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Abstract: The storage, utilization, and control of the greenhouse (CO2) gas is a topic of interest for
researchers in academia and society. The present review article is dedicating to cover the overall
role of ionic liquid-modified hybrid materials in cycloaddition reactions. Special emphasis is on the
synthesis of various cyclic carbonate using ionic liquid-based modified catalysts. Catalytic activity
studies have discussed with respect to process conditions and their effects on conversion and
product selectivity for the reaction of cycloaddition of CO: with styrene oxide. The reaction
temperature and the partial pressure of COz have found to play a key role in cyclic carbonate
formation. The role of other influential parameter (solvent effect) is also discussed for the conversion
of cyclic/aromatic oxides to polycarbonate production. Our own research work that deals with ionic
liquid-based halide-modified mesoporous catalyst (MCM-41 type) derived from rice husk waste
has also been discussed. Finally, the role of carbon dioxide activation and ring-opening mechanisms
involved in the cyclic carbonate product formation from CO:z have been discussed.

Keywords: greenhouse gas; ionic liquid; mesoporous silica; cycloaddition; poly-carbonate

1. Introduction

Greenhouse gas (carbon dioxide—CO2) in the atmosphere helps living things
naturally by involving in photosynthesis [1]. About 32% of CO:is being produced by
hydrocarbon combustion and gasification process that raises concern over environmental
pollution [2,3]. The transportation sector contributes nearly 30% to total carbon dioxide
emissions [4]. Figure 1 shows the carbon cycle, CO2 storage, recycle and purification, and
utilization mainly of fine chemicals formation by catalysis route. Figure 1 shows the global
atmospheric CO2 concentration for about half a decade from 1958 with respect to
continuous research reports carried by the Mauna Loa Observatory in Hawaii [3]. The
concentration of atmospheric CO2 was 399.89 ppm till May 2013, and in 2020, it reached
up to 412.78 ppm [5]. The continuous rise in greenhouse gas (COz) concentration creates
global warming issues and continues damage to the green environment. In recent years,
smart technologies are developed to store and utilize CO:reduction and which makes the
pollution free atmosphere [6-8].
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Figure 1. Schematic of carbon cycle for CO, recycle Storage and greenhouse gas utilization for possible fine chemicals

production.

Carbon dioxide is recognized as a nonflammable [9], nontoxic [10], and inexpensive
gas [11]. It is a renewable carbon source [12] and thermodynamically stable compound
[13,14]. Interestingly, carbon oxide can replace the following toxic chemical compounds
such as carbonyl dichloride known as phosgene (COCl2), carbon monoxide (CO), and
isocyanides (R-NCO) for fine chemical applications. Carbon dioxide can be utilized as a
mild oxygen source [15]. It can be used as an alternate medium or solvent [16], also work
as a supercritical fluid (sc) [17], and act as a carbon source. It can be used based on its
unique chemical properties to be incorporated with high “atom efficiency” such as in
carboxylation synthesis or in catalyst synthesis [16]. Hutchings [15,17] used supercritical
CO2 as an antisolvent for the preparation of Au/scCO:z and sc-VPO (vanadium phosphate)
catalysts. Currently, CO: has been used in various industrial applications such as
chemical, pharmaceutical, foodstuff, laboratories and analysis, beverage, and pulp and
paper industries [16]. The application of CO:z as C1 raw material in the chemical industry
was started in past few decades. It has been reported that approximately 110 million
metric tons of CO: are currently used every year in the chemical industry. In the present
decade, carbon dioxide utilization has reached around 110 million MT (metric tons) [18].
Carbon dioxide is also playing major role in the production of urea, [17] methanol [18],
salicylic-acid [19], formic-acid [20], cyclic carbonates [21-23], copolymers, polymer
building blocks, and fine chemicals [24-27]. Urea is one of the major fertilizers, and CO2
is the source for it [26]. The urea is prepared from ammonia and CO: in fertilizer [28] and
also in fabrication process of various types of polymers, such as melamine and urea-
formaldehyde resin [29-32]. Salicylic acid is produced from phenol and CO: via the Kolbe-
Schmitt reaction [33]. The product is used to produce acetyl salicylic acid which is also
known as aspirin, used mostly in healthcare applications [34-36]. Everyday monitoring of
Carbon dioxide emission in atmosphere have shown in online website (wWww.co2.earth )
to monitor the Keeling Curve of Atmospheric CO:z concentration emission between 1958
to 16 August 2020 [5,35].

The cyclic carbonates are odorless, colorless, and biodegradable [37,38]. The cyclic
carbonates are used in industries as aprotic polar solvents [39], as a monomer for polymer
synthesis, and as additives [40]. Besides, it is also been used in electrolytic materials such
as secondary batteries (lithium batteries) [41], cosmetics, resins, and cleaning utensils [42].
Cyclic carbonates are utilized as an intermediate compound in the biomedical and pharma
industries [12]. Cyclic carbonates also play a key role in herbicides and disinfectants
synthesis [43] as well as are fuel additives [44].



Catalysts 2021, 11, 4

3 of 16

Traditionally, phosgene with ethane-1,2-diol in dichloromethane solvent was
utilized to produce cyclic carbonates, and one of the products is hydrochloric acid
obtained as a by-product, which is harmful to human beings [43]. Scheme 1 shows the
conventional synthesis of organic cyclic carbonates.

HO OH

ethane-1.2-diol phosgene

o
CH,Cl, o/ﬁ
/ \ * coq, — QO + 2HA

1,3-dioxolan-2-one

Scheme 1. Synthesis of organic carbonate by the conventional route.

By considering the economic point of view and avoid toxicity generation, the CO: is
a natural choice to phosgene as an alternate and the other advantage is that CO2 can be
incorporated into epoxides without side products [45]. However, due to the inert nature
of CO, various catalysts were adopted to activate the epoxide [11]. The cycloaddition of
CO:to epoxide is shown below (Scheme 2).

(0]

0/<
CH i 0=C=0 - | /O
— CH2
- CH
R
/s c
R H,

Scheme 2. Cycloaddition of COzto epoxide forming cyclic carbonate.

To increase cyclic carbonates yield from cycloaddition of COz and epoxides, a
different kind of catalyst has been adopted. In the past decades, the wide range of
homogeneous and heterogeneous catalysts have been developed to catalyze the so-called
CO: fixation process. Homogeneous catalysts, such as CoClz/onium salt [44], diimine Ru
(II) complex [46], Al-salen-PEA [4], betaine-based quaternary ammonium ion and
carboxylic acid [12], N,N-dimethyl formamide (DMF) [47,48], SnCls-organic base [49],
Au/Fe(OH)>-ZnBr2/BusNBr  [50], ionic liquid-highly cross linked polymer [51],
BrBusPPEGewPBUs3Br [52], cellulose/KI [53], and Au/R201 [54] have also been studied.

Several heterogeneous catalysts, such as metal oxides; MgO [55,56], Nb20s [43], Mg-
Al oxide , guanidine-MCM-41 [57],Adeine-Pr-Al-SBA-15 [58], Cr-salen-SiO2 [13], Mn-
salen-SiO: [42], CIAIPC-MCM-41 [59], 3-(2-hydroxyl-ethyl)-1-propyl imidazolium
bromide-SBA-15, and zeolite-based organic-inorganic hybrid catalysts have also been
investigated [55-66].

Ionic liquid (IL) is recently explored as efficient catalysts with growing importance
over the past decades [64]. Since 2003, ILs have widely been adopted in the chemical
industry as a solvent as well as catalysts for many fine chemical productions [60-65].
Hence, a quaternary ammonium ion together with a halide anion, -OH, or a-COOH group
with ionic liquid was considered as potential materials for heterogeneous catalysis.

2. Summary

The present review article described the effect of influential parameters such as
temperature, pressure, and solvent on the conversion of cyclic epoxide into cyclic
carbonate formation in presence of various ionic liquid modified hybrid catalysts.
Another section describes the mechanisms insight into the activation of carbon dioxide
and the ring-opening process in the process of substrate conversion and acidic/basic
characteristics of the catalyst.
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3. Results of Reaction Parameters and Influencing Factors for the Production of Cyclic
Carbonates

The production of cyclic carbonates depends on various parameters including
catalyst and reaction parameters such as solvents, temperature, and pressure condition.
The optimization of all the above parameters could produce maximum product yield.
Table 1 summarizes studies that were carried out for cycloaddition of greenhouse gas
conversion to styrene oxide (SO) on different types of catalysts [66-99]. The produce yield
was higher due to the presence of both acid and base bifunctional groups present on the
catalyst and it synergistically activates the cycloaddition reactions.

Table 1. Catalytic activity studies of cycloaddition of CO: to styrene oxide using various homogeneous and heterogeneous

catalysts.
Reaction Conditions Reaction Results
Catalytic Materials 2 Solventor  Pco2 Temp. Time  Yield  Selectivity Conversion References
Co-catalyst  (bar) (°O) (h) (%) (%) (%)
Guanidine-MCM-41 CHsCN 50 140 70 90 92 - [11]
Al-SBA-15-pr-Ade - 6.9 120 4 88.9 94.6 94 [58]
Cr-salen-SiO»2 CH:Cl2 100 80 6 74 100 - [13]
Mn-salen-SiO2 - 35¢b 140 3 95 - - [42]
CIAIPc-MCM-41 n-BusNBr 40 110 2 384 ¢ - - [59]
Al-salen-PEA n-Methyl = 0 80 15 78 87.6 89 [4]
imidazole
Betaine-based salt ¢ - 80 140 8 96 - - [12]
. CHsCN 6.9 120 8 - 98.2 88.4 [60]
MCM-41 - 6.9 120 8 - 95.2 93.7 [60]
Zn/Ps-IL(Br) - 30 120 8 97.5 - - [91]
SalenRu(1I)(PPhs)2/PTAT! Ethanol 8.3 70 2 92 - - [92]
CoClz/onium salt CH:Cl2 15 120 1 1238 ¢ - - [44]
. CHsCN 6.9 120 8 - 87 79.8 [1]
Ti-SBA-15-pr-Ade - 6.9 120 8 - 94.6 94 ]
Diimine Ru(II) complex - 16 100 2 73.1 - - [46]
Ionic liquid-polymer - 60 110 7 79.1 - - [50]
Cellulose/KI - 20 110 9 98 - - [53]
HEPIMBr - 20 120 2 99.6 - 99.8 [14]
lonicliquid =~ - 97 1005 05 979 - - [40]
tetrabutylammonium chloride
Au/Fe(OH)3-ZnBr2/BusNBr - 40 80 10 53 - - [50]
Co(1II) complex DMAP 20 120 3 85.8 - - [38]
SLPC Toluene 45 150 6 84.8 - - [81]
Co(III) Porphyrin/DMAP CH:Cl2 20.7 120 4 97 - - [82]
MNP-Co-Porphyrin CH:Cl2 10 25 36 48.7 - - [83]
M(TTMAPP)Is(X) M = Co; X = ] o %0 2 5 ] ] I84]
OAc
Bis-(phenoxyiminato) 600/640
coballjt(III)/L}e,wis base CH:CL: 10 145 ! c ) ) [44]
Metal
porphyrin/phenyltrimethyl - 6.9 20 10 20 - - [85]
-ammonium tribromide
SnCls-organic base - 3.5 75 1.5 96 - - [49]
P-DVB-HEImBr Znl 20 140 5 98.9 96 23 [68]
SBA-15-IL1Br 20 110 3 80 99 80.8 [91]
Silica-immobilized 6 130 10 76.6 97 79 [92]
PDDA-Br 25 100 12 92.9 - - [93]
KI/PDA OH 20 120 5 34.7 99 35 [94]
(P-Im-C4HsPhsP)Br2 25 130 4 99.3 99.8 99.5 [95]
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PPN(I) 1 100 7 89 97.8 95 [95]
PS-hexyl-Mel 12 120 12 96.7 100 98.9 [98]
PS-TBMAC 9 110 2 71 - - [99]

a SLPC: supported liquid phase catalyst; pr: 3-chloro or 3-aminopropyltriethoxysilane; PEA: poly(ethylene glycol
bismethacrylate); PTAT: phenyltrimethylammonium tribromide; M(TTMAPP)I4(X): bifunctional metalloporphyrins; Ade:
adenine; CIAIPc: aluminum phthalocyanine; HEPIMBr: 3-(2-Hydroxyl-Ethyl)-Propylimidazolium bromide; MNP:
magnetic nanoparticle; CS: chitosan; Chl: choline iodide; PDA: conjugated microporous polymer; Imi: imidazole; PDDA-
Br: polydiallyldimethylammonium bromide; PPN(I): 4-Pyrrolidino-(3-(trimethoxysilyl)propyl)pyridinium iodide; CNT:
carbon nanotubes; PS: polystyrene-supported quaternized ammonium salt; PS-TBMAC: polymer-supported
tributylmethylammonium chloride. ®* molar ratio of CO: to styrene oxide. © turn over frequency (h?). ¢ quaternary
ammonium ion and carboxylic acid group. ¢ bulk MCM-41 catalyst. f recrystallization in ethanol. 8 microwave-irradiation
method.

3.1. Effect of Influence of Reaction Temperature for Cycloaddition of Epoxides with CO:

The reaction temperature is an important parameter in a catalytic reaction for an
effective collision between molecules to enhance the bond-breaking step. Hence, the more
molecular collision is the reason for the more yield of final products. Aresta et al. [26,41]
reported the temperature effect on the production of styrene carbonate (SC) using Nb20s
as a catalyst from styrene oxide by CO:addition. Below 100 °C, the reaction did not yield
any product. However, it provides 80% yield at temperature of 135 °C. Jutz et al. [40]
studied the effect of reaction temperature on the performance of Mn (salen) Br. The
highest yield was obtained at 160 °C, and with a further increase in temperature, the yield
was dramatically reduced. This was attributed to changes in the phase distribution
observed at higher reaction temperatures. Zhou et al. [11] reported that the reaction
carried out at 140 °C results in the formation of propylene carbonate (PC) with the highest
yield of 98%. Increase in the temperature from 140 to 150 °C dropped the yield up to 78%
due to problems of side product generation at high-temperature conditions. Bai et al.
[83,84] reported that in some instances, high-temperature conditions are causing the
catalyst to decompose resulting in a decrease in propylene carbonate (PC) yield [84]. Qiao
et al. [91] explained that styrene oxide (SO) is difficult to convert to styrene carbonate (SC)
compared to all other epoxides due to the lower reactivity of B-carbon atom. They found
that the temperature of 120 °C (98%) with suitable catalyst was the best-optimized
condition than the high-temperature condition (130 °C (~80%) and 140 °C (~95%)).

Recently, Lee et al. [98] studied the cycloaddition reaction between ally glycidyl ether
(AGE) and carbon dioxide using PS-hexyl-Methyl iodide at 12 bar of total pressure and
different temperature conditions. They reported that the yield of allyl glycidyl carbonate
(AGC) increases from 80 to 140 °C, and it decreased with a further increase in the
temperature to 160 °C. The yield decreased was due to the generation of oligomers and
other side products like 3-allyl oxy-1,2-propanediol. Zhong (2014) et al. [100] studied and
reported the effect of temperature in the range between 120 and 160 °C for propylene
carbonate formation. The yield of PC in the presence of 0.78 and 13.7 m/mol of DMF
solvents for comparative purpose was studied. They found that the usage of a large
amount of DMF was favorable to provide a higher yield at the lower reaction temperature.

3.2. Effect of Influence of Reaction Pressure Condition for Cycloaddition of Epoxides with CO:

The reaction pressure of the carbon dioxide insertion has been established as one of
the most crucial and critical conditions for affecting the epoxide cycloaddition reaction
[91-98]. The inserted CO: acts as an important reactant for all catalytic transformations
[42]. Two phases are established in the reaction system; the bottom phase is rich with
epoxide and the top phase is enriched with CO2. According to Xie et al. (2007), the reactant
CO: favors the reaction when the bottom phase is under high pressure. However, the
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above condition is not favorable for the high-pressure reactions (120 bar) as concentration
of epoxide for example propylene oxide [49].

Ghosh et al. [36] reported that at lower pressure (7 bar), the catalyst retains moderate
reaction activity turn over frequency (TOF) of 312 h™' and with increasing pressure up to
20 bar, increased TOF value of 351 h™! was observed. However, the pressure more than 20
bar results in diminishes overall reactivity due to polarity and solubility problem of the
catalysts. Qiao et al. [91] reported different pressure conditions, such as mild pressure (15
bar), medium pressure (80 bar), and supercritical pressure (140 bar), for the styrene oxide
with CO: cycloaddition reactions. This was due to changes in the phase from gas to
supercritical fluid, where a part of styrene oxide (SO) dissolves in the supercritical
condition. On the other hand, Wang;, et. al (2017) [65] approach was for the same reaction
but different perspective, i.e., introduction of high concentration of CO: dissolves within
a substrate or “liquefies” the formation of intermediate complex.

Xiang et al. (2009) [52] reported that the many oligomers were produced as the side
products such as propylene oxide and styrene oxide due to insertion of CO: at high
pressure in a solvent-less condition. Jutz et al. [40,53] reported that a ratio of 1:4 (epoxide:
COz) was the best reactant ratio condition instead of 1:16 for conversion of both epoxides.

3.3. Effect of Influence of Solvent for Cycloaddition of Epoxides with CO:

A variety of solvents are adopted to synthesis cyclic carbonate from cycloaddition
reaction. A solvent plays a key role in minimizing carbonaceous deposits on the catalyst
surface. [55]. Aresta et al. [26,41] exploited that the N,N-dimethyl formamide (DMF) alone
yields 34.7% of styrene carbonate at 50 bar pressure of CO: and predict that amide group
was a good promoter. Di-methyl acetamide (DMA) produced SC about 28% yield without
the catalyst at 50 bar pressure and at temperature of 135 °C for 12 h. The role of DMF in
the cycloaddition of epoxides mechanism and transformation is as follows (Scheme 3).

R\ /—\COZ R\ e R\ //O
N N—C epoxide -N—C
(@ R — R Yy =S R4y
//C\ //C\ ,, //C\
(@) H (@) H (@) H
\ Dk
P
o\|
R CH»
d R
R .C—CH R (
(b)  R7) © — » r M
C C\ —"’
o H o W’
C
oo

Scheme 3. (a) Role of N,N-dimethyl formamide (DMF) ) (a) initial CO2 activation; (b) initial
epoxide activation, in the cycloaddition of epoxides [43] (modified images and cited the related
reference).

According to the mechanism, role of amide is to facilitate the nucleophilicity of the
respective oxygen atoms in CO: or epoxides. From the results, it is evident that the
methylene chloride could contribute to stabilize the polar or ionic intermediates through
the dipole effect, i.e., C> -H®* and C?* -ClI>-. The cooperative solvation effect occurred in the
presence of tetrachloro methane and ethanol-like additive used along with DMF for
cycloaddition reactions. Kawanami et al. (2000)[45] used supercritical condition (sc) to
study the effect of DMF as a catalyst and solvent on epoxide formation, which is dissolved
in DMF-scCO:z. Recently, Zhong (2000) et al. [100] utilized DMF as cocatalyst with ZnBr>
as a catalyst for cycloaddition reaction of propylene oxide with carbon dioxide. In their
study, they have observed that DMF acted as a solvent as well as carbon dioxide activator.
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Both high conversion and 100% selectivity was obtained at 150 °C and pressure condition
of 30 bar with very quick reaction time of 10 min [100]. Alvaro (2004) et al [12] used 0.4
mL dichloromethane (DMC) or dimethyl carbonate as a cosolvent to enhance product
solubility in the supercritical medium and it serves as a cocatalyst as well. The results
showed 70% conversion and 100% selectivity in presence of Cr-salen base catalyst under
supercritical condition (100 bar, 80 °C, reactor volume = 50 m, 6 h reaction time).

A new approach was taken by Jiang et al. [46] in order to study the solvent effect for
the synthesis of chloropropene carbonate from epichlorohydrin. Protic alcohols (methanol
and ethanol) acted as good solvent for the formation of chloropropene carbonate with 90%
and 82% yield. However, higher molecular weight alcohol such as benzyl alcohol was
found to give less productivity yield (12%), whereas the same reaction carried out at 110
°C for 20 h with DMF as the solvent resulted in achieving for highest yield (f > 99%).

4. Discussion of the Mechanism Insight of Cycloaddition of Epoxides with CO:
4.1. Activation of COzfor Cycloaddition of Epoxides

Lu et al. [59] reported that aluminum pthalocyanine complex formation on MCM-41
support for the cycloaddition reaction of epoxides They observed that CO: activated
through nucleophilic attack at the carbon atom of CO: by the alcoholate group (-
OCH:CH:Br). The weak interaction between the central metal ion of pthalocyanine
complex and the lone pairs oxygen in CO: makes synergistic mechanism. The halide
intramolecular substitution facilitate the epoxide into cyclic carbonates. In another related
study, Barbarini et al. [10] argued that the mechanism of CO: activation through the
formation of the zwitterion compound. Scheme 4 shows that the CO:z adds to the epoxide
via nucleophilic attack.

(0 -—C0

| N

CHgs )\

guanidine MTBD o7 o
Activated CO, carbamate anion

Scheme 4. Hypothesized 7-Methyl-1,5,7-triazabicyclo [4.4.0]dec-5-ene (MTBD)-promoted CO2
activation [11].

Srivastava et al, 2005 [1] exploited at first regarding the physico-chemical properties
of the model catalyst in the activation of CO2molecules. Surface absorbing nature of CO:
on catalyst was studied by Ft-IR spectroscopy. The CO: interacted with the amine
functional groups in functionalized [SBA-15-pr-Ade(adenine) and Ti-SBA-15-pr-
Ade(adenine)] was identified and confirmed by presence of the carbamate bands at 1609
and 1446 cm.

The efficient Epichlorohydrin conversion was obtained (62.3%) after
functionalization of SBA-15 with adenine group compared to bulk SBA-15 (1.5%). This
increased in conversion was related to the intensity of the band at 1609 cm™ ascribed due
to CO2 bonded with amine sites, which recognize the importance of such sites for CO:
activation. In a related study, Srivastava, et al, [77,86] exploited and compared the
importance of the basic sites present in the catalysts such as alkyl amines (-NH>), adenine
(Ade), imidazole (Im) and guanine (Gua) to activation process of carbon dioxide. Different
types of coordination modes of CO: was discussed in detail in the past and its well known
in the field of carbon dioxide chemistry [75].

Scheme 6 shows the stability of the activated CO2 complex formation occurs on the
basic amine sites at the catalyst surface decreased as follows: primary > secondary >
tertiary amines [75,77 and 86]. The formation of carbamate anions from different type of
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amine groups are demonstrated. The metal- electron deficient part of the catalyst
facilitates the reaction rate for the formation of cyclic carbamate ions.

In Scheme 5 it is more clearly explained the role activation of CO2 for their efficient
conversion towards carbon dioxide activation process

From their point of view, Scheme 5 shows the stability of the activated CO2 complex
formation that occurring on the basic amine sites at the surfaces of catalyst decreased as
follow: primary > secondary > tertiary amines [75,77,86]. The formation of carbamate
anions from different types of amine groups are demonstrated. The metal-electron
deficient part of the catalyst facilitates the reaction rate for the formation of cyclic
carbamate ions.

(a) CO, activation at primary amines:

0=C=0 O§C/O' O\C/OH
NH, *Nm,
Si Si Si

<‘>/ 5% ?/5 \, ?/C;) \

L P )1 L )1
Y Y A
SBA-15-pr-NH, Activated COy” Activated COy

carbamate anion carbamic acid
(b) CO, activation at secondary amines: _
0=c=0 Ne© Oxe "
/Nﬂn> il e
Si 3 Si Si

: (AN ?/(;) \ ?/(5 \

1_) 1 1_J 1 1_J 1
g s
SBA-15pr-NH; Activated COy’ Activated COy

carbamate anion carbamic acid

(c¢) CO; activation at tertiary amines:

=0 o) o
xc

[

N

v, W,

~

p4

O/(?)i\o O/CSl)i\o

1 )1 | ]
T Y/
SBA-15-pr-NH, SBA-15-pr-NH,

Scheme 5. CO: activation through primary, secondary, and tertiary amines [77,86].
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4.2. Ring Opening of Epoxide

The ring-opening mechanism of the epoxide is described in two ways such as (i)
Lewis-acid catalyzed cleavage and (ii) Lewis-base catalyzed cleavage. Bu et al (2007) [101]
found that the ruthenium complex ((2,2’-bipy)RuCls(CHsOH)) supported by cetyl-
trimethyl ammonium chloride (CTAC) catalyzes propylene oxide (PO) in the presence of
CO: and achieved 100% yield for propylene carbonate (PC). In the above catalyst system,
Ru acts as a Lewis-acid to activate the PO to form adduct of Ru-PO. CTAC addition
enhances reaction rate and strikes the less sterically hindered carbon to break the epoxide
ring while forming the oxy-anion species.

Bai et al. [83,96] reported that the bi-functional metal porphyrins M(TTMAPP)I4(X)
(M = Co, Mn, Fe, and Cr; X = OAc, CCI:COO, CFsCOO, OTs, I, Cl, and Br) were highly
efficient catalysts for the respective cycloaddition (formation of propylene carbonate). In
the above catalyst system, metal ion incorporation acts as a Lewis acid center to facilitate
the catalytic reaction rate. The order of activity of the catalysts was Co > Mn > Fe > Cr. The
catalytic activity of cobalt porphyrin decreased with different counter ions as follows:
CHsCOO~ > I > CI > Br- > OTs™ > CFsCOO- > CCIsCOOr. Barbarini et al. [10] reported
mesoporous silica (MCM-41) with hexagonal morphology in which Si-OH (hydroxyl and
silanol functionalized)-supported guanidine catalysts are studied for cycloaddition
reactions. The enhanced reactivity was obtained due to mechanisms involved in hydrogen
bonding. Zhou et al. [11] studied the mechanism of cyclic carbonate formation in the
presence of betaine (HBetX) and choline cation (ChoX) catalyst. They compared the anion
effect and hydroxyl and carboxyclic acid group activation towards catalyst function. The
order of reactivity for PC conversion and yield decreased as follows: Cl- > BFs+ > PFe~. The
role of leaving group ability has also been studied, and the activity follows in this order:
I- > Br > Cl~. Adopting better nucleophilic anions could improve the epoxide ring
opening/breaking efficiency of the catalyst.

The carboxylic acid group is found to be best for ring-opening mechanism with
respect to suitable halide anions. The reason behind the halide anions to activate the ring
opening is due to presence of stronger Brednsted acid and thereby involved in hydrogen
bonding. Scheme 6 shows the reaction mechanism for the cycloaddition reaction and its
halide anion interaction.

(0]
R

N
§ / Me; N e 5 COOH R

)

Me;sN- (0]
06 @ /\(
oJLo-\H/O =
O<- H
>_\ A
0 R o
X
7
(6[0) Me; ® H
e0
R X

Scheme 6. The plausible cycloaddition reaction mechanism for epoxide ring opening with CO2 by
betaine (HBetX) catalysts [11].
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Dai et al. [80,97] reported 3-(2-hydroxyl-ethyl)-1-propyl imidazolium bromide-SBA-
15 (HEPIMBr), which is another type of mesoporous silica. The efficient synthesis of cyclic
carbonates was achieved under mild conditions without solvent and in the absence of a
co-catalyst.

Biopolymer chitosan-grafted quaternary phosphonium ionic liquid (CS-(BuPhsP)Br)
was reported as an excellent catalyst [98]. The authors proposed that the bromide anion
of the catalyst played a major role in epoxy ring opening activated by the hydroxyl groups
and phosphonium cation interaction. The same type of catalysts was developed by
reported hydroxyl, carboxyl, and amino-functionalized phosphonium-based ionic liquid
catalyst. They observed that a similar mechanism as mentioned above for the opening of
the epoxide ring via polarization of epoxide C-O bond [90-98]. Excellent selectivity and
good yield were obtained for cyclic carbonates under suitable or optimizable reaction
conditions [90-101]. The following yields were obtained for the each cyclic carbonates
such as epichlorohydrine (97.0%),) glycidol (98.3%), styrene oxide (98.8%), phenyl
glycidyl ether (96.7%) for allyl glycidyl ether (97.5%,) and 1,2-epoxyhexane (100% for) at
the reaction time of three hours (3h) [101,102].

Ramalingam et al. [102] and our group recently reported halide ion-modified
mesoporous silica catalysts for solvent- free cycloaddition of styrene oxide with CO2. For
above reaction, imidazole was first immobilized on MCM-41 (derived from biomass
materials) using 3-chloropropyltriethoxysilane (CPTES) as the anchoring agent followed
by alkylation with 1,2-dibromoethane at 110 °C. The prepared catalyst was mentioned as
MCM-41-Imi/Br. The catalyst was used in the cycloaddition of styrene oxide, glycidol,
epichlorohydrin and phenyl glycidyl ether, and allyl glycidyl ether.

The halide ion (Br) and the tertiary amine from imidazole anchored over mesoporous
support (MCM-41-Imi/Br) involved in the ring opening and activation of CO2. In Scheme
7, the mechanism of ring opening of the epoxide carried out by a nucleophilic attack by
the bromide ion at the less sterically hindered p-carbon resulted to the formation of
haloalkoxy species.

d‘ « [ - f/ﬁfo}R
@f?m @)N/ :fq} @) . X

R
Styrene oxide;
R= phenyl

MN—n —

MCM-41-Imi/Br Activated CO, -
Carbamate anion

Oy,

o. C/O
S~

Styrene carbonate

Scheme 7. Mechanism of the halide ion (Br) and the tertiary amine from imidazole anchored over
mesoporous support (MCM-41-Imi/Br) catalysts on cycloaddition of epoxide with CO2.
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5. Conclusions

The present review explained the different types of porous and mesoporous solid
acid-base and ionic liquid-modified mesoporous catalysts for the effective conversion for
cycloaddition reaction of various epoxide with CO2. In addition, the influence of various
parameters, such as reaction temperature, pressure, and usage of solvents or solvent-free
conditions, is discussed.

Both excellent selectivity and good yield were obtained for cyclic carbonates under
tuned reaction conditions by ionic liquid immobilized MCM-41 catalyst. The higher yields
were obtained for the conversion of cyclic epoxides. The above higher conversion proves
that the value of the development of ionic liquid-based mesoporous catalytic materials
and their future applications. The mechanism insight of ring opening of epoxide at various
catalyst systems has also been discussed. The Ft-IR spectroscopy is very useful to exploit
the activation mechanism of CO: for cycloaddition reaction using the various amine-
functionalized solid catalyst. Hence, the development of a hybrid composite catalyst
based on ionic liquid could be the potential material for direct usage of emerging
greenhouse gas for various chemical processes.
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