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Abstract 21 
Fluoroquinolones - antibiotics that cause DNA damage by inhibiting DNA 22 
topoisomerases - are clinically important, but their mechanism of action is not 23 
yet fully understood. In particular, the dynamical response of bacterial cells to 24 
fluoroquinolone exposure has hardly been investigated, although the SOS 25 
response, triggered by DNA damage, is often thought to play a key role. Here 26 
we investigate growth inhibition of the bacterium Escherichia coli by the 27 
fluoroquinolone ciprofloxacin at low concentrations. We measure the long-28 
term and short-term dynamical response of the growth rate and DNA 29 
production rate to ciprofloxacin, at both population- and single-cell level. We 30 
show that despite the molecular complexity of DNA metabolism, a simple 31 
`roadblock-and-kill’ model focusing on replication fork blockage and DNA 32 
damage by ciprofloxacin-poisoned DNA topoisomerase II (gyrase) 33 
quantitatively reproduces long-term growth rates in the presence of 34 
ciprofloxacin. The model also predicts dynamical changes in DNA production 35 
rate in wild type E. coli and in a recombination deficient mutant, following a 36 
step-up of ciprofloxacin. Our work highlights that bacterial cells show a 37 
delayed growth rate response following fluoroquinolone exposure. Most 38 
importantly, our model explains why the response is delayed: it takes many 39 
doubling times to fragment the DNA sufficiently to inhibit gene expression. We 40 
also show that the dynamical response is controlled by the timescale of DNA 41 
replication and gyrase binding/unbinding to the DNA, rather than by the SOS 42 
response, challenging the accepted view. Our work highlights the importance 43 
of including detailed biophysical processes in biochemical-systems models to 44 
quantitatively predict the bacterial response to antibiotics.  45 
  46 
 47 
 48 
 49 
 50 
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 51 
Introduction 52 
 53 
It is difficult to exaggerate the impact antibiotics have had on modern 54 
medicine, yet how exactly they inhibit bacterial growth and proliferation 55 
remains controversial (1,2). Understanding mechanisms of antibiotic-induced 56 
growth inhibition is not only interesting from a basic science point of view, but 57 
also has the potential to contribute to rational drug design and optimization of 58 
treatment strategies that reduce the chance of resistance evolution (3–9). To 59 
this end, quantitative models for antibiotic action that can be integrated into 60 
models for resistance evolution are much needed. 61 
 62 
Even though many antibiotics have well-defined molecular targets (10), the 63 
transition from a healthy bacterial cell to a dead, or non-growing, cell upon 64 
exposure to an antibiotic can be a complex and slow process. A prominent 65 
example is the bacterial response to fluoroquinolones – a class of DNA-66 
targeting antibiotics that are used to treat a wide range of bacterial infections 67 
(11). Fluoroquinolone antibiotics typically produce a delayed response: 68 
bacteria initially continue to elongate after exposure (12), and a significant 69 
fraction of cells are still viable after 2-3h (13), even at concentrations where 70 
the antibiotic eventually kills almost all cells. Such a delayed response may 71 
play a role in the evolution of resistance, because elongating cells can 72 
continue to mutate and produce resistant offspring (14). However, no model 73 
has yet been proposed that explains the delayed response, and the delay also 74 
has not been accounted for in models of resistance evolution.  75 
 76 
Fluoroquinolones target bacterial topoisomerases II (gyrase) and IV: enzymes 77 
that cut and re-seal the DNA, releasing the mechanical stresses accumulated 78 
during transcription and DNA replication, and helping to separate replicated 79 
chromosomes (15). Different fluoroquinolones have different binding affinities 80 
to topoisomerases II and IV. For example, ciprofloxacin – one of the most 81 
used antibiotics worldwide – binds predominantly to DNA gyrase in wild-type 82 
E. coli and only much more weakly to topoisomerase IV (16).  83 
 84 
Ciprofloxacin traps the gyrase on the DNA as a DNA-protein complex and 85 
prevents it from dissociating (17). This has two main effects. Firstly, the 86 
poisoned (ciprofloxacin-bound) gyrases act as roadblocks for DNA replication 87 
forks (18), blocking DNA synthesis (19) and causing double-strand DNA 88 
breaks (DSBs) via a “chicken-foot” mechanism (20). Secondly, the poisoned 89 
gyrases also cause double-strand DNA breaks independently of replication 90 
fork activity (19,21). A single unrepaired DSB can be lethal in E. coli (22), but 91 
cells have mechanisms to repair DSBs. One of these is SOS-mediated repair 92 
via the RecBCD machinery (23). A side effect of the activation of SOS is the 93 
suppression of cell division. The resulting filament formation and a change of 94 
the typical aspect ratio from ≈ 4 (24) to > 10 is a characteristic signature of 95 
exposure to fluoroquinolones (14). For this reason, it is often thought that the 96 
SOS response is central in understanding the action of fluoroquinolones. 97 
Despite much work on the molecular mechanism of fluoroquinolone action, 98 
very little work has been done on the dynamics of growth inhibition when 99 
antibiotic-naïve cells are exposed to a fluoroquinolone, and as yet no models 100 
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have been proposed to predict this dynamical response, despite its relevance 101 
for resistance evolution. Moreover, some molecular aspects of the response 102 
also remain unclear; in particular the relative importance of DNA replication, 103 
replication-dependent and replication-independent DSBs, and SOS-mediated 104 
DSB repair (19).  105 
 106 
Here we use a combination of experiments and computer simulations to better 107 
understand these processes. The objectives of our study are: (i) to determine 108 
the short- and long-term response to ciprofloxacin through precise 109 
measurements of cell growth rate and the amount of DNA, (ii) to create a 110 
mathematical model consistent with the molecular mechanism described 111 
above and with our experimental results, (iii) to understand whether the 112 
delayed growth response can be explained by the altered DNA production 113 
rate predicted by our model. 114 
 115 
Our main result is that key features of the action of ciprofloxacin on growing E. 116 
coli bacteria can be explained using a relatively simple model that accounts 117 
for DNA replication fork stalling and both replication-dependent and -118 
independent DSBs caused by ciprofloxacin-poisoned gyrase, but does not 119 
include an explicit SOS response. The model successfully reproduces the 120 
long-term response to ciprofloxacin (growth inhibition curve) and, crucially, 121 
also predicts the short-term dynamics of E. coli in response to ciprofloxacin 122 
upshift, on the population- and single-cell levels. This challenges the view that 123 
the SOS response is central, suggesting instead that the SOS system, while 124 
important in setting the model parameters, does not determine the time scale 125 
of the response of E. coli to ciprofloxacin. 126 
 127 
Results 128 
 129 

1. Parabolic shape of the growth inhibition curve suggests a 130 
cooperative inhibition mechanism 131 

 132 
To understand the response of E. coli to ciprofloxacin (CIP) we first measured 133 
the long-term (steady-state) growth rate at different CIP concentrations: the 134 
growth inhibition curve. Previous work (25) indicated that the inhibition curve 135 
of E. coli could be modelled by a Hill function with a plateau at low 136 
concentrations. However, these experiments might not have been in a state of 137 
balanced growth as the bacteria were exposed to CIP for only one hour.  138 
 139 
To determine the steady-state growth rate for different CIP concentrations, we 140 
used two different methods (Figs. 1, S1). We first measured E. coli growth 141 
curves for a series of CIP concentrations by incubating bacteria in microplates 142 
(200 l/well) in a plate reader, and sampling the optical density every few 143 
minutes over 1-2 days (Methods). We used two strains: the K-12 strain 144 
MG1655, and a mutant derivative AD30. AD30 does not produce functional 145 
fimbriae and therefore sticks less to surfaces (Fig. 1B and Methods), 146 
preventing biofilm growth during the experiment. To minimize potential 147 
problems such as the dependence of optical density on cell shape (26), which 148 
changes during CIP-induced filamentation (14,27), we extracted growth rates 149 
from time shifts between growth curves for cultures with different initial cell 150 



4 
 

density (Methods). Both strains produced very similar growth inhibition curves 151 
with a characteristic inverted-parabola-like shape (Fig. 1A, B). This shape is 152 
consistent with previous results for ciprofloxacin (25) but differs from that 153 
produced by many other antibiotics (5,25). 154 
  155 
In parallel, we measured exponential growth rates for a range of CIP 156 
concentrations using steady-state cells grown in a turbidostat – a continuous 157 
culture device that dilutes cells once they reach a threshold density, 158 
maintaining exponential growth over long times (Methods and Fig. S1C, D). 159 
This could only be done for strain AD30, because the wild-type strain MG1655 160 
rapidly forms a biofilm in the turbidostat. The growth rates in the turbidostat 161 
agree with those obtained from plate reader growth curves (Figure 1B).  162 
 163 
If a culture is in a state of balanced exponential growth, all components of the 164 
bacterial cell must replicate at the same rate (28). Therefore the measured 165 
exponential growth rate should be the same as the rate of DNA synthesis. To 166 
confirm this, we measured total DNA at multiple time points in an 167 
exponentially growing culture for different CIP concentrations, and extracted 168 
the DNA production rate (Methods). Figure 1C shows that indeed the rate of 169 
DNA production matches the exponential growth rate as measured in our 170 
plate reader and turbidostat experiments. 171 
 172 
Taken together, these results show that the long-term, steady-state rate of 173 
DNA production is a non-linear, inverted parabola-like function of CIP 174 
concentration, with only a small slope at zero CIP. If each DSB caused by CIP 175 
contributed (with probability 𝑝) independently to the probability of cell death, 176 
and the number of DSBs was 𝑛, the per-cell death rate would be proportional 177 
to 1 − (1 − 𝑝)𝑛 ≈ 1 − 𝑒−𝑝𝑛. Assuming that 𝑛 increases proportionally to the 178 
CIP concentration 𝑐, we would then expect a concave relationship between 179 
the net growth rate (birth minus death) and 𝑐, with a negative slope at low 𝑐. 180 
As this is not the case, a cooperative effect may be at play, which causes the 181 
number of DSBs to increase faster than linearly with 𝑐. Alternatively, one 182 
might imagine a mechanism in which the number of DSBs is proportional to 𝑐 183 
but must exceed a certain threshold before its effects on the growth rate 184 
become visible. We will show that the first hypothesis (non-linear increase of 185 
DSBs) is strongly supported by the data (Secs. 2-6), whereas the alternative 186 
hypothesis (threshold number of DSBs needed for growth inhibition) is not 187 
(Sec. 7). 188 

 189 
2. A quantitative model for the action of ciprofloxacin 190 

 191 
To understand how the rate of DNA synthesis is affected by ciprofloxacin, we 192 
developed a quantitative model (Fig. 2). The model includes reversible 193 
replication fork stalling by CIP-poisoned gyrases, and both replication-194 
dependent and replication-independent double strand breakage. 195 
 196 
In our model, a bacterial culture is represented by an ensemble of replicating 197 
circular chromosomes. New chromosomes are synthesized on the template of 198 
parent chromosomes and remain attached to them via replication forks. The 199 
forks start from the origin of replication (oriC) and end at the terminus (ter). 200 
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Initiation occurs at time intervals drawn from a normal distribution with mean 201 
fork =24 min chosen to reproduce the CIP-free growth rate from Fig. 1B, and 202 
standard deviation (fork)= 5 min (arbitrary value). Once initiated, replication 203 
forks progress at a constant rate vf = 30 kb/min (29). When a chromosome 204 
successfully completes replication, it separates from the parent chromosome. 205 
 206 
Poisoned gyrases can appear anywhere along the chromosome with rate 207 
k+L/L0, where k+ is the DNA-poisoned gyrase binding rate, L is the current 208 
chromosome length, and L0 is the birth length of a fully replicated 209 
chromosome. We assume that the rate k+ is proportional to the extracellular 210 
CIP concentration c with an unknown proportionality constant q (units = 211 
1/(time*concentration)): 𝑘+ = 𝑞𝑐. Poisoned gyrases can also dissociate from 212 
the chromosome with rate 1/gyr, where gyr is the turnover time. The number 213 
of poisoned gyrases on the chromosome fluctuates, with the average value 214 
being determined by the balance between the binding and removal rates:  215 
<Ngyr> = k+ gyr L/L0. 216 
 217 
If a replication fork encounters a poisoned gyrase it stops and remains stalled 218 
until the poisoned gyrase is removed. The poisoned gyrase can also damage 219 
the entire chromosome irreversibly with rate pkill (Fig. 2C). Damaged 220 
chromosome “conglomerates” (i.e. chromosomes plus any connected DNA 221 
loops) are removed from the simulation. The exact nature of the DNA damage 222 
is not important for the model, but a biologically plausible mechanism would 223 
be the creation of a DSB that does not get repaired (15). The process of 224 
repair is not modelled explicitly, but its effectiveness is implicitly included in 225 
the value of pkill (e.g., a large value of pkill corresponds to impaired DNA repair, 226 
since a poisoned gyrase is more likely to cause irreversible damage).  227 
 228 
Our model has three unknown parameters: 𝜏gyr, 𝑝kill, and the proportionality 229 

constant 𝑞 that relates the extracellular concentration of CIP to the rate 𝑘+ 230 
with which poisoned gyrases appear on the chromosome. 231 
 232 

 233 
3. The model reproduces the growth inhibition curve 234 

 235 
We first checked if the model could reproduce the growth inhibition curve from 236 
Fig. 1. To do this, we calculated the rate of exponential increase of total DNA 237 
predicted by the model as a function of the CIP-proportional poisoned gyrase 238 
binding rate 𝑘+ (Fig. 3A, B). Figure 3B shows predicted growth inhibition 239 
curves for fixed 𝜏gyr = 15 min (arbitrary value) and a range of values of 𝑝kill. 240 

The simulated curves resemble the experimental curve (Fig. 1A). As 241 
expected, the rate of DNA synthesis decreases as the parameter k+ 242 
increases, mimicking increasing CIP concentration.   243 
 244 
We next systematically explored the parameter space (pkill, gyr, 𝑞) to find a 245 
range of parameter combinations that quantitatively reproduce our 246 
experimental data. Figure 3C shows that such a range indeed exists (dark 247 
blue region of Fig. 3C); the best-fit parameters are pkill = (7 +/- 2).10-5 min-1 248 
and gyr = (25 +/- 5) min, and q = (0.030+/- 0.005) ml ng-1 min-1. This 249 
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combination produces an excellent fit to the experimental data (Fig. 3D). Our 250 
fitted value for gyr is about half the turnover time (~55 min) that has been 251 
estimated from in vitro reconstitution assays (30); this discrepancy is perhaps 252 
not surprising since the in vitro assay lacks DNA repair systems (23) that may 253 
actively remove poisoned gyrases. 254 
 255 
One can also extract from the model the average number of poisoned gyrases 256 
per chromosome, Ngyr, for a given CIP concentration (Fig. S2). For a CIP 257 
concentration of 10 ng/ml, which corresponds to a two-fold reduction in the 258 
growth rate, we obtain Ngyr≈4. The model thus suggests that a small number 259 
of poisoned gyrases is enough to inhibit growth (a typical gyrase copy number 260 
in the absence of CIP is ~500). 261 
 262 
Our model explains why the growth inhibition curve assumes a parabolic 263 
shape. At low concentrations of CIP there are very few poisoned gyrases 264 
present; DNA replication proceeds at almost normal speed and the 265 
chromosome topology is almost normal (since there are few blocked 266 
replication forks). Since the rate at which a chromosome conglomerate is 267 
damaged by CIP is proportional to the total DNA in the conglomerate, and 𝑝kill 268 
is small, chromosome “death” is negligible at low CIP. However, as the CIP 269 
concentration 𝑐 increases, replication forks become blocked more often. As a 270 
consequence, new replication forks are initiated before the parent and 271 
daughter chromosomes separate, producing large interconnected DNA 272 
conglomerates. Because the total DNA per conglomerate increases, the 273 
number of poisoned gyrases that are bound to the DNA also increases. This 274 
produces a faster-than linear increase in the degree of growth inhibition as 𝑐 275 
increases.  276 
 277 
To confirm this interpretation of our model, we considered a modified model in 278 
which the damage caused by a poisoned gyrase does not “kill” the entire 279 
chromosome conglomerate but only the chromosome segment to which it is 280 
attached. There is some evidence that this might be the case for E. coli that is 281 
deficient in DSB repair (31). This modified model predicts a very different 282 
growth inhibition curve (Fig. S3) which lacks the plateau at low CIP 283 
concentration. 284 
 285 

4. The model predicts the dynamical response of E. coli to 286 
ciprofloxacin 287 

 288 
Our model has been parameterized to reproduce the inhibition curve for 289 
steady-state growth in the presence of ciprofloxacin. To check if the model is 290 
able to predict the dynamical response of E. coli to ciprofloxacin (for which it 291 
has not been parameterized), we exposed the fimA strain AD30 to a step-up 292 
in ciprofloxacin concentration and measured dynamical changes in the growth 293 
rate over many generations in the turbidostat while maintaining cells in the 294 
exponential growth phase. Interestingly, we observed that for low 295 
concentrations of ciprofloxacin, the growth rate does not decrease 296 
immediately on antibiotic addition. The time until the growth rate begins to 297 
decrease, and the time to achieve a new steady-state growth rate, both 298 
depend on the CIP concentration (Fig. 4A). 299 
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 300 
Our model cannot predict the bacterial growth rate directly as it focuses on the 301 
rate of DNA synthesis, which does not have to be the same as the population-302 
level growth rate during periods of unbalanced growth. However, the model 303 
can be used to predict the time to the new steady state (Fig. 4B; see 304 
Methods). The predicted values agree well with the results of our 305 
experiments. 306 
 307 
We next checked if the model also correctly predicts the dynamical response 308 
of DNA synthesis to ciprofloxacin exposure in single cells. We treated E. coli 309 
cells (MG1655) with ciprofloxacin for 1 hour, stained with DAPI to visualize 310 
DNA, and imaged in the bright field and fluorescent channels (Fig. 5). To 311 
prevent cell division and thus enable a direct comparison with the model, we 312 
used cephalexin (8 g/ml), which inhibits PBP3, a component of the E. coli 313 
septation machinery (32). As expected, all the cells grew as filaments, without 314 
dividing (Fig. 5A).  315 
 316 
The bacterial elongation rate is extracted from our measured filament length 317 
distributions by assuming exponential elongation with constant rate 𝛼 starting 318 
from the initial length distribution of untreated cells (Methods). For cells 319 
treated with cephalexin only, the experimental length distribution was best fit 320 
by an elongation rate  =(1.85 +/- 0.28) h-1, similar to the growth rate obtained 321 
in plate reader experiments without any antibiotic (1.70 +/- 0.10 h-1, Figs. 1B, 322 
5B). Therefore, cephalexin prevented cell division without visibly decreasing 323 
the biomass growth rate. 324 
 325 
Remarkably, the cell length distribution (and hence the biomass growth rate) 326 
remained unchanged when cells were exposed to both ciprofloxacin (up to 327 
15ng/ml) and cephalexin (Fig. 5B). This observation is consistent with 328 
previous microscopy data (14). Even at the highest CIP concentration used 329 
(50ng/ml, ~2.5x MIC for this strain), the elongation rate was only slightly 330 
reduced (Fig. 5B, right).  331 
 332 
We next characterized the DNA organization in single cells following exposure 333 
to CIP and cephalexin. Figure 5C shows that cells treated solely with 334 
cephalexin have clearly defined, evenly spaced chromosomes. The overall 335 
chromosome density is consistent with that of antibiotic-free growth; for 336 
example, for a cephalexin-treated filament of length 24 m we observe ~16 337 
chromosomes, while E. coli of length 3 m grown on LB antibiotic-free 338 
medium typically has ~2 chromosomes (Fig. S6A). However, in the presence 339 
of CIP, DNA become less ordered and, as the CIP concentration increases, 340 
fewer distinct chromosomes can be identified. This suggests the presence of 341 
large entangled DNA structures and the failure of chromosome separation.  342 
 343 
Our model makes a very specific prediction for how the total DNA in a 344 
filamentous cell should depend on CIP concentration after 1h of exposure 345 
(Fig. 6A). To test this prediction, we quantified the total DNA per cell by 346 
measuring DAPI fluorescence in microscopic images of cells for different 347 
concentrations of CIP. We obtained excellent quantitative agreement between 348 
our simulations and experiments (Fig. 6B), without any additional fitting. Thus 349 



8 
 

our model, once fitted to the steady-state data, correctly predicts the early-350 
time dynamical response to ciprofloxacin in single cells.  351 
 352 

5. Replication-dependent and replication-independent DNA damage 353 
predict the same shape of growth-inhibition curve 354 
 355 

Ciprofloxacin-bound DNA gyrase has been hypothesized to cause both 356 
replication-dependent and replication-independent DNA double strand breaks 357 
(18,19,21). To test the role of replication-dependent versus replication-358 
independent killing, we simulated a version of the model in which 359 
chromosome damage only occurs via fork-associated poisoned gyrase 360 
(Methods). This model turns out to reproduce the growth inhibition curve 361 
equally well (Fig. S7). Thus, models with replication-dependent only or both 362 
replication-dependent and replication-independent DNA breaks produce the 363 
same growth inhibition dynamics.  364 
 365 

6. Basal DNA damage is sufficient to model a DNA repair-deficient 366 
mutant 367 

 368 
Our model does not explicitly include repair of DNA double strand breaks, 369 
which happens in E. coli via the RecBCD machinery, triggered by the SOS 370 
response (15,33). We tested the role of DNA repair using a recA deletion 371 
mutant that cannot trigger the SOS response (Methods). We first investigated 372 
the growth of the recA strain in the absence of ciprofloxacin. recA cells 373 
were similar in length and width to WT cells, but had less organized 374 
chromosomes (Fig. S6B). In microplate cultures, the recA strain showed a 375 
reduced growth rate compared to that of the WT MG1655 strain (~1 h-1 versus 376 
1.7 h-1 for WT). However, upon treating recA cells with cephalexin and 377 
measuring the cell-length distribution after 1 h, we found that individual recA 378 
cells elongate at the same rate as WT, although in the majority of the cells, 379 
the DNA looks less organized (Fig. 7A, B). To resolve this apparent 380 
contradiction, we imaged microcolonies of the recA and WT strains growing 381 
on agar pads. Interestingly, the recA colonies were significantly smaller and 382 
many colonies (~30%) did not grow at all (Fig. S9). This suggests that the 383 
reduced population-level growth rate of recA cultures is due to an increased 384 
fraction of non-growing cells, rather than a decreased single-cell growth rate. 385 
This is consistent with previous observations that cultures of bacteria deleted 386 
for recA can contain a significant sub-population of non-growing cells (34,35). 387 
 388 
We also wondered if our model could predict the shape of the growth 389 
inhibition curve for the recA strain. We measured the recA growth inhibition 390 
curve in the plate reader (Fig. 7C). The MIC of this strain (~1.5ng/ml) was an 391 
order of magnitude lower than that of the WT. Moreover, the shape of the 392 
growth inhibition curve was significantly different compared to parabola-like 393 
curve of the WT (Fig. 1): for recA the growth rate decreased approximately 394 
linearly with increasing CIP concentration, without a plateau at low CIP. We 395 
hypothesized that these features could be reproduced in our model by an 396 
elevated rate of DNA damage associated with CIP-poisoned gyrases, 397 
combined with a basal DNA damage rate in the absence of CIP, both being 398 
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due to the lack of the DSB repair mechanism. A modified model, in which the 399 
basal DNA damage rate pkill0 = 0.0033 +/- 0.0002 min-1

 was fixed by fitting to 400 
the population growth rate in the absence of CIP, reproduced the 401 
experimental growth inhibition curve very well (Fig. 7C, 𝑝kill, 𝑞 were fitted to 402 
the inhibition curve). The same model also reproduced the growth-inhibition 403 
curve for the recAfimA double mutant (Fig. S8). One can intuitively 404 
understand the origin of the negative slope at zero drug: the basal damage 405 
rate acts as if non-zero CIP was present even when the actual concentration 406 
of the antibiotic is zero. This causes the parabolic curve of the WT to shift to 407 
the left, leaving only the part that is almost linear in the CIP concentration. 408 
 409 
To investigate if our model could also predict the dynamic response, we 410 
repeated the turbidostat experiment from Fig. 4 for recAfimA. Figure 8 411 
shows that the time to reach the new steady-state growth rate after a CIP 412 
upshift (Tss) is very well predicted by the model. All this shows that even 413 
though our model does not explicitly include DNA repair, an implicit modelling 414 
of DNA repair via the parameters pkill0 and pkill is sufficient to reproduce our 415 
experimental data.  416 
 417 

7. An alternative hypothesis based on saturation of repair 418 
mechanisms does not explain the data 419 

 420 
Our model reproduces all our experimental observations – but could an 421 
alternative model based on a different microscopic mechanism explain them 422 
equally well? To investigate this, we considered a biologically plausible model 423 
in which the parabolic shape of the inhibition curve arises due to a non-linear 424 
response of the DNA repair mechanism to CIP concentration, rather than from 425 
a non-linearity in the amount of DNA damage as in the previous model.  426 
 427 
In this alternative model, for CIP concentrations above the MIC, DSB repair 428 
mechanisms become saturated, which causes the accumulation of DSBs. 429 
Below the MIC, however, we assume that recBCD-mediated DSB repair (36) 430 
is very effective. Specifically, we assume that the number 𝑛(𝑡) of DSBs 431 
evolves as 432 
 433 

𝑑𝑛

𝑑𝑡
= 𝑏 − min(𝑟𝑚𝑎𝑥, 𝑟𝑛𝛾). 

 434 
Here, DSBs are created at a rate 𝑏 that is proportional to CIP concentration, 435 
and are removed via repair at a rate 𝑟𝑛𝛾, which cannot exceed the maximum 436 
rate 𝑟𝑚𝑎𝑥. The exponent 𝛾 characterizes the strength of the feedback between 437 
the number of DSBs and the rate of repair; 𝛾 = 1 corresponds to a linear 438 
response, whereas 𝛾 < 1 means that repair mechanisms are strongly 439 
triggered even by a small number of DSBs. We further assume that each DSB 440 
has equal probability 𝑝 of killing the cell, hence the net growth rate is 441 
proportional to exp (−𝑝𝑛). 442 
 443 
This model, which does not consider the dynamics of DNA replication, 444 
reproduces the steady-state growth inhibition curve quite well (Fig. S10) for 445 
𝛾 ≈ 0.5. However, the model predicts that the time to reach a new steady-446 
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state growth rate following an upshift of CIP should be proportional to 447 

𝑏
1

𝛾
−1

≈ 𝑏. The time to the new steady state is thus predicted to increase with 448 
CIP concentration (since 𝑏 increases with 𝑐) which disagrees with what we 449 
observe experimentally (Fig. 4). Therefore, this model fails to reproduce the 450 
dynamics of CIP inhibition. 451 
 452 
 453 
DISCUSSION 454 
 455 
Despite much work on the molecular mechanisms of fluoroquinolone action, 456 
no models have yet been proposed that explain the delay in the bacterial 457 
response to low concentration exposure, even though this may well have 458 
important consequences for the chances of resistance evolution. We have 459 
proposed a quantitative model for fluoroquinolone-induced growth inhibition of 460 
the bacterium E. coli that for the first time explains the response delay. Our 461 
model is based on the known molecular details of replication fork stalling and 462 
DNA damage, and makes quantitative predictions for the long- and short-term 463 
(dynamic) bacterial response to the fluoroquinolone ciprofloxacin. By fitting 464 
the model’s three parameters (Fig. 3) to the experimental steady-state 465 
inhibition curve (long-term response), we not only reproduce the shape of the 466 
curve very well but we also make correct predictions for the short-term 467 
dynamics of bacterial growth following a step-up of ciprofloxacin. The 468 
predictions are in agreement with our experimental data, without any further 469 
parameter fitting (Fig. 4, 6). Importantly, our model also challenges the view 470 
that the SOS DNA damage response plays a central role.  Our model, with 471 
altered parameters, also reproduces the behavior of a recA mutant that 472 
cannot activate the DNA repair machinery and is significantly more sensitive 473 
to ciprofloxacin. Thus the SOS system can significantly alter the parameters 474 
of the model but, importantly, does not control the dynamics of the response. 475 
Instead, the dynamics is controlled by the DNA replication rate and 476 
binding/unbinding rates of gyrase from the DNA. 477 
 478 
We have also considered modifications of the model in which DNA damage 479 
occurs due to replication fork-associated gyrases only, and in which DNA 480 
damage “kills” only the local DNA strand rather than the entire chromosome 481 
conglomerate. It turns out that our model cannot distinguish between fork-482 
related and replication-independent killing, but is sensitive to whether 483 
poisoned gyrases kill the whole cluster of interconnected DNA, or only the 484 
local branch that is affected by a poisoned gyrase. The latter predicts a non-485 
parabolic inhibition curve that is at odds with the experimental data. An 486 
alternative model based on the saturation of the repair mechanism as an 487 
explanation of the growth inhibition curve fails to predict the dynamic 488 
response to CIP. 489 
 490 
Our work demonstrates that, despite the molecular complexity of 491 
fluoroquinolone action, a simple physiological model can explain the behavior 492 
of bacteria exposed to this class of antibiotics, leading to new insights that can 493 
be used to make quantitative predictions. Below we discuss in more detail 494 
some of the implications of our work. 495 
 496 
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Shape of the growth inhibition curve. 497 
The growth-inhibition curve for CIP is parabolic-like (Fig. 1). Inhibition curves 498 
for many antibiotics including CIP have been traditionally approximated using 499 
the Hill function (25). This choice is often based on a qualitative description of 500 
the shape rather than on mechanistic insight. The Hill function is also a 501 
popular choice in population-level models of antibiotic treatment (37–39). 502 
However, some antibiotics can have very different inhibition curves, that are 503 
not well approximated by a Hill function (5). This is potentially important for 504 
modelling the evolution of resistance to antibiotics, because differently shaped 505 
inhibition curves are expected to produce different fitness landscapes (40,41), 506 
leading to different levels of selection for resistant mutants, and hence 507 
different trajectories to resistance.  508 
We checked how well our measured growth inhibition curve can be 509 
reproduced using a Hill function (Fig. S11). The fit is slightly less good than 510 
that produced by our model. The Hill exponent (𝜅 = 4.4 ± 0.5) also differs 511 
significantly from the value of 𝜅 = 1.1 ± 0.1 that has been reported before 512 
(25). We conclude that careful measurements of the steady-state growth 513 
inhibition curve, combined with physiological models of antibiotic response, 514 
can not only shed light on the mechanism of inhibition but are also required 515 
for quantitative models of the evolution of antibiotic resistance. 516 
 517 
The role of the SOS response.  518 
The cellular response to DNA damage is not explicitly included in our model, 519 
but rather enters through the parameter values. In others’ work, the SOS 520 
response has been modelled in the context of UV response (42–45). To check 521 
how realistic it was to omit details of the SOS response in our model, we 522 
adapted the model from Ref. (42) to our scenario. We set the initial number of 523 
DSBs (parameter 𝑁𝐺 from (42)) to zero, and added a term proportional to the 524 
CIP concentration to the equation 𝑑𝑁𝐺/𝑑𝑡 which describes the rate of change 525 
of the number of DSBs. We calculated the time it takes for LexA (the protein 526 
whose inactivation triggers the response) to reach a new steady state after a 527 
step-up in stimulus (10% above the infinite-time limit concentration). Figure 528 
S12 shows that this time is less than 10 min for a broad range of DSB 529 
creation rates, indicating that the SOS response occurs much faster than the 530 
growth rate response we report in Fig. 4. When we fit this alternative model to 531 
the data from Fig. 4B (the fitting parameter is the proportionality factor 532 
between the CIP concentration and the production rate of DSBs), the reduced 533 
𝜒2 ≈ 200 for the best-fit curve is many times larger than the value reported in 534 
the caption of Fig. 4B for our main model. Based on this and the excellent 535 
agreement between our main model and experiments, we conclude that key 536 
features of the growth inhibition in response to sub-MIC ciprofloxacin (the 537 
shape of the inhibition curve and the dynamics of inhibition) can be 538 
understood without modelling the SOS response explicitly. This does not 539 
mean that the SOS response is not important; on the contrary, SOS-induced 540 
changes in bacterial physiology (e.g., expression of low-fidelity polymerases) 541 
are very important for the evolution of resistance (14,46), and the role of SOS 542 
in mediating growth inhibition is also implicit in our model through the 543 
parameters 𝑝kill and 𝑝𝑘𝑖𝑙𝑙0. 544 
 545 
The importance of chromosome segregation.  546 
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In this work, we do not model individual cells; rather, we consider a collection 547 
of replicating chromosomes. While this seems to be enough to reproduce the 548 
population-level growth-rate response to ciprofloxacin, and the DNA dynamics 549 
in single cells, it cannot account for some aspects of behavior at the cellular 550 
level, such as the cell length distribution (in our experiments, we avoid this 551 
issue by treating cells with cephalexin). More work will be required to create a 552 
model that is able to, for example, predict the cell length distribution (Fig. 5), 553 
cell division and budding (14), or antibiotic-induced fluctuations in the number 554 
of cells in small populations (47). 555 
 556 
Other fluoroquinolones and bacterial species. Based on the proposed 557 
mechanism, we expect the results to be generalizable to other 558 
fluoroquinolones, as long as gyrase is the primary target. This seems to be 559 
the case for E. coli (48–50). Topoisomerase IV – the other potential target - 560 
becomes important only in combination with resistant mutations in gyrA (51). 561 
Topoisomerase IV has a stronger affinity to fluoroquinolones in other bacterial 562 
species (50); we do not expect the model to quantitatively reproduce the 563 
short- and long-time response for such cases. We note, however, that 564 
parabolic inhibition curves have been reported for the Gram-positive 565 
bacterium Mycobacterium smegmatis treated with nalidixic acid and 566 
novobiocin (Fig. S2 in (52)). This may suggest that the long-term response 567 
(and perhaps also the mechanism behind it) may be similar in other bacterial 568 
species. 569 
 570 
Relevance for bacterial infections 571 
Predictive understanding of how antibiotics inhibit bacteria could help in the 572 
design of better treatment strategies. Traditionally, models for antibiotic 573 
treatment have assumed an instantaneous response of bacteria to the 574 
antibiotic (53,54); models that take intracellular dynamics into account are still 575 
rare (55,56). Our research shows that ignoring the transient behavior (here 576 
the short-term bacterial response delay) can be problematic because these 577 
transients can last for many generations at sub-MIC concentrations of the 578 
antibiotic, for which the probability of developing resistance is the highest 579 
(55,57,58). Our physiological model could be integrated into population-level 580 
evolutionary models, allowing better prediction of the chances of resistance 581 
emergence by taking account of the cell-level dynamical response. Such 582 
effects are almost universally neglected in current evolutionary models. We 583 
postulate that, rather than using ODE-based models (38) or stochastic models 584 
such as birth-death processes (47,59), one could use individual-based 585 
simulations with bacterial physiology modelled explicitly, similarly to what has 586 
been done in biofilm modelling (60). In such a model, individual 587 
chromosomes, simulated according to our (or a similar) model, would also 588 
mutate; this would be represented by changing the model parameters to 589 
account for e.g., an increased MIC for resistant mutants (decreased number 590 
of poisoned gyrases). Since our model is computationally expensive, it can be 591 
used only for small populations of cells (up to a few million). This may be still 592 
very useful for modelling laboratory evolution of resistance in microfluidic 593 
devices, which is gaining popularity (61,62). For large population sizes such 594 
as those required to model human infections (tens- or hundreds of millions of 595 
cells), a hybrid model could be used in which only a small number of cells 596 
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(e.g., new mutants) have explicit internal dynamics while the bulk of the 597 
population is described using coarse-grained models. Such hybrid models are 598 
used in cancer modelling (63,64) but have not yet been applied in 599 
evolutionary microbiology. 600 
 601 
In conclusion, we have proposed and tested a model that predicts bacterial 602 
response to fluoroquinolone antibiotics. Our model complements those that 603 
have recently been proposed for other classes of antibiotics; taken together, 604 
such models may eventually be useful in understanding and predicting 605 
bacterial response to clinically relevant treatment strategies, such as  606 
the effect of combination therapies (65–67). 607 
 608 
 609 
Materials and Methods 610 
 611 
Bacterial strains 612 
We used MG1655, a K12 strain of the bacterium E. coli, and two mutant 613 
derivatives AD30 (fimA), recA, and EEL01 (recAfimA). Strain fimA was 614 
constructed by P1 transduction from JW4277 (the fimA deletion strain in 615 
background BW25113 from the Keio collection) into MG1655 (68). The 616 
kanamycin resistance cassette was removed using Flp recombinase 617 
expressed in pCP20. Strain construction was confirmed by PCR using a 618 
combination of kanamycin specific primers and gene specific primers.  619 
The recA mutant was donated by M. El Karoui lab.This mutant is MG1655 in 620 
which recA::CmR was introduced by P1 transduction from DL0654 (David 621 
Leach, laboratory collection). Strain recAfimA was created by P1 622 
transduction of the recA deletion with a chloramphenicol resistance selection 623 
marker from the MG1655 ΔrecA strain. Briefly, the donor strain MG1655 624 
ΔrecA was incubated overnight and inoculated at 37 oC for 25 minutes with 625 
different dilutions of P1vir phage in the presence of MgSO4 and CaCl2 before 626 
being mixed with molten top agar and spread onto an LB plate, left to set, and 627 
incubated at 37oC overnight. Donor phage was harvested from the top agar 628 
by mixing with phage buffer and a few drops of chloroform, the debris spun 629 
down and the supernatant containing the donor phage used for transduction 630 
into the recipient strain (fimA). For the transduction, the recipient strain was 631 
incubated overnight, harvested, and resuspended in LB with MgSO4 and 632 
CaCl2, mixed with P1 donor phage, incubated at 37oC for 30 minutes before 633 
the addition of sodium citrate. Cells were then incubated (37oC, 200 rpm) to 634 
allow for expression of chloramphenicol resistance, and spun down and 635 
plated onto LB plates with chloramphenicol for selection of the ΔrecA::CamR 636 
construct. Following an overnight incubation at 37oC, colonies were purified 637 
twice on chloramphenicol plates with sodium citrate. 638 
 639 
 640 
 641 
Growth media and antibiotics 642 
All our experiments were performed in LB medium at 37°C. LB liquid medium 643 
was prepared according to Miller's formulation (10g tryptone, 5g yeast extract, 644 
10g NaCl per litre). The pH was adjusted to 7.2 with NaOH before autoclaving 645 
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at 121°C for 20 min. To create LB in 1.5% agar, agar (Oxoid, Agar  646 
Bacteriological, No. 1) was added before autoclaving. 647 
Ciprofloxacin solutions were prepared from a frozen stock (10mg/ml CIP 648 
hydrochloride in ddH2O) by diluting into LB to achieve desired concentrations. 649 
Stock solution of cephalexin (10mg/ml) was prepared by dissolved 100mg of 650 
cephalexin monohydrate in 10 mL of DMSO. 651 
 652 
Growth inhibition curves 653 
To determine the growth rate at a given concentration of CIP, we used two 654 
different methods. 655 
 656 
Method 1. We incubated bacteria in a micro-plate inside a plate reader (BMG 657 
LABTECH FLUOstar Optima with a stacker) starting from two different initial 658 
cell densities, and measured the optical density (OD) of each culture every 2-659 
5 min to obtain growth curves.  660 
Plates were prepared automatically using a BMG LABTECH CLARIOstar 661 
plate reader equipped with two injectors to create different concentrations of 662 
CIP in each column of a 96 well plate (total injected volume 195l per well). 663 
Bacteria were diluted from a thawed frozen stock 103 and 104 times in PBS, 664 
and 5l of the suspension was added to each well (103 dilution to rows A-D, 665 
104 dilution to rows E-H). After adding bacteria, plates were sealed with a 666 
transparent film to prevent evaporation, and put into a stacker (temperature 667 
37°C, no shaking), from which they would be periodically fed into the 668 
FLUOstar Optima plate reader (37°C, orbital shaking at 200rpm for 10s prior 669 
to OD measurement). 670 
Assuming that all cultures grow at the same rate when cell density is low 671 
(OD<0.1), the time shift (T) between the curves from rows A-D and E-H (Fig. 672 
S1A) is related to the exponential growth rate as follows: 673 
  674 

. 675 

We used this relationship to calculate 𝛼 from time shifts between 4 pairs of 676 
replicate experiments (A-E, B-F, C-G, D-H) for 12 concentrations of 677 
ciprofloxacin (range: 0—30 ng/ml). To validate the method we also calculated 678 
growth rates by fitting an exponential curve 𝐴 + 𝐵𝑒𝛼𝑡 to the low-OD (OD<0.1) 679 
part of the growth curve. The time-shift method gives more accurate but 680 
overall similar results compared to the exponential curve fitting (Fig. S1B) or 681 
maximum growth rate measurement methods (69). Our fitting method is not 682 
sensitive to the relationship between the OD and the true cell density (which 683 
depends on the cell shape and size) and it gives the average growth rate over 684 
many more generations (growth from approx. 104 to 108 cells, ≈ 13 685 
generations) than curve-fitting based methods (OD=0.01-0.1, 3 generations), 686 
see Fig. S1B. 687 
 688 
Method 2. To confirm that our measurements correspond to steady-state 689 
growth, we also measured the growth rate in a turbidostat (Fig. S1C), in which 690 
bacteria are kept at approximately constant optical density (OD=0.075-0.1) for 691 
many generations by diluting the culture with fresh medium (and concomitant 692 
removal of spent medium + bacteria) whenever the OD reaches a threshold 693 

a =
ln10

DT



15 
 

value. The growth rate is obtained by fitting an exponential function to the 694 
background-corrected OD data between consecutive dilutions. 695 
 696 
We found that strains MG1655 and AD30 have similar but not identical 697 
susceptibility to ciprofloxacin: while the MG1655 wild type showed an MIC of 698 
(19 +/- 3) ng/ml, in agreement with previous measurements (16), AD30 was 699 
slightly less susceptible, with an MIC of (24+/- 3) ng/ml. The MIC values were 700 
determined from the zero-growth point of the growth inhibition curves (3-6 701 
replicate experiments). 702 
 703 
Measurements of DNA production 704 
To obtain the data in Fig. 1C, cells were grown in LB medium with or without 705 
CIP in shaken flasks (3 replicates), and diluted periodically with fresh medium 706 
to maintain steady-state exponential growth. Cells were sampled every ~20-707 
30 min, fixed (1ml of culture fixed with 250μL of 1.2% formaldehyde) and their 708 
OD was measured using both a standalone spectrophotometer (Cary 100 UV-709 
Vis) and a plate reader (CLARIOstar) for cross-validation. DAPI was added to 710 
the fixed samples to a concentration 2 μg/mL (27). After 30 min of incubation 711 
with DAPI the cells were washed 3 times with PBS, and DAPI fluorescence 712 
intensity was measured in the plate reader (CLARIOstar). Growth rates were 713 
extracted from the fluorescence and OD versus time curves by least-squares 714 
fitting of an exponential function. 715 
 716 
Microscopy 717 
To obtain the data from Figs. 5 and 7, exponentially growing cells (LB flasks) 718 
were treated with ciprofloxacin and/or cephalexin. The samples were fixed 719 
with formaldehyde and incubated for 30 min with DAPI (2 μg/mL(27)) and 720 
0.1% TRITON to increase cell permeability. The fixed cells were put on 721 
agarose pads (2 % agar in water) and imaged on a Nikon Eclipse Ti epi-722 
fluorescent microscope using a 100x oil objective (excitation 380-420 nm, 723 
emission >430 nm, exposure time 100 ms). Cell lengths, widths, and 724 
fluorescence intensity were extracted using the Fiji plug-in MicrobeJ (70). For 725 
measuring the area of micro-colonies (Fig. S9) we used semi-automated 726 
ImageJ plugin JFilament (71). After extracting the coordinates of the micro-727 
colony contours from phase-contrast images, colony area was calculated as 728 
the area of the corresponding polygon (72,73). 729 
 730 
Computer simulations of the DNA replication model 731 
The computer code used to simulate our model was written in Java. Each 732 
chromosome is represented as a one-dimensional lattice of L0 = 1000 sites. 733 
The ends of the lattice are either linked to each other (to represent a circular 734 
chromosome) or to another chromosome lattice at points corresponding to the 735 
current positions of the replication forks. Poisoned gyrases are identified by 736 
the index of the chromosome on which they sit, and their position (lattice site) 737 
within that chromosome. The simulation proceeds in discrete time steps (dt 738 
=Nbp/(L0 vf), where Nbp =4,639,675 is the number of base pairs in the E. coli 739 
chromosome, and vf  = 30,000 bp/min is the fork speed. At each timestep, the 740 
position of each fork that can move (i.e. that is not blocked by a gyrase) is 741 
advanced by one lattice unit. Gyrases bind and detach with probabilities 742 
proportional to the corresponding rate times dt. Chromosomes are killed with 743 
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probability 𝑝killd𝑡 times the number of poisoned gyrases, and removed from 744 
the simulation. Chromosomes are separated when two forks reach the 745 
endpoints of the mother chromosome. A pair of new forks is added every 𝜏fork 746 
time units, where 𝜏fork is drawn from a normal distribution with mean 24 min 747 
and std. dev. 5 min. In simulations of the model with DNA damage occurring 748 
only at the forks, only stalled forks kill chromosomes (probability 𝑝killd𝑡 per 749 
stalled fork).   750 
 751 
All simulations were initiated with a single chromosome at t = 0 h, and 752 
stopped at t = 6 h (Figs. 3, S5, 7) or t = 5 h (Fig. 6). Between 1000 and 5000 753 
independent runs were performed to obtain averaged curves. The step of CIP 754 
in Fig. 6 was simulated by running the simulation with k+ = 0 for t < 100 min, 755 
and switching to k+ > 0 corresponding to the desired CIP concentration for t > 756 
100 min. 757 
 758 
To fit the model to the experimental growth inhibition curves we systematically 759 
explored the space of parameters pkill and gyr  (Fig. 3). The parameter pkill was 760 
varied in the range 5.10-5 -10-3 min-1 for 11 data points, and gyr was varied in 761 
the range 0 - 80 min in 5 min steps. For a given pair of values for pkill and gyr 762 
we simulated the model with different values of 𝑘+ and varied the scaling 763 
factor 𝑞 to fit the experimentally obtained growth-inhibition curve by 764 
minimizing the sum of squares between the experimental and simulated 765 
inhibition curves. The best fit was obtained for pkill = (7 +/- 2).10-5 min-1 and gyr 766 
= (25 +/- 5) min, q = (0.030+/- 0.005)  ml ng-1 min-1  for the model with 767 
replication-independent killing, and pkill = (2 +/- 1.5).10-5 min-1 and gyr = (30 +/- 768 
5) min, q = (0.040 +/- 0.005) ml ng-1 min-1  for the model with replication-769 
dependent killing (at the forks). 770 
 771 
Model for exponentially growing filaments (cephalexin) 772 
To extract growth rates from the filament length distributions in Figs. 5 and 7, 773 
each cell was assigned an initial length 𝑙0 from the experimentally observed 774 
distribution (Fig. S5B), and a random growth rate 𝑎 taken from a Gaussian 775 
distribution characterized by its mean and standard deviation (()). The 776 
new cell length after time 𝑡 = 1h was calculated as 𝑙 = 𝑙0 exp(𝑎𝑡). A histogram 777 
of 642 000 predicted cell lengths was compared with the experimentally 778 
obtained cell length distribution for cephalexin-treated cells. The best match 779 
was obtained for = 1.86 h-1 and () = 0.22 h-1 using the p-value from the 780 
Kolmogorov-Smirnov test as the goodness-of-fit measure. The best-fit mean 781 
growth rate was similar to the growth rate measured in the plate reader (1.7 h-782 
1, Fig. 1A) indicating that cephalexin treated cells continued to elongate with 783 
the same rate for at least one hour in the presence of CIP. The spread of 784 
elongation rates given by 𝜎(𝛼) is similar to that observed for untreated cells 785 
(74,75).  786 
 787 
Finding time to steady state (Tss) 788 
 789 
The time to new steady state (Tss) was calculated from the experimental data 790 
(growth rates versus time) as the time from the step-up of CIP to the point at 791 
which the growth rate decreased to the threshold value 0.1k0 + 0.9kss, where 792 
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k0 is the growth rate before CIP and kss is the steady state growth rate (Figs. 793 
4, 8). In the case of experiments with CIP > MIC, kss was assumed to be 0 h-1. 794 
To calculate 𝑇𝑠𝑠 in simulations, we used the same approach with the threshold 795 
growth rate 0.01k0 + 0.99kss. Different thresholds for experimental/simulated 796 
data were used to balance systematic errors: difficulty in detecting the true 797 
steady-state in experiments, growth rates representing two different quantities 798 
(OD-based growth rate in experiments, DNA-concentration based growth rate 799 
in simulations). 800 
 801 
 802 
Turbidostat 803 
Our turbidostat device (Fig. S1C) encompasses 4 replicate cultures with a 804 
culture volume of approx. 26 mL. The growth medium used in all experiments 805 
was LB broth (Miller), and the E. coli strain used was AD30, to avoid biofilm 806 
formation. In the turbidostat, all cultures are connected to a bottle of LB 807 
medium and a bottle of LB + CIP (at 10x the desired CIP concentration in the 808 
culture) through a system of computer-controlled syringe pumps and valves. 809 
The optical density is measured every 20 s using custom-made photometers 810 
(separate for each bottle) to which 3-4 ml of each culture is aspirated and 811 
dispensed back into the culture using a syringe pump. When the optical 812 
density reaches OD=0.1 or after 30 min since the last dilution (whichever 813 
happens first), 25% of the culture is replaced with fresh medium to maintain 814 
exponential growth. An appropriate volume of CIP-containing LB medium is 815 
injected 2 hours after OD=0.1 is reached for the first time to achieve the 816 
required concentration (5-100 ng/ml) in the culture. Smaller volumes are 817 
injected in all subsequent dilution steps to maintain the prescribed 818 
concentration of CIP for the rest of the experiment. All cultures are kept in an 819 
incubator set to 37°C and are continuously stirred using magnetic stirrers and 820 
aerated with an air pump to keep dissolved oxygen (measured using 821 
Pyroscience FireStingO2) well above 50% of saturation concentration at 37°C 822 
(aerobic conditions). 823 
 824 
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 837 
Figure captions 838 
 839 
Figure 1. Growth-inhibition curve for ciprofloxacin and DNA production rates.  (A) 840 
Growth-inhibition curve for ciprofloxacin treated E. coli (MG1655) for different antibiotic 841 
concentrations (plate reader data, green points). The orange line is a quadratic fit to the data. 842 
The minimum inhibitory concentration (MIC) is ~20 ng/ml. Error bars represent SEM (4 843 
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replicates). (B) The growth-inhibition curve for the fimbrial knockout mutant (AD30). Growth 844 
rates are normalized (divided) by the growth rate in the absence of CIP. Green points are 845 
plate reader measurements, red points are measurements from turbidostat-incubated 846 
exponential cultures, taken ~4 h after first exposure to ciprofloxacin. Both methods give 847 
similar results. Error bars are SEM (4 replicates). The MIC of AD30 is ~25 ng/ml. (C) DNA 848 
production rate (measured by DAPI staining) correlates well with biomass growth rate 849 
(measured by OD). Error bars are SEM (3 replicates).  850 
 851 
Figure 2. Model of ciprofloxacin mechanism of action. We model a collection of 852 
replicating chromosomes. New DNA is synthesized at replication forks (black arrows). 853 
Replication starts at the origin (oriC) and terminates at chromosome terminus (ter) (A). A 854 
newly synthesized DNA strand remains connected with the parent chromosome until the forks 855 
reach ter (B). Initiation of new forks at oriC occurs on average every fork time units. The stars 856 
represent gyrases poisoned by ciprofloxacin. Poisoned gyrases are obstacles for replication 857 
forks, inducing fork stalling, and can also cause irreversible DNA damage with probability rate 858 
pkill (C). Once poisoned gyrase is removed from the chromosome (with turnover time gyr), 859 
stalled forks resume replication.  860 
 861 
Figure 3. Simulations reproduce the experimental growth inhibition curve. (A) Total 862 
amount of synthesized DNA predicted by the model as a function of time, for two different 863 
DNA-poisoned gyrase binding rates (k+ = 0.1 min

-1
, green, and k+ = 0.6 min

-1
, red). These 864 

rates correspond to two different ciprofloxacin concentrations below the MIC: low (growth rate 865 
almost unchanged), and medium (growth rate visibly lowered). Where the curves become flat, 866 
growth has been completely inhibited. Total DNA is calculated as the total length of all 867 
chromosomes divided by 𝐿0. (B) Growth rate vs DNA-poisoned gyrase binding rate (k+) 868 
obtained by fitting exponential curves to the last 30 min of the data from panel A, for different 869 
values of killing rate pkill. (C) Deviation between the experimental and simulated growth-870 
inhibition curves as a function of 𝑝kill, 𝜏gyr (the third parameter, q, has also been fitted but is 871 
not shown). A cross marks the best-fit parameters pkill = 7

.
10

-5 
min

-1
, gyr = 25 min and q = 0.03 872 

ml ng
-1

 min
-1

. (D) Experimentally measured growth inhibition curve (green), compared to the 873 
simulated best-fit curve (orange). Errors are SEM (four replicates).  874 
 875 
Figure 4. Dynamic response to CIP in the turbidostat. See Fig. S1C for a schematic 876 
diagram of the turbidostat. (A) Growth rate as a function of time for the fimbrial knockout 877 
strain AD30. Ciprofloxacin was added at 0 h. Tss is the time to the new steady-state growth 878 
rate (𝑐 < MIC) or no growth (𝑐 > MIC) following the addition of CIP (Methods). (B) The model 879 
prediction for the time to new steady state is close to the experimental results. The reduced 880 
𝜒2 = 39.2.  Simulation parameters are same as in Fig. 3D. Other parameters close to the best 881 
fit from Fig. 3D lead to an even better agreement (Fig. S4). 882 
 883 
Figure 5. Ciprofloxacin causes formation of entangled DNA structures. (A) Phase 884 
contrast microscopy images overlaid with fluorescent DAPI stained DNA images with 885 
subtracted background intensity for clarity, after 1 h exposure to different concentrations of 886 
ciprofloxacin. Cephalexin was added to prevent cell division (see Fig. S5 for CIP-only results). 887 
(B) Distribution of cell lengths after 1 h of CIP exposure (green = experiment, red = 888 
simulation). Cells shorter than 7 m are excluded from the analysis. The best-fit for the cell 889 
length distribution for a CIP concentration of 50 ng/ml has = 1.62 h

-1
, () = 0.07 h

-1
. Only 890 

the distribution for 50 ng/ml CIP differs from the CIP-free distribution (Kolmogorov-Smirnov p-891 
value = 2.5

.
10

-15 
< 0.05).  (C) Distribution of DNA in cells of different lengths. Cells are 892 

ordered by length from shortest to longest along the x-axis. Pseudo - colour is DAPI 893 
fluorescence measured at different positions along cell midline (y-axis, scale bar on the right). 894 
Separate chromosomes (lighter areas pointed by red arrows) are clearly visible in CIP-895 
untreated cells. The longest cells (∼24 m) have ~16 chromosomes. For 50 ng/ml CIP, 896 
chromosomes fail to separate (a single fluorescent region at cell’s midpoint). 897 
 898 
Figure 6. Simulations accurately predict the rate of DNA synthesis after ciprofloxacin 899 
exposure. (A) Simulated total DNA versus time (average of 1000 simulation runs). CIP is 900 
added at time t = 100 min. Different colors correspond to different gyrase binding rates 𝑘+ 901 
(different CIP concentrations). We used the best-fit parameters from Fig. 3. (B) Comparison 902 
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of the predicted (no additional fitting) and experimentally measured total DNA per cell (DAPI 903 
staining) after 1 h of CIP exposure. Errors are SEM (350 cells on average per point). 904 
 905 
Figure 7. DNA-repair deficient cells (recA) fail to separate chromosomes and are 906 
highly susceptible to ciprofloxacin. (A) Phase contrast microscopy images overlaid with 907 
fluorescent DAPI stained DNA images. All cells were treated with 8 g/ml of cephalexin to 908 
prevent cell division. Many recA cells fail to form separate chromosomes. WT from Fig. 5A is 909 
reproduced here for comparison. (B) The cell-length distributions for recA and WT after 1h 910 
of exposure to CIP do not differ even for a CIP concentration that inhibits the growth of recA 911 
at the population level. (C) The model reproduces the experimental growth inhibition curve for 912 
recA. Parameters pkill0 = (0.0033 +/- 0.0002) min

-1
, pkill = (0.0042 +/- 0.0001) min

-1
 and q = 913 

0.03 ml ng
-1

 min
-1

. Errors are SEM. 914 
 915 
Figure 8. Dynamic response of DNA-repair deficient cells (recAfimA) to a step-up of 916 
CIP in the turbidostat. (A) Growth rate vs time for recAfimA. Ciprofloxacin was added at 0 917 
h. Tss is the time to the new steady-state growth rate (𝑐 < MIC) or no growth (𝑐 > MIC) 918 
following the addition of CIP. (B) Predicted Tss closely matches the experimental results. 919 
 920 
 921 
Supplementary figures captions 922 
 923 
Figure S1. Growth rate measurements. (A) Background-corrected optical density OD600nm 924 
vs time, measured in a plate reader for two initial population sizes (inocula) of N0 and N0/10 925 
cells. The time delay (T, red double arrow) is related to the growth rate via Eq. (1). (Inset) 926 
Microplate layout: columns = different concentrations, rows = different initial population sizes. 927 
(B) Growth-inhibition curve for ciprofloxacin-treated cells (MG1655). The minimum inhibitory 928 
concentration (MIC) is ~20 ng/ml. Our time-shift method gives similar results to that of the 929 
standard exponential fitting method but it is more accurate (smaller error bars). Error bars are 930 
SEM. (C) Schematic drawing of the turbidostat. While only one bacterial culture is shown, the 931 
complete setup has four units that can be controlled independently. The pumps are syringe 932 
pumps (shared between the units), and computer-controlled valves control the flow to/from a 933 
particular unit. (D) Example data (OD versus time) from a single turbidostat experiment. The 934 
red line marks the time at which CIP was first added to the culture. 935 
 936 
Figure S2. Number of poisoned gyrases predicted by the model. (A) For the best-fit 937 
parameters pkill = 7

.
10

-5 
min

-1
 and gyr = 25 min (Fig. 4), we calculated the average number of 938 

poisoned gyrases per chromosome length Ngyr (orange points, 1000 replicate simulations). 939 
(B) Same as in (A) but using the best-fit parameters for recA cells (Fig. 7). According to the 940 
model, a single poisoned gyrase per chromosome is enough to cause complete DNA 941 
inhibition in cells lacking the recombination repair mechanism.  942 
 943 
Figure S3. Simulation of the model when killing occurs only for the daughter 944 
chromosomes leaving the mother chromosomes intact. The predicted steep decrease in 945 
growth rate with CIP concentration is in sharp contrast to the quadratic shape of the 946 
experimental growth-inhibition curve from Fig. 1A. As in Fig. 2, we assume that the rate k+ is 947 
proportional to the extracellular CIP concentration c. 948 
 949 
Figure S4. Alternative predictions for the time to steady state (Fig. 4B) for model 950 
parameters deviating slightly from the best-fit parameters from Fig. 3C. The upper-left 951 
panel shows the same goodness-of-fit plot as Fig. 3C. Best-fit parameters are marked “x”. 952 
Points marked -2,-1,…,5 correspond to different parameter sets selected from the blue-teal 953 
area of the goodness-of-fit plot for which the fit to the long-term data (Fig. 3D) is only slightly 954 
worse that for “x”. 955 
 956 
Figure S5. Cell length distributions for ciprofloxacin- and cephalexin- treated cells. The 957 
histograms show the cell length distributions before (green) and after antibiotic treatment 958 
(red). (A) When exposed to ciprofloxacin, cells form filaments that may bud from their end 959 
(14). Ciprofloxacin decreases the frequency of cell division; almost no cells bud or divide 960 
during first hour at the highest concentration used (15 ng/ml). (B) Cells exposed to 8 g/ml (≈961 
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 MIC) of cephalexin do not divide. The cell length distribution at t = 1 h is very similar to the 962 
distribution for 15 ng/ml of ciprofloxacin from panel A.   963 
 964 
Figure S6. Chromosome organization in WT vs recA. (A) Cells are ordered by length 965 
from shortest to longest along the x-axis, and fluorescence intensity (DAPI staining) is plotted 966 
along the y-axis. Isolated chromosomes (up to 4 in longest cells) can be identified in WT cells 967 
(red arrows), while recA cells have much less organized chromosomes than WT cells. (B) 968 
The cell-length and cell-width distributions are very similar for both strains.  969 
 970 
Figure S7. A model with DNA damage occurring at the stalled forks also reproduces 971 
the experimental growth-inhibition curve. (A) Schematic representation of the modified 972 
model, (see Fig. 2). (B) Stalled replication forks cause irreversible DNA breaks with rate pfkill, 973 
leading to “death” of the chromosome. (C) Goodness-of-fit for a range of model parameters. 974 
The best-fit parameters pkill = 2

.
10

-5 
min

-1
, gyr = 30 min, and q = 0.04 ml ng

-1
 min

-1
 are marked 975 

with a white cross. (D) Experimental growth-inhibition curve (green) agrees well with the 976 
simulated curve (orange) for best-fit parameters. Errors are SEM (four replicates). 977 
 978 
Figure S8. Growth-inhibition curve for recAfimA. The model reproduces the 979 
experimental growth-inhibition curve for recAfimA. MIC for this strain is approximately 4 980 
ng/ml. Parameters pkill0 = (0.0036 +/- 0.0002) min

-1
, pkill = (0.0011 +/- 0.0001) min

-1
 and q = 981 

0.068 ml ng
-1

 min
-1

. Errors are SEM. 982 
 983 
Figure S9. Colony size distribution for the WT (MG1655) and recA.  (A) Example 984 
colonies of WT and recA cells imaged after 1 h and 2 h of growth starting from isolated cells 985 
deposited on LB-agarose pads. Scale bar = 3 m. (B) Distribution of colony sizes. Colonies of 986 
recA are smaller on average even though cells elongate with the same rate (Fig. 7B). By 987 
comparing the same colony at t = 1 and 2 h we concluded that some cells did not grow.  988 
 989 
Figure S10. Alternative model (saturation of the repair mechanism). Experimental growth 990 
inhibition curve (green points) fitted with the model (orange line). Here 𝑏/𝑏0 is the ratio of the 991 
growth rate at given CIP concentration 𝑐 to the growth rate at 𝑐 = 0. Although the inhibition 992 
curve is correctly reproduced, the model fails to reproduce the dynamic response as 993 
explained in the main text. 994 
 995 
Figure S11. A Hill curve fitted to the experimental growth inhibition curve. The fitted Hill 996 
exponent is 4.4 ± 0.5. 997 
 998 
Figure S12. The SOS response is much faster than the experimentally observed growth 999 
response to CIP. The plot shows the time it takes the concentration of LexA (a protein 1000 
involved in the SOS response) to reach its new steady state (less than 10% difference to the 1001 
steady-state value) as a function of the rate with which DSBs are created. Based on model 1002 
from (42) adapted as described in the main text. 1003 
 1004 
 1005 
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