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SUMMARY

Each spring and fall, millions of normally diurnal
birds switch to migrating at night. Most of these
are small songbirds (passerine) migrating long dis-
tances that need to alternate their migratory flights
with refueling stopovers [1, 2], which can account
for up to 80% of the total migratory period [3]. After
a long nocturnal flight, these birds face the con-
trasting needs to recover sleep and refill depleted
energy stores, all while vulnerable to predation
[4, 5]. Here, we investigated how garden warblers
at a Mediterranean stopover site modulate their
sleep behavior in relation to their metabolic state.
At night, garden warblers in poor metabolic condi-
tion sleep more and exhibit less migratory restless-
ness than birds in good condition do. In addition,
rather than sleeping with their head facing forward,
birds in poor condition prefer to sleep with their
head turned and tucked in their feathers. We further
show that sleep with the head tucked is associated
with lower respiratory and metabolic rates and
reduced heat loss mediated by hiding the head—
the body part with the highest heat dissipation—un-
der the feathers. However, the benefit of conserving
energy while sleeping with the head tucked was
countered by reduced anti-predator vigilance. Birds
presented with a sound simulating the approach of a
predator responded more slowly when the head was
tucked than when it was untucked. Consequently,
our study demonstrates that through changing
their sleep position and intensity, migrating song-
birds can negotiate a previously unknown trade-off
between sleep-mediated energy conservation and
anti-predatory vigilance.

RESULTS AND DISCUSSION

The highest mortality in migratory birds occurs during migration

[4, 5]. Most songbirds are diurnal but perform their migratory

flights at night, when the risk of predation is reduced and

weather conditions are more favorable [6, 7]. Small passerine

birds that migrate from their African wintering quarters to

breeding areas in Europe cannot complete their journey in

one leg because they cannot carry sufficient energy stores

for the entire distance [1, 2]. These species thus make stop-

overs during which they rest and forage to restore their energy

reserves. Particularly in spring, birds need to reach their

breeding sites as early as environmental conditions allow

because their reproductive success is strongly linked to timing

of arrival [8]. Therefore, each stay at a stopover site should be

as short as is required to recover from the preceding flight and

to rebuild depleted energy stores according to the specific

migratory strategy [9, 10].

Among the major constraints in reducing stopover duration is

the need to rest and sleep. Sleep deprivation may lead to serious

consequences such as deficits in cognitive performance and

memory consolidation [11–16] and in the worst cases might

lead to death [17–20]. Some bird species show an extended

reduction of sleep when experiencing challenging situations,

such as during endurance-foraging flights [21], breeding [22],

or migratory periods [23]. Sleep deprivation, experienced during

periods of nocturnal restlessness, did not affect cognitive abili-

ties of captive passerine migrants with food provided ad libitum

[23], yet how wild migrants balance sleep and foraging needs en

route remains unknown. One possibility is that they sleep on the

wing at night [24]. However, in the only study to demonstrate

sleep in flight, great frigatebirds (Fregata minor) slept during

soaring, but not flapping, flight [21]. As most passerine species

flap their wings almost continuously during their flights [25],

sleeping in flight seems to be unlikely in these species. Indeed,

field observations suggested that migratory songbirds need to

stop over and sleep even when they have enough energy stores

to continue their migration [26, 27].
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We investigated sleep patterns of migrating wild garden war-

blers on the island of Ponza, a major stopover site in theMediter-

ranean. During spring migration, thousands of passerine birds

arrive to the island after crossing more than 500 km of open

sea. We caught birds with mist nets, collected a blood sample,

and recorded standard morphological and physiological vari-

ables [28], and thenwe placed them in customized cages and re-

corded their behavior with infrared cameras until the following

morning. An index of body condition was extracted using prin-

cipal component analysis so that animals with larger body

mass, fat stores, and muscle mass had a higher condition index.

We found that birds in better condition spent a larger proportion

of time sleeping during the day hours (Figure 1A). At night, the

pattern was inverted (Figure 1B), as expected from previous

studies showing that migratory garden warblers in better condi-

tions express intense nocturnal restlessness [29], a good proxy

of migratory disposition [30, 31].

Despite the lack of a sleep posture preference during daylight

hours, we found differences in the posture adopted by the birds

during nocturnal sleep. Birds in better condition slept mainly in

the ‘‘untucked’’ posture (Figure 1D), where the neck is retracted

and the head is pulled toward the body facing forward, whereas

birds in poorer condition slept mainly in the ‘‘tucked’’ posture,

where the neck is turned backward and the head tucked in the

scapular feathers [32] (Figure 1C). Because the tucked posture

is usually displayed by birds at colder temperatures [33–36],

this posture might conserve energy and thereby allow lean birds

to preserve their already poor physiological state.

0.0

0.2

0.4

0.6

0.8

1.0

Daylight hours

−2 −1 0 1 2

Pr
op

or
tio

n 
of

 ti
m

e 
as

le
ep

Tucked Untucked

A

C

0.0

0.2

0.4

0.6

0.8

1.0

Nocturnal hours

−2 −1 0 1 2

Pr
op

or
tio

n 
of

 ti
m

e 
as

le
ep

Condition

0.0

0.2

0.4

0.6

0.8

1.0

Nocturnal hours

−2 −1 0 1 2

Pr
op

. o
f t

im
e 

un
tu

ck
ed

 s
le

ep

Condition

B

D

Condition

Figure 1. The Diurnal Pattern of Sleep and

the Posture Displayed during Sleep Are

Correlated with Condition in Migrating Gar-

den Warblers at a Stopover Site

(A) The relative duration of sleep during daytime

was positively correlated with an index of body

condition calculated from body mass and extent of

fat stores andmuscle mass (beta regression model:

Pseudo R2 = 0.159, p = 0.001).

(B) The relative duration of sleep during the night

was negatively correlated with body condition (beta

regressionmodel: Pseudo R2 = 0.082, p = 0.028), as

expected in migratory birds in good condition that

show migratory restlessness at night.

(C) Most birds show two sleep postures: the un-

tucked posture, where the neck is retracted and the

head rests on the breast pointing forward, and a

tucked posture, where the neck is turned backward

and the head is tucked in the scapular feathers.

(D) Birds in better conditions spent considerably

more time sleeping in the untucked position during

the night, whereas temperature (mean = 21.7�C;
SD = 1.29) did not affect the postural choice (beta

regression model: Pseudo R2 = 0.416; condition:

p < 0.001; temperature: p = 0.06). During the day,

most birds slept in the untucked position indepen-

dently of condition (beta regression model: Pseudo

R2 = 0.001; condition, p = 0.996).

These results show that garden war-

blers adjust their sleep posture according

to their physiological condition and sug-

gest that the choice to sleep with the

head tucked or untucked is related to energy management. To

verify this hypothesis, we placed garden warblers in a respirom-

etry chamber to record their oxygen consumption, a common

measure of metabolic rate. An infrared-sensitive camera re-

corded the behavior of the birds during the respirometry mea-

surements (Figure 2A). The average ambient temperature during

the experiment was 22.6�C (SD = 0.695; max = 24.5�C; min =

21.2�C). As expected, we found that the metabolic rate varied

with activity, with the highest metabolic rate in active birds, inter-

mediate in inactive but awake birds, and lowest in sleeping birds

(Figure 2B), consistent with the known reduction in metabolic

rate below the basal metabolic rate during slow-wave sleep

[37, 38], one of the two type of sleep in birds and mammals

[39]. Among sleeping birds, moreover, we found that the meta-

bolic rate was lower in birds with their head tucked than in birds

with their head untucked (Figure 2B). In addition, we found that

another indicator of metabolic rate, respiratory rate, was

reduced in birds sleeping tucked compared to those untucked

(Figure 2C). The association between posture and metabolic

rate was not influenced by ambient temperature (Figure 2D),

suggesting that the choice between these two postures is linked

to energy conservation strategies.

Field observations on a number of species have suggested

that the tucked posture is a strategy to reduce heat dispersion

from the bill and the eye region [40]. This seems to be also the

case for garden warblers. To further corroborate this result,

we placed birds in a modified cage where one of the side

walls was replaced by an infrared-transparent polymer, and we
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recorded their surface temperature using a thermovision camera

(Figure 3A). When we compared average heat dissipation from

different areas of birds sleeping in the untucked posture (Fig-

ure 3B), we found that the heat dissipation from, and average

surface temperature of, the body and the bill were significantly

lower compared to the head, including the eye region (Figure 3C).

Thus, in garden warblers perched at night, the greatest heat

dissipation occurs through the eye region, and a significant

reduction of heat loss can be achieved by hiding this area under

the feathers (Video S1). The tucked posture therefore reduces

the overall conductance of the bird’s surface and would permit

further energy savings at low ambient temperatures.

These experiments demonstrated that the tucked posture al-

lows gardenwarblers tominimize heat loss and likely contributed

to the reduction in energy expenditure. The fact that birds in

good condition preferred to sleep untucked, however, indicated

that the choice of keeping the head tucked has costs. One of the

highest risks that migrants encounter at stopover sites is preda-

tion [41]. Garden warblers—like most other songbirds—do not

migrate in social groups and do not appear to benefit from group

vigilance against predators [42–44]. As different types of sleep

are associated to different levels of responsiveness [45], we hy-

pothesized that birds are exposed to higher risks of predation

when sleeping tucked and therefore only resort to this posture

to conserve energy when in poorer condition. We predicted

therefore that tucked birds would react to potential danger

with a longer latency than those untucked would. To test this hy-

pothesis, we measured the reaction time of sleeping birds when

exposed to the sound of crunched leaves, a noise that might

indicate the approach of a terrestrial predator. Garden warblers

were housed singly in sound-proof boxes to minimize external

disturbances, and their behavior was video recorded with

infrared-sensitive cameras (Figure 4). An external trigger simulta-

neously activated the playback of the sound and an infrared

flash, invisible to the birds but recorded by the camera (Fig-

ure 4A). We then analyzed the time elapsed between the activa-

tion of the trigger and the first reaction of the bird, i.e., the onset

of the transition to an alert posture with visible reduction of the

feather volume and opening of the eyes. The analysis clearly

showed that birds sleeping with their head untucked reacted

significantly faster than those sleeping with their head tucked

did (Figure 4B), indicating that birds sleep more deeply when

their head is tucked. Albeit not tested, response to visual threats

could also be reduced in the tucked position in which feathers

cover the eyes [46], further adding to the risks of sleeping in

this position.

Taken together, our studies show that migratory garden

warblers making a stopover after a long flight over sea adopt

A B

C D

Figure 2. The Metabolic Rate Is Lower in

Garden Warblers Sleeping with the Head

Tucked Compared to Those Sleeping

Untucked

(A) Schematic drawing of the experimental setup

showing the respirometry chamber placed in the

sound-proof box. An infrared-sensitive camera

placed outside the chamber recorded the behavior

of the birds throughout the experiments.

(B) When the instantaneous rate of consumed ox-

ygen was compared between different behavioral

states,we found a clear reduction in birds thatwere

quiet but awake (quiet wakefulness: 33 blocks from

5 individuals) compared with restless (active: 188

blocks from 14 individuals) birds and in sleeping

birds compared with quiet awake birds. The lowest

oxygen consumptionwas foundwhen birdswere in

the tucked position (sleep untucked: 116 blocks

from 12 individuals; sleep tucked: 315 blocks from

16 individuals). Different letters (a–d) indicate states

that differed significantly from each other (pairwise

post hoc test; active vs. quiet wakefulness: p <

0.001; active vs. untucked: p < 0.001; active vs.

tucked: p < 0.001; quiet wakefulness vs. untucked:

p < 0.001; quiet wakefulness vs. tucked: p < 0.001;

untucked vs. tucked: p < 0.001). Boxplots show the

median and inter-quartiles calculated on the entire

sample, and dots show the individual mean values

for each behavioral state. A plot of all measure-

ments is shown in Figure S1.

(C) The number of breaths per minute was higher in

untucked compared to tucked birds (LMMs;

estimate = 38.341; SE = 2.134; t value = 13.007).

Boxplots show the median and inter-quartiles calculated on the entire sample, and dots show the individual mean values for each sleep posture.

(D) Plot of mass-specific metabolic rate versus ambient temperature. For better visualization, circles show the mean ± SE mass-specific metabolic rate for

each temperature interval. Open circles show values for untucked birds, closed circles for tucked birds. Slopes of the regression lines calculated from the in-

dividual data points were not significantly different (LMMs; untucked:Ta: estimate = �0.908, SE = 0.894, t = �1.016; tucked:Ta: estimate = �1.202,SE = 0.893,

t = �1.346).
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different sleep postures according to their condition. Birds in

good condition have a lower need to refuel and therefore sleep

more during the day and show more nocturnal activity. Birds in

poorer condition, on the contrary, sleep less during the day, as

they need to forage. They compensate with a higher proportion

of sleep at night, during which they preferentially display a

tucked posture associated with reduced heat loss and meta-

bolic rate, resulting in important energy savings. However, it

is unclear whether tucking the head accounts for all of the en-

ergy savings or simply contributes to a strategic drop in meta-

bolic rate associated with sleeping deeper in energetically

compromised warblers. Regardless, the energy saved by

sleeping with the head tucked in is paid for by reduced aware-

ness and a likely resulting increase in the risk of predation. This

trade-off between energy saving and predation risk seems to

be confirmed by the finding that most birds sleep in the un-

tucked posture during the daylight hours when higher ambient

temperatures reduce the need to prevent heat loss and the risk

of predation might be higher.

Our findings have implications for understanding the functions

of sleep. The greater investment in deeper sleep with lower

energy expenditure by warblers in poor condition supports an

energy conservation function for sleep [47] that seemingly chal-

lenges the dominant view that ‘‘Sleep is of the brain, by the brain,

and for the brain’’ [48]. Nonetheless, it is conceivable that by

reducing heat loss in the tucked position, songbirds can also

reallocate some of the energy used for thermoregulation in the

A

B
C

Figure 3. In Garden Warblers Sleeping

Untucked, the Eye Region Is the Part of the

Body with the Highest Heat Dissipation

(A) Birds (N = 12) were placed in a special cage

with one side made of an infrared-transparent

polymer that allowed the recording of the birds’

surface temperature by means of a thermovision

camera.

(B) Thermal imaging showed noticeable differ-

ences in the temperature of the birds’ surface

between different parts of the body: body (largest

area), head with a patch of higher temperature

around the eye (medium-sized area), and the bill

(smallest area). Birds noticeably decrease the

maximum surface temperature by tucking the eye

region in the scapular feathers (Video S1).

(C) In birds sleeping untucked (Figure 2B), the

estimated heat exchange was significantly higher

for the head than for the beak and the body (pair-

wise post hoc test; head vs. bill: p < 0.001; head vs.

body: p < 0.001; body vs. bill = 0.106).

untucked position toward sleep-depen-

dent maintenance processes that benefit

the brain [49] while still saving some en-

ergy overall. Indeed, birds in poor condi-

tion might have previously faced cogni-

tively taxing circumstances (e.g., difficult

foraging, longer flights) and therefore

have a greater need for investment in

brain restitution. The fact that warblers

in poor condition did not lower their meta-

bolic rate even further through becoming

torpid [50] is consistent with energetic investment in such restor-

ative processes as well as avoidance of the impairment in anti-

predator escape behavior associated with torpor [46, 50, 51].

Consequently, in addition to conserving some energy, sleeping

tucked in may benefit the brain. In this regard, migratory song-

birds may serve as a novel system for exploring the interplay be-

tween the systemic and brain-related aspects of sleep. Finally,

our findings underscore the importance of considering sleep

when attempting to understand themigratory strategy of millions

of birds.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental model
In this experiment garden warbler (Sylvia borin) were used. This is a nocturnal, long-distance migrant that perform long migratory

flights over the Sahara Desert and the Mediterranean Sea to reach its breeding grounds in Northern Europe.

Sex
The garden warbler is a monomorphic species and for this reason it was not possible to assess the sex of individuals.

Developmental stage
All studied individuals were adult birds. A more precise determination of age based on morphological traits is not possible in this

species.

Health/immune status
All animals used in this study were caught during migration and did not present any obvious symptom of illness.

Drug or test naive
N/A

Previous procedure
All animals used in this study had not been used for other experiments.

Housing
Birds were placed in custom-made fabric cages (50 3 25 3 30 cm) containing 2 perches at different heights. The cages were fitted

inside custom-made ventilated soundproof boxes, in order to isolate animals from external acoustic stimuli. The soundproof boxes

were illuminated through a window and by a light system synchronized with natural light/dark cycle. For further information see

Method details.
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and Italian laws, and were communicated to, and performed according to the guidelines of, the Ethic and Animal Protection

Committee (ETK) of the University of Veterinary Medicine, Vienna.

METHOD DETAILS

General method
This study was carried out on the island of Ponza, the largest of the Pontine islands, during spring. This island is located in the

Tyrrhenian Sea (40�55’ N, 12�58’ E) and, due to its location, is an important stopover place for many European-African migratory

birds.

Usingmist nets, we caught garden warblers during spring migration, fromMarch toMay. After capture, an experienced ringer (MC)

scored the subcutaneous fat score on a 0–8 scale, the size of the pectoral muscles on a 0–3 scale, andmeasured the length of the 3rd

primary feather to 0.5 mm and the body mass to 0.1 g following standardized European methods [28]. After the ringing procedure,

birds were caged overnight until the following morning.

Sleep pattern and postural preference
We used 63 garden warblers caught on Ponza in spring 2015 and 2016. Upon capture, the brachial vein was punctured and a small

blood sample was collected for other studies described elsewhere. After measurements and sampling, the birds were rapidly

transported to the recording room and placed in custom-made fabric cages (50x25x30 cm) containing 2 perches at different heights.

The cages were fitted inside custom-made ventilated soundproof boxes, in order to isolate animals from external acoustic stimuli.

The soundproof boxes were illuminated through a window and by a light system synchronized with natural light/dark cycle. All birds

were placed in their cages by 12:00 CET and held inside the cage until the following sunrise. During the housing period, behavior was

recorded by infrared-sensitive cameras connected to a recording system (700line ccd camera; HANDIKAM, Redruth, Cornwall,

United Kingdom, 16 frm/s). Cage temperature was not measured in 2015-2016, and was therefore estimated from environmental

temperature (recorded by C.O.Met., Centro Operativo per la Meteorologia, Aereonautica Militare) using a linear regression model

built on environmental temperatures and cage temperatures recorded in 2018, with the same experimental setup. We used this es-

timate in the models as it reflects better the temperature experienced by the birds during the experiment.

Video analysis of sleep
The video analysis was conducted using Solomon Coder (version beta 16.06.26, developed by Andras Peter). The behavioral coding

was slightly different between experiments. In the study of the relationships between condition and sleep, video-recordings were

analyzed by focal, instantaneous sampling for 1 min each 5 min of recording. We divided the experimental period in 2 intervals:

day (from 1 pm until sunset) and night (from sunset until sunrise). We categorized behaviors into two main states: ‘awake’ and

‘asleep’. A birdwas coded as asleepwhen it showed immobility for longer than 5 s and increased feather volume. The 5 s rule is based

on the fact that EEG signs of slow-wave sleep occur within a few seconds after onset of immobility in a sleep posture in a variety of

avian species, including songbirds (see figures in [22, 23, 52–54]). When possible, sleep was confirmed by observation of the closed

eyes. Birds were coded as awake in all other cases. Asleep birds were further classified in two substates: in the untucked posture, the

neck is retracted and the head is pulled toward the body facing forward; in the tucked posture, the neck is turned backward and the

head tucked in the scapular feathers [32] (see Figure 1D of main text). The state ‘Out of sight’ was coded in the rare cases in which the

bird was outside the surveilled area (i.e., the bird sat on the highest camera). To control for inter-observer variability, 3 entire days

were analyzed independently by the three observers blind to the condition data and an Inter Observer Reliability was calculated

by performing a Kruskal-Wallis test (Chi-sq = 0.136; p = 0.987).

In the Energy expenditure experiment, the smaller cage size allowed a more precise evaluation of the behavior of the animals.

Therefore, the birds were coded in four mutually exclusive states. Active birds weremoving around the cage. Birds scored as in ‘quiet

wakefulness’ were awake as they displayed small movements of the body and limbs and had open eyes but did not change their

position within the cage. The definition of tucked and untucked was the same as described above, although in this case the closure

of the eyes in the untucked position was always verified and allowed to distinguish between untucked and quiet wakefulness. In this

experiment, continuous video recordings during the whole night were coded by a single observer.

Metabolic rate
In order to investigate energy expenditure in different sleep postures, we measured oxygen consumption in 18 garden warblers

caught on Ponza between the 4th and the 14th of May 2018. After capture and ringing, birds were brought to the recording room

and placed in fabric cages (50x25x30 cm). At sunset, birds were moved to a custom-built metabolic chamber (15x15x15 cm, vol-

ume = 3.4 L), provided with a perch. During the whole experiment, birds were at temperatures between 21.2 and 24.5�C (mean =

22.6�C; SD = 0.695). Rates of oxygen consumption were measured continuously on an open circuit system, using an oxygen

analyzer. Air was supplied to the chamber and air flow rate was measured with a calibrated electrochemical oxygen analyzer (OxBox

4.02.22, Research Institute of Wildlife Ecology, Vienna, see [55, 56]. The oxygen analyzer was calibrated with nitrogen/air mixtures

produced by a high-precision proportioning pump (H. Wösthoff, Bochum, Germany, type 55A27/7a). During measurements a pump

creates an air flow (ca, 30 L/h; measured by a thermal mass flowmeter; AWM5101, Honeywell, Morris Plains, USA) aspirating the air

from the chamber and conveying it into the analyzer to quantify the amount of oxygen in the air stream. The analyzer measured

e2 Current Biology 29, 2766–2772.e1–e4, August 19, 2019



oxygen every minute, but switched air flow to fresh reference air regularly, alternating 5 min of reference air with 15 min of measure-

ment air from the chamber. The environmental temperature was recorded by a sensor connected with the oxygen analyzer (HIH9131,

Honeywell International Inc. Morristown, New Jersey, USA), as well as by a logger (developed and built at Research Institute of Wild-

life Ecology, Vienna; Resolution 0.0625�C; Accuracy ± 0.1�C) fixed inside the metabolic chamber. The air humidity was recorded by

the oxygen analyzer (HIH9131, Accuracy: ± 1.7% RH, Honeywell International Inc. Morristown, New Jersey, USA) and taken into

account during the calculation of oxygen consumption. The rate of oxygen consumption was computed according to Lighton

(2018), assuming and RQ of 0.85. While the bird was placed in the metabolic chamber, behavior was recorded by an infrared-

sensitive video-camera (700line ccd camera; HANDIKAM, Redruth, Cornwall, United Kingdom, 16 fps) connected to a recording

system.

Estimation of instantaneous oxygen consumption
We estimated the instantaneous oxygen consumption applying the instantaneous transformation to the raw respirometry data using

the Z-transformed method [57]. The adequate Z-value was determined empirically by fitting instantaneous oxygen consumption to a

rectangular oxygen pulse, generated by a proportioning pump. From the full night recording, we focused our analysis on 5min-blocks

during which animals displayed a given behavioral state (see above) without interruptions (active: 188 blocks from 14 individuals;

quiet wakefulness: 33 blocks from 5 individuals; sleep untucked: 116 blocks from 12 individuals; sleep tucked: 315 blocks from

16 individuals). The measurement of oxygen consumption was calculated by averaging the instantaneous oxygen consumption of

the 3 central minutes for each 5 min-block: we considered only the central minutes in order to reduce the influence of behaviors dis-

played immediately before, or possible changes of metabolic rate in preparation for activity after the 5 min-block. Data collected

within one hour after caging (habituation period) and after 3:30am (anticipation of diurnal behavior) were excluded from the analysis.

Respiratory rate
Forty-nine 5-min video segments of a subset of 7 birds from themetabolic rate experiment (sleep untucked: 24 blocks displayed by 7

individuals; sleep tucked: 25 blocks displayed by 7 individuals) were used to calculate the respiratory rate. The subset was randomly

selected by considering only videos with a side view of the birds. For each video segment, we counted the total number of breaths in

the third minute of the recording.

Reaction time
In spring 2017 and 2018, we tested arousal threshold in 24 garden warblers displaying different sleep postures (sleep untucked:

14 trials from 10 individuals; sleep tucked: 23 trials from 14 individuals; 3 individuals were tested in both postures). We measured

the reaction time to an acoustic stimulus as an indicator of anti-predator alertness. After capture and ringing, birds were brought

to the recording room and kept inside fabric cages described above fitted inside soundproof boxes. The cage was equipped with

2 infrared-sensitive video-cameras (700line ccd camera; HANDIKAM, Redruth, Cornwall, United Kingdom, 30 fps) and a custom-

made speaker. While the bird displayed a particular sleep posture, the operator played back an acoustic stimulus, an audio recording

of crunched leaves (recorded in a soundproof room at the University of Vienna). To synchronize the acoustic stimulus and the video

recording, we coupled the speaker with an infrared LED that was triggered simultaneously with the acoustic stimulus. Raw recordings

were analyzed using VirtualDub (Version 1.10.4) by counting the number of frames from the onset of the stimulus until when the animal

first showed a reaction. The start of the reaction was defined as the onset of the transition to alert posture, which was characterized

by a visible reduction of the feather volume and open eyes. In order to measure the reaction time, the total number of frames elapsed

between stimulus and response was then converted to seconds. Some birds were testedmultiple times (maximum 3 times, minimum

30 min between trials) and we controlled for habituation to the noise adding the order of trials as covariate in the statistical model.

Thermovision-camera
During spring 2018, thermic images of garden warblers resting in different positions were recorded using amodifiedmetabolic cham-

ber in which one of the Plexiglas walls was substituted with a polyethylene film (CAP-T, manufactured by IRISS, Terrance Bradenton,

Florida, USA) in order to measure heat loss using a thermovision-camera (FLIR SC325; FLIR System). At the same time, birds were

filmed using an infrared-sensitive video-camera to monitor their behavior.

Estimation of heat exchange
We calculated heat exchange using only thermo-images of birds sleeping in the untucked posture (N = 12). We selected only images

with a lateral view on the bird in order to standardize for the position of the body axes in relation to the camera. Based on the tem-

perature recorded by the thermal-camera, we compared heat dissipation through different areas of the bird surface: the body, the

head and the bill. For these areas we calculated the average temperature and estimated heat exchange (W/m2). Heat exchange was

calculated using the Termimage package in R [58, 59], incorporating independent measurements of ambient temperature (from an

external temperature logger), relative humidity (from the respirometry system) and assuming an emissivity of 0.96 [58]. Heat ex-

change (loss = negative, gain = positive) was calculated as the sum of the convective and radiative heat exchange from the different

body areas [60].

Replication

The number of biological replicates for each experiment is indicated in the corresponding method section and figure legends
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Strategy for randomization and/or stratification

N/A

Blinding at any stage of the study

Video coding was conducted by researchers blind to the condition of the birds.

Sample-size estimation and statistical method of computation

N/A

Inclusion and exclusion criteria of any data or subjects

N/A

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Except for the relationships between condition and sleep, we analyzed our data using LinearMixed Effect Models (LMMs) to take into

account repeated-measurements from the same individuals.

Relationships between condition and sleep

In order to test the effects of condition on time spent sleeping and in each sleep posture during both day and night, we used Beta

Regression Models. A condition index was defined as the first component of a Principal Component Analysis that included the

variables fat score, muscle score and body mass (SPSS Statistics 25, IBM, New York). For the study of sleep patterns, the target

variable was the ratio between total time spent sleeping and total time analyzed to control for differences in day/night length.

With regard to sleep posture, the target variable was the ratio between the time spent in a given posture and the total time asleep

to control for differences in total time spent sleeping. The estimated cage temperature was considered in the model as a covariate.

Reaction time

We tested for differences in reaction time between sleep postures using Linear Mixed Effect Models (LMMs; ‘lmer’ function in ‘lme4’

R package [61]. We controlled for repeated-measurements by computing random intercepts for each bird ID and we considered the

order of sampling as a fixed effect covariate in the model.

Heat exchange

We tested for differences in heat exchange between sleep postures using LMMs. In this case, we adjusted for repeated-measure-

ments by computing random intercepts for each bird ID and entering the posture as a fixed effect. We did not include the ambient

temperature in the model because it was taken into account in the calculation of heat exchange.

Metabolic rate

We tested for differences in rates of oxygen consumption using LMMs. We considered body mass at sunset, average cage temper-

ature and behavioral state as fixed effects. We adjusted for repeated-measurements by computing random intercepts for each bird

ID nested in cage ID in the model.

Respiratory rate

We tested for differences in respiratory rate between sleep postures using LMMs.We considered the posture as a fixed effect andwe

adjusted for repeated-measurements by computing random intercepts for each bird ID in the model.

DATA AND CODE AVAILABILITY

For requests of the R scripts and data used in this study, please contact the corresponding authors.
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