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Abstract— The performance of image analysis techniques 
(particle detection) on contrast enhanced ultrasound (CEUS) 
images could be enhanced in combination with the use of the right 
beamformer (BF). The current study investigates the best 
performing combination of a particle detecting algorithm 
(Kanoulas et al. 2019) with four beamformers (BFs), classical and 
adaptive. In a series of in silico experiments, adjacent MBs are 
placed in distances comparable to the lateral resolution limit, the 
CEUS images of the MBs were simulated in FieldII, and finally 
beamformed with the four methods. The images were processed 
with the MB detection algorithm and the results were evaluated 
by the true detections (TD), missed MBs, spurious detections, and 
localisation uncertainty (LU). For the smallest distances all 
methods deteriorate but the MV methods provided 4-12% more 
TD. For the intermediate distances the TD were comparable for 
all BFs but the adaptive methods provided lower LU. When a set 
of evaluation metrics is used, the adaptive methods provide 
marginally but systematically improved results which suggests 
that, under the appropriate imaging conditions, they could be used 
to enhance vessel mapping.  

Keywords—medical, beamforming, resolution, image-
processing, microbubble tracking  

I. INTRODUCTION  

CEUS images can be processed with the particle detecting 
algorithm based on Kanoulas et al. 2019 [1] that provides an 
estimation of microbubble (MB) position and allows the 
identification of sub-resolution vessel structures in the image. 
The input image data quality affects both the accuracy of 
detection and localisation which in turn will affect the vessel 
mapping. Classically the CEUS image data are generated with 
conventional beamformers and it is unclear whether adaptive 
beamformers, that provide improved lateral resolution and 
potentially MB localisation [2]-[5], will also provide improved 
super-resolution vessel mapping results. It is this association 
between beamforming and vessel accuracy in super-resolution 
ultrasound imaging that has not been previously investigated. 
The aim of this work is to investigate MB detection and 
localisation performance when they are located within adjacent 
vessels in distances around the resolution limit.  

Specifically, the four BF methods, namely the DAS with a 
uniform apodisation window (called DAS boxcar in the 
following), DAS with a Hanning apodisation window, MV in 
the frequency domain, and MV in the time domain [6] were 
chosen in this investigation. In a series of in silico experiments 
the MBs were placed in vessels at various positions close to the 
lateral resolution limit. The US images of the MBs were 
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simulated in Field II [7, 8], the four different BFs were 
implemented, and the resulting images were later processed with 
the MB detection algorithm.  The accuracy of detection and 
localisation can be evaluated when the ground truth (GT) 
position of the MBs is compared with the estimated.  

 

II. METHODS 

A. Experimental design  

Lateral resolution is typically evaluated with two stationary 
point spread functions (PSFs) at the same depth, in our case 
MBs. However, resolving adjacent vessels is a slightly different 
problem. The relative positions of the MBs in motion may 
impact vessel reconstruction in a complex manner. It is this 
problem that is investigated here. The phantom used for the in 
silico experiments, Fig.1, consists of two linear vessels(hollow 
cylindrical elements) with a diameter of 50μm, in which MBs 
flow at opposite directions with the same constant flow rate of 
5-10m3/s following Poiseuille’s law [9]. The opposite flow is 
achieved placing the inlet of the left vessel at the bottom and the 
inlet of the right vessel at the top. The MBs are injected 
randomly at each of the inlets of the two-vessel system with an 
injection interval for the system of 1 MB every 0.1sec. This 
allows the lateral signal interaction of MBs for the following 
cases: one in each vessel, one MB in one vessel and a cluster of 
MBs in the other, or clusters of MBs at each vessel. 

B. US imaging and beamforming 

The MB flow simulation provides the temporal and spatial 
coordinates of each MB. In addition to that, every MB has a 
unique ID and can be followed throughout its path in a vessel. 
The spatial information of the MBs for 100-time frames was 
used as input in a FieldII imaging simulation [7, 8] to generate a 
video sequence of flowing MBs. For the imaging simulation the 
excitation pulse was generated by the method of synthetic 
aperture of one active element, with pulse repetition frequency 
at 100Hz and image depth between 52-80mm. The US images 
were created with four BF methods: DAS boxcar, DAS 

Hanning, MV in the frequency domain, and MV in the temporal 
domain, Fig.2, [10].  

C. Detection, Localisation and Evaluation of results 

The simulated US images were processed with the MB 
identification algorithm. The MB detection algorithm first 
determines the particle regions classifying them as MB (area) or 
background (noise) based on an intensity thresholding. The MB 
regions are segmented, with marker-controlled watershed 
segmentation [11], providing the MB segments. Using a series 
of criteria such as the peak intensity, the minimum and the 
maximum size of the segments, the segments of MBs are 
selected. Then, using the intensity weighted centre of mass 
(COM) method, the algorithm provides the estimated location of 
each MB.  

The assessment of the detection and localisation can be done 
quantitatively using the following statistics: 

 True detection (TD) rate: percentage of correct detections 
that correspond to a GT MB 

 Spurious events rate: percentage of false detections that do 
not correspond to GT MBs 

 Missed events rate: percentage of GT MBs that were not 
matched with a detection and 

 Localisation Uncertainty (LU): It is the calculated root mean 
square error of the distance of each localisation from its true 
MB location. This applies only to the paired MBs 
(algorithm true detection and GT MBs) and is a measure of 
the localisation uncertainty (LU). 

 

III. RESULTS 

Table I shows the percentage of total MBs that was correctly 
detected by the algorithm for the 4 BFs. The increase of the 
lateral vessel separation correlates with an increase in the 
number of correct detections. At the largest separation (1000μm) 
all the MBs are detected. This indicates that for those separations 
and above all beamforming methods provide the same detection 
performance, which is due to the fact that at 1000μm the MB 
echoes are well separated and laterally independent. For the 

 
Fig. 2: Four different vessel separations. MBs (white dots) are flowing 

through the vessels. 

 

 

 

Fig. 1 The GT position of the MBs (purple dot) and the position of the MB 
as was detected from the algorithm (red ‘x’) for a vessel separation of 
400μm. The images show the exact same GT when beamformed with: a) 
DAS boxcar, b) DAS Hanning, c) MV Subband, d) MV temporal. 

 



smallest separation where there is a significant PSF overlap, a 
large percentage of the MBs remains undetected. This 
percentage reaches more than 20% for the 100μm separation. 
For these vessel separations, the MV methods are performing 
generally slightly better than the DAS, particularly the MV 
Temporal which outperform the DAS with a TD rate of 88% for 
the 100μm separation. In addition, the quality of detections is 
also determined by the percentage of spurious events and by the 
LU. The spurious events, Table II, for all BF methods and vessel 
separations were generally low. The methods have comparable 
and low values of LUs for separations above 1000μm which is 
due to minimal PSF interference at those distances. It is 
important to note that the LU provides a useful information only 
for cases where the TD rate is already satisfactory. Indeed, for 
the smaller separations, when the TD rate is low, the MBs are so 
close to one another that the misplaced detections are often in 
the centre of the vessels leading to a relatively small LU that is 
not representative of the algorithm performances. 

 

IV. DISCUSSION 

The results of this experiment do not show a significant 
difference in MB detections results when the  MV methods are 
compared to the DAS methods but they show a systematically 
better performance of  the MV methods either in the form of TD 
rate or LU when compared to the DAS. This systematic 
performance, even though modestly better, suggests that the 
combination of MV methods with the detection algorithm may 
provide more accurate vessel mapping under the appropriate 
imaging conditions.  

A representative performance assessment of the different 
beamformers can only be done using a set of evaluation metrics, 
with the true detections being the primary one. The spurious 
events in these noise-free experiments are generally low 
therefore the use of this metric would not provide additional 
value but in a more realistic setting, with noise, this metric could 
provide valuable information The experiment suggests that the 
most informative combination of metrics would be the true 
detections along with the localisation uncertainty. Fig.2 shows 
that for overlapping PSFs the detections could be either between 
the MBs or outside the 2-vessel region, which is the reason for 
deterioration of the LU in intermediate vessel distances. 

 

TABLE I.  TRUE DETECTION RATE BY VESSEL SEPARATION 

 
Percentage of MBs that were correctly detected (%) 

100μm 200μm 400μm 1000μm 

DAS Boxcar 76 88 91 100 

DAS Hanning 76 85 90 100 

MV Subband 80 87 93 100 

MV Temporal 88 92 93 100 

 

 

TABLE II.  SPURIOUS  DETECTION RATE BY VESSEL SEPARATION 

 

TABLE III.   LOCALISATION UNCERTAINTY BY VESSEL SEPARATION 

 

CONCLUSIONS 

The MV BFs improves the percentage of correct MB detections 
for small lateral separations while for larger separations all the 
BF methods provide comparable true detections. In the 
intermediate vessel separations, the benefit of using adaptive 
BF is shown in the accuracy of the MB localisation. 
The future work could include a study of the performance for 
various imaging settings under different noise levels. 
Furthermore, the data of this experiment could be used and 
assessed in the context of vessel mapping. 
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