

Prevalence of gestational diabetes mellitus in Eastern Mediterranean region: a systematic review and meta-analysis

Mahin Badakhsh¹ · Fereshteh Daneshi² · Mahnaz Abavisani³ · Hosien Rafiemanesh⁴ · Salehoddin Bouya⁵ · Mahmood Sheyback⁶ · Khadije Rezaie Keikhaie⁷ · Abbas Balouchi⁸

Received: 19 March 2019 / Accepted: 19 July 2019 / Published online: 2 August 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Purpose Gestational diabetes mellitus (GDM) is one of the costly challenges in the health field. Despite the individual studies in the Eastern Mediterranean, there is no comprehensive study in this regard. The aim of this study was to determine the prevalence of GDM in the Eastern Mediterranean region.

Methods In this meta-analysis and systematic review, three international databases (PubMed, Web of science and Scopus) were searched from inception until 30 December 2018. The Hui tool was used to assess the quality of the included studies. **Results** Thirty-three studies performed on 887166 participants were included in the meta-analysis. Based on the results of random effect method, the overall prevalence of GDM was 11.7%. Between six country with have three or more study, pooled prevalence for Saudi Arabi it was 3.6 times more than Israel (17.6 vs. 4.9%), and for Pakistan, Qatar, Bahrain and Iran were 15.3%, 14.7%, 12.2%, and 8.6%, respectively.

Conclusion Despite the high diversity of methods, the results of the present study indicate a high prevalence of GDM in the Eastern Mediterranean region, indicating more policymakers' interest in timely screening and proper management.

Keywords Epidemiology · Gestational diabetes mellitus · Eastern Mediterranean region · Meta-analysis

Supplementary information The online version of this article (https://doi.org/10.1007/s12020-019-02026-4) contains supplementary material, which is available to authorized users.

Khadije Rezaie Keikhaie kanregeli@gmail.com

- ¹ Department of Midwifery, School of Nursing and Midwifery, Zabol University of Medical Science, Zabol, Iran
- ² Department of Pediatric Nursing, School of Nursing and Midwifery, Jiroft University of Medical Sciences, Jiroft, Iran
- ³ MSc of Medical Surgical Nursing, Neyshabur University of Medical Sciences, Neyshabur, Iran
- ⁴ Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ⁵ Clinical Immunology Research Center, Ali-ebne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
- ⁶ Bushehr University of Medical Sciences, Bushehr, Iran
- ⁷ Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
- ⁸ Student Research Committee, Nursing and Midwifery School, Iran University of Medical Sciences, Tehran, Iran

Introduction

Gestational diabetes mellitus (GDM) is one of the challenges of the health system in the world today. GDM is a type of diabetes that has been diagnosed for the first time in pregnancy period that is characterized by glucose intolerance in the second and third trimester of pregnancy in people who have no previous history [1]. GDM, along with other types of diabetes, is known as one of the most costly cases, which annually imposes a cost of 1.2 trillion dollars worldwide and expected to reach over 2.2 trillion dollars by 2030 [2]. One of the major challenges in determining the exact prevalence of GDM is the presence of more than eight criteria for its diagnosis, which is provided by various organizations [3].

According to the latest figures in 2017, more than 18.6% of women suffered from different types of hyperglycemia, of whom 18.6 million were diagnosed with GDM [4]. The prevalence of GDM is rising annually. The global prevalence of GDM varies from 1–28% in different regions of the world based on the characteristics of the population studied and the various diagnostic methods of GDM [5]. The Eastern Mediterranean region with the South Asian region account for the highest prevalence of GDM [4].

The most important risk factors of GDM are the history of GDM, macrosomia, previous genetic anomalies, BMI>25, gestational hypertension, family history of diabetes, polycystic ovary syndrome, history of abortion, and preterm labor history [6]. GDM is associated with various maternal and neonatal complications. The most frequent maternal complications of GDM on the basis of various WHO and IADPSG criteria are include macrosomia, perinatal mortality, preeclampsia, cesarean section, birth injury, shoulder dystocia, neonatal hypoglycemia, and long-term metabolic complications for mother and fetus [7, 8]. There are individual studies in this area, and so far, there has not been any comprehensive study in the East Mediterranean despite being regarded as one of the region of world with highest prevalence of GDM. On the other hand, determining the exact prevalence of GDM will help health policymakers to prioritize and plan for better screening and control. This meta-analysis study was conducted to determine the prevalence of GDM in the Eastern Mediterranean region from 2000 to 2018.

Methods

Study design and eligibility criteria

The methods adopted for this systematic review have been developed in accordance with the Cochrane Handbook for Systematic Reviews and reported using Preferred Reporting Items for Systematic Reviews and Meta-Analyses tool [9]. Descriptive, cohort, case-control studies included but reviews, letter to editor, studies that did not allow access to the full text version, and studies written in languages other than English were excluded from the study. Only studies that were conducted in EMRO region countries were included. Diagnosis of GDM was based on the standards defined in the literature [3]. The target population of the current study was pregnant woman.

Search strategy

The International databases include PubMed, web of science and Scopus were searched for relevant studies in EMRO region limits in English language from inception to 30 December 2018. The MEDLINE search strategy was adopted to search in other databases. The specific search strategies were created by a Health Sciences Librarian with expertize in systematic review according to the PRESS standard [10]. In addition, PROSPERO was used to search for ongoing or recently completed systematic reviews. Boolean operators (AND, OR, and NOT), Medical Subject Headings (MeSH), truncation "*" and related text words were used for search using the fol-"prevalence", "Epidemiology", lowing keywords:

"gestational diabetes mellitus", "GDM", "hyperglycemia in pregnancy", and "gestational hyperglycemia" in Eastern Mediterranean region countries.

Selection of studies and data extraction

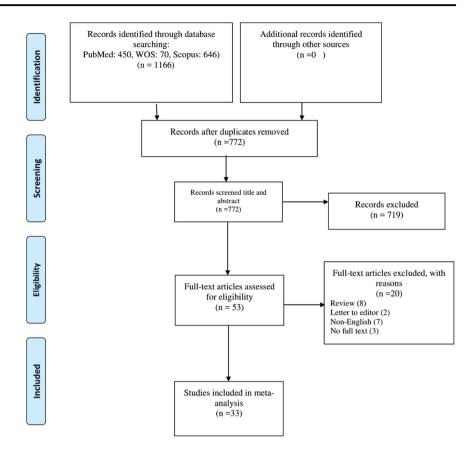
According to the study protocol, two researchers independently screened the titles and abstracts based on the eligibility criteria, in next step, after removing duplicated studies, studies full texts were screened based on the eligibility criteria, and the required information was extracted. Consensus method was used for solving controversies among two researchers. Extracted data items included: author, year of publication, country, sampling method, design, diagnostic criteria of GDM, setting, gestational age, Year of data collection, sample size, Age and Risk Factor, Risk of bias, and prevalence of GDM.

Quality assessment

To assess the methodological quality and risk of bias, each included observational study was evaluated by using the Hoy et al tool. This 10-item tool evaluated the quality of studies in two dimensions including external validity (items 1–4 assess target population, sampling frame, sampling method and nonresponse bias minimal) and internal validity (items 5–9 assess data collection method, case definition, study instrument, mode of data collection and item 10 assesses bias related to the analysis). Risk of bias was evaluated by two researchers independently, disagreements were resolved via consensus method.

Data synthesis

All the eligible studies were included in the synthesis after a systematic review. Data were combined with the forest plot. The random-effects model was used for evaluation the overall GDM. The heterogeneity of the preliminary studies was evaluated with I2 tests. Subgroup analysis was conducted to determine heterogeneity based on the country of study conducted and diagnosis criteria of GDM. Metaanalysis was performed using STATA 14 (StataCorp, Texas, USA) statistical software.


Results

Overall results

Study selection

A total of 1166 articles from initial searches were retrieved in three databases. Out of 772 nonduplicated studies in the

Fig. 1 Study selection process

title and abstract screening process, 394 studies were excluded due to inappropriate titles. Out of 53 studies, 33 had eligibility criteria. Out of 20 excluded studies, eight studies were review, two studies were letter to the editor, three studies had no full text, and seven studies published in non-English language (Fig. 1).

Study characteristics

Thirty three studies which were conducted on 887,166 participants in 11 countries of EMRO. The age range of the participants was between 16 and 51 years. The mean age of participants was 29.5 years. Studies were conducted over the period 2000–2018. Geographically, most studies were conducted in Iran (n = 10), Saudi Arabia (n = 5), and Pakistan (n = 4). The most frequent sampling method was census (N = 22). Descriptive studies made up the largest number of studies (n = 32). The most common GDM diagnostic criteria were Carpenter and Coustan (n = 10) and ADA (N = 6). Most of the studies were conducted on pregnant women in their 24th to 40th gestational weeks. Most of the studies included had low bias risk (n = 31). (Table 1).

Main results

Prevalence of gestational diabetes mellitus

Gestational diabetes mellitus was reported in 33 studies and was between 3.5 and 45.3% in the EMRO region. Prevalence of GDM in 27 studies reported based-on one diagnostic criteria, and five and one study based-on two and three criteria, respectively.

In 33 included study, 887,166 pregnant women assessed for GDM and prevalence based on the diagnostic criteria that reported the lowest and most positive cases (for studies that diagnosis with more than one criterion) were 5.6% (49,697 case) and 5.7% (50,646 case), respectively.

Based on the results of random effect method, the overall prevalence of GDM in 49,697 and 50,646 positive reported case were 10.7% (95% CI: 9.7, 11.6; I2 = 99.6%) and 12.6% (95% CI: 11.6, 13.6; I2 = 99.7%), respectively. Based-on mean number of positive case (for studies that diagnosis with more than one criterion), the overall prevalence of GDM in 50,178 case was 11.7% (95% CI: 10.7, 12.6; I2 = 99.6%) (Fig. 2).

Subgroup analysis done for assessment of heterogeneity base on country of study conducted and diagnosis criteria of

D Judiu Yang Simplifyed from Simplifyed	Tat	Table 1 Demographic characteristics of included studies	charact	eristics of inclu	ided studies							
Additional (24)Only Saudi ArabiaSimple randomCross excitonalADA, CDA, IADPSGHopial24–28 weeks44015–50Abbricling (25)S15 Unitarias,ConstanceCross sectionalMHA, CDA, IADPSGHopial24–28 weeks5511315Abbricling (25)S15 Unitarias,ConstanceCross sectionalWHOHopial24–28 weeks2015916Abbricling (25)S014 BahranCross sectionalWHOHopial24–28 weeks2016916Abbricling (12)S015 Saudi ArabiaCross sectionalWHOHopial24–28 weeks27263Alberal (12)S015 Saudi ArabiaCross sectionalWHOHopial24–28 weeks27263Alberal (12)S016 Saudi ArabiaCross sectionalWHOHopial24–28 weeks27263Alberal (12)S016 Saudi ArabiaCross sectionalWHOHopial24–28 weeks273263Alberal (12)S016 Saudi ArabiaSaudi ArabiaCross sectionalWHO24–28 weeks273<	Ð	Author	Year	Country	Sampling method	Design	Diagnostic criteria	Setting	Gestational age	Participants	Age (mean or range)	Risk of bias
AberHeijn [25]2015OmmCensusRetropectiveWHOHospinal24-38 weeks3511316Agawa [26]303BirnitacsCross sectionalADA, LADPSGHospinal24-38 weeks2337005Alsen [27]204PakisanSimple randomCross sectionalWHOHospinal24-28 weeks20016-50Alsen [27]204PakisanSimple randomCross sectionalWHOHospinal24-28 weeks20016-50Alfadhi [21]2015Saudi ArabiaCross sectionalMDA, IADPSGHospinal24-28 weeks20025-3Alfadhi [21]2016YenenSimple randomCross sectionalMDAMDAHospinal24-38 weeks203203Alfadhi [21]2010YenenSimple randomCross sectionalWHOMDAHospinal24-38 weeks20025-3Alfadhi [23]2010Saudi ArabiaCross sectionalWHOMDAHospinal24-38 weeks203203Alfadhi [24]2010Saudi ArabiaCross sectionalWHOMDAHospinal24-38 weeks20023-3Alfadhi [24]2010Saudi ArabiaCross sectionalWHOMDAHospinal24-38 weeks20023-3Alfadhi [24]2010BaniaCross sectionalWHOMDAHospinal24-38 weeks20023-3AlfadoreCross sectionalWHOMDAHospinal24-38 weeks200 <td>-</td> <td>Abdelmola [24]</td> <td>2017</td> <td>Saudi Arabia</td> <td>Simple random</td> <td>Cross sectional</td> <td>ADA</td> <td>Hospital</td> <td>24-28 weeks</td> <td>440</td> <td>15-50</td> <td>Low</td>	-	Abdelmola [24]	2017	Saudi Arabia	Simple random	Cross sectional	ADA	Hospital	24-28 weeks	440	15-50	Low
Agrowal [26]2013United AnaloConvenienceCross sectionalADA, CDA, IADBSGHospital $24-28$ weeks 2377 UKAltwen [77]2014PakisamSimple randomCross sectionalWHOHospital $24-28$ weeks 2003 $16-50$ Altwhose [28]2005BahrainCensusCross sectionalWHOHospital $24-28$ weeks 2003 $16-50$ Altholi2013PakisamCensusCross sectionalWHOHospital $24-28$ weeks 2013 2014 Alti [29]2013PakisamCensusCross sectionalWHOHospital $24-28$ weeks 2013 2324 Alti [29]2013PakisamCensusCross sectionalWHOMDAHospital $24-28$ weeks 2013 2324 Alt [29]2013PakisamCensusCross sectionalWHOHospital $24-28$ weeks 2324 Alt [29]2013PakisamCensusCross sectionalWHOHospital $24-28$ weeks 2324 Alt [29]2013CensusCross sectionalWHOHospital $24-28$ weeks 2324 Alt [29]2013QuarCensusCross sectionalWHOHospital $24-28$ weeks 2932 Alt [29]2013QuarCensusProspective cohortWHOHospital $24-28$ weeks 2932 Alt [29]2013QuarCensusProspective cohortWHOHospital $24-28$ weeks 2932 <td>7</td> <td>Abu-Heija [25]</td> <td>2015</td> <td></td> <td>Census</td> <td>Retrospective</td> <td>OHM</td> <td>Hospital</td> <td>24-28 weeks</td> <td>5811</td> <td>31.6</td> <td>Low</td>	7	Abu-Heija [25]	2015		Census	Retrospective	OHM	Hospital	24-28 weeks	5811	31.6	Low
Absen $[71]$ 204RustannSimple randomCross sectionalWHOHospitalLG207Rustan206RustanAlfadhi $[21]$ 205Sauti AntiaCross sectionalNMONMOHospital24–28weeks207808Alfadhi $[21]$ 205Sauti AntiaCross sectionalMMOADA, ALPSGHospital24–32weeks20124Alfadhi $[21]$ 201YenenSingle randomCross sectionalMHOADA, ALPSGHospital24–32weeks20128Alfadhi $[21]$ 2016YenenSingle randomCross sectionalMHOADA, ALPSGHospital24–32weeks20328Alfadoi2018PaneCross sectionalWHOADAADAADA40924–23weeks203203Alfadoi2011QuarCross sectionalWHOMHOHospital24–23weeks203203Advaci/[23]2016QuarCross sectionalWHOMHOHospital24–23weeks204Babiti [24]2011QuarCross sectionalNHOMHOHospital24–23weeks203203Babiti [24]2011QuarCross sectionalWHOMHOHospital24–23weeks20424Babiti [24]2011QuarCross sectionalNHOMHOHospital24–23weeks20624/24Babiti [24]2011	З	Agarwal [26]	2015		Convenience	Cross sectional	ADA, CDA, IADPSG	Hospital	24-28 weeks	2337	UK	Low
All Mahroes [28]205BahrainCensusCross sectionalFourth intermational restricture cubortHospital24–38 weeks10-495UKAlf [29]2015Saudi ArahiaConvenienceProspective cubortADAHospital24–38 weeks23112314Alf [29]2018PartineProspective cubortADAHospital28 weeks23112314Alf [29]2018PartineCensusCross sectionalWHO. ADAHospital24–38 weeks6332363Arktwari [31]2011QatarCensusCross sectionalWHO. ADAHospital24–28 weeks6332463Arktwari [23]2010Saudi ArahiaSimple randomProspective cubortNDDGHospital24–28 weeks200333.4Bibli [3-4]2011QuarCensusRetrospectiveNHO. ADAHospital24–28 weeks200333.4Bibli [3-4]2013QuarCensusRetrospectiveNHO. ADAHospital24–28 weeks200333.4Bibli [3-4]2013QuarCensusRetrospectiveNHO. ADAHospital24–28 weeks200333.4Bibli [3-4]2013QuarCensusNHO. ADAHospital24–28 weeks200333.4Bibli [3-4]2013QuarCensusNHO. ADAHospital24–28 weeks200333.4Bibli [3-4]2013QuarCensusNHO. ADAHospital24–28 weeks26.6 <td>4</td> <td>Ahsen [27]</td> <td>2014</td> <td></td> <td>Simple random</td> <td>Cross Sectional</td> <td>OHM</td> <td>Hospital</td> <td>UK</td> <td>200</td> <td>16-50</td> <td>Low</td>	4	Ahsen [27]	2014		Simple random	Cross Sectional	OHM	Hospital	UK	200	16-50	Low
Alfadhil [21]2015Staufi ArabiaConvenienceProspective colortADA, IADPSGHospital $2-4.3$ weeks 277 308Ali [29]2018YenenSimple randomCross sectionalADAHospital $2-4.3$ weeks 201 201 Ali [20]2018PakistanCensusCross sectionalADAHospital $2-4.3$ weeks 203 233 Alt [20]2018PakistanCensusCross sectionalWHOHospital $2-2.3$ weeks 200 233 Alt [20]2018Suudi ArabiaSimple randomProspective cohortNHOHospital $2-2.3$ weeks 200 334 Bashir [22]2018Suudi ArabiaSimple randomProspective cohortNHOHospital $2-2.3$ weeks 200 334 Bashir [23]2018QuarCensusProspective cohortNHOHospital $2-2.3$ weeks 200 334 Bashir [23]2018QuarConvenienceCross sectionalNHOHospital $2-2.3$ weeks 300 334 Bashir [23]2018PakistanConvenienceNHOHospital $2-2.3$ weeks 300 334 Bashir [23]2018PakistanConvenienceCross sectionalNHOHospital $2-2.3$ weeks 300 334 Bashir [23]2018PakistanConsenseCross sectionalNDDG, Cupenter and $4-3.2$ weeks 300 334 Hadeegh [35]2018PakistanCons	ŝ	Al Mahroos [28]	2005		Census	Cross sectional	Fourth international workshop-conference on gestational diabetes	Hospital	24-28 weeks	10,495	UK	Low
Ali (2)20/6YenenSimple randomCross sectionalADAHospital24–40 weeks3112:14Ali (30)2018PakisianCensusCross sectionalWHOHospital24–40 weeks20:028Al-Kuwari [31]2011QuarCensusCross sectionalWHOMOHospital24–30 weeks20:028Al-Kuwari [31]2011QuarCensusCross sectionalWHOMOHospital24–30 weeks20:028Al-Kuwari [23]2010Sudi AnbiaCensusCross sectionalWHOMOHospital24–30 weeks20:023:0Bubi [24]2010Sudi AnbiaCensusCross sectionalWHOMOHospital24–30 weeks20:023:0Bubi [24]2011QuarCensusCross sectionalWHOMOHospital24–30 weeks20:023:0Bubi [24]2011QuarCensusCross sectionalWHOMOHospital24–30 weeks20:023:0Bubi [24]2011QuarCensusCross sectionalCuporterWHOHospital24–30 weeks20:024:0Bubi [24]2011QuarCensusCross sectionalCuporterConsum24–30 weeks20:024:0Bubi [24]20132018Hospital24–30 weeks200024:024:024:024:024:0Bubi [24]2018ConsusCross sectionalCuport	9	Alfadhli [21]	2015			Prospective cohort	ADA, IADPSG	Hospital	24-28 weeks	277	30.8	Low
Ali [30]2018PakisanCensusCross sectionalWHOHoppiral28 weeks20028Al-Kuwar [31]2011QaurCensusCross sectionalCappenter-Coustan, ADAPinnayy24–28 weeks83.323.63Al-Kuwar [31]2011QaurCensusCross sectionalWHO, ADAHoppiral24–28 weeks83.323.64Al-Kuwar [32]2010Saudi ArabiaGross sectionalWHO, ADAHoppiral24–28 weeks83.823.14Adaept [23]2011QaurCensusCross sectionalWHOHoppiral24–28 weeks83.424.9Bibi [34]2011QaurConvenienceCross sectionalWHOHoppiral24–28 weeks83.629.0Bibi [34]2015FakisamConvenienceCross sectionalWHOHoppiral24–28 weeks83.629.0Bibi [34]2015IranConvenienceCross sectionalConstantHoppiral24–28 weeks83.629.0Bibi [34]2015IranConstantNDDG, Carpenter andHoppiral24–28 weeks83.629.0Hadaeft [35]2013IranCensusCross sectionalConstantHoppiral24–28 weeks83.629.0Hadaeft [36]2015IranConstantNDDG, Carpenter andHoppiral24–28 weeks83.629.029.4Hadaeft [36]2015IranCensusCross sectionalConstantHoppiral24–	٢	Ali [29]	2016		Simple random	Cross sectional	ADA	Hospital	24-40 weeks	311	25.14	Moderate
Al-Kuwari [31] 211 211 211 213 $24-28$ 295 28.3 Al-Kuwari [32] 210 Saudi AnabiaCross sectionalWHO, ADAHospital $24-28$ 24.95 26.3 Al-Kowari [32] 200 Saudi AnabiaSimple randomProspective cohortNDGGHospital $24-28$ webs 818 32.16 Al-Kowari [33] 201 BatariSimple randomProspective cohortNDGGHospital $24-28$ webs 818 32.16 Bib [34] 201 QatarCensusRetrospective cohortNDGG, Carpenter andHospital $24-28$ webs 810 33.44 Bib [34] 201 RantCensusCross sectionalCupenter andHospital $24-28$ webs 32.62 Hadegh [35] 201 IranCensusCross sectionalConstantHospital $24-28$ webs 33.44 Hossini [36] 201 IranCensusCross sectionalConstantConstant 499 $24-28$ 896 29.02 Hossini [36] 201 IranCensusCross sectionalConstant $Constant10934.94Hossini [36]201IranCensusCross sectionalConstant24-2889629.02Hossini [36]201IranCensusCross sectionalConstant24-2824.0424.34Hossini [39]201IranCensusCross sectionalConstant$	8	Ali [30]	2018		Census	Cross sectional	OHM	Hospital	28 weeks	200	28	Low
Al-Rowaily [32]2010Suudi ArabiaCensusCross sectionalWHO, ADAHospial $24-28$ weeks63 3.262 Adawi [22]200Saudi ArabiaSimple randomProspective colortNDDGHospial $24-28$ weeks81832.1Bastri [23]2011QaarCensusRetrospective colortWHOHospial $24-28$ weeks81833.1Bastri [34]2011QaarCensusProspective colortWHOHospial $24-28$ weeks19033.2Bastri [35]2011QaarCensusCross sectionalNDGC, capenter andHospial $24-28$ weeks19033.4Hoseini [35]2011RanCensusCross sectionalNDGC, capenter andHospial $24-28$ weeks83629.2Hoseini [36]2001IranCensusProspective colortIADBGC, capenter andHospial $24-28$ weeks83629.2Hoseini [37]2001IranCensusProspective colortIADBGC, capenter andHospial $24-28$ weeks131030Hoseini [39]2001IranCensusProspective colortCoustanHospial $24-28$ weeks131030Hoseini [37]2001IranCensusCross sectionalCoustanHospial $24-28$ weeks131030Hoseini [39]2013IranCensusCross sectionalCoustanHospial $24-28$ weeks131030Monumadade2013Iran <td>6</td> <td>Al-Kuwari [31]</td> <td>2011</td> <td>Qatar</td> <td>Census</td> <td>Cross sectional</td> <td>Carpenter-Coustan, ADA</td> <td>Primary health care centers</td> <td>24-28 weeks</td> <td>4295</td> <td>28.3</td> <td>Low</td>	6	Al-Kuwari [31]	2011	Qatar	Census	Cross sectional	Carpenter-Coustan, ADA	Primary health care centers	24-28 weeks	4295	28.3	Low
Ardawi [2]200study andSundi ArabiaSimple randomProspective cohortNDDGHospital $24-28$ weeks818 3.1 Bashir [2]2018QaarCensusRetrospectiveWHOHospital $24-32$ weeks 2000 30.2 Bener [33]2011QaarSimple randomProspective cohortWHOHospital $24-32$ weeks 1000 30.2 Bibi [34]2015PakistanConvarienceCross sectionalCapenter-CoustanHospital $24-28$ weeks 100 33.4 Hadaegh [35]2015IranCensusCross sectionalCapenter andHospital $24-28$ weeks 100 $24-3$ Hossein [36]2017IranCensusProspective cohortIADPSG, Carpenter andHospital $24-28$ weeks 2010 $24-3$ Hossein [37]2017IranCensusCross sectionalCoustanNDDG 499 tab $24-28$ weeks 2160 29.2 Hossein Nezhad2007IranCensusCross sectionalCoustanNDDG 499 tab $24-28$ weeks 2100 24.3 Hossein Nezhad2017IranCensusCross sectionalCoustanNDDG 499 tab $24-28$ weeks 2106 29.2 Hossein Nezhad2017IranCensusCross sectionalCoustan 100 $24-28$ weeks 2106 29.2 Hossein Nezhad2017IranCensusCross sectionalCross sectionalCoustan <td< td=""><td>10</td><td></td><td>2010</td><td></td><td>Census</td><td>Cross sectional</td><td>WHO, ADA</td><td>Hospital</td><td>24-28 weeks</td><td>633</td><td>32.62</td><td>Low</td></td<>	10		2010		Census	Cross sectional	WHO, ADA	Hospital	24-28 weeks	633	32.62	Low
Bashir [23]2018QatarCensusRetrospectiveWHOHospital $24-32$ weeks200030.2Bener [33]2011QatarSimple randomProspective cohortWHOHospital $24-32$ weeks100833.4Bibi [34]2015PakisanConvenienceCross sectionalCarpenter-CoustanHospital $24-28$ weeks70030.2Hadaegh [35]2018IranCensusCross sectionalNDDG, Carpenter andHospital $24-28$ weeks70024.9Hossein-Nezhad2001IranCensusCross sectionalCoustanNDDG, Carpenter andHospital $24-28$ weeks73029.2Hossein-Nezhad2001IranCensusCross sectionalCoustanNDDG24-28 weeks131030J2013IranCensusCross sectionalCoustanNDDG24-28 weeks131030J2013IranCensusCross sectionalCoustanNDDG24-28 weeks250024.34Mohammadzadeh [31]2013IranCensusCross sectionalCoustanNDDG24-28 weeks250024.34Mohammadzadeh [31]2013IranCensusCross sectionalCoustanNDDG24-28 weeks250024.34Mohammadzadeh [31]2013IranCensusCross sectionalCoustanNDDG24-28 weeks250024.34Mohammadzadeh [31]2013IranCensusCross sect	11		2000			Prospective cohort	NDDG	Hospital	24-28 weeks	818	32.1	Low
Bener [33]2011QatarSimple randomProspective cohortWHOHospitalUK160833.4Bib [34]2015PakistanConvenienceCross sectionalCarpenter-coustanHospital $24-28$ weeks19033Hadaegh [35]2015IranCensusCross sectionalNDDG, Carpenter andHospital $24-28$ weeks70024.9Hossein-Jedb2011IranCensusProspective cohortIADPSG, Carpenter andHospital $24-28$ weeks 836 29.2Hossein-Nechad2007IranCensusProspective cohortIADPSG, Carpenter andHospital $24-28$ weeks 306 29.2 Hossein-Nechad2007IranCensusCross sectionalCoustan, NDDGHospital $24-28$ weeks 2416 301 Manafi [39]2013IranCensusCross sectionalConstan, NDDGHospital $24-28$ weeks 1310 30 Mohammadzadeh1013IranCensusCross sectionalCoustan, NDDG $24-28$ weeks 250 24.34 Mohammadzadeh2013IranCensusCross sectionalCoustanNDG, Carpenter and 190 $24-28$ weeks 250 24.34 Mohammadzadeh2013IranCensusCross sectionalNDG, Carpenter and 190 $24-28$ weeks 250 24.34 JoinMohammadzadeh2013IranCensusCross sectionalNDG, Carpenter and $124-28$ weeks 250 <td>12</td> <td></td> <td>2018</td> <td></td> <td>Census</td> <td>Retrospective</td> <td>WHO</td> <td>Hospital</td> <td>24-32 weeks</td> <td>2000</td> <td>30.2</td> <td>Low</td>	12		2018		Census	Retrospective	WHO	Hospital	24-32 weeks	2000	30.2	Low
Bib [34] 205 PakistanConverinceCross sectionalCarpenter-LoustanHospital $24-28$ weeks 190 33 Hadaegh [35] 200 IranCensusCross sectionalNDDG, Carpenter andHospital $24-28$ weeks 700 $24-9$ Hossein-Yezhad 201 IranCensusProspective cohortIADPSG, Carpenter andHospital $24-28$ weeks 700 $24-9$ Hossein-Yezhad 207 IranCensusCross sectionalCoustanHospital $24-28$ weeks 2016 290 Hossein-Yezhad 207 IranCensusCross sectionalCoustanHospital $24-28$ weeks 216 290 Manafi [39] 201 IranCensusCross sectionalCarpenter andHospital $24-28$ weeks 210 301 Manafi [39] 2013 IranCensusCross sectionalCarpenter and CoustanHospital $24-28$ weeks 250 24.34 Monafi [39] 2013 IranCensusCross sectionalDDG, Carpenter and 405 $24-28$ weeks 250 24.34 Monafi [39] 2013 IranCensusCross sectionalDDG, Carpenter and 405 $24-28$ weeks 250 24.34 Monafi [39] 2013 IranCensusCross sectionalNDG, Carpenter and 405 $24-28$ weeks 250 24.34 Monafi [30] 2013 IranCensusCross sectionalNDG, Carpenter and 405 $24-28$ w	13		2011	Qatar	Simple random	Prospective cohort	WHO	Hospital	UK	1608	33.4	Low
Hadaegh [35]2005IranCensusCross sectional CoustanNDDG, Carpenter and CoustanHospital $24-28$ weeks700 24.9 Hosein-Nezhad2001IranCensusIADPSG, Carpenter and CoustanHospital $24-28$ weeks 336 292 Hosein-Nezhad2001IranCensusCross sectional CoustanCarpenter and CoustanHospital $24-28$ weeks 2416 290 Hosein-Nezhad2013IranCensusCross sectional CoustanCarpenter and CoustanHospital $24-28$ weeks 2310 30 Manafi [39]2013IranCensusCross sectional ConstanCarpenter and CoustanHospital $24-28$ weeks 2300 301 Monamadzadeh2015IranCensusCross sectionalCarpenter and CoustanHospital $24-28$ weeks 2300 301 Monamadzadeh2015IranCensusCross sectionalNDDG, Carpenter and CoustanHospital $24-28$ weeks 2300 301 Monamadzadeh2015IranCensusCross sectionalNDDG, Carpenter and CoustanHospital $24-28$ weeks 203 301 Monamadzadeh2015IranCensusCross sectionalNDDG, Carpenter and Coustan 402 $24-28$ weeks 203 2434 Monamadzadeh2015IranCensusCross sectionalNDDG, Carpenter and Coustan $24-28$ weeks 203 2434 Righb [42]2	14		2015		Convenience	Cross sectional	Carpenter-Coustan	Hospital	24-28 weeks	190	33	Low
Hoseini [36]2018FranCensusProspective cohortIADPSG, Carpenter and CoustanHospital24–2883629.2Hosein-Nezhad2007IranCensusCross sectionalCarpenter and Coustan, NDDGHospital24–2884629.0[37]Keshavarz, M [38]2005IranCensusCross sectionalCarpenter and Coustan, NDDGHospital24–2884629.0(37)Keshavarz, M [39]2013IranCensusProspective cohortCarpenter and CoustanHospital24–28weeks131030Mohammadzadeh2013IranCensusCross sectionalCarpenter and CoustanHospital24–28weeks250024.34Mohammadzadeh2015IranSimple randomCross sectionalADA, Carpenter and Hospital24–28weeks127630.140)Momenzadeh [41]2015IranCensusCross sectionalNDDG, Carpenter andHospital24–28weeks127630.140)Momenzadeh [41]2015IranCensusCross sectionalNDDG, Carpenter andHospital24–28weeks127630.140)Momenzadeh [41]2015IranCensusNDDG, Carpenter andHospital24–28weeks127630.140)Momenzadeh [41]2015IranCensusNDDG, Carpenter andHospital24–28weeks127630.140)IranCensus <td< td=""><td>15</td><td></td><td>2005</td><td></td><td>Census</td><td>Cross sectional</td><td>NDDG, Carpenter and Coustan</td><td>Hospital</td><td>24-28 weeks</td><td>700</td><td>24.9</td><td>Low</td></td<>	15		2005		Census	Cross sectional	NDDG, Carpenter and Coustan	Hospital	24-28 weeks	700	24.9	Low
Hossein-Nezhad 2007 IranCensusCross sectionalCapenter and coustan, NDDGHospital $24-28$ weeks 2416 29.0 371 Keshavarz, M[38] 2005 IranCensusProspective cohortCapenter and CoustanHospital $24-28$ weeks 1310 30 Manafi [39] 2013 IranCensusCross sectionalCapenter and CoustanHospital $24-28$ weeks 1310 30 Mohammadzadeh 2015 IranCensusCross sectionalADA, Carpenter and CoustanHealth center $24-28$ weeks 1276 30.1 400 Cross sectionalCross sectionalCoustanNDDG, Carpenter andHospital $24-28$ weeks 1276 30.1 401 2015IranCensusCross sectionalNDDG, Carpenter andHospital $24-28$ weeks 1276 30.1 401 2015IranCensusCross sectionalNDDG, Carpenter andHospital $24-28$ weeks 1276 30.1 401 2015IranCensusCross sectionalNDDG, Carpenter andHospital $24-28$ weeks 2505 36.765 $8ajb [42]$ 2012BahrainCensusCross sectionalNDG, Carpenter andHospital $24-28$ weeks 29.35 50.56 $8ajb [42]$ 2012BahrainCensusCross sectionalNDG, Carpenter andHospital $24-28$ weeks 29.55 50.56 $8ajb [42]$ 2012BahrainCensusCross sectiona	16	Hosseini [36]	2018	Iran	Census	Prospective cohort	IADPSG, Carpenter and Coustan	Hospital	24-28 weeks	836	29.2	Low
Keshavarz, M [38]2005IranCensusProspective cohortCarpenter and CoustanHospital24–28 weeks131030Manafi [39]2013IranCensusCross sectionalCarpenter and CoustanHealth center24–28 weeks25024.34Mohammadzadeh2015IranSimple randomCross sectionalCarpenter and CoustanHealth center24–28 weeks127630.1[40]Mohammadzadeh2015IranCensusCross sectionalADA, Carpenter andHospital24–28 weeks127630.1[40]ConstanNDDG, Carpenter andHospital24–28 weeks127630.1[40]ConstanNDDG, Carpenter andHospital24–28 weeks203325.05Momerzadeh [41]2012BahrainCensusRetrospective cohortNDDG, Carpenter andHospital24–28 weeks49,55231Rajab [42]2013BahrainCensusRetrospective cohortNDDG, Carpenter andHospital26–30 weeks49,55231Rajab [43]2003BahrainCensusCross sectionalADAHospital26–32 weeks11,43027.2Rajab [43]2018PakistanCensusCross sectionalMOMO40740740726–32 weeks11,43027.2	17		2007	Iran	Census	Cross sectional	Carpenter and Coustan, NDDG	Hospital	24-28 weeks	2416	29.0	Low
Manafi [39]2013IranCensusCross sectionalCarpenter and CoustanHealth center24–28weeks25024.34Mohammadzadeh2015IranSimple randomCross sectionalADA, Carpenter andHospital24–28weeks127630.140]Momenzadeh [41]2015IranCensusCross sectionalNDDG, Carpenter andHospital24–28weeks203325.05Momenzadeh [41]2015IranCensusCross sectionalNDDG, Carpenter andHospital24–28weeks203325.05Rajab [42]2012BahrainCensusRetrospective cohortNDDG, Carpenter andHospital26–3049.55231Rajab [43]2003BahrainCensusCross sectionalADAADAHospital26–3249.55231Rajab [43]2018PakistanCensusCross sectionalADAHospital26–3226–3227.2Rajab [43]2018PakistanCensusCross sectionalWHOHospital26–2826–3227.2	18			Iran	Census	Prospective cohort	Carpenter and Coustan	Hospital	24-28 weeks	1310	30	Low
Mohammadzadeh2015IranSimple randomCross sectionalADA, Carpenter andHospital24–28 weeks127630.1[40]0CoustanCoustanNDDG, Carpenter andHospital24–28 weeks203325.05Momenzadeh [41]2015IranCensusCross sectionalNDDG, Carpenter andHospital24–28 weeks203325.05Rajab [42]2012BahrainCensusRetrospective cohortNDDG, Carpenter andHospital26–30 weeks49,55231Rajab [43]2003BahrainCensusCross sectionalADAHospital26–32 weeks160027.2Riaz [44]2018PakistanCensusCross sectionalWHOHospital26–28 weeks11,43027.2	19		2013	Iran	Census	Cross sectional	Carpenter and Coustan	Health center	24-28 weeks	250	24.34	Low
Momenzadeh [41]2015IranCensusCross sectionalNDDG, Carpenter andHospital24–28 weeks203325.05Rajab [42]2012BahrainCensusRetrospective cohortNDDG, Carpenter andHospital26–30 weeks49,55231Rajab [43]2003BahrainCensusCross sectionalADAHospital26–32 weeks160027.2Riaz [44]2018PakistanCensusCross sectionalWHOHospital26–28 weeks11,43027.2	20		2015		Simple random	Cross sectional	ADA, Carpenter and Coustan	Hospital	24-28 weeks	1276	30.1	Low
Rajab [42]2012BahrainCensusRetrospective cohortNDDG, Carpenter andHospital26–30 weeks49,55231Rajab [43]2003BahrainCensusCross sectionalADAHospital26–32 weeks160027.2Riaz [44]2018PakistanCensusCross sectionalWHOHospital26–28 weeks11,43027.2	21	Momenzadeh [41]	2015	Iran	Census	Cross sectional	NDDG, Carpenter and Coustan	Hospital	24-28 weeks	2033	25.05	Low
Rajab [43]2003BahrainCensusCross sectionalADAHospital26–32 weeks160027.2Riaz [44]2018PakistanCensusCross sectionalWHOHospital26–28 weeks11,43027.2	23		2012	Bahrain	Census	Retrospective cohort	NDDG, Carpenter and Coustan	Hospital	26–30 weeks	49,552	31	Low
Riaz [44]2018PakistanCensusCross sectionalWHOHospital26–28 weeks11,43027.2	22		2003	Bahrain	Census	Cross sectional	ADA	Hospital	26–32 weeks	1600	27.2	Low
	24		2018		Census	Cross sectional	OHM	Hospital	26-28 weeks	11,430	27.2	Low

ID Author	Year Country	Sampling method	Design	Diagnostic criteria	Setting	Gestational age Participants Age (mea	Participant	Age (mean or range)	Risk of bias
26 Sella [45]	2013 Israel	Census	Cross sectional	ADA, Carpenter and Coustan	Hospital	UK	367,247	30.63	Low
25 Sella [46]	2011 Israel	Census	Cohort	Carpenter and Coustan	Hospital	24-28 weeks	185,315	30.72	Low
27 Shahbazian [47]	2016 Iran	Census	Prospective cohort	IADPSG	Hospital	24-32 weeks	750	28.43	Low
28 Shirazian [48]	2008 Iran	Census	Cohort	ADA	Hospital	24-28 weeks	924	24–51	Low
29 Soheilykhah [49]	2010 Iran	Census	Prospective cohort	ADA, Carpenter and Coustan	Hospital	24-28 weeks	1071	27	Low
30 Utz [50]	2018 Morocco	Cluster randomized RCT	RCT	IADPSG, WHO	Hospital	24-28 weeks	1880	27.9	Low
31 Wahabi [51]	2017 Egypt	Random cluster	Cohort	OHM	Hospital	24-34 weeks	9723	31.5	Low
32 Wahabi [52]	2013 Saudi Arabia Census	Census	Retrospective cohort	ADA	Hospital	24-32 weeks	3041	32.4	Moderate
33 Zamstein [53]	2018 Israel	Census	Population-based cohort ACOG	ACOG	Community	24-32 weeks	216,197	32.1	Low

GDM. Included study in this systematic review conducted in ten country, although Egypt, Morocco, Oman and Yemen had only one study for each and prevalence of GDM was 24.2%, 15.6%, 10.0% and 5.1%, respectively. Between six country with have three or more study, pooled prevalence (based-on random model) for Saudi Arabi it was 3.6 times more than Israel (17.6 vs. 4.9%), and for Pakistan, Qatar, Bahrain and Iran were 15.3%, 14.7%, 12.2% and 8.6%, respectively (Fig. 2).

GDM was diagnosis based-on eight criteria in included study, which three criteria have only one study and of three criteria, highest prevalence was for CDA (30.0%) in Saudi Arabia. In five criteria (had four or more study), pooled prevalence based-on IADPSG criteria was 4.5 times more than Carpenter–Coustan (28.2 vs. 6.2%); and based-on WHO, ADA and NDDG criteria were 15.2%, 10.3% and 8.1%, respectively (Table 2).

Meta-regression results

The results of random-effects meta-regression analyses, publication year of study variable not significantly contributed to heterogeneity with Coef. = 0.36% (95% CI: -0.21, 0.93), Adj *R*-squared = 1.87%, *P*-Value = 0.210. Also, there was a nonstatistically significant to explain effect size variation by age mean (*P*-Value = 0.120) but had direct correlation with Coef. = 0.89% (95% CI: -0.25, 0.20), Adj *R*-squared = 5.4% (Figs. 3, 4).

Discussion

Today, diabetes is one of the major threats to health worldwide, according to World Health Organization (WHO), diabetes was considered the eighth cause of death in 2016 and will be the fourth cause of death in 2030 [11].

As far as the researcher knows, this is the first metaanalysis study in the Eastern Mediterranean region. This study was conducted to determine the prevalence of GDM in the Middle East. A total of 33 studies completed on 887,166 people from 2000 to 2018 entered the final stage. The prevalence of GDM in the Eastern Mediterranean region is 11.7%, which is similar to previous review studies conducted in Asia (11.5%) [6] and Eastern Mediterranean (12.9%) [12], which could be due to similarity in demographic characteristics of some of the countries included in review study in question.

Contrary to the present study, a lower prevalence of GMD was reported in the developed countries such as Germany (6.81%) [13], and USA (7.51%) [14]. Moreover, the prevalence of GDM was higher developing countries, China (14.8%) [15], India (10–19%) [16], Africa (13.9%) [17], as compared to EMRO. This could be due to better

Author (year)	Diagnostic criteria		ES (95% CI)	% Weight
* Saudi Arabia Abdelmola, A. (2017) Alfadhli, E. (2015) Agarwal, M.M. (2015) Wahabi, H.A. (2013) Al-Rowaily, M.A. (2010) Ardawi, M.S.M. (2000) Subtotal (1^2 = 98.466%, p =	ADA ADA, IADPSG ADA, CDA, IADPSG O'Sullivan and Mahan WHO, ADA NDDG 0.000)	*	$\begin{array}{c} 0.082 \ (0.058, \ 0.111) \\ 0.292 \ (0.240, \ 0.350) \\ 0.295 \ (0.277, \ 0.314) \\ 0.187 \ (0.173, \ 0.201) \\ 0.082 \ (0.062, \ 0.106) \\ 0.125 \ (0.103, \ 0.149) \\ 0.176 \ (0.105, \ 0.247) \end{array}$	2.82 1.68 3.12 3.29 3.00 2.95 16.84
* Pakistan Ali, A. (2018) Riaz, M. (2018) Bibi, S. (2015) Ahsen, W. (2014) Subtotal (I^2 = 90.470%, p =	WHO WHO Carpenter-Coustan WHO 0.000)		0.100 (0.062, 0.150) 0.102 (0.097, 0.108) 0.263 (0.202, 0.332) 0.170 (0.121, 0.229) 0.153 (0.094, 0.212)	2.12 3.49 1.41 1.73 8.74
* Qatar Bashir, M. (2018) Al-Kuwari, M.G. (2011) Bener, A. (2011) Subtotal (l^2 = .%, p = .)	WHO Carpenter-Coustan WHO	• •	0.214 (0.197, 0.233) 0.064 (0.057, 0.072) 0.163 (0.145, 0.182) 0.147 (0.048, 0.246)	3.14 3.46 3.14 9.73
* Bahrain Rajab, K.E. (2012) Al Mahroos, S. (2005) Rajab, K.E. (2003) Subtotal (I^2 = .%, p = .)	NDDG, Carpenter-Coustan Other ADA	•	0.101 (0.098, 0.103) 0.133 (0.126, 0.139) 0.136 (0.119, 0.153) 0.122 (0.096, 0.149)	3.52 3.47 3.18 10.18
 Iran Hosseini, E. (2018) Shahbazian, H. (2016) Mohammadzadeh, F. (2015) Momenzadeh, F. (2015) Manafi, M. (2013) Soheilykhah, S. (2010) Shirazian, N. (2008) Hossein-Nezhad, A. (2007) Hadaegh, F. (2005) Keshavarz, M. (2005) Subtotal (I^A2 = 96.877%, p = 	IADPSG, Carpenter-Coustan IADPSG ADA, Carpenter-Coustan NDDG, Carpenter-Coustan ADA, Carpenter-Coustan ADA, Carpenter-Coustan ADA, Carpenter-Coustan NDDG, Carpenter-Coustan Carpenter-Coustan Carpenter-Coustan 0.000)	* * *	$\begin{array}{c} 0.068 & (0.052, 0.087) \\ 0.299 & (0.266, 0.333) \\ 0.049 & (0.037, 0.062) \\ 0.035 & (0.028, 0.044) \\ 0.096 & (0.062, 0.139) \\ 0.103 & (0.085, 0.122) \\ 0.074 & (0.058, 0.092) \\ 0.043 & (0.036, 0.052) \\ 0.076 & (0.057, 0.098) \\ 0.048 & (0.037, 0.061) \\ 0.086 & (0.061, 0.110) \\ \end{array}$	3.17 2.50 3.35 3.44 2.33 3.13 3.18 3.44 3.07 3.36 30.98
* Israel Zamstein, O. (2018) Sella, T. (2013) Sella, T. (2011) Subtotal (I^2 = .%, p = .)	ACOG ADA, Carpenter-Coustan Carpenter-Coustan	•	0.047 (0.046, 0.048) 0.039 (0.038, 0.040) 0.061 (0.060, 0.062) 0.049 (0.037, 0.061)	3.53 3.53 3.53 10.59
* Egypt Wahabi, H. (2017)	WHO	۲	0.242 (0.234, 0.251)	3.43
* Morocco Utz, B. (2018)	WHO, IADPSG	•	0.156 (0.140, 0.173)	3.20
* Oman Abu-Heija, A.T. (2015)	WHO	٠	0.100 (0.092, 0.108)	3.45
* Yemen Ali, A. (2016)	ADA	-	0.051 (0.030, 0.082)	2.86
Heterogeneity between group Overall (I^2 = 99.618%, p = 0	s: p = 0.000 0.000);	\$	0.117 (0.107, 0.126)	100.00
	() .117 .	l 4	

Fig. 2 Forest plot, pooled analyses, and subgroup analyses by country for estimation the gestational diabetes mellitus prevalence in the EMRO

facilities, adequate screening for GDM in developed countries, large population, lower proportion of health facilities, fewer health forces, poorer economic and social status in developing countries, and also due to different diagnostic criteria of GDM. Other factors that could cause this difference are the racial and ethnic difference in the population of different continents, as studies have shown that the prevalence of GDM in the Asian race is more than African Americans and European whites in the same age [18, 19]. The results also showed that the highest prevalence of GDM was in Egypt (24.2%), Saudi Arabia (17.6%), and Morocco (15.6%), which can be due to the methodological differences between the studies included or due to factors such as older age and higher BMI in these countries [19, 20]. Based on the criteria used, the prevalence of GDM was highly variable based on IADPSG (28.2%), Carpenter–Coustan (6.2%), and WHO (15.2%), this suggests that different methods have little agreement on the

Table 2 Prevalence of gestational diabetes mellitus based on different diagnostic criteria in EMRO

nt diagnostic criteria	in EMRO	
Screening test	ES*	95% CI for ES

Diagnostic criteria First author (year)	Country	Screening test	ES*	95% CI for ES	% Weigh
• IADPSG					
Utz (2018) [50]	Morocco	OGTT (75 g)	15.6	14.0, 17.3	20.2
Hosseini (2018) [36]	Iran	OGTT (100 g, 3 h)	9.3	7.4, 11.5	20.1
Shahbazian (2016) [47]	Iran	OGTT (75 g)	29.9	26.6, 33.3	20.0
Alfadhli (2015) [21]	Saudi Arabia	OGTT (75 g, 2 h)	41.5	35.7, 47.6	19.6
Agarwal (2015) [26]	Saudi Arabia	OGTT	45.3	43.2, 47.3	20.1
Overall random pooled ES $(I2 = 99.5\%)$		28.2	13.4, 43.0	100.0	
• WHO					
Riaz (2018) [44]	Pakistan	OGTT (75 g)	10.2	9.7, 10.8	13.0
Ali (2018) [30]	Pakistan	OGTT	10	6.2, 15	11.9
Bashir (2018) [23]	Qatar	OGTT (75 g, 2 h)	21.4	19.7, 23.3	12.8
Wahabi (2017) [51]	Egypt	OGTT (75 g)	24.2	23.4, 25.1	12.9
Abu-Heija (2015) [25]	Oman	OGTT (75 g, 2 h)	10	9.2, 10.8	12.9
Ahsen (2014) [27]	Pakistan	OGTT	17	12.1, 22.9	11.3
Bener (2011) [33]	Qatar	OGTT (75 g, 2 h)	16.3	14.5, 18.2	12.8
Al-Rowaily (2010) [32]	Saudi Arabia	OGTT (75 g, 2 h)	12.5	10.0, 15.3	12.5
Overall random pooled ES ($I2 = 99.2\%$)		15.2	10.4, 20.1	100.0	
• ADA					
Abdelmola (2017) [24]	Saudi Arabia	OGTT (100 g, 3 h)	8.2	5.8, 11.1	10.9
Ali (2016) [29]	Yemen	OGTT	5.1	3.0, 8.2	11.0
Alfadhli (2015) [21]	Saudi Arabia	OGTT (75 g, 2 h)	17	12.7, 21.9	9.8
Agarwal (2015) [26]	Saudi Arabia	OGTT	13.3	12.0, 14.8	11.4
Wahabi (2013) [52]	Saudi Arabia	OGTT (100 g, 3 h)	18.7	17.3, 20.1	11.4
Al-Kuwari (2011) [31]	Qatar	OGTT (100 g, 3 h)	6.4	5.7, 7.2	11.5
Al-Rowaily (2010) [32]	Saudi Arabia	OGTT (75 g, 2 h)	3.8	2.4, 5.6	11.4
Shirazian (2008) [48]	Iran	OGTT (75 g, 2 h)	7.4	5.8, 9.2	11.3
Rajab (2003) [43]	Bahrain	OGTT (75 g)	13.6	11.9, 15.3	11.3
Overall random pooled ES $(I2 = 97.9\%)$		10.3	6.8, 13.8	100.0	
• NDDG					
Rajab (2012) [42]	Bahrain	OGTT	10.1	9.8, 10.3	25.9
Hossein-Nezhad (2007) [37]	Iran	OGTT (100 g, 3 h)	4.0	3.2, 4.8	25.7
Hadaegh (2005) [35]	Iran	OGTT (100 g, 3 h)	6.3	4.6, 8.3	24.6
Ardawi (2000) [22]	Saudi Arabia	OGTT (100 g, 2 h)	12.5	10.3, 14.9	23.9
Overall random pooled ES $(I2 = 98.7\%)$		8.1	4.2, 12.0	100.0	
Carpenter-Coustan					
Hosseini (2018) [36]	Iran	OGTT (100 g, 3 h)	4.2	2.9, 5.8	8.9
Momenzadeh (2015) [41]	Iran	OGTT (100 g, 3 h)	3.5	2.8, 4.4	9.9
Bibi (2015) [34]	Pakistan	OGTT (100 g, 3 h)	26.3	20.2, 33.2	2.1
Mohammadzadeh (2015) [40]	Iran	OGTT (100 g, 3 h)	4.9	3.7, 6.2	9.3
Manafi (2013) [39]	Iran	OGTT (100 g, 3 h)	9.6	6.2, 13.9	4.4
Sella (2013) [45]	Israel	OGTT (100 g)	3.9	3.8, 4.0	10.6
Al-Kuwari (2011) [31]	Qatar	OGTT (100 g, 3 h)	6.4	5.7, 7.2	10.1
Sella (2011) [46]	Israel	OGTT (100 g)	6.1	6.0, 6.2	10.6
Soheilykhah (2010) [49]	Iran	OGTT (100 g)	10.3	8.5, 12.2	7.9
		-	4.7	3.9, 5.6	9.9
-	Iran	OGII (100 g, 3 n)	4./	5.7, 5.0	
Hossein-Nezhad (2007) [37] Hadaegh (2005) [35]	Iran Iran	OGTT (100 g, 3 h) OGTT (100 g, 3 h)	4.7 8.9	6.9, 11.2	7.2

Table 2 (continued)

Diagnostic criteria First author (year)	Country	Screening test	ES*	95% CI for ES	% Weight
Overall random pooled ES $(I2 = 99.2\%)$		6.2	5.2, 7.2	100.0	
• CDA					
Agarwa (2015) [26]	Saudi Arabia	OGTT	30.0	28.2, 31.9	100.0
• ACOG					
Zamstein (2018) [53]	Israel	OGTT (100 g)	4.7	4.6, 4.8	100.0
• Other*					
Al Mahroos (2005) [28]	Bahrain	OGTT (75 g, 3 h)	13.3	12.6, 13.9	100.0

*ES: Effect size; other: Fourth international workshop-conference on gestational diabetes

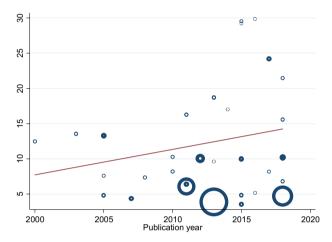


Fig. 3 Meta-regression between publication year of study and the prevalence of gestational diabetes mellitus in EMRO

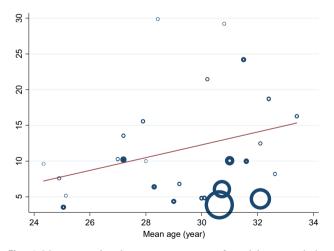


Fig. 4 Meta-regression between mean age of participants and the prevalence of gestational diabetes mellitus in EMRO

diagnosis of a certain degree of GDM that can be explained by the fact that they were created for a specific purpose and evaluated in different populations. Another challenge was the one step and two step approach for GDM screening. The diverse prevalence of GDM based on the geographical areas of the EMRO, various methods of measuring GDM in different countries are an important barrier to establishing a coordinated and similar screening program in the region. The highest prevalence was obtained by the IADPSG method, which was similar to a review study carried out in India [21]. This could be due to the low threshold for fasting blood glucose in this method, which is at a low level; although IADPSG has gained popularity in recent years considering its lower costs and better responses and improvements in pregnancy outcomes in mothers [22, 23]. One of the main challenges in determining the correct prevalence rate is various GDM diagnostic methods in different areas that must be taken into consideration.

Limitations and strengths

1. A limitation was the unequal number of studies in different countries and lack of study in many of them. 2. The more of included studies were descriptive in nature, which have their own specific methodological limitations. 3. Only English articles that were published in valid journals were included, so, articles that were published in other languages were not entered, and 4. Some studies have not provided detailed information on their methodology and GDM measurement procedure and thus attempts were made to contact their authors to obtain the relevant information. The strength of this study was that to the researchers' knowledge, this is the first meta-analysis carried out in the Eastern Mediterranean region on the prevalence of GDM. Also, to minimize the risk of bias, all steps were completed by two researchers. Despite achieving the main aim of the study but according the high prevalence of GDM, factors which may influence the prevalence of GMD were not evaluated in the included studies. As an important limitation, most studies did not evaluate the effects of GDM on the outcomes of mothers and fetuses. In addition, differences in the outcomes due to differences in GDM measurement methods were not examined. The imposed costs based on GDM assessment methods were not also evaluated in the nonenrolled studies.

Conclusion

Despite the high diversity of methods, the results of this study indicate a high prevalence of GDM in the Eastern Mediterranean region, indicating more policymakers' interest in timely screening and proper management of such disease. Regarding increasing prevalence rate, imposition of high costs on the health system, and adverse outcomes on mother and infants, one of the most significant research points in order to achieve a systematic and cost-effective approach based on the characteristics of the countries of the region for measuring, training, preventing, and controlling GDM in the region. It seem crucial for policymakers to take measures regarding raising the awareness of pregnant women, families during fertility about GDM warning signs.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Human and animal rights and informed consent This article does not contain any studies with human or animal subjects performed by any of the authors.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- M. Meregaglia, L. Dainelli, H. Banks, C. Benedetto, P. Detzel, G. Fattore, The short-term economic burden of gestational diabetes mellitus in Italy. BMC Pregnancy Childbirth 18, 58 (2018)
- C. Bommer, V. Sagalova, E. Heesemann, J. Manne-Goehler, R. Atun, T. Bärnighausen et al. Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care 41, 963–970 (2018)
- E. Chiefari, B. Arcidiacono, D. Foti, A. Brunetti, Gestational diabetes mellitus: an updated overview. J. Endocrinol. Investig. 40, 899–909 (2017)
- N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. da Rocha Fernandes, A. Ohlrogge et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018)
- A. Jiwani, E. Marseille, N. Lohse, P. Damm, M. Hod, J.G. Kahn, Gestational diabetes mellitus: results from a survey of country prevalence and practices. J. Matern.-Fetal Neonatal Med. 25, 600–610 (2012)
- K.W. Lee, S.M. Ching, V. Ramachandran, A. Yee, F.K. Hoo, Y. C. Chia et al. Prevalence and risk factors of gestational diabetes mellitus in Asia: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18, 494 (2018)
- L. Hartling, D.M. Dryden, A. Guthrie, M. Muise, B. Vandermeer, W.M. Aktary et al. Screening and diagnosing gestational diabetes mellitus. Evid. Rep./Technol. Assess. 210, 1 (2012)
- E.M. Wendland, M.R. Torloni, M. Falavigna, J. Trujillo, M.A. Dode, M.A. Campos et al. Gestational diabetes and pregnancy outcomes-a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in

Pregnancy Study Groups (IADPSG) diagnostic criteria. BMC Pregnancy Childbirth **12**, 23 (2012)

- D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, P. Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009)
- J. McGowan, M. Sampson, D.M. Salzwedel, E. Cogo, V. Foerster, C. Lefebvre, PRESS peer review of electronic search strategies: 2015 guideline statement. J. Clin. Epidemiol. **75**, 40–46 (2016)
- WHO. Projections of mortality and causes of death 2016 to 2060. 2019. https://www.who.int/healthinfo/global_burden_disea se/projections/en/
- Y. Zhu, C. Zhang, Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Curr. Diabetes Rep. 16, 7 (2016)
- T. Tamayo, M. Tamayo, W. Rathmann, P. Potthoff, Prevalence of gestational diabetes and risk of complications before and after initiation of a general systematic two-step screening strategy in Germany (2012–2014). Diabetes Res. Clin. Pract. 115, 1–8 (2016)
- S.S. Casagrande, B. Linder, C.C. Cowie, Prevalence of gestational diabetes and subsequent Type 2 diabetes among US women. Diabetes Res. Clin. Pract. 141, 200–208 (2018)
- C. Gao, X. Sun, L. Lu, F. Liu, J. Yuan, Prevalence of gestational diabetes mellitus in mainland China: a systematic review and meta-analysis. J. Diabetes Investig. 10, 154–162 (2019)
- K.T. Li, S. Naik, M. Alexander, J.S. Mathad, Screening and diagnosis of gestational diabetes in India: a systematic review and meta-analysis. Acta Diabetol. 55, 1–13 (2018).
- S. Macaulay, D.B. Dunger, S.A. Norris, Gestational diabetes mellitus in Africa: a systematic review. PLoS ONE 9, e97871 (2014)
- M. Makgoba, M. Savvidou, P. Steer, An analysis of the interrelationship between maternal age, body mass index and racial origin in the development of gestational diabetes mellitus. BJOG: Int. J. Obstet. Gynaecol. 119, 276–282 (2012)
- N. Schwartz, Z. Nachum, M.S. Green, The prevalence of gestational diabetes mellitus recurrence—effect of ethnicity and parity: a metaanalysis. Am. J. Obstet. Gynecol. 213, 310–317 (2015)
- E.M. Alfadhli, E.N. Osman, T.H. Basri, N.S. Mansuri, M.H. Youssef, S.A. Assaaedi et al. Gestational diabetes among Saudi women: prevalence, risk factors and pregnancy outcomes. Ann. Saudi Med. 35, 222–230 (2015)
- E. Alfadhli, Gestational diabetes in Saudi women identified by the International Association of Diabetes and Pregnancy Study Group versus the former American Diabetes Association criteria: a prospective cohort study. Ann. Saudi Med. 35, 428–434 (2015). https://doi.org/10.5144/0256-4947.2015.428
- M.S. Ardawi, H.A. Nasrat, H.S. Jamal, H.M. Al-Sagaaf, B.E. Mustafa, Screening for gestational diabetes mellitus in pregnant females. Saudi Med. J. 21, 155–160 (2000)
- M. Bashir, M.E. Abdel-Rahman, M. Aboulfotouh, F. Eltaher, K. Omar, I. Babarinsa et al. Prevalence of newly detected diabetes in pregnancy in Qatar, using universal screening. PLoS ONE 13 (2018). https://doi.org/10.1371/journal.pone.0201247
- A.O. Abdelmola, M.S. Mahfouz, M.A.M. Gahtani, Y.J. Mouharrq, B.H.O. Hakami, O.I. Daak et al. Gestational diabetes prevalence and risk factors among pregnant women Jazan Region, Saudi Arabia. Clin. Diabetol. 6, 172–177 (2017). https://doi.org/10.5603/DK.2017.0028
- A.T. Abu-Heija, M. Al-Bash, M. Mathew, Mathew M. Gestational and pregestational diabetes mellitus in omani women: comparison of obstetric and perinatal outcomes. Sultan Qaboos Univ. Med. J. 15, e496–e500 (2015). https://doi.org/10.18295/squmj.2015.15. 04.009
- 26. M.M. Agarwal, G.S. Dhatt, Y. Othman, Gestational diabetes mellitus prevalence: effect of the laboratory analytical variation.

Diabetes Res. Clin. Pract. **109**, 493–499 (2015). https://doi.org/10. 1016/j.diabres.2015.06.001

- W. Ahsen, B. Meraj, M. Waseem, S. Ahmed, Incidence of gestation diabetes and viral hepatitis in pregnant women. Med. Forum Mon. 25, 81–84 (2014)
- S. Al Mahroos, D.S. Nagalla, W. Yousif, H. Sanad, A populationbased screening for gestational diabetes mellitus in non-diabetic women in Bahrain. Ann. Saudi Med. 25, 129–133 (2005)
- A.D. Ali, A.A. Mehrass, A.H. Al-Adhroey, A.A. Al-Shammakh, A.A. Amran, Prevalence and risk factors of gestational diabetes mellitus in Yemen. Int. J. Women's Health 8, 35–41 (2016). https://doi.org/10.2147/ijwh.s97502
- A. Ali, A.H. Munir, A. Rafiq, Gestational diabetes in women presenting to teaching hospitals in Khyber Pakhtunkhwa. J. Med. Sci. 26, 14–17 (2018)
- M.G. Al-Kuwari, B.S. Al-Kubaisi, Prevalence and predictors of gestational diabetes in Qatar. Diabetol. Croat. 40, 65–70 (2011)
- M.A. Al-Rowaily, M.A. Abolfotouh, Predictors of gestational diabetes mellitus in a high-parity community in Saudi Arabia. East. Mediterr. Health J. 16, 636–641 (2010)
- A. Bener, N.M. Saleh, A. Al-Hamaq, Prevalence of gestational diabetes and associated maternal and neonatal complications in a fast-developing community: global comparisons. Int. J. Women's health 3, 367–373 (2011). https://doi.org/10.2147/ijwh.s26094
- 34. S. Bibi, U. Saleem, N. Mahsood, The frequency of gestational diabetes mellitus and associated risk factors at khyber teaching hospital Peshawar. J. Post. Med. Inst. 29, 43–46 (2015)
- 35. F. Hadaegh, M. Tohidi, H. Harati, M. Kheirandish, S. Rahimi, Prevalence of gestational diabetes mellitus in southern Iran (Bandar Abbas City). Endocr. Pract. **11**, 313–318 (2005). https:// doi.org/10.4158/ep.11.5.313
- 36. E. Hosseini, M. Janghorbani, A. Aminorroaya, Incidence, risk factors, and pregnancy outcomes of gestational diabetes mellitus using one-step versus two-step diagnostic approaches: a population-based cohort study in Isfahan, Iran. Diabetes Res. Clin. Pract. 140, 288–294 (2018). https://doi.org/10.1016/j.diabres. 2018.04.014
- A. Hossein-Nezhad, Z. Maghbooli, A.R. Vassigh, B. Larijani, Prevalence of gestational diabetes mellitus and pregnancy outcomes in Iranian women. Taiwan J. Obstet. Gynecol. 46, 236–241 (2007). https://doi.org/10.1016/s1028-4559(08)60026-1
- M. Keshavarz, N.W. Cheung, G.R. Babaee, H.K. Moghadam, M. E. Ajami, M. Shariati, Gestational diabetes in Iran: incidence, risk factors and pregnancy outcomes. Diabetes Res. Clin. Pract. 69, 279–286 (2005)
- M. Manafi, M.H. Khadem-Ansari, Gestational diabetes mellitus in Iranian women: a rising rate. Acta Endocrinol. 9, 71–78 (2013). https://doi.org/10.4183/aeb.2013.71
- F. Mohammadzadeh, S. Eshghinia, M.A. Vakili, The prevalence of gestational diabetes mellitus and its related risk factors in Gorgan, north of Iran. Selective or universal screening test is costeffective? Int. J. Diabetes Dev. Ctries. 35, 225–229 (2015). https:// doi.org/10.1007/s13410-014-0209-8
- 41. F. Momenzadeh, S.S. Mokhlesi, S. Mohebbi, L.M. Banaem, Gestational diabetes and its risk factors for pregnant women in

Tehran Int. J. Trop. Med. **10**, 30–33 (2014). https://doi.org/10. 3923/ijtmed.2015.30.33

- K.E. Rajab, A.A. Issa, Z.A. Hasan, E. Rajab, A.A. Jaradat, Incidence of gestational diabetes mellitus in Bahrain from 2002 to 2010. Int. J. Gynaecol. Obstet.: Off. Organ Int. Fed. Gynaecol. Obstet. 117, 74–77 (2012). https://doi.org/10.1016/j.ijgo.2011.11. 013
- K.E. Rajab, J.H. Skerman, A.A. Issa, Screening for gestational diabetes by measuring fasting plasma glucose levels. J. Sci. Res. Med. Sci. 5, 5–8 (2003)
- 44. M. Riaz, A. Nawaz, S.N. Masood, A. Fawwad, A. Basit, A.S. Shera, Frequency of gestational diabetes mellitus using DIPSI criteria, a study from Pakistan. Clin. Epidemiol. Glob. Health (2018). https://doi.org/10.1016/j.cegh.2018.06.003.
- T. Sella, V. Shalev, U. Elchalal, A. Chovel-Sella, G. Chodick, Screening for gestational diabetes in the 21st century: a population-based cohort study in Israel. J. Matern.-Fetal Neonatal Med. 26, 412–416 (2013). https://doi.org/10.3109/14767058. 2012.733761
- 46. T. Sella, G. Chodick, M. Barchana, A.D. Heymann, A. Porath, E. Kokia et al. Gestational diabetes and risk of incident primary cancer: a large historical cohort study in Israel. Cancer Causes Control 22, 1513–1520 (2011). https://doi.org/10.1007/s10552-011-9825-5
- 47. H. Shahbazian, S. Nouhjah, N. Shahbazian, S. Jahanfar, S.M. Latifi, A. Aleali et al. Gestational diabetes mellitus in an Iranian pregnant population using IADPSG criteria: incidence, contributing factors and outcomes. Diabetes Metab. Syndr. 10, 242–246 (2016). https://doi.org/10.1016/j.dsx.2016.06.019
- N. Shirazian, R. Emdadi, M. Mahboubi, A. Motevallian, Z. Fazel-Sarjuei, N. Sedighpour et al. Screening for gestational diabetes: usefulness of clinical risk factors. Arch. Gynecol. Obstet. 280, 933–937 (2009). https://doi.org/10.1007/s00404-009-1027-y
- S. Soheilykhah, M. Mogibian, S. Rahimi-Saghand, M. Rashidi, S. Soheilykhah, M. Piroz, Incidence of gestational diabetes mellitus in pregnant women. Iran. J. Reprod. Med. 8, 24–28 (2010)
- B. Utz, B. Assarag, T. Smekens., H. Ennassiri, T. Lekhal, N.E. Ansari et al., Detection and initial management of gestational diabetes through primary health care services in Morocco: an effectiveness-implementation trial. PLoS ONE 13 (2018). https:// doi.org/10.1371/journal.pone.0209322
- H. Wahabi, A. Fayed, S. Esmaeil, H. Mamdouh, R. Kotb, Prevalence and complications of pregestational and gestational diabetes in Saudi women: analysis from Riyadh Mother and Baby Cohort Study (RAHMA). BioMed. Res. Int. 2017, 6878263 (2017). https://doi.org/10.1155/2017/6878263
- H.A. Wahabi, S.A. Esmaeil, A. Fayed, R.A. Alzeidan, Gestational diabetes mellitus: maternal and perinatal outcomes in King Khalid University Hospital, Saudi Arabia. J. Egypt. Public Health Assoc. 88, 104–108 (2013). https://doi.org/10.1097/01.epx.0000430392. 57811.20
- O. Zamstein, E. Sheiner, T. Wainstock, D. Landau, A. Walfisch, Maternal gestational diabetes and long-term respiratory related hospitalizations of the offspring. Diabetes Res. Clin. Pract. 140, 200–207 (2018). https://doi.org/10.1016/j.diabres.2018.03.050