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Abstract 

Immune cell trafficking is an important mechanism for the pathogenesis of inflammatory bowel 

disease (IBD). The G-protein-coupled receptor 183 (GPR183, also called EBI2) and its ligands, 

dihydroxylated oxysterols can mediate positioning of immune cells including innate lymphoid 

cells (ILCs). GPR183 has been mapped to an IBD risk locus; however, another gene, UBAC2, 

is encoded on the reverse strand and associated with Behçet’s disease and the role of GPR183 

as a genetic risk factor requires validation. 

GPR183 and production of its oxysterol ligands are upregulated in human IBD and murine 

colitis. Gpr183 inactivation reduced severity of colitis in ILC3-dependent colitis and in IL-10 

colitis but not in dextran sodium sulphate colitis. Irrespectively, Gpr183 knockout strongly 

reduced accumulation of intestinal lymphoid tissue in health and all colitis models. 

In conclusion, genetic, translational and experimental studies implicate GPR183 in IBD 

pathogenesis and GPR183-dependent cell migration might be a therapeutic drug target for IBD.  
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List of abbreviations 

 

CCR7  C-C chemokine receptor type 7  

CD  Crohn’s disease 

CH25H  cholesterol 25-hydroxylase  

CLPs   colonic patches  

CPs   cryptopatches 

cSILT  colonic solitary intestinal lymphoid tissue 

CXCL8  C-X-C motif chemokine ligand 8  

CXCR5 C-X-C chemokine receptor type 5  

CYP7B1 cytochrome P450 family 7 subfamily member B1  

DCs   dendritic cells 

DSS   dextran sodium sulphate  

EBI2 Epstein-Barr virus-induced G-protein-coupled receptor 2 (in this review 

referred to as GPR183) 

EIM   extraintestinal manifestations (of IBD) 

GM-CSF  granulocyte macrophage colony-stimulating factor 

GPR183 G-protein coupled receptor 183 (also called EBI2) 

GWAS  genome wide association study 

HSD3B7 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7  

IBD  inflammatory bowel diseases 

ICAM-1  intercellular adhesion molecule-1 

ICOS   inducible T cell co-stimulator 

IL   interleukin  

ILCs   innate lymphoid cells  

ILFs   isolated lymphoid follicles 

LPS   lipopolysaccharide 

LTi   lymphoid tissue inducer cells  

LTo   lymphoid tissue organizing cells  

LT   lymphotoxin  

LXR   liver X receptor  

MAdCAM-1  mucosal addressin cell adhesion molecule-1  

MLN  mesenteric lymph nodes 

MS  multiple sclerosis 

NASH   non-alcoholic steatohepatitis  

NFκB   nuclear factor κB  

OR   odds ratio  

PML   progressive multifocal leukoencephalopathy 

PPs   Peyers’ patches  

RAG1  recombination activating gene  

RORγt.  retinoic acid related orphan receptor gamma-t 

S1PR   sphingosine-1-phosphate receptor 

S1P   sphingosine-1-phosphate  

SILT   solitary intestinal lymphoid tissue  

SNP   single nucleotide polymorphism 

TLR   toll like receptor 

TLT  tertiary lymphoid tissue 

TNBS   trinitrobenzene sulfonic acid  

TNF   tumour necrosis factor  

TRUC   Tbx21-/-Rag2-/- ulcerative colitis 
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UBAC2  ubiquitin-associated domain-containing gene 2 

UC   ulcerative colitis 

VCAM-1 vascular cell adhesion molecule-1 

7α,25-diHC  7α,25-dihydroxycholesterol  

25-HC  25-hydroxycholesterol 

 

 

Introduction 
 

In its early days, the field of immune cell migration was dominated by studies on classical 

adhesion molecules and the chemokine-chemokine receptor system. The study of these systems 

had opened up exciting therapeutic opportunities in the clinic. However, more recently, 

additional signals that finely control the movement of distinct immune subsets and their 

positioning in specific tissues have been identified. Excitingly, these pathways include small 

molecule metabolites which are well characterised in other systems and link effects of diet, 

metabolism and the microbiota. Here we focus on one of these systems, the G-protein-coupled 

receptor 183 (GPR183*), also known as Epstein-Barr virus-induced G-protein-coupled receptor 

2 (EBI2) and its cholesterol-derived ligands. We will discuss genetic information, observations 

in IBD patients and experimental studies implicating GPR183 in IBD pathogenesis and 

morphogenesis of the intestinal immune system.  

Role of GPR183 in the migration and activation of immune cells  

7,25-diHC is the main ligand of the oxysterol receptor GPR183 

GPR183/EBI2 was discovered in 1993 as an Epstein Barr virus–induced orphan receptor in 

Burkitt lymphoma cell lines (8). GPR183 ligands remained unknown until 2011, when two 

landmark publications identified dehydroxylated oxysterols as GPR183 ligands (9, 10). 

Oxysterols arise from oxidation of cholesterol. 7,25-dihydroxycholesterol (7,25-diHC) has 

the strongest affinity to GPR183, 7,27-diHC shows second highest affinity whereas other 

oxysterols (monohydroxylated oxysterols 25-HC and 7-HC) show substantially lower activity 

(9, 10). Synthesis of the GPR183 ligand 7,25-diHC requires two hydroxylation steps (Figure 

1) at position 25 by the enzyme cholesterol 25-hydroxylase (CH25H) and at position 7, by 

cytochrome P450 family 7 subfamily member B1 (CYP7B1). Degradation of 7,25-diHC is 

catalysed by the enzyme hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-

isomerase 7 (HSD3B7) (9, 10). 

                                                 
* In this article we follow the drug/ molecular target nomenclature of the Concise guide to Pharmacology 7.

 Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, et al. The Concise 

Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. British journal of pharmacology. 

2013;170(8):1459-581.. Further, nomenclature of proteins and genes follow international conventions: Proteins 

will be written non-italic (GPR183/ Gpr183), genes in italic (GPR183/ Gpr183). Human genes and proteins will 

be capitalized (GPR183/ GPR183), for mouse proteins genes and proteins only the first letter will be capitalized 

(Gpr183/ Gpr183). If we refer to the gene/ protein independent from the species, the capitalized form will be 

used (GPR183/ GPR183).   

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=81
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4350
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4353
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2885
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4351
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=265#1355
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GPR183 function and its dependence on an oxysterol gradient 

GPR183 is expressed on B cells, T cells, dendritic cells (DCs), macrophages and innate 

lymphoid cells (ILCs) (3, 5, 9-13). In peripheral blood mononuclear cells, highest levels of 

GPR183 are observed on memory lymphocytes, in particular B and CD4+ T cells but to a lesser 

extent on CD8+ T cells (2, 14). Binding of oxysterols to GPR183 leads to the release of 

intracellular calcium (9), suppression of cAMP (10) and internalization of GPR183 (10). 

However, the most important consequence of GPR183 activation is migration of GPR183-

expressing cells towards higher 7,25-diHC concentrations (3, 5, 9-13, 15).  

In secondary lymphatic organs, enzymes for production of 7,25-diHC (i.e. Ch25h and 

Cyp7b1) are expressed by the same and/or neighbouring cells while the enzyme for 7,25-

diHC degradation (Hsd3b7) has a divergent expression pattern (9, 10, 13, 16). This suggests 

that spatial differences in the synthesis and degradation of 7,25-diHC may result in gradients 

of oxysterols in lymphoid organs. In agreement with this hypothesis, knockouts of all 7,25-

diHC-producing and -degrading enzymes (i.e. Ch25h, Cyp7b1 and Hhsd3b7) recapitulate 

important aspects of the phenotype of Gpr183 deficiency with respect to B and T cell 

positioning (9, 10, 13, 16). While it is clear that the spatial organization of the enzymatic 

machinery regulating 7,25-diHC concentrations in the tissue is indeed important for GPR183 

function (9, 10, 13, 16), the postulated 7,25-diHC gradient has not been visualized yet.  

GPR183-dependent positioning of DCs, T and B cells 

For any given antigen only few naïve B and T lymphocytes expressing a cognate antigen 

receptor exist. Due to this large search space, the probability that a given lymphocyte would 

encounter a specific antigen by chance is very low. Consequently, the generation and 

coordination of adaptive immune responses rely on cell migration and proper positioning of 

the interacting cell types. Sophisticated anatomical structures and mechanisms of cell migration 

have evolved to increase the likelihood of productive cell-cell encounters and enable the 

efficient generation of adaptive immune responses.  

The principal cell types to initiate adaptive immunity are DCs. DCs take up antigens, process 

them and transport them to specific sites where they encounter and activate lymphocytes. 

Thereby, DC migration, proper positioning of DCs and lymphocytes within immune 

compartments and the anatomical organization of the immune system increase the probability 

of antigen-presenting DCs to encounter cognate lymphocytes and hence the efficacy of 

adaptive immunity. Two main subsets of conventional DCs (cDCs) have been described. 

Broadly, the cDC1 subset plays a key role in CD8 T cell responses whereas the cDC2 subset 

preferentially interacts with CD4 T cells (17, 18). While upon toll-like receptor (TLR) 

stimulation, GPR183 expression is upregulated on cDC2s, cDC1s don’t seem to express 

GPR183 (19). GPR183 contributes at various levels to the coordination of cell–cell encounters 

by modulating the migration and positioning of DCs, T cells and B cells.  

GPR183 supports localization of cDC2s at the bridging channel in the spleen and the periphery 

of lymph node T cell zones, both of which are locations where antigens accumulate and antigen 

uptake and presentation to T cells may occur (11, 12). Additionally, GPR183 promotes 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352
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migration of lymphocytes to the interface between lymph node follicles and the T cell zone, 

aiding contact with DCs (13). These contacts facilitate differentiation of activated T cells to 

follicular helper T cells by inducible T cell co-stimulator (ICOS) – ICOS-L interactions and 

DC-mediated quenching of CD25 signalling (13). 

GPR183 specifically facilitates co-localization of cDC2s with CD4 T-helper cells in the 

peripheral T cell zone as well as antigen-dependent CD4 T cell activation and expansion. In 

mice, Gpr183 was required for CD4 T cell–dependent protection against helminths and 

successful plasmodium vaccination (20).  

For the activation of B cells in secondary lymphoid organs, GPR183 synergizes with the C-C 

chemokine receptor type 7 (CCR7) to position B cells at the B–T zone interphase (Figure 3). 

After having received T cell help, B cells downregulate CCR7 and move to interfollicular and 

outer follicle regions (9, 10, 16, 21-23). Importantly, vaccination-induced plasma IgG1 

responses were reduced in Gpr183 knockout mice as compared to wild type animals (9). Thus, 

GPR183 is important for rapid and efficient B cell activation. 

GPR183-dependent migration of ILCs in the intestine 

Besides supporting the migration of lymphocytes and DCs, GPR183 coordinates the migration 

of innate lymphoid cells (ILCs). ILCs are innate counterparts of T lymphocytes. Like 

conventional T cells, ILCs are potent producers of cytokines and are derived from the same 

common lymphoid progenitor. However, unlike T cells, ILCs lack specific T cell receptors (24-

28). ILC1 mirror the functionality of Th1 cells and respond to intracellular pathogens, ILC2s 

secrete cytokines, which play an important role in anti-parasite and allergic responses and 

ILC3, like their Th17 counterparts, can participate in defence against extracellular microbes. 

Since ILCs do not require clonal expansion for their function, they are able to respond without 

delay to appropriate signals.  

In the intestinal mucosa, ILC3s are the dominant type of ILCs and contribute to immunity and 

barrier integrity (29). ILC3s are characterized by expression of transcription factor retinoic acid 

related orphan receptor gamma-t (RORt). ILC3s contain commensal bacteria (30) and support 

defence against enteropathogens (27, 29). Interleukin (IL)-22 is a key cytokine produced by 

ILC3s that stimulates secretion of antibacterial peptides (31) and also contributes to antiviral 

defence (32).  

Gpr183 is expressed at higher levels on ILC3s in the intestinal lamina propria (3, 5) compared 

to blood (2) and ILC3s have been shown to migrate towards a 7,25-diHC gradient (5). 

GPR183 can promote accumulation of ILC3s in the intestine. In experiments with mixed bone 

marrow chimeras, Gpr183-expressing ILC3 cells clustered in solitary intestinal lymphoid 

tissue (SILT) of colonic and small intestinal tissue (3), while Gpr183-/- cells accumulated in 

the mesenteric lymph nodes (5).  

Gpr183 expression on ILC3s mediates protection against enteric bacterial infections and 

Gpr183 deficiency resulted in more severe inflammation in the model of Citrobacter rodentium 

induced colitis. In line with a role of ILCs in this phenotype, Rag1-/- Gpr183-/- mice had lower 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2939
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9593
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1695
https://www.guidetopharmacology.org/GRAC/DatabaseSearchForward?searchString=cd4&searchCategories=all&species=none&type=all&comments=includeComments&order=rank&submit=Search+Database
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=64
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=600&familyId=88&familyType=NHR
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4988
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numbers of ILC3 and lower numbers of IL-22 producing ILC3 in the small intestine and in the 

colon (5). 

Fine-tuning of oxysterol gradients  

As described above, the generation of the high-affinity GPR183 ligand 7,25-diHC requires 

the sequential activity of CH25H and CYP7B1. However, Ch25h knockout mice only partially 

replicate the phenotype of Gpr183 deficiency (2, 3, 19). Similarly, Ch25h and Cyp7b1 

knockouts differ with respect to their effects on DC positioning. These observations suggest a 

more complex machinery producing and degrading GPR183 ligands. Indeed, the enzyme 

Cyp27a1 with 27-hydroxylating activity is able to generate the alternative GPR183 ligand 

7,27-diHC (19). 7,27-diHC basically recapitulates 7,25-diHC signalling via GPR183, even 

though 10-fold higher concentrations are required (9, 10, 19) and 7,27-diHC might result in 

lower Gpr183 desensitization than 7,25-diHC (19). Thus, local 7,27-diHC and 7,25-diHC 

availability in secondary lymphoid organs might fine-tune GPR183 signalling. Close spatial 

expression (including co-expression by the same cell) of the enzyme pairs Ch25h and Cyp7b1 

or Cyp27a1 and Cyp7b1 would favour generation of 7,25-diHC or 7,27-diHC, respectively. 

Oxysterol levels can also be regulated by degradation pathways. In the spleen, activation of the 

cDC1 subset (not expressing Gpr183, see above) further influenced positioning of the Gpr183-

expressing cDC2 subset. cDC1s express the oxysterol-degrading enzyme Hsd3b7 and the 

activity of Hsd3b7 may prevent movement of GPR183 expressing cells into the vicinity of 

cDC1s by the degradation of oxysterol gradients (19).  

So far, oxysterol gradients in tissues cannot be directly visualized. GPR183 ligands are 

generated via 7-hydroxylation (CYP7B1) and 25-hydroxylation (CH25H, CYP3 and 

CYP46A1) (33) or 27-hydroxylation (CYP27A1) activity (19). A more detailed understanding 

of the GPR183-oxysterol system will require a better definition of the spatio-temporal 

dynamics of GPR183 ligand generation and degradation. 

Direct effects of GPR183 activation on immune cell function  

GPR183 is a well-characterized G-protein coupled receptor and many biological effects of 

GPR183 described so far involve cellular migration and positioning. However, there is 

mounting evidence suggesting additional intracellular effects of GPR183. Interestingly, 

GPR183 has been discovered in an siRNA screen as a host factor for Mycobacterium 

tuberculosis infection in human macrophages (34). In murine macrophages, overexpression of 

Gpr183 promoted intracellular Mycobacterium tuberculosis replication while knockdown, 

mutation or chemical inhibition of Gpr183 reduced Mycobacterium tuberculosis infection (35). 

Gpr183 expression and activity was also critical in a tissue culture model of non-alcoholic 

steatohepatitis (36). Further investigation into the direct effects of GPR183 on effector cells of 

the immune system would open a new layer of complexity and opportunities for more 

discoveries.   

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=267#1369
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=263
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=268#1373
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GPR183 in lymphoid organogenesis  

Development of the intestinal immune system 

The gut associated lymphoid tissue (GALT), comprising distinct immune compartments such 

as large encapsulated Peyer’s patches (PPs) and isolated intestinal follicular structures, initiates 

and regulates intestinal immune responses. Recent reports reveal how GPR183 contributes to 

the organization of intestinal lymphoid tissue (2, 3, 5). Before reviewing the role of GPR183 

in lymphoid organogenesis, we will briefly summarize key aspects of intestinal lymph 

organogenesis using the example of Peyer’s patches and introduce key features of different 

GALT structures (see textbox). 

Like lymph nodes, PPs are formed during gestation (37). A centre stage in PP organogenesis 

is taken by hematopoietic lymphoid tissue inducer cells (LTi), which are a subtype of ILC3s. 

LTi interact with stromal cells known as lymphoid tissue organizing cells (LTo). LTi express 

lymphotoxin, which binds to lymphotoxin receptor on LTo. Lymphotoxin signalling triggers 

expression of the chemokine CXCL13 to recruit LTi expressing the chemokine receptor 

CXCR5 and induces survival and retention of LTi. Clusters of LTi subsequently recruit 

additional immune cells for formation of mature lymphoid structures (38, 39).  

PPs resemble lymph nodes with respect to their typical organization of distinct B and T cell 

zones (even though at different proportion in PP as compared to lymph nodes). The colonic 

equivalent to small-intestinal PPs are colonic patches (CLPs). Like PPs, CLPs are formed 

during gestation. They are located in the muscularis mucosae and ‘touch’ the intestinal lumen 

(Figures 3, 4). However, intestinal immune responses are also supported by additional mucosal 

lymphoid tissues (see below). Some intestinal immune structures, such as PPs, develop 

independently from inflammation as secondary lymphoid tissues but tertiary lymphoid tissue 

is also induced in response to chronic inflammation.  

Solitary intestinal lymphoid tissue (SILT) is a type of GALT with features between bona fide 

secondary and tertiary lymphoid tissues (Figures 3, 4). SILTs are strictly submucosal 

structures, close to the intestinal epithelium of the small and large intestine (1). By definition, 

SILTs never invade or penetrate the muscularis propria. In contrast to lymph nodes, PPs and 

CLPs, SILTs only appear after birth (37) and development of SILTs requires the presence of 

LTi (40), lymphotoxin (41) and TLR signalling (1, 42, 43), compare textbox.  

Different maturation stages of SILTs can be distinguished. The smallest structures are referred 

to as cryptopatches (CPs) and comprise mostly LTi and LTo cells, surrounded by DCs. Larger 

SILTs are known as isolated lymphoid follicles (ILFs). ILFs can reach the size of a PP or CLP 

and also contain organized B cell follicles. At least in humans, T cell areas and MadCAM-1+ 

vessels for immune cell recruitment were demonstrated (44). Recruited B cells have been 

shown to undergo T cell–independent class-switch recombination within ILFs. Thus ILFs may 

be a critical source of T cell–independent IgA (45). 

Impact of GPR183 on the development of colonic SILTs (cSILTs) 

Several recent studies demonstrated that GPR183 is required for the development of lymphoid 

tissue in the colon. Gpr183 knockout mice show a lower number of B-cell positive lymphoid 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3645
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=72
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9339
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structures (2, 3, 5). Microscopic examination revealed that colonic SILTs (cSILTs) were 

mainly affected, while the number of CLPs was constant (2) or only slightly reduced (3). 

Detailed experiments with conditional Gpr183 knockouts demonstrated that GPR183 

expression by LTi-like ILC3s is required for generation of colonic SILTs while it is dispensable 

for the formation of colonic patches (3).  

Gpr183 knockout impacted less on the development of SILTs in the small intestine: in one 

study, the overall number of ILC3s in the small intestinal lamina propria was lower in 

Gpr183−/− and Ch25h−/− mice and there were also fewer cryptopatches in the small intestine 

(5), while in another study, the number of small intestinal SILTs was only marginally reduced 

(3). Most likely, the GPR183-7,25-diHC axis is also active in the small intestine, mediating 

recruitment of immune cells. However, B cells seem to be able to compensate for loss of LTi-

like ILC3 function in the small intestine, but not in the colon (3). 

Immune cell migration into CPs and ILFs is dependent on Ch25h activity, which is required 

for synthesis of the GPR183 ligand 7,25-diHC. More detailed evaluations revealed expression 

of the 7,25-diHC producing enzymes Cyp7b1 and Ch25h in CD34-podoplanin+ fibroblasts 

within ILFs, while CD34+podoplanin+ fibroblasts outside ILFs produced the 7,25-diHC 

degrading enzyme Hsd3b7 (3). This differential enzyme expression pattern suggests existence 

of a 7,25-diHC gradient around SILTs which would mediate the recruitment of Gpr183 

expressing ILC3s, B cells and DCs into SILTs. 

Despite these profound alterations of the GALT of Gpr183 knockout mice, their intestinal 

immune system remained intact and no further impairment of functionality could be detected 

in the absence of environmental challenges: The number of mesenteric lymph nodes and the 

total number of B cells in the colon was normal with normal faecal IgA levels (2, 3). 

Furthermore, no differences in microbiota composition were found in Gpr183 deficient mice 

and the fraction of IgA coated bacteria remained normal (2). Interestingly, in colonic ILC3s, 

Il-22 production was reduced upon Gpr183 knockout (3).  

GPR183 in intestinal inflammation 

The GPR183 locus is a risk locus for inflammatory bowel diseases 

Inflammatory bowel diseases are chronic inflammatory conditions and comprise the major 

subgroups Crohn’s disease (CD) and ulcerative colitis (UC). While in UC disease activity is 

restricted to the colon with strongest inflammatory activity in the rectum, CD can affect the 

whole intestinal tract. The pathogenesis of IBD is unknown but genetic and environmental risk 

factors have been identified (46, 47). 

Genome wide association studies (GWAS) have linked the GPR183-oxysterol system to IBD. 

GWAS identified >240 genetic regions and most identified genes increased the risk for both, 

UC and CD (48-51). One IBD risk gene maps to the genetic region encoding GPR183. The 

single nucleotide polymorphism (SNP) rs9557195 on chromosome 13 within an intron of 

GPR183 (Figure 5) is associated with CD (odds ratio (OR) of 1.12; 95% CI: 1.08-1.16) and 

UC (OR 1.1; 95% CI 1.06-1.15) (48). Association of SNP rs9557195 with both UC and CD, 

suggests a potentially more general role of the GPR183 locus for inflammatory mechanisms 
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and/or organization of the gastrointestinal immune system. Very recent data from our group 

indicate increased GPR183 expression on the surface of immune cells in individuals with the 

CC-allele of rs9557195 [F. Ruiz, C. Pot, B. Misselwitz manuscript submitted], providing the 

first experimental confirmation of these genetic data in human samples.  

The UBAC2 gene is a second gene at the GPR183 locus and associated with Behçet’s 
disease 

The architecture of the human GPR183 gene locus is complex. The ubiquitin-associated 

domain-containing gene 2 (UBAC2) is located on the complementary DNA strand and contains 

several intron and exon regions overlapping with GPR183 (Figure 5). GPR18, another G-

protein coupled receptor, also overlaps with UBAC2. Several studies associated SNPs within 

the UBAC2 gene with the risk for Behçet’s disease (52-54). Behçet’s disease is a rare condition 

but more frequently occurring along the ancient silk road from Eastern Asia to Mediterranean 

with most cases in Turkey (55).  

Behçet’s disease is a small vessel vasculitis, diagnosed upon occurrence of recurrent bipolar 

(oral and genital) aphthae and additional systemic manifestations with involvement of eyes, 

skin (erythema nodosum and pyoderma gangraenosum), the nervous system and joints. 

Gastrointestinal involvement occurs in 10-15% of patients with abdominal pain, diarrhoea and 

intestinal ulcerations frequently in the ileocecal region (56, 57). 

Manifestations of Behçet’s disease may thus overlap with intestinal and extraintestinal 

manifestations (EIM) of CD, making a correct disease diagnosis challenging (56). Further, IBD 

and Behçet’s disease respond to similar medical treatments (57) and have genetic overlap (58). 

It is therefore possible that Behçet’s disease mutations contribute to the risk of EIM in IBD but 

the clinical relevance of the overlap of IBD with Behçet’s disease remains unknown.  

UBAC2 expression was increased in peripheral blood mononuclear cells in patients carrying 

risk alleles of two Behçet’s disease–associated SNPs (rs7999348 and rs3825427, Figure 5) (52, 

53). UBAC2 is part of an endoplasmic reticulum (ER) membrane protein complex, which can 

inhibit wnt/-catenin signalling, and defects of other proteins in this complex result in severe 

lymphocyte dysfunction (59). In another study, UBAC2 restricted trafficking of ubiquitin-like-

domain-containing protein 8 (also called FAF2) from the ER to lipid droplets (60). Besides 

UBAC2, other ubiquitination-related genes (UBASH3B, SUMO4) have also been associated 

with Behçet’s disease, suggesting a crucial role of ubiquitination in the pathogenesis of this 

condition (52, 53, 61). However, it remains unclear how UBAC2 can contribute to organ 

inflammation. 

The IBD-associated SNP rs9557195 is located within introns of both genes, GPR183 and 

UBAC2, and it remains unclear how much each of those genes contributes to IBD risk. 

rs9557195 might act via GPR183 since it is associated with the risk for both CD and UC, while 

Behçet’s disease mainly overlaps with CD. Further, our unpublished observations show 

increased GPR183 expression in individuals with the rs9557195-CC allele (see above).  

However, in CD patients resistant to anti-tumour necrosis factor (TNF) treatment, an 

expression quantitative trail loci (eQTL) study identified elevated UBAC2 levels in individuals 
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with the rs9557195-TT genotype in peripheral blood and the intestine (62). Further, rs3742130, 

another SNP within UBAC2/GPR18 was associated with anti-TNF non-responsiveness (63), 

raising the possibility of involvement of UBAC2 in IBD as well. However, none of the studies 

of either GPR183 or UBAC2, rigorously excluded the effects of the other gene, hence a role of 

both genes in IBD is possible.  

Murine models of IBD suggest proinflammatory effects of GPR183  

Experimental observations indicate an important role of GPR183 in inflammation and 

pathogenesis of colitis. In the anti-CD40 colitis model, colon inflammation is induced by 

injection of the anti-CD40 antibody into Rag1-/- mice. Reduced overall inflammation and fewer 

inflammatory foci containing Gpr183 expressing ILC3s and myeloid cells were observed in 

Rag-/- Gpr183 -/- animals, compared to animals with functional Gpr183 (3). Gpr183 knockout 

also reduced granulocyte macrophage colony-stimulating factor (GM-CSF) production (3), 

which had been suggested as a key pro-inflammatory activity of ILC3s in innate colitis.  

Similarly, GPR183 confers pro-inflammatory effects in the IL-10 model of chronic colitis: 

Gpr183-/-Il-10-/- animals had less severe inflammation compared to Il-10-/- controls (2). 

Notably, the IL-10 colitis model shows at least some relevance for human IBD, since IL-10 

mutations have been linked to the human disease (64). Interestingly, in IL-10 colitis, the 

Gpr183 phenotype was restricted to male animals (2). The reason for this sex-difference is 

unclear but related observations have also been reported in other colitis models (65). Further, 

in humans, polymorphisms in the IL-10 gene can also act in a gender specific manner (66) and 

CYP7B1, one of the enzymes necessary for 7,25-diHC production, is a male dominant gene 

(67). In any case, mechanistic effects how Gpr183 increased colon inflammation in Il-10 colitis 

remain unclear. 

In contrast, in acute and chronic chemical (dextrane sodium sulphate: DSS) colitis, knockout 

of Gpr183 did not affect intestinal inflammation (2). This suggests that GPR183 effects on 

intestinal inflammation depend on the particular system and mode of pathogenesis.  

Intestinal inflammation affects balancing of the GPR183–oxysterol system  

GPR183 mRNA levels as well as mRNA of enzymes producing 7,25-diHC (CH25H, 

CYP7B1) are upregulated in biopsies of UC patients with active disease compared to patients 

in remission or healthy controls (2). Expression levels correlated with disease activity and 

established inflammatory markers including TNF or C-X-C motif chemokine ligand 8 

(CXCL8) expression (2, 3). GPR183 expression was also induced by lipopolysaccharide (LPS) 

on human macrophages (10, 68, 69), with possible repression in the murine system (69, 70), 

possibly related to ligand-induced GPR183 downregulation.  

In murine colitis, activation of the GPR183-7,25-diHC axis was also observed and confirmed 

by oxysterol measurements. Most experiments were done in the acute and chronic DSS colitis 

model, which relies on chemical destruction of the intestinal barrier and innate immune 

activation. Measurements in acute DSS colitis confirmed increased expression of Gpr183, 

Cyp7b1 and Ch25h in the gut (2, 71) and higher levels of the oxysterols 4-HC, 25-HC and 

7,25-diHC in the gut mucosa (2, 72, 73).  Similar changes, correlating with colitis severity, 
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were observed in chronic DSS colitis (72). In one study, 7,25-diHC was elevated in colon and 

stool and usage of 7,25-diHC as a biomarker was suggested for IBD (73). Trinitrobenzene 

sulfonic acid (TNBS) induced colitis resulted in increased levels of 4-HC, 25-HC but not 

7,25-diHC (72). Increased Ch25h expression and production of an activity, stimulating 

Gpr183 dependent cell migration was also observed in innate anti-CD40 colitis (3).  

While an increase in 25-HC and 7,25-diHC was repeatedly observed, expression levels of 

Cyp27a1 (responsible for production of 27-HC and the alternative GPR183 ligand 7,27-

diHC) were not affected in IL-10, DSS or TNBS colitis (2, 72), while Hsd3b7 levels 

(responsible for degradation of most oxysterols) were normal or even decreased (2, 72).  

Upregulation of oxysterol synthesis and increased oxysterol concentrations were also observed 

in human and murine models of non-alcoholic steatohepatitis (NASH) but knockouts of 

Gpr183, Cyp7b1 or Ch25h did not affect severity of NASH (74). 

In summary, there is strong and consistent evidence for increased expression of the enzymes 

synthesizing the GPR183 ligand 7,25-diHC in human samples and four different mouse 

models of colitis and enzyme levels correlate with severity of inflammation. In biochemical 

analyses, higher intestinal 7,25-diHC levels were observed in murine tissue upon 

inflammation in most models (2, 3, 72, 73). However, levels of other oxysterols varied to a 

higher degree. Most likely, the degree of systemic and local inflammation differed according 

to the mouse models used. Further, mass spectrometry determinations of di-hydroxylated 

oxysterols can be challenging, likely explaining most discrepancies. 

Non-GPR183 mediated effects of oxysterols in intestinal inflammation 

While pro-inflammatory effects of GPR183 in inflammation are increasingly recognized, it has 

long been established that oxysterols are immune-modulatory molecules with broad activities 

(75) (Table 1).  

The induction of CH25H is a general feature in inflammation. Several TLR agonists increased 

CH25H mRNA levels and increased 25-HC production in human and murine macrophages (10, 

68, 76-80). In line with these results, in human healthy volunteers, serum 25-HC concentration 

increased upon LPS injection (77).  

25-HC also has broad immune-modulatory effects. It is a powerful inhibitor of human viruses 

(78, 79) and was very recently identified as an efficient antibacterial molecule in Listeria 

monocytogenes and Shigella flexneri infection (81). Antibacterial effects are mediated by 

redistribution of membrane cholesterol and reduction of accessible membrane cholesterol (81). 

25-HC also inhibits inflammasome assembly, caspase activation and IL-1 and IL-18 production 

in macrophages (82) while IL-1 can in turn induce Th-17 differentiation (83).  

Therefore, not all effects of oxysterols in intestinal inflammation are mediated by GPR183 

(Table 1) and the oxysterol receptors liver X receptor (LXR)- and LXR- have a role in 

colitis. LXR- and LXR- are activated by oxysterols including 25-HC and 27-HC (84). More 

severe DSS colitis was observed upon knockdown of Lxr- and/ or Lxr- while the LXR 

agonist GW3965 improved clinical course of DSS colitis (85). Thereby, Lxr- and Lxr-
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reduced activation of CD11b+ immune cells, while Lxr- in addition downregulated 

secretion of inflammatory mediators in colonic epithelial cells (85). Recent experiments have 

also associated Ch25h with intestinal fibrosis in two animal models (71).  

Moreover, dihydroxylated oxysterols such as 7,27-diHC and 7,27diHC are agonists of 

RORt and regulate Th17 cell differentiation (86). Since Th17 cells have been shown to be of 

relevance in IBD pathogenesis (87) oxysterol mediated RORt stimulation is likely relevant in 

IBD. Distinguishing GPR183-mediated effects of oxysterols from effects on LXR, RORt and 

pleiotropic oxysterol effects (see below) remains a challenge. 

GPR183-dependent accumulation of lymphoid tissue in chronic colitis 

Whereas colonic patches are clearly distinct in their anatomical localization and structure, 

cSILT and TLT in the colon cannot easily be distinguished by histology and foremost differ in 

their developmental requirements. Thus, lymphoid tissue observed in the inflamed colon might 

represent true TLT and/or more mature and/or hypertrophic cSILT.  

Build-up of colonic lymphoid tissue seems to require a prolonged inflammatory stimulus: no 

changes of cSILT/TLT numbers were seen in acute DSS colitis, while in chronic DSS colitis a 

pronounced increase of cSILTs/TLTs could be observed (88). Accumulated lymphoid tissue 

comprises B cells with germinal centres, DCs and CD4 T cells but no T cell areas. High 

endothelial venules are frequently observed around inflammation-induced TLTs, which would 

facilitate further recruitment of immune cells (89). 

Accumulation of TLTs in chronic inflammation is dependent on GPR183: in chronic chemical 

(DSS) colitis, in Gpr183-/- animals, low cSILT/TLT numbers were seen at baseline without any 

inflammation dependent increase, despite similar levels of inflammation in Gpr183-/- and 

wildtype animals (2). Interestingly, the increase in cSILT/TLT was only partially dependent on 

Ch25h, suggesting activity of either Cyp27a1 (for production of 7,27-diHC) or activity of 

other enzymes with 25-hydroxylation activity (see above). 

Inflammation in chronic Il-10 colitis also increased the number of cSILTs/TLTs with a strong 

correlation of the number of lymphoid structures and the level of inflammation (2). Upon 

Gpr183 knockout, an overall lower number of SILTs was observed even in animals with similar 

levels of inflammation (2). In innate anti-CD40 colitis, Gpr183 was also required for an 

inflammatory migratory response and induction of lymphoid tissue during inflammation (3). 

Therefore, there seems to be a universal requirement for Gpr183 for the induction of 

inflammatory lymphoid tissue, independent from the way colon inflammation was induced. 

For induction of SILTs in inflammation, B cells might be able to take on the function of LTis. 

In chronic DSS colitis, accumulation of lymphoid tissue required lymphotoxin but not RORt 

and the authors demonstrated a critical function of B cells for induction of lymphoid tissue 

upon RORt knockout (88). Since GPR183 is expressed on ILCs and B cells, GPR183 might 

support both, the classical LTi (ILC3)-dependent induction of cSILTs as well as the alternative 

B cell dependent pathway, described above. However, this still needs to be confirmed directly.   

A recent study indicated that ILC3s were predominantly localized in CPs but ILC3 motility 

increased after induction of anti-CD40 colitis resulting in preferential ILC3s egress from CPs 
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(90). It is unclear whether this change of motility depends on GPR183 and whether it is related 

to inflammation and/ or accumulation of lymphoid tissue. 

The detailed function of the accumulated colonic lymphoid tissue in chronic colitis is unclear. 

It is unknown whether they have more pro-inflammatory or anti-inflammatory properties in the 

context of infection or IBD and discrepant results have been described in different models (91). 

While in some murine studies, colitis was dependent on accumulated cSILT/TLT (3, 88, 92, 

93), in other studies no correlation between cSILTs/TLTs and chronic inflammation was 

observed (2, 94). Accumulation of lymphoid follicles and lymphangitis are also a hallmark of 

human small intestinal Crohn’s disease but pathogenesis and implications for management of 

these findings are insufficiently understood (91, 95, 96).  

In summary, recruitment of immune cells into the colon upon chronic inflammation remains a 

complex process (Table 1) and CXCL13, IL-22, IL-23, lymphotoxin, the microbiota (6, 88, 92) 

and possibly also the CXCR5-CXCL13 axis (97) have been implicated. Recent data also 

indicate a role of GPR183 in this process (2). Further studies of GPR183 in intestinal 

inflammation might also reveal relevance and functional impact of lymphoid tissue 

accumulation in colitis.   

The GPR183-oxysterol axis as a potential drug target for IBD 

Targeting immune cell migration 

Inhibition of immune cell migration is a well-established therapy principle in IBD and other 

inflammatory conditions. Current approaches include integrin inhibition, sphingosin-1-

phosphate receptor (S1PR) modulation and chemokine receptor blockage. GPR183 modulation 

might constitute a new therapeutic approach, non-redundant with established therapies and 

with potentially unique effects.  

Integrin inhibitors have been the first approved drugs to block cellular migration. Homing of 

immune cells into the gut is mediated by integrin-47. Natalizumab (blocking the integrin-

4 subunit) and vedolizumab (blocking integrin-47) are of therapeutic value in IBD (98-

101). Natalizumab (102) (but not the gut specific vedolizumab (103)) is associated with the 

risk of the opportunistic infection progressive multifocal leukoencephalopathy (PML). 

Therefore, natalizumab is rarely if ever used in IBD. However, in patients with multiple 

sclerosis (MS) under natalizumab treatment, GPR183 expression and activity is increased on 

the surface of CD4 memory T cells compared to before treatment (14), suggesting high 

GPR183 expression in immune cells destined to target inflamed tissues such as the brain in MS 

and/ or the intestine (104).  

S1PR mediate exit of lymphocytes from secondary lymphoid organs. Lymphocytes follow a 

sphingosine-1-phosphate (S1P) gradient with higher S1P concentrations in blood. S1PR 

blockade results in functional inactivation of lymphocytes by trapping them within lymphoid 

organs (105). Ozanimod (blocking S1PR1 and S1PR5) showed some activity in UC patients. 

In line with entrapment of lymphocytes as the mode of action for ozanimod, peripheral 

lymphocyte counts decreased by almost 50% (106, 107). 
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Chemokine receptors CCR6, CCR9 and CXCR3 and its ligands mediate recruitment of immune 

cells into the gut in health and/ or inflammation; however, clinical tests of blocking these 

chemokine receptors in IBD remained disappointing (108-112), most likely due to redundant 

migratory signals for immune cell recruitment into the inflamed gut. 

Effects of GPR183 inhibition would likely differ from inhibition of integrins, S1PR and 

chemokine receptors. In animal experiments, GPR183 knockout did not reduce the overall 

number of intestinal lymphocytes, but affected immune cell distribution in the intestine with 

reduction of SILTs (2, 3) and entrapment of lymphocytes in mesenteric lymph nodes (5). In 

inflammation, GPR183 mediated accumulation of tertiary lymphoid follicles in the mucosa 

with pro-inflammatory effects in some but not all animal models (2, 3). Since our 

understanding of the function of SILTs in health and inflammation is limited, effects of 

GPR183 inhibition in human IBD is not foreseeable, but the opportunity of a new drug target 

in intestinal inflammation is highly welcome.   

Blocking of the GPR183–oxysterol axis 

A chemical inhibitor which prevents binding of 7,25-diHC to GPR183 and hence 7,25-diHC 

dependent migration of immune cells can be used as an GPR183 blocker (113, 114). In mice, 

this inhibitor replicated DC positioning phenotypes of the Gpr183 knockout (19), but has not 

been tested in murine colitis. 

Targeting oxysterol synthesis, such as blocking Cyp7b1 by clotrimazole (10), could be used as 

additional therapeutic strategy. However, to the best of our knowledge, knockouts of Cyp7b1, 

Ch25h or Cyp27a1 have not been tested in Gpr183 dependent colitis models so the therapeutic 

potential for IBD remains unexplored. Conversely, in mice, application of 25-HC drastically 

changed oxysterol levels (including 7,25-diHC) but did not alter severity of DSS colitis (72).  

Conclusion and outlook 

The immune system is organized in a multi-layered, fractal-like manner. GPR183 is a key 

factor involved in the spatial organization of the immune system and in particular the 

development of lymphoid tissues in the intestine. Human genetics and animal experiments have 

suggested a role of GPR183 in colitis. However, for now, we are still far from understanding 

the function of GPR183 in intestinal inflammation. Of note, it remains unclear whether the 

effects of the IBD polymorphism rs9557195 are mediated via GPR183 or UBAC2. 

Furthermore, the mechanisms by which GPR183 promotes intestinal inflammation in some, 

but not all animal models has not been clarified. Moreover, the impact of GPR183 mediated 

accumulation of lymphoid tissue in colitis, and its impact on inflammation and healing are 

unclear. Finally, broad immune-modulatory effects of oxysterols and possible direct effects of 

GPR183 on immune cells have been described and need further study to be distinguished from 

the effects of GPR183 on cell motility and migration. Notably, downstream effects of GPR183 

inhibition, disrupting intestinal immune cell distribution may be unique and different from all 

other cellular migration inhibitors and warrant further efforts to assess the therapeutic potential 

for GPR183 inhibition in IBD.  
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Nomenclature of targets and ligands 

Key protein targets and ligands in this article are hyperlinked to the corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUHAR/BPS 

Guide to pharmacology (115), and are permanently archived in the Concise Guide to 

PHARMACOLOGY 2019/20 (7).  
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Figure 1: Biosynthesis and degradation of oxysterols.  

Oxysterol biosynthesis starts with oxidation at the 25-position by the enzyme cholesterol 25-

hydroxylase (CH25H) or at the 27-position by cytochrome p450 family 27 member A1 (CYP27A1), 

yielding 25-hydroxycholesterol (25-HC) and 27-hydroxycholesterol (27-HC), respectively. Further 7-

hydroxylation by CYP7B1 results in production of 7,25-diHC and 7,27-diHC, respectively. 

Oxysterols are ultimately degraded to bile acids by the activity of hydroxy-delta-5-steroid 

dehydrogenase, 3 beta- and steroid delta-isomerase 7 (HSD3B7). 
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Figure 2: GPR183 dependent movements of immune cells in secondary lymphoid organs  

B cell follicles with germinal centre (orange) and the T cell area are indicated. A gradient of the GPR183 

ligand 7,25-diHC is expected in secondary lymphoid organs according to expression levels of the 

7,25-diHC synthesizing enzymes Cyp7b1 and Ch25h. Highest 7,25-diHC concentrations are 

expected in the outer follicle (dark green). GPR183 expressing B cells, T cells and dendritic cells follow 

the 7,25-diHC gradient (red arrows) and some B cells move to the outer follicle (light blue circle). For 

other immune cells with concurrent expression of other chemokine receptors (e.g. CCR7, purple arrows) 

positioning reflects the effects of more than one cytokine and B cells are also found in the interfollicular 

area (dark blue circles). GPR183 also supports positioning of T cells and DCs (not indicated).  
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Figure 3: Schematic view of lymphoid structures in the colon and the small intestine.  

(A) Overview of the small intestine and the colon with intramucosal solitary intestinal lymphoid 

tissue (SILT) and colonic SILT (cSILT) as well as larger mucosal and submucosal Peyer’s 

patches and colonic patches (CLP) 

(B) Schematic view of location of lymphoid structures and its cellular content. Please note the strict 

intramucosal of cSILT comprising small cryptopatches and larger isolated lymphoid tissue 
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Figure 4: Key structures of the colonic immune system.  

Left panel: complete mouse colon as a “Swiss roll”. Inserts indicate colonic patches (CLP) and solitary 

intestinal lymphoid tissue (SILT), shown on the right. While CLPs replace mucosa and submucosa, 

SILTs are strict mucosal structures, respecting the tunica muscularis mucosae (arrows). Cryptopatches 

are small SILTs comprising mainly lymphoid tissue inducer (LTi) cells and dendritic cells (DCs) but 

lack B cells (not shown). Acquisition of B cells yields larger SILTs, called intestinal lymphoid follicles 

(ILF).  
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Figure 5: Architecture of the GPR183/ UBAC2 gene locus on chromosome 13 

The UBAC2 gene (green) is located on the forward (fwd) strand of chromosome 13, while the GPR183 

gene (pink) is located on the reverse (rev) strand. Neighbouring genes encoding G-protein coupled 

receptor 18 (GPR18) and UBAC2 antisense RNA 1 (UBAC2-AS1) are also indicated. The major 

transcript of the respective genes with its introns (horizontal line) and exons (rectangles or vertical lines) 

are indicated in grey. Relevant SNPs (for instance the IBD-SNP rs9557195, the psoriasis-SNP 

rs9513593 or the Behçet’s disease-SNPs rs3825427, rs799348) are highlighted with the colour of the 

associated gene.  
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Table 1: Cellular targets of oxysterols and downstream effects. 

 

Oxysterol ligand Cellular target Exemplary downstream effects and 

effects in the intestine (if 

applicable).  

Reference 

7,27-diHC, 

7,27-diHC 

RORt  Th17, ILC3 differentiation, induction 

of SILTs in the colon 

(3, 38-42, 

73) 

25-HC, 27-HC 

 

LXR-, LXR- Anti-inflammatory effects in colitis, 

cellular metabolism and immunity 

(71, 72, 

109) 

INSIG , SREBP  Inhibition of cholesterol synthesis, 

effects in the intestine unclear 

(110) 

25-HC 

 

Inflammasome  Inflammasome inhibition, reduced 

production of IL-1 and IL-18 

(69) 

Antibacterial defence  Reduction of accessible membrane 

cholesterol. Inhibits replication of L. 

monocytogenes, S. flexneri 

(68) 

Antiviral defence  Inhibits replication of a number of 

viruses 

(65, 66) 

7,25-diHC, 

7,27-diHC 

GPR183  Positioning of B cells, T cells, DCs, 

ILC3s. Formation of SILTs in the 

colon, pro-inflammatory effects in 

colitis (see text for details).  

(2, 3, 5, 8, 

9, 26-28, 

34) 
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