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Abstract
Single-step genomic best linear unbiased prediction with the Algorithm for Proven and Young (APY) is a popular 
method for large-scale genomic evaluations. With the APY algorithm, animals are designated as core or noncore, and 
the computing resources to create the inverse of the genomic relationship matrix (GRM) are reduced by inverting 
only a portion of that matrix for core animals. However, using different core sets of the same size causes fluctuations 
in genomic estimated breeding values (GEBVs) up to one additive standard deviation without affecting prediction 
accuracy. About 2% of the variation in the GRM is noise. In the recursion formula for APY, the error term modeling the 
noise is different for every set of core animals, creating changes in breeding values. While average changes are small, 
and correlations between breeding values estimated with different core animals are close to 1.0, based on the normal 
distribution theory, outliers can be several times bigger than the average. Tests included commercial datasets from 
beef and dairy cattle and from pigs. Beyond a certain number of core animals, the prediction accuracy did not improve, 
but fluctuations decreased with more animals. Fluctuations were much smaller than the possible changes based on 
prediction error variance. GEBVs change over time even for animals with no new data as genomic relationships ties all 
the genotyped animals, causing reranking of top animals. In contrast, changes in nongenomic models without new data 
are small. Also, GEBV can change due to details in the model, such as redefinition of contemporary groups or unknown 
parent groups. In particular, increasing the fraction of blending of the GRM with a pedigree relationship matrix from 
5% to 20% caused changes in GEBV up to 0.45 SD, with a correlation of GEBV > 0.99. Fluctuations in genomic predictions 
are part of genomic evaluation models and are also present without the APY algorithm when genomic evaluations are 
computed with updated data. The best approach to reduce the impact of fluctuations in genomic evaluations is to make 
selection decisions not on individual animals with limited individual accuracy but on groups of animals with high 
average accuracy.

Key words:  APY algorithm, genomic selection, single-step GBLUP, stability of genomic predictions 
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Introduction
Genomic evaluations by genomic best linear unbiased prediction 
(GBLUP) and single-step GBLUP (ssGBLUP) require the inverse 
of the genomic relationship matrix (GRM). If the number of 
genotyped individuals is large, usually the inverse is difficult to 
obtain for two reasons. First, the matrix is not positive definite, 
which is usually addressed by blending with the pedigree 
relationship matrix (VanRaden, 2008); second, the cost is cubic 
for computing and quadratic for storage when dense matrix 
techniques are applied. Consequently, computations with 
greater than 100,000 genotyped individuals are expensive.

One way to reduce the cost of computing the inverse of GRM 
is by exploiting the limited dimensionality of GRM. Assume 
that the genome is divided into N independent chromosome 
segments (Stam, 1980) and that breeding values of any N animals 
contain all the information about the values of the segments. 
Then, a generalized inverse of the GRM can be obtained by 
recursion on N animals, mimicking the algorithm to invert 
the pedigree relationship matrix (A) (Henderson, 1976; Quaas, 
1988). In the Algorithm for Proven and Young (APY) (Misztal, 
2016), the recursion is on N animals called core and involves 
the remaining animals called noncore. In simulation tests, 
the prediction accuracy using APY approached the maximum 
when N was set to 4NeL, the formula described by Stam (1980), 
where Ne is effective population size and L is genome length in 
Morgans. The number of segments was approximately equal to 
the number of the largest eigenvalues of GRM explaining 98% 
of its variation (a number hereinafter referred to as eigen98), 
suggesting that the remaining 2% is noise (Pocrnic et al., 2016a). 
Studies with field datasets agreed with simulation results, and 
the number of independent chromosome segments ranged from 
about 4,000 for pigs and chickens to about 16,000 for Holsteins 
(Pocrnic et  al., 2016b). In a multibreed pig population, the 
addition of crossbred animals did not increase the number of 
independent chromosome segments (Pocrnic et  al., 2019). The 
choice of core animals was shown to have a minimal impact 
on prediction accuracy, with a random choice preferred for 
computational reasons (Bradford et al., 2017).

The APY algorithm has been used to construct the inverse 
of GRM successfully for up to 2.3 million genotyped individuals 
(Masuda et al., 2019). Additionally, it is currently being used in 
commercial genomic evaluations to reduce computing time for 
beef (Lourenco et al., 2015b) and dairy (Gonzalez-Peña et al., 2019) 
cattle, pigs (Pocrnic et al., 2019), and broiler chickens (R. Hawken, 
Cobb-Vantress, Siloam Springs, AR, personal communication) 
and was also found useful for crossbred populations (Mäntysaari 
et al., 2017). However, multiple reports from commercial users of 
APY have indicated that the use of different sets of animals in 
the recursions results in isolated changes of genomic estimated 

breeding value (GEBV) of nearly one additive genetic standard 
deviation (SDa), even though the mean change is <30% of one 
SDa. Changes in GEBV with different core animals were also 
noticed by Stranden et al. (2017) and Mäntysaari et al. (2017).

The stability of GEBV when more data are included is 
a desirable feature of commercial genetic evaluations. An 
additional requirement is the least possible change in GEBV 
over time without additional information. However, GEBV 
fluctuations over time are artifacts of limited accuracy or 
reliability of individual GEBV. For example, if the reliability of 
GEBV is 90%, the prediction error variance (PEV) is 10% of the 
additive genetic variance. Assuming a normal distribution, the 
mean difference from true breeding value is about 0.3 SDa (i.e., √
0.1 SDa), whereas the probability of observing changes that are 

±1 SDa and ±1.5 SDa is one in 1,000 animals and one in 1,000,000, 
respectively.

The objectives of this study were to 1)  develop a theory 
to explain GEBV changes when recursion in APY is done on 
different sets of animals; 2)  determine the magnitude of 
changes in commercial populations of pigs and beef and dairy 
cattle; 3) determine the magnitude of changes in relation to the 
accuracy of GEBV; 4) propose steps to reduce the changes, 5) find 
out whether larger changes of GEBV over time are properties 
of genomic predictions; and, if so, 6) suggest ways to cope with 
increased changes.

Materials and Methods

Theoretical aspects of APY

The APY is based on recursion of breeding values u of noncore 
(n) on core (c) animals (Misztal, 2016):

un = Pncuc + ε,
where P relates breeding values of noncore to core animals 

and ε is estimation error. In matrix notation:

u =

ñ
uc

un

ô
=

ñ
I 0
P I

ô ñ
uc

ε

ô
.

Following, the GRM (G) is:

var(u) = Gσ2
a =

ñ
I 0
P I

ô ñ
var(uc)

var(ε)

ô ñ
I P
0 I

ô
,

where σ2
a is additive variance, and the inverse of GRM is:

G−1 =

ñ
I −P ′

0 I

ô[
var(uc)

−1 0

0 var(ε)−1

] ñ
I 0

−P I

ô
/σ2

a

After applying P = GncG−1
cc  and var(ε) = Mσ2

a = diag 
(gii − gi,cG−1

cc gc,i)σ2
a for individual i in the noncore group, the final 

formula is:

G−1 =

ñ
G−1
cc 0
0 0

ô
+

ñ
−G−1

cc Gcn

I

ô
M−1

î
−GncG−1

cc I
ó
.

In general, the matrix M is not diagonal. Therefore, ignoring 
its off-diagonal elements may result in an approximation and, 
consequently, in a reduction in the accuracy of  (ss)GBLUP. 
However, when the number of core animals is equal or greater 
than eigen98, that accuracy no longer increases, indicating 
that the off-diagonal elements of M no longer carry useful 
information and can be ignored (Bradford et al., 2017).

Abbreviations

APY Algorithm for Proven and Young
BLUP best linear unbiased prediction
EBV estimated breeding value
GBLUP genomic BLUP
GEBV genomic EBV
GRM genomic relationship matrix
PEV prediction error variance
SDa Additive genetic standard deviation
SEP standard error of prediction
SNP single-nucleotide polymorphism
ssGBLUP single-step GBLUP
UPG unknown parent group D
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For noncore animal i:

ui = Picuc + εi, (1)

And the variances are var(ui) ≈ σ2
a , var (Picuc) ≈ ησ2

a, and 
var( εi) ≈ (1− η)σ2

a, where η is the fraction of variance considered 
in GRM, and the approximation is due to ignored inbreeding and 
assuming the same η for all animals. In a study by Pocrnic et al. 
(2016a), the optimal η for maximizing prediction accuracy was 
0.98. 

For an animal with reliability r2, var(“ui) = r2var(ui). Then, 
var

(“ui
)
= r2var(Picuc) + r2var(εi) and var( ε̂i) ≈ r2(1− η)σ2

a . When 
the recursion formula is used for young animals (i.e., without 
phenotypes and offspring), the variance of the difference 
between GEBV for the same animal obtained with two different 
core sets is at most 2r2(1− η)σ2

a when the errors are uncorrelated 
and are smaller otherwise; the errors are likely less correlated 
when the two core sets have minimum overlapping, which is 
likely the case for a very large number of genotyped animals. 
Therefore, the changes are mainly attributable to the amount of 
ε in the recursion to compute u for noncore animals.

The above formula can be used to predict absolute mean 
change for all noncore animals or for specific outliers when the 
number of core animals increases and consequently var (Picuc) 
increases. The mean of outliers for the absolute changes can 
be calculated based on the normal distribution, assuming a 
random variable x from a standardized normal distribution with 
mean 0 and variance 1. If the mean for |x| is 0.8, then the mean 
for the most extreme outliers of 1 in a 100 is 2.9, for 1 in 10,000 is 
4.1, and for 1 in 1 million is 5.1. Based on that, theoretical trends 
for mean absolute change for all animals and for outliers can be 
drawn together with prediction accuracies (Figure 1). Prediction 
accuracy increases to a point (η = 0.98) and then slightly decreases. 
At that point, if prediction accuracy is assumed to be 0.6, the 
mean change is 0.12 SDa, but it increases to about 0.6 SDa for the 
top 0.01% outliers. Increasing the number of core animals to that 
corresponding to the number of eigenvalues that explains 99.5% 
of variance (η = 0.995) reduces mean change by half.

Data and models

Three commercial datasets were used to investigate changes 
in GEBV from ssGBLUP when using APY with different core 
sets: a dairy cattle dataset from Holstein Association USA and 

the Council on Dairy Cattle Breeding, a beef dataset from the 
American Angus Association, and a pig dataset from GENUS-
PIC. The dairy data set used a single-trait (udder depth) version 
of the 18 type trait, repeatability model, and validation similar 
to Tsuruta et  al. (2019). The beef dataset used a single-trait 
(postweaning gain) version of a three-trait model shown in 
(Lourenco et  al., 2015b), with similar validation. The pig data 
set used the single-trait (trait 1)  version of a model described 
in Pocrnic et al. (2019), using the same validation method. The 
three data sets are described in Table 1.

Analyses

For all the datasets, GEBVs were computed using ssGBLUP with 
APY and the BLUP90IOD program (Misztal et  al., 2014) using 
default settings, which included the construction of G based 
on VanRaden (2008), blending of G with 5% of the pedigree 
relationship matrix for genotyped animals (A22) to avoid 
singularity problems, and rescaling of G to match A22 by means 
of diagonals and off-diagonals.

According to Pocrnic et  al. (2016b), the number of core 
animals needed in APY to maximize prediction accuracy of GEBV 
should be equivalent to the number of eigenvalues that explain 
98% of the variance of GRM. For the dairy, beef, and pig single-
breed datasets, that number was 15, 13, and 6.9 k, respectively. 
However, to investigate the effect of core size on GEBV change, 
several core sizes were used, and each core size was randomly 
sampled twice (core1 to core2) to compute two sets of GEBV 
(GEBV1 and GEBV2). For animal i, the absolute change (Δ) was 
computed as:

∆i = |GEBV1i − GEBV2i |.
Mean absolute change (or difference) between GEBV1 and 

GEBV2 and maximum absolute change were obtained for all 
datasets. In addition to investigating mean and maximum 
changes between GEBV1 and GEBV2 for each core size, mean and 
maximum changes in var(ε) = M = diag(gii − gi,cG−1

cc gc,i) were 
also evaluated for the dairy cattle data.

In the beef data, ∆i were compared with GEBV accuracy and 
possible changes based on a 95% confidence interval. Accuracy 
of GEBV was computed using accf90GS (Tsuruta et  al., 2016) 
for a core size of 20 k, which has just above the number of 
eigenvalues that correspond to 98% of the variation in GRM. 
Accuracy of GEBV (acc) was then backsolved to the standard 
error of prediction (SEP):

SEP =
»
(1− acc2)σ2

a .

The possible change based on a 95% confidence interval was 
computed as 1.96 times SEP and reported as absolute values.

To find out whether larger changes in predictions over time 
are intrinsic to genomic evaluations, we mimicked the real 
scenario where official evaluations are run twice a year (i.e., 
evaluations A and B). The only difference between evaluations 
A  and B was the number of phenotypes for the beef cattle 
population in the evaluation system, that is, 124,794 records 
were added. Solutions from evaluations A and B were obtained 
using both ssGBLUP and BLUP. Changes in solutions were 
compared for all genotyped animals.

For the pig dataset, mean and maximum absolute changes 
were also investigated when different blending was used. By 
default, GRM in ssGBLUP is blended with 5% of the portion of 
the A for genotyped animals (A22) to avoid singularity problems. 
To show that changes in GEBV can happen when small 
modifications are made to GRM, regular ssGBLUP without APY 

Figure 1. Theoretical mean change in GEBVs and accuracy for two evaluations 

with a different core set. Mean change was for all animals and maximum change 

included the 0.01% of animals with the largest change. Eigen98 indicates the 

number of core animals equivalent to the number of eigenvalues that explain 

98% of the variance of the GRM. The approximate values of 12% and 60% were 

derived assuming the reliability of 0.6. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/98/12/skaa374/5992278 by guest on 28 D

ecem
ber 2020



Copyedited by: SU

4 | Journal of Animal Science, 2020, Vol. 98, No. 12

was used with GRM blended with 1%, 5%, 10%, and 20% of A22 
and 1 and 10% of I.

Results and Discussion
Trends for mean and maximum absolute changes between 
GEBV1 and GEBV2 as a function of the number of core animals for 
Holsteins, Angus, and pigs are shown in Figure 2a–c. In general, 
the predictive ability or reliability at the number of core animals 
equal to eigen98 (denoted as a gray, vertical line) was close to 
the peak, as expected from the theory (Pocrnic et al., 2016a). At 
that number, the average change for animals being noncore in 
the random sets was about 7% of SDa for Holsteins and about 
10% of SDa for Angus and pigs. The maximum changes were 
45% of SDa for Holsteins and about 60% of SDa for Angus and 

pigs. These numbers were close to values presented in the 
theoretical aspects of APY, with somewhat smaller changes for 
Holsteins, possibly due to the presence of animals with higher 
average reliability. In fact, the observed ratio of the maximum 
change to the average change of around 6 is very close to the 
theoretical ratio of the mean of the 1 in 1 million cases with the 
mean change.

Mean changes decreased when increasing the number of 
core animals. Therefore, one way to reduce the changes in 
APY when the core animals change is to increase the core size 
beyond the number of eigenvalues that explain 98% of the 
variance in GRM. However, using more core animals requires 
increased computing resources without increased prediction 
accuracy or reliability. For example, in the Angus evaluation, 
the genomic setup that included computation of G−1

APY took 8.5 h 

Figure 2. Changes in GEBV and reliability or predictivity for (a) Holstein udder depth, (b) Angus postweaning gain, and (c) pig trait 1 using different core groups. Mean 

and maximum absolute changes were expressed as a percentage of the additive genetic standard deviation of (a) 4.6, (b) 27.0, and (c) 39.5. Eigen98 indicates the number 

of core animals equivalent to the number of eigenvalues that explain 98% of the variance of the GRM; (d) absolute changes in the variance of estimation error for 

Holstein udder depth with increasing core animals. Error was estimated for the move from one core to another, and absolute change was expressed as a percentage of 

the additive genetic standard deviation of 4.60. M, relative variance of estimation error.

Table 1. Number of animals in the pedigree, phenotypes available in the complete and partial datasets, total number of genotyped animals and 
animals in the validation population, SNP count, and genetic parameters for the three datasets used in this study

Data Pedigree
Phenotypes 

complete
Phenotypes 

partial
Genotyped 

animals
Validation 
animals

Number 
of SNPs h2 σ2

a

Holstein 9,730,943 10,067,745 9,235,355 569,404 1,711 58,990 0.33 21.2
Angus 10,661,517 4,386,184 4,298,754 509,072 33,318 39,774 0.24 729
Pigs 2,633,266 771,828 756,973 43,195 2,757 43,195 0.27 1,565
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when using a 20 k core and 21.5 h with a 50 k core; however, the 
increase in number of iterations to reach convergence was not 
extreme (i.e., from 745 to 855).

For the animals in the noncore group, recursions to compute 
G−1

APY have the following form:
Gnn = M−1

nn ,
where Gnn is the portion of G−1

APY that refers to noncore 
animals and M depends on the relationships among core 
animals and also between core and noncore. As more core 
animals are used, gi,cG−1

cc gc,i increases, consequently reducing 
error and its variance because 1 − η is reduced. Using Holstein 
udder depth as an example, trends for absolute changes in 
M when moving from core1 to core2 with increasing numbers 
of core animals are shown in Figure  2d. Mean and maximum 
changes in M decreased when the number of core animals 
increased. Correlations between changes in M and changes 
in GEBV for noncore animals were greater than 0.98, which 
indicated a strong relationship between estimation error and 
GEBV changes, in agreement with the theory.

To investigate which animals had the largest GEBV changes 
when the core group was changed, the absolute values for 
observed numerical changes in Angus GEBV for postweaning 
gain were compared with GEBV accuracy based on PEV for a core 
size of 20 k (Figure 3). All the changes were considerably smaller 
than the possible changes based on a confidence interval of 95% 
(i.e., 1.96 times SEP). The largest differences between GEBV1 and 
GEBV2 were observed for animals with accuracy lower than 0.7; 
on the other hand, animals with higher accuracy had noticeably 
smaller changes. This agrees with the definition of accuracy, 
which measures the possible change in breeding value when 
more data are available. Larger changes between GEBV1 and 
GEBV2 for animals with lower accuracy imply that information 
is redistributed in G−1

APY when the core group changes. This 
redistribution is clear in the recursion formula to compute G−1

APY 
because all coefficients are computed based on relationships for 
core animals and between core and noncore animals. Therefore, 
changing core animals modifies relationships in the GRM inverse 
when fewer core animals are used. After increasing the core size 
to 50 k, the relationships stabilize, and further increasing core 

size no longer reduces the changes because they are already 
minimal.

Changes over time under genomic and nongenomic 
evaluation

Figure 4 shows the distribution of changes in breeding values for 
Angus postweaning gain in two BLUP and ssGBLUP subsequent 
evaluations. Those evaluations mimicked the real scenario 
where phenotypes were added only to animals that went 
through the postweaning gain test. The changes were observed 
for all genotyped animals. In BLUP evaluations, around 58% of 
the animals had small changes that varied from 0% to 5% of 
one SDa. This was true for all genotyped animals, independently 
of their phenotyping status. For genomic evaluations, 31% of 
the animals had GEBV that changed from 0% to 5% of one SDa, 
whereas 58% changed from 5% to 20% of one SDa, indicating 
that changes in GEBV are larger than in EBV when new data are 
added. In BLUP, there is little or no change in EBV for one animal 
when no information is added for itself or its close relatives, 
but there are larger changes when the information is shareable 
through the pedigree. This is because the reliability of animals 
in BLUP is lower. In ssGBLUP, there are always changes in GEBV 
because the GRM allows the added phenotypes to influence all 
genotyped animals.

With BLUP, changes in genetic evaluations over time are 
mainly for younger animals with new data, whereas changes 
for older animals are usually small because the impact of new 
animals on old animals through pedigree relationships is small. 
Exceptions would be the result of redefinition of fixed effects 
that are applicable to older animals, such as contemporary 
groups, age adjustments, or unknown parent groups (UPGs). 
For example, large EBV fluctuations in Holsteins were traced 
to the redefinition of contemporary groups every round of 
evaluation (P. VanRaden, USDA-AGIL, Beltsville, MD, personal 
communication). Small changes for older animals, regardless of 
individual accuracy, create the impression that BLUP evaluations 
are stable.

In genomic evaluations, the addition of new genotyped 
animals affects evaluations of older genotyped animals because 

Figure 3. Absolute changes in GEBV for Angus postweaning gain by individual accuracy. Evaluations were based on two different core groups, and accuracy was based 

on PEV. 
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genomic relationships create stronger ties than pedigree 
relationships. The correlation of GEBV for young bulls between 
consecutive (4 mo) evaluations is 0.99 (P. VanRaden, USDA-AGIL, 
Beltsville, MD, personal communication). While the average 
change in met merit (NM$) for young bulls was about 10% of one 
SDa, the maximum change was close to 1.0 SDa (T. Lawlor, US 
Holstein Association, Brattleboro, VT, personal communication). 
Large changes for individual bulls initially ranked as top 
and priced accordingly create a loss of faith in the genomic 
evaluations although the changes are in line with individual 
reliabilities (J. Mabry, Iowa State University, Ames, IA, personal 
communication).

Changes in GEBV can also happen with small changes 
in GRM even if APY is not used. For instance, GRM is usually 
blended to avoid singularity, although the amount of blending 
is mostly arbitrary, with the fraction of blending varying from 
1% to 20%. Figure 5 shows the absolute change in GEBV when 
using regular G−1 and assuming different blending proportions 
compared with using the default blending of 5% of A22. Although 
mean absolute changes were small and varied from 2.8% to 7.5% 
of one SDa, the maximum absolute changes reached 44.7% and 
87.5% of one SDa when 20% of A22 and 10% of I were used instead 
of 5% of A22, respectively. Despite large changes, correlations 
between GEBV from different blendings were >0.99. Large 
individual changes of GEBV can occur with small modifications 
in genomic relationships. Any modification in the model or 
variance components also would result in GEBV changes.

Another source of changes of (G)EBV in either BLUP or 
ssGBLUP are definitions of UPGs if those are based on the 
year of birth and when a substantial fraction of animals has 
incomplete pedigree. Over time, new groups are added for 
new animals, and older ones may be eliminated if the old data 

are truncated. Subsequently, solutions of UPGs will fluctuate 
directly influencing (G)EBV.

Methods not using APY formula

Fluctuations due to the choice of core animals do not exist in 
methods that do not use the APY algorithm. However, GEBV 
could be different depending on details or approximations in 
the model. For example, in ssGTBLUP (Mäntysaari et al., 2017), 
the inverse of GRM is obtained using the Woodbury formula, 
which requires only the inverse of a matrix with the size of 
the number of single-nucleotide polymorphisms (SNPs). The 
formula requires full-rank GRM, and such GRM is obtained by 
blending with an identity matrix or the pedigree relationship 
matrix among genotyped animals. In practice, the amount of 
blending does not affect prediction accuracy although blending 
at 5% reduced the accuracy of GEBV compared with blending at 
1% in a simulation study with quantitative trait nucleotide  in 
the data (Fragomeni et al., 2017). As shown before, GEBV with 
different amount of blending would be slightly different but no 
changes due to blending will result over time if the amount of 
blending is unchanged. The ssGBLUP with APY as implemented 
in the BLUPF90 software uses blending for stability; however, 
with careful selection of core animals, convergence has been 
achieved without blending and with marginally increased 
prediction accuracy (results not provided).

The costs with APY depend on the dimensionality of the 
genomic information related to the effective population size and 
less on the number of SNP. The cost of ssGTBLUP depends on 
the number of SNP. Subsequently, ssGTBLUP is a good choice in 
situations when the dimensionality of GRM is close to the number 
of SNP, like for Irish cattle multibreed populations (Mäntysaari et al., 

Figure 4. Changes in breeding values for postweaning gain in two subsequent BLUP and ssGBLUP evaluations, where extra 124,794 phenotypes were added from one 

evaluation to the other. Individual absolute changes were expressed as a percentage of the additive genetic standard deviation of 27.01. Outliers were binned to −100 

or 100.
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2017), although a single relationship matrix may be insufficient 
for accurate modeling of a large number of breeds (Steyn et al., 
2019). The ssGBLUP using APY would be more efficient when the 
dimensionality is smaller than the number of SNP, or the number 
of SNPs is very large. Another method that can potentially be used 
with large datasets is single-step Bayesian regression (Fernando 
et al., 2014), where the same number of SNP effects is estimated 
regardless of the number of genotyped animals.

How to minimize the change in GEBV when APY 
is used

When the evaluation is performed frequently, for example, 
weakly, with little additional data but different core sets every 
time, most of the changes are due to changing the core set. 
Several options are available to try to minimize GEBV changes 
or their effect when the APY algorithm is used. The first option 
is to ignore changes, as they do not affect prediction accuracy 
and subsequently genetic gain and trends because GEBVs 
obtained with different cores sizes are correlated at >0.99 when 
each core size is at least eigen98. Such an option is obvious for 
species where individual nucleus animals are not marketed 
(chicken and mostly pigs). A second option is to use the same 
core animals for an extended period of time (e.g., 1 yr); using 
core animals from previous generations in the simulation study 
(Bradford et al., 2017) or the core set 2 yr old in Angus (results not 
shown) did not reduce prediction accuracy. Finally, with large 
data when the APY is useful, young animals may be removed 
from the main ssGBLUP evaluation and their GEBV calculated as 
indirect predictions based on backsolved SNP effects (Lourenco 
et  al., 2015), also for an extended period of time. In general, 
GEBVs include both parent average and genomic predictions 
(VanRaden and Wiggans, 1991; Lourenco et al., 2015a), and the 
use of indirect predictions that exclude parent average can lead 
to lower prediction accuracy. With large data, the fraction of 
parent average in GEBV is small, and indirect predictions based 
on SNP effects are accurate. In the Angus data, correlations of 

indirect predictions with regular GEBV calculated up to 1 yr later 
were >0.99 (Hidalgo et al., 2020).

Overall, fluctuations in GEBV due to either additional genomic 
data or computing details are not necessarily detrimental but 
instead illustrate limited reliability and discretion in extensively 
using an animal as a breeder until its reliability increases. In 
fact, low fluctuations in EBV for an animal with low reliability 
may falsely create an impression that the EBVs are reliable 
while they are not. When GEBV reaches high reliability (i.e., 
when the animal has many progenies and phenotypic records), 
the portion of GEBV that is contributed by genomic information 
is negligible. Therefore, the expected changes in GEBV when 
G−1

APY is modified are close to zero.
Even without fluctuations induced by APY, EBV and GEBV 

changes are inevitable with model adjustments and additional 
data. An educational effort is needed to explain changes in GEBV 
for genomically evaluated animals because of the industry trend 
to put a high economic value on animals tentatively evaluated 
as best (Lourenco et  al., 2015b). One way, the dairy industry 
deals with fluctuations in GEBV is by marketing a group instead 
of individual sires (Gottardo et  al., 2019). If each sire has a 
repeatability of 70%, a mean of 30 sires, assuming independent 
errors, would have a repeatability of 99%. Using groups of top-
ranked sires instead of individual sires has a positive impact on 
diversity.

Conclusions
Fluctuations in GEBV from ssGBLUP with different core 
animals are due to the error term that models noise in GRM. 
On average, the GEBV changes are small relative to the 
possible changes based on SEP, although outliers are often 
observed. The fluctuations can be minimized, without affecting 
prediction accuracy, by keeping the same set of core animals 
over extended periods of time or by using indirect predictions 
based on periodically calculated SNP effects for young animals. 
Regardless of methodology, genomic predictions appear less 

Figure 5. Absolute changes in GEBV for different blending proportions. Genomic evaluations were calculated using the regular inverse of the GRM, and different 

blending proportions of the portion of the pedigree relationship matrix for genotyped animals and the identity matrix were compared with using 5% of the portion 

of the pedigree relationship matrix for genotyped animals. Mean and maximum absolute changes were expressed as a percentage of the additive genetic standard 

deviation of 39.56. A22, portion of the pedigree relationship matrix for genotyped animals; I, identity matrix.
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stable than those by BLUP because the genomic relationships 
tie all the genotyped animals. Outliers can have changes in 
GEBV that are several times larger than the average changes, 
and the reasons for extreme values include adding of new data 
and changing contemporary groups, among others. Problems 
may arise when outliers are ranked as top animals and priced 
ignoring the accuracy of GEBV and subsequently later changes. 
The best way to deal with the changes/fluctuations is to base 
breeding programs on groups of animals instead of on top-
ranked individual animals solely.
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