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Brecciation of glacially overridden palaeokarst 

(Lower Aare Valley, northern Switzerland): result 

of subglacial water-pressure peaks? 

Water pressures at the base of active glacial overdeepenings are known to fluctuate strongly on various 

timescales. Rapid peaks in basal water pressure can lead to fracturing of the glacier bed, a process that 

has been described at numerous sites around the world, mostly based on large hydrofracture systems. 

This article presents drill cores from the base of a >100 m deep glacial overdeepening in the Lower 

Aare Valley in northern Switzerland that were investigated with high-resolution imaging (including X-

ray computed tomography) as well as compositional and microstructural analysis. The drill cores 

recovered Jurassic limestones hosting palaeokarst voids infilled with blue clay. We identify this clay, 

based on its kaolinitic composition, as siderolithic Bolus Clay but in a rather atypical variety formed 

under reducing conditions. The surfaces of the palaeokarst walls show smoothly undulating as well as 

brecciated sections with form-fit interlocking clasts, which are the result of an in situ brecciation 

process. We discuss the origin of these particular fractures and argue that they are not related to (glacio-

)tectonics or frost action. Instead, we favour an explanation by water pressure peaks that were 

transmitted to the void walls by the clayey karst filling, resulting in hydrofracturing. In addition to 

pervasive karstification and tectonic overprinting, this water pressure-driven fracturing may have 

assisted the deep incision of the overdeepening into the rheologically competent bedrock. 
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A common feature of regions currently or previously covered by ice masses are glacial overdeepenings 

(Linton, 1963; Preusser et al. 2010; Patton et al. 2016). These are troughs eroded deeply into the 

substratum by debris-laden ice and water, often several hundred metres below the surface and the local 

base level. They are confined at all sides, with an adverse distal slope as a distinct characteristic and 

therefore have strong implications for the drainage system of an overlying glacier, allowing for diverse 

water pathways, subglacial ponding of large water volumes and possibly partial floatation of the glacier 

(Cook & Swift 2012). Consequently, basal water pressures can fluctuate strongly and rapidly with peak 

values reaching multiples of the local ice overburden pressure (Kavanaugh & Clarke 2000; Cook et al. 

2006; Cook & Swift 2012). Ultimately, abrupt pressure peaks can result in rupturing of the glacier bed 

by subglacial hydrofracturing. Such processes have been identified and described in presently and 

previously glaciated areas around the world (Larsen & Mangerud 1992; van der Meer et al. 2009), 

including examples dating back to the Paleozoic (Ravier et al. 2014). Subglacial hydrofracturing is most 

frequently recognized in glacial sediments; examples in solid bedrock exist but have only rarely been 

described (Meehan et al. 1997; Lloyd Davies 2004; Phillips et al. 2013). Due to its higher tensile 

strength, fracturing of bedrock requires water pressures significantly higher than those needed for 

fracturing of unconsolidated sediment (Phillips 1972; Cosgrove 1995; Broughton 2018), and thus its 

record provides an insight into extreme conditions at the glacier base. 

This study presents surficial brecciation features encountered in the void walls of a sediment-

filled palaeokarst from the Lower Aare Valley in the Swiss Alpine foreland. Based on high-resolution 

imaging together with compositional and mirostructural data, we discuss the origin of the observed 

structures and argue that they are possibly the result of peaks in subglacial water pressure.  
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Study area 

Our study area is located in northern Switzerland, at the eastern margin of the WSW-ENE trending Jura 

mountains subdivided into the Jura fold-and-thrust belt and the northward adjacent Tabular Jura (Fig. 

1). Situated about 50 km northwest of the Alpine front, the Jura mountains are built up by Mesozoic 

sediments deposited on an epicontinental platform. In the study area, a diverse succession of carbonates, 

marls and siliciclastics dating from Triassic to Jurassic is exposed, with upper Jurassic rocks (Malm) 

prevailing at the surface (Bitterli et al. 2000; Bitterli-Dreher et al. 2007): These are grey calcareous 

marl and limestone sequences of the Wildegg Fm. and overlying light-coloured micritic limestones of 

the Villigen Fm. In the Early Paleogene, the study area was uplifted on the forebulge of the approaching 

Alpine orogeny, which led to erosion and karstification of the Mesozoic carbonate plateau, while further 

south the Molasse Basin formed (Pfiffner 1986; Burkhard & Sommaruga 1998; Bitterli-Dreher et al. 

2007). Karstification occurred mostly during Eocene times, when subtropical climate conditions 

prevailed and siderolithic deposits (formerly Bohnerz Fm.) developed from soil and limestone 

dissolution residues – a process that locally continued until the Miocene (Baumberger 1923; Hofmann 

1991; Hofmann et al. 2017). These deposits consist of kaolinitic clay frequently referred to as “Bolus 

Clay” and may contain iron pisoliths and quartz sand (Baumberger 1923; Hofmann 1967). In 

Oligocene-Miocene times, Molasse sediments started to accumulate in the study area, with fine- to 

coarse grained clastics of the Lower Freshwater, Upper Marine, and Upper Freshwater Molasse (Berger 

et al. 2005; Bitterli-Dreher et al. 2007). The deposition ended in Late Miocene when the Jura fold-and-

thrust belt was formed by thin-skinned deformation above an evaporitic decollement horizon 

(Laubscher 1962; Burkhard 1990). 

During the Pleistocene, the study area was affected by a number of advances of Alpine glaciers 

(Graf 2009; Preusser et al. 2011). At the confluence area of the rivers Aare, Reuss and Limmat, the 

elongated Gebenstorf-Stilli Trough formed, a finger-like glacial overdeepening extending northward 

from the bowl-shaped Birrfeld basin (Bitterli-Dreher et al. 2007; Fig. 1). This 10 km-long trough has 

been incised into the Jura mountains by subglacial erosion, and reaches a depth of ~100 m below surface 

or 80 m below the lowest Pleistocene base level (300 m a.s.l.; Graf 2009). The overdeepened part of 
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the trough below this base level does not exceed 800 m in width (Pietsch & Jordan 2014). The contrast 

in cross-section from the wide Birrfeld basin in the south (Nitsche et al. 2001) towards the steeper and 

narrower Gebenstorf-Stilli Trough in the north is interpreted as a result of changing bedrock lithology 

from rather soft, poorly lithified Molasse sandstones towards the more resistant limestones and marls 

of the Jura mountains (Bitterli-Dreher et al. 2007). The Gebenstorf-Stilli Trough lies outside the local 

LGM glacier extent and was presumably eroded during the late Middle Pleistocene (Bitterli-Dreher et 

al. 2007; Graf, 2009). Today, the trough is infilled with sediment.  

Erosive glacial overdeepening below the local base level requires that the adverse slope of the 

overdeepened basin does not exceed 1.2-1.7 the ice surface slope, as otherwise the ascending water will 

freeze and prevent flushing of the eroded material from the overdeepening (Hooke, 1991; Alley et al. 

1997; Cook & Swift 2012). Hence the glacier ice must have towered considerably above the ground 

surface during the Gebenstorf-Stilli Trough formation, with more than 150 m of ice overlying the 

bedrock at the study site. The most elevated glacial deposits in the study area lie ~600 m a.s.l. (Graf et 

al. 2006; Bitterli-Dreher et al. 2007), corresponding to a maximum ice thickness of more than 350 m 

above the base of the Gebenstorf-Stilli Trough. The position of the study site, 18 km inward from the 

ice margin during the most extensive Möhlin Glaciation (Keller & Krayss 2010; Preusser et al. 2011), 

allows for an alternative estimation. LGM ice surface reconstructions give an average glacier thickness 

of ~350 m at the corresponding position (Jäckli 1970; Keller & Krayss 1993; Bini et al. 2009), 

suggesting a maximum possible ice thickness of ~450 m above the bottom of the Gebenstorf-Stilli 

Trough during the Pleistocene. 
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Methods 

Core recovery and initial description 

The borehole QGBR (Gegg et al. 2019) is located in the southern part of the Gebenstorf-Stilli Trough 

on the eastern bank of the river Reuss (47.4832° N, 8.2364° E; Fig. 1). It was drilled in summer 2018 

in context of the Quaternary investigation program of the Swiss National Cooperative for the Disposal 

of Radioactive Waste (Nagra). Target of this borehole was the infill of the glacially overdeepened 

Gebenstorf-Stilli Trough as well as the uppermost ~10 m of the bedrock. The 10 cm diameter bedrock 

cores, focus of this study, were drilled by wireline using a triple-tube core barrel where the core is 

protected by a plastic liner. A borehole geophysical survey recorded natural gamma ray measurements 

and an acoustic borehole image. 

The cores were analyzed at the Institute for Geological Sciences, University of Bern (IfG, 

UniBe) with a Geotek multi-sensor core logger (MSCL), which recorded bulk density by gamma 

attenuation, p-wave velocity and magnetic susceptibility in a 5 mm depth-resolution. X-ray computed 

tomography (CT) scans were acquired at the Institute of Forensic Medicine of UniBe and visualized 

using the freeware programs 3D Slicer (www.slicer.org; Kikinis et al. 2014) and ImageVIS 3D 

(www.sci.utah.edu/software/imagevis3d; Fogal & Krüger 2010). Detailed lithological and structural 

descriptions were carried out, including high-resolution core photography recorded with a line-scan 

camera.  

Geochemical and mineralogical analysis 

Bulk samples comprising typically ~40 g of material were collected for geochemical and mineralogical 

analysis. Total organic and inorganic carbon (TOC/TIC) were determined by combustion of small (few 

mg) sample amounts and analysis of the combustion gas in a thermal conductivity detector, and TIC 

was converted to CaCO3 content by multiplying with a stoichiometric factor of 8.33. Mineralogical 

compositions were determined by x-ray diffraction, with bulk and clay mineralogy being measured in 

two separate approaches. For bulk mineralogy, two dried and powderized samples were spiked with 

Al2O3 powder as an internal standard and pressed into sample holders. The measurements of bulk 
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mineralogy were taken with an X’Pert PRO diffractometer (Cu tube, 45 kV, 40 mA, 5°–75° 2θ). The 

mineralogical composition was determined by a semi-automatic Rietveld refinement in HighScore Plus. 

Clay mineralogy was determined from a set of seven oriented samples which were prepared by pipetting 

a few drops of a clay suspension obtained by Atterberg separation onto glass plates. The glass plates 

were left to dry and then placed in an ethylene glycol atmosphere at 50 °C for at least 24 h in order to 

saturate swellable clay minerals within the sample. Additional oriented samples were heated to 550 °C 

for at least 1.5 h in order to remove kaolinite and check for the presence of chlorite. Measurements were 

taken with a Philips PW1830 (Cu tube, 40 kV, 30 mA, 2°–40° 2θ), and clay mineral abundances were 

calculated from relative peak intensities (smectite at ~5.2° 2θ, illite at ~8.8° 2θ, kaolinite at ~12.5° 2θ). 

We employed the 100%-approach with in-house mineral intensity factors, thus the absolute results 

should be treated with caution (Kahle et al. 2002). Trace minerals were identified with the scanning 

electron microscope (SEM) at IfG. 

Thin section and microscopic analysis 

Despite the fragility of the limestone breccia we succeeded in producing a thin section ~2.5 cm in 

diameter. The sample was collected from the wall of a karst void at the edge of the core at 112.59 m 

depth. The breccia consists of limestone fragments between 2 and 10 mm embedded in blue clay. The 

sample was evacuated and impregnated with epoxy before being horizontally cut and ground. Finally, 

the section was polished with 6 and 3 μm diamond paste. Thin-section analysis was done with an 

Olympus BX41 microscope with attached SC30 camera. Additionally, one bulk sample (114.98 m 

depth) was used for palynological screening. 
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Results 

Stratigraphy and macroscopic description 

The borehole Gebenstorf-Brüel (QGBR) terminated at a depth of 123.5 m. The Pleistocene infill of the 

overdeepening below an anthropogenic refill (0.0-8.0 m depth) comprises glaciofluvial gravels (8.0-

23.6 m) underlain by glaciodeltaic or -lacustrine sands (23.6-108.8 m) and glacial till (108.8-111.5 m) 

(Fig. 2; Gegg et al. 2019). The bedrock was reached at 111.5 m depth and it consists of massive, light 

olive- to yellowish-grey micritic limestones of the Villigen Fm. of early Late Jurassic age (Oxfordian - 

Kimmeridgian; Bitterli et al. 2000). The transition from the till to the underlying bedrock is marked by 

a sharp decrease in the natural gamma log and magnetic susceptibility, and an increase in bulk density 

(Fig. 2; Gegg et al. 2019). Several macrofossils, possibly sponges, and dark nodules with diameters of 

up to 2 cm were observed, as well as frequent stylolites in varying orientations ranging from horizontal 

to vertical. 19 faults were logged along the 12 m bedrock core section, 15 of which could be correlated 

to faults detected on the acoustic image of the borehole wall allowing for orientation measurements. 14 

of these faults dip towards southeast with dip angles between 5° and 31°, and one dips westwards at an 

angle of 17° (Fig. 2). The five non-correlated faults have dip angles between 5° and 45°.  

The intervals 111.5-119.8 m and 121.0-121.5 m are penetrated by a 3D network of few 

millimetre- to several centimetre-wide interconnected voids identified as palaeokarst features. In the 

description of these features, we do not differentiate between incipient dissolution features, conduits or 

cavities, but simply refer to them as karst voids. The voids are filled with clayey sediment and angular 

limestone clasts up to fine gravel-size range. When fresh, the clayey matrix has a distinct turquoise blue 

colour – with some olive patches – that fades upon oxidation to blueish green and later to greenish or 

blueish grey (Fig. 3). The filling displays a scaly fabric (Maltman 1994) that appears strongly 

consolidated and breaks in shards with shiny, slickenside-like surfaces. Palynological screening did not 

reveal any pollen within the clay. Two different void wall morphologies can be observed: (i) smoothly 

undulating void walls with rough dissolution surfaces coated by a fine layer of dark brown clay (e.g. 

112.5-112.9 m; Fig. 3B); and (ii) surficially brecciated void walls, with clayey filling material intruding 

into the fractures (e.g. 111.6-111.8 m; Fig. 3C). In several places (e.g. 111.6-111.7 m), the fragments 
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of the resulting limestone breccia are form-fit and interlocking, with only a narrow clay layer in 

between. Limestone fragments are usually limited to a few cm-wide zone around angular, fractured 

sections of the rock wall, no ‘free-floating’ clasts are observed in the larger cavities. In addition, we 

observe narrow (below 1 cm), sometimes branching fractures filled with angular host rock fragments 

and no or little clay extending from wider voids into the limestone (e.g. 116.1-116.3 and 118.4-118.8 

m; Fig 3D).  

Mineralogy and geochemistry of the palaeokarst filling 

Bulk X-ray diffraction data of two samples (112.48 and 116.35 m depth) show that the void filling in 

borehole QGBR consists of ~85% clay minerals with some quartz (~10%) and calcite (up to 5%). The 

latter is in agreement with geochemical (TIC) data. The clay mineralogical composition is dominated 

by kaolinite (~60-80%) with some illite and smectite (Fig. 2, Table S1). Minor amounts of chlorite 

could be detected in all samples. Furthermore, few autigenic baryte crystals were identified in the SEM. 

TOC contents range between 0.1-0.2%. 

Microstructures  

Microscopic analysis of the horizontally oriented thin section at 112.59 m depth confirmed that the 

breccia-like material at the palaeokarst wall consists of limestone with vein-like fractures, which not 

always can be distinguished from narrow karst voids, filled with clayey sediment. These randomly 

oriented features can be as narrow as few 10s of micrometres. Their infill consists of a light, clayey 

matrix, few sand grains and occasionally larger clasts, which are frequently form-fit interlocking. The 

clasts consist of limestone not distinguishable from the host rock (Fig. 4A). The limestone bedrock 

contains stylolites, one of which was observed to gradually widen and transition into a lighter clay-

filled fracture/void as described above (Fig. 4B). The sediment within the fractures/voids is vaguely 

undulatory laminated parallel to their margins, and diffuse lobate structures are observed in a ~1 mm 

wide fracture/void (Fig. 4C, D). Under crossed polarizers, optical anisotropy within the clay filling is 

evident (Fig. 4E).  
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Discussion 

Origin of the karst void infill 

A number of possible origins for the clayey material infilled into palaeokarst voids in the drill cores are 

tested by comparing the clay-mineral compositions to reference samples (Table S1). These include i) 

reworked Molasse deposits, which may show a variety of bright colours including greenish and blueish 

tones (Bitterli-Dreher et al. 2007), ii) infiltrated or injected subglacial till, and iii) pure insoluble residue 

from limestone dissolution. These reference materials have clay-mineral compositions dominated by 

illite, which agree with various analyses reported in literature (e.g. Peters 1969; Schmidt-Kaler & Salger 

1986; Hofmann 1991; Schegg & Leu 1996), but are very different from the kaolinite-rich karst fillings 

observed in QGBR. Therefore, we rule out a Molasse as well as subglacial or pure residual origin of 

the karst fillings. 

Illite-dominated clay mineral compositions are typical for sediments originated by prevailing 

physical erosion, as would be expected e.g. under a cold (Pleistocene) climate, while high abundances 

of kaolinite and smectite point to intense chemical weathering under warm conditions (Weaver, 1989; 

Chen et al. 2019). Palaeokarst voids in the Alpine foreland are frequently infilled with siderolithic 

sediments. These are of Eocene, possibly up to Miocene, age and developed from Terra Rossa-type soil 

formations under a subtropic climate as well as limestone dissolution residues (Baumberger 1923; 

Hofmann 1967; Hofmann et al. 2017). They consist of mostly kaolinitic Bolus Clay (“Boluston”) with 

concentric iron oxide pisoliths (“Bohnerze”) and some detrital quartz sand (Hofmann 1967; Hofmann 

1991; Bitterli-Dreher et al. 2007). Two reference samples of Bolus Clay from borehole Bülach-1-1 

(47.5427° N, 8.5204° E, 22 km E of QGBR) show clay mineral compositions of ~60% kaolinite and 

40% of illite, and 5% of smectite in one of the samples (Table S1) – values that are similar to those of 

the karst filling in QGBR.  

While typical Bolus Clay is Fe- and Al-rich and has a prominent ochre or red colour (Hofmann 

1991; Bitterli-Dreher et al. 2007; Hofmann et al. 2017; see also Fig. 6), in boreholes and especially in 

contact with limestone, blueish or green varieties of the Bolus Clay have been encountered (Hofmann 
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1967; Lemcke et al. 1968; Matter et al. 1988a; Matter et al. 1988b). In the case of Nagra borehole WEI-

1 near Weiach (18 km NE of QGBR), a downcore colour change of the Bolus Clay from ‘typical’ ochre 

towards blue-green is evident (Matter et al. 1988a). This evolution coincides with a change in clay 

mineralogy from almost pure kaolinite towards 65-70% kaolinite and 30-35% smectite (Matter et al. 

1988a). Sediment petrography as well as clay mineral composition of the blueish Bolus Clay thus agree 

well with our palaeokarst fillings. We interpret the latter to consist of Bolus Clay in a blue-green variety.  

The blue-green variety of the Bolus Clay is characterized by the absence of iron pisoliths in 

QGBR as well as in other boreholes (e.g. Lemcke 1955; Matter et al. 1988a). Instead, minor amounts 

of pyrite may be present (Lemcke 1955; Matter et al. 1988a). Further mineralogical data of the borehole 

Weiach show that goethite constitutes ~10% of the typical Bolus Clay but is not detectable within the 

blue-green clays (Nagra, unpubl.). The downcore development from typical ochre towards blue-green 

Bolus Clay therefore appears to involve the removal of iron oxides as well as the formation of smectite, 

likely under reducing conditions (cf. similar reduced clays in modern cave sediments of Papua New 

Guinea; Gillieson 1986). The smectite may act as an iron sink and could be the source of the distinct 

colour of the clays (Kohyama et al. 1973). The absence of iron minerals in the blue Bolus Clay also 

explains the generally low signal levels in magnetic susceptibility of the QGBR bedrock cores with 

only slightly increased values at larger karst voids (Fig. 2). 

The lowermost two Quaternary till samples of QGBR (110.94 and 111.04 m depth) show a very 

similar, kaolinite-dominated clay mineral composition. This, together with the olive-blue colour of the 

till matrix in the lowermost 50 cm, is interpreted as a result of incorporation of Bolus Clay into the till, 

probably due to subglacial erosion of karstified and Bolus Clay-filled limestone, and not as a result of 

the mobilization and injection of till into the karst fillings. This is supported by the uniformly low 

carbonate content of the Bolus Clay throughout the core, which is significantly lower than in the till (up 

to 5% and ~35%, respectively; see Fig. 2). An insertion of till into the void filling would be visible by 

increased carbonate contents in the upper samples. Also, clasts of lithologies different from the 

karstified limestone are frequent in the till, but do not occur within the Bolus Clay. 
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Process of limestone brecciation  

Non-sedimentary origin of the breccia. – In the palaeokarst in QGBR we observe a combination of 

smoothly undulating wall rock morphologies and zones of brecciated host rock as well as limestone 

fragments embedded in the Bolus Clay filling. While sedimentary breccias with locally derived clasts 

are commonly deposted in karst voids or caves (Ford & Williams 2013), the breccia in QBR cannot be 

explained by a simple depositional process. Here, limestone clasts are in most cases restricted to a few 

centimetre-wide zone around angular, fractured sections of the palaeokarst wall but neither concentrated 

at the bottom, nor in horizontal layers within voids, as would be expected in a sedimentary karst breccia 

(e.g. Guendon 1984: photo 1). ‘Free-floating’ isolated clasts are absent within larger voids, which 

indicates that the palaeokarst filling originally consisted of well-sorted pure Bolus Clay without larger 

fragments. The observations point towards rock-wall fracturing after infilling of the karst voids resulting 

in the formation of an in situ-breccia. We frequently observe form-fit interlocking clasts which at 

several places can be pieced together via 2D slices of the CT scans and fit into breakouts of the void 

wall (Fig. 5), which supports the idea that they are commonly derived from the rock wall that has been 

brecciated in situ. Additionally, the smoothly undulating, unbrecciated void walls are coated by a thin 

layer of dark brownish clay, which we interpret as a primary feature developed during karstification. 

This layer neither occurs on the brecciated surfaces nor on the limestone fragments embedded in the 

Bolus Clay, suggesting that these surfaces are younger than the unbrecciated palaeokarst walls. 

Tectonic deformation. – In the 12 m long bedrock core section of QGBR a total of 19 faults were logged 

with remarkably uniform shallow dips towards southeast (Fig. 2). This speaks for their interpretation in 

the context of the Jura fold-and-thrust belt formation and is consistent with observations of outcropping 

corresponding limestones in the area (Madritsch 2015). This tectonic preconditioning likely facilitated 

the incision of the Gebenstorf-Stilli Trough and potentially played a role in the limestone brecciation 

observed in the drill cores. Despite the frequent occurrence of faults, the bedrock does however not 

appear strongly tectonized. While the karst wall surfaces are locally intensively brecciated, the larger-

scale structure of the palaeokarst is intact. Evidence for major deformation of the karst walls and infill 

is lacking, e.g. clasts aligned in bands indicative of localized shearing (Lloyd Davies 2004). The 
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distribution of limestone fragments in close vicinity to the palaeokarst walls, as well as the possibility 

to piece adjacent clasts together, further suggests that only limited clast dislocation and Bolus Clay 

deformation occurred during or after the brecciation of the karst wall surfaces. Also, in contrast to the 

observed bedrock faults, the surficial fractures in the karst void walls show no preferred orientation 

(e.g. Fig. 3C). 

More heavily tectonized Bolus Clay was recently recorded in Nagra borehole Bülach-1-1 

(47.5427° N, 8.5204° E). It was drilled 22 km E of QGBR in a comparable position north of the Jura 

fold-and-thrust belt and dissected a gently dipping thrust fault branching off a complex E-W striking 

triangle zone (Malz et al. 2016; Nagra 2019). At a depth of over 500 m, Bülach-1-1 recovered Bolus-

Clay-filled palaeokarst with large-scale shear planes, mirror-like faults and planar (fault-bound) 

contacts between rock wall and karst filling as well as large angular, but hardly form-fit limestone 

fragments dispersed in the Bolus Clay and partly aligned in bands (Fig. 6). In contrast, brecciated karst 

wall surfaces that are abundant in QGBR were rarely encountered in Bülach-1-1. Considering the 

deformation features in Bülach-1-1 we argue that the small-scale brecciation encountered in QGBR is 

not due to the comparatively mild tectonic deformations observed here. Instead, the brecciation of the 

karst void walls is regarded as the result of a secondary deformation process that occurred independently 

from tectonic structures, but not independently from the karst voids. 

Glaciotectonism. – Planar shearing under overriding glacier ice can produce abundant brecciation 

features, as presented by Passchier et al. (1998) in glacial sediments from borehole CRP-1 at Roberts 

Ridge, Antarctica. CRP-1 recovered several brecciated intervals that contain a variety of breccia types 

commonly separated by sharp horizontal boundaries (Passchier et al. 1998). In contrast, in QGBR the 

style of brecciation is uniform but without a preferred orientation suggesting an undirected underlying 

process. The breccias in CRP-1 also span the entire core width and thus appear to be more laterally 

extensive than in QGBR, where the brecciation originates from the sediment-filled palaeokarst voids 

and does not reach further into the limestone than a few centimetres. We thus infer that the brecciation 

features in QGBR are not the result of glaciotectonism caused by subglacial shearing of the karstified 

limestone. Also, a glaciotectonic origin of the faults observed in QGBR is unlikely, as such faults would 
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be expected to dip steeply into the flow direction, i.e. towards north (van der Wateren, 2002; Lloyd 

Davies, 2004). 

Frost action. – Freezing of water results in a volume increase by almost 10%, which can lead to pressure 

build-up and fracturing in porous rocks. Subglacial overdeepening erosion, in contrast, occurs where 

the glacier is warm-based, either by debris-laden ice sliding over its bed, or by subglacial meltwater 

(Dürst Stucki & Schlunegger 2013). Below warm-based glaciers, a water film is generated by pressure 

melting at the stoss side of irregularities in the bed (Weertman 1957, 1964). At the lee side of these 

irregularities, it can regelate. However, the regelation of water from this sub-millimetre thick film 

(Hallet 1979) may induce some traction and shearing of the bed, but likely not brecciation several metres 

below the bed surface. 

With permafrost reaching as deep as 150 m into the bedrock during Pleniglacial conditions 

(Delisle 2003; Haeberli 2010), a temporary entire freezing of the karstified limestone in QGBR, while 

improbable, cannot completely be excluded. However, it is unlikely that this freezing could have 

resulted in frost bursting of the rock by volume expansion. To be extensive, this process demands rapid 

freezing so that pore pressures cannot be relieved by the migration of pore water (Matsuoka & Murton 

2008) and a large number of freeze-thaw cycles (Potts 1970). Both is implausible under more than 150 

m of glacier ice, where the rock is well insulated and thermally buffered. The same is true for rock 

fracturing by ice segregation and ice lens growth (Hallet et al. 1991; Murton et al. 2006; Matsuoka & 

Murton 2008) which is possible only if a threshold overburden pressure is not exceeded. This threshold 

overburden pressure is ~80 kPa in the idealized model case (Rempel, 2007), which corresponds to an 

ice thickness of less than 10 m. 

Water pressure-driven brecciation. – In order to explain the surficial brecciation features in the 

palaeokarst walls of Gebenstorf-Brüel, we favour fracturing driven by subglacial water pressure, which 

may be regarded as hydrofracturing in the widest sense and at a small (centimetre-decimetre) scale. 

Subglacial water pressures below warm-based glaciers are known to fluctuate on a number of timescales 

reaching values that exceed ice overburden pressure by a factor of up to 15, even in non-overdeepened 

settings (Kavanaugh & Clarke 2000). The build-up of high pressures is facilitated especially if water 
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cannot escape from the subglacial drainage system. This is possible either if the subglacial drainage 

system is very inefficient or if the glacier front is frozen to the ground at the margin of the proglacial 

permafrost (Boulton & Caban 1995; Cook & Swift 2012). A rapid increase in subglacial water volume 

and pressure is possible e.g. during a jökulhlaup further up in the drainage area (Roberts et al. 2000; 

Stumm 2010). A potential source for a large meltwater outbreak could be the Birrfeld basin just few 

kilometres south of the drill site (Fig. 1). However, even without catastrophic events, basal water 

pressures have been shown to fluctuate considerably with distinct daily peaks during the melting season 

(Harper et al. 2002; Fudge et al. 2008). If such water pressure peaks exceed the sum of overburden and 

tensile strength of the bedrock – or overburden only, if pre-existing bedrock fractures can be reactivated 

– brittle deformation can occur, typically as (subglacial) hydrofracturing (Cosgrove 1995; Boulton & 

Caban 1995; Rijsdijk et al. 1999; Jolly & Lonergan, 2002). Subglacial hydrofracturing has been 

described in numerous places around the world, most frequently in glacial sediments, but it also occurs 

in solid bedrock, where highest water pressures are required (Meehan et al. 1997; Lloyd Davies 2004; 

Phillips et al. 2013; Broughton 2018). Hydrofracture systems can extend over several tens of metres 

(Kumpulainen 1994; Phillips et al. 2013; Phillips & Hughes 2014). The fractures can be several 

decimetres to few metres wide and are in most cases filled by sediment that is laminated parallel to the 

fracture walls (Larsen & Mangerud 1992; Rijsdijk et al. 1999; van der Meer et al. 2009). Complex 

internal structures with laminae of different grain sizes that may be graded or cross-bedded suggest that 

hydrofracture systems are regularly open for a prolonged time with sustained, but fluctuating water 

through-flow (Phillips et al. 2013; Phillips & Hughes 2014).  

During erosion of the Gebenstorf-Stilli Trough glacier ice must have had a considerable 

thickness of more than 150 m of ice overlying the bedrock at the site of QGBR. This is equivalent to an 

overburden of ~1.4 MPa, which is already at the same magnitude as the tensile strength of limestone 

(Nazir et al. 2013; Schön 2015). However, in an interconnected drainage system up to the accumulation 

area of the glacier occupying the Gebenstorf-Stilli Trough located high up in the Alps, peak hydraulic 

heads exceeding 1000 m are possible (Kavanaugh & Clarke 2000; Beaney & Hicks 2000), e.g. during 

a jökulhlaup. Such a drainage system discharges a large area, which may deliver pulses of large amounts 
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of meltwater (Boulton & Caban 1995). The similarly thick Laurentide Ice Sheet in Canada has been 

shown to produce hydraulic heads and water pressures sufficient for fracturing and explosive pressure 

release through 100s of metres of bedrock (Christiansen et al. 1982; Broughton 2018). Fracturing driven 

by subglacial water pressure at the site of QGBR is therefore well conceivable. 

The observed surficial brecciation features in the drill cores of QGBR fit some previous 

descriptions of glacially induced hydrofractures, e.g. by Broughton (2018), and are similar in 

appearance to experimental hydrofractures (Guo et al. 2014; Chen et al. 2015). Bolus Clay within the 

fractures (Fig. 3C) shows some microstructures indicative for viscous deformation, fluidisation, and 

dewatering (Maltman 1994). These are wall-parallel lamination (Fig. 4C), diffuse ball-and-pillow or 

drip structures (Fig. 4D; Maltman 1994; van der Meer et al. 2009), as well as an optical anisotropy of 

the clay (Fig. 4E), all of which are encountered in subglacial hydrofracures (van der Meer et al. 2009). 

However, open hydrofractures with sustained water through-flow do not seem to have existed in QGBR. 

Macroscopic sedimentary structures indicative for flow are lacking in the palaeokarst voids. There is 

further no evidence for the insertion of till or sediment-laden water into the karst filling. For example, 

carbonate contents in the Bolus Clay throughout the whole cored section are uniformly low with one 

magnitude less than in the overlying till (Fig. 2). The distribution of limestone fragments in close 

vicinity to the palaeokarst walls they are derived from, as well as the mosaic-like fit of adjacent clasts 

(Fig. 5), indicates that only limited deformation and material transport over not more than a few 

centimetres occurred within the karst voids during or after brecciation. Thus, classical subglacial 

hydrofracturing releasing pressure via fractures that allow for sustained water through-flow cannot be 

postulated for QGBR. Instead, a different model of pressure-driven brecciation at the site of QGBR is 

proposed, which may be regarded as hydrofracturing in the widest sense, i.e. a process that is driven by 

water pressure but does not culminate in the opening of highly permeable fractures with sustained water 

through-flow (Fig. 7).  

During erosion of the Gebenstorf-Stilli Trough, the palaeokarst filling was in direct contact with 

water at the temperate glacier base, and its pressure was transferred to the porewater within the clay. In 

addition, pressurized water from the glacier base may have been supplied to deeper voids via joints or 
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faults, although we do not see evidence for this mechanism. Also, no evidence for water entering the 

karst system along the boundary between karst wall and clay infill occurs, neither in the shape of 

sedimentary structures nor as input of macroscopically or chemically identifiable till-derived material. 

We infer that the Bolus Clay was water-saturated and has acted as a transmitter of pressure peaks from 

the subglacial system – be it pure water or a wet till bed – to the karst walls. These porewater pressure 

peaks may have been further amplified by ground shaking due to a small earth- or ice quake as a 

potential side effect of the increase in basal water availability (Ozaydin & Erguvanli 1980; Mortezale 

& Vucetic 2013). In response to the rapid pressure increase fracturing occurred at points of weakness. 

These points of weakness could be stylolites (see Fig. 4B), but also pre-existing fractures that are 

abundant due to the local tectonic preconditioning. The observed limestone brecciation may have 

occurred at once or be the result of multiple brecciation events. It appears to be restricted to a small 

scale with centimetre- to decimetre-long fractures. Similar brittle features have been encountered at the 

margins of larger-scale subglacial hydrofractures in western Canada by Broughton (2018).  

It is inferred that the brecciation of the limestone resulted in steep pressure gradients, i.e. 

considerable stress acting on the palaeokarst infill in vicinity of the newly formed fractures, and that 

this allowed for the semi-plastic intrusion or viscous flow of small volumes of Bolus Clay into them. 

Natural clays are known to display a pronounced shear-thinning or thixotropic behaviour (Coussot 

1995; Fossum 2012). Laboratory experiments have shown that under stress, the viscosity of sufficiently 

wet clay can decrease by six orders of magnitude (Khaldoun et al. 2009). The remobilized clay was 

strongly deformed, resulting in a diffusely laminated microstructure (Fig. 4C), including ball-and-

pillow/drip structures (Fig. 4D; Maltman 1994; van der Meer et al. 2009). Internal shearing during the 

intrusion led to the alignment of clay minerals within the Bolus Clay, visible as anisotropy of the 

material (Fig. 4E). When the deformation ceases, thixotropic materials recover and their viscosity 

increases again (Barnes 1997). The deformation and re-solidification under high pressures is assumed 

to be the reason for the consolidated appearance of the karst filling that approaches a scaly fabric 

(Maltman 1994). Some fractures (Fig. 3D) apparently were not infilled with clay and remained partly 
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open, containing only some limestone fragments; these could however be washed out by the drilling 

fluid. 

Palaeokarst substratum and subglacial hydrology  

Karstified bedrock can have a strong influence on the drainage network of an overriding glacier. It is 

usually highly permeable, thus subglacial water can enter the subsurface karst network and be efficiently 

drained from the glacier base (Smart 1983, 2004). The result can be a warm-based but largely 

unlubricated glacier whose sliding velocity and therefore erosional activity is greatly reduced (Smart 

1983; Steinemann et al. 2020). The observations on our drill cores, however, show that this was not the 

case at the site of QGBR. The clayey pre-Pleistocene filling was obviously not flushed out of the 

palaeokarst system by subglacial water draining into it. There is also no evidence for any input of 

subglacial sediment into the Bolus Clay. This shows that the palaeokarst at our study site was effectively 

sealed and deactivated by cohesive clay-sized sediment. Moreover, the inferred brecciation of the wall 

rock under water pressure peaks indicates that the karst void filling withstood even highest water 

pressures. Thus, a karstified and sediment-infilled substratum does not necessarily have a distinct effect 

on the hydrology of an overriding glacier when compared with an unkarstified one. 
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Conclusions 

We encountered extensive palaeokarst voids within Upper Jurassic limestone underlying a glacial 

overdeepening in the borehole QGBR. The palaeokarst is infilled and sealed by clayey sediment with a 

prominent blue colour. Based on its kaolinitic composition, we identified it as a variety of siderolithic 

Bolus Clay of presumably Eocene age. This variety is characterized by a significant smectite content 

and the absence of iron oxides, and likely developed under reducing conditions. 

We infer that the karstified and brecciated limestones recovered in QGBR depict an interaction 

between a glacier and its subglacial drainage system. The brecciation occurred in situ at the boundary 

between limestone and karst filling. We interpret that it is unlikely the result of (glacio-)tectonic 

deformation or frost action but was caused by peaks in subglacial water pressure. We further suggest 

that the karst void filling acted as a pressure transducer from the subglacial drainage system to the void 

wall, where small-scale rock failures occurred at points of weakness. 

In summary, the bedrock in QGBR was weakened by pervasive palaeokarst and abundant 

tectonic faults, which likely favoured the deep erosion of the Gebenstorf-Stilli Trough into otherwise 

competent bedrock. The inferred water-pressure driven fracturing of the karstified limestone below the 

overriding glacier may have been an additional factor facilitating erosion of the subglacial 

overdeepening. 
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Figures 

 

Fig. 1. Map of the study area displaying the position of the drillsite QGBR (47.4832° N, 8.2364° E), 

LGM ice extent, surface geology (simplified), and the position of the Gebenstorf-Stilli Trough as 

marked by thick Quaternary sediments. The inset on the left shows the regional geological context and 

the red rectangle indicates the study area at the eastern end of the Jura mountains.  
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Fig. 2. Overview plot of the 12.5 m bedrock section at bottom of the borehole QGBR (total depth 123.5 

m) in the local stratigraphic context. Core photograph and X-ray CT image column (low-density 

material (palaeokarst filling) is light blue, high-density material (limestone) is black) are horizontally 

stretched by a factor of ~5. Dip direction of faults is given where correlation with ABI is possible. 

Gamma density is displayed as 20 cm moving average (black) and raw data (grey).  
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Fig. 3. Palaeokarst voids: infill and wall morphologies. Note drilling-related surface grooves on the 

limestone surfaces. A. Photograph of the fresh core. Note the prominent blue colour of the clayey 

palaeokarst filling. Inset: dried filling broken into shards. B. Smoothly undulating void walls (112.5-

112.8 m depth; left: core photograph, right: CT image, low-density material (clay filling) is light blue, 

high-density material (limestone) is transparent/black). Note the dark clay coating on the wall surfaces 

(inset). C. Brecciated void wall surfaces (111.6-111.8 m depth; left: core photograph, right: CT image). 

D. Narrow fractures filled with angular host rock fragments but only little clay (116.2-116.4 m depth; 

top: core photograph, bottom: CT image). 
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Fig. 4. Microstructures in karstified limestone of QGBR (horizontally oriented thin section at 112.59 m 

depth). A. Palaeokarst void/fracture infilled with interlocking limestone fragments embedded in Bolus 

Clay. B. Transition of stylolite (dashed) into clay-filled void/fracture. C. Diffusely laminated Bolus 

Clay filling of void/fracture. D. Lobate microstructures (‘ball-and-pillow structures’, Maltman 1994; 

‘drip structures’, van der Meer et al. 2009) in the filling of a larger void/fracture. E. Optical anisotropy 

of the clayey infill under crossed polarizers (black lines are cracks related to the preparation process). 
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Fig. 5. Limestone with palaeokarst, vertical 2D slice of a CT scan at ~112.5 m depth (left). The 

limestone can be distinguished well from the palaeokarst infill (middle). Note fragments of limestone 

embedded within the Bolus Clay (red outline). These fragments can be pieced back together and fit into 

breakouts of the wall rock (right), giving an impression of the void wall prior to brecciation.   
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Fig. 6. Indicators of strong tectonic overprinting of karstified, Bolus Clay-filled limestone in Nagra 

borehole Bülach-1-1. Left: fragments aligned in discrete band indicative of shearing (541.3-541.5 m 

depth). Middle: Larger palaeokarst void with dispersed, non-form-fit fragments and dissected by a fault 

(arrow; 549.8-550.0 m). Right: Fault plane with calcite mineralization (arrow, 550.8-551.0 m). 

Photograph courtesy of Nagra.  
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Fig. 7. Conceptual model of water pressure-driven brecciation in QGBR. The Bolus Clay filling in the 

palaeokarst voids was in direct contact with the subglacial drainage system of the overriding, 

overdeepening glacier (left). Peak subglacial water pressures were transmitted via the porewater 

pressure of the clay filling, to the rock wall, initiating fracturing at points of weakness (middle). Opening 

of short (centimetre- to decimetre-scale) fractures within the rock wall allowed for the intrusion of Bolus 

Clay and pressing of the karst filling into the voids (right). Strong deformation of the Bolus Clay 

intruding into the newly formed fractures led to a diffusely laminated microstructure (inset) as well as 

ball-and-pillow/drip structures and optical anisotropy. 
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Supporting Information 

Table S1: Clay-mineral compositions determined for karst fillings in borehole QGBR as well as 

reference samples from QGBR, other Quaternary boreholes of the drilling campaign (QGVO = 

Gebenstorf-Vogelsang, 47.5952° N, 8.2382° E; QRIN = Riniken, 47.5021° N, 8.1913° E; QTRU = 

Trüllikon, 47.6405° N, 8.6624° E) and Nagra borehole Bülach-1-1 (Bul-1-1, 47.5427° N, 8.5204° E).  

Borehole, sample depth Kaolinite Illite Smectite 

Karst filling 

QGBR, 111.60 m 72% 22% 6% 

QGBR, 112.48 m 65% 27% 8% 

QGBR, 113.53 m 61% 21% 18% 

QGBR, 114.90 m 76% 17% 7% 

QGBR, 116.35 m 78% 7% 15% 

QGBR, 118.13 m 74% 15% 10% 

QGBR, 121.42 m 79% 5% 16% 

Reference samples: subglacial till 

QGBR, 108.86 m 23% 60% 17% 

QGBR, 109.54 m 24% 53% 22% 

QGBR, 110.94 m 76% 14% 10% 

QGBR, 111.04 m 80% 16% 4% 

QGVO, 64.63 m 25% 63% 11% 

QRIN, 38.89 m 19% 81% - 

QRIN, 40.99 m 21% 79% - 

Reference samples: Lower Freshwater Molasse 

QTRU, 91.00 m 20% 49% 31% 

QTRU, 95.00 m 24% 49% 27% 

Reference sample: limestone dissolution residue (clayey coating of a fault plane) 

QGBR, 123.40 m 34% 66% - 

Reference samples: siderolithic “Bolus Clay” 

Bul-1-1, 539.00 m 56% 5% 39% 

Bul-1-1, 550.30 m 60%  - 40%  
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