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Dynamic data‑driven meta‑analysis 
for prioritisation of host genes 
implicated in COVID‑19
Nicholas Parkinson1,4, Natasha Rodgers1,4, Max Head Fourman1,4, Bo Wang1, 
Marie Zechner1, Maaike C. Swets1,2, Jonathan E. Millar1, Andy Law1, Clark D. Russell1,3,5, 
J. Kenneth Baillie1,5* & Sara Clohisey1,5*

The increasing body of literature describing the role of host factors in COVID‑19 pathogenesis 
demonstrates the need to combine diverse, multi‑omic data to evaluate and substantiate the most 
robust evidence and inform development of therapies. Here we present a dynamic ranking of host 
genes implicated in human betacoronavirus infection (SARS‑CoV‑2, SARS‑CoV, MERS‑CoV, seasonal 
coronaviruses). We conducted an extensive systematic review of experiments identifying potential 
host factors. Gene lists from diverse sources were integrated using Meta‑Analysis by Information 
Content (MAIC). This previously described algorithm uses data‑driven gene list weightings to 
produce a comprehensive ranked list of implicated host genes. From 32 datasets, the top ranked 
gene was PPIA, encoding cyclophilin A, a druggable target using cyclosporine. Other highly‑ranked 
genes included proposed prognostic factors (CXCL10, CD4, CD3E) and investigational therapeutic 
targets (IL1A) for COVID‑19. Gene rankings also inform the interpretation of COVID‑19 GWAS 
results, implicating FYCO1 over other nearby genes in a disease‑associated locus on chromosome 3. 
Researchers can search and review the gene rankings and the contribution of different experimental 
methods to gene rank at https ://baill ielab .net/maic/covid 19. As new data are published we will 
regularly update the list of genes as a resource to inform and prioritise future studies.

There are multiple sources of information that associate host genes with SARS-CoV-2 viral replication, the 
subsequent host immune response and the ensuing pathophysiology. Integrating these sources of information 
may provide more robust evidence associating specific genes and proteins with key processes underlying the 
mechanisms of disease. This is needed in order to make informed judgements about new therapies for inclusion 
in model studies and clinical trials.

The pace of new research into COVID-19 pathophysiology, including host dependency factors, immune 
responses, and genetics, has made it nearly impossible to read every report. In addition, assessing the quality 
and relevance of new evidence is difficult, time-consuming, and requires a high level of expertise. Information 
from diverse sources has varying quality, scale, and relevance to host responses to SARS-CoV-2. Computational 
approaches can aid data evaluation and integration. Simple, intuitive methods have a conceptual advantage for 
translation to decision-making: if both the processes and results are easily comprehensible, then it is easier for 
human users to trust the conclusions.

SARS-CoV-2 is a betacoronavirus with a 30 kb single-stranded positive-sense RNA genome, and is genetically 
similar to other human coronaviruses: SARS-CoV, MERS-CoV and the seasonal ‘common cold’ 229E, OC43, 
HKU1 and NL63 coronaviruses. Like all viruses, SARS-CoV-2 relies on host machinery to replicate. Host depend-
ency factors represent an attractive target for new therapeutics, as evolution of drug resistance is expected to be 
slower for host-directed than viral-directed  therapies1.

Treatment directly targeting viral replication can target viral proteins (e.g. remdesivir2), or host proteins upon 
which the virus  depends3. Host-targeted therapies may have an important role in infectious diseases in general, 
and the only treatment so far found to reduce mortality in COVID-19—dexamethasone4—is likely to act by 
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targeting host immune-mediated organ  damage5. Other host-directed treatments (e.g. anakinra, tocilizumab, 
sarilumab, mavrilimumab), repurposed from other indications, are currently under  investigation2,6–10.

In this analysis we systematically identify and combine existing data from human betacoronavirus research 
to generate a comprehensive ranked list of host genes involved in COVID-19. We comment on the application 
of this resource to inform further research on COVID-19 pathogenesis and prioritise host therapeutic targets.

To identify existing literature which could provide informative datasets for host gene prioritisation, we con-
ducted a systematic review of published studies and pre-print manuscripts pertaining to host gene involve-
ment in human betacoronavirus infection and associated disease. Results from identified studies, in the form 
of lists of implicated host factor genes, were combined using meta-analysis by information content (MAIC)3, 
an approach we previously developed to identify host genes necessary for Influenza A virus (IAV) replication. 
We have previously demonstrated that the MAIC algorithm successfully predicts new experimental results 
from an unseen future  experiment3. Our gene prioritisation results both recapitulate existing understanding of 
COVID-19 pathophysiology and highlight key host factors and potential therapeutic targets that have to date 
been largely overlooked.

Methods
Meta‑analysis by information content (MAIC). MAIC allows the combination of data from diverse 
sources without prior assumptions regarding the quality of each individual data source. The MAIC approach 
begins with the following assumptions:

- There exists a set of true positives: host genes involved in COVID-19 pathogenesis.
- A gene is more likely to be a true positive if it is found in multiple experiments.
- A gene is more likely to be a true positive if it occurs in a list containing a higher proportion of genes with 
supporting evidence from multiple sources.
- Due to experimental biases, the evidence that a gene is a true positive is further increased if it is found 
across experimental types.

With these assumptions, MAIC allows the quantification of the information content in a gene list by compar-
ing that list to the results from other experiments that might reasonably be expected to find some of the same 
genes. Input gene lists can be categorised by data type (Table 2), allowing comparison both within and between 
methodologies. MAIC produces a weighting factor for each experiment, and this weighting is used to calculate 
a score for each gene (Fig. 1A). The analysis then produces a final ranked list of genes based on this score, which 
summarises the combined evidence from all input sources of that particular gene being involved in SARS-CoV-2 
pathogen-host interaction. A full description of the MAIC algorithm can be found in our original  report3.

Data eligibility. Inclusion and exclusion criteria are shown in Table 1. To complement emerging data per-
taining to the novel SARS-CoV-2, we included studies of other human coronaviruses. Included methodologies 
are shown in Table 2. We reduced the bias that can be caused by focussing on specific genes, by excluding can-
didate gene or single gene studies.

Literature search. A systematic literature search of PubMed was conducted on 28/04/2020 and updated 
weekly until 06/07/2020. We used the following search strategy, with no date or language restrictions: > Keywords: 
(“Coronavirus” OR “Severe Acute Respiratory Syndrome” OR “Middle East Respiratory Syndrome” OR “Sars-
CoV-2” OR “COVID-19”) AND ((gene*.[Title/Abstract]) OR (genome*[Title/Abstract]) OR (transcript*[Title/
Abstract]) OR (protein*[Title/Abstract]) OR (“Susceptibility”[Title/Abstract]) OR (siRNA[All Fields])).

Potentially relevant pre-print manuscripts were identified by screening all papers categorised as COVID-
19-related in the bioRxiv and medRxiv servers. Titles and abstracts of all returned papers were first assessed for 
relevance and duplication by a single member of the review team. Following this, full-length texts were obtained 
and an in-depth review was carried out by two further reviewers, independently, in order to confirm eligibility 
according to Tables 1 and 2. In cases where a consensus was not reached, a third reviewer appraised the paper. 
This method ensured each paper was assessed for eligibility by a minimum of three independent reviewers. 
Relevant data, as shown in Table 3, was extracted from each reviewed paper.

Gene list extraction and categorisation. Relevant gene lists were identified and extracted. Datasets 
were excluded from the analysis where insufficient data were available to construct a meaningful unbiased gene 
list, for example where results for only a non-systematically selected subset of genes of interest were reported. 
Gene lists were categorised based on methodology as shown in Table 2.

Gene list rankings were preserved where possible, if sufficient numerical data were available. Rankings were 
based on significance or magnitude of effect. Adjusted measures of significance, usually adjusted p , were pri-
oritised over raw p and logFC to determine ranking where multiple values were available. For studies reporting 
comparisons at multiple time points, genes were ranked based on the minimum p across all comparisons. To 
exclude irrelevant genes, a significance or effect size threshold was applied to all lists. This was either the threshold 
used by the authors for reporting, or where full data were provided this was determined as adjusted p < 0.05 , 
|z score| > 1.96 or |logFC| > 1.5 depending on available values.

Gene, transcript and protein names or identification numbers were converted to the associated HGNC gene 
symbol, or an equivalent Ensembl or Refseq symbol where no HGNC symbol existed. Non-primate genes were 
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mapped to their human homologues using the NCBI Homologene  database11, or excluded from the analysis if 
no human homologue could be identified.

Gene set enrichment analysis. Rank-based gene set enrichment analysis was performed using the pack-
age FGSEA in R version 3.5.2, with genes ranked by MAIC  score12. p-values were estimated using an empiri-
cal probability distribution based on  106 permutations. Two additional methods were used for comparison. 
Flexible-threshold analysis of minimum hypergeometric scores was conducted using the full ranked list, using 
GOrilla (for Gene Ontology terms only)13. Gene set over-representation in the top 100 genes was analysed by 
a Fisher’s exact test as implemented in  Enrichr14. The Benjamini–Hochberg procedure was used to control the 
false discovery rate ( FDR < 0.05 ) for all methods.

Figure 1.  Overview of MAIC approach. (A) Schematic showing the operation of MAIC. Each entity in a 
list is given a score, based on overlap with other lists and rank where relevant, and each list is given a weight 
determined by the scores of its constituent entities. Entity scores are iteratively updated using list weights, and 
list weights are updated using entity scores, until convergence occurs. (B) Circular plot showing overlap between 
different data sources included in MAIC. Size of data source blocks is proportional to the summed information 
content (MAIC scores) of the input list. Lines are coloured according to the dominant data source. Data source 
categories share the same colour; the largest categories and data sources are labelled (see Supplementary 
Information for full source data). (C) Relative information contributions (determined by sum of MAIC score 
contributions) of each experimental category to the evidence base for the top 100 genes in the MAIC output. 
(D) Distribution of MAIC scores by gene rank. The shaded region indicates the range of possible scores for a 
gene supported by a single gene list only. Beyond ranks around 700 in this study, gene scores approach baseline, 
indicating they have little corroborative evidence.
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Results
Systematic review of the literature. We identified a total of 31 studies with available data meeting our 
eligibility criteria (12 pre-print manuscripts and 19 peer-reviewed studies), yielding 32 gene lists (Supplemen-
tary Fig. S1, Supplementary Table 1). The included gene lists comprised 11 ranked and 21 unranked lists, in 8 
experimental categories, with list lengths ranging from three to 9,967 genes (median 61). The datasets included 3 
genetic perturbation screens (CRISPR, RNAi and interferon-stimulated gene overexpression), 3 genetic studies 
(of which 2 were in humans), 7 protein–protein interaction studies, 7 proteomic and 12 transcriptomic studies.

MAIC analysis of identified studies. Of 5418 genes implicated in human betacoronavirus infection in 
these 32 datasets, 4150 are supported by a single paper only, 629 had evidence from more than one source within 
the same experimental category, and 639 are supported by data from multiple study types. Although extensive 
within-category overlap was seen for transcriptomic studies, there was less concordance within categories such 
as proteomics and protein–protein interaction. As with our previous study of influenza, contributions from one 
CRISPR screen dominate the overall information content (Fig. 1B). This was due in part to list length and hence 
contribution to scores for multiple lower-ranking genes. Information contributions for the top 100 genes are 
more balanced (Fig. 1C). The MAIC score distribution (Fig. 1D) reflects the degree of cross-category overlap, 
with the highest ranked genes supported by data from three distinct experimental categories.

The highest ranking genes and their contributing evidence sources are shown in Fig. 2A and Supplementary 
Table 2. Top genes include IL1A15 and other components of the innate and adaptive immune systems (such as 
CXCL10, CD4 and TLR3), which have previously been shown to contribute to COVID-19 pathogenesis. Other 
top genes have not previously received much attention in the context of coronavirus infection. These include PPIA 
(cyclophilin A), and RYBP (RING1 and YY1 binding protein), which play roles in protein folding, transcriptional 
repression, regulation of proteasomal degradation and apoptosis.

Table 1.  Entry criteria.

Inclusion Exclusion

Infection of any species with SARS-CoV, SARS-CoV-2, MERS-CoV, 
HCoV-229E, HCoV-OC43, HCoV-HKU1 or HCoV-NL63

Candidate in vitro or in vivo gene, transcript or protein studies and 
screens—defined here as < 50 genes, transcripts or proteins investi-
gated

Human studies: in vivo, in vitro, primary human cells, in vitro human 
cell lines Candidate-gene human genetic studies

Animal studies: in vivo, ex vivo, in vitro, primary cells, in vitro cell 
lines < 5 hosts in virus group or control group in patient studies

Accepted experimental designs in  Table 2
Meta-analyses, in silico anayses, re-analysis of data published 
elsewhere

Insufficient data available

Table 2.  Methodologies accepted for inclusion in meta-analysis and associated labels.

Accepted methodologies MAIC category

CRISPR screen CRISPR Screen

RNAi screen RNAi

Protein–protein interaction e.g. yeast-2-hybrid screen Protein–protein interaction

Host proteins incorporated into virion or virus like particle Virus

Genetic Association Studies Human Human genetics

Genetic Association Studies Non-human Non-human genetics

Proteomic studies e.g. mass-spectrometry Proteomics

Selected gene set screens Gene set screen

Table 3.  Data extracted from each publication.

Extracted information Examples

Virus & virus component/modification SARS-CoV-2, HCoV-229E

Method/experimental design See  Table 2

Organism Human, rodent, Non-human primate

Cell/tissue type Vero6, A549, serum

Peer reviewed or pre-print Peer-reviewed, pre-print
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An up-to-date prioritised list of implicated genes is available at baillielab.net/maic/covid19. We will repeat 
the analysis regularly as new data become available.

Overlap of MAIC output with respiratory disease and HLH associated genes. Death in severe 
COVID-19 is usually a consequence of lung injury leading to ARDS (Acute Respiratory Distress Syndrome), a 
final common pathway that can occur in any severe acute respiratory infection. Host susceptibility factors in 

Figure 2.  Highest ranked genes in the MAIC output and overlap with other conditions. (A) Heatmap of the 
top 50 genes implicated in SARS-CoV-2 infection, as ranked by the MAIC algorithm. The heatmap shows the 
information sources contributing to each of the top genes, by experimental category. Full details of all scored 
genes, including specific studies contributing to each, are given in Supplementary Table S1. (B) Venn diagram 
of overlap between the top 500 hits from this study and the top 500 hits from our previous MAIC analysis of 
Influenza A virus. (C) Venn diagram of overlap between the top 500 hits from this study and manually curated 
lists from available literature on HLH and ARDS.
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COVID-19 may be shared with other infections or ARDS. We compared the output from our analysis to our 
previous MAIC analysis of Influenza A  virus3. Among the top 500 ranked genes from each output, we found 
72 overlapping genes (Fig. 2B), including a large number of RNA-binding, ribosome-associated and chaperone 
genes. Unexpectedly few immune related genes overlapped. This is surprising as both viruses are single-stranded 
RNA viruses and despite differing in sense, intracellular pathogen detection mechanisms are expected to be 
similar.

To expand this analysis we manually curated genes associated with ARDS from previously published literature 
reviews and determined the overlap with our MAIC output (Supplementary Table 4). Among the top 500 ranked 
genes from the coronavirus MAIC output we found an overlap of 13 genes with the ARDS list (consisting of 103 
genes) (Fig. 2C). Here we saw a number of genes associated with innate immunity and modulation of inflam-
mation (TNFα , IL6, IL18, CCL2, IL1B, TLR1, IL13, NFκBIA). This relatively small overlap was also observed in 
a similar analysis comparing MAIC output to a gene list curated as part of a published review looking at genes 
implicated in respiratory disease as a consequence of infection (Supplementary Fig. S2A)16.

The inflammatory profile, including hyperferritinaemia, observed in COVID-19 has led to the suggestion 
that a form of secondary haemophagocytic lymphohistiocytosis (HLH), a hyper-inflammatory syndrome, could 
be  occurring17. We manually curated genes involved in the familial form of this syndrome, based on previously 
published review articles and mutations that are tested for in clinical practice (Supplementary Table 4), and com-
pared these with our MAIC output, finding no overlap, although only eleven genes were found in the literature 
to be associated with familial HLH.

Finally, we also performed a comparison of our output with a recently published systematic review also 
identifying genes implicated in betacoronavirus infection and focused on peer-reviewed articles concerned with 
biomarkers associated with a clinical diagnosis of SARS or associated  syndromes18. This review identified 22 
unique genes, 6 of which overlap with the MAIC output and are detailed in Supplementary Fig. S2B.

Pathway analysis of MAIC output. To better understand the biological functions of the most strongly 
implicated genes, we performed gene set enrichment analysis in ten databases of functional annotations. We 
used three complementary methods, assessing enrichment either in terms of rank distribution across the whole 
dataset (permissive) or in over-representation in the top 100 genes only (conservative). There was extensive 
overlap between these approaches (Fig. 3A and Supplementary Table 3).

Functional annotations that were significant using at least two methods and that were reflected in results 
from more than one database included terms related to cytokine, toll-like receptor and T-cell receptor signalling, 
protein processing, apoptosis, the complement system, VEGF signalling, glucose metabolism and viral infections 
such as influenza A. As expected, the relative information contributions from different experiment types varied 
between pathways (Fig. 3B). For example, terms related to complement and coagulation received relatively little 
contribution from CRISPR screen data (derived from epithelial cells) but more information from proteomics 
and experiments using serum or swab samples, whilst pathways related to protein processing had relatively 
greater contributions from protein interaction studies. In all cases, enriched pathways drew information from 
a range of experiment types.

Integration of MAIC output with results from published GWAS. One of the principal applications 
of MAIC is in the interpretation of results of genome-wide association studies (GWAS). Genome-wide asso-
ciation studies often implicate a locus containing a number of candidate genes and the precise nature of the 
interaction between gene and disease may not be known. As an example, we applied our results to the locus in 
chromosome 3 associated with hospitalisation due to COVID-19 in the sole COVID-19 GWAS published at the 
time of writing (data from which were also included in this analysis)19. This locus contained six genes (SL6A20, 
LTZFL1, CCR9, FYCO1, CXCR6 and CXR1) that could all plausibly be linked to COVID-19 pathophysiology on 
the basis of their known functions.

Of these, FYCO1, which encodes a protein involved in vesicle transport and autophagy, was highly ranked in 
our results (rank 42). FYCO1 is supported by SARS-CoV-2-specific protein–protein interaction and transcrip-
tomic data. CCR9 (rank 417) had additional support from a single transcriptomic study, while SL6A20, LTZFL1, 
CXCR6 and XCR1 had low ranks in our results, with no corroborating evidence in other studies.

Discussion
The interpretation of any meta-analysis is critically dependent on the criteria for inclusion. In this case, our 
objective is to cast the net wide, including a range of data sources that are both conceptually and methodologi-
cally divergent. Experimental results bearing little relation to the composite of evidence from the other studies 
are downgraded by the MAIC algorithm, so the effect of irrelevant, noisy, or poorly-conducted experiments 
is  minimal3. By using permissive inclusion criteria, together with weighted meta-analysis, we have identifed 
key elements of the host–pathogen interaction and promising therapeutic targets for further investigation and 
intervention. These include host factors involved in viral replication, and elements of the immune response, 
which have been overlooked in the contributing studies (Fig. 4). We contend that the output of our analysis can 
be applied to (1) inform understanding of pathogenesis and planning of in vitro and in vivo validation studies 
of selected host factors; (2) prioritise host therapeutic targets, through matching highly ranked host factors with 
available drugs; and (3) inform the interpretation of hits from GWAS (for example in prioritising candidates for 
further investigation within the chromosome 3 locus discussed above) and studies of monogenic inborn errors 
of immunity.
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Key host factors related to viral entry and replication. Coronaviruses hijack host endomembranes 
to facilitate anchoring of the replication/transcription  complex20. Consistent with this, we observe an over-rep-
resentation of endoplasmic reticulum-related genes. Genes related to the function of the endoplasmic reticu-
lum (FAF2, ERGIC1, TENT5C, TENT5A, CFL1, STARD5) and glycosylation (MOGS, UGDH, UGGT1, PDIA6, 
PDIA3) are observed along with a number of chaperone proteins (HSPB1, HSPA4, HSPA8, HSP90AA1, ST13). 
Many of these genes are related to the unfolded protein response (UPR), a stress response initiated by accumula-
tion of misfolded proteins. FYCO1, implicated in published GWAS results, has been suggested as a key mediator 
linking ER-derived double membrane vesicles, the primary replication site for coronaviruses, with the microtu-
bule  network21.

Figure 3.  Gene Set Enrichment Analysis of MAIC rankings. (A) Violin plots of MAIC score distributions of 
top enriched pathways significant with both FGSEA and Enrichr algorithms, from the KEGG 2019 (Human) 
and WikiPathways 2019 (Human) databases. Highly similar pathways and irrelevant specific disease terms are 
not shown. n: number of gene set members included in the overall MAIC output; NES: normalised enrichment 
score from FGSEA. (B): Information contribution by methodology for selected enriched KEGG terms. Relative 
contributions of different information sources vary between functional annotations, but no single methodology 
predominates to drive enrichment.
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Viral entry via spike (S) protein-mediated membrane fusion is well  characterised22. The first step, spike 
activation, requires cleavage via host proteases such as cathepsin L (CTSL, rank 31)23. In the Wei et al.24 CRISPR 
screen, knockout of CTSL restricted viral production. Cathepsin L inhibition has been suggested as a promising 
therapeutic strategy for COVID-19: specific small molecule inhibitors are in early stages of development, and 
direct or indirect inhibition is observed with a number of approved drugs including glycopeptide antibiotics, 
chloroquine and  dexamethasone25. ATP1A1 (rank 35), encoding a subunit of the NA + /K + cotransporter, has 

Figure 4.  Cellular functions of the 100 highest ranked genes in the MAIC output. Protein products of these 
genes have diverse cellular locations and are associated with numerous processes relevant to the viral life cycle 
and host immune system. Stages of the betacoronavirus life cycle: (1) S protein-mediated attachment to the cell 
surface. (2) Endocytosis. (3) Membrane fusion and viral genome release into the cytoplasm. (4) Assembly of the 
replication-transcription complex, translation of mRNA. (5) Viral replication and virion assembly. (6) Virion 
maturation, budding and translocation of vesicles.
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similarly been shown to be necessary for membrane fusion and viral entry for a number of  coronaviruses26. 
Inhibition of ATP1A1 by cardiac glycosides suppressed MERS-CoV infection in vitro27. Additional anti-inflam-
matory28 effects of these drugs make them theoretically attractive therapeutic options, but adverse effects may 
limit their practical application.

The interferon-stimulated gene LY6E (rank 3), which plays a key role in enhancing cellular entry by RNA 
viruses including influenza A  virus29, was unexpectedly found to have a strong restricting effect on SARS-CoV-2, 
SARS-CoV and MERS-CoV30. Such widely opposite differential effects on different viruses have been reported 
for other host genes, such as IFITM3, RSAD2 and AXL (ranked 1056, 1039 and 215 respectively by MAIC)29, 
and for PPIA (see below).

Immune response to SARS‑CoV‑2. Consistent with the emerging understanding of the pathogenesis of 
COVID-19, key genes in the inflammatory response to SARS-CoV-2 infection are highly represented in the top 
100 genes. These include genes involved in recognizing the virus (TLR3, IFIH1), activating the innate immune 
system (OAS2, HERC5, S100A9), chemotaxis (S100A9, CXCL10, CXCL8, CCL20, SAA2) and pro-inflammatory 
cytokines (IL1A, IL18). Toll-like receptor 3 (TLR3) is an endosome-associated pathogen-associated molecular 
pattern receptor, constitutively expressed in the respiratory tract and many immune cells. TLR3 detects double-
stranded viral RNA and triggers production of type I interferons and other pro-inflammatory cytokines, such as 
IL6 (rank 104) and TNFα (rank 182) via IRF3 and NF-κB31.

The chemokine CXCL10 (rank 17) is a key signalling molecule in viral immunity, which could contribute 
to pulmonary inflammation as well as aiding viral  clearance32. CXCL10 levels are associated with outcome in 
 influenza33 and are thought to have a protective effect in SARS, but a pro viral effect in  HIV34. CXCL10 has been 
proposed as a prognostic marker for the progression of disease in COVID-19, with continuously high levels of 
CXCL10 associated with worse  outcomes35.

The high rankings of genes associated with activation and binding of T lymphocytes (CD4, CD3E, FGL2, LCK, 
SELL) are also likely related to their prognostic significance, as lymphopaenia is strongly associated with poor 
outcomes in COVID-1936,37. Absolute counts of CD3+, CD4+ and CD8 + T lymphocytes have been proposed 
as a potential predictor of outcome in severe COVID-19  patients38 with an increase in numbers of these cells 
observed during recovery.

Prioritisation of host susceptibility factors as therapeutic targets. The highest-ranking gene is 
PPIA, which encodes peptidyl-prolyl cis–trans isomerase A (PPIA, also known as cyclophilin A, CypA), a cyto-
solic protein involved in protein folding and trafficking, cell signalling and T-cell activation via the calcineurin/
NFAT  pathway39. PPIA is a pro-viral factor for hepatitis C virus (HCV), HIV-1, and SARS-CoV, and an anti-viral 
factor for  IAV40,41.

The cyclophilin inhibitor cyclosporine has in vitro antiviral activity against  HCV42–44. This was also observed 
in a HCV clinical trial, where cyclosporine combined with interferon-α was more efficacious in achieving sus-
tained virologic response than interferon  monotherapy45. Similar in vitro and clinical results were demonstrated 
for the PPIA inhibitor alisporivir (DEBIO-015)46. PPIA is also a pro-viral factor for HIV-1 and alisporivir can 
inhibit HIV-1 replication in vitro47,48.

A genome-wide protein–protein interaction screen identified an interaction between the SARS-CoV Nsp1 
protein and  PPIA49. Cyclosporine inhibits SARS-CoV replication in Vero E6 cells, as well as HCoV-229E, HCoV-
NL63, avian coronavirus and feline coronavirus. Nsp1 also induced IL-2 expression in HEK293 cells through 
the calcineurin/NFAT pathway, making inhibition of this pathway interesting from both an antiviral and immu-
nomodulatory  perspective50.

Two interleukin 1 superfamily members, IL1A and IL18, were in the top 50 ranked genes. The high ranking 
of IL1A (encoding interleukin 1-α ) is striking because monoclonal antibodies against interleukin 1 receptor are a 
plausible therapeutic approach for COVID-199. This pro-inflammatory cytokine, which is synergistic with TNFα , 
is constitutively expressed in epithelial cells and is upregulated after SARS-CoV-2  infection51. Interleukin-1 
receptor blockade with anakinra is now being tested in a number of randomised clinical trials in COVID-199. 
The pro-inflammatory cytokine IL18 (interleukin 18) is also of potential therapeutic relevance. IL18 is a product 
of the activated NLRP3 inflammasome and circulating levels are elevated in Covid-19 and positively correlate 
with  severity52. Therapeutic inhibition has been investigated in patients with adult-onset Still’s disease using 
recombinant human IL-18 binding protein (tadekinig alfa) which appears safe and potentially  efficacious53. Small 
molecule inhibitors are also in  development54.

Advantages and limitations of data integration via MAIC. The principal advantage of the MAIC 
approach is that it allows integration of data from diverse sources. Unlike other methods for gene list compari-
son such as vote counting or robust rank  aggregation55, MAIC applies a data-driven weighting to each dataset, 
accepts both ranked and unranked lists, and includes user-defined categories which prevent any single method 
from overwhelming the results. MAIC outperforms other methods for predicting antiviral  genes3.

This meta-analysis is restricted to studies involving genome-wide hypotheses or screening data for large 
gene sets, and does not consider evidence from candidate gene genetic studies or single-gene perturbations. 
Where a single gene has been investigated extensively but genome-scale studies are sparse, our approach may 
underestimate the relative strength of evidence for certain genes. Single gene studies, however, are likely to focus 
preferentially on genes that fit pre-conceived ideas of disease pathogenesis and may be prone to other biases such 
as publication bias, something which we mitigated against in our inclusion criteria.

Genetic perturbation data are still relatively sparse for SARS-CoV-2 and other human betacoronaviruses: 
only one genome-wide CRISPR knockout screen and two other sub-genome-scale screens (kinome-wide RNAi 
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and interferon-stimulated gene overexpression screens) were included in the meta-analysis. Limited data of this 
type could be responsible for the lower than expected rankings for ACE2 (rank 320), a major functional receptor 
for the SARS-CoV and SARS-CoV-2 spike (S) proteins, and TMPRSS2 (rank 3037), a serine protease required 
for S protein  priming22,56,57. While ACE2 was identified as a host dependency factor in the CRISPR screen, 
TMPRSS2 was not, and as neither gene was included in the other two screens, the effects (or lack thereof) could 
not be confirmed. The only other supportive evidence for a role in disease pathophysiology, in studies included 
here, came from a single transcriptomic study for each; there was no evidence from protein–protein interaction, 
proteomics or  genetics51,58. Candidate gene association studies are highly dependent on prevalence of func-
tional variants and, while overlapping to a limited extent with results of large-scale screens included here, have 
been notably unable to detect significant associations with ACE218. Integrating perturbation data will thus add 
considerably to our ability to interpret the relative importance of these factors. Both ACE2 and TMPRSS2 have 
been proposed as possible therapeutic targets for COVID-19, and clinical trials are underway for the TMPRSS2 
inhibitors nafamostat and camostat mesylate.

Systematic review and meta-analysis are routine elements in the assessment of clinical evidence and some 
fields in genomics, but have been less widely applied to mechanistic biology. Using a flexible and intuitive method, 
we have systematically reviewed and meta-analysed host gene-level data from studies that address a range of 
complementary questions regarding human betacoronavirus infection. This provides external validation for 
numerous host genes implicated in both in the viral life cycleand in the immune response and identifies several 
plausible therapeutic targets with broad support from multiple sources. As more, and larger, datasets become 
available we expect the accuracy of MAIC will improve with each iteration.
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