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Abstract

The Amazon basin, the largest watershed on Earth, experienced a significant increase in wet-

season precipitation and high-season river discharge from the early 1990s to early 2010s. Some 

studies have linked the increased Amazon hydrologic cycle to decadal trends of increased Pacific 

trade winds, eastern Pacific SST cooling, and the associated strengthening of the Walker circulation. 

However, it has been difficult to disentangle the role of Pacific decadal variability from the impacts 

of greenhouse gases and other external climate drivers over the same period. Here, we separate the 

contributions of external forcings from those of teleconnections from Pacific decadal variability by 

comparing two large ensembles of climate model experiments with identical radiative forcing agents 

but imposing different tropical Pacific wind stress. One ensemble constrains tropical Pacific wind 

stress to its long-term climatology, suppressing tropical Pacific decadal variability; the other 

ensemble imposes the observed tropical Pacific wind stress anomalies, simulating realistic tropical 

Pacific decadal variability. Comparing the Amazon basin hydroclimate response in the two 

ensembles allows us to distinguish the contributions of the external forcings common to both 

simulations from those related to the Pacific trade wind variability. For the 1992–2012 trend, we find 

that the experiments with applied observed tropical Pacific wind stress anomalies simulate the 

strengthened Walker circulation between the Pacific and South America, sharpened Pacific–Atlantic 

interbasin contrast in sea surface temperature, and increased Amazon basin wet-season precipitation 

and high-season discharge. These strengthened Walker circulation and Amazon hydrologic 

intensification trends are absent in the simulations with applied climatological tropical Pacific wind 
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stress. This work underscores the importance of Pacific decadal variability in driving hydrological 

cycle changes and modulating the hydroclimate impacts of global warming over the Amazon basin.

1. Introduction

The Amazon river is by far the Earth’s largest river by flow, responsible for 15–20% of the 

freshwater discharged into the oceans (Molinier et al., 1996; Dai et al., 2009). Its basin holds the 

largest planetary watershed and rainforest, which play key roles in the global climate system and 

carbon cycle and contain a wealth of biodiversity (Foley et al., 2002; Malhi et al., 2008). Recent 

extensive dry-season droughts and fires have heightened concerns about climate change and 

deforestation (Nobre et al., 2016; Marengo et al., 2018). Additionally, starting in the early 1990s, the 

Amazon basin experienced a dramatic increase in wet-season (December–May) precipitation, 

resulting in an overall strengthening of the hydrological cycle, heightened peak river discharge, and 

highly disruptive flood events (Gloor et al., 2013, 2015; Marengo and Espinoza, 2016; Barichivich et 

al., 2018). The increased discharge also reduced the tropical Atlantic surface salinity (Gouveia et al., 

2019), with potential impacts on ocean circulation and large-scale climate (Jahfer et al., 2017). 

Understanding the drivers and mechanisms of this recent Amazon hydrological intensification is 

important for assessing the uncertainties associated with climate change projections.

The Amazon hydrological cycle intensification coincided with a pronounced climatic shift in the 

tropical Pacific. Over the 20-year period beginning in the early 1990s, there was an unprecedented 

strengthening of the Pacific trade winds compared to previous decades (Balmaseda et al., 2013; de 

Boisséson et al., 2014). This was associated with SST cooling in the equatorial central and eastern 

Pacific, which was reflected in a reduced rate of global surface temperature increase compared to 

previous decades, sometimes referred to as the hiatus (Kosaka and Xie, 2013; Meehl et al., 2011). 

The trade wind and SST changes were connected to a strengthening of the Pacific Walker circulation  

and more frequent La Niña phases of the El Niño / Southern Oscillation (ENSO) (Dong and Lu, 

2013; Liu and Zhou, 2017). On decadal timescales, these trends reflected a transition from the warm 

to the cold phases of the Interdecadal Pacific Oscillation (IPO; Power et al., 1999; Zhang et al., 

1997), with a larger amplitude than previous transitions in the instrumental record (England et al., 

2014).

Observational analysis has connected the increased Amazon precipitation from the early 1990s to 

the Pacific trade wind strengthening, SST cooling, and intensified Walker circulation (Barichivich et 

al., 2018), building on well-established ENSO teleconnections in the tropics (Ropelewski and 

Halpert, 1987; Dai and Wigley, 2000). However, it is difficult using observations alone to separate 
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the influence of Pacific variability on Amazon precipitation from that of greenhouse gases (GHGs) 

and other external climate forcing agents over the same period; as such, climate model sensitivity 

experiments can be useful to shed light on and disentangle the contemporaneous impacts of different 

drivers (Hegerl and Zwiers, 2011).

In this study, we use a set of companion large-ensemble climate model simulations with tropical 

Pacific surface wind stress nudging. The two experiments have identical external forcing agents but 

impose different surface wind stress regimes in the tropical Pacific, while allowing the climate 

system to evolve freely outside the tropical Pacific. In the first ensemble, W-CLIM, the tropical 

Pacific wind stress is constrained to its long-term climatological values, thus simulating the 

counterfactual trajectory of the climate system holding a fixed neutral IPO state. In the second 

ensemble, W-FULL, the observed wind stress anomalies are imposed in the tropical Pacific. W-

FULL thus simulates the evolution of the climate system with realistic tropical Pacific decadal 

variability, including the IPO phase transition and the trade wind acceleration from the early 1990s. 

By comparing the Amazon basin hydroclimate response in W-CLIM and W-FULL, we can 

distinguish the contributions of the external forcings common to both simulations from those related 

to the Pacific trade wind variability found only in W-FULL.

2. Methods and data

We examine a set of experiments with the IPSL-CM5A-LR global climate model (Dufresne et al., 

2013). Its atmospheric component is LMDZ5A (Hourdin et al., 2013), with a resolution of 3.75° × 

1.875° and 39 vertical levels. The land surface component is ORCHIDEE (Krinner et al., 2005), with 

a similar horizontal resolution as the atmosphere; and the ocean component is NEMOv3.2 (Madec, 

2008). The experimental setup, further described in Gastineau et al. (2019), consists of two 30-

member ensembles, each initialized in 1979 from a spread of random phases of the IPO and the 

Atlantic Multidecadal Oscillation (AMO) (Kerr, 2000) from the IPSL-CM5A-LR fully-coupled 

historical large ensemble (Frankignoul et al., 2017). Both ensembles are forced by identical Fifth 

Coupled Model Intercomparison Project (CMIP5) historical and Representative Concentration 

Pathway 8.5 (RCP8.5) GHG and ozone emissions from 1979–2014 (Taylor et al., 2012). Volcanic 

aerosols are included, but anthropogenic aerosols are fixed at 1940 values in both experiments.

In both ensembles, surface wind stress (τ) is prescribed in the ocean component in the tropical 

Pacific from 20°S to 20°N with a buffer region from 15°–25° latitude (outlined in Fig. 1a), while 

leaving the climate system unconstrained outside the tropical Pacific. Prescribing wind stress tightly 

constrains SST through its effects on zonal advection, thermocline depth, and eastern Pacific 
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upwelling (Clarke, 2008). It is somewhat similar to nudging SST (Kosaka and Xie, 2013; McGregor 

et al., 2014), but favors the dynamical consistency between the atmosphere and ocean, and reduces 

artificial heat fluxes imposed into the ocean (Douville et al., 2015; Watanabe et al., 2014). In the 

representative climatological ensemble, W-CLIM, the 1979–2014 climatological wind stress from 

the IPSL-CM5A-LR historical and RCP8.5 CMIP5 ensemble mean is prescribed, with additional 

model noise to deepen the mixed layer; this is further described in Text S1. W-CLIM thus does not 

simulate the variability resulting from tropical Pacific wind stress changes.

In the second ensemble, W-FULL, daily wind stress anomalies from 1979–2014 from the 

ECMWF ERA-Interim Reanalysis (hereafter ERA-I; Dee et al., 2011) are added to the model 

climatology and prescribed in the ocean model component.. Fig. 1a shows the 1992–2012 ERA-I 

mean τ trend over the nudging region during the Amazon wet season (December–May). Fig. 1b 

shows the corresponding zonal wind stress (τx) anomaly  over the Niño 4 region (160°E–150°W, 

6°S–6°N) from ERA-I and applied in W-FULL, illustrating the significant (p<0.05) strengthening 

trend from1992–2012. An error in the treatment of the ERA-I τ anomalies induced τ amplitudes 

about 20% larger in W-FULL than ERA-I, though the overall interannual changes are very similar 

and the spatial patterns are identical (Gastineau et al., 2020).

For precipitation, we examine the monthly 2.5° × 2.5° combined satellite-gauge Global 

Precipitation Climatology Project (GPCP), version 2.3 (Adler et al., 2003, 2018). We take 

December–May as the Amazon basin-wide wet season, which is associated with the South American 

monsoon system, while recognizing that the seasonal cycle varies regionally within the basin 

(Marengo et al., 2012; Wang et al., 2018). IPSL-CM5A-LR generally reproduces the observed wet-

season regional precipitation climatology (Figs. S1a-S1c). In common with many CMIP5 models, it 

suffers from a double intertropical convergence zone (ITCZ) in the eastern Pacific (Jones and 

Carvalho, 2013; Li and Xie, 2014); there is also excessive precipitation over the Andes relative to the 

Amazon basin interior (Dufresne et al., 2013). IPSL-CM5A-LR effectively simulates the observed 

seasonal cycle of Amazon region mean precipitation (Fig. S1d), though similar to many CMIP5 

models, it underestimates overall Amazon precipitation, particularly during the July-October dry 

season (Yin et al., 2013).

To complement precipitation, we examine monthly Amazon discharge (in m3 s–1) from the 

farthest downstream long-term gauge at Óbidos (55.7°W, 1.9°S; indicated in Fig. 2a), which captures 

runoff from most of the basin (Dai and Trenberth, 2002). River discharge provides an integrated 

measure of Amazon basin hydroclimate, though it does not allow us to differentiate between 

recirculated and non-recirculated precipitation (Gloor et al., 2013; Dai, 2016). For the model, we use 
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the output of freshwater flux into the ocean from rivers (in kg m–2 s–1) multiplied by the respective 

gridcell area to obtain a monthly volume flux, which we integrate over the Amazon outflow region 

(45°–51°W, 2°S–6°N; blue box in Figs. 2b-2c).

In observations, the 1980–1992 mean seasonal cycle of Amazon discharge (Fig. S1e) shows a 

gradual increase peaking in May and June. Óbidos discharge lags basin-average precipitation by 

around three months due to the time for surface runoff to travel downstream (Dai and Trenberth, 

2002; Marengo, 2005). The model seasonal discharge maximum arrives 1-2 months early, peaking in 

April, and lasts for a shorter period compared to observations, which reflects ORCHIDEE 

deficiencies over the Amazon region (Guimberteau et al., 2012, 2014) and its floodplain storage not 

being activated in the CMIP5 experiments (Agnès Ducharne, personal communication). To allow for 

comparison between observations and simulations given the annual cycle phase differences, we track 

the high-season discharge by taking the mean of the five largest-discharge months of each year (with 

the discharge year spanning from February–January). In addition to precipitation and discharge, we 

use the monthly 2°×2° NOAA Extended Reconstructed SST dataset (ERSST), version 5  (Huang et 

al., 2017), as well as monthly 2.5° × 2.5° atmospheric fields from ERA-I.

Our analysis focuses on the Amazon wet season, for which the tropical Pacific has relatively 

greater influence on interannual variability (Yoon and Zeng, 2010; Andreoli et al., 2012), over the 

21-year trend from 1992–2012, corresponding to the maximum Pacific trade wind strengthening 

(Balmaseda et al., 2013; de Boisséson et al., 2014). Trend significance is calculated based on a 2-

tailed Student’s t-test of the slope, adjusting the standard error and degrees of freedom assuming a 

first-order autoregressive (AR1) noise model (Santer et al., 2000). We also examine interannual 

correlations of linearly-detrended time series over the entire 1980–2014 period, with significance 

evaluated based on a 2-tailed Student t-test, adjusting the degrees of freedom assuming an AR1 noise 

model (Bretherton et al., 1999). We describe trends and correlations as significant when p<0.05. The 

W-CLIM and W-FULL ensemble means are analyzed in order to emphasize the robust signals in 

each experiment.

3. Results

3.1 Precipitation and discharge trends

The 1992–2012 observed wet-season precipitation trend (Fig. 2a) is positive over the Amazon and 

northern South America extending into the equatorial Atlantic. In the eastern Pacific, it is positive 

from 5°–10°N and negative along the equator. W-FULL (Fig. 2b) well reproduces the spatial pattern 

and magnitude of the observed trend, though the precipitation increase in South America is shifted to 
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the south, with some drying in the northern Amazon. W-FULL also overestimates the positive trend 

in the equatorial Atlantic and the negative trend in the eastern equatorial Pacific. W-CLIM (Fig. 2c), 

which has much smaller amplitudes (note different color scale), shows wettening in the eastern 

equatorial Pacific contrasting with drying in the western Amazon, and a weaker precipitation 

increase in the eastern Amazon extending into the equatorial Atlantic.

Fig. 2d shows the observed and simulated wet-season mean precipitation anomaly averaged over 

the Amazon region (75°–50°W, 12.5°S–5°N) and respective 1992–2012 linear trends. W-FULL 

reproduces the significant positive 1992–2012 trend found in observations (Table 1). It also captures 

much of the observed interannual variability, with a significant correlation with GPCP (Table 2). 

The mean 5-month high-season Amazon river discharge is shown in Fig. 2e. Like precipitation, W-

FULL captures the 1992–2012 positive trend and is significantly correlated with Óbidos 

observations. W-CLIM lacks a discernible trend in basin-wide precipitation or discharge.

3.2 SST and atmospheric circulation

The 1992–2012 trends in relative SST and low-level atmospheric circulation are shown in Figs. 3a-

3c. Relative SST (referred to as SST*), the deviation from the tropical mean (20°S–20°N) SST, 

captures the spatial gradients of SST and low-level moisture which are important for tropical 

convection (Vecchi and Soden, 2007; Ma and Xie, 2013; Khodri et al., 2017); absolute SST is shown 

in Fig. S2. ERSST (Fig. 3a) features SST* cooling in the tropical central and eastern Pacific 

resembling the pattern associated with the transition from positive to negative IPO phases, with 

equatorial SST* cooling extending into both hemispheres along the eastern boundary; and SST* 

warming in the tropical Atlantic. W-FULL (Fig. 3b) shows a similar pattern, though with larger-

amplitude equatorial Pacific SST* cooling and without extending toward the mid-latitudes. These 

differences may reflect the larger-amplitude τ anomalies applied (Gastineau et al., 2020) or model 

cold tongue SST and double ITCZ biases (Li and Xie, 2014; Bellenger et al., 2014). In contrast, W-

CLIM (Fig. 3c) shows equatorial Pacific SST* warming, as expected from global warming processes 

found in coupled models (DiNezio et al., 2009). ERA-I and W-FULL feature increased 850-hPa 

winds into the Amazon region from the tropical North Atlantic, one of the key pathways for Amazon 

climatological moisture convergence (Grimm, 2003; Arraut et al., 2012).

Fig. 3d presents variations of the Pacific–Atlantic interbasin SST contrast (Pac–Atl ∆SST), 

which reflects the strength of the Walker circulation (Wang, 2006; McGregor et al., 2014; Chikamoto 

et al., 2015) and has been linked to wet-season Amazon precipitation (Gloor et al., 2015; Barichivich 

et al., 2018). Pac–Atl ∆SST is calculated as the difference between the tropical central and eastern 
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Pacific (180°–90°W, 10°S–10°N) and the tropical Atlantic (40°W–15°E, 10°S–10°N; boxes in Figs. 

3a-3c). We find that Pac–Atl ∆SST is significantly negatively correlated with Amazon wet-season 

precipitation and river discharge in observations and the simulations (Table S1). Consistent with the 

precipitation and discharge trends, W-FULL captures the significant 1992–2012 observed negative 

Pac–Atl ∆SST trend (Table 1). Though ERSST has greater tropical North Atlantic SST* warming 

and W-FULL has greater tropical South Atlantic SST* warming, this discrepancy is not reflected in 

Pac–Atl ∆SST. The W-CLIM Pac–Atl ∆SST trend is an order of magnitude smaller and of opposite 

sign. 

In order to more clearly identify the zonal circulation changes, we examine the trends in pressure 

vertical velocity (ω) and the zonal component of the divergent wind (udiv) averaged over the 

maximum precipitation trend signal over the Amazon latitudes (0–10°S; Fig. 4). ERA-I and W-

FULL feature increased ascent over the Amazon region and weakened ascent over the central 

equatorial Pacific (Figs. 4a-4b), depicting strengthening of the climatological Walker circulation 

branch between the Pacific and South America (Dong and Lu, 2013; Liu and Zhou, 2017). In 

contrast, W-CLIM features a small weakening of the ascent over the western Amazon region (Fig. 

4c), consistent with the weakening of the Walker circulation expected from global warming (Vecchi 

and Soden, 2007). The meridional circulation, depicted through ω and the meridional component of 

the divergent wind (vdiv) zonally averaged from 75–50°W (Fig. S3), also reveals enhanced Amazon 

uplift in ERA-I and W-FULL, though displaced to the south in W-FULL.

3.3 Moisture convergence

We next examine moisture convergence, which is the predominant contributor to Amazon basin 

wet-season precipitation and the leading driver of its interannual variability (Angelini et al., 2011; 

Drumond et al., 2014; Satyamurty et al., 2013b). Following Satyamurty (2013a, 2013b), we also 

integrate the moisture fluxes across the four Amazon region boundaries. ERA-I and the simulations 

feature climatological wet-season moisture convergence over the Amazon region (Table S2a, Fig. 

S4,). Consistent with the precipitation and discharge increases, ERA-I and W-FULL have significant 

positive moisture convergence trends over the Amazon region from 1992–2012 (Table S2b, Fig. 

S5). However, the increased convergence is mostly due to northeasterly moisture advection from the 

tropical North Atlantic in ERA-I, while W-FULL simulates increased westerly moisture flux from 

the equatorial Pacific.

We additionally use the linear approximation of Huang (2014) to elucidate the separate 

contributions of dynamics and thermodynamics to the 1992–2012 Amazon region precipitation trend:
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,∆𝑃 ~ ∆𝜔 ∙ 𝑞 +  𝜔 ∙ ∆𝑞

where P is precipitation; q denotes 925-hPa specific humidity; and ω is 500-hPa pressure velocity. 

The dynamic component ( ) accounts for nearly all of the Amazon region moisture convergence ∆𝜔 ∙ 𝑞

increase in ERA-I and W-FULL, indicating that atmospheric circulation changes are predominant for 

the precipitation trend (Table S3). In W-CLIM, which has little overall moisture convergence 

change, the thermodynamic component ( ) of increased moisture convergence opposes the 𝜔 ∙ ∆𝑞

reduced dynamic component due to the tropical circulation weakening.

4. Discussion

Using a companion set of climate model experiments with identical external forcing agents but 

differently constrained tropical Pacific wind stress, we attribute the 1992–2012 observed increases in 

wet-season Amazon basin precipitation and high-season river discharge to the contemporaneous 

Pacific trade wind strengthening. In the simulations with applied observed tropical Pacific wind 

stress anomalies (W-FULL), the imposed Pacific trades cause equatorial Pacific SST cooling, 

sharpening the Pacific–Atlantic zonal SST contrast (Pac–Atl ∆SST) and strengthening the Pacific-

South America branch of the Walker circulation. The enhanced central and eastern Pacific 

subsidence and compensating convergence over the Amazon climatological ascending region lead to 

increased Amazon wet-season precipitation and high-season discharge (Gloor et al., 2015; 

Barichivich et al., 2018).

In contrast, the companion experiment with applied climatological tropical Pacific wind stress 

simulating a neutral IPO state (W-CLIM) does not produce significant changes in Amazon wet-

season precipitation or high-season discharge. W-CLIM has a larger 1992–2012 trend in absolute 

tropical Atlantic SST than W-FULL (Fig. S2d), though not in the relative Pac–Atl ∆SST (Fig. 3d) 

which is important for Amazon wet-season convection. While atmosphere-only experiments have 

shown a strong influence of Atlantic SST warming alone on the Amazon wet-season precipitation 

increase from 1979–2015 (Wang et al., 2018), these simulations are not directly comparable to our 

approach since they impose climatological SST outside the perturbed SST basin, whereas we allow 

ocean-atmosphere feedbacks through interactive air-sea coupling and include the SST evolution 

resulting from external forcings.

The W-CLIM setup assumes that the tropical Pacific wind stress did not respond to external 

forcing during the observed strengthening period. This assumption has been challenged by findings 

that anthropogenic Asian sulfate aerosols contributed to the increased Pacific trade winds (Smith et 
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al., 2016; Takahashi and Watanabe, 2016), though the linkage has been questioned (Oudar et al., 

2018). There is also evidence that the Pacific trade wind increase and Walker circulation 

strengthening were partly driven by teleconnections from Atlantic SST warming (McGregor et al., 

2014; Chikamoto et al., 2015).

Interestingly, we find that W-CLIM high-season Amazon discharge is significantly correlated 

with observations, though explaining only about half the variance as W-FULL (Table 2). 

Examination of the Amazon discharge time series reveals that much of the skill comes from 

decreases in 1983 and 1992 following the 1982 El Chichón and 1991 Mount Pinatubo eruptions (Fig. 

2e). These W-CLIM decreases are consistent with findings of reduced Amazon streamflow following 

large tropical eruptions (Iles and Hegerl, 2015). The decrease magnitudes are smaller than W-FULL, 

which incorporates the Pacific trade wind anomalies related to the 1982–83 and 1991–92 El Niño 

events.

The Amazon region wet-season precipitation increase simulated in W-FULL is driven by 

increased moisture convergence via atmospheric dynamical changes, through a strengthened Walker 

circulation. However, within this large-scale framework, we note that the relatively low-resolution 

IPSL-CM5A-LR model does not directly simulate some of the convective-to-synoptic-scale features 

important for Amazon wet-season precipitation, such as coastal-generated squall lines (Greco et al., 

1990; Garstang et al., 1998). More work is needed to investigate the role of these higher-resolution 

processes over the Amazon, for instance using dynamical downscaling (Ramos da Silva and Haas, 

2016).

Biases in IPSL-CM5A-LR may account for some of the spatial discrepancies between the 

observed and modeled changes over the Amazon. The double ITCZ and excessive eastern Pacific 

cold tongue biases, common to many models (Li and Xie, 2014; Zhang et al., 2019), translate into 

too-weak southerly cross-equatorial winds (Hu and Fedorov, 2018) and may explain the spurious 

moisture advection trend from the equatorial Pacific in W-FULL. Some circulation differences may 

also stem from the model’s coarse orographic representation of the Andes Mountains (Insel et al., 

2010). Additional examination of pacemaker-type simulations such as those through the Decadal 

Climate Prediction Project (Boer et al., 2016) can help assess the robustness of our results in a multi-

model framework. 

There is insufficient tropical North Atlantic SST warming in our simulations, which may cause 

discrepancies in the equatorial Atlantic wind field and explain the lack of moisture advected by the 

model mean flow. The weak tropical North Atlantic warming may also account for W-FULL’s lack 

of skill in simulating dry season (July–October) precipitation and low-season river discharge (Table 
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S4, Fig. S6), which are negatively associated with the tropical Atlantic interhemispheric SST contrast 

through the position of the ITCZ (Yoon and Zeng, 2010; Fernandes et al., 2015). The model could be 

missing the observed warming from declining North American and European sulfate aerosols (Cox et 

al., 2008; Hua et al., 2019), which do not vary in our simulations, or from increased ocean heat 

transport convergence to the tropical North Atlantic (Servain et al., 2014).

Despite these caveats, our study provides strong evidence for the influence of the tropical Pacific 

on the intensification of Amazon basin wet-season precipitation and high-season discharge from the 

early 1990s to the early 2010s. As the Amazon region faces increasing anthropogenic stressors over 

the coming decades, understanding the role of decadal ocean-atmosphere variability will be 

important to reduce uncertainties in climate-related hydrological impacts. For example, since around 

2013, there has been a reversal in the tropical Pacific toward a positive IPO phase (Meehl et al., 

2016; Cha et al., 2018). This would suggest decreased wet-season precipitation and high-season 

discharge, though the reductions may be limited compared to previous decades as continued tropical 

Atlantic warming dampens the interbasin SST contrast (Barichivich et al., 2018). Further 

comparative studies prescribing tropical Pacific wind stress could help in understanding the ongoing 

hydroclimate changes in the vital Amazon region.
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Observations W-FULL W-CLIM
Dec–May Amazon precipitation 0.54 ± 0.41 mm day–1 (GPCP) 0.52 ± 0.28 mm day–1 –0.00 ± 0.06 mm day–1

5-mon max Amazon discharge 15.2 ± 13.0 × 103 m3 s–1 (Óbidos) 34.4 ± 18.3 × 103 m3 s–1 –1.3 ± 4.5 × 103 m3 s–1 
Dec–May Pac–Atl ∆SST    –0.55 ± 0.37 °C (ERSST) –0.75  ± 0.45 °C 0.03 ± 0.025 °C
Table 1. Wet-season trends. 1992–2012 trends for observations and W-FULL and W-CLIM ensemble means, in decade–1; mean slope and 
95% confidence intervals. Top: December–May mean Amazon region (75°–50°W, 12.5°S–5°N) precipitation. Middle: mean high-season (5 
largest months) Amazon river discharge. Bottom: December–May mean Pacific–Atlantic interbasin SST contrast (tropical central and 
eastern Pacific (180°–90°W, 10°S–10°N) minus tropical Atlantic (40°W–15°E, 10°S–10°N) SST).

W-FULL W-CLIM
Dec–May Amazon precipitation (GPCP) 0.72* 0.32
5-mon max Amazon discharge (Óbidos) 0.57* 0.41*
Dec–May Pac–Atl ∆SST (ERSST) 0.90* 0.05
Table 2. Wet-season interannual correlations. 1980–2014 detrended correlations of observations with W-FULL and W-CLIM ensemble 
means. Asterisks indicate statistically significant correlations at the 95% confidence level. Top: December–May mean Amazon region (75°–
50°W, 12.5°S–5°N) precipitation. Middle: mean high-season (5 largest months) Amazon river discharge. Bottom: December–May mean 
Pacific–Atlantic interbasin SST contrast (tropical central and eastern Pacific (180°–90°W, 10°S–10°N) minus tropical Atlantic (40°W–
15°E, 10°S–10°N) SST).
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Figure 1. Observed Pacific surface wind stress anomalies applied in nudging experiments. (a) 
1992–2012 December–May mean ERA-I wind stress trend (τ) over the nudging mask region, in N m–

2 decade–1. The blue contour intervals indicate regions of 0, 50, and 100% blending of model and 
nudged wind stress. The small red box outlines the Niño 4 region, and the black box outlines the 
Amazon precipitation region. (b) December–May mean zonal wind stress (τx) anomaly over Niño 4 
(160°E–150°W, 6°S–6°N) from ERA-I and applied in W-FULL, in N m–2. Anomalies are computed 
from the 1980–1992 climatology; dashed line indicates the 1992–2012 linear trend.
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Figure 2. Amazon basin wet-season precipitation and high-season river discharge. (a–c) 1992-
2012 December–May mean precipitation trend, in mm day–1 decade–1: (a) GPCP, (b) W-FULL, and 
(c) W-CLIM (note doubled color scale). Stippled regions are significant at p<0.05. The large black 
box outlines the Amazon precipitation region. In (a), the Amazon drainage basin and river system are 
indicated by the dotted black and solid blue lines respectively, and the purple triangle shows the 
Óbidos gauge station. In (b-c), the small blue box indicates the region where freshwater flux is 
integrated to calculate Amazon river discharge. (d) December–May mean Amazon region (75°–
50°W, 12.5°S–5°N) precipitation anomaly for GPCP, W-FULL, and W-CLIM, in mm day–1. (e) 
Mean high-season (5 largest months) Amazon river discharge anomaly from Óbidos, W-FULL, and 
W-CLIM, in 103 m3 s–1. Anomalies in (d-e) are computed from the 1980–1992 climatology; dashed 
lines indicate the 1992–2012 linear trend.
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Figure 3. Relative SST, low-level atmospheric circulation, and interbasin contrast. (a–c) 1992–
2012 December–May mean trend in relative SST (SST*, in °C decade–1) and 850-hPa wind (in m s–1 
decade–1): (a) ERSST and ERA-I, (b) W-FULL, and (c) W-CLIM (note doubled color and wind 
scales). Stippled regions are significant at p<0.05. Ocean boxes show the regions used to construct 
Pac–Atl ∆SST: the tropical central and eastern Pacific (180°–90°W, 10°S–10°N) and tropical 
Atlantic (40°W–15°E, 10°S–10°N). (d) December–May mean Pacific–Atlantic interbasin SST 
contrast anomaly (Pac–Atl ∆SST), in °C. Anomalies in (d) are computed from the 1980–1992 
climatology; dashed lines indicate the 1992–2012 linear trend.
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Figure 4. Equatorial atmospheric zonal circulation. 1992–2012 trends in December–May 
meridionally-averaged 0–10°S pressure vertical velocity (ω, in Pa s–1 decade–1) and divergent zonal 
wind (udiv, in m s–1 decade–1). Shading shows trends in ω, and vectors show trends in ω and udiv: (a) 
ERA-I, (b) W-FULL, and (c) W-CLIM (note doubled color and wind scales). The ω vector 
component is multiplied by a factor of –50. Contours show the 1980–1992 December–May mean ω 
climatology: solid contours show positive values, dashed contours show negative values; the contour 
interval is 0.02 Pa s–1; and the zero contour is omitted. Vertical lines at 75° and 50°W outline the 
Amazon region.
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