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Abstract—The sharing of hardware platforms in multi-tenant
environments is a growing security concern. Microarchitectural
timing-based covert channels allow tunneling information out of
a compromised cloud instance, thus bypassing information flow
policies. Significant research efforts have been carried out in
order to address the super-set of timing channels. Nevertheless,
new attacks keep on being published while disregarding the
latest academic efforts, arguing that the relevant defences have
not yet been deployed. In order to bridge the gap between
vulnerabilities and countermeasures, we challenge state-of-the-art
mitigation techniques by constructing the first cross-VM covert
channel that is resilient against all known defences, whether they
are already deployed or still theoretical. Defence strategies that
are relevant with covert channels are surveyed, and a list of
requirements is constructed for the new attack. Then, we re-visit
the exploitation of the x86 memory bus lock, and launch the
proposed covert communication channel across two AWS EC2
instances. While simple in design, the proposed implementation
shows that x86 microarchitectures still present salient vulnerabil-
ities, and that state-of-the-art defence strategies—even theoretical
ones—remain unsuccessful at hindering data leakage in multi-
tenant environments. Finally, a strategy to mitigate the remaining
vulnerability is suggested, along with a comparison against the
ARMv8 processor architecture.

Index Terms—Covert channel, cloud security, data confiden-
tiality

I. INTRODUCTION

Microarchitectural timing-based attacks are software-

launched exploits which leverage the sharing of a processor

among multiple tenants, in order to compromise sensitive

information. These attacks can either take the form of a side

channel, where the victim is accidentally leaking information,

or the form of a covert channel, where the attacker has infected

the victim with a malicious sending-end that deliberately trans-

mits information. Microarchitectural covert and side channels

have been increasingly popular in the last decade, and even

more since the release of the Spectre and Meltdown attacks [1],

[2]. In response, a plethora of mitigation strategies has been

proposed by academics, from new hardware designs through

software partitioning to anomaly detection.

These defence strategies often aim at closing a

PRIME+PROBE [3] covert or side channel, omitting attacks

which are not based on cache exploitation. Unfortunately,

authors of defence strategies rarely challenge their proposal

with all the artifacts available to an adversary, such as

shared buses, interconnects, and system-level resources

(e.g. DRAM). In parallel, new attacks consider a set of

countermeasures, usually the ones already deployed in the

targeted environment, and aim at demonstrating a residual

threat despite these existing countermeasures. A trend that we

observe is that attacks often forget to take into account the

latest developments in terms of defences, arguing that these

are not deployed by OS or cloud providers. Therefore, it is

difficult to assess the novelty of these attacks, as they might

already have been addressed by recent works.

With the intent of bringing coherence in this cat-and-

mouse game, we perform a retrospective analysis on state-of-

the-art attack and defence techniques. More specifically, we

propose a microarchitectural covert channel that allows cross-

VM communication in a public cloud, while discarding the

usage of artifacts which are theoretically made unavailable by

recently proposed countermeasures. Covert and side channel

attacks differ in the attack scenario, however they share the

underlying mechanisms for leaking information. Therefore, the

study accounts for all defence strategies, as long as they are

relevant with the covert channel attack scenario (e.g. constant-

time implementations of cryptographic algorithms are only

suitable against side channel attacks).

Microarchitectural covert channels are particularly interest-

ing when there is no alternative means of leaking information

in a non-conspicuous manner, e.g. to avoid generating network

traffic and associated logs [4]. They are relevant with advanced

persistent threats, where the attacker employs cutting-edge

techniques in order to maintain long-term intrusion and data

exfiltration capabilities. Therefore, covert channels are ideal

candidates for stealthy leakage on high-profile targets. This

study shows that a motivated attacker can easily make his
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way around state-of-the-art mitigation strategies, even if these

were actually implemented in the targeted environment.
Auditing strategies have been proposed against timing chan-

nels [5]–[8]. These aim at detecting abnormal behaviours at

runtime, and deploying reactive measures accordingly (e.g.

interrupting the suspected workload, migrating a VM, tem-

porarily injecting noise, etc.). Because the sustainability of the

auditing approach is highly correlated to the ability of avoiding

false positives, multiple machine learning-based techniques

have also emerged [9]–[13]. The main drawback of auditing

is that it is usually tailored for specific workloads such

as cryptographic computations. Thus its applicability against

microarchitectural covert channels remains an open question,

as they might not have an easily identifiable signature. Further-

more, auditing does not aim at closing a malicious behaviour,

but at detecting it. While the decision is made to apply

reactive measures, sensitive information such as cryptographic

keys might have already been leaked. Auditing strategies are

not capable of closing a microarchitectural covert channel in

a deterministic way, and their practicality has already been

questioned due to their performance cost [14]. Therefore,

they are not considered viable countermeasures against such

attacks.
In this study, we first analyse a chosen set of mitigation

techniques, and extract the requirements for bypassing them.

Secondly, we demonstrate how all existing covert channels

can be closed with countermeasures suggested in academia.

Thirdly, we revisit the x86 memory bus covert channel and

test it against the requirements previously established. The

proposed attack is then deployed across two AWS EC2 in-

stances and tested on several microarchitectures. Finally a

discussion on how to close the remaining covert channel is

provided, along with a comparison against the ARMv8.2-A

architecture that has recently arrived on the Infrastructure-as-a-

Service (IaaS) market. Overall, the study shows that there is no

known countermeasure that could mitigate the proposed covert

channel, despite an extensive review of defence strategies.
The contributions of this paper are the following,

• We evaluate state-of-the-art covert channel attacks against

recently proposed covert and side channels defence tech-

niques, and discuss how all cross-VM channels proposed

in academia can effectively be closed.

• We revisit the x86 bus lock vulnerability in order to

bypass recently proposed countermeasures. The covert

channel is tested in the AWS EC2 environment on three

different x86-64 microarchitectures.

• We propose alternative mitigation strategies and dis-

cuss the challenges of deploying the covert channel on

ARMv8.2-A microarchitectures.

The paper is organised as follows. Section II provides the

necessary background on hardware architecture, as well as

related literature on cross-VM covert channel attacks. Section

III consists of an analysis of state-of-the-art defences against

side and covert channels, along with a discussion on the

feasibility of covert channel attacks against these defences.

Section IV presents our new instance of the memory bus covert

channel. Section V reports the results of the covert channel

evaluation. SectionVI provides suggestions on mitigating the

covert channel, along with a comparison with the ARMv8.2-A

architecture. We conclude in Section VII.

II. BACKGROUND & RELATED WORK

A. Processor Overview

In this paper, the term processor refers to the entire die,

which contains the shared last-level cache (LLC), the in-

tegrated memory controller, and the cores. Cores contain

individual instruction (L1-I) and data (L1-D) caches, and

potentially a unified L2 cache depending on the processor

model. Cores also contain one or two physical CPU(s) each.

Finally, the CPU is the set of execution units and other logic

required for instruction execution, e.g. translation lookaside

buffer (TLB), branch target buffer (BTB), branch history buffer

(BHB), return-stack buffer (RSB), etc. We note that before the

advent of non-uniform memory access (NUMA), the front-side

bus architecture was prominent (see Figure 1). This memory

bus quickly became a bottleneck as CPU clock speeds kept

increasing. With the NUMA architecture, the front-side bus

was replaced by an interconnect between processors, with

each processor managing its own portion of DRAM through

a memory controller integrated directly into the die.

B. Memory Operations

During the execution of a program, data might be loaded

from or stored to caches. Upon such operation, the memory

management unit (MMU) translates the virtual address into a

physical address, computes an index from the address of the

requested data, and computes the tag of the cache line that

contains the requested data. The index is used to point to a

set of cache lines, and the tag is used to point to a specific

cache line within this set. Finally, an offset computed from

the variable’s address is used to point to a specific portion of

the cache line.

If the cache line is not present at any cache level, known as

a cache miss, a request is issued to the memory controller in

order to fetch the data from DRAM. The data is then stored

into the cache, known as a cache line fill, and is sent back

to the CPU. The next access to the cached data will result in

a cache hit. A store operation consists of modifying a cache

line, and storing it back to memory (depending on the write-

policy) via the store buffer. Prior to modifying data, the cache

line must be loaded. If it is not present at any cache level, it is

called a write miss, which triggers a cache line fill. Otherwise

it is a write hit.

C. Cross-VM Covert Channel Attacks

Ristenpart et al. [15] studied the problem of VM co-location

on the AWS EC2 service. They used the LLC to assert the

co-residency between two communicating VMs. Similarly, Xu

et al. [16] explored the vulnerability of L2 caches for covert

channel attacks on an EC2 instance. Wu et al. [17] proposed

exploiting the memory bus as an alternative to cache-based

covert channels, thus overcoming the addressing uncertainty.
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Fig. 1: Front-side bus architecture.

Later, the memory bus attack was revisited by Liu et al. [18]

to use non-temporal instructions on the receiving-end, so as to

mitigate the effect of cache pollution. Yet, they demonstrate

that their covert channel can be closed by introducing noise

on high resolution timers. Pessl et al. [19] suggested using the

DRAM row-buffer as a communication medium between two

VMs. Liu et al. [20] re-used a PRIME+PROBE primitive in

order to build a cross-VM covert channel as a vector for side

channel attacks against GnuPG libraries. Maurice et al. [21]

designed a robust LLC-based covert channel attack, allegedly

enabling the establishment of a rogue SSH session across AWS

EC2 instances. Sullivan et al. [22] revisited the exploitation of

simultaneous multithreading using the memory order buffer

for cross-VM leakage in the AWS EC2 and GCE services.

More recently, Semal et al. [23] proposed a cross-VM covert

channel entirely based on the integrated memory controller.

III. ANALYSIS OF STATE-OF-THE-ART DEFENCES

This section surveys and analyses relevant mitigation tech-

niques against microarchitectural leakage channels, namely

noise injection, software partitioning, and hardware partition-

ing. Whether a timing variation is created accidentally or

intentionally, the mechanisms to modulate microarchitectural

states remains similar. Therefore relevant countermeasures

against timing-based side channels are also considered. Other

countermeasures which are not relevant include constant-

time execution, symbolic execution, state flushing, and noise

injection within cryptographic implementations.

A. Noise Injection

Noise injection consists of downgrading the accuracy of

timing variations’ measurement, either by injecting noise in

the high-resolution clock sources, or by injecting randomness

in the cache replacement policy:

1) Noise injection on timers: This approach consists of

jittering the timestamps of high-resolution timers [18], [24]–

[26]. Being able to measure the latency of a single memory

operation is crucial in timing channel attacks, as it leads to

the interpretation of the activity of the victim (or sender).

The x86 ISA features the rdtsc and rdtscp instructions

which capture a time-stamp from the time-stamp counter

(TSC), allowing timing measurements with a sub-nanosecond

resolution. These are accessible from any non-privileged user

program. Other timing sources, such as the wall clock provided

by the operating system, are usually not accurate enough to

measure a timing variation of a few clock cycles. For example,

in [23], the sender’s activity generates an overhead of only 6.5

CPU clock cycles. At a frequency of 2.4 GHz, this amounts to

a time span of 2.7 ns. Therefore, the attacker can neither rely

on the high-resolution timer which can be made unreliable by

countermeasures, nor on the operating systems clock sources

which lack accuracy. In order to account for noise injection

on high-resolution timers, we set the following condition:

Requirement 1: Noise injection on timers
The covert channel shall not rely on the rdtsc nor

rdtscp instruction for measuring timing variations.

2) Noise injection on caches: This approach aims at pre-

venting an attacker from learning about the victim’s working

cache set. Wang and Lee [27] suggested integrating permu-

tations in the cache index computation, while Qureshi et al.

[28] used randomised mappings based on the encryption of the

cache line’s physical address. These will result in the victim’s

accesses to stop conflicting with the attacker’s cache sets.

Alternatively, Fang et al. [29] suggested having the prefetch

controller issuing requests to the L1 cache in order to tamper

the timing observations of the receiving-end. For instance,

in an m-way set associative cache, if m cache misses are

observed when sending a 1, and none are observed when

sending a 0. the prefetch controller will bring this number

to m/2 all the time, such that the receiver is no longer

capable of distinguishing a 1 from a 0. If generalised, these

strategies can hinder cache-based covert channels that depend

on the ability to find congruent addresses. Other proposals

[30]–[32] studied bespoke cache replacement policies as an

alternative to the vulnerable on-demand policy. Taking the

example of the random-fill approach [30], if a cache miss

occurs, the requested cache line is sent to the CPU but it is not

necessarily stored in the cache. Instead, a “neighbour” cache

line is randomly selected within a fixed address range around

the requested cache line. If the same cache line is requested

thereafter, it might result in a cache hit. The uncertainty

contributes to inhibiting the leakage of information as to

whether the victim accessed a specific cache line or not.

This countermeasure is also relevant to cache covert channels

such as FLUSH+RELOAD [33]. In order to account for noise

injection on caches, we set the following condition:

Requirement 2: Noise injection on caches
The attacker cannot rely on the latency of cache ac-

cesses. Therefore, data caches such as the L1-D, the

L2, and the LLC shall not be used as a communication

medium.
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B. Software Partitioning

Software cache partitioning, also known as cache colouring,

consists of isolating sensitive data by means of isolating a set

of cache lines for a given security domain [27], [34], [35].

Recall that in order to address data in (set-associative) caches,

the MMU computes an index and an offset from the physical

address. The bits that belong to both the physical page number

and the cache line index are the colour bits. Figure 2 is an

example of virtual-to-physical translation of a 64-bit address,

with 6 bits of offset (i.e. cache line size is 26 = 64 bytes),

9 bits of index (i.e. way size is 29 = 512 entries), and 3

colour bits. Cache colouring states that physical pages which

differ in any of the colour bits can never be mapped in the

same cache set. That is, if the physical memory pages of

two processes have at least one different colour bit, these

can never exploit congruency to launch cache attacks such

as PRIME+PROBE or EVICT+RELOAD [3]. In a sense, cache

colouring behaves like a dynamic clustering technique which

guarantees that two clusters can never share a cache set. Liu et

al. [36] suggested another form of software cache partitioning

by leveraging Intel’s Cache Allocation Technology (CAT) [37],

in order to lock down portions of the LLC during execution.

As for FLUSH+RELOAD, Zhou et al. [38] proposed a state

machine which prevents a shared memory page being accessed

by two security domains at the same time.

Beyond cache colouring, other forms of software parti-

tioning have been proposed. Disabling page sharing [39]

hinders attacks which depend on the availability of shared

memory such as FLUSH+RELOAD and FLUSH+FLUSH [14].

Disabling simultaneous multi-threading (SMT) [40] prevents

two hardware threads from exploiting contention among CPU-

level resources such as execution units [41], the BTB [42], the

RSB [43], or the MOB [22].

Requirement 3: Software partitioning
The covert channel must remain functional when shared

memory and SMT are disabled. Also, set-associative

caches shall not be used as a communication medium.

C. Hardware Partitioning

Hardware cache partitioning consists in providing physical

isolation among the working cache sets of each tenant [27],

[44], [45]. For example, Wang and Lee [27] suggested a cache

line locking mechanism, by means of an ISA extension, which

prevents another process from evicting the cache line. An L

tag indicates whether the cache line is locked, and an ID

tag indicates the process to whom the cache line belongs.

Fundamentally, hardware cache partitioning results in the same

effects as software cache partitioning. The main difference lies

in the deployment of the countermeasure. Therefore, hardware

cache partitioning does not result in additional requirements.

As for other components than caches, Wang et al. [46]

proposed a time-division multiplexing technique in order to

prevent the exploitation of the shared integrated memory

controller. Similarly, Wang et al. [47] devised a priority-based

mechanism for the shared on-chip network. These approaches

Fig. 2: Virtual-to-physical translation of a 64-bit address on an Intel
E6550 processor [48]. The cache line offset is determined by bits 0
to 5, the cache line index is determined by bits 6 to 14, and the page
offset is determined by bits 0 to 12. Colour bits range from bit 12 to
bit 14.

consist in scheduling accesses to the memory controller and

the interconnect such that different security domains cannot

conflict with each other. We note that the effect of this

countermeasure on DRAM-based covert channels that target

external NUMA nodes remains an open-question.

Additionally, Gruss et al. [14] advocated making the rdtsc
and clflush instructions privileged. While it would not

completely close the covert channels which rely on these

instructions, it would severely question the practicality of

the attack. The adversary model (see Section IV-A) requires

for the environment of the victim to be compromised with

a malicious colluding software. The above-mentioned coun-

termeasure would force this malware to be executing with

privileges. Also, the adversary model assumes that the attacker

does not have privileges. Therefore, using such instructions is

not allowed. In order to account for hardware partitioning, we

set the following condition:

Requirement 4: Hardware partitioning
The covert channel shall not rely on either the mem-

ory controller or the interconnect as a communication

medium. Furthermore, the attacker cannot execute priv-

ileged code. The rdtsc and clflush instructions are

considered privileged and are thus unavailable.

D. Evaluation Against Attacks

All LLC-based cross-VM covert channels [15], [16], [20],

[21], [49] fail to meet requirement 2. These cannot meet re-

quirement 3 as they exploit caches’ set-associativity. Ristenpart

et al. [15] and Xu et al. [16] require accessing (privileged) page

tables in order to find congruent addresses, thus they also fail

to meet requirement 4.

The memory order buffer (MOB) covert channel [22] de-

pends on the availability of SMT. This attack fails to meet

requirements 1 and 3. The DRAM row-buffer [19] and mem-

ory controller [23] attacks fail to meet requirements 1 and 4.

Both rely on cache flushing in order to force memory accesses
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TABLE I: Cross-VM covert channel attacks against covert

channel countermeasures.

Attack Exploited resource R1 R2 R3 R4

[15] Last-level cache - - - -
[16] Last-level cache - - - -
[17] Memory bus - � � -
[18] Memory bus - � � -
[19] Row-buffer - � � -
[20] Last-level cache - - - -
[21] Last-level cache - - - -
[22] MOB - � - -
[23] Memory controller - � � -
[49] Last-level cache - - - -

Ours Memory bus � � � �

being served from DRAM, and the memory controller covert

channel exploits a forbidden microarchitectural component.

To the best of our knowledge, all existing covert channels

rely on the rdtsc instruction and thus fail to meet require-

ment 1 and 4. Also, the memory bus covert channel proposed

by Wu et al. [17] doesn’t meet requirement 4 as they did not

specify how they implemented uncached memory accesses—

hence we assume that they proceeded with the clflush
instruction. Liu et al. [18] claimed that their own memory

bus covert channel can be closed by injecting noise in timers.

We show in this paper that it is still possible to design the

covert channel while bypassing their defence strategy.

More generally, the memory bus covert channel was initially

designed in order to overcome the drawbacks of cache-

based attacks, namely the addressing uncertainty (e.g. un-

privileged virtual-to-physical address translation in virtualised

environment), the scheduling uncertainty (e.g. synchronisation

errors), and cache physical limitations (e.g. exploiting the L1-

D doesn’t allow cross-core communication). In this paper,

we demonstrate that it also enables bypassing state-of-the-art

countermeasures against timing channels.

IV. A RESILIENT MEMORY BUS COVERT CHANNEL

A. Adversary Model

There are two communicating entities, a sender and a

receiver. The sender exists in the victim’s environment in the

form of a trojan or any other form of malicious program.

The receiver exists in the attacker’s environment. Both com-

municating entities execute without privileges. The instances

of the victim and the attacker are scheduled on separate

cores of the same processor. The hypervisor is assumed

to be free of any software vulnerability, and instances are

logically separated. Thus sender and receiver do not share

any memory region. Finally, it is assumed that state-of-the-

art countermeasures are operating in the environment of both

the sender and the receiver, and that these countermeasures

impose the requirements listed in Section III.

B. The Memory Bus Lock

In a multi-threaded application, shared memory regions may

be accessed concurrently. In order to prevent undesirable situ-

ations such as race conditions, instructions can be performed

atomically. In an atomic memory operation, the requested

cache line is locked in order to prevent its modification by

another thread. A singularity occurs when accessing a memory

region which spans across two cache lines.

Wu et al. [17] observed that, upon accessing a cache line-

crossing region (a.k.a. exotic), atomicity was enforced by

locking the memory bus. By guaranteeing exclusive access

of the shared bus to one thread, others would be unable to

modify the cache lines of interest. When the exotic operation

is completed, the memory bus is unlocked.

Moreover, Wu et al. [17] noticed that a similar behaviour

happens on modern processors, where the front-side bus has

been removed (i.e. NUMA processors). Atomic accesses to

exotic regions result in every outstanding load/store operation

to be completed across all CPUs before the atomic operation

is performed [50]. This strategy effectively guarantees that no

other memory operation can affect the cache lines of interest.

However, it also introduces significant timing variations which

are visible across all CPUs.

A covert channel can be created based on the effect of

exotic memory accesses: a one is transmitted by generating

atomic operations on a cache line-crossing region, a zero is

transmitted by remaining idle for a fixed amount of time.

Concurrently, the receiving-end probes its own accesses and

interprets low and high latency accesses as zeroes and ones.

C. From Timing Variations to Binary Information

Wu et al. [17] designed a cross-VM covert channel based

on the memory bus lock behaviour. However, as described in

Section III-D, their covert channel can be closed with various

countermeasures. Here, we demonstrate how to design the

memory bus covert channel in a way that meets requirements

1 to 4. The covert channel can be broken down into two

primitives:
1) Sending-end: in order to force atomicity, a lock prefix

can be attached to an instruction. The lock signal can only

be applied to read-modify-write operations whose destination

operand is a memory location. Read-modify-write operations

combine a load, an arithmetic, and a store operation. We

choose the xchg instruction which simply swaps the contents

of its two operands, and automatically asserts a lock signal if

the first operand is a memory location. In order to transmit

a one, contention is generated by passing to the assembly

function (Listing 1) a pointer with a base address aligned on a

cache line boundary added with an offset of 63 bytes. In order

to transmit a zero, the same assembly function can be passed a

pointer with a base address aligned on a cache line boundary.

Also, promoting the operation to 64-bit wide with the rex.w
prefix allows reducing the global time of execution by half.

1 ; RDI = pointer to exotic or "normal" region
2 REX.W XCHG [RDI], RAX
3 RET

Listing 1: Transmitting a symbol.

2) Receiving-end: the x86 Streaming SIMD Extension pro-

vides instructions to perform direct read and write opera-
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tions to main memory without affecting the cache. A non-

temporal store of double quadword from an xmm register into

a 128-bit memory address is performed with the movntdq
instruction [51], [52]. The receiver can use this instruction

to accelerate the probing and reduce errors due to cache

pollution of other processes (see Listing 2). More importantly,

it prevents the cache-miss hardware performance counter from

incrementing, inhibiting countermeasures based exclusively on

the monitoring of cache activity. The mfence (lines 4 and

6) instruction plays two important roles. Firstly, it prevents

re-ordering between the non-temporal store (line 5) and the

reading of the counter (lines 3 and 7). Secondly, it allows

flushing the write-combining (WC) buffer, thus ensuring of

the execution of the non-temporal store in-order. Non-temporal

operations follow WC semantics, which specify that data must

not be cached so as to reduce cache pollution (i.e. when data is

used only once). Non-temporal operations are combined in the

WC buffer, and delayed until the buffer becomes full, or upon a

serialising event (e.g. mfence, cpuid, lock, etc.) [51]. We

note that the size of the WC varies from one microarchitecture

to another, however it can take the size of several cache lines

and one single movntdq might not be enough to fill it up.

Thus the second mfence instruction (line 6) ensures that the

non-temporal store is not delayed until the WC buffer is full.

1 ; RSI = pointer to counter
2 ; RDI = pointer to "normal" region
3 MOV RDX, [RSI]
4 MFENCE
5 MOVNTDQ [RDI], XMM0
6 MFENCE
7 MOV RAX, [RSI]
8 SUB RAX, RDX
9 RET

Listing 2: Receiving a symbol.

In order to discard the usage of the TSC counter, we replace

it with a counting thread using the inc instruction (see Listing

3). The counter value is systematically written to memory, so

as to make it visible to the receiving-end. We note that this will

require the receiver to have access to a second logical CPU,

and that it does not alter the resolution of measurements—in

fact it can even improve it [53].

1 ; RDI = pointer to counter
2 XOR RBX, RBX
3 _LOOP:
4 INC RBX
5 MOV [RDI], RBX
6 JMP _LOOP

Listing 3: Counting thread.

The proposed protocol is presented in Algorithm 1. The

sender performs atomic memory accesses either in a cache

line-crossing region (i.e. exotic) or in a single cache line

(i.e. normal), with the Access function referring to Listing 1.

Meanwhile the receiver starts the counting thread, and probes

memory accesses into a single cache line of its own userspace,

with the Probe function referring to Listing 2. We note that

sender and receiver perform multiple accesses per bit value.

Algorithm 1: Memory Bus Covert Channel Protocol

MS1: exotic memory region (sender userspace);
MS0: normal memory region (sender userspace);
MR: normal memory region (receiver userspace);
send[N ], recv[N ]: respective buffers of sender and receiver;

Sender
for all i ∈ [0;N ] do

if send[i] == 1 then
{Exotic access}
Access( MS1 );

else
{Normal access}
Access( MS0 );

end if
end for

Receiver
for all i ∈ [0;N ] do

{Timed normal access}
t = Probe( MR );
if t > threshold then

recv[i] = 1;
else

recv[i] = 0;
end if

end for

The entire premise of the covert channel is based on the

ability for the receiver to observe a timing variation depending

on the sender’s activity. In our AWS EC2 m5d.large instance

pair (see Table II), the receiver’s accesses to DRAM take

an average of 935 increment iterations when the sender is

inactive, and 2403 increment iterations when the sender is

active. Therefore, there is an average performance overhead of

1468 increment iterations per memory access. An increment

iteration is the time that it takes for the counting thread to

perform one increment operation (see Listing 3). On the AWS

EC2 m5d.large, we measured that it takes 1498034 CPU cycles

to perform 220 iterations, that is an average of 1.42 CPU cycles

per increment operation. This means that overhead caused by

the sender’s activity amounts to 2084 CPU cycles. Thus it is

trivial for the receiver to differentiate the binary values sent

across the covert channel.

V. EVALUATION

A. Channel Capacity

The testing environments are summarised in Table II. It con-

sists of three AWS EC2 instance pairs featuring different x86-

64 microarchitectures, namely Intel Xeon E5-2676v3 (released

in 2015), Intel Xeon Platinum 8175 (released in 2017), and

AMD EPYC 7571 (released in 2019). The tests are repeated

on each instance pair. Both the sender and the receiver run

in their own instance and have access to two virtual CPUs

(vCPUs). Furthermore, dedicated instances are used in order

to ensure that sender and receiver are scheduled on the same

processor.

TABLE II: Hardware configuration (AWS EC2).

Instance type Microarchitecture vCPUs Frequency

m4.large Intel Xeon E5-2676v3 2 2.4 GHz
m5a.large AMD EPYC 7571 2 2.5 GHz
m5d.large Intel Xeon Platinum 8175 2 3.1 GHz

The error rate (Figure 3a) is computed by counting the

number of bit flips over a 256-bit message. At a bitrate of

480 bps, the covert channel reaches an error rate as low as

5.46% on the Intel Xeon Platinum 8175 platform. The channel
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(a) Error rate (%) as a function of the bit rate (bps).

(b) Channel capacity (bps) as a function of the bit rate (bps).

capacity (Figure 3b) is computed under the binary symmetric

model [54]. It measures the quantity of information that can

be reliably transmitted by accounting for the error rate1. At

a bitrate of 480 bps, the covert channel reaches a capacity of

up to 333 bps on the Intel Xeon Platinum 8175 platform. The

same order of magnitude as the original proposal is achieved

[17]. Results are summarised in Table III.

TABLE III: Error rate and capacity (raw bitrate of 480 bps).

Instance type Microarchitecture Error rate Capacity

m4.large Intel Xeon E5-2676v3 8.31% 281 bps
m5a.large AMD EPYC 7571 12.3% 221 bps
m5d.large Intel Xeon Platinum 8175 5.46% 333 bps

B. Effects on Microarchitectural States

The proposed covert channel successfully meets all the

requirements previously established:

Requirement 1: Noise injection on timers. A high res-

olution timer is required in order to measure the latency of

performing memory accesses. A timing channel can effectively

be mitigated if the values read from this counter are too

noisy. Requirement 1 intends to prevent such countermeasure.

In order to gain assurance that neither the rdtsc nor the

rdtscp instructions are used, we disassembled the entire

binaries and were able to confirm that these instructions are not

present. The receiving-end relies exclusively on the counting

thread in order to benchmark the execution of memory ac-

cesses, and there are no other benchmarking operations taking

place in the code. Only the evaluation of the channel capacity

1In brief, the capacity of a binary symmetric channel is a function of its
binary entropy, i.e. a function of the error rate which represents the uncertainty
over the quality of the information received. Maximum entropy is reached
when the probabilities of a bit being erroneous and correct are equal.

requires using the TSC counter. Beyond the testing phase, this

operation is not required.

Requirement 2: Noise injection on caches. The covert

channel is based on the ability for the sender and receiver

to manipulate and observe microarchitectural states. In the

case of cache-based covert channels, this microarchitectural

state is the presence of a cache line in a cache set. Injecting

noise in caches, such that the receiver and sender can loose

the above-mentioned capability, can effectively mitigate the

attack. Requirement 2 intends to thwart such countermeasures.

The sending-end exploits the bus locking behaviour for atomic

accesses to cache-line crossing regions (see Section IV-B). The

resulting performance cost is generated system-wide. Thus all

memory accesses are impacted, whether they target caches

or DRAM. Also, the receiving-end benchmarks uncached ac-

cesses only. On x86 microarchitectures, non-temporal instruc-

tion are designed to fetch data directly to DRAM. Therefore,

noise injection in caches does not affect the microarchitectural

state leveraged by the sender and receiver, since they only

communicate via DRAM accesses. Noise injection on caches

would be completely oblivious to this covert channel.

Requirement 3: Software partitioning. Software partition-

ing enforces spatial isolation over certain processor resources,

such that co-tenants cannot share a vulnerable microarchitec-

tural state. Requirement 3 accounts for such countermeasures,

some of which are already deployed by cloud providers. We do

not have control over the disabling of SMT on the commercial

platform, and dedicated instances from the same AWS account

may share hardware CPUs. Therefore, we reproduce the covert

channel in a lab environment, such that SMT can be disabled

and processes can be pinned to separate hardware CPUs. The

covert channel was successfully launched across two native

processes on an AMD Ryzen Threadripper 1950X processor

(Zen), which features 16 cores. SMT was disabled from the

BIOS menu, and each communicating was set to different

cores via the (privileged) taskset command. We note that

this command was only used for the testing of this require-

ment, and that it is not necessary when launching the attack

across VMs. This shows that the covert channel allows cross-

core communication, hence it cannot be mitigated by disabling

SMT. Finally, the cache architecture (e.g. set-associative) is

not relevant with the memory bus. Firstly, because it does not

rely on modulating a shared cache set. And secondly, because

non-temporal accesses bypass the cache on x86 platforms.

Therefore, cache colouring cannot have a mitigating effect on

the proposed covert channel.

Requirement 4: Hardware partitioning. This requirement

considers different forms of partitioning which would be

enforced at the hardware level, from isolated cache partitions

through time-multiplexing on certain scheduling resources to

privileged instructions. The tests were performed from user ac-

counts, and the disassembling of our binaries showed that nei-

ther the rdtsc nor the clflush—theoretically privileged—

are used. While the memory controller is solicited in DRAM
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accesses, it is not responsible for generating timing variations.

Thus time-multiplexing over the memory controller or the

interconnect cannot conceal timing variations caused by the

bus lock behaviour. As for cache partitions, these are irrelevant

with the proposed attack since timing variations do not cause

any cache accesses.

VI. DISCUSSION

A. Closing the Memory Bus Covert Channel

A new feature known as Memory Bandwidth Allocation

(MBA) has been introduced in Intel Xeon Scalable processors

[55]. This feature allows controlling the memory bandwidth

of each core, and could be leveraged in order to inhibit the

memory bus covert channel. The advantage of this approach

is that it relies on existing hardware support, much like Liu

et al. [36] used the Intel Cache Allocation Technology (Intel

CAT) feature in order to close PRIME+PROBE cache attacks.

We note that Intel CAT was also used by Lipp et al. [56] as

a Rowhammer enhancer, who then suggested to modify Intel

CAT in order to mitigate the vulnerability. It is possible that

Intel MBA could also lead to new vulnerabilities, as many

other hardware optimization techniques did, e.g. out-of-order

execution, SMT, prefetching, etc. Finally, Intel MBA is not

available on all Intel microarchitectures.

B. The Case of ARMv8.2-A

ARM processors have recently arrived on cloud platforms

with the Neoverse microarchitectures. Thus we can expect

that the share of x86 processors in IaaS will decrease for

the benefit of ARM architectures. We tried reproducing the

memory bus covert channel across two AWS EC2 instances

platform featuring a 64-bit ARM architecture. It was possible

to re-create the receiving-end, the only exception being that

non-temporal instructions might not be guaranteed to be

served from DRAM. As for the sending-end, the A64 swp
instruction—equivalent of the x86 xchg—is deprecated since

the ARMv6 ISA. To the best of our knowledge, this instruction

should be re-introduced in the ARMv8.2-A ISA or upcoming

versions, but it will no longer generate the desired system-wide

“bus lock”. We suspect that its behaviour will be similar to

the load-acquire store-release concept. Meanwhile, it has not

been possible to reproduce the timing channel on the Graviton

and Graviton2 processors.

VII. CONCLUSION & FURTHER WORK

In this paper, we analysed the existing set of covert channel

countermeasures, and identified how an adversary could by-

pass these defences. The x86 bus lock vulnerability was then

revisited in order to avoid influencing microarchitectural states

rendered unavailable by the latest mitigation strategies. The

covert channel was deployed in a commercial cloud environ-

ment, and tested across three different microarchitectures. This

study demonstrates that the proposed attack allows establishing

a rogue transmission channel across two cloud instances, even

if the extensive range of existing countermeasures was already

deployed. Finally, an approach to mitigating the remaining

vulnerability is proposed.
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