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Locating the extremal entries of the Fiedler vector for rose trees

Hannes Gernandt1,∗

1 Institute of Mathematics, TU Ilmenau, Weimarer Straße 25, 98693 Ilmenau, Germany.

In this note we locate the extremal entries of the Fiedler vector for the class of rose trees, which consists of paths with a star
graph attached to it. We derive directly from the eigenvector equation conditions to characterize in which cases the extremal
values are located either at the end points of the path or on the pendant vertices of the star graph.
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Graph Laplacians and the Fiedler vector. In this note we consider undirected, unweighted graphs G with n vertices
V (G) = {v1, . . . , vn} and a set of edges E(G) with elements of the form vw for two vertices v, w ∈ V (G). We are
interested in the graph Laplacian L(G) := D − A where D = diag(deg(vi))

n
i=1 is a diagonal matrix containing the degrees

of the edges, i.e. deg(v) is the number of edges that contain v. The adjacency matrix A ∈ Rn×n is a zero-one-matrix
with entry one at position (i, j) iff vivj ∈ E(G). It is well known that L(G) is positive semi-definite with eigenvalues
0 = λ1(G) ≤ . . . ≤ λn(G). Moreover, λ1(G) is a simple eigenvalue iff G is connected, i.e. there is a path between any
two vertices. In this case λ2(G) is called the algebraic connectivity denoted by a(G) and if the associated eigenspace is
one-dimensional, the (up to scaling) unique eigenvector is called the Fiedler vector. Since L(G) is a symmetric matrix the
eigenvector (1, . . . , 1)> for the eigenvalue λ1(G) = 0 is orthogonal to the Fiedler vector and therefore this vector contains
positive and negative entries. In the remainder we study the location of the extremal entries of the Fiedler vector if the graph
G is a tree, i.e. there is a unique path between any two vertices. For trees the vertices with deg(v) = 1 are called pendant
vertices and they will be of special interest in the following.

Location of the extremal entries. It is a well known result due to Fiedler [5] that the extremal entries of the Fiedler vector
are located at the pendant vertices of the tree, see also [6, Lemma 8]. This result was recently extended to quantum graphs
in [8]. If a(G) = λ2(G) < 1 then one can see directly from the eigenvector equation L(G)x = a(G)x, x ∈ Rn, that the
absolute value at the pendant vertex v is strictly larger then the value at the unique vertex w with vw ∈ E(G). However it
remains unclear at which pendant vertices these entries are located.

It was conjectured that the extremal entries are located at the most distant vertices in the tree. A counter example to this
conjecture are rose trees studied in [1,3,7]. A rose tree is given by two paths Pl and Pt with l and t vertices, respectively, and
a star graph Sr with r vertices where we select a pendant vertex in each of the graphs and glue them together at a vertex vB
which satisfies then deg(vB) = 3. Roughly speaking, it was shown in [7] that for fixed l and t the number r can be made large
enough, such that one extremal entry moves from the end point of the paths Pl or Pt to the pendant vertices of the star graph
Sr.

Before we characterize the locations of the extremal entries for rose trees, we state the following auxiliary result.
Lemma 1 Let G be a connected graph with Laplacian L(G), eigenvalue λ > 0 and eigenvector x = (xi)

n
i=1 then∑n

i=1 xi = 0 and the following holds.

(a) Let P be a permutation matrix, i.e. P 2 = In with PL(G)P = L(G) then Px is also an eigenvector of L(G) for λ.

(b) Let Pn be a path with n vertices v1, . . . , vn then xn = 2√
4−λ cos((n− 1/2)ζ)x1 with ζ = arccos(1− λ/2).

(c) Let G = Sn−1 with center v1 and pendant vertices v2, . . . , vn−1 then (1− λ)x2 = . . . = (1− λ)xr = x1.

P r o o f. Since G is connected, λ1(G) = 0 is a simple eigenvalue with eigenvector (1, . . . , 1)>. The symmetry of L(G)
implies that x is orthogonal to this vector and therefore

∑n
i=1 xi = 0. To prove (a), observe that L(G)x = λx implies

L(G)Px = PL(G)PPx = λPx. Therefore Px 6= 0 is also an eigenvector of λ. In particular if λ is simple then there exists
α 6= 0 with Px = αx. The proof of (b) is based on deriving a linear second-order difference equation from the eigenvector
equation and can be found e.g. in [6, Lemma 15] and (c) follows directly from the eigenvector equation L(G)x = λx.

In the following we denote the entries at the pendant vertices in the rose tree by xPl , xPt and xSr . Below we state the main
result on the location of extremal entries of rose trees and provide an elementary proof. For arbitrary trees one can characterize
the extremal entries of the Fiedler vector using the Schur reduction method from [6], which is a technique to obtain a smaller
(weighted) graph in such a way that the original eigenvector is preserved.
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2 of 2 Section 23: Applied operator theory

Theorem 2 Let T be a rose tree with parameters l, t, r and 1 ≤ l ≤ t and r ≥ 2 then the following holds for λ = a(T ).

(a) a(T ) is a simple eigenvalue with 2− 2 cos( π
l+t+r−1 ) ≤ a(T ) ≤ 2− 2 cos( π

l+t−1 ).

(b) The entries xSr , xPl and xPt of the Fiedler vector are related by

(λ2 − rλ+ 1)xSr =
2√
4− λ

cos((l − 1/2)ζ)xPl =
2√
4− λ

cos((t− 1/2)ζ)xPt .

If l < t then xPl and xB are nonzero and have the same sign.

(c) If r/2−
√
r2/4− 1 < 2− 2 cos( π

2t−1 ) then the entries xPl , xB , xPt are non-zero and have the same sign. Therefore the
extremal entries are xSr and xPt .

(d) For l, r fixed and t sufficiently large there is one extremal entry xPt and a second extremal entry of opposite sign xSr , if
r > l(l+1)

2 , or xPl , if r < l(l+1)
2 .

(e) If 1−(2r)−1 ≤ cos( π
l+t−1 ) and

√
2 cos(

(l−3/2)π
l+t−1 )√

1+cos( π
l+t−1 )

<
(
2− 2 cos( π

l+t+r−1 )
)2
−r(2−2 cos( π

t+l+r−1 ))+1 then the extremal

entries are xPl and xPt .

P r o o f. The upper bound in (a) follows from [2, p. 187] and the lower bound can be found in [4]. The simplicity can be
obtained from a(T ) < 1 and that we can resolve the eigenvector equations hence there is up to scaling at most one solution of
the eigenvector equation. We see by a direct calculation from the eigenvector equation L(T )x = λx and the previous Lemma
1 that

(r − 1− λ)x0 − (r − 1)xSr = (λ2 − rλ+ 1)xSr = xB =

√
2√

1 + cos(ζ)
cos((l − 1/2)ζ)xPl (1)

where x0 is the center of the star graph. If l < t and xPl > 0 then the upper bound for a(T ) in (a) implies xl > 0 which
proves (b).

Next, we prove (c). For this we use the eigenvector equation L(T )x = λx at the row that corresponds to xB and obtain

(3− λ)xB − xt−1 − xl−1 − x0 = 0, (2)

where x0 is again the center of the star graph and xt−1 and xl−1 are the vertices on the paths connected to xB . We assume
that λ < 2− 2 cos(π/(2t− 1)) then we have xB 6= 0 and we show that there is a positive solution to the above equation. One
of these possible solutions is then a(T ). Since the Fiedler vector is unique up to scaling, we can assume without restriction
that xB = 1 and therefore we obtain with the formulas in (b) and Lemma 1 (b) in (2) that

3− λ− cos((t− 3/2)ζ)

cos((t− 1/2)ζ)
− cos((l − 3/2)ζ)

cos((l − 1/2)ζ)
− 1− λ
λ2 − rλ+ 1

= 0. (3)

Recall that ζ = arccos(1 − λ/2), hence λ = 0 is a solution to the above equation. Furthermore, we have poles for λ ∈
{r/2±

√
r2/4− 1, 2− 2 cos(π/(2l − 1)), 2− 2 cos(π/(2t− 1))}.

Observe that there is no solution of (3) for λ ∈ (0, r/2−
√
r2/4− 1) because then all eigenvector entries would be positive.

This contradicts Lemma 1, where we have shown that the sum of all eigenvector entries is zero. Since the function tends to∞
for λ ↓ r/2 −

√
r2/4− 1 and to −∞ for λ ↑ 2 − 2 cos(π/(2t − 1)) there is at least one solution λ 6= 0 in this interval. For

all this solutions the corresponding eigenvector has the property that xSr = 1
λ2−rλ+1 < 0 and xPt > xPl > xB > 0. Hence

the Fiedler vector also has this property.
We continue with the proof of (d). The upper bound for a(T ) in (a) implies that a(T ) → 0 as t → ∞. The coefficients in

(b) can be viewed as functions of λ and they have the same value at λ = 0. Therefore it remains to compare the derivatives of
these functions, to decide which entry xSr or xPl is larger. Indeed we find the derivative of these functions at λ = 0 to be −r
and −l(l + 1)/2. This proves (d). For the proof of (e) we refer to [6, p. 111-112].

Note that (a) and (c) for l = t, i.e. perfect rose trees, were already obtained in [7].
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