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Abstract

Purpose

Image texture is increasingly used to discriminate tissues and lesions in PET/CT. For quanti-

fication or in computer-aided diagnosis, textural feature analysis must produce robust and

comparable values. Because statistical feature values depend on image count statistics, we

investigated in depth the stability of Haralick features values as functions of acquisition dura-

tion, and for common image resolutions and reconstructions.

Methods

A homogeneous cylindrical phantom containing 9.6 kBq/ml Ge-68 was repeatedly imaged

on a Siemens Biograph mCT, with acquisition durations ranging from three seconds to three

hours. Images with 1.5, 2, and 4 mm isometrically spaced voxels were reconstructed with fil-

tered back-projection (FBP), ordered subset expectation maximization (OSEM), and the

Siemens TrueX algorithm. We analysed Haralick features derived from differently quantized

(3 to 8-bit) grey level co-occurrence matrices (GLCMs) as functions of exposure E, which

we defined as the product of activity concentration in a volume of interest (VOI) and acquisi-

tion duration. The VOI was a 50 mm wide cube at the centre of the phantom. Feature stabil-

ity was defined for df/dE! 0.

Results

The most stable feature values occurred in low resolution FBPs, whereas some feature val-

ues from 1.5 mm TrueX reconstructions ranged over two orders of magnitude. Within the

same reconstructions, most feature value-exposure curves reached stable plateaus at simi-

lar exposures, regardless of GLCM quantization. With 8-bit GLCM, median time to stability

was 16 s and 22 s for FBPs, 18 s and 125 s for OSEM, and 23 s, 45 s, and 76 s for PSF
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reconstructions, with longer durations for higher resolutions. Stable exposures coincided in

OSEM and TrueX reconstructions with image noise distributions converging to a Gaussian.

In FBP, the occurrence of stable values coincided the disappearance of negatives image

values in the VOI.

Conclusions

Haralick feature values depend strongly on exposure, but invariance exists within defined

domains of exposure. Here, we present an easily replicable procedure to identify said stable

exposure domains, where image noise does not substantially add to textural feature values.

Only by imaging at predetermined feature-invariant exposure levels and by adjusting expo-

sure to expected activity concentrations, can textural features have a quantitative use in

PET/CT. The necessary exposure levels are attainable by modern PET/CT systems in clini-

cal routine.

Introduction

Positron emission tomography in conjunction with computed tomography (PET-CT) is an

imaging modality that quantifies radiotracer uptake in the living organism. With CT-based

attenuation correction, and correction for scatter, randoms, and dead time, PET depicts abso-

lute tracer uptake in units of concentration. In addition, the PET/CT system‘s spatially

resolved measurements reveal textural features, yielding a metric for quantifying an imaged

object’s structure [1]. Textural feature analysis increases the information retrievable from

PET/CT images, which is useful for characterizing and classifying tissue and lesions according

to differences in morphology [2]. Adding texture analysis to a PET/CT readout can thus

improve diagnostic sensitivity and specificity for certain tumor entities [3]. Notably, textural

features are exploited as a surrogate measure of tissue metabolic heterogeneity [4], which can

be an index of tumor malignancy, for example in the case of thymic epithelial cancer [5]. Alter-

nately, changes in textural feature values depict response to treatment in esophageal cancer

[6]. Expanding the feature space of PET/CT images makes texture analysis useful for pattern

recognition techniques [7] and computer-assisted diagnosis (CAD).

Among the various mathematical methods to quantify image texture, partial gray level co-

occurrence texture features are the best-established, having been introduced in 1973 by Hara-

lick et al. [8] for the automated segmentation of satellite images. Sometimes also referred to as

second order statistics, Haralick features have since found their way into radiomics [9] and

subsequently PET/CT imaging [7]. However, images—and hence the measured tracer uptake

values—typically differ between the various clinical PET/CT systems, even when imaging the

very same object [10]. Distinct instrumentation and differences in image reconstruction algo-

rithms impart characteristic imaging properties to PET/CT systems [11]. Resultant differences

in imaging properties limit the comparability of datasets acquired on different PET/CT sys-

tems or with different acquisition protocols, and hamper the use of quantitative tracer uptake

values in clinical routine or in multicenter clinical trials [12].

[13,14] Image noise, with its texture-like manifestations, varies especially with frame dura-

tion, tracer uptake, and the sensitivity of a given PET/CT system, which hampers comparison

of datasets.
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Despite certain efforts to quantify image noise and its effects on tracer uptake measure-

ments [15–17] and image quality [18], the optimal image exposure remains unresolved for

many clinical situations, and especially so in the context of textural feature values. These values

must not only be stable in longitudinal, repeated measurements in a patient [19], but must be

comparable between different PET/CT systems, if they are to be of diagnostic or prognostic

value. The comparability problem of textural feature values is indeed analogous to the more

widely recognized problem of variability in measured tracer uptake values.

Several works have examined textural feature stability [20], either under differing image

acquisition and reconstruction conditions [21,22], in terms of grey level quantization [23], or

under multicenter conditions [24], to identify the least variant features. However, the contri-

bution of image count statistics, a known driver of variability in imaging, remains largely over-

looked. Although, some studies show effects of noise on image texture [25–27], others have

reported insignificant effects of image statistics on textural features [28,29]. In fact, there has

hitherto be no systematic study of the progression of textural feature values with changing

photon count. In most literature reports, the variability of textural features arising from image

noise is usually described in terms of variance [30] and within the same exposure regime [31],

without reporting on possible domains with stable feature values. This implies that radiomic

values are not readily comparable between different PET/CT systems with different sensitivi-

ties and imaging properties.

The voxel (second order) neighborhood statistics of Haralick features must depend on their

underlying first order statistics, i.e. the intensity distribution of the voxel image. At the detector

level, Shot noise [32] will dominate in PET/CT and the signal-to-noise ratio (SNR) will be pro-

portional to the square root of the imaged counts. Shot noise follows a Poisson distribution,

but the noise distribution in the final PET/CT image will depend on the chosen image recon-

struction method and its parameters. For examples, PET/CT images acquired with sufficient

counts and reconstructed with filtered back projection (FBP) approximate Gaussian statistics

[33], whereas ordered subset expectation maximization (OSEM) [34,35] or point spread func-

tion (PSF) based resolution modeling tend to resemble log-normal [36,37] or gamma distribu-

tion statistics [33]. Furthermore, with OSEM or PSF-based algorithms, the covariance matrix

of a given image region will depend on the very region itself, e.g. the mean image [36]. This

non-linearity renders mathematical predictive approaches to noise behavior for such recon-

structions difficult and ill-posed. Image noise propagates linearly through the FBP reconstruc-

tion [38] or non-linearly, in an iteration dependent manner through OSEM- [36,39] and PSF-

based reconstructions [40]. Therefore, noise increases the apparent roughness of the final

image [17,41] differentially for different image reconstructions.

It follows that PET/CT acquisition and reconstruction protocols delivering consistent and

comparable features values require prior knowledge of the dependency of textural features on

the count statistics and on imaging properties. Only then can textural features become compa-

rable across sites using diverse PET/CT systems, which is a necessary condition for quantita-

tive usage of texture metrics in multi-center studies. Given this background, our aim was to

investigate experimentally the count statistics dependency of first order statistical and Haralick

features commonly used in PET/CT. For practical applications, we elaborate a methodology

for identifying exposure domains with minimal variability in textural features. We apply our

methodology on Haralick textural features measured in seven different image reconstructions,

but our approach is generalizable to other image reconstructions and feature definitions.

To test feature stability, we obtained PET/CT measurements of a homogenous, solid-state

Ge-68 phantom–just as used for daily quality assurance (QA) tests—in our clinical PET/CT

system, with repeated measurements for durations ranging from three seconds to three hours.

The product of acquisition times and phantom activity covered a wide exposure range. -We
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measured the selected textural features within the same central region of the cylindrical phan-

tom for seven clinical image reconstruction protocols, thus testing our hypothesis that textural

feature values are highly variable depending on image noise, resolution, and reconstruction

procedures. Additionally, we looked for criteria that convey stability to Haralick feature values

in different image reconstructions. In so doing, we present a simple and automated way to

identify exposures with stable image features for any given PET/CT system.

Material and methods

Data acquisition

Phantom measurements of varying exposure were acquired and reconstructed on a Biograph

mCT-X 128 (Siemens Medical Solutions USA, Knoxville, TN) using the same Ge-68 solid-

state phantom as used for daily quality assurance (QA) (Eckert & Ziegler Isotope Products,

Valencia CA, USA). This cylindrical phantom had an inner diameter of 200 mm, cylinder wall

thickness of 6.5 mm, and an active volume of 8407 ml of 68-Ge homogeneously distributed in

a hardened epoxy matrix.

Our use of the QA phantom imparts an easily reproducible methodology in clinical settings.

We axially aligned and centered the phantom in the PET/CT system’s field of view (FOV) as

specified for the daily QA, and imaged only a single bed position centered on the phantom.

We acquired 20 PET/CT measurements with 25 different frame durations increasing from

three seconds to a final 10861 seconds at a factor of
ffiffiffi
2
p

per frame. All data were reconstructed

with CT-based attenuation correction, with scatter correction, and in the time-of-flight mode

(TOF).

In the contexts of image noise and comparability, we prefer exposure to acquisition dura-

tion as a measure for the actual number of available decays. We define exposure as the product

of activity concentration in a volume of interest (VOI) and acquisition duration or, in the case

of relevant decay times, the integral of activity concentration over the acquisition time. In

addition, by introducing a factor representing the relative sensitivity of another PET/CT sys-

tem or e.g. differing decay branching ratios of other positron emitters, results can easily be

rescaled to match differing systems and differing acquisition conditions.

Image reconstruction

Seven different image reconstruction protocols combined three different image resolutions

with three different reconstruction methods. All images were reconstructed with isotropic vox-

els and with post-reconstruction Gaussian filtering. The full width at half maximum (FWHM)

of the Gaussian post-reconstruction filter ranged from 1 to 4 mm. Standard-resolution (SR)

images had voxels of around 4 mm isometric spacing, whereas high-resolution (HR) images

had 2 mm spaced voxels. Because (and contrary to FBP and OSEM) the Siemens TrueX algo-

rithm enables higher resolution PET/CT, so called ultra-high resolution (UHR) voxels of

around 1.6 mm isometric spacing were paired with said algorithm [42] in a single protocol.

The three different reconstruction algorithms used were FBP, OSEM, and TrueX, the latter

being a PSF-based resolution-modeling algorithm specific to Siemens PET/CT systems.

Table 1 provides an overview of the seven different protocols and their exact parameters.

Data analysis

A cuboid of around 50 mm edge length, which was centered in the daily QA phantom, defined

the VOI from which all first and second order statistics were calculated (Fig 1A and 1B). The

actual cuboid edge length in a given spatial direction was adjusted to the next even voxel

PLOS ONE Haralick features vary with image noise, but exposure-invariant domains enable comparable PET radiomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0229560 March 16, 2020 4 / 23

https://doi.org/10.1371/journal.pone.0229560


Table 1. Parameters of image reconstruction protocol.

Name Voxel Size (x � y � z; mm) Voxel Volume (μl) Algorithm Iterations Subsets Gauss FWHM (mm) Cuboid VOI (nx
�ny
�nz = N)

SR FBP 4.07 � 4.07 � 4.0 66.3 FBP N/A N/A 4 12�12�12 = 1728

SR OSEM 4.07 � 4.07 � 4.0 66.3 OSEM 3 21 4 12�12�12 = 1728

SR PSF 4.07 � 4.07 � 4.0 66.3 TrueX 3 21 4 12�12�12 = 1728

HR FBP 2.03 � 2.03 � 2.0 8.29 FBP N/A N/A 2 24�24�26 = 14976

HR OSEM 2.03 � 2.03 � 2.0 8.29 OSEM 3 21 2 24�24�26 = 14976

HR PSF 2.03 � 2.03 � 2.0 8.29 TrueX 3 21 2 24�24�26 = 14976

UHR Clinical 1.59 � 1.59 � 1.5 3.79 TrueX 4 21 1 32�32�34 = 34816

https://doi.org/10.1371/journal.pone.0229560.t001

Fig 1. Noise in PET/CT images at different exposures. Shown are examples of four differently exposed HR FBP (a)

and UHR PSF (b) images, using the daily QA phantom. Images are maximum intensity projections (MIPs) in the axial

direction of the PET system with black set to naught and white set to the maximal intensity found in the PET image.

The green rectangle marks the VOI, where all the calculations were performed. The associated noise histograms of the

HR FBP (c) and UHR PSF (d) measurements are depicted below, showing the measured AC distribution in the VOI

after four different acquisition durations. Nvoxel denotes the number of analyzed voxels in the VOI. Black insets are

magnified histograms of the longest acquisition. Color legend of acquisition durations applies to both (c) and (d).

https://doi.org/10.1371/journal.pone.0229560.g001
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count, yielding arrays (c) with nx
�ny
�nz = N voxels. (cf. Table 1). Exposure EAcq in the cuboid

VOI was defined as the product of the known activity concentration AC in that region and

acquisition duration, tAcq

EAcq ¼ AC � tAcq ¼ ½nuclear disintegrations=unit volume ¼ 1=ml� 1

Our present use of exposure instead of acquisition duration for most graphs and measures

makes results in this work independent of the actual AC, and readily transferable to other

ACs. With 270.8 d half-life, the Ge-68 source retained a nearly constant activity concentration

during the study, but decay would have to be considered in studies with short-lived nuclides.

The PET/CT data was automatically analyzed using a multi-paradigm software [43] written

in-house. This software detected the phantom and calculated all statistics in a cuboid VOI

placed automatically in the center of the phantom.

Grey level co-occurrence matrices. Six different grey level co-occurrence matrices

(GLCMs) with 8 (3 bit), 16 (4 bit), 32 (5 bit), 256 (8 bit), 128 (7 bit) and 64 (6 bit) rows and col-

umns were calculated from the central cuboid VOI, where each entry in the matrix represented

the relative occurrence frequency Pði; jÞ � Pði; jjd ¼ 1; θ ¼ 0� [ 90�Þ of orthogonally adja-

cent voxel pairs with intensities1 and j. The number of rows and columns corresponded to

G, the number of gray levels used. The relative occurrence frequency was calculated by divid-

ing the number of1,j-voxel pairs (p) by the total number of voxel pairs1 found in the

cuboid VOI.

Pði; jÞ ¼
1

R

p11 � � � p1G

..

. . .
. ..

.

pG1 � � � pGG

2

6
6
6
4

3

7
7
7
5

2

In this work, we used only orthogonal nearest neighbor voxels, with a displacement d of

one voxel and displacement angled θ of 0˚ and 90˚. Diagonal voxels with d> 1 were excluded

from consideration. We are aware of the GLCM’s scale and direction sensitivity arising from

use of different d and θ values, but assuming isotropic image noise, no directional preference is

to be expected. Furthermore, by using solely a nearest neighbor geometry and not a fixed dis-

tance d, the spatial sensitivity of the GLCMs scaled with the spatial sampling density of the

PET/CT system and the chosen image resolution. The large number of voxels analyzed in the

cuboid VOIs (cf. Table 1) justified the use of up to 256 gray levels, without producing informa-

tion-free voids in GLCMs. This in turn enabled the statistical analysis of textural features using

Haralick’s methods.

Grey level mapping in GLCMs was performed as described in Tixier et al. [6]. This method

resampled the gray levels found in a VOI to the finite range of the GLCMs, linearly mapping

the lowest intensity in the VOI to the first gray level and the highest value to the last gray level

of a GLCM.

First order statistics. In addition to the cuboid’s mean μc and standard deviation σc, nine

voxel value statistics were calculated from the central cuboid array c, as summarized in

Table 2. These additional nine metrics, here called first-order statistics, often find use along

with texture as descriptors of PET/CT images. In this work, we used Eqs 4–8 and 11 as descrip-

tors for normality of the AC distribution in the VOI.

Haralick features (second order statistics). Eleven different Haralick features were calcu-

lated from the GLCMs as first described in Haralick et al. [8] and later summarized by Albregt-

sen [45]. Given below are the mathematical definitions of these texture features (Table 3).
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Table 3. Haralick features used for texture analysis.

Feature Name Equation #

Angular Second Moment (ASM),

Homogeneity ¼
XG

i¼1

XG

j¼1

fPði; jÞg2
12

Contrast (CON)
¼
XG

n¼1

n2f
XG

i¼1

XG

j¼1

fPði; jÞg; ji � jj ¼ n
13

Inverse Difference Moment (IDM)
¼
XG

i¼1

XG

j¼1

1

1þði� jÞ2
Pði; jÞ

14

Entropy II (ENT)
¼ �

XG

i¼1

XG

j¼1

Pði; jÞ � logðPði; jÞÞ
15

Correlation (CORR)
¼
XG

i¼1

XG

j¼1

fi�jg�Pði;jÞ� fmx�myg
sx�sy

16

Variance II (VAR)
¼
XG

i¼1

XG

j¼1

ði � mÞ2Pði; jÞ; m ¼ 1

G2

XG

i¼1

XG

j¼1

Pði; jÞgf
17

Sum Average (AVER)
¼
X2G

k¼2

kðPxþyÞðkÞ
18

Sum Entropy (SENT)
¼ �

X2G

k¼2

PxþyðkÞlogðPxþyðkÞÞ
19

Difference Entropy (DENT)
¼ �

XG� 1

k¼0

Px� yðkÞlogðPx� yðkÞÞ
20

Cluster Shade (SHADE)
¼
XG

i¼1

XG

j¼1

fiþ j � mx � myg
3
� Pði; jÞ

21

Cluster Prominence (PROM)
¼
XG

i¼1

XG

j¼1

fiþ j � mx � myg
4
� Pði; jÞ

22

https://doi.org/10.1371/journal.pone.0229560.t003

Table 2. First order statistical features used for texture analysis.

Feature Name Equation #

Coefficient of variation,

CV

¼
sc
mc

3

Excess kurtosis
¼ 1

N

XN

l¼1

cl � mc
sc

� �4

� 3
4

Skewness
¼ 1

N

XN

l¼1

cl � mc
sc

� �3 5

Lilliefor’s D The test statistic from a Kolmogorov-Smirnov test comparing the VOI value

cumulative distribution Mc to a cumulative Gaussian G0 with same μc and σc:
D ¼ kMc � G0k

6

Lilliefor’s p Probability, that an observed AC distribution conforms to a Gaussian calculated

from the test statistic D [44].

7

Gauss Fit NRMSD The normalized room mean squared deviation (NRMSD) of a Gaussian fitted to the

AC distribution in the VOI

8

Crest factor, CF (dB) CF ¼ 20 log
10

jcmax j
RMSðcÞ ; RMSðcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

P
c2

q
9

Efficiency, normalized

entropy, E
E ¼ logN

YN

i¼1
PðiÞ� PðiÞ

� �

, P(i) = relative frequency of voxels with gray level i in c.
10

Mode / Mean Ratio of the mode and the mean activity concentration found in the VOI 11

https://doi.org/10.1371/journal.pone.0229560.t002
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The mathematical terms and definitions used inside the feature equations are given below,

starting with the mean in x- and y- direction of the GLCM matrix:

mx ¼
XG

i¼1
i
XG

j¼1
Pði; jÞ 23

my ¼
XG

i¼1

XG

j¼1
jPði; jÞ 24

Standard deviation in x- and y-direction of the GLCM matrix:

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXG

i¼1
ðPxðiÞ � mxðiÞÞ

2

q

25

sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XG

j¼1
ðPyðjÞ � myðjÞÞ

2

r

26

Greyscale sum and difference vectors Px+y and Px-y

PxþyðkÞ ¼
XG

i¼1

XG

j¼1
fPði; jÞg; iþ j ¼ k; fork ¼ 2; 3; . . . ; 2 27

Px� yðkÞ ¼
XG

i¼1

XG

j¼1
fPði; jÞg; ji � jj ¼ k; fork ¼ 0; 1; . . . ; ðG � 1Þ 28

Mode was calculated in x direction (Modex) as an additional statistical descriptor of

GLCMs.

Feature values F obtained from within the aforementioned VOI were plotted logarithmi-

cally against exposure E and interpolated into continuous curves by locally estimated scatter-

plot smoothing (LOESS) curves using IGOR pro (Wavemetrics, Lake Oswego, Oregon 97035,

USA), which was also used to generate graphs and tables. The LOESS was conducted with a

sliding smoothing window with a width of thirteen measurement points. To equalize the con-

tribution of geometrically increasing exposure values, we ran the LOESS on log-log data. The

LOESS curves were then used to identify stable maxima and minima or plateaus, where the

onset of a plateau is defined when the relative slope in LOESS curve became less than 5%/E,

with E in units of kBq/ml�s.

relative slope ¼
DF

DE � F
� 0:05=E 29

Results

Noise distribution

To understand the impact of exposure upon image texture, PET/CT measurements of the

daily GE-68 QA phantom were recorded at increasing acquisition durations. The phantom

AC was 9.54 kBq/ml at the time of measurement, and thus the acquired exposures ranged

from 28.6 kBq/ml�s to 103.6 MBq/ml�s with the chosen durations. Fig 1A illustrates how the

apparent coarseness of the HR FBP images decreases with increasing acquisition duration. Fig

1B shows the same effect, albeit on a different resolution scale, for UHR PSF images. As exam-

ples, Fig 1C and 1D show the activity distribution histograms of the cuboid VOI in the cases of

HR FBP and UHR PSF reconstructions. While activity histograms reconstructed with FBP

tended be wider than were those from PSF reconstructions, the former were more Gaussian in
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shape, even at brief acquisitions. In addition, FBP data displayed negative voxel values and

required longer acquisition before their activity distributions moved away from zero than did

OSEM (not shown) or PSF data. As expected, the spatial sampling density showed similar

effects, with SR data having narrower and more Gaussian histograms than did HR or UHR

data (not shown). The measured average activity concentration in the VOI was unaffected by

exposure in all examined reconstructions (S1 Fig).

Exposure dependency of first order statistical features

To reveal how noise propagates through an image reconstruction process, we calculated nine

different statistical voxel value metrics from the central cuboids (Fig 2 and Eqs 3–11). When

plotted against exposure, these measurements reflected the above findings in the histograms:

While CV, crest factor, and normalized entropy followed the expected power law for all seven

reconstruction protocols, excess kurtosis and skewness were constant for FBP but varied in

OSEM and PSF data. In the latter datasets, skewness resembled CV with respect to exposure,

but excess kurtosis initially followed a power law, only to stabilize around zero after exceeding

some minimum exposure. SR data had no excess kurtosis, even at very low exposure values.

The presence of negative values in FBP images as seen in Fig 1C caused a plateau to appear in

the crest factor at low exposures. Negative values ceased to appear after 30 s in SR FBP and 679

s acquisition time in HR FBP data, translating to exposures of 286 kBq/ml�s and 6476 kBq/

ml�s, respectively.

While kurtosis and skewness are accepted indicators for normality, we additionally used

Lillifor’s p and the goodness of fit of a Gaussian to the noise distribution. Lillifor’s p remained

close to unity for FBP data irrespective of exposure but increased from an initially low magni-

tude (10E-10) for OSEM and PSF data. Here, p showed a sigmoidal approach towards a plateau

at unity, in the same domain of exposure where excess kurtosis disappeared. Its associated test

statistic D is the supremum between the sample cumulative distribution and a normal distribu-

tion of equal mean and variance. Log plots revealed D decreasing with exposure and following

a power law, but with parallel ordinate shifts for the seven different reconstruction protocols.

There was less pronounced exposure dependency of D in FBP data, but the correlation was

still visible.

Similarly, the Gauss fit NRMSD decreased with a power law with increased exposure for all

seven reconstructions. As with the other metrics used, the AC distribution in FBP data more

closely resembled a Gaussian distribution at lower exposures than required for OSEM and PSF

data to attain a Gaussian. The mode/mean ratio reflected the increased skewness and non-

Gaussian shape of the AC distribution at low exposures, while approaching unity in congru-

ence with the plateauing of the Gauss fit NRMSD.

Exposure dependency of grey level co-occurrence matrices

As a next step, we calculated GLCMs with different numbers of greyscales, mapping the PET

data over a range extending between the respective minimum and maximum activity concen-

trations found in the cuboid VOI. Fig 3 shows examples of the GLCM dependency on acquisi-

tion duration for different HR reconstructions before greyscale mapping. Similar to the noise

histograms noted above, these FBP GLCMs were broader, more Gaussian and less skewed

than were OSEM or PSF GLCMs. The latter two types of GLCM showed an alignment on the

diagonal at high exposures, with more skewness and some dispersion at low exposures. When

shown in units of activity concentration, all GLCMs had exposure-invariant average values (μx
and μy; Eqs 23 and 24). By contrast, Modex approached μx only at higher exposures, while σx
(Eq 25) showed the expected power law behavior.
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After greyscale mapping, the shape of GLCMs remained, but only GLCMs from FBP had a

constant μx, Modex, and σx. In OSEM and PSF reconstructions, these values showed a sigmoid

function (Fig 4). Comparing Figs 2 and 3 suggests that greyscale mapping produced GLCMs of

similar extension with regard to the grey scale count, because only using values occurring

inside the VOI. Especially in the case of FBP, this led to GLCMs with a Gaussian cross-section

of similar extent, while PSF based reconstructions still had GLCMs of varying shape and

extent. Mapping the GLCMs in greyscale units maintained the general shape of the matrices,

but revealed how μx, Modex, and σx moved towards higher values with increasing exposure in

OSEM and PSF reconstructions, while remaining constant in FBP reconstructions (Fig 4).

Fig 2. First order statistics of image noise measurements as a function of exposure and grouped according to different

reconstruction protocols.

https://doi.org/10.1371/journal.pone.0229560.g002
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Exposure dependency of Haralick features

From the full range GLCMs, 11 Haralick or so called second-order statistical features were cal-

culated and plotted against exposure (Eqs 12–22). The resulting scatterplots were smoothed by

the LOESS method to obtain differentiable curves for every feature (Fig 5). Most feature-recon-

struction combinations were variant at lower exposures before reaching an invariant plateau.

Feature values from FBP stayed mostly constant over all exposures. The feature value curves

behaved similarly in shape regardless of GLCM bit size. Nevertheless, varying the GLCM bin

size resulted in differing absolute feature values; something that had been reported before [46].

Fig 6 shows the magnitude of variability between the lowest and highest values found in

each textural feature calculated from the different GLCMs, as well as those found in first order

statistics. While the highest variability of features extended over three orders of magnitude, the

variability was almost similar between GLCMs regardless of their quantization levels (Figs 6

and S2A). Lowering the number of GLCMs greyscales led overall to a significant decrease in

feature value range, but the effect size was negligible, with 0.013 to 0.028 Bel (S2B Fig).

We also observe that SR FBP generally provided for more stable features than did HR

OSEM and HR PSF reconstructions. Among the individual features, ENT, CORR, SENT, and

DENT were the most stable, whereas SHADE and PROM were the most unstable.

First order statistics, which are sometimes also used as image descriptors, varied up to three

orders of magnitude with exposure (S1C Fig), with exception of Lilliefor’s p, here used only as

a Gaussian metric. Contrary to Haralick features, first order statistics mostly follow a power

law concerning exposure and do not attain stable domains per se (Fig 2). Therefore, highest

possible exposures should be sought when using first order statistics in PET/CT.

Fig 3. Overlaid examples of 8 bit GLCMs in units of kBq/ml. GLCMs calculated from HR datasets and reconstructed

with either with FBP, OSEM, or TrueX, PSF. Five selected acquisition durations are shown at their location in respect

to absolute activity concentrations. For visualization (top). GLCM maxima are normalized to unity and are displayed

with a logarithmic color scale. Acquisition times are noted besides the PSF GLCM in the respective color.

https://doi.org/10.1371/journal.pone.0229560.g003
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In SR reconstructions stable plateaus in Haralick features occurred at lower exposures than in

HR reconstructions. Some feature-reconstruction combinations were stable over the entire expo-

sure range (Marked with asterisks in Fig 7). Still, other feature-reconstruction combinations,

such as SHADE in SR OSEM, attained stability distinctively later than the median exposure in

their group. In terms of acquisition duration, median time to stability did not differ significantly

between the differently sampled GLCMs (Fig 7). For example, when using 8-bit GLCM, median

time to stability was 16 s for SR and 22 s for HR FBP, 18 s for SR and 125 s for HR OSEM, and

23 s, 45 s, and 76 s for SR, HR and UHR PSF reconstructions, respectively. In addition, we note

that the occurrence of stable feature values in FBP reconstructions coincided the disappearance

of negatives image values as occurs above certain exposures. In OSEM and PSF reconstructions

stability coincided with the approach of noise histograms towards normality.

Because texture feature values also depend on the GLCM quantizing scheme [46], we stud-

ied the effects of differently quantizing GLCMs on feature stability. In these calculations, we

used the full range of activity concentrations delivered by the PET/CT system for quantizing

GLCMs (S3 Fig) rather than normalizing the grey level range to the intensities in the VOI.

Without this greyscale mapping, long-term exposure stability failed to occur, although there

emerged what we term “islands of stability” (S4 Fig). The resulting feature value-exposure

curves were highly non-monotonic, and often had no distinct plateaus (S5 Fig). Variability

was up to two orders of magnitude higher (S6A Fig). However, islands of stability occurred at

similar exposures as the onsets of plateaus described earlier (S6B Fig). See Supporting Material

and Methods (S1 Text) and Supporting Results (S2 Text) for details.

In cases where the greyscale mapping was restricted to a fixed bin size scheme with a lower

bound on zero (c.f. S1 Text) as suggested by Presotto et al. [26], variability inflated to four

Fig 4. Overlaid examples of 8 bit GLCMs in units of greyscales. GLCMs calculated from HR datasets and

reconstructed with either with FBP, OSEM, or TrueX, PSF. Five selected acquisition durations are shown at their

location in respect to absolute their greyscale values. GLCM maxima are normalized to unity and are displayed with a

logarithmic color scale. Acquisition times are noted besides the PSF GLCM in the respective color.

https://doi.org/10.1371/journal.pone.0229560.g004
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orders of magnitude, with almost no asymptotic plateaus evident in the feature value-exposure

curves (S7 Fig).

Discussion

This work shows how exposure and hence image noise affects Haralick texture features on

PET/CT measurements obtained with the homogenous daily QA phantom. By varying expo-

sure (Eq 1) over a wide range and including values relevant for clinical practice, we report that

feature values varied by more than two orders of magnitude in PET/CT images of an otherwise

absolutely homogeneous phantom. Additional variability arose due to the different image

Fig 5. Exposure dependency of Haralick texture features according to different image resolution and

reconstruction algorithm calculated from 8-bit GLCMs with 256 grey levels. Measurement points are shown in the

first graph but omitted in the following ones for clarity, and only the interpolated Loess curves are shown. Loess

confidence interval are not shown. In the ASM panel, a clinical relevant exposure range is shown in grey, taken from

Krarup et al. [47]. Legend applies to all.

https://doi.org/10.1371/journal.pone.0229560.g005

PLOS ONE Haralick features vary with image noise, but exposure-invariant domains enable comparable PET radiomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0229560 March 16, 2020 13 / 23

https://doi.org/10.1371/journal.pone.0229560.g005
https://doi.org/10.1371/journal.pone.0229560


reconstruction methods, with FBP producing the most robust Haralick features and non-lin-

ear iterative image reconstructions (PSF and OSEM) producing the largest variability. Conse-

quently, image resolution correlated inversely with the exposure levels needed for obtaining

stable Haralick feature values. Most feature-reconstruction combinations showed monotonic

curves with stable plateaus (Fig 5) when plotted against exposure. Greyscale mapping pro-

duced GLCMs with congruent positions within the matrix, making full use of the available

matrix size (Fig 4). On the other hand, full-range GLCMs drifted across the matrix according

to the grey scale range occurring in the image (S2 Fig). This additional degree of freedom

could explain the non-monotonic curves and the larger variability of full range GLCMs (S4

and S5 Figs and S2 Text).

Fig 6. Magnitudes of textural feature variability. Shown is the absolute range between the lowest and highest values

in units of Bel found in the texture features across all examined exposures calculated 8-bit GLCMs (a), from 7-bit

GLCMs (b), from 6-bit GLCMs and were also found in first order statistics (d). Lilliefor’s p varied up to 12 orders of

magnitude and is therefore not shown to scale. Color Legend in (a) applies to all.

https://doi.org/10.1371/journal.pone.0229560.g006
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The large variability in feature values is a function of how PET-CT image noise propagates

into the final image: While FBP tended to produce Gaussian intensity distributions in homog-

enous VOIs in the phantom regardless of exposure, OSEM and TrueX reconstructions

approached normality only with increasing photon count. The shape of these first order statis-

tical distributions subsequently defined shapes of the (second order) GLCMs from which all

Fig 7. Onsets of stable plateaus in features calculated from differently quantized GLCMs with median exposure as

a red line. �Missing values indicate stability over the entire exposure range. Textural feature order applies to all sets of

image reconstructions.

https://doi.org/10.1371/journal.pone.0229560.g007
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Haralick texture features were eventually calculated. Consequently, once the first order distri-

butions attained normality, most of the feature values became exposure-invariant. In this

respect, the median exposure for stable plateaus (Fig 7) coincided with the exposures needed

to bring Lilliefor’s p to unity (Fig 2).

Textural features in medical images occur as a function of the spatial distribution of the sig-

nal intensity in the structure. At the same time, this signal distribution is contaminated with

noise. When signal is low within a given structure, the textural features may not emerge within

a reasonable acquisition time, given the constraints of clinical practice. Moreover, regulations

of radiation protection (diagnostic reference levels) limit the dose of injected tracer. These fac-

tors contribute to the difficulties in comparing texture features between sites.

The exposure regime where Haralick features become stable is within a clinically relevant

range. Looking at the minimal mean uptake of 4 kBq/ml (calculated from SUVmean values and

de-corrected for decay) encountered, for example, in lung cancer [47] and a median exposure

of 729 kBq/ml for HR PSF reconstructions (6-bit GLCM, Fig 7), the minimal exposure to

obtain more than 50% of exposure-invariant Haralick features is 182 s. This exceeds the 120 s

used by the authors of the study [47], and furthermore, the features ASM, CON, VAR, and

AVER remain influenced by exposure. From the minimal and maximal SUVmean in the study

[47], we calculated and displayed an approximate clinical exposure range in the ASM panel of

Fig 5, the strongest study correlate. One might ask, if better exposure control would have

decreased the number of patients needed for the study or given better results to other Haralick

features.

In dynamic clinical studies, acquisitions times for time activity curves are often very brief,

and feature analysis is not regularly done. Nevertheless, let us assume a tracer uptake of around

8 kB/ml as seen in a single lesion (de-corrected for decay) in the work of Schwartz et al. [48].

Our results in Fig 7 then suggest minimal acquisition durations of 27 s and 89 s respectively

would be required to obtain stable values on our PET/CT system. Such brief acquisition times

bring feature analysis of dynamic acquisitions into the realm of the possible in a clinical set-

ting, even though the minimal acquisition times still exceed the 10 s intervals used by Schwartz

et al at the beginning of their time activity curves. As a matter of fact, with the somewhat lower

sensitivity of their PET/CT system [49], the exposures from their 10 s intervals are approaching

those from our briefest acquisition duration. Furthermore, in the case of UHR PSF reconstruc-

tions with 25 MBq/ml�s exposure required to obtain stable VAR values (Eq 17), the acquisition

time soars to 52 minutes, assuming no increase in injected dose is sought.

Greyscale mapping, by giving stable plateaus (Fig 5) and lowering variability [24] (Fig 6),

improves the stability and comparability of all feature values, making it a prerequisite for any

feature analysis. Furthermore, stability occurs at lower exposures with greyscale mapping (Figs

7 and S5). However, this probably only holds true in a perfectly homogenous VOI, such as

used in this work: Figs 4 and S5 and S7, and the work of Presotto et al. [26] hint that the quan-

tization distance between grey level groups can introduce new variability. Such a situation

might occur were lesions of similar texture are found within differing background ACs. It is

therefore unsurprising that studies without greyscale mapped GLCMs report high feature vari-

ability [21], whereas studies using greyscale mapping yielded more reproducible results

[19,24]. Furthermore, when using a fixed bin size scheme with the lower bound on zero [26],

we found increased variability in the absence of exposures with stable plateaus (S7 Fig). How-

ever, neither feature variability (Fig 6) nor the occurrence of stable plateaus (Fig 7), were

affected much by GLCM bit size.

We tested three types of standard image reconstruction algorithms, namely FBP, OSEM

and TrueX at standard (4 mm) and high (2 mm) resolutions, and a seventh TrueX reconstruc-

tion at ultra-high resolution (1.6 mm). Through these systematic measurements, we found for
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the SR dataset a large subset of features that proved to be stable at an exposure of approxi-

mately 200 kBq/ml�s. Excursions to high resolution yielded stable features only at 10-fold

higher exposure, but low-resolution reconstructions required exposures falling in the range

encountered in clinical routine. However, we also found 14 feature-reconstruction combina-

tions with stability over the entire exposure range. On the other hand, angular second

moment, variance, cluster shade, and prominence calculated from normalized GLCMs all

showed exposure variability of up to 2.5 magnitudes when used in combination with HR

OSEM and HR PSF reconstructions (Fig 6B). In a clinical setup, there is always a tradeoff

between diagnostic utility of features and variability brought by the use of these features.

Fig 7 shows domains of stability occurring for most of the eleven features at standard reso-

lution without a requirement for high or excessive exposure times. This finding is a matter of

practical interest in clinical routine, and demonstrates the usefulness of feature values at our

standard resolution. Because our objective is to obtain the best possible image texture informa-

tion without increasing exposure, the chosen resolution has to match the clinical question.

First and foremost, a chosen image resolution must support the visualization of a lesion’s true

texture to justify the use of texture analysis over a simple tracer uptake analysis. Next, the reso-

lution must provide for sufficient voxels in a lesion to satisfy the statistical nature of Haralick

features; small lesions might simply not have enough neighboring voxels for a concise feature

description. Our results are not promising for the detection of features in lesions

measuring < 12 mm, i.e. lesions with less than three SR-voxels in any direction.

Using a daily QA phantom for estimating correct acquisition times facilitates confirming

that a given PET/CT system together with the chosen reconstruction method suffice to yield

useful images within a practical time and tracer dose limits. The required acquisition duration

will vary in conjunction with sensitivity of different PET/CT systems. All else being equal, a

system with tenfold lower sensitivity than ours would require ten times longer scan durations

for the same task. Furthermore, differing definitions of how GLCMs are calculated prevent the

use of simple look-up tables for exposures, and thus mandate individual phantom measure-

ments. With this work, we present an easily repeatable procedure to identify stable exposure

domains, where image noise will not substantially add to textural feature values. These

domains should be seen as minimal requirements for comparable radiomics in a multicenter

setting. In addition, to quantify a heterogeneous texture, one must first be able to identify truly

homogeneous areas, where any seeming texture is actually image noise.

However, there are certain caveats to using a perfectly homogeneous phantom. First, as the

covariance matrix in OSEM and PSF based image reconstructions depends on the very object

being imaged [36], making detailed predictions about the exposure dependence of texture fea-

ture values becomes difficult in heterogeneous clinical objects. Additionally, the non-Gaussian,

object-dependent PSFs of said image reconstruction algorithms [50] violate the scale space axi-

oms, stating that the imaging process should create no new image structures [51]. Particularly,

PSF based reconstructions violate the axiom of non-creation and non-enhancement of local

extrema and, and as we have shown previously [50], the scale invariance axiom. Furthermore,

due to regularization processes in these algorithms, the membership of images created with

PSF-based reconstructions in the Lie-group is disputable over the relevant scales. Therefore,

acquisition durations determined for OSEM and PSF reconstructions depict only a general

minimum time domain where proper texture analysis becomes possible. However, some of

these problems could be compounded for inhomogeneous phantom measurements with real

texture. Nevertheless, it is important to keep in mind that textural features calculated with

nearest neighborhood operations by definition represent properties found at the highest spa-

tial frequencies of the image. The highest spatial frequencies are precisely those most affected

by the actual modulation transfer function (MTF) of the tomograph, by image resolution in
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terms of sampling, by the SNR, and by non-Gaussian distributions of image noise. In fact, tex-

tural features calculated from differing sampling densities characterize different features found

at different spatial frequencies. Such features are scale-variant. This state of affairs calls for the

use of scale-invariant phantoms, because any scale-variant phantom will produce differing

results for differing spatial resolutions. As such, it can be said that a homogenous phantom fits

all spatial resolutions and reconstructions.

As a second caveat, the recovery of decays depends also on the depth of the VOI within the

body and the size of the body [31]. Using the daily QA phantom, with its inner diameter of 200

mm, can thus lead to underestimated acquisition durations in the case of deep lesions with

higher attenuation and scatter. Therefore, calculating the correct exposure for feature detec-

tion must consider the lesion depth and the applied scatter and attenuation correction. Our

work used the deepest possible location for the chosen VOI; shallower locations can only bring

an earlier onset of stable plateaus. Finally, our present use of the long-lived 68-Ge-radoinuclide

in the phantom does not emulate the decreasing signal to noise ratio occurring with the decay

of short-lived clinical PET tracers. However, this last pitfall is easily correctable by using the

expected (integral of) total decays instead of the decay-corrected activity concentration of the

nuclide for dynamic exposure calculations. Nevertheless, for the case of [68-Ga]-PSMA-11

imaging, with its 68 min physical half-life, correct exposures may be unobtainable in low

uptake lesions. When using different nuclides, their branching ratios must be considered to

calculate exposure values. Because positron trajectories are de-correlated from the MTF, differ-

ences in positron range are irrelevant between isotopes. Additionally, the transconvolution

method allows for recasting images acquired with different positron emitters [52].

Our findings stand in contrast to those of other works [28,29], where feature values were

deemed noise-invariant. Besides clearly showing emergence of texture at low exposures (Fig

1A and 1B), our data shows noise-dependence of texture. Because texture stability occurs at

sufficiently high exposures, variability is easily overlooked in studies with long acquisitions

such as performed in [28,29]. Furthermore, features calculated from neighboring voxels

(d = 1voxel) describe texture exactly at the Nyquist frequency of an imaging system. Therefore,

having a PSF with an effective FWHM of three to four times the voxel size [29], neighboring

voxels will—regardless of the underlying texture or noise—show similar intensities. In this

case, texture values will appear exposure-invariant, or the variance occurs at lower exposures.

This apparent feature stability emerges because the MTF of such an imaging system will effec-

tively filter structures and noise alike. Using a different feature definition with a displacement

d> 1voxel would be advisable in cases where image oversampling is desired.

Conclusion

Proper textural feature analysis is attainable only when respecting the limitations of the PET/

CT system, and with appropriate adjustment of the acquisition duration. While differences in

imaging properties, e.g. how the image is formed, can be overcome with transconvolution

[10], the range of sensitivity of contemporary PET/CT systems mandates individual adjust-

ment of exposure times. Otherwise, a comparative use of statistical texture features across dif-

ferent PET/CT devices or even differing reconstruction algorithms is destined to fail. In the

context of multicenter studies, harmonized acquisition protocols should match spatial resolu-

tion and sampling, but should actually use non-standard acquisition durations. These non-

standard acquisition durations require individual tailoring to a particular clinical site and

question. In this respect, we present a methodology to perform measurements to arrive at min-

imum exposures required for robust feature value identification before even proceeding to
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clinical imaging. Not only will the subsequent clinical measurements then vary less, but also

expected feature values can be estimated for a particular PET/CT site.

Choosing a sub-set of stable features together with an appropriate image reconstruction

protocol is every bit as important as adjusting exposure to fit the expected domain of stability.

Based on our findings, we recommend using different image reconstructions for feature analy-

ses (FBP or OSEM) and for viewing (PSF). When using FBP, exposure must be high enough to

avoid negative image values. We also suggest always using greyscale mapping, together with

grey level invariant feature descriptions [23]. An additional benefit of adjusting exposure for

optimal texture detection will be lower sample size requirement in multicenter studies and, as

is becoming ever more important, for machine learning algorithms in medical imaging. Fur-

thermore, harmonizing acquisition protocols as suggested above could be the key to bringing

texture feature analysis into clinical routine. Naturally, our findings from a homogeneous

phantom require confirmation in the clinic for a wide range of tumor entities and tissue types.

Furthermore, texture metrics other than Haralick features exist also merit close investigation.

Supporting information

S1 Fig. Variability of first order statistics. Mean activity concentration μc in the VOI as a

function of exposure and grouped according to different reconstruction protocols. (a) SR

acquisitions, (b) HR and UHR acquisitions. (c) Shown is the absolute range between the lowest

and highest values in units of Bel found in first order statistics. Liliefor’s p varied up to 12

orders of magnitude and is not shown to scale.

(PDF)

S2 Fig. Effect of GLCM greyscale quantization on magnitudes of textural feature variabil-

ity. (a) Cumulative histograms of absolute ranges between the lowest and highest values in

units of Bel found in all texture features from differently quantized GLCMs. (b) Histograms of

differences in feature range from differently quantized GLCMs, i.e. effect size.

(PDF)

S3 Fig. Full range GLCMs. Overlaid examples of five full range GLCMs calculated from six

differently reconstructed datasets with five selected acquisition durations. GLCM maxima are

normalized to unity and are displayed with a logarithmic color scale. Acquisition times are

noted adjacent to each SR FBP GLCM in the respective colors. NPairs denotes the number of

GLCM pairs analyzed for every color-coded matrix. Color scale in HR:FBP applies to all.

Example GLCMs for HR:PSF are not shown, due to their similarity to the UHR:PSF measure-

ments. Greyscales are truncated at 400.

(PDF)

S4 Fig. Islands of stability. Calculating islands of stability for the case of the inverse difference

moment (IDM) feature according to the seven different reconstruction protocols, and for full

range GLCMs. Plots depict the LOESS curves (colored solid lines) of the data (symbols) with

their 99% confidence intervals (dotted lines). Black solid and dotted lines show the respective

first derivatives of the Loess curves, with zero crossings at the intersections with the dashed

horizontal line. Black crosses mark the islands of stability found for the IDM. The middle leg-

end applies to all but the UHR PSF data.

(PDF)

S5 Fig. Feature values calculated from full range GLCMs. Exposure dependency of Haralick

textural features according to different image resolution and reconstruction algorithm calcu-

lated from full range GLCMs with 256 grey levels. Measurement points are shown in the first
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graph but omitted for clarity in subsequent. Loess curves are shown without associated confi-

dence intervals.

(PDF)

S6 Fig. Variability and stability in features from full range GLCMs. (a) Variability between

the lowest and highest values found in the texture features across all examined exposures calcu-

lated form full range GLCMs. (b) Islands of stability in features calculated from full range

GLCMs with median exposure as a blue line. �Missing values indicate absence of an island of

stability.

(PDF)

S7 Fig. Effect of restricted range GLCM quantizing. Exposure dependency of all examined

textural features according to different image resolution and reconstruction algorithm binned

into a GLCM with 512 grey levels restricted from zero to a maximal intensity of 25 kBq/ml.

Measurement points are shown in the first graph, but omitted subsequently. Loess curves are

shown without confidence intervals.

(PDF)

S1 Text. Supporting material and methods. Full range and restricted range GLCM quantiza-

tion.

(PDF)

S2 Text. Supporting results. Assessing exposure stability of image features when using full

range GLCMs.

(PDF)
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