issuing a
blocking get operation.

6.4 Data flow

The JavaNOW User Interface provides operations that simulate a data flow model of
computation. In a data flow computation, an operation is executed as soon as its data becomes
available. The prototypes for the two data flow operations provided in JavaNOW are shown
below.

void putDelayed(EntitySpace es1, EntitySpace es2, Entity e)
void evalDelayed(EntitySpace es1, EntitySpace es2, Entity e, ActiveEntity task)

The putDealyed method performs a blocking get operation to retrieve some Entity e from some
EntitySpace es1, and after retrieving Entity e stores it in EntitySpace es2.

The evalDelayed method waits for some Entity e in some EntitySpace es2, to become available.
When it arrives, the operation removes e from es2. Next, the eval operation is called with an
AactiveEntity object (denoted by task in this example), using EntitySpace es1 and passing the
value of e as the argument to the eval operation.

6.5 Collective Communication and Computation

The JavaNOW User Interface also defines a set of collective communications and computations
across EntitySpaces. In this section, we briefly describe these operations.

The broadcast operation allows an instance of an Entity to be deposited in multiple EntitySpaces.
The scatter operation takes as parameters an array of EntitySpaces and an array of Entities. It
removes the nth Entity from the Entity array and inserts it in the nth element of the EntitySpaces
array. The gather operation provides the ability to retrieve multiple Entities from a set of
EntitySpaces. It takes as parameters a destination EntitySpace and an array of source
EntitySpaces. The operation takes the nth Entity from the nth EntitySpace (i.e. Entity one from
EntitySpace one, Entity two from EntitySpace two and so forth) and places that Entity into the
destination EntitySpace. The concat operations takes an array of Entities and copies that array
into multiple EntitySpaces. Finally, the User Interface provides an index operation which is
similar to the transpose operation on a matrix.

JavaNow also provides a reduce operator to facilitate collective computation. This operation is
effectively equivalent to performing an eval operation on a set of Entities. The combine operation
is similar to the reduce operation except that it stores its result in multiple EntitySpaces. The
prefix operation is also similar to the reduce operation except that it stores a partial result in
multiple EntitySpaces.

6.6 Other Operations

In addition to the operations discussed above, the JavaNOW User Interface provides a barrier
routine to block a process until some specified number of processes have similarly executed the
barrier, a routine to determine the number of active processes and a routine to halt the execution
of all processes.

7 Distributed Idioms and Patterns in JavaNOW

Over the course of the years of research in parallel and distributed systems a number of idioms
and patterns have been developed to promote inter-process communication and the safe
manipulation of shared data structures. Our goal is not to re-invent these useful techniques but
rather to incorporate them into the JavaNOW framework. In this section, we demonstrate how
some of the classical IPC mechanisms can be incorporated into JavaNOW.

7.1 Inter-process Communication

JavaNOW differs from MPI and PVM in that it does not provide direct point-to-point
inter-process communication (IPC) primitives but rather provides a producer/consumer model of
IPC. This is much the same model that is supported in the Communicating Sequential Processes
(CSP) model defined by C. A. R. Hoare (the seminal research on the topic of IPC).

To support IPC, an Entity is created with a key agreed upon by both the sender and receiver (
this is similar to the notion of a named channel or a named pipe found in operating systems). The
values to be communicated are placed in the value field of the Entity. The sender can issue as
many send calls as desired, creating an Entity instance for each object to be transmitted to the
receiver. The receiver may post as many get operations as desired, allowing for the possibility of
multiple communications.

The following code illustrates this form of IPC in JavaNOW.

// Sending Process
. . .
EntitySpace esk = new EntitySpace(“ESKEY”);
Integer n = new Integer(100);
Entity e = new Entity(“key”, n);
getJavaNOWAPI().put(esk, e);

// Receiving Process
. . .
EntitySpace esk = new EntitySpace(“ESKEY”);
Entity e = new Entity(“key”);
String msg = (String) getJavaNOWAPI().get(esk, e);

7.2 Locks, Mutexes, and Binary Semaphores

Although Java provides a monitor-like abstraction (as part of the language proper) that can be
used to support the synchronization of threads, the semantics of this abstraction are local rather
than distributed. Thus, data that is shared between two threads (or processes) executing on
different processors cannot be easily protected.

JavaNOW guarantees atomic operations at the level of an Entity. Thus a given key can be used
to support a basic lock discipline. For example, an initialization process (the master) can deposit
an Entity into an EntitySpace, which reflects a lock that can be used anywhere in the application.

The process that needs to perform a lock operation will simply issue a blocking get operation to
acquire the Entity (representing the lock) from the EntitySpace. Once the process returns from
the get operation it enters into its critical section. When leaving the critical section, the lock is
released (or returned) to the EntitySpace via a matching put operation. If another process needs
the lock, it must also issue a blocking get operation forcing it to wait until the process which
controls the lock performs the matching put operation. Other popular lock semantics (such as
the trylock primitive found in pthreads) are also possible, using the non-blocking put and get
primitives defined in JavaNOW.

Note that this framework supports an unbounded number of locks since locks are nothing but
Entities with pre-defined (and agreed upon) common keys. The following example illustrates the
use of locks in JavaNOW.

public void initLock() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”, new Object());
 getJavaNOWAPI().put(esk, e);
}

public void lock() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”);
 getJavaNOWAPI().get(esk, e);
}

public boolean tryLock() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”);
 return (getJavaNOWAPI().getIfExists(esk, e) != null);
}

public void unlock() {
 EntitySpace esk = new
 EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”, new Object());
 getJavaNOWAPI().put(esk, e);
}

7.3 Semaphores

Semaphores are another useful synchronization mechanism that is supported in JavaNOW in
much the same manner as the lock mechanism. The primary difference between the lock and the
semaphore is in the initialization. In particular, N Entities (where N is the semaphore count),
rather than a single Entity, are deposited in the EntitySpace. The down and up operations on the
semaphore are performed using the get and put operations respectively using the semaphore key.
Here is an example of how semaphores can be created and used in JavaNOW.

public void initSemaphore(int n) {
 EntitySpace esk = new EntitySpace(“SYNC”);
 for (int i=0; i<n; i++) {
 Entity e = new Entity(“mutex”, new Object());
 getJavaNOWAPI().put(esk, e);
 }
}

public void down() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”);
 getJavaNOWAPI().get(esk, e);
}

public boolean tryAllocateSemaphore() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”);
 return (getJavaNOWAPI().getIfExists(esk, e) != null);
}

public void up() {
 EntitySpace esk = new EntitySpace(“SYNC”);
 Entity e = new Entity(“mutex”, new Object());
 getJavaNOWAPI().put(esk, e);
}

7.4 Producer/Consumer

The Producer/Consumer problem is one of the most fundamental synchronization problems in
computer science, and many problems in parallel computing degenerate into a special case of a
producer/consumer relationship among tasks. Here is a solution to both the bounded and
unbounded producer/consumer in JavaNOW.

// Unbounded Producer Process
void unboundedProducer() {
 EntitySpace esk = new EntitySpace(“BUFFER”);
 while (true) {
 Object data = produceData();
 Entity e = new Entity(“key”, data);
 getJavaNOWAPI().put(esk, e);
 }
}
// Bounded Producer Process
void boundedProducer(int maxBuffer) {
 EntitySpace esk = new
 EntitySpace(“BUFFER”);
 while (true) {
 while (getJavaNOWAPI().getSize(esk)
 == maxBuffer) {
 synchronized (this) {
 try {
 wait();
 } catch (InterruptedException e) {}
 } // synchronized
 } // while buffer exceeds bound
 Object data = produceData();
 Entity e = new Entity(“key”, data);
 getJavaNOWAPI().put(esk, e);
 } // while forever
}

// Unbounded Consumer
. . .
void unboundedConsumer() {
EntitySpace esk = new EntitySpace(“BUFFER”);
 while (true) {
 Entity e = new Entity(“key”);
 String msg = (String) getJavaNOWAPI().get(esk, e);
 }
}
// Bounded Consumer
void boundedConsumer(int maxBuffer) {
EntitySpace esk = new EntitySpace(“BUFFER”);
 while (true) {
 Entity e = new Entity(“key”);
 String msg = (String) getJavaNOWAPI().get(esk, e);
 if (getJavaNOWAPI().getSize(esk) == maxBuffer-1) {

 synchronized (this) {
 notify();
 }
 } // if
 } // while
}

8 Significance and Conclusions

This paper has presented JavaNOW, a framework for enabling both a message-passing and
shared-memory model of computation. JavaNOW is designed primarily for networks of
workstations, and provides a framework to harness the (relatively cheap) raw computational
power available on such systems. Although written in Java, a relatively young and unproven
language in many respects, JavaNOW has not been designed in a vacuum. Many of the ideas
presented in this paper go back as far as the late 1960’s and 1970’s, when actors were first
introduced as a model of computation. The emergence of Java has made it possible to bring a
practical implementation to ideas such as coarse-grained actors and dataflow. The use of Java has
also made it possible to compactly implement a powerful and robust library of communication
primitives. In fact, the current version of JavaNOW numbers in the low thousands of
non-commented lines of code (NLOC).

JavaNOW brings to the Java and High-Performance Computing community a framework that is
reminiscent of the Message Passing Interface (MPI). However, many aspects of MPI are not
necessary in a Java environment, such as derived data types and detached processes, since Java
already supports these concepts quite well. Of course an important issue for any such framework
is the level of support provided for the interoperability of existing codes. Our view is that
CORBA (the Common Object Request Broker Architecture) provides a much better mechanism
than the MPI framework for such interoperability. In particular, CORBA addresses the difficult
issues of mapping data structures between dissimilar languages much better than the framework
introduced by MPI. (MPI derived datatypes, for example, cannot handle aggregation of
heterogeneous data structures very well.) Having said that however, JavaNOW provides full
support for the collective communication and computation operations provided by MPI, which
are often argued to be among the major research contributions of the MPI effort.

A question remains: Who would use JavaNOW? We believe JavaNOW will be of greatest use to
two general classes of programmers:

• People who want to use Java to develop completely new codes and make use of all of the
modern features available in the language.

• People who have existing kernels (FORTRAN and C) and wish to use JavaNOW as a
coordination environment thus enabling the reuse of already proven codes. As an example,
we have an active project underway to use JavaNOW as a coordination language for
existing CFD codes. We have found that using the Java Native Interface (JNI), it is
relatively straightforward to support such legacy codes.

All said, JavaNOW is very much a work in progress. It is, much like the rest of Java technology,
a prototype. Thus we have been careful in this paper to focus on the innovations and flexibility
of the JavaNOW model of computation rather than making claims about high performance of the
current system (although we hope to be able to do so in the future). A number of improvements
are planned for the next generation of JavaNOW, including the following:

Completeness: A valid concern has been raised during the review process that there have been
few, if any, assurances of the completeness of the API in terms of what is needed for
high-performance computing. The JavaNow system has been derived from the Linda and MPI
systems. We have included all of the programming interfaces found in these environments and
added a number of new elements with the emphasis on supporting object-oriented coordination
in a Java-only context. Thus a number of features in MPI, such as derived datatypes, have been
omitted, because Java (and other object languages) support derived data types as a part of the
language. We have employed object-oriented design throughout the process of developing
JavaNow and (in making decisions) have relied on a technique, known as factorization, to reduce
functional complexity (without loss of expressive potential) and better exploit the Java language
itself. We stress that claims about “language equivalence” and “completeness” often degenerate
into formally undecidable problems and thus have made no such claims in this paper. We do
claim, however, that our approach of a coherent small set of functions certainly lends itself better
to practical use.

Performance: The current release of JavaNOW is implemented primarily as a proof of concept,
and we have yet to pursue any significant performance tuning. Performance issues will be of
paramount importance in future releases. In retrospect, many of our design decisions, such as
supporting the easy plug-and-play of different transport layers, a component-based architecture,
etc. do come at a cost. It may be the case that, in order to optimize performance, we have to
retro-fit services back into the kernel in much the same way that has been done in some
Microkernel operating systems such as Windows NT.

Dynamic resource management: The current release of JavaNOW requires that the user
statically specify the list of machines on which the application will run. In the next release,
JavaNOW will allow users to add/delete machines dynamically. This is an important step in the
integration of JavaNOW with another framework we are developing termed the Computational
Neighborhood (CN) (see [63] for a thorough discussion of this proposed framework). The CN
supports dynamic resource discovery and allocation in a drag-and-drop manner allowing jobs to
be started, seamlessly and transparently, on a collection of resources.

Dynamic load balancing: The current release of JavaNOW uses a simple hashing scheme for
load balancing. While this approach seems to work well for the limited number of applications
we have tested thus far, we do not yet know if it will work well in the general case. If not, then
we will be forced to implement a dynamic load distribution scheme in the future.

Fault tolerance: As the number of machines participating in a JavaNOW application increases,
the probability of a networking or other type of failure also increases. The current
implementation of JavaNOW, similar to other message-passing systems, does not recover from
such errors.

Availability: JavaNOW is available from the Java and High-Performance Computing Group,
http://www.jhpc.org. For more information on JHPC, please contact George K. Thiruvathukal at
the e-mail or postal address mentioned on the first page.

9 Acknowledgments

We wish to acknowledge the reviewers for their many constructive comments. We have
endeavored to incorporate every suggestion made for improvement with the hope of producing
an article of high quality. We also wish to thank Nina Wilfred, John Shafaee, and Arti Singh for
their help in reviewing and editing the final version of this paper.

Bibliography

1 G. Aloisio, M. Cafaro, P. Messina, and R. Williams, “A distributed Web-based metacomputing
environment,” Proceedings of HPCN ‘97, Vienna, Austria, April 1997.

2 T. E. Anderson, D. E. Culler, and D. A. Patterson. “A case for NOW,” IEEE Micro, February 1995.

3 H. E. Bal and M. F. Kaashoek, “Object-Distribution in Orca using Compile-Time and Run-Time
Techniques,” Proceedings of Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’93), pages 162-177, Washington, D.C., 1993.

4 J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer, “ATLAS: An Infrastructure for Global
Computing,” Proceedings of 7th ACM SIGOPS European Workshop: System support for Worldwide
Applications, Connemara, Ireland, September 1996.

5 A. Baratloo, M. Karaul, H. Karl, and Z. Kedem, “An Infrastructure for Network Computing with
Java Applets,” Proceedings of ACM Workshop on Java for Science and Engineering Computation,
February 1998.

6 R. Bjornson, C. Kolb and A. Sherman, “Ray Tracing with Nework Linda,” SIAM News, 1(24),
January 1991.

7 R. Bjornson, “Linda on distributed memory multiprocessors,” Ph.D. Thesis, Yale University, 1992.
YALEU/DCS/RR-931.

8 R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, H. Randall, and Y. Zhou, “Cilk: An
Efficient Multithreaded Runtime System,” Proceedings of the 5th ACM SIGPLAN Symposium on
Principles of Parallel Programming, 1995.

9 T. Brecht, H. Sandu, M. Shan, and J. Talbot, “ParaWeb: Towards World-Wide Supercomputing,”
Proceedings of the Seventh ACM SIGOPS European Workshop on System Support for Worldwide
Applications, 1996.

10 D. Caromel, W. Klauser, J. Vayssiere, “Toward Seamless Computing and Metacomputing in Java,”
Concurrency: Practice and Experience ed. by G. C. Fox, September-November, 1998, Wiley, pp.
1043-1061.

11 N. Carriero, and D. Gelernter, Linda in Context, CACM, 32:4, Apr. 1989.

12 J. B. Carter and J. K. Bennett and W. Zwaenepoel, “Implementation and Performance of Munin,”
Proceedings of the 13th ACM Symposium on Operating Systems Principles, pages 152-164, Oct.
1991.

13 N. Carriero and D. Gelernter. How to write parallel programs, The MIT Press, Cambridge,
Massachusetts, pp. 45-49.

14 B. Carpenter, G. Zhang, G. Fox, X. Li, and Y. Wen, “HPJava: Data Parallel Extensions to Java,”
Proceedings of ACM Workshop on Java for Science and Engineering Computation, February 1998.

15 Z. Chen, K. Maly, P. Mehrotra, R. K. Vangala, and M. Zubair, “Web Based Framework for
Distributed Computing,” Proceedings of ACM Workshop on Java for Science and Engineering
Computation, Las Vegas, NV, June 1997.

16 B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, and K. E. Schauser, Javelin:
Internet-Based Parallel Computing Using Java. In Proceedings of ACM Workshop on Java for
Science and Engineering Computation, Las Vegas, NV, June 1997.

17 W. T. O'Connell, G. K. Thiruvathukal, and T. W. Christopher, “Distributed Memo: A
Heterogeneously Parallel and Distributed Programming Environment,” Proceedings of the 23rd
International Conference on Parallel Processing, August 1994.

18 W. T. O'Connell, G. K. Thiruvathukal and T. W. Christopher. “The Memo Programming
Language,” Proceedings of the International Conference on Parallel and Distributed Computing
Systems, October 1994.

19 P. E. Crandall and M. J. Quinn. Data Partitioning for Networked Parallel Processing, IEEE Press,
1993, pp. 376-379.

20 P. Dasgupta, Z. Kedem, and M. Rabin, “Parallel processing on networks of workstations;
Fault-tolerant high performance approach,” Proceedings of 15th IEEE International Conference on
Distribute Computing Systems, 1995.

21 J. Dongarra, A. Geist, R. Manchek, and V. Sunderam, “Integrated PVM Framework Supports
Heterogeneous Network Computing,” Computers in Physics. April 1993, Vol. 7, No. 2, pp 166-175.

22 The Original-E Extensions to Java, http://www.erights.org/.

23 A. Ferrari, “JPVM: Network Parallel Computing in Java,” Proceedings of ACM Workshop on Java
for Science and Engineering Computation, February 1998.

24 I. T. Foster and C. Kesselman, “The Globus Project,” http://www.globus.org/.

25 G. C. Fox and K. Dincer, “Using Java and JavaScript in the Virtual Programming Laboratory: A
Web-Based Parallel Programming Environment,” Concurrency: Practice and Experience,
9:485-508, 1997.

26 G. A. Geist and V. S. Sunderam. “Network Based Concurrent Computing on the PVM System,”
Journal of Concurrency: Practice and Experience, 4, 4, pp 293--311, June, 1992.

27 G.A. Geist and V.S. Sunderam, “The Evolution of the PVM Concurrent Computing System,”
Proceedings of 26th IEEE COMPCON Symposium, pp. 471-478, San Fransisco, February 1993.

28 D. Gelernter, “Generative Communication in Linda,” ACM TOPLAS, 7:1, Jan. 1985.

29 D. Gelernter, “Multiple tuple spaces in Linda,” In E. Odijk, M. Rem, and J.C. Syre, editors, PARLE
’89: Parallel Architectures and Languages, pages 20-27. Springer-Verlang, Lecture Notes in
Computer Science Volume 366, 1989.

30 D. Gelernter and D. Kamisnsky, “Supercomputing out of Recycled Garbage: Preliminary
Experience with Piranha,” Proceedings of Sixth ACM International Conference on
Supercomputing, Washington D.C., July 1992.

31 G. K. Thiruvathukal, “An Enhanced Actors Model for Parallel and Distributed Computing,”
Proceedings of First International Conference on Parallel Computing (HiPC) 1994, Bangalore
India, December 1994.

32 G. K. Thiruvathukal, “An Enhanced Actors Model for Parallel and Distributed Computing,” Ph.D.
Thesis, Illinois Institute of Technology, Chicago, IL, 1995.

33 P. A. Gray and V. S. Sunderam, “IceT: Distributed Computing and Java,” Proceedings of ACM
Workshop on Java for Science and Engineering Computation, June 1997.

34 A. S. Grimshaw and W. A. Wulf, “The Legion Vision of a Worldwide Virtual Computer,”
Communications of the ACM, pp. 39-45, volume 40, number 1, January, 1997.

35 S. C. Hupfer, “Melinda: Linda with multiple spaces,” Technical Report YALEU /DCS/RR-766,
Yale University, 1990.

36 L. V. Kale and J. M. Yelon, “Threads for Interoperable Parallel Programming,” Proceedings of
Languages and Compilers for Parallel Computing, 1996.

37 L. V. Kale, M. Bhandarkar, and T. Wilmarth, “Design and Implementation of Parallel Java with
Global Object Space,” Proceedings of Parallel and Distributed Processing Technology and
Applications, Las Vegas, Nevada, 1997.

38 L. V. Kale, M. Bhandarkar, R. Brunner and J. Yelon. “Multiparadigm Multilingual Interoperability:
Experience with Converse,” Proc. of Second Workshop on Runtime Systems for Parallel
Programming (RTSPP), March 1998.

39 H. Karl, “Bridging the Gape between Distributed Shared Memory and Message Passing,”
Proceedings of ACM Workshop on Java for Science and Engineering Computation, February 1998.

40 P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating Systems,” Proceedings of the 1994 Winter
Usenix Conference, pages 115-132, January 1994.

41 LAM/MPI – Local Area MPI, http://www.mpi.nd.edu/lam/

42 K. Li, “IVY: A Shared Virtual Memory System for Parallel Computing,” Proceedings of the 1988
International Conference on Parallel Processing, pages II:94-101, Aug. 1988.

43 B. Gropp, R. Lusk and T. Skjellum, Using MPI: Portable Parallel Programming with the
Entity-Passing Interface, 1994.

44 L. Clarke, I. Glendinning, and R. Hempel, MPI: A Message-Passing Interface Standard, The
International Journal of Supercomputer Applications and High Performance Computing, 8(3),
1994.

45 H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh, U. Nagashima, Concurrency: Practice
and Experience ed. by G. C. Fox, September-November, 1998, Wiley, pp. 1063-1078.

46 MPI-2: Extensions to the Message-Passing-Interface,
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

47 MPI-Java Home Page, http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html.

48 J. Narem. “An Informal Operational Semantics of C-Linda V2.3.5,” Technical Report 839, Yale
University Department of Computer Science, Dec. 1990.

49 M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, P. Capello, “Javelin++: Scalability Issues in Global
Computing,” Proceedings of the ACM Java Grande 1999 Conference, June 12-14, 1999, San
Francisco, California.

50 S. W. Otto, M. Snir, and D. Walker. “An Introduction to the MPI Standard” In J. Dongarra,
CS-95-274, January 1995.

51 M. Philippsen and M. Zenger, “JavaParty: Transparent Remote Objects in Java,” Proceedings of the
ACM PpoPP Workshop on on Java for Science and Engineering Computation, Las Vegas, NV, June
1997.

52 M. C. Rinard, D. J. Scales, and M. S. Lam, “Jade: A High-Level, Machine-Independent Language
for Parallel Computing,” IEEE Computer, 1993.

53 L. F. G. Sarmenta, S. Hirano, and S. Ward, “Towards Bayanihan: Building an Extensible
Framework for Volunteer Computing Using Java,” Proceedings of the 2nd Intl. Conference on
Worldwide Computing and its Applications, Tsukuba, Japan, March 1998.
http://www.cag.lcs.mit.edu/bayanihan.

54 K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S.
Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: A High-Performance Java Dialect,”
Proceedings of ACM 1998 Workshop on Java for High-Performance Network Computing, Stanford,
California, February 1998.

55 Seyfarth, J. Bickham and S. Arumugham. Glenda,
http://sushi.st.usm.edu/~seyfarth/research/glenda.html

56 A. Sinha and L. V. Kale, “A Load Balancing Strategy For Prioritized Execution of Tasks,”
International Symposium on Parallel Processing, Newport Beach, CA, April 1993.

57 Ahuja, Sudhir, Carriero, and Gelernter, “Linda and Friends,” IEEE Computer, Aug. 1986.

58 V. S. Sunderam, “PVM: A Framework for Parallel Distributed Computing,” Concurrency: Practice
and Experience, 2, 4, pp 315--339, December, 1990.

59 G. A. Geist and V. S. Sunderam, “Network Based Concurrent Computing on the PVM System,”
Journal of Concurrency: Practice and Experience, (4), pp. 293-311, June 1992.

60 V. Sunderam, J. Dongarra, A. Geist, and R Manchek. “The PVM Concurrent Computing System:
Evolution, Experiences, and Trends,” Parallel Computing, Vol. 20, No. 4, April 1994, pp 531-547.

61 Sun MicroSystems, Inc., JavaSpaces Specification, http://java.sun.com/products/javaspaces/

62 G. K. Thiruvathukal, “Toward non-von Neumann Computation: An Enhanced Actors Model for
Parallel and Distributed Processing,” Proceedings of the First HiPC Conference (Workshop),
Bangalore, India, 1994.

63 G. K. Thiruvathukal, B. Cameron, T. Christopher, L. Oliveira, and J. Shafaee, The Computational
Neighborhood, Proceedings of ICS Workshop on Java, Rhodes, Greece. To appear in a special issue
of FGCS, edited by V. Getov.

64 D. A. Thurman. JavaPVM: The Java to PVM Interface, Decemeber 1996.
http://www.isye.gatech.edu/chmsr/jPVM.

65 W. Yu and A. Cox. “Java/DSM: A Platform for Heterogeneous Computing,” Proceedings of ACM
Workshop on Java for Science and Engineering Computation, Las Vegas, NV, June 1997.

	Java on Networks of Workstations (JavaNOW): A Parallel Computing Framework Inspired by Linda and the Message Passing Interface (MPI)
	Author Manuscript

	tmp.1609040366.pdf.4CwZ8

