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Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, Midlothian, EH25 9RG, UK. 

Abstract:  

The livestock industry, and particularly beef production, is recognised as an important source of greenhouse gas (GHG) 

emissions linked to climate change. The complexity of beef systems means that appropriate GHG mitigating strategies 

depend on local conditions, requiring tailored entry points to be identified and evaluated. Using Scotland as a case study, 

here we combine a bio-economic simulation model and farm-level carbon footprinting tool to study the environmental 

impact of a range of beef production scenarios, and trade-offs generated between mitigating emissions and increasing 

farm profitability. To measure the environmental impact of finishing duration, type and gender selection of beef fattening 

systems, emissions were grouped into five categories: (1) land and crops, (2) enteric emissions, (3) manure, (4) feed and 

bedding, and (5) fuel and electricity. Results suggest that more intensive shorter duration systems have the lowest 

environmental impact of all the systems investigated. However, medium duration (i.e. 18-24 months) pasture-based beef 

production systems in Scotland were found to achieve a balance between financial returns and environmental 

performance. 

Keywords: Beef production systems; Greenhouse gas; Environmental modelling; Carbon footprint 

 

 

 

 

 

 

 

 

 



2 
 

Introduction 1 

Greenhouse gas (GHG) emissions have gained attention due to their effect on the global climate. The 2 

role of GHG emissions in climate change and the urgency to mitigate its adverse effects to avoid 3 

further temperature rise, has been highlighted during the United Nations Framework Convention on 4 

Climate Change, the Kyoto Protocol and the Paris Agreement (IPCC, 2013). Agricultural activities 5 

related to food supply chains are considered to have substantial environmental impact accounting 6 

for 26% of all anthropogenic GHG emissions, while non-food agriculture and other drivers of 7 

deforestation contribute a further 5% (Frank et al., 2017; Poore and Nemecek, 2018; Tubiello et al., 8 

2015). The livestock sector has been associated with the main gases linked to climate change, i.e. 9 

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) (Steinfeld et al., 2006), and its 10 

emissions represent an estimated footprint of 7.1 gigatonnes (Gt) CO2-eq per annum, or 14.5% of all 11 

human-induced emissions (Gerber et al., 2013; Rojas-Downing et al., 2017). Among the livestock 12 

sector, the cattle industry, with over 1.3 billion cattle globally, accounts for 65% of the whole 13 

livestock sector’s emissions (4.6 Gt CO2-eq) (Gerber et al., 2015, 2013). Beef production attracts 14 

more attention than dairy beef since contributing around 41% of the total sector emissions (2.9 Gt 15 

CO2-eq) (Gerber et al., 2015, 2013; Poore and Nemecek, 2018). Additionally, beef cattle are 16 

considered responsible for 53.9% of the global enteric CH4 emissions and are currently the largest 17 

contributor of manure NH3 emissions, accounting for 41% of all animal sectors (Wang et al., 2018).  18 

Nonetheless, beef is a valuable commodity, as it provides high-quality protein to consumers and 19 

consistent income to producers (FAO, 2011). Global food security trends showed an increase in the 20 

absolute number of undernourished people in the world to 821 million in 2017, following a growing 21 

trend over the last years, returning the share of people suffering from hunger to levels recorded a 22 

decade ago (FAO, 2018). Meat is an important source of high value protein and micronutrients; thus, 23 

inclusion of even small quantities on a diet could improve the nutritional status of undernourished 24 
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populations, by addressing micro- and macronutrient deficiencies, particularly of children, pregnant 25 

and lactating women (Biesalski, 2005; FAO, 2011; Scollan et al., 2006). Besides, global demand for 26 

beef as a protein source is increasing, driven mainly by the expected population growth, the rapid 27 

pace of economic development and the “westernisation” of diets in Asian and surrounding countries 28 

(Alexander et al., 2015; Godfray et al., 2010; Smith et al., 2018). 29 

Several studies proposed decreasing the amount of meat in current global diets, as a measure to 30 

reduce the environmental impacts of food production (Aleksandrowicz et al., 2016; Springmann et 31 

al., 2018). However, considering the scale of beef’s environmental footprint and projected growth in 32 

meat demand, other pathways should also be investigated in the effort to reduce adverse global 33 

effects. Feedlot-based finishing systems have lower land requirements and GHG emissions per 34 

kilogram of meat (Bragaglio et al., 2018; Capper, 2012; Nguyen et al., 2010; Peters et al., 2010); 35 

nevertheless, such intensive production practices are amongst the least efficient use of human-36 

edible legumes and cereals in the agri-food industry, while raising concerns over routine use of 37 

antibiotics, pollution from manure, and animal welfare (Opio et al., 2013; Swain et al., 2018). Grazing 38 

ruminant production systems utilise land unsuitable for arable crop production, whilst converting 39 

forages to human protein sources without driving the food-feed competition for resources (de Vries 40 

et al., 2015; Wilkinson, 2011). The growing food requirements of an expanding human population, 41 

coupled with the challenges of global climate change, press towards exploring alternative beef 42 

production systems that have the potential to reduce environmental impacts from meat production 43 

and to guarantee long-term food security (Eisler et al., 2014; Swain et al., 2018). 44 

Post-2020 climate change related policies adopted after the Paris Agreement (Hof et al., 2017; Rogelj 45 

et al., 2016) employed a methodology based on the Intergovernmental Panel on Climate Change 46 

(IPCC) guidelines for quantifying and reporting national greenhouse gas emissions (IPCC, 2013, 47 

2006). Since beef systems are complex systems, with interrelating components like soils, crops, 48 

feeds, animals and manures, optimal GHG mitigating strategies will depend on local conditions 49 
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requiring explicit individual management approaches to identify specific entry points and evaluate 50 

mitigation opportunities (Del Prado et al., 2013). Models and predictive tools have been developed 51 

since to estimate GHG emissions from livestock systems (Del Prado et al., 2013), based on process 52 

simulation modelling (Schils et al., 2007), emission factor calculation (Amani and Schiefer, 2011) and 53 

life cycle assessments (LCA) (Cowie et al., 2012; de Boer et al., 2011; de Vries and de Boer, 2010). 54 

Several attempts, either empirical or mechanistic (Jose et al., 2016; Kebreab et al., 2008), to predict 55 

beef cattle GHG emissions, were based on research with cattle in temperate climates (Ellis et al., 56 

2009; Escobar-Bahamondes et al., 2017; IPCC, 2006; Kebreab et al., 2006; Yan et al., 2009). A key 57 

barrier to mitigate emissions from beef production systems is regional and local variation in 58 

conditions and production practices, leading to a complicated and problematic process of capturing 59 

an optimum value (Opio et al., 2013).  60 

The concept of sustainability for livestock farms is a wide-ranging notion that encompasses 61 

economic, social and environmental dimensions, taking into account a great number of factors (e.g. 62 

GHG emissions, eutrophication, groundwater pollution, working conditions, profitability, animal 63 

welfare, etc.) (Galioto et al., 2017; Van Calker et al., 2005). Currently, more emphasis has been 64 

placed on environmental sustainability of farming systems, aiming to minimise GHG emissions and 65 

their impact on nature, but the main primary focus and principles of sustainability is sensitive to 66 

changes over time and location, as social values evolve and differentiate (Boogaard et al., 2008; 67 

Oudshoorn et al., 2011). Nevertheless, economic viability will always be necessary for a sector to be 68 

sustainable, and that is the precise reason why it is important considering issues of profitability 69 

alongside any livestock environmental assessments (Oudshoorn et al., 2011). 70 

Here we investigate the environmental impact of a range of beef finishing systems, as well as the 71 

trade-offs generated between mitigating emissions and increasing farm profitability, using Scotland 72 

as a case study. We combine a bio-economic simulation model (Grange Scottish Beef Model) and a 73 

farm-level GHG footprinting tool (AgRE Calc) focused on temperate grassland-based beef systems. 74 
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Environmental and economic scenarios were explored to enhance understanding of current systems 75 

and explore strategies to address both low profitability and potential GHG mitigation. The novelty of 76 

this study lies in the way it utilised and combined two distinct models to develop a common 77 

methodology for investigating GHG emissions and profitability in beef farms, offering insights by 78 

analysing various scenarios for the beef finishing stage. 79 

Materials and Methods 80 

Model description 81 

Grange Scottish Beef Model 82 

The Grange Scottish Beef Model (GSBM) is a static bio-economic simulation model that was 83 

specifically developed for studying the finishing phase of beef production cycle. GSBM consists of 84 

four sub-models, i.e. the farm system, animal nutrition, feed supply and financial performance. The 85 

farm system sub-model simulates the beef finishing system and calculates on a monthly time-step 86 

the animal numbers, housing requirements, and slurry production during the indoor period, whilst 87 

the animal nutrition sub model controls the energy demand and feed requirements of the modelled 88 

herd. The feed supply sub model regulates the forage system that calculated the grazed grass and 89 

grass silage production of the farm, and the financial sub model calculates the economic 90 

performance of the beef fattening enterprise. The model was then used to investigate the technical 91 

and economic performance of the most common beef production systems in Scotland.  92 

Production systems modelled were based on the “Lifetime growth pattern and beef eating quality” 93 

(“Growth Path”) project that represented systems typical of commercial practice for the UK and 94 

Scottish farms, previously reported by AHDB Beef & Lamb (Hyslop et al., 2016). During the study, all 95 

animals representative of the Limousin crossbred beef cattle genotype experienced three different 96 

treatments that led to three distinct “growth-paths” (Hyslop et al., 2016). The six production options 97 

modelled represent the short, medium and long finishing treatments along with two genders (steers 98 
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and heifers), reproducing the continuous experimental design of the Growth Path trial. Scenarios 99 

involving finishing either male or female animals on a range of finishing ages for each of three 100 

distinct treatments, whereby cattle were slaughtered at intervals of 16-17, 18-24 and 25-35 months 101 

of age (‘short’, ‘medium’ and ‘long’ durations respectively). Land area was set to 120 ha, typical for a 102 

beef finishing farm in Scotland. Likewise, the inorganic nitrogen input on the grazing area was fixed 103 

at 175 kg N/ha across the different systems. All livestock were purchased as yearlings at 12 months 104 

of age and the number of animals was matched to land area and forage production. For the shorter 105 

duration finishing systems, only one silage cut harvest date was modelled, on 29th May. The one cut 106 

silage system is assuming poor utilisation of the forage production area, which is typical for beef 107 

systems keeping animals housed for the whole finishing duration. In contrast, for the medium and 108 

longer pasture-based systems, two silage cuts were assumed with 6 weeks of regrowth. An extended 109 

summary of the GSBM containing additional information regarding the creation, evaluation and 110 

validation processes is included on the Supplementary Material. 111 

AgRE Calc 112 

The Agricultural Resource Efficiency Calculator (AgRE Calc) was developed as part of the Scottish 113 

Government’s Farming for a Better Climate initiative by the consulting division of Scotland’s Rural 114 

College (SRUC) and has been previously described by Sykes et al. (2017). The carbon footprint tool 115 

was developed in alignment with IPCC (2006) Tier I and II methodology and is PAS2050 certified 116 

(IPCC, 2006; Sykes et al., 2017). AgRE Calc employed IPCC (2006) Tier II methodology to estimate 117 

emissions stemming from livestock and manure management, whilst IPCC (2006) Tier I methodology 118 

is used to calculate N2O emissions from fertiliser applications and crop residues (IPCC, 2006). The 119 

model considers embedded emissions from the production of fertilisers, which were calculated using 120 

emission factors (EFs) from (Kool et al., 2012), while embedded emissions for imported feed and 121 

bedding were calculated according to Vellinga et al., (2013). Emissions from electricity and fossil 122 

fuels were estimated using emission factors from DEFRA/DECC (2011) Conversion Factors for 123 
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Company Reporting (Sykes et al., 2017). Results include an analysis detailing separate emission types 124 

and sources.  125 

 The synthesis of the Grange Scottish Beef Model and AgRE Calc 126 

The bio-economic model (GSBM) and farm-level carbon footprinting tool (AgRE Calc) were combined 127 

to simulate typical beef production systems in Scotland. Scenarios that replicate current production 128 

systems were developed on GSBM and the results produced were then introduced to AgRE Calc to 129 

provide estimates of emissions intensity for animals within the finishing systems (Figure 1). One of 130 

the key challenges during the process of linking and coordinating the two models was to establish a 131 

common time step that could be used for recording results. By taking advantage of the flexible 132 

design of GSBM, it was possible to breakdown every system to a monthly basis and then generate 133 

the carbon footprint through AgRE Calc on the same basis. This level of detail, assessing dietary and 134 

performance parameters at the herd level for a monthly time-step, allowed the carbon footprint 135 

results for different finishing durations to form a statistically comparable dataset. Furthermore, 136 

Microsoft Visual Basic for Applications (VBA) was used to optimise the connection channel between 137 

the two models as well as automate the footprinting process. Data collected from the amalgamation 138 

of the two models, provided the basis for comparison of different durations and types of finish, 139 

identifying sustainable methods of beef production in Scotland. 140 

Subsequently, results from the GSBM simulation model were adopted as input values in AgRE Calc to 141 

calculate the GHG emissions of different beef finishing systems. To examine the impacts of factors 142 

such as fattening duration, type and gender selection on emissions intensity, broader categories that 143 

included emissions with interconnected sources were established. Five groups were identified; land 144 

and crops (N2O, CO2 and embedded), enteric emissions (CH4), manure (CH4 and N2O), feed and 145 

bedding (embedded) and fuel and electricity use (CO2 and embedded). Land and crops represented 146 

primarily N2O emissions, grouping together emissions from crop residues, fertiliser application 147 

(organic and inorganic) or (manure from farm and synthetic), lime and urea, as well as embedded 148 
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emissions from fertilizer and lime. Enteric methane included the methane emissions from livestock’s 149 

enteric fermentation process. The manure category comprised of methane emitted during the 150 

anaerobic decomposition of organic matter while in storage and nitrous oxide emitted during 151 

storage and soil application. Finally, the feed and bedding category included the embedded 152 

emissions from feed and bedding, while fuel and electricity considered CO2 and embedded emissions 153 

from diesel, electricity and other fuel, as well as the embedded emissions from transporting and 154 

disposing of carcasses.  155 

System boundary 156 

This study focuses on the fattening stage of beef production, comparing different systems and 157 

management practices. A “gate-to-gate” approach was adopted, where the main costs concerning 158 

the post-weaning period of cattle production until slaughtering the animals were included in the 159 

model (Berton et al., 2016; Mahath et al., 2019; Ogino et al., 2004). The finishing phase was defined 160 

as beginning with the purchase of yearling cattle (either 10 or 12 months old) and ending with the 161 

marketing of finished animals (16 to 35 months of age). The beef finishing cycle also included 162 

activities like pasture management, feed (silage) production, feed transport, animal management, 163 

and cattle waste treatment (Figure 2). 164 

The system examined here did not include the cow-calf phase, even though it is recognised to have 165 

the main impact on the total carbon footprint associated with beef production, regardless of the 166 

finishing strategy (Pelletier et al., 2010). One cow will produce one calf per year; thus for every 167 

animal entering the finishing stage a mature cow, along with replacement heifers and bulls, is 168 

retained. This aspect doubles the resource requirements and emissions per live-weight kg of beef 169 

produced in the system (Phetteplace et al., 2001). The study employed as a basis for modelling the 170 

Scottish finishing systems assumed that all animals were treated in the same way prior to entering 171 

the system and were randomly assigned across alternative growth path management regimes 172 

(Hyslop et al., 2016), so excluding this stage from the calculation of lifecycle emissions intensity does 173 
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not affect the relative ranking of the different systems. In addition, by excluding this part from the 174 

model, the variations on economic and environmental performance of finishing systems become 175 

independent from calves’ performance early in life, affected by mothers' body conditions during 176 

weaning, and could now be fully attributed to management strategies (McAuliffe et al., 2018). The 177 

aim was to further explore factors during the beef finishing stage, such as finish duration, diet, and 178 

gender, which have been identified as significant determinants of emissions intensity (Ogino et al., 179 

2004). As such, a number of factors were studied through scenarios designed to provide a 180 

comprehensive assessment of beef finishing systems in Scotland, with an emphasis on identifying 181 

key features that contribute to emissions mitigation. 182 

Scope of the Study 183 

Factors 184 

Finishing duration 185 

Several factors have been identified as having a key impact on the emissions intensity of production; 186 

the duration of the finishing period is one such variable. Most studies comparing production 187 

strategies and various finishing durations reported that shorter periods represented better efficiency 188 

from the perspective of GHG emissions (Casey and Holden, 2006; Pelletier et al., 2010). However, 189 

studies following alternative approaches showed that longer finishing systems with low inputs, to be 190 

more environmentally efficient in comparison to more intensive approaches (Subak, 1999). 191 

Scenarios modelled involved finishing animals at a range of finishing ages for each of three distinct 192 

treatments, whereby cattle were slaughtered at monthly intervals of 16-17, 18-24 and 25-35 months 193 

of age (‘short’, ‘medium’ and ‘long’ durations respectively) (Hyslop et al., 2016). To examine the 194 

effect of varying finishing periods on emission intensity, the relative contribution of different sources 195 

to the absolute GHG emissions of systems are presented for heifer finishing systems. Results 196 
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provided insights into the effects of duration on a monthly time step to systems’ financial and 197 

environmental performance. 198 

Finishing type and diet 199 

Global beef production systems demonstrate additional complexity, due to the fact that many 200 

systems, particularly in the northern hemisphere’s temperate zones, display a highly seasonal nature  201 

(Opio et al., 2013). In temperate climates, it is common for animals to be housed during the colder 202 

or wetter part of the year (Beauchemin et al., 2010; Casey and Holden, 2006). This seasonal 203 

movement between housed and grass-based situations represents a distinct change in diet and 204 

activity levels and is distinct from the feedlot-based diet treatments. These changes in diet regimes 205 

affect animal performance and impact the carbon footprint of finishing systems (Pelletier et al., 206 

2010). The effects of type (housing/pasture) and diet (concentrates/grass) had on a system’s total 207 

GHG emissions were explored and reported on a monthly basis. When the animals were housed, 208 

they were fed mainly concentrate-based diets, while when out on pasture, they were grazing on 209 

perennial ryegrass swards 210 

Diet is a key driver of the carbon footprint and the amount of GHGs emitted from beef cattle, 211 

particularity on the finishing stage (Beauchemin et al., 2010). During the finishing stage, feeding 212 

treatments for substituting roughage with concentrates results in reduced enteric methane (CH4) 213 

production by lowering the pH of the rumen and switching fibre for starch (Knapp et al., 2014). 214 

However, producing concentrates for feed is also emissions intensive, resulting in potential trade-215 

offs between enteric CH4 and land-based N2O emissions (Hünerberg et al., 2014). Nutritional 216 

strategies to decrease cattle emissions The rate of supplementation usually depends on interactions 217 

between production of enteric CH4, rates of liveweight gain (LWG), and emissions generated in the 218 

production, as well as processing and transport of concentrates, leading to uncertainty regarding the 219 

most efficient approach to finishing beef cattle  (Beauchemin et al., 2008). It is also evident that 220 

feeding approaches could achieve a reduction of methane emissions, especially when combined 221 
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with genetic and management approaches (15-30%) (Knapp et al., 2014). Simulation results enabled 222 

the investigation and comparison of scenarios involving both feedlot- (“short”) and pasture-based 223 

(“medium” and “long”) diets use through different finishing systems (Hyslop et al., 2016). 224 

Gender selection 225 

Differences in animal performance between steers and heifers have been shown, with steers 226 

consuming more feed, growing faster, and more efficiently than heifers, resulting in contrasting 227 

carcass outputs per area farmed (Koknaroglu et al., 2005; Steen and Kilpatrick, 1995). However, 228 

studies found notable differences in animal performance between genders in terms of emission 229 

intensities, with steers producing lower emissions than heifers (McAuliffe et al., 2018). The model 230 

includes both steer and heifer systems for the simulation, in an effort to capture the magnitude of 231 

gender effect on beef finishing systems in Scotland. Simulation results enabled a comparison 232 

between genders, to identify differences in performances for each finishing age. 233 

Farm profitability in relation to greenhouse gas emissions 234 

For examining the essential relationship between an enterprise’s cost-effectiveness and carbon 235 

footprint performance, financial results previously generated from the GSBM for the corresponding 236 

beef finishing systems were employed (Kamilaris et al., 2019). An analysis of the profitability of each 237 

system was performed alongside each system’s total emissions, and the two main GHG emission 238 

categories, namely the land and crops as well as the enteric emissions groups. Lower financial 239 

returns were evident for the longer finishing systems, with the largest losses reported for the 35 240 

month finishing system. The most profitable system was the medium finishing at 18 months for 241 

steers and the short finishing at 16 month systems for heifers. For the short duration systems, diet 242 

was set to include only silage and concentrates; thus, the model assumed that these types of 243 

systems could sustain a great number of animals, representing larger intensive feedlot-type beef 244 

finishing enterprises. Overall, the systems that generated profit were the short and most of the 245 

medium duration finishing systems for both steers and heifers (Figure 3).   246 
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Results 247 

Effects of finishing duration 248 

To examine the effect of varying finishing periods on emission intensity, the relative contribution of 249 

different sources to the absolute GHG emissions of systems are presented for heifer finishing 250 

systems (Figure 4). In Figure 4, the relative contribution of different sources to the absolute GHG 251 

emissions of heifer finishing systems are presented. In all systems examined, the dominant emission 252 

source was enteric fermentation. Common trends occur for different systems, particularly in terms 253 

of the relevant contribution of land and crops as well as enteric methane emissions to the total of 254 

systems’ GHG emissions. For land and crops category, a trend for an increasingly large contribution 255 

over time was noted, while the opposite tendency resulted for emissions from livestock enteric 256 

fermentation on finishing systems. The feeding and bedding category contributed more on short 257 

duration systems (16-17 months), as these represented more intensive methods of production, 258 

compared to the medium (18-24 months) and long duration finishing systems (25-35 months), 259 

where the relative contribution was reduced. Manure emissions remained relatively stable for all 260 

systems over time, while the fuel and electricity category increased with duration.  261 

Effects of finishing type and diet 262 

The effects of type (housing/pasture) and diet (concentrates/grass) had on a system’s total GHG 263 

emissions were explored and reported on a monthly basis. When the animals were housed, they 264 

were fed mainly concentrate-based diets, while when out on pasture, they were grazing on 265 

permanent perennial ryegrass swards. Analysis revealed a strong relationship between LWG (kg day-266 

1) and emissions intensity was revealed (CO2-eq kg LWG-1) for each treatment (Figure 5). Analysis 267 

showed that It was evident that when LWG was low, which is typical for cattle during grazing 268 

periods, high levels of GHG emissions were observed. On the contrary, for high levels of growth, 269 

livestock systems with housed cattle had fewer total emissions. Furthermore, for LWG, around one 270 

kg per day, the gap in emissions intensity between housed and grazing systems effectively closed. It 271 
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is key to focus on systems that facilitate animals achieving a relatively high LWG while on pasture as 272 

the enviromnental impact was significantly lower than similar cases with low LWG. Results 273 

generated can be related to experimental data obtained by other UK studies, by employing the 274 

linear regressions produced (McAuliffe et al., 2018). 275 

Effects of gender  276 

Results for total GHG emissions produced on systems simulated to finish exclusively either steers or 277 

heifers are reported in Figure 6 (Supplementary Table 1 in Supplementary Material). For the two 278 

short duration systems at 16 and 17 months, the steer systems scored slightly higher on emissions 279 

intensity than heifer systems in both cases. For the remaining systems of medium and long duration, 280 

a shift was observed with heifer systems surpassing the steer systems in terms of total GHG 281 

emissions. Finishing female animals on less intensive systems, from 18 to 35 months appeared to be 282 

less environmentally efficient than the corresponding fattening systems that were simulated to 283 

finish steers. 284 

Effects of farm profitability in relation to greenhouse gas emissions 285 

An analysis of the profitability of each system was performed alongside each system’s total 286 

emissions, and the two main GHG emission categories, namely the land and crops as well as the 287 

enteric emissions groups. Figure 7a shows the relationship between the land and crops emissions 288 

with profitability. Especially, for the medium and long duration systems, the emissions from land and 289 

crops were higher as the cost-effectiveness was decreasing. As a result, the longer duration less 290 

profitable systems recorded higher land and crops emissions. Figure 7b shows the association 291 

between emissions intensity from cattle enteric methane emissions and the farm’s net margins for 292 

every system. Two distinct groups appeared on this figure, for both steer and heifers, one included 293 

the long duration systems and the other the medium and the short duration systems. The medium 294 

and short duration systems performed better on profitability but showed increased enteric methane 295 

emissions compared to long duration systems. Finally, in Figure 7c, the relationship between the 296 
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carbon footprint evaluation, measured with the total GHG emissions, and the cost-effectiveness 297 

analysis of the evaluated systems considering the financial aspect of the rural producer, expressed 298 

by the net margin of an enterprise is shown. Here, after grouping results on different systems (short, 299 

medium, long), a negative relationship was revealed for each category of finishing systems (e.g. 300 

“short”, “medium”, “long”), where lower emissions were associated with higher profitability. 301 

Discussion 302 

General discussion 303 

The long extensive systems (“long”) have a greater environmental impact when compared to both 304 

intensive housing systems (“short”) and medium duration grazing-based approaches (“medium”). 305 

These findings were in accordance with other studies on livestock systems emissions, which 306 

reported shorter finishing periods could reduce emissions (Cardoso et al., 2016; Casey and Holden, 307 

2006). This outcome was driven mainly by the greater land and crops emissions produced in the 308 

longer duration systems, for both steers and heifers. A conclusion linked with findings from recent 309 

studies, which confirmed that intensive finishing systems tend to display a lower land use intensity 310 

than extensive, pasture-based systems, even after the crop production area for feed was included 311 

(Bragaglio et al., 2018; Capper et al., 2012). Forage and concentrate feeding during the finishing 312 

stage accelerates growth and allows more beef to be produced per unit grazing area (Swain et al., 313 

2018). Additional reasons include the lower requirements for inorganic N fertiliser in short and 314 

medium systems (McAuliffe et al., 2018). In addition, livestock methanogenic emissions from the 315 

rumen were the single greatest source of GHG emissions for most of the systems, in consonance 316 

with other studies on beef production systems (de Vries et al., 2015). It is worth noting that, in the 317 

last three long duration heifer systems (33, 34 and 35 months), emissions from land and crops 318 

surpassed those of enteric CH4.  319 
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At growth rates around 1 kg per day, animals performed similarly in terms of emissions intensity, 320 

regardless of the finishing type and diet. These findings indicate that high-input grass-based systems 321 

with quality pastures supporting high growth rates have a low environmental load that is analogous 322 

to that for intensive concentrate-based systems with similar growth rate. Results from this study 323 

were compared with similar findings from McAuliffe et al., (2018). Slight differences between 324 

emissions intensities were noted, with lower values were reported in this study. These differences 325 

could be attributed to animal physiology expressed through different diverse genotypes of cattle 326 

measured in each study (i.e. Limousin and Aberdeen Angus two-breed reciprocal crosses Limousin 327 

crosses (Kamilaris et al., 2019) in contrast to Charolais x Hereford-Friesian cattle (McAuliffe et al., 328 

2018)), along with the effect produced by variability in grass quality.  329 

Differences were noted between the two genders in terms of emissions intensity for all systems 330 

examined. Systems that finished steers were found to have significantly lower emissions intensity 331 

than those with heifers, in agreement with other studies (McAuliffe et al., 2018). It was hypothesised 332 

that part of this difference was due to the fact that continental steers tend to grow faster, producing 333 

heavier carcasses and meeting the carcass specifications more easily (Steen and Kilpatrick, 1995); 334 

while heifers tend to deposit fatty tissue more quickly, which has a direct impact on their carcass 335 

profile (Keane and Drennan, 1987). These results could be linked to the concept that dairy beef 336 

production models, focused on rearing and finishing more males than females, may prove to be 337 

more sustainable livestock systems (de Vries et al., 2015). However, further research is needed prior 338 

to designing novel systems, taking into account issues like the implications of bull rearing as well as 339 

the typical lower growth rates of the dairy breeds compared to beef cattle breeds for each 340 

treatment and specific environment (McAuliffe et al., 2018). 341 

While investigating the relationship between a farms’ profitability and environmental performance, 342 

results reveal two distinct groups for both steer and heifer systems; one includes the long finishing 343 

period systems and the other the short and medium duration systems. Long period grazing systems 344 
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appear to have low emissions per animal but score low in profitability with negative net margins for 345 

all systems. In contrast, most of the medium and all of the short duration systems appear profitable 346 

but show higher emissions intensity. In search of a solution that could satisfy high profitability and 347 

sustainable environmental performance, the attention is directed towards those high input grazing 348 

medium duration systems that suffice in both categories. Despite, the higher profitability 349 

demonstrated from the intensive systems, two medium systems appear to score similarly on 350 

profitability and displaying lower GHG emissions. To be more specific for both steers and heifers’, 351 

the 18 and 19 month systems appear to belong to a range of “win-win” realistic scenarios for both 352 

profitable and more environmental-friendly beef production. To further support the case for 353 

medium duration grass-based beef finishing systems, studies on alternative beef forage-based 354 

systems have reported promising results in terms of their potential as mitigation strategies to 355 

balance GHG emissions produced, especially for systems with animals grazing on improved pasture 356 

(Kamali et al., 2016) and systems employing adaptive multi-paddock (AMP) grazing (Stanley et al., 357 

2018). Especially for Scotland, where opportunities may be found in finishing systems, where a 358 

proportion of grass is included in the diet, resulting in high value products from grass-fed animals 359 

that could potentially offer higher returns (AHDB, 2016).  360 

Furthermore, wider implications could support the case for medium duration pasture-based beef 361 

production systems. Well-preserved grasslands provide ecosystem services and could have a positive 362 

effect on long-term soil fertility (Dick et al., 2016; Horrocks et al., 2014). Promoting pasture-based 363 

beef production systems may have wider socio-economic implications in terms of increased rural 364 

employment as well as valuable ecosystems services. Grass-based systems are closely associated 365 

with a range of social and economic benefits like rural tourism, recreation, which alleviates burdens 366 

linked with progressively urban lifestyles, and many distinctive features of the rural landscape with 367 

historic and aesthetic significance (e.g. patchwork of fields bounded by hedgerows and stone walls, 368 

etc.) (Chatterton et al., 2015). The potential for carbon sequestration in grazing lands is significant, 369 

but at the same time, the estimates are highly uncertain. Synthesis of evidence suggested that even 370 
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though responses varied greatly, improving grassland management practices could lead to soil 371 

carbon sequestration, by an average of 0.47 Mg C·ha−1·yr−1 (Conant et al., 2017). Nevertheless, 372 

despite the fact that the reported increases to soil organic matter are substantial, concerns have 373 

been expressed regarding the magnitude of the potential climate change mitigation credited to 374 

enhanced soil management (Schlesinger and Amundson, 2018). 375 

Livestock grazing production systems convert forages into edible food while utilising lands unsuitable 376 

for arable productions; thus avoiding direct competition with humans for valuable resources (de 377 

Vries et al., 2015; Van Kernebeek et al., 2016; van Zanten et al., 2016). In addition, various health 378 

benefits have been attributed to moderate consumption of grass-fed beef in comparison to 379 

concentrate-fed beef (Warren et al., 2008). Meat from pasture-based cattle has proven to be a great 380 

source of omega-3 polyunsaturated fatty acids, promoting a healthy diet by contributing towards a 381 

balanced intake ratio of omega-6/omega-3 ratio, which promotes prevention and management of 382 

obesity (Simopoulos, 2006). Recent studies suggest that beef’s intrinsic high nutritional value could 383 

prove to be the basis for re-assessing the role of livestock production systems in global food security 384 

(Coelho et al., 2016; Pighin et al., 2016; Wyness, 2016).  385 

Limitations of approach and future research 386 

This particular study was concentrated on the environmental impacts linked to the finishing stage of 387 

beef production. Although, it has been shown that the cow-calf phase was the largest contributor to 388 

GHG emissions (Pelletier et al., 2010); it was essential to study emissions during the fattening stage 389 

particularly in Scotland, as longer finishing strategies are common and often associated with 390 

inefficiencies and additional emissions produced (Ogino et al., 2004; Quality Meat Scotland, 2018). 391 

Nevertheless, as the cow–calf phase is accountable for approximately 63% of total emissions, 392 

irrespective of the production system (Pelletier et al., 2010); linking this stage with the outcomes of 393 

this study, which isolated the fattening stage, may alter the current grouping of the results.  394 
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A significant nother reason for caution when modelling agricultural emissions would be implications 395 

induced by a system’s inherent variations and uncertainties (Gibbons et al., 2006). For instance, 396 

weather, spatial or temporal related uncertainties could reduce the robustness of emission factors, 397 

and variation surrounding farm system parameters could influence the GHG emissions calculated 398 

from a model  (Basset-Mens et al., 2009; Crosson et al., 2011). Although this study is limited in the 399 

sense that modelling uncertainty was not explicitly considered, future work could explore ways to 400 

incorporate this aspect on the GHG emissions analysis. For example, other studies have developed 401 

distributions for uncertain model parameters by utilised Monte Carlo simulation (Basset-Mens et al., 402 

2009; Gibbons et al., 2006), or performed sensitivity analysis on a set of important factors, resulting 403 

to the calculation of a range of outputs (Casey and Holden, 2006; Foley et al., 2011). 404 

Future work could focus on employing a different type of modelling to optimizinge results and 405 

improvinge identification of “win-win” scenarios. Further analysis and optimisation of the modelling 406 

outcomes could result in greater understanding of the underlying connections between profitability 407 

and GHG emissions on beef production systems. It is common for the short duration systems to 408 

divert the focus and the farm resources in managing and feeding the housed animals as efficiently as 409 

possible, often in the expense of the pasture system, which is neglected and its utilisation rate 410 

remains low over the year. This might have caused an overestimation of the reported emissions for 411 

these systems; an issue that could be further examined by employing optimisation modelling and 412 

studying scenarios involving land use optimisation. Furthermore, potential modelling could involve 413 

exploration of possible mitigation techniques including different feeds, manure management, animal 414 

husbandry, and the interactions between them as well as implications on profitability for beef 415 

fattening farms in Scotland (Hristov et al., 2013).  416 

A more comprehensive evaluation of other environmental and economic issues related to beef 417 

production in beef finishing systems was not possible in this study, because essential data on 418 

biodiversity, carbon sequestration, acidification, water footprint and macroeconomic factors of 419 
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production were not available. Future research should concentrate on collecting data to support an 420 

extensive analysis of environmental and economic sustainability performance of Scottish beef 421 

finishing systems. Moreover, further research is needed to determine the socio-economic 422 

implications of shifting between alternative beef farming systems. Future research should assess the 423 

“gate-to-gate” social risks and benefits of Scottish beef finishing systems considering indicators of 424 

socio-economic sustainability like demographics, economic activity and community aspects (Pelletier 425 

et al., 2018a; Revéret et al., 2015). Working with a social life cycle assessment framework to identify 426 

the relevant stakeholder groups (e.g. workers, local community, society, value chain partners) and 427 

social themes (e.g. access to resources, fair salary, health and safety, social benefits, equal 428 

opportunities, local employment, community engagement) could provide insights, supplementing 429 

research done on financial and environmental aspects to inform future policies (Pelletier et al., 430 

2018b, 2018a). 431 

Conclusion 432 

The model synthesis described here to assess scenarios regarding the environmental impact of beef 433 

production farms while estimating the possible trade-offs generated between mitigating emissions 434 

and increasing farm cost-effectiveness, is supported by the increasing necessity to guide local and 435 

European agriculture toward production systems that are environmentally friendly, socially 436 

acceptable, and profitable for the farmers. The methodology that allowed a bio-economic 437 

production model to be linked with an environmental carbon calculator can be further employed as 438 

a tool to guide agricultural policy in the region of Scotland or other regions, by evaluating both 439 

environmental and production related scenarios. Environmental friendly beef finishing systems, 440 

producing lower emissions were identified when finishing steers on intensive short duration 441 

systems. Findings also highlighted profitable prospects for commercial farms adopting medium-442 

period, pasture-based beef production systems. In fact, this study indicated that beef production 443 

systems with low carbon footprint entail trade-offs between farm profitability and global 444 



20 
 

environmental issues; hence, suggesting that economic and environmental performances of 445 

livestock production systems may not always be positively correlatedAlthough emissions intensity 446 

for most of concentrate-fed beef, pork, and chicken production systems is lower than efficiently 447 

produced grass-fed beef, results suggest that other aspects should be considered as well, before 448 

determining the role of livestock production systems in global food security. These insights could 449 

guide the decision-making process towards the goal of lowering the GHG emissions of beef industry, 450 

whilst maintaining and even increasing farmer’s profitability. 451 
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