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The Internet of things (IoT) is a new paradigm that has been gaining popularity in 
recent years. As the name “Internet of things” suggests, things surrounding us will 
be able to interact with each other and also connect to the Internet, thus forming 
a worldwide network of connected objects. The number of potential applications 
of this concept is huge and includes various domains such as home environment, 
transportation, healthcare and so on. To enable the Internet of things, different 
technologies and standards have been proposed. Among them, the IP for Smart 
Objects (IPSO) alliance promotes the use of Internet Protocol (IP) as the network 
technology for IoT. The Internet Engineering Task Force (IETF), as part of its 
IoT related activities, has been working on using IPv6 to connect, devices in low 
power wireless personal area networks (LoWPANs).
The devices operating in LoWPANs are constrained on resources such as memory, 
processing power and sometimes energy (in case, they are operating on battery). 
Hence protocols designed for such networks have to consider the limitations of 
the devices. There has been considerable research done to design protocols that 
enable and support IPv6 in LoWPANs. However, there is not much effort in 
the area of multicast communication. There are various scenarios where efficient 
multicast communication would be beneficial. For example, consider a group of 
lights in a room that can be controlled by an actuator. In such scenarios, well 
designed multicast protocols would be useful in saving resources of the nodes. In 
this thesis, we design and implement a multicast routing protocol for low power 
and lossy networks. The protocol is implemented on Contiki OS, an operating 
system developed for the Internet of things. In addition, we test this protocol 
using Cooja, a cross-layer simulator developed for Contiki OS.
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1 Introduction
There is a lot of hype surrounding the Internet of things (IoT) idea. It is expected 
to have a high impact on everyday life[l]. In the future, we might see its effect in 
our homes, offices, industries and so on. However, there are several technological 
obstacles faced by IoT. Many organizations such as research institutes and industrial 
consortiums are working towards standardization of technologies for IoT. One such 
effort is to use Internet Protocol (IP) as the networking technology. The number of 
devices in IoT is expected to be in billions. Ericsson predicts that by 2020, around 
50 billion devices would be connected to the Internet[2]. There will be the problem 
of addressing those billions of devices. The large address space of Internet Protocol 
Version 6 (IPv6) has been proposed as a solution to this problem. A working group of 
the Internet Engineering Task Force (IETF) have designed the IPv6 over Low power 
Wireless Personal Area Networks (6LoWPAN)[3) standard which enables low power 
wireless nodes to use IPv6. Another IETF working group has developed the IPv6 
routing protocol for low power and lossy networks (RPL)[4j. Constrained application 
Protocol (CoAP)[5] is an application layer protocol developed for low power and 
lossy networks (LLNs) by IETF. Although there has been large research efforts on 
protocols and standards related to 6L0WPAN, the area of multicast communication 
has not attracted much attention.

As far as we know, the Multicast Protocol for Low power and Lossy Networks 
(MPL)[6] and the Stateless Multicast Forwarding with RPL (SMRF)[7] are the 
only multicast protocols developed specifically for LLNs. MPL uses the Trickle 
algorithm|8] to enable multicast communication in constrained networks. In case of 
MPL, there is no topology maintained nor any concept of multicast groups. With­
out any topology for data transmission, all multicast data packets are broadcast 
throughout the network which might not be energy efficient. There is also the pos­
sibility of packets arriving out of order. SMRF uses features of RPL to enable 
multicast communication in LLNs. However, it allows data transmission in just one 
direction. This might be useful in applications such as code dissemination, but will 
not meet the requirements of several other application scenarios that might benefit 
from multicast communication.

Several real-world sensor network applications require multicast communication. 
Data reporting, data monitoring, powering on or off a group of devices are some 
examples that can use multicast communication. The devices operating in LLNs 
are resource constrained. They have limited memory, processing power, energy and 
generally support low data transfer rates. An efficient multicast communication 
protocol will help in saving bandwidth and energy of the devices.

For normal networks, there has been various multicast solutions developed. The 
IP multicast is one standard that has been popular and commercially used. In 
this method of multicast communication, a group of receivers are considered as 
a multicast group and each group is represented by an IP address. The Internet 
Assigned Numbers Authority (IANA) has reserved a range of IP addresses that 
can only be used as multicast destination addresses. The receivers interested in 
listening to a group address use a group management protocol to report their intent
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to a nearby router. The routers construct multicast distribution trees using Protocol 
Independent Multicast (PIM)[9]. PIM is the multicast routing protocol that runs 
on routers and uses information from unicast routing protocol to build multicast 
distribution trees. These distribution trees are used to transmit multicast data from 
the sources to the receivers.

The goal of this thesis is to design and implement a multicast routing protocol 
for GLoWPANs. The protocol that we have designed is based on the Source Specific 
Multicast (SSM)[10] protocol. SSM is an extension to the PIM protocol. It uses a 
subset of the PIM solution and tries to solve some issues faced by PIM. We have 
modified the SSM protocol so that it is suitable for GLoWPANs.

1.1 Scope of the thesis
The scope of the thesis is limited to the design, implementation and testing of the 
routing protocol. The group management protocol has not been implemented.

During the design and experiments, we have considered factors such as packet 
loss, energy consumption and latency. Security issues have not been considered. 
The protocol has been implemented on Contiki OS and uses RPL as the unicast 
routing protocol.

RPL constructs Destination Oriented Directed Acyclic Graph (DODAG) trees, 
using which the routing tables are maintained. There could be multiple DODAG 
trees in a constrained network. As of now, the multicast protocol is designed to 
send and receive traffic within a single DODAG tree. Traffic flow between multiple 
DODAG trees is not supported.

1.2 Structure of the thesis
The remainder of the thesis is structured as follows: Chapter 2 describes various 
technologies related to our work. In Chapter 3, we explain how we designed the 
protocol and its working. In Chapter 4, we describe the implementation details. 
In Chapter 5, we analyse the protocol based on our experiments. In Chapter 6 we 
discuss the future work required to improve this protocol and to have a complete 
multicast solution. In Chapter 7, we provide concluding remarks.
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2 Background
In this section, we give a brief overview of some of the background topics related 
to this thesis. We briefly explain the following topics: IEEE 802.15.4, GLoWPAN, 
RPL, Contiki OS and the PIM architecture.

2.1 IEEE 802.15.4
The IEEE 802.15.4 standard)!!, 12] defines the physical and media access control 
(MAC) layers of low rate wireless personal area networks (LR-WPANs). This stan­
dard was developed considering characteristics of LR-WPANs such as low data rate, 
low power consumption etc. In order to suit these characteristics, the standard 
adopts techniques such as reduction in frequency and amount of data transfer, re­
duced frame overhead and strict power saving mechanisms.

For the physical layer, the standard uses the unlicensed 2.4 GHz band for world­
wide operation and the 868/915 MHz bands for Europe and United States respec­
tively. Additional bands were added in later revisions. The 868/915 MHz and other 
bands would help in case of interference from other technologies associated with the 
2.4 GHz band. The 2.4 GHz bands provides a transmission rate of 250 Kb/s while 
the 868/915 MHz provides rate of 20 Kb/s and 40 Kb/s respectively. The 868/915 
MHz together supports 11 channels while the 2.4 GHz supports 16 channels, hence 
providing a total of 27 channels across the three bands.

The data link layer (DLL) is divided into two sub layers: the MAC and the logical 
link control (LLC). The logical link control layer is defined in other standards and 
the IEEE 802.15.4 defines only the MAC sublayer. The network topology in LR- 
WPAN can either be a star topology or some sort of extended connected topology 
such as mesh, ring or cluster. In order to allow for these type of topologies, the MAC 
frame also called the MAC protocol data unit (PDU) is kept very flexible. There are 
four types of frames supported: data, beacon, acknowledgement and MAC command 
frames. The latter two frame types are used for MAC communication and only the 
data and beacon frames contain data from higher layers. The entire MAC PDU 
should not exceed a length of 127 bytes.

The standard supports two types of channel access mechanisms: nonbeacon- 
enabled and beacon-enabled mode. In case of beacon enabled mode, the data frames 
are sent using the slotted carrier sense multiple access with collision avoidance (CS- 
MA/CA) method. In this method, the nodes are synchronized by the beacon frames 
sent by a special node called the coordinator. In nonbeacon-enabled network, the 
data frames are sent using the unslotted CSMA/CA method. In this case, whenever 
a collision is detected, the nodes backoff for a random time before retrying. Further, 
in both cases, for transmission of acknowledgement frames, no CSMA is used since 
they are transmitted immediately after the data frame.

The standard supports various security suites which can be broadly categorized 
into four types: no security, encryption only security, authentication only security 
and security with both encryption and authentication] 13]. The radio chips have 
to implement access control lists (ACL) that contains information regarding which
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security suite has to be used. However, radio chip designers do not have to support 
all the security suites. The standard mandates only no security and security with 
both authentication and encryption using 64 bytes be supported.

2.2 6L0WPAN
6LoWPAN[3, 14] is the standard protocol defined to enable IPv6 over the IEEE 
802.15.4 standard. The IEEE 802.15.4 standard defines the media access control 
(MAC) layer and the physical layer of the Open Systems Interconnection (OSI) 
model for low-rate wireless personal area networks (LR-WPANs). The 6L0WPAN 
is an adaptation layer on the top of IEEE 802.15.4 layer so that IPv6 can be enabled 
on it. Figure 2.1 shows the OSI model along with the 6L0WPAN layer between the 
IP layer and the MAC layer.

Application Layer Application

Transport Layer TCP/UDP

Network Layer IPv6

Adaptation Layer 6L0WPAN

Link Layer IEEE 802.15.4 MAC

Physical Layer IEEE 802.15.4 PHY

Figure 2.1: 6L0WPAN Network Stack

The IEEE 802.15.4 data frames carry IPv6 packets. The maximum transmission 
unit (MTU) size for IPv6 is 1280 octets. But, the IEEE 802.15.4 protocol data 
unit (PDU) size may vary depending on the frame header size. The maximum 
physical layer packet size in IEEE 802.15.4 is 127 octets. If we consider the MAC 
header of 25 bytes, then the MAC protocol data unit would have 102 bytes left. If 
link-layer security options are added to the MAC frame header, i.e 21 bytes in the 
worst case, it would leave 81 octets for the IPv6 packet. This size of the PDU for 
MAC frames is insufficient to support an MTU of 1280 bytes. In order to support
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the MTU size required, the 6L0WPAN provides a fragmentation and reassembly 
mechanism. Moreover, with a PDU size of 81 octets left, the IPv6 header and an 
upper transport layer protocol like UDP would require 40 and 8 bytes respectively, 
thus leaving 33 bytes for application data. To improve the size left for application 
data, the 6L0WPAN layer provides header compression schemes.

As mentioned earlier, the IEEE 802.15.4 defines two modes of operation: nonbeacon- 
enabled and beacon-enabled mode. However, 6L0WPAN does not enforce any mode 
of operation and any of the two can be used.

The 6L0WPAN defines different types of encapsulation headers. These encapsu­
lation headers are included in the payload of the IEEE 802.15.4 MAC protocol data 
unit. The IPv6 packet is then included as payload after these encapsulation head­
ers. The following types of encapsulation headers are supported: dispatch headers, 
fragmentation headers and mesh headers. The dispatch header specifies the type of 
headers that follow. The fragmentation header is used for the fragmentation and 
reassembly of IPv6 packets. The mesh header is used in case of mesh-under type of 
routing. Two types of routing are supported in 6L0WPAN: mesh-under and route- 
over. In case of mesh-under, the routing decisions are made at the adaptation layer 
and in the latter case, the routing decisions are made at the network layer.

Various compression schemes have been defined in 6L0WPAN. These schemes are 
used to compress IPv6 and UDP headers. Initially, two schemes, LOWPAN_HCl 
and LOWPAN_HC2 were supported. But these schemes were effective only in case 
of link-local unicast communication and not for global and multicast communica­
tion. Later the LOWPAN_IPHC and LOWPAN_NHC schemes were added. The 
LOWPAN IPHC is used for encoding IPv6 headers and LOWPAN_NHC for next 
header compression such as UDP. In an IPv6 header, the following fields could be 
compressed: version number, traffic and flow label, source and destination addresses, 
hop limit and the payload length. The version number is always six; the traffic and 
flow label are zero; depending on the scenario, the source and destination IP ad­
dresses can be derived from the IEEE 802.15.4 addresses or link-local prefix or also 
from a prefix assigned to the whole 6L0WPAN. The hop limit can be assigned to 
a standard value by the sender while the payload length can be derived from the 
IEEE 802.15.4 header. The LOWPAN_NHC can be used to compress UDP. For 
UDP, the ports and the checksum value can be compressed.

2.3 RPL
RPL[15] is the routing protocol developed for routing IPv6 packets on low power 
and lossy networks. Unlike traditional routing protocols that use hop count as its 
routing metric, RPL uses an objective function as its routing metric. Depending 
on the network’s objective function, nodes select their parents and optimize routes. 
Based on applications, different networks might have different objectives. Some of 
the parameters to decide on the objective are latency, energy etc. RPL supports 
three types of traffic: multipoint-to-point(MP2P), point-to-multipoint (P2MP) and 
point-to-point (P2P) traffic.

Unlike normal networks, constraint networks have to discover their peer nodes
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and form network topologies by themselves. RPL provides this by organizing the 
topology as a Directed Acyclic Graph (DAG). In RPL, a DAG will have a sink or 
root node, thus forming a Destination Oriented Directed Acyclic Graph (DODAG). 
Each DODAG structure will have a unique root called the DODAG root. Some 
terminologies with respect to RPL are explained below.

An RPL instance can be a collection of one or more DODAGs. The DODAGs can 
be connected to each other through their respective DODAG roots via an LLN link 
or a normal link that need not be constrained in nature. The DODAGs can be dis­
joint too. For example, a single DODAG with a single root can be an RPL instance 
such as a control point in a home automation system. A number of disjoint DODAGs 
with their own DODAG roots and sending data to a monitoring system can also be 
an RPL instance. Each RPL instance is identified using an RPLInstancelD which 
is also associated with each RPL packet in the instance. Each DODAG is identified 
using a DODAGID. A DODAG is also associated with a DODAGVersionNumber. 
The DODAGVersionNumber changes whenever a DODAG tree is reconstructed. A 
rank number associated with each node indicates the nodes relative position with 
respect to the DODAG root. The scope of rank number is the DODAGVersion­
Number. Figure 2.2 shows an RPLInstance comprising of two different DODAGs 
having their own DODAG root. We can see that each DODAG tree has its own 
DODAGID and DODAGVersionNumber. In Figure 2.3, since one of the nodes has 
moved, the DODAG with DODAGID ID2 has reconstructed itself and increased its 
DODAGVersionNumber, but the other DODAG has not changed its DODAGVer­
sionNumber. We can also observe the rank numbers associated with each node and 
that it has changed in the second figure since the node moved. The selection of rank 
numbers is dependent on the objective function of the RPL network.

RPL control messages are used to construct upward and downward routes in a 
DODAG tree. To construct upward routes Destination Information Object (DIO) 
messages are used. The upward route formation takes the following steps.

• A node which is preconfigured as the DODAG root advertises its presence, a 
DODAGID and other necessary metrics to all its link local neighbours. These 
metrics are used by the nodes to select their parents.

• Nodes listen to DIO messages either to join a new DODAG by selecting new 
parents or to maintain their DODAG tree. The selection of parents is done 
based on their optimization objective function.

• Some nodes that are configured as routers update their routing tables with 
information in the DIO message and advertise their own DIO messages to 
its link-local neighbours. A leaf node will just select a route and does not 
advertise the DIO information.

To construct downward routes, RPL uses the Destination Advertisement Object 
(DAO) messages. Downward routes are required for P2MP and P2P traffic. There 
are two modes supported for downward routes: storing and non-storing. In case 
of non-storing mode, the packet travels all the way to the root node before trav­
elling downward towards its receiver node. The DODAG root sends packets to its
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Internet

DODAG Root (DR2DODAG Root

Rank = 1 ( N1 Rank = 1'

Rank = 1

N4 ) Rank = 2N3 ) Rank = 2

Rank = 2 DODAG ID = ID2DODAG ID = ID1

DODAG VersionNumber = V2DODAG VersionNumber = V1

RPL Instance RPLInstancelD = RID1

Figure 2.2: An RPL instance, DODAG trees and nodes

destination using source routing. In storing node, the packet travels just till the 
common node of the sender and receiver, then starts travelling downwards towards 
the receiver. All the non-leaf nodes act as routers in this mode and have to store 
routing information. The downward routes formation takes place in the following 
way.

• The nodes send DAO messages towards the root node via their parent nodes.

• In case of storing mode, the intermediate router nodes store the routing infor­
mation and forward the DAO message towards the root. In non-storing mode, 
the intermediate nodes do not store any routing information and just forward 
the messages towards the root nodes via its parents.

• In storing mode, each router including the root has a list of nodes that it 
has routes to. In case of non-storing mode, the root has all source routing 
information obtained via the DAO messages.

Other than DAO and DIO messages, there are three other types of RPL control 
messages: Destination Information Solicitation (DIS) message, DAO-ACK message 
and Consistency Check (CC) message. The DIS message is used to solicit DIO 
message from a particular node. The DAO-ACK messages is issued as a response
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Internet

DODAG Root (DR1, DODAG Root (DR2

Rank = 1

N3 ) Rank = 2 N4 (Rank = 2

Rank = 2 DODAG ID = ID2DODAG ID = ID1

DODAG VersionNumber = V2 + 1DODAG VersionNumber = V1

RPL Instance RPLInstancelD = RID1

Figure 2.3: The RPL network after one of the DODAG tree is updated

to unicast DAO messages. All the explained RPL control messages can be sent in 
a secure manner using security mechanisms which will be explained later. The task 
of securing message counters and sending challenge/response is accomplished using 
the CC control message.

It is possible that loops are formed due to various reasons such as loss in control 
packets. Loop avoidance is implemented in RPL using RPL packet information 
that is transferred in data packets. Using the IPv6 Hop-by-Hop option header, it 
is possible to send RPL information such as rank error which can be used for loop 
detection.

RPL also provides security mechanisms and supports message confidentiality 
and integrity. Although it is designed to use link-layer mechanisms for security, 
RPL has its own security support in case link-layer does not provide any security. 
There are three security models: unsecured, pre-installed and authenticated. In the 
“unsecured” model, as the name specifies, RPL does not provide security rather link- 
layer or application layer security mechanisms can be used. In the “pre-installed” 
model, all the nodes joining a particular RPL instance would have pre-installed 
keys which would help them to send RPL messages securely. In the “authenticated” 
model, the leaf nodes can use pre-installed keys to join the RPL instance while the 
router nodes have to acquire keys from an authentication authority and use those
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keys to join the RPL instance.

2.4 Contiki OS
Contiki[16] is a lightweight operating system developed for low power constrained 
devices by the Swedish Institute of Computer Science (SICS). Contiki supports 
dynamic loading and unloading of individual programs and services. The contiki 
kernel is event driven. However, contiki provides support for pre-emptive multi­
threading through a library. This library can be linked by services that require 
multi-threading support. The codebase for contiki is open source and written in C 
language. There is support for various microcontroller architectures such as Atmel 
AYR, MSP430 etc.

A contiki system consists of the following components: the kernel, libraries, 
the program loader and a number of processes. A process can either be a service 
or an application. The functionality of a service can be used by many processes. 
For example, the communication stack and sensor device drivers are services. The 
system is divided into two parts: the core and the loaded programs. Figure 2.4 
gives an overview of the contiki system. As you can see from the figure, the core 
consists of the kernel, the program loader, some features of the language run-time 
and the communication stack. The stack also includes device drivers for the network 
hardware. The entire core is a single binary image and stored in devices before 
deployment and is generally not modified, although there is a possibility to modify 
it later. The program loader is used to load programs into the device, and they can 
use the communication stack or a directly attached storage such as EEPROM.

In the following subsections, we discuss various topics related to contiki OS.

2.4.1 Kernel architecture

Basically, a contiki kernel is a lightweight event scheduler that performs two tasks:

• dispatch events to running processes

• regularly call the poll handlers implemented by processes

There are two types of events supported: asynchronous events where the event 
is dispatched to the process after some delay, and synchronous events where the 
event is immediately dispatched to the process. Once the event has been dispatched 
to a process, the respective event handler in the process cannot be pre-empted and 
has to run to completion. However, there is a mechanism provided using a library 
wherein the event handler internally can allow pre-emption .

Other than dispatched events, the kernel also uses polling. Periodically the kernel 
calls all poll handlers that are implemented by the processes. The polling mechanism 
is generally used by processes to listen to hardware data.
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Loaded Program

Core

................->

Communication Stack
Device driver for network hardware

Language Run-time,
Support Libraries

Program Loader

Kernel

Figure 2.4: The Contiki System

2.4.2 Protothreads

Protothreads[17| are a programming abstraction to make event-driven programming 
simple. Basically, it allows you to program thread-like behaviour without actually 
using threads. Unlike normal threads, protothreads do not have a stack of their own 
and all protothreads nsc the same stack. This makes it lightweight which is suitable 
in case of memory constrained embedded devices. In contiki, C language constructs 
are used to implement protothreads. The kernel is a lightweight event scheduler 
and processes are implemented as protothreads. Whenever an event is posted to a 
process, the protothread in the process gets executed.

Whenever the event handler of the process is executed, its protothread is in­
voked. The protothread block is placed between the statements: PT_BEGIN and 
PT_END. Any code placed in between these statements are part of the protothread. 
The statement PT_WAIT_UNTIL in a protothread makes the protothread block 
conditionally until a specific event occurs, which provides the thread-like behaviour. 
Contiki also provides a PT_YIELD statement which blocks the protothread uncon­
ditionally.

The protothread implementation in contiki poses some restrictions on usage of
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certain C constructs. In contiki, protothreads are implemented using switch con­
structs. Hence, while developing contiki applications, switch statements cannot be 
used inside protothreads. Since automatic variables with local-scope are placed in 
the stack, they will not be saved when there are block statements in a protothread.
However, if you need to save variables across blocking wait statements, static local 
variables can be used.

2.4.3 uIP stack and IPv6 support

Contiki OS has support for IPv4 and IPv6 through the uIP and the uIPv6 implementations[18, 
19, 20]. Both the implementation are tightly coupled with UDP and TCP proto­
col implementations and have the same application interface for developers. The 
uIP and uIPv6 stacks are designed to have a minimal set of features to support a 
full TCP/IP network stack so that it fits the memory restrictions of a low power 
constrained device. They adhere to RFC requirements but have removed many un­
necessary features to reduce code size. Some of the features that are not supported 
are as follows: buffered packet, for retransmission, sliding window, multiple interfaces 
and out-of-sequence TCP data.

In order to reduce memory usage, a single global buffer is used to handle packets 
which can hold a single packet of maximum packet size. The device driver puts an 
incoming packet in this buffer and notifies uIP which in turn notifies the application 
that is responsible for the packet. The application has to act on the packet or copy 
it to other buffer so that it frees the space for further incoming packets. In case a 
packet arrives while processing data, then the device driver or network device has 
to store the packet, or else the packet would be dropped. The same global buffer is 
used for sending packets too. While sending packet, an application sends the pointer 
to the data along with the length of data to uIP. uIP then adds relevant headers to 
the global buffer and sends it out the network along with the application data.

The uIP runs as a protothread in contiki. The main control loop in a uIP stack 
does the following two tasks repeatedly:

• check for an incoming packet

• check if a periodic timer has expired

Whenever, there is an incoming packet, the input handler of uIP is called. The 
input handler returns immediately and the application that is responsible for the 
packet processes the data. The periodic timer is used to fire the periodic timer 
handler. This handler is used to perform TCP tasks such as retransmissions which 
are related to delay.

Since our work deals mainly with IPv6, we will discuss some details on how 
nIPv6 is implemented in contiki. The uIPv6 implementation in contiki is Phase 1 
compliant according to IPv6 certification tests conducted in 2008 and has received 
IPv6 Ready Silver Logo. The following features are fully supported: IPv6 RFC 
2460[21|, IPv6 addressing architecture (RFC 3513)[22], Neighbor discovery (RFC 
4861)[23], ICMPv6 (RFC 4443)[24], Default address selection (RFC 3484)[25] and
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Address Autoconfiguration (RFC 4862, but without MLD support)[26]. For uIPv6, 
the single global buffer would be of the length of MAC header plus 1280 which is 
the minimum link MTU as specified for IPv6. However, we have observed that on 
certain devices due to memory constraints, this is set to a much lower value. In 
addition to the global buffer, there are other buffers that support fragmentation and 
reassembly and queuing of packets.

When the IPv6 process starts, it assigns an IPv6 address combining the prefix 
fe80 :: 0 \64 and its MAC address as specified in RFC 4862. It also performs 
Duplicate address detection (DAD). Simultaneously, the neighbour discovery process 
is also started. Router solicitation messages are sent to receive information from 
neighbours which is used to set its global address and other network variables. For 
neighbour discovery, a neighbour cache, a prefix list and a default router list is used. 
In addition, an interface address list is used to store the various addresses assigned 
to the node. These data structures are kept updated due to events that are triggered 
during transmission and reception of data packets.

2.4.4 Cooja simulator

Cooja[27| is a cross-layer simulator developed for contiki OS. Generally, simulators 
are used to simulate nodes at any one particular layer, either at the hardware level 
or at the higher levels such as network layer. But the cooja simulator supports 
simulation at different layers and also cross-simulation between these layers. The 
cooja simulator is written in Java programming language. It can be easily extended 
to support additional sensor hardware, radio mediums etc. It provides a graphical 
user interface to perform various tasks such as creating new simulations, adding new 
nodes etc. The simulation can be saved in a configuration file. This configuration file 
can be modified to make changes to the simulation. There are also various plugins 
available that helps you in simulation. Moreover, it is also possible to extend cooja 
by writing new plugins.

While developing an application on contiki, we can code the contiki application 
in C, test the code on cooja and then use the same code to run the application on a 
real hardware. The application can be compiled in two ways. We can compile it for 
the native machine on which we are running cooja or we can compile it for the sensor 
hardware in which case cooja simulates the hardware for the sensor node. It is also 
possible to simulate nodes in cooja that are not contiki based. These kind of nodes 
will not take much resources as in simulated hardware and hence can be used to test 
higher level functionalities and protocols such as distributed algorithms. However, 
for our work in order to test the protocol, we have written code in C, compiled it 
for specific hardware and used the cooja simulator for testing. If we have to test on 
a real hardware, the same code can be compiled and run on the hardware device.

2.5 IP multicast and PIM
IP multicast is a widely used standard for multicast transmission in wide area net­
works. A multicast architecture needs to implement a routing protocol and a group
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membership protocol|28]. The routing protocol is used by routers to construct mul­
ticast paths and to forward multicast data whereas the group membership protocol 
is used by the routers to be aware about hosts listening to multicast groups in its 
subnetwork. In case of IPv4, Internet Group Management Protocol (IGMP) and in 
case of IPv6, Multicast Listener Discovery Protocol (MLD) are used as group mem­
bership protocols. However, for routing, there were various protocols developed. For 
the initial IP multicast architecture[29], multicast extensions were developed for ex­
isting routing protocols such as Open Shortest Path First (OSPF)[30] and Routing 
Information Protocol (RIP)[31]. For example, Distance Vector Multicast Routing 
Protocol (DVMRP) [32] was an extension to RIP while Multicast Open Shortest 
Path First (MOSPF)[33] was an extension to OSPF . However, these suffered from 
scalability issues. The Core Based Tree protocol (CBT)[34] was developed to ad­
dress this problem. Although it solved some problems, it had issues with delay. For 
each multicast group, CBT uses a single shared tree rooted at a central router called 
the core router. This resulted in traffic concentration at the core which might cause 
latency in case of high data rate applications. In order to solve these problems, the 
Protocol Independent Multicast (PIM) [9] was proposed and now has become the de 
facto standard for multicast routing.

In the following subsections, we will briefly describe Protocol Independent Multi­
cast -Sparse mode (PIM-SM)[35], Source specific multicast (SSM)[10, 36] and about 
group membership protocols.

2.5.1 PIM-SM

PIM, as the name suggests, does not depend on any particular unicast routing pro­
tocol. It uses the routing information from the underlying unicast routing protocol 
to build multicast trees. The PIM protocol has two modes: Protocol Indepen­
dent Multicast -Dense mode (PIM-DM) and Protocol Independent Multicast -Sparse 
mode (PIM-SM). PIM-DM is similar to DVMRP, i.e it floods the multicast data. 
The routers that do not need the multicast data send Prune messages towards the 
source. The router receiving a Prune message stops forwarding the data towards 
that interface, hence pruning that branch of the multicast tree. However, PIM-DM 
introduces the concept of protocol independence whereas DVMRP is dependent on 
RIP. PIM-DM is suitable for networks where the multicast receivers are densely 
spread throughout the network. But when the receivers are not dense, this would 
result in wastage of bandwidth because of flooding. PIM-SM is designed for multi­
cast groups that are sparsely spread across the network. In this section, we briefly 
describe the working of PIM-SM.

In PIM-SM, routers that are interested in a particular multicast group, explicitly 
send Join messages in order to join the multicast tree for that group. There exists 
a Rendezvous Point (RP) router which is a meeting point between receivers and 
senders. This tree which includes an RP is called a shared tree or the RP tree (RPT). 
In addition, if the data rate is high, the protocol provides the routers the option to 
establish a shortest path tree (SPT) from the receiver to a particular source. When 
an SPT is formed, the router ceases to be a part of the shared tree. To be a part
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of a multicast tree, the router has to store the state for that particular tree. The 
state contains the following information: source (S), multicast group address (G), 
incoming interface and outgoing interface. In an SPT, the state is denoted by the 
tuple (S,G). In an RPT, the router has to forward data coming from the RP router, 
which might originally be coming from any source, and hence the forwarding state 
is denoted by (*,G).

The PIM-SM protocol consist of three phases: the RP tree, the Register stop 
and the Shortest-Path tree phase.

In the first phase, a shared tree is formed between the RP router and the inter­
ested receivers. The following steps occur during the first phase.

• The hosts interested in listening to a group G communicates its interest to the 
nearest router on its subnet known as the Designated router(DR). It can use 
a group membership protocol such as IGMP or MLD.

• Once it receives an interest from one of its hosts, the DR sends an explicit Join 
message towards the RP router for that group. The Join message is called the 
(*,G) Join.

• As the Join message travels towards the RP, all the intermediate routers store 
the state (*,G) which indicates that they have to forward all data intended for 
the group G. This Join message can either reach all the way till the RP or till 
a router which already has the (*,G) stored.

• Eventually, the RP would have received several (*,G) Joins from various DRs 
and hence a data distribution tree from the RP to the receivers is established. 
As mentioned earlier, this tree is called the shared tree or RPT.

• The RP router can receive data from any source for this group. When a source 
intends to send data to a group G, the DR of the source encapsulates the data 
in a unicast message and sends it towards the RP. This process of sending 
encapsulated packets is called Registering and the messages are called PIM 
Register packets. The RP, on receiving the message, decapsulates it and sends 
it on the shared tree, thereby reaching the receivers.

In addition to these steps, it is necessary to maintain the shared tree. In order to do 
that, the DRs keep resending the Join messages towards RP. If a DR does not have 
any interested listeners for a group G, then it sends a (*,G) Prune message towards 
the RP, which deletes that part of the tree which is not needed.

The encapsulation-decapsulation method might be resource intensive operations 
for the routers. Hence in the second phase, a source-specific tree is formed between 
the senders and the RP. This takes place using the following steps.

• When the RP receives the first encapsulated data packet from a source S, it 
sends a source specific (S,G) Join towards the source S.

• As the (S,G) Join reaches hop-by-hop towards the DR of the source S, the 
intermediate routers store the state (S,G). This join can either reach all the
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way till S or till a router which already has the state (S,G). It may also reach 
a router which has the state (*,G), in which case the data coming from S to 
G can take that short-cut instead of going all the way till RP.

• At this stage, a source specific tree is now established between RP and S. This 
(S,G) state in routers is used to forward all data that comes from S to the 
group G.

• The RP starts getting two copies of the data packets from S, one from the 
source specific tree and the other through encapsulated packets. When it 
starts receiving two copies of the same data packet, it sends a Register-Stop 
message towards S. The DR of S, then stops encapsulating the multicast data 
and hence the RP starts getting just one copy, i.e through the source specific 
tree.

At this stage, the traffic flows through the source specific tree from S to RP, and 
then through the shared tree from RP to receivers. However, there might be issues 
with latency since the data has to be sent all the way to the RP before reaching 
the receivers. To overcome this problem, the DR of the receiver has the option to 
construct a source specific shortest path tree (SPT). This takes place in the third 
phase in the following way.

• The DR of the receiver, when it decides to form the SPT, sends a source 
specific (S,G) Join towards S.

• Intermediate routers store the state (S,G). The (S,G) Join can reach all the 
way till S or till a router which already has the (S,G) state.

• After the (S,G) Join has reached S, an SPT is now established between S and 
the DR of the receiver. The data from S, will travel through this SPT to reach 
this receiver.

• However, the DR has not stopped receiving data from RP through the shared 
tree. When it receives two copies of the data packet, it sends an (S,G) Prune 
message for that RPT to the RP router. The intermediate routers when it 
receives this Prune message, will stop forwarding data from S to the group G.

At this final stage, an optimum shortest path tree is now established between S and 
this receiver. However, data from S would still be travelling to RP of that group, 
but would not be forwarded through the shared tree to this particular receiver.

2.5.2 SSM

Source-Specific multicast (SSM) is a multicast architecture which uses the Shortest- 
Path tree phase of PIM-SM. SSM addresses the following issues with PIM-SM: ad­
dress allocation, access control and complexity associated with well known senders. 
In SSM, a multicast tree is associated with the group (S,G) which means that the 
data forwarded on this particular tree would be coming from the source S to the
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destination group G. The group (S,G) is commonly called a channel. This concept 
of an SPT per channel would solve some issues with PIM-SM. It avoids the problem 
of collision of destination group addresses. For instance, if there are two senders SI 
and S2 and they both want to send data on the group address G, SSM would still 
work since the channel (S1,G) is different from the channel (S2,G). Unlike PIM-SM 
which has no access control and listeners receive data from all sources sent to a 
group address, SSM receivers specifically subscribe to a particular source to receive 
data. In case of PIM-SM, even if there are well known source addresses, the protocol 
still has to go through the whole process of setting up RPT, Register-Stop etc. But 
in SSM, if there are well known senders, a receiver directly subscribes to the channel 
thus avoiding the complexity. However, the concept of channel also means that this 
model can only be used for one-to-many multicast communication.

As mentioned earlier, SSM uses the third phase of PIM-SM for its routing de­
cisions. A receiver in order to subscribe to a channel and receive data would go 
through the following steps:

• A host interested in listening to a channel would communicate this interest to 
its DR using a group membership protocol. The group membership protocol 
has to support the host in specifying both the source address and the group 
destination address to its DR.

• The DR sends an (S,G) Join message towards the source S.

• Intermediate routers store the state (S,G) as the Join message travels towards 
the source S. Once the Join message reaches the DR of the source S, the SPT 
for that channel would be established.

• The group address G has to be in the range allocated for SSM by the Internet 
Assigned Numbers Authority (IANA). When a source sends data on the group 
G, the intermediate routers would first check if the address G is in the SSM 
allocated range. If it is in the specified range, the routers look at the source 
address and forward the data only if they are allowed to forward for that 
channel.

• Similar to PIM-SM, the DR can use the Prune message to unsubscribe from 
a particular channel.

Onr multicast solution is based on the SSM architecture. We have used the 
concept of (S,G) channels and modified it so that it can be used for GLoWPANs. 
The design of our multicast solution will be discussed later.

2.5.3 Group Membership Protocols

Group membership protocol enable hosts to report group memberships to their 
connected routers. IGMP and MLD are the commonly used group membership 
protocols for IP multicast. As discussed earlier, IGMP is used for IPv4 and MLD 
is used for IPv6 enabled hosts and routers. The IGMP version 1 [28] was the first
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standardized version. This version had issues with delays in hosts quitting a group 
membership which was rectified in IGMPv2[37]. In IGMPv3[38], the hosts were 
provided the option to filter sources. The hosts could specify a source along with 
the group address, so that they receive messages only from that source. The other 
option is to filter out a source i.e when they specify a source along with the group 
address, they receive messages from all sources except that particular source.

MLDvl[39] is developed based on IGMPv2 and MLDv2|40] based on IGMPv3. 
Both provide similar features as their respective IPv4 versions but for IPv6. With 
IPv4, IGMP uses the IP protocol number 2 while MLD is a sub-protocol of the 
Internet Control Message Protocol version 6 (ICMPvG) and it uses the IP protocol 
number 58.

IGMPv3 and MLDv2, both provide mechanisms to filter sources. Hence, it is 
used as the group membership protocols in case of SSM[41], Moreover, both IGMPv3 
and MLDv2 are both compatible with earlier versions, which means they can be used 
for other multicast protocols as well. For this thesis, we have not developed any 
group membership protocol. In order to implement a complete multicast solution, 
it is required to develop a group membership protocol. Since our multicast routing 
protocol is based on SSM, the group membership protocol can be derived based on 
MLDv2.
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3 Design
In this section, we explain how our protocol works. We also explain the motivation 
that led us to this design and the objectives we followed while designing the protocol.

3.1 Motivation
There can be various applications of multicast communication in LLNs. In any 
LoWPAN, the nodes would be sensors, actuators or routers. If we assume a LoW- 
PAN covering a floor in a building management system, then an actuator might be 
used to turn on all the lights on a floor or in a particular room. There might be 
monitoring nodes that request data from several temperature sensors in the build­
ing. These are some of the scenarios in which multicast communication would be 
useful. We have tried to design our multicast routing protocol so that it can meet 
the needs of such applications. Since 6L0WPAN uses IP technology, we decided to 
explore existing multicast protocols in wide area networks. In this section, we will 
briefly explain why we chose the SSM protocol as basis for our design.

The PIM architecture, which is part of the IP multicast suite of protocols, is most 
widely used. PIM solves many issues associated with previous multicast protocols. 
Since PIM is not dependent on any particular unicast protocol, it proved to be a 
good candidate to be examined for use in GLoWPANs. As discussed in Section 2.5, 
PIM has two versions: PIM-DM and PIM-SM. In case of PIM-DM, the receivers are 
densely spread. Initially, It broadcasts the multicast data across the network and 
later routers which are not interested in the data stops forwarding the data. This 
approach would not be suitable in LLNs as data would be flooded throughout the 
network. Since the devices in LLNs are resource constrained, flooding the network 
might not be a good idea.

PIM-SM is suitable when receivers are sparsely spread across the network. As 
discussed earlier, in PIM-SM, there are multicast trees established and multicast 
data traverse through these trees to reach the receivers. It would be suitable to try 
to adapt PIM-SM to be used in GLoWPANs. PIM-SM has the concept of rendezvous 
point, a router which is the meeting point between senders and receivers. In PPL, 
there is the concept of DODAG root, which seemed suitable to take the role of 
rendezvous point of PIM-SM. However, as we explored further, the PIM-SM protocol 
turned out to be too complex to be implemented in GLoWPANs. It consists of three 
phases starting with the construction of shared tree and ending with the construction 
of the shortest path tree. Designing these three phases to be used in GLoWPANs 
would not be suitable for devices with resource constraints. However, one option 
could have been to use just the shared tree and use DODAG root as the rendezvous 
point. But this would cause all multicast data to traverse via the DODAG root 
which would result in unnecessary flow of multicast data all the way to the DODAG 
root before reaching the receivers.

However, using the shortest path tree would be more efficient in GLoWPANs. 
The SSM protocol uses just the shortest path tree and hence was a better option to 
be adapted to GLoWPANs. The shortest path tree of SSM creates an efficient tree
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between the source and the receivers where the flow of data is minimum. As a result, 
there is no unnecessary flow of data in parts of the network that do not require 
multicast data. Moreover, the receivers subscribe to a specific source to receive 
multicast data. This feature is useful in certain application scenarios mentioned 
earlier.

3.2 Objectives
As mentioned before, the devices in low power, low data rate networks have several 
constraints and hence the protocols for them has to designed accordingly. Here, we 
briefly describe the objectives we had in mind while designing the protocol.

1. Power consumption
In order to last for a longer time, the sensor devices in LLNs need to have 
efficient energy saving mechanisms. Most of the energy in a sensor device is 
used by transceivers i.e energy is spent most in sending and receiving data. 
While designing the protocol, we have tried to reduce the amount of time spent 
by the transceivers in sending data so that we reduce the energy consumed by 
the device.

2. Memory restrictions
Constrained devices will have memory restrictions. For example, a Zolertia 
Z1 mote[42] comes with a second generation MSP430F2617 microcontroller 
that has 8KB RAM and 92KB flash memory[43]. It is necessary that we take 
into account memory restrictions while designing protocols for LLNs. The 
multicast routing protocol would consist of routing tables which should be 
designed not to consume too much memory.

3. Scalability
As the number of nodes in a network increases, the protocol should not de­
grade its performance. If we consider multicast in particular, then the increase 
in number of listeners to a multicast group should not decrease the overall per­
formance of the protocol.

4. Network repairs
In a 6L0WPAN network, the nodes might fail due to various reasons causing 
disruptions in the network. RPL provides repair mechanisms to overcome 
these disruptions. The protocol that we developed is dependent on RPL as 
its unicast routing protocol. Hence it has to be designed to be aware of the 
repairs carried out by RPL and accordingly adjust its routing mechanisms.

3.3 Protocol Overview
We have already discussed that our multicast routing protocol is based on the Source 
Specific Multicast (SSM) protocol. The SSM protocol has to be modified so that it
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works on GLoWPANs. Normal wired networks are different from GLoWPANs. We 
list a few differences between them, especially focusing on protocols and functional­
ities relevant for our design.

• As discussed before in Section 2.2 the MAC layer is the IEEE 802.15.4 stan­
dard. The GLoWPAN layer acts as an adaptation layer between the MAC and 
the IPv6 layer. At the network layer, the most commonly used routing pro­
tocol is RPL. For our protocol design, we assume RPL as the unicast routing 
protocol. The TCP/UDP layer sits on top of IPv6. We have also discussed in 
Section 2.4 that uIPvG is implemented as the IPv6 layer in contiki OS.

• In wired networks, a router will have many interfaces and hence interfaces 
have to be a part of the protocol design. However, in wireless networks and 
hence in GLoWPAN, a router node will have just one radio interface.

• As described in Section 2.3 , the RPL use DODAG trees to maintain routes. 
Each DODAG tree will have a DODAG root. Each node in the tree will have 
a parent via which it is connected to the DODAG root and to other nodes. 
The nodes in the tree can either be routers that have routing functionalities 
or leaf nodes which do not have routing functionalities.

• When a wireless node broadcasts any message, all nodes in its communication 
range will receive the message, unlike wired networks, where the router has to 
broadcast messages through all its interfaces.

• The IEEE 802.15.4 standard does not support multicast but does support 
broadcast frames. Hence at the MAC layer, there is no capability for a wireless 
node to receive multicast packets.

In this section, we will give an overview of our protocol design. We will describe 
how we have based our design on SSM and the modifications and additions that we 
have made so that the protocol can be used in GLoWPANs.

Similar to SSM, our protocol will use states in routers to indicate that they are 
a part of the multicast tree. In SSM, the state was the tuple (S,G) where S was 
the address of the sender sending data on the destination group address G. As in 
the case of SSM, the group address G has to be an address in the range allocated 
for SSM by IANA. The tuple (S,G) was called a channel. However, for GLoWPAN 
we have modified the state to the tuple (S,G,P,N). The additional variable P is the 
next-hop router address of the node on its path to S i.e it would be the parent of the 
node in the multicast tree. Note that P is the parent address in the multicast tree 
which need not be the same as its parent in the DODAG tree. The next variable in 
the state, N, indicates the number of child nodes a router node has on the multicast 
tree. This means that a router node will keep track of how many join requests it 
receives for a particular channel but not the address of its children. In our protocol, 
we have used broadcast messages for data transmission. Since broadcast messages 
are received by all nodes in the radio range, the parent address P in the state helps 
a node to receive it from its intended parent only. The variable N helps a node to
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prime its part of the tree if there are no longer any children listening to a channel. 
Wc will explain in detail as to how this occurs in the next section.

0 12 3

0 1 2 3 4 5 6 7

Type Code Checksum

Message Body

Figure 3.1: ICMPvG Message Format

We have defined three types of control messages for our protocol: Join, Prune 
and Update messages. The Join message is used by routers when they want to 
join a channel and be a part of the multicast tree for that channel. The Prune 
message is used by routers when they no longer want to be part of the multicast 
tree for that channel. The Update messages are heartbeat messages which are sent 
by routers regularly to keep their part of the multicast tree alive. Similar to PPL 
control messages, the control messages in our protocol are Internet Control Message 
Protocol Version 6 (ICMPvG)[24] messages. The control message is an information 
message. It contains the ICMPvG header followed by a message body. The Figure 3.1 
shows an ICMPvG message. For our experiments, we have chosen the message Type 
number 201. The Code field indicates the type of control message. The types arc 
defined as shown in Table 3.1. The message body of the control message would 
contain information about the channel i.c the source of the channel S and the group 
address G.

Code Type of Message
0x00 Join
0x01 Prune
0x02 Update

Table 3.1: ICMPvG message codes



22

In an RPL DODAG tree, other than the root, the nodes could either be routers or 
leaf nodes. The leaf nodes could be compared to hosts in traditional wired networks. 
In addition to multicast routing protocol, a group membership protocol has to be 
designed which has not been covered in this thesis. The group membership protocol 
would be used by the leaf nodes to report their interest in a channel to its parent 
node in a DODAG tree. This parent node can be compared to the Designated 
router (DR.) as described in SSM protocol. Hence, this node would be responsible 
for initializing the procedure in setting up its branch of the multicast tree for that 
channel. The mechanisms used for building multicast trees, pruning trees and data 
transmission is briefly described below.

• As mentioned earlier, the host node will use a group membership protocol to 
indicate its interest in joining a multicast channel to its parent node.

• Upon indication of interest in a channel from one of its child node, the par­
ent node will issue a Join request for that channel towards the source of the 
channel. Meanwhile, it also stores the state for that channel in its multicast 
table.

• As the Join message traverses to the source of the channel, all the intermediate 
routers on its path will store the state for that channel in its multicast table 
before forwarding it. The state stored by the router nodes has been described 
earlier.

• If the Join message reaches a router that already has the state for that channel, 
then the router just updates the N variable in the state. The router does not 
forward the message further, thereby merging that branch of the tree into the 
already established tree for that channel.

• This Join message reaches the DR of the source. At that particular stage, the 
multicast tree for the channel is established. As new hosts join the channel, 
new branches for the multicast tree are created or added to the already existing 
tree.

• The procedure for pruning the tree is similar. A host indicates its interest to 
leave a tree to its parent node. The parent node then issues a Prune request 
towards the source of the channel.

• Whenever a Prune message is received by a router, it checks the number of 
subscribers to the channel. If the number of subscribers is just one, then it is 
safe to prune that part of the tree and forward the Prune message further. If 
there are more than one subscribers, then the router just updates its state, but 
keeps the tree intact by not forwarding the Prune message since there would 
be other subscribers still interested in the channel. •

• The routers use broadcast to forward data from the source towards the leaf 
nodes of the multicast tree. The source of the channel broadcasts the data on 
the channel group address.
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• When a router receives multicast data for a particular channel, the router 
forwards it by broadcasting it again if it satisfies two conditions: the router 
has to be a part of the multicast tree for that channel and the data has to be 
received from its parent on the multicast tree as specified by the P variable in 
the state. If these conditions fail, then the router drops the data packet.

In addition to these mechanisms, the protocol has to support rebuilding the 
multicast tree whenever there is a change in the DODAG tree due to RPL repairs. 
In low power and lossy networks, the nodes might undergo link degradation because 
of which some nodes might disappear. In such scenarios, RPL tries to rebuild the 
tree by initiating repairs. There are two kinds of repairs: global and local. In case 
of global repairs, the whole DODAG tree is updated, while with local repairs, the 
tree is updated in the affected area. These repairs might cause parent nodes to 
change, hence it is necessary that the multicast tree has to be rebuilt accordingly. 
In our protocol, the router which is a part of a multicast tree periodically checks for 
changes in its route to the source. If any change is detected, it initiates a new join 
towards the source via the new route. Further, it is necessary that stale branches of 
the multicast tree has to be pruned and overall, the multicast tree has to be kept 
alive. This is achieved by Update messages. Every router regularly sends Update 
messages per channel to its parent in the multicast tree. In this way, the parent 
node decides to keep its part of the multicast tree alive.

In the next section, we will explain the mechanisms in more detail with examples 
for each one of them.

3.4 Details
In this section we will discuss the following four mechanisms of the protocol in detail: 
join process, data transmission, prune process and the tree repair mechanism. For 
each process, we will explain it with a simple DODAG tree as example. In the 
diagrams, we have only shown the router nodes and the DODAG root. The leaf 
nodes are ignored since they are not part of the routing protocol. In a complete 
multicast solution, the leaf nodes would be communicating with the router nodes 
using the group membership protocol. Hence, in this section, whenever we mention 
a router node issuing a Join request, we assume that there are leaf nodes connected 
to the router which have already expressed interest in joining the channel. This 
means that the router is the Designated router for those leaf nodes. However, it is 
also possible that the router itself is interested in the channel.

3.4.1 Join Process

A router node surrounded by leaf nodes interested in a channel has to initiate the 
construction of multicast tree by issuing Join requests towards the source of the 
channel. If a multicast tree already exists, then the Join request might cause a new 
branch to be merged to the already existing tree. We explain this process with an 
example of a DODAG tree as shown in Figure 3.2. In the figure, DR is the DODAG 
root; the node N1 is the source of a channel sending data on the group G. Hence the
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channel would ho (Nl.G). The nodes N3 and N4 are renters interested in joining 
the channel.

N3,N4 receivers 
N1 source for channel (N1,G)
DR DODAG root

Figure 3.2: Join Process

Initially there would be no nodes listening to the channel i.c no multicast tree. 
The router node N3 interested in a channel issues a Join request. This is illustrated 
in Figure 3.3. The Join request is sent to the next-hop router towards N1 i.e the 
source of the channel. In this case, for N3, the next-hop router is N2. This routing 
information is obtained from the unicast routing table i.e RPL’s routing table. In 
addition, N3 has to add the state into its multicast table so that it becomes a part 
of the multicast tree. N3 adds the state (NI, G, N2, 1). Here, wc can see that the 
P variable is the node N2, i.e the next-hop router. The variable N is 1, since there 
are no other routers from which the node has received Join requests.

In Figure 3.4, the node N2 has received the Join message. It adds the state (Nl, 
G, DR, 1) to its multicast table. Since DR is its next-hop router, it forwards the 
message to DR. We can also observe the dotted line between N3 and N2, which 
denotes the branch of the multicast tree that is established between N3 and N2 for 
the channel (N1,G).

Finally, the Join message reaches the source of the channel Nl. At this stage, 
the multicast tree would have been fully established between the source Nl and the 
receiver N3. This is shown in Figure 3.5. The dotted lines denote the established 
multicast tree. The information stored in the multicast table for each node is also 
shown. From the figure, we can notice that the multicast tree has its root as the 
source of the channel and is built over the DODAG tree.
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(N1.G.N2,1)

N3,N4 receivers 
N1 source for channel (N1,G)
DR DODAG root

Add state
Issue join towards N1

Figure 3.3: Join Process (contd..)

Add state
Forward join towards N1

(N1.G.DRJ)

(N1, G, N2,1)

N3,N4 receivers 
N1 source for channel (N1 ,G)
DR DODAG root

Figure 3.4: Join Process (contd..)
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(NI, G, N2,1)

(N1.G.DR.1)

N3,N4 receivers 
N1 source for channel (N1,G)
DR DODAG root

Figure 3.5: Join Process (contd..)

Update state N = 2
Do not forward the join request

Sent a join towards N1

receivers(N1,G, N2,1)

(N1.G.DR.2)

(N1,G, N1,1)

(N1.G, N2,1)

N1 source for channel (N1,G)
DR DO DAG root

Figure 3.6: Join Process (contd..)
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N1 source for channel (N1, G)

(N1,0, N2, 1)

(N1,G, N2, 1)

(N1, G, N1, 1)
(DR, G\ 2)

— (DR, G\ DR, 1)
(N1,G, DR, 2)

(N1.G,., 1)

DR source for channel (DR, G*) 

Figure 3.7: Join Process (eontd..)
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In Figure 3.6, the node N4 has sent a Join request to N2, since it has N2 as 
its next-hop router. It has also added the state to its multicast table. However, at 
N2, the behaviour is different. Since N2 already has the state in its table, it just 
increments the variable N in the state by 1 and does not forward the Join message 
further. In this way, that branch of the tree has been merged into the already 
established tree for the channel. In the same figure, we can see the fully established 
multicast tree including both the receivers N3 and N4.

Each channel will have its own multicast tree and hence, the router nodes will 
have a state per channel in its multicast table. Figure 3.7 shows a new multicast tree 
established for the channel (DR,G*). The nodes N1 and N4 are interested listeners. 
The bold lines denote the multicast tree for this channel with DR being the root of 
the multicast tree. We can also observe that at each node which are part of the new 
tree, there exists two states in the multicast table, one per channel.

3.4.2 Data Transmission

The protocol uses broadcast messages for data transmission. The source S of the 
channel (S,G) broadcasts data on the group address G. All the routers that are 
a part of the multicast tree broadcast the message again, so that eventually the 
message reaches all the receivers in the multicast tree. However, as explained earlier, 
the intermediate routers broadcast only if they have received the message from its 
intended parent in the multicast tree. To explain this process, we use one of the 
multicast tree example from the previous section. Figure 3.8 shows the multicast 
tree denoted by dotted lines with N1 as the source of the channel (N1,G). The circle 
around N1 indicates the range of data transmitted by the node. When N1 intends 
to send data on the channel, it broadcasts it. As shown in the figure, the node DR. 
lies in the range of N1 and receives the data. When a node receives multicast data, 
lets say DR in this particular case, it checks if it is a part of the that multicast 
tree. The node DR has a state for the channel (N1,G), which matches with the 
packet’s source and destination IP addresses. But the node has to also check if the 
packet has come from its immediate parent in the multicast tree. In this case, the P 
variable in the state is N1 matches the node from which the data has been received. 
The node does this check by comparing the packet’s source MAC address from the 
MAC frame with the MAC address information stored in its neighbour discovery 
cache. Since the conditions are satisfied, the node DR now has to broadcast the 
data packet again so that it traverses further down the multicast tree.

In Figure 3.9, we can see that the node DR has broadcast the data packet. Both 
the nodes N1 and N2 lie in the range of DR and hence both of them receive the 
packet. The node N2 has a state for the channel (N1,G). Its immediate parent 
according to the state is DR, which is the node from which it received the packet. 
Hence it accepts and broadcasts it further. However, the node N1 rejects the packet. 
Though it has the state (N1,G) in its multicast table, it does not have an immediate 
parent in the state (denoted by a “.”) and so it does not match with the data packet’s 
source MAC address. Hence it rejects the packet and does not broadcast it again.

The Figure 3.10 shows the stage where the node N2 broadcasts the data. We
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N3,N4 receivers 
N1 source for channel (N1 ,G)
DR DODAG root

Accepts data trom N1

(N1.G, N2, 1)

Figuro 3.8: Data transmission

Rejects data Irom DR

N3,N4 receivers 
N1 source for channel (N1 ,G)
DR DODAG root

(N1.G. N2.1)

Accepts data

Figure 3.9: Data transmission (contd..)
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Rejects data trom N2

Accept data from N2 and broadcast it

N3,N4 receivers 
N1 source for channel (N1 ,G)
DR DODAG root

(N1, G, N2,1)

Accept data from N2 and broadcast it

Figure 3.10: Data transmission (contd..)
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can observe that the nodes N3, N4 and DR are in the range of node N2. The nodes 
N3 and N4 will accept the data and broadcast it again. Both of them are part of the 
multicast tree and their intended parent according to the state in the multicast table 
is N2, which is the node that it received the data from. The node DR rejects the 
data since its intended parent is N1 and not N2. At this stage, the nodes N3 and N4 
have received the data and will broadcast it again. Any leaf nodes connected to the 
these nodes can receive the multicast data. However, the rules by which non-router 
nodes accept or reject data has to be covered by the group membership protocol 
and not the routing protocol.

3.4.3 Prune Process

The Prune process is used by routers to prune branches of multicast trees. If a router 
comes to know that they no longer have any leaf nodes listening to a channel, then 
that router can prune part of the multicast tree by sending a Prune message towards 
the source of the channel. As mentioned before, the router comes to know about leaf 
nodes and their interest in a channel using the group membership protocol. The 
Prune process can also be started in another scenario which will be explained in 
the next section. We will examine the Prune process using the same example from 
previous section. First, the node N4 will send a Prune message and then the node 
N3 will send a Prune message. In each step, we will see how the multicast tree gets 
pruned. In Figure 3.11, the node N4 will send a Prune message to its parent in the 
multicast tree. Since it no longer wants to be a part of the tree, it deletes the state 
(N1,G) from its multicast table. The node N2, upon receiving the Prune message 
decrements the N variable in its state by 1. The N variable denotes the number of 
Join requests it has received. In this case, the value of N is decremented to 1. This 
means that there are children in the multicast tree that are still interested. Hence 
N2 does not forward the Prune message further. From the figure, we can observe 
that the branch of the multicast tree between N2 and N4 has been pruned.

In Figure 3.12, the node N3 has sent a Prune message and also deleted the state 
(N1,G). However, at node N2, after decrementing N, the value of N is 0, which 
means there are no longer any children interested in the tree. Hence the node N2 
deletes the state from its table and forwards the Prune message further towards the 
source of the channel. From the figure we can observe that both the branches of the 
tree from N3 and N4 to N2 have been pruned.

In Figure 3.13, we can see the whole multicast tree being pruned. The Prune 
message from N2 reaches DR. At DR, the value of N decrements to 0, and so the 
node deletes the state and forwards to Nl. The node N1 also decrements the value 
of N to 0, and since there are no more children, deletes the state of the channel from 
its multicast table.

3.4.4 Tree repairs

The RPL protocol conducts repair of trees for different reasons and during such 
repairs, the parent of some nodes might change in the RPL DODAG tree. The 
movement of nodes might also cause changes in the RPL tree. Our protocol is



32

Receive Prune 
Update state N = N -1
Do not forward the prune request since N > 0

Delete state from multicast table 
Sent a prune request towards N1

receivers who want to prune

(N1,G, N2,1)

(N1.G.N1.1)

(N1,G,DR,1)
(N1,G,1)

N1 source for channel (N1 ,G)
DR DODAG root

Figure 3.11: Prune Process

Receive prune
Delete state since N = N - 1 is 0 
Forward the prune request

receivers who want to prune 
source for channel (N1 ,G)

N3.N4

(N1,G, N1.1)

Delete state from multicast table DR DODAG root
Sent a prune request towards N1

Figure 3.12: Prune Process (contd..)
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Delete state 
Forwarded the prune to N1

Receive prune 
Delete state

Forwarded the prune request to DR

receivers who want to prune
N1 source for channel (N1,G)
DR DODAG root

Figure 3.13: Prune Process (contd..)
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designed to adjust accordingly to such changes and reconstruct the multicast tree. 
Wc will explain the process using an example of the multicast tree built for channel 
(DR.G*) as described in Section 3.4.1. In order to maintain the multicast tree, the 
nodes use Update messages. These messages arc sent regularly by router nodes to 
their parent node in the multicast tree. The Figure 3.14 shows Update messages 
being sent by each router node that are part of the multicast tree to their respective 
parent node. When the router node receives an Update message, it knows that 
there are children still part of the tree and hence continues to be a part of the 
multicast tree. For example, in the figure, N2 keeps receiving Update message from 
N4. Thus it does not delete the state and in turn keeps sending Update messages to 
its parent node i.e DR. Each node waits for a preconfigured threshold time waiting 
for Update messages until it takes action. The frequency at which the nodes send 
Update message can also be preconfigured.

Send update message to DR regularly

Send update message to DR regularly

Send update message to N2 regularly

source for channel (DR, G*)
(DR, G*, N2, 1)

(DR,G‘, DR, 1)
(DR,G\ DR, 1)

N1, N4 receivers

Figure 3.14: Tree Repair Process

In Figure 3.15, we show a scenario, where there is a change in the RPL tree. The 
node N4 has moved to a new location. Hence the RPL tree changes and N1 becomes 
the new parent of N4 in the RPL tree. Our protocol makes changes accordingly 
which is shown in Figure 3.16. Whenever a node detects a change in its route to 
the source of the channel, the node sends a new Join request towards the source of 
the channel, thus constructing a new branch of the multicast tree. In the example 
scenario, the node N4 detects a change in its next-hop router, i.e from N2 to Nl. 
Hence it sends a new Join towards DR, and also Updates its state by changing the 
P variable. Meanwhile the node N2 keeps waiting for the Update messages for the
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N4 moves to new position

RPL repairs DODAG tree

, (DR, G*. N2, 1)

source for channel (DR, G‘)

(DR, G-, N2,1)

(DR, G\ ., 2)

(DR.G1, DR, 1)

N1, N4 receivers

Figure 3.15: Tree Repair Process (contd..)

New parent detected 
Update state 

Send join towards DR

Wait lor update message for (DR,G*)

(DR, G*.., 2)

(DR, G*, N1, 1)

_ (DR, G‘, DR, 1)

DR source for channel (DR, G‘) 
N1, N4 receivers

Figure 3.16: Tree Repair Process (contd..)



DR source for channel (DR, G*) 
N1,N4 receivers

Figure 3.17: Tree Repair Process (contd..)
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channel.
It is necessary that the stale branches of multicast trees be pruned. For example, 

in this case, the branch between N2 and DR. is no longer required. Stale branches 
would result in data being unnecessarily broadcast which should be avoided. The 
pruning of stale branches is accomplished by Updates messages. In this case, the 
node N2 will wait for a threshold time expecting Update messages for that channel. 
When it realises that there are no longer any children listening to that channel, it 
deletes the state from its multicast table and initiates a Prune request towards the 
source of the channel. This is illustrated in Figure 3.17. We can also observe from 
the figure that a new branch has been established between N4 and Nl. Thus the 
multicast tree has changed as per changes in the RPL tree.
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4 Implementation
In this section, we will discuss the implementation of our protocol. We will describe 
the architecture of the contiki communication system and how our protocol fits into 
it. We will then discuss the components in the implementation and also include a 
few points about the data structures used.

4.1 Architecture
The communication system in contiki is shown in Figure 4.1. In the figure, we focus 
only on IPv6 packets since that is relevant for our implementation. The incoming 
and outgoing packet flow through the various components in the contiki network 
stack is also illustrated in the figure. An application sending packets would use the 
application interface provided by uIPv6 to send packets. From the uIPv6 layer, the 
packet flows to the 6L0WPAN layer to compress the headers and fragment the packet 
if necessary. The 6L0WPAN layer, then sends the packet through the MAC layer. 
The MAC layer puts the data packets in a queue. The radio duty cycling (RDC) 
layer sends the packets on this queue according to its duty cycling algorithm. The 
RDC layer uses the radio link layer to transmit the packets. The MAC layer does 
not remove the packet from the queue until it receives a link layer acknowledgement. 
The incoming packet flow is quite similar but in the opposite direction. In case of 
incoming packets, the 6L0WPAN layer is responsible for header decompression and 
reassembly of packets.

The layers in the communication stack are implemented as protothreads. How­
ever, in order to reduce code size, not all layers might be implemented as pro­
tothreads. The uIPv6, TCP and UDP layers are tightly coupled and is a single 
process. The TCP/UDP layer performs connection management i.e functions such 
as creating connection, listening on a port, connecting to a remote connection and 
so on. The uIP layer processes an incoming packet. It does checks on its header 
fields to decide if the packet is to be forwarded further or if it is intended for an 
application running in the same node. The RPL implementation in contiki main­
tains routing tables which is used by the uIP layer for forwarding packets. The 
RPL is not a separate process, but initialized by the uIPv6 and TCP/UDP layer. 
The RPL layer receives updates from another module regarding the state of the link 
to its neighbours. Based on these updates, RPL adjusts the forwarding tables ac­
cordingly. In addition to these mechanisms, the uIPv6 implementation also supports 
other functionalities such as neighbour discovery and stateless address configuration.

The 6L0WPAN layer in contiki is not a process, but initialized by the MAC layer 
process. For an outgoing packet, the relevant function in 6L0WPAN is invoked by the 
TCP/IP layer. For an incoming packet, the MAC layer calls the relevant function. 
The MAC layer is a separate process in itself. The default MAC layer is a CSMA/CA 
implementation. The unslotted version of IEEE 802.15.4 standard is supported. The 
RDC layer can either be a separate process or can also be initialized by the radio 
link layer. The ContikiMAC[44], a radio duty cycling algorithm designed by the 
developers of contiki, is the default RDC layer. Other than ContikiMAC, it has
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OutgoingIncoming

6L0WPAN layer

Radio Link Layer

MAC layer (CSMA/CA)

Application

RDC Layer

TCP/UDP

Figure 4.1: Contiki Communication Stack
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two more options: X-MAC|45] and Low Power Probing (LPP)[46|. However, for our 
development and testing, we use NullRDC which does not perform any radio duty 
cycling mechanism. This means that the radio transceiver is kept on all the time. 
The radio link layer consists of the radio driver that is responsible for transmission 
and reception of packets.

Incoming Outgoing

Application

Radio Link Layer

RDC Layer

MulticastG

MAC layer (CSMAyCA)

6L0WPAN layer

ulPv6
(with multicast support)

TCPAJDP

Figure 4.2: Contiki Communication Stack (with multicast)

The Figure 4.2 shows how our protocol fits in the contiki network stack. Similar 
to RPL, the multicast module will he initialized by the TCP/IP layer. The multicast 
module will be responsible for maintaining the multicast table. Whenever there is 
an incoming multicast packet, the uIPvG will refer the multicast module to make 
decisions on whether to forward the packer further or to drop it. In order to con­
struct its multicast table, the multicast module will use information in uIPv6 data 
structures that are maintained by RPL and other modules associated with uIPvG. 
The incoming and outgoing packet flow looks similar to the previous figure. How­
ever, at the uIPvG layer, the multicast module is used to make forwarding decisions 
for multicast packets that have the destination address within the address range for 
SSM. I11 addition, the uIPvG invokes the multicast module when there are multicast 
control packets i.e the Join, Prune and Update messages.

4.2 Components
The protocol can be divided into three logical components: control, data and the 
main component.
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• Control
The control component handles the multicast control packets. As mentioned 
earlier, the control packets are ICMPvG messages with the Type number 201. 
Whenever the uIPv6 layer receives an ICMPvG packet of the Type number 
201, it calls the input handler in the control component. This is similar to 
the RPL functionality, where uIPvG calls the relevant input handler of RPL 
when it receives an RPL control packet. This component is responsible for 
processing the control packet. After processing the packet and making any 
required changes in the multicast table, it either forwards the packet further 
or drops it depending on the scenario.
The control component also provides functions that should be used to send 
control packets.

• Data
The data component is used to handle data packets. Whenever the uIPvG layer 
receives a packet whose destination address is within the address range spec­
ified for SSM, it invokes the input handler in the data component. However, 
the data component is not responsible for forwarding the packet. It checks if 
the packet satisfies the two mandatory conditions (explained in Section 3.3) 
required for forwarding a packet. Then, it informs the uIPvG layer whether 
to drop the packet or broadcast it again. The uIPvG layer finally takes action 
based on the information received from the data component.

• Main
The main component is responsible for storage of the multicast table. It pro­
vides interface to the multicast table that can be used by other modules. This 
component is also responsible for handling Update messages and conducting 
tree repairs. A timer mechanism is used to periodically call a function that 
handles these functionalities.
Although the main component and the data component are logically two sep­
arate entities, we have coded them in a single file in order to simplify the 
implementation.

4.2.1 Interaction with other modules

In the previous section, we mentioned about interfaces and handlers. In this section, 
we list all interactions with other modules and also within the components.

• The data and the control components have input handlers that are invoked by 
the uIPvG layer. This has been explained in the previous section.

• The control packets can be sent using functions provided by the control com­
ponent. Only the router nodes send control messages. Hence, these functions 
need not be used by applications running in nodes, but should be used by the 
group membership protocol running on the router. Other than this, the main
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component, also uses all these functions to send control messages. The Update 
message is sent only by the main component and not by any other module.

• As discussed before, the main component provides functions to manage the 
multicast table. These functions are used by the other two components. The 
functionalities required are: allocating a state in the table, finding a state and 
deleting a state. There are functions provided for the first two operations. 
However, deleting a state does not need a separate function call. In the next 
section, we explain briefly how it is done.

• The multicast module is initialized using a function invoked by the uIPvG 
layer. This initialization function is defined in the main component.

4.3 Data structures and Timers
The main data structure required is for storage of states i.e the multicast table. The 
Listing 4.1 shows the declaration of an entry in the multicast table. It also shows 
the definition of the multicast table.

struct uip_mcast6_route { 
uint8_t used ; 
uip_ipaddr_t sender_addr; 
uip_ipaddr_t mcast_grp; 
uip_ipaddr_t pref_parent ; 
uint8_t num_of_joins; 
clock_time_t update_time;

};

typedef struct uip_mcast6_route uip_mcast6_route_t;

static uip_mcast6_route_t
uip_mcast6_table |MAX_NUM_OF_MCASTC_GROUPS];

Listing 4.1: Data Structures

In the declaration of the structure uip_ mcast6_ route, the variables sender_ addr, 
mcast,_grp: pref_parent and num_of_joins represent the four variables in a state 
i.e S, G, P and N respectively. The variable used indicates if a routing state is 
in use or not. The variable update_time denotes the time when the most recent 
Update message was received. We define the multicast table as an array. The maxi­
mum number of entries can be preconfigured by defining the C preprocessor symbol 
MAX_NUM_OF_MCAST6_GROUPS. Since the multicast table is an array, the 
variable used indicates whether an entry in the array is in use or can be allocated for 
a new state. Setting the variable used to 0 means that the state has been deleted. 
Hence we do not need a separate function for deletion of states.
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In contiki, there is an option to dynamically allocate memory using the memb 
memory block allocator. The memb library provides you a set of functions for 
dynamic memory allocation. However, a memory block has to be already allocated 
initially as an array which will be stored in the static memory. The memb library has 
been used to store uIPvG data structures. But in case of uIPvG, there are various 
tables such as the routing table, neighbour cache etc. For our protocol, we have 
just one multicast table and hence there was no need of using the memb library. 
Instead of using array, if we use dynamic memory allocation, it would unnecessarily 
complicate the code and increase code size.

In order to implement the tree repair functionality, the protocol uses one timer. 
The ctimer library provided by contiki is used. In contiki, there are different timer 
libraries used to provide timer mechanisms. The ctimer library is used to invoke a 
callback function when the timer expires. The timer can then be reset inside the 
callback function. In our protocol, the initialization function sets this timer the first 
time. The frequency with which this callback function is called can be preconfig­
ured. This callback function is responsible for the following two tasks related to 
tree repairs: detecting changes in route towards the source and handling Update 
messages. The process of tree repairs has been described earlier in Section 3.4.4.
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5 Analysis
In this section, we discuss our analysis of the protocol. We have made several design 
choices to meet certain objectives as described in Section 3.2. However, as part of 
this thesis, we have not analysed all the objectives. We have tested the functionality 
of the protocol. The implementation works according to the design. In addition, we 
have done some preliminary performance analysis.

5.1 Functional Evaluation
In order to test the functionality of the protocol, we have conducted experiments 
using the cooja simulator. As discussed in Section 3, the protocol should be able to 
send and receive control messages, construct multicast distribution trees and send 
multicast data to interested routers.

In a complete multicast solution, a group membership protocol running on the 
router would be responsible for sending Join and Prune messages. Since we do 
not have a group membership protocol as of now, we have developed a command 
line shell that runs on nodes. On real hardware, the shell can be accessed over a 
serial USB connection. Even in cooja, it is possible to access the command line 
shell of a simulated node. The command line shell is available in contiki as an 
application and can be included while compiling your own application. Moreover, it 
can be customized to just run your own set of commands. For our testing, we have 
developed commands that do these four functions:

— Sending Join message

— Sending Prune message

— Sending multicast data

— Printing multicast table

Nodes 15 Zolertia[42] Motes
Radio Model Unit Disk Graph Medium: Distance Loss

Transmission Range 50m
Interference Range 100m
Success Ratio TX 1.0
Success Ratio RX 1.0

RDC layer NullRDC

Table 5.1: Parameters used for Testing Functionality

The parameters that we have used for testing are shown in Table 5.1. The default 
radio model in cooja is the Unit Disk Graph Medium (UDGM). In the distance loss 
version of this model, each node will have a transmission range and an interference
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range. The nodes within its transmission range will always receive packets whenever 
it transmits. The nodes in its interference range will experience interference when­
ever it transmits. It is also possible to set the probability of successful transmission 
and reception, but for this experiment, we have set both of them to 1. The location 
of nodes on the X-Y plane are randomly chosen by cooja. Figure 5.1 shows the 
placement of nodes used in the experiment. The node 1 is the DODAG root and is 
responsible for setting up the RPL tree. We have used NullRDC as the radio duty 
cycling layer for this experiment. In case of NullRDC, the radio transceivers arc 
always on.

Figure 5.1: Network established by cooja

During the experiments, we tried different scenarios to test, the four mechanisms 
as described in Section 3. The following tests were conducted.

• In order to test Join messages, we made nodes 12, 2, 7 and 15 join a channel 
with source as node 1. Later, we made nodes 7 and 2 join a channel with source 
as node 5. In both cases, the transmission of Join messages was successful and 
multicast trees for both channels were created. At each intermediate node, 
the states were added to the multicast tables. The merging of trees worked 
as expected. Any node that was part of both multicast trees had two states 
stored. For example, nodes 13 and 14 were part of both multicast trees and 
hence had two states stored in their table.
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• To test data transmission we made the source nodes i.e node 1 and 5 send data 
on their respective group addresses. Whenever the data component in a router 
node receives data that has to be forwarded, we made them print a message 
along with the data. Thus, we were able to note the flow of data through the 
multicast tree. All the routers at the end of the multicast tree received the 
expected data messages.

• To test Update messages, we had made the nodes print a message along with its 
parent router address. At each node, we could see Update messages regularly 
transmitted to its parent in the multicast tree.

• Similar to Join messages, we sent Prune messages from nodes. We could see 
the expected changes in the tables in each of the intermediate routers. We 
also observed that the Update messages had stopped being sent from nodes 
that were no longer part of the tree.

• To test tree repairs, we changed the position of nodes so that they choose 
new parent nodes. However, before we conducted these tests, we also noticed 
that the tree repairs were already working. For example, the node 7 had 13 
as its parent. Hence, initially in its multicast tree it selected node 13 as its 
parent. After some time, due to RPL mechanisms, node 7 changed its parent 
to node 14, and we could observe changes in the multicast tree immediately. 
In addition, we conducted tests where we explicitly changed positions of nodes 
and we could see that the tree repair mechanisms were working.

5.2 Performance Analysis
We have conducted some preliminary measurements to examine the performance 
of our protocol. As of now, we have just focused on two factors: packet delivery 
ratio and end-to-end delay. First, we will discuss the network setup used for the 
experiment, and in the subsequent sections, we will discuss the results.

Similar to the previous experiment, we have used the cooja simulator and com­
piled code for Zolertia motes. However, we have modified the code to accommodate 
the absence of a group management protocol. The network setup consists of 41 
motes. Among the 41 motes, 1 is the DODAG root, 10 router nodes and 30 lis­
tener nodes. We will try to explain the difference between router nodes and listener 
nodes. In a real-world sensor network, not all nodes would be routers. Hence, we 
have made changes to differentiate between routers and listeners. However, the dif­
ference is only made for multicast data packets. In the experiments, only the 30 
listener nodes will send Join requests to the sender. For the sake of simplicity, the 
DODAG root is made the sender and will transmit multicast data. When the sender 
transmits multicast data, the router nodes will definitely forward (broadcast) the 
multicast data towards its multicast children. The listener node will forward the 
multicast data only if it has more children and is not the end point of the multi­
cast tree. However, note that the listener node will still forward multicast control 
packets and other non-multicast packets such as RPL packets etc. This design of
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the experiment is to avoid unnecessary broadcasting of multicast data by all nodes, 
similar to real-world sensor networks, where the end nodes will not be routers and 
just consumers of multicast data.

Nodes 41 Zolertia motes (1 root, 10 routers and 30 listeners)
Radio medium Unit Disk Graph Medium: Distance Loss

Transmission range 50m
Interference range 60m
Success ratio TX 1.0
Success ratio RX 1.0

RDC layer NullRDC and ContikiMAC
Traffic Constant Bit Rate (30 bytes application payload)

Table 5.2: Parameters used for Testing Performance

The parameters used for testing are shown in Table 5.2. The interference range 
has been reduced to 60m, whereas in the previous experiment it was 100m. We 
have used both ContikiMAC and NullRDC as the radio duty cycling layer. The 
experiment is performed with three different kinds of networks based on their Net­
work Density (ND). If we consider a wireless sensor network as an undirected graph, 
then the network density can be derived from Equation 1. In a wireless network, 
if two nodes are in the interference range of each other, then there exists an edge 
connecting the two. Hence, in a complete graph, which means all the nodes are in 
the interference range of each other, the network density would be equal to 1. The 
listener nodes, upon booting and finding a route towards the DODAG root, will 
send a Join request towards it. After an initial delay of 75 seconds, the DODAG 
root, which is the sender node in this experiment will send multicast data. In the 
first few seconds of booting, there would be several RPL control messages being 
sent in order to construct routes between the nodes. Hence, we included an initial 
delay of 75 seconds so that the network becomes stable. We have developed a shell 
command to make the sender node send multicast data. This shell command sends 
a constant bit rate traffic of 30 bytes payload. The number of packets sent is 10. 
The 30 bytes is just application data and the whole packet would also include the 
headers. However, the actual size of the packet would vary because of header com­
pression. In each network of a particular network density and RDC configuration, 
we carried out 4 experiments. Multicast traffic flows of 10 packets each were sent 
with the following intervals between two packet transmissions: 250 msec, 500 msec, 
750 msec and 1 sec.

xr Number of edges in the network
Network Density = —------------------ ------- --------—---- -— (1)

Maximum number oj possible edges

5.2.1 Packet Delivery Ratio

Figure 5.2 and Figure 5.3 show the packet delivery ratio for NullRDC and Con­
tikiMAC respectively. Both NullRDC and ContikiMAC have almost similar packet



Pa
ck

et
 D

el
iv

er
y R

at
io

 
Pa

ck
et

 D
el

iv
er

y R
at

io

250 msec 
500 msec 
750 msec i-avwvI 

1 sec ftftftftfeawjisssa

0.3 0.6 0.9

Network Density

Figure 5.2: Packet Delivery Ratio with NullRDC
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Figure 5.3: Packet Delivery Ratio with ContikiMAC
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delivery ratios for ND = 0.6 and ND = 0.9. However, for ND = 0.3, NullRDC has 
higher packet loss rate than ContikiMAC. In case of NullRDC, the radio is kept 
on all the time. Hence it was expected to have better packet delivery ratio. The 
reason behind the unexpected behavior might be because of the way RDC layers 
handle broadcast packets and also because of the number of hops in low network 
densities. In the network with ND = 0.3, some of the listener nodes were more than 
6 hops away from the sender node. As a result, there might be loss of packets in 
some of the intermediate nodes. Broadcast packets are handled differently by the 
two RDC layers. Since we use broadcast packets for transmission, this might make 
a difference. As mentioned before, in NullRDC, the radio is always on and hence 
the broadcast packet would be transmitted just once whenever the channel is free. 
In case of ContikiMAC, the radio uses periodic wake-ups to keep the radio on and 
listen for packets. Unicast packets are repeatedly sent until a link layer acknowl­
edgement is received. Since there are no link layer acknowledgements for broadcast 
packets, the sender repeatedly sends the broadcast packet during an entire wake-up 
period to make sure that all the neighbours receive the packet. This behaviour of 
ContikiMAC probably has resulted in better packet delivery ratio than NullRDC.

5.2.2 End-to-End delay
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Figure 5.4: Average End-to-End Delay with NullRDC

Depending on the number of hops required to reach a listener node, the end-to- 
end delay would vary. We have calculated the average end-to-end delay and shown
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it in our figures. The listeners in networks with lower network density will have more 
hops to be reached. Hence, they will have higher end-to-end delays. We can notice 
this result in Figure 5.4 and Figure 5.5. However, with NullRDC, there is a small 
difference in delays even between networks with different network densities. From 
the figures, we can also see that ContikiMAC has much higher end-to-end delay 
when compared to NullRDC. This can be explained by how ContikiMAC handles 
broadcast packets as discussed in the previous section. Because of this technique 
used by ContikiMAC, it takes longer time for broadcast transmissions[47]. In our 
figures, we have not included the maximum end-to-end delay i.e the total multicast 
transmission time required for data to reach all the listeners. In most cases, this 
would also be the time required for the data to reach the furthest node. As expected, 
it is much higher in case of ContikiMAC than in NullRDC.

250 msec 
500 msec 
750 msec uvrøæi 

1 sec2500

> 2000

1000
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Figure 5.5: Average End-to-End Delay with ContikiMAC

5.2.3 Discussions

As discussed in Section 1, SMRF and MPL are multicast routing protocols that have 
been designed for LLNs. In the article on SMRF[7], the authors have compared the 
performance of MPL and SMRF. However, note that the authors refer to an older 
version of the Internet draft of MPL. They use a network of 21 nodes with different 
network densities and compare packet delivery ratio, end-to-end delay and energy. 
We have not conducted any tests on energy, but we can examine the other two 
parameters. Surprisingly, MPL and SMRF show better packet delivery ratios with
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NullRDC, whereas in our experiments ContikiMAC showed better results. Both 
MPL and our protocol have similar packet delivery ratios, which is higher than that 
of SMRF. In the article, instead of average end-to-end delay, the total multicast 
transmission time per packet is compared. Our protocol exhibits much lower end- 
to-end delay compared to MPL, whereas SMRF has slightly better performance than 
our protocol.

Although we have done some preliminary performance evaluation, more detailed 
analysis is required based on other factors. Energy consumption is a crucial factor 
that has to be inspected. In our design, we use broadcast packets for data trans­
mission, but the data does not flood throughout the network. Hence, we expect the 
overall energy consumption to be less. However, a point of concern is the heartbeat 
mechanism. The regular transmission of Update messages would probably cause an 
increase in energy consumed by the devices. We also have to test the protocol be­
haviour in other network scenarios (different transmission/reception success ratios, 
heterogeneous hardware devices, etc.). Furthermore, we can evaluate the protocol 
on a testbed made of real devices to validate the accuracy of our experiments.



52

6 Future work
In this section, we discuss some ideas to improve the protocol and also about work 
that has to be done in order to have a complete multicast solution. In addition, 
we have already discussed in Section 5.2.3 that further performance analysis of the 
protocol has to be done.

6.1 Group Membership Protocol
As discussed before, a complete multicast solution also needs a group membership 
protocol. We had also stated that MLDv2 protocol could be a basis to develop 
group membership protocol for our solution. While designing this protocol, we have 
to keep in mind the following points:

• Both the routers and leaf nodes will be using the group membership protocol. 
The group membership protocol running on the router will interact with the 
multicast routing protocol on the router.

• The router nodes upon receiving request from its leaf nodes to subscribe to 
a channel, will send a Join message to the source of the channel and add the 
state in its multicast table.

• The N variable of a multicast state does not change depending on the number 
of requests from its leaf nodes. The N variable is affected when it receives 
multicast control messages from other routers.

• The source node can either be a router or a leaf node. The router can also be 
a receiver. These scenarios should be considered.

6.2 Routing between DODAG trees
The multicast protocol that we designed can be used by nodes within a single 
DODAG tree having a single DODAG root. However, in real world applications 
DODAG trees would be connected to each other and also to the internet through 
their DODAG roots. The DODAG roots would act as border routers and can be 
connected to the Internet over a backbone link. A LoWPAN could have more than 
one border router and both of them can be connected to the internet. There could 
be different ways in which the DODAG roots are connected to each other and to 
the internet. In all these cases, there might be a necessity to have multicast com­
munication between DODAG trees. Hence, a protocol has to be designed so that 
DODAG roots can exchange multicast information and thus support multicast be­
tween DODAG trees.

6.3 Improvements to the Protocol
During the course of this work, we came across certain ideas that could improve the 
protocol.
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In our current design, the Update messages are transmitted regularly. The fre­
quency with which the Update messages are sent can he preconfigured. We also 
configure the threshold value to specify how long a node has to wait for Update 
messages before it takes relevant actions. These values can be set by the application 
developer depending on the requirement. For example, if energy usage is a crucial 
factor, then the frequency could be reduced. However, the transmission of Update 
messages has a direct impact on the energy consumption of the node. Hence, this 
can be designed better to reduce energy consumption. In case of RPL, the frequency 
with which nodes exchange routing information is controlled by the trickle timer. 
Initially, they exchange messages with higher frequency, but then they slow down. 
Whenever an inconsistency is detected in the DODAG tree, the frequency increases 
again. A similar mechanism could be developed for our multicast protocol.

Some minor changes to implementation can be made to reduce code size. As 
discussed in Section 4, the protocol implementation consists of three logical compo­
nents. These three components have been coded in two C files. Integrating these 
three components into a single C file will reduce code size.
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7 Conclusion
The goal of the project was to develop a multicast routing protocol for GLoWPANs. 
The multicast routing protocol has been designed and implemented on contiki OS. 
As part of the design process, we examined different multicast solutions developed 
for conventional networks. Among them, many features of the SSM protocol was 
found suitable to be implemented in LLNs. The SSM protocol and its parent proto­
col PIM, are designed to be independent of the unicast protocol used in the network. 
They use routing information from the underlying unicast protocol to build their 
multicast trees. However, in our case, we have used RPL as the unicast protocol. 
Although we have not explored any other unicast protocols, our protocol seems to 
be independent of the unicast protocol used since it is based on SSM. We have done 
several modifications to SSM so that it works in GLoWPANs. Many unnecessary 
features of SSM have been removed. These features are useful in conventional net­
works but are not needed in LLNs. In constrained networks, we have the problem 
of disruptions in network due to movement of devices, weak signals, etc. Although 
RPL has been designed to consider such changes in the network, we had to develop 
additional features in our protocol to be aware of such changes and act accordingly.

The implementation has been tested to confirm functionality. We have also con­
ducted preliminary performance analysis using the cooja simulator. In our analysis, 
we examine two factors: packet delivery ratio and end-to-end delay. The results 
from our experiments look promising. However, we still need to further analyse 
the protocol focusing on other factors such as energy consumption. The Update 
messages which we have used to take care of network repairs might be a cause of 
increased energy consumption in devices.

In addition to our routing protocol, a group management protocol has to be 
implemented in order to have a complete multicast solution. Based on further 
evaluation of our protocol focusing on energy efficiency, we could still improve it. 
As mentioned earlier, one of the main concerns that we have are regular Update 
messages. A possible solution to reduce their frequency is to introduce trickle timers 
similar to how RPL manages control messages. Although there is need for further 
development and improvement, our work so far suggests that a multicast routing 
protocol based on SSM is feasible to be used in GLoWPANs.
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