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Abstract: The purine adenosine 5′-triphosphate (ATP) is not only a universal intracellular energy
carrier but plays also an important role as extracellular signaling molecule. Purinergic signaling is
involved in many physiological and pathological processes like coagulation, inflammation, or sepsis
in mammals. ATP is well-known as a messenger for intercellular communications in multicellular
organisms, but phylogenetically much older unicellular organisms like yeast or bacteria use ATP as
an extracellular signaling molecule as well. However, the mechanisms of ATP secretion by bacteria
and its extracellular implications still have to be elucidated. This review will provide an overview of
the current knowledge about bacterial extracellular ATP (eATP) under homeostatic conditions and
during growth. Possible secretion mechanisms of ATP by bacteria will be discussed and implications
of bacterial ATP are shown, with a focus on bacteria–host interactions.

Keywords: bacterial ATP; bacteria-derived ATP; bacteria; extracellular ATP; ATP secretion; purinergic
signaling; inflammation; sepsis

1. Principles of Purinergic Signaling

While the importance of the purine adenosine 5′-triphosphate (ATP) as a universal intracellular
energy carrier was discovered in the middle of the 20th century, the landmark discoveries about the
importance of ATP as an extracellular signaling molecule took another 20 years [1]. Intracellularly,
ATP enables energy-dependent processes releasing high-energy electrons by the hydrolyzation of its
three phosphoanhydride bonds. This intracellular ATP can be released into the extracellular space
by specific or unspecific mechanisms and acts as a danger associated molecular pattern (DAMP) [2],
affecting platelet activation and coagulation [3,4], inflammation [5–7], and a wide range of neural
processes [8].

Extracellular ATP (eATP) binds to specific P2 receptors, which are grouped into ionotropic P2X
(P2X1, P2X2, P2X3, P2X4, P2X5, P2X6, P2X7) and metabotropic (G-protein-coupled) P2Y (P2Y1, P2Y2,
P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14) receptors [9,10]. After having bound eATP, P2X receptors
undergo conformational change and facilitate the influx as well as efflux of mono- and divalent cations
along their concentration gradient (mainly Na+, Ca2+ in and K+ out) [11]. P2Y receptors activate either
stimulatory or inhibitory G proteins, which mediate downstream signaling regulating 3′,5′-cyclic
adenosine monophosphate (cAMP) and phospholipase C β (PLCβ) levels [12]. While P2X receptors are
exclusively modulated by ATP, ligands for P2Y receptors also include adenosine 5′-diphosphate
(ADP), uridine 5′-triphosphate (UTP), uridine 5′-biphosphate (UDP), and UDP-glucose [10,12].
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Extracellular ATP is rapidly degraded by ectonucleotidases that convert ATP to ADP and adenosine
5′-monophosphate (AMP) as well as CD73/ecto-5′-nucleotidase that converts AMP to adenosine [13].
Adenosine is able to bind four distinct receptors: A1, A2A, A2B, or A3 [14]. All four are metabotropic
(G-protein-coupled) receptors transducing extracellular signals mainly via regulation of cAMP [15].
In contrast to ATP receptors, adenosine receptors play a pivotal role in attenuating inflammation [16–18].
This dynamic regulation allows purinergic signaling to be both pro-inflammatory (mainly but not
exclusively via P2 receptors) and anti-inflammatory (mainly but not exclusively via P1 receptors) [19–21].
Furthermore, the ligand binding affinities for different P2X receptors are within the nanomolar to the
high micromolar range, making purinergic signaling a highly versatile communication system [22].

2. Secretion and Uptake of ATP by Microorganisms

The importance of the purinergic communication system in multicellular organisms like animals
or plants has been established over the last decades. However, not only multicellular but also
phylogenetically much older unicellular organisms make use of purinergic signaling or are at least
able to secrete ATP [23].

These includes fungi such as Candida albicans (C. albicans) that secretes ATP putatively via
conductive channels in a histatin 5-dependent manner [24]. Such eATP subsequently leads to cell
death in neighboring C. albicans cells by a hitherto unknown mechanism [24]. The unicellular yeast
Saccharomyces cerevisiae (S. cerevisiae) secretes ATP in the nanomolar range in a MCD4-dependent
manner [25]. Incubation of S. cerevisiae with 2% glucose solution dramatically increased eATP
concentration in a cAMP-dependent and regulated manner [26]. Furthermore, eATP was elevated
during growth of S. cerevisiae [26]. The conclusion of these observations was that ATP, its metabolites
ADP, AMP, and adenosine may act as intercellular signaling molecules for S. cerevisiae physiology [26].
Extracellular ATP as an intercellular messenger in S. cerevisiae has also been shown in synchronizing
sporulation among cells, yet the mechanism has still to be elucidated [27].

Not only such unicellular eukaryotes though, but also prokaryotes are able to secrete ATP and
there is now an increasing number of reports focusing on bacterial ATP, the invading bacteria as
relevant source of eATP in the host and its importance in bacteria–host interaction [28].

2.1. Bacterial eATP under Homeostatic Conditions

In bacteria, first results were obtained in 2005 by Ivanova et al. [29]. A screen of the supernatant
of 86 heterotrophic environmental (marine) bacteria cultured in Marine Broth 2216 for eATP
showed that Gram-negative α-proteobacteria and γ-proteobacteria secreted ATP in the micro- to
millimomolar range in vitro. The measured concentrations were between 0.2 and 7 mM [29–31].
Overall, marine Gram-positive bacteria (Planococcus spp., Kocuria spp., Brevibacterium spp., Bacillus sp.,
Microbacterium sp.) secreted less ATP than marine Gram-negative α-proteobacteria (Ruegeria spp.,
Erythrobacter sp., Sulfitobacter spp., Staley sp.) orγ-proteobacteria (Marinobacter spp., Marinobacterium sp.,
Marinobulbifer sp., Cobetia spp., Alteromonas spp., Pseudoalteromonas spp., Shewanella spp.) [29].
The concentrations in the supernatant even exceeded values that were measured inside cells [32–34].
In vivo, the ability of commensal bacteria to secret ATP was assessed from isolates from mouse
feces and from human feces, urine, and skin. In mouse feces, Enterococcus gallinarum (E. gallinarum),
Enterococcus faecalis (E. faecalis) and Escherichia coli (E. coli) and in human specimens, E. gallinarum,
E. faecalis, E. coli, and in addition Enterococcus faecium (E. faecium) as well as Staphylococcus aureus
(S. aureus) were cultured in RPMI 1640 medium and eATP levels in the supernatant were assessed
after 16 h [35]. Thereby, eATP at levels between 1 and 3 µM were detected only in the supernatant
of Gram-positive E. gallinarum culture, whereas in the supernatant of the other bacterial cultures,
eATP was absent [35].
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2.2. Bacterial eATP During Growth

In the follow-up study by Hironaka et al., seven more ATP secreting Enterococcus species were
identified (E. cecorum, E. faecium, E. gilvus, E. mundtii, E. saccharolyticus, E. sulfureus, and E. thailandicus)
under the same culture conditions as described above [36]. As in the previous study, eATP concentration
was in the low µmolar range (around 0.1–2.2 µM/108 cells), and highest in E. mundtii. Importantly,
these studies revealed that ATP secretion is growth phase-dependent, peaking during exponential
phase. These observations allowed to detect eATP also in the supernatant of E. faecalis, E. faecium, E. coli,
and S. aureus during exponential growth phase [36]. According to the authors, checking membrane
integrity using a Sytox9/propidium iodide based staining excluded bacteriolysis as a source of ATP
secretion [36].

Growth-dependent ATP secretion during exponential phase in the supernatant of a variety of
different Gram-positive and Gram-negative bacteria was also observed by Mempin et al., however,
in the low nanomolar range [37]. A possible explanation for the discrepancy in the amount of eATP
between these two groups is that Hironaka et al. used RPMI 1640 medium for culturing bacteria,
which contains a different amount of ATP secretion triggering glucose than standard Luria–Bertani broth
(LB), which was used by Mempin et al. [36]. Another possibility is that the used RPMI 1640 medium was
enriched with serum, which accounted for the higher amount of ATP. However, this is rather unlikely
since the authors did not mention any supplementation with serum in their paper. The question
remains, why Hironaka et al. did not observe ATP secretion with the tested media other than RPMI
1640 medium (e.g., brain heart infusion (BHI), LB, tryptic soy agar (TSA)), since the group used the
same reagents to measure eATP like Mempin et al. This could be explained by different methods they
used for the generation of their respective standard curves allowing Mempin et al. more sensitive
measurements and therefore to detect lower eATP concentrations than Hironaka et al.

In addition to glucose, cytochrome bo oxidase plays an important role for eATP concentration in
E. coli and Salmonella enterica (S. enterica) [37]. Cytochrome bo oxidase subunits mutated E. coli (∆cyoA,
∆cyoC, ∆cyoD) and S. enterica (∆cyoA, ∆cyoB, ∆cyoCD) showed significantly less eATP compared to the
wild type when cultured aerobically [37]. Cytochome bo oxidase is one of three different ubiquinol
oxidases, enzymes that pump protons across the inner membrane of the bacteria generating a proton
motif force and that catalyzes the last step of the respiratory chain, which is the reduction of the electron
acceptor. Furthermore, cytochrome bo oxidase predominates at high oxygen concentrations [38,39].
Together with the results from Hironaka et al. this could indicate that in E. coli and S. enterica,
glycolysis and subsequent anaerobic or aerobic respiration are more important than fermentation for
ATP secretion, which makes sense, since it is much more effective for generating ATP and bacteria can
use a variety of redox pairs for respiration [36,37,40].

2.3. Uptake of eATP by Bacteria and Intracellular Fate

Several reports show that bacteria are also able to take up ATP according to their needs. In an
experiment using E. coli W derived strains that have mutations in purine metabolism, it was shown
that these bacteria were able to take up a variety of different purine nucleobases, nucleosides,
and nucleotides (adenine, guanine, adenosine, guanosine, AMP, ADP, and ATP) possibly via general
porins, which restored growth deficiency [41]. Bacteria mediated depletion of ATP was also shown in
an experiment, in which 10 µM ATP was added to the bacterial culture and the remaining concentration
was measured after several time intervals [37]. An almost complete depletion of the 10µM was achieved
by E. coli K12 as well as S. enterica (SE2472) within 120 min [37]. Interestingly, they concluded that
ATP was mainly hydrolyzed on the bacterial surface, given that the remaining levels of radioactivity
were detected in the supernatant and not in the bacteria. Conversely, using radioactively labelled
[γ-32P]ATP, Alvarez et al. showed that in E. coli DH5α ATP is rapidly uptaken in the periplasmic
space and hydrolyzed in a linear [eATP]-dependent manner and that eATP concentration in steady
state in the periplasmic space is 24 ± 3 µM/1010 bacteria [42]. The periplasmic space as an important
compartment involved in purine hydrolyzation is supported by a variety of scientific reports [41–43]
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and an array of acid and alkaline phosphatases (aphA, appA, phoA) as well as 5′-nucleotidases (e.g., napD,
ushA, surE, yfbR, yjjG) are present in E. coli. Under physiological conditions especially phoA encoded
alkaline phosphatase and ushA encoded 5′-nucleotidase are responsible for ATP hydrolyzation to
adenosine [42–46]. Adenosine can then be further metabolized to adenine or hypoxanthine or can be
directly transported back to the cytoplasm via the specific nucleoside transport systems nupC and
nupG and recycled to ATP [41,47].

Interestingly, it is still unclear how ATP is transported from the cytosol to the periplasmic
space since E. coli do not have ATP/ADP translocases in the inner membrane and this membrane is
impermeable for the highly (four-fold) negatively charged ATP [43,48]. Furthermore, it still has to be
determined how bacteria secrete ATP and possible mechanisms will be discussed in the next section.

3. Comparison of ATP Secretion Mechanisms between Prokaryotic and Eukaryotic Cells

3.1. Release Mechanisms of Eukaryotic Cells

In eukaryotic cells, there are mainly three distinct mechanisms of ATP release: (1) channel-mediated
release, (2) vesicle-mediated release, and (3) non-specific release [49].

(1) Channel-mediated ATP release occurs mainly via pannexin-1 channels and
connexin-43 hemichannels [12,49]. Pannexin-1-dependent ATP release occurs in apoptotic cells,
which thereby establish a pro-inflammatory environment and attract leucocytes by releasing ATP in a
controlled manner [50]. Pannexin-1 is also involved in ATP release by dendritic cells and subsequent
autocrine signaling via P2X7 that creates a positive feedback loop, promoting fast migration at site
of inflammation [51]. Additionally, T-cells are activated via pannexin-1-mediated ATP release and
autocrine P2X1 and P2X4 signaling at the immune synapse, which represents a general T-cell activation
mechanism [52]. Furthermore, macrophages can be activated by pathogen associated molecular patterns
(PAMPs) to release ATP via pannexin-1, autocrine signaling via P2X7, and subsequent inflammasome
activation [53]. Connexin-dependent ATP release occurs in neutrophils and macrophages upon
stimulation with PAMPs [30,31,49]. This ATP release has two different effects: (1) it supports the
inflammatory milieu [6] and (2) it stops neutrophil chemotaxis at site of inflammation in an autocrine
manner [54]. Macrophages also release ATP via Connexin-43 in an autocrine manner, resulting in
self-activation and improved survival during sepsis in mice [30].

(2) Vesicle-dependent release requires storage of ATP in vesicles, which is mediated by a V-ATPase
dependent proton gradient [49]. V-ATPase is localized in the vesicle membrane and actively pumps
H+ into the vesicle lumen. Negatively charged ATP is subsequently transported into the lumen via
vesicular nucleotide transporter (VNUT) along the electrochemical gradient [55,56]. Release of vesicular
ATP is then mediated by Ca2+-dependent zipper-like fusion of v- and t-SNARE complexes localized
in the vesicle and the plasma membrane, respectively [57]. Vesicular ATP release has been shown to
play an important role in mediating chronic inflammatory pain [58]. Different cells (e.g., microglia or
peritoneal macrophages) use this release mechanism upon stimulation with PAMPs [58–60].

(3) Non-specific release of ATP typically depends on necrosis of cells. The intracellular ATP
concentration is within the millimolar range, which is more than 105-fold higher than extracellular ATP
concentration [6,61]; therefore, disruption of membrane integrity leads to an instant release of high
amounts of ATP. This establishes a strong pro-inflammatory environment and a strong chemotactic
gradient [5,12].

3.2. Release Mechanisms of Prokaryotic Cells

In bacteria, the detailed mechanisms of ATP secretion are less known as in eukaryotic cells.
Bacteria do not possess pannexin or connexin hemichannels nor are any homologues of VNUT
known. However, some authors have described and shown different mechanisms how ATP can be
secreted: (1) by porins, (2) by mechanosensitive (MS) channels, or (3) by outer membrane vesicles
(OMVs). Another possibility is that ATP is secreted by (4) lytic mechanisms especially during growth.
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Furthermore, it is conceivable that bacterial efflux pumps or secretion systems (5) are responsible for
ATP secretion although such specific pumps for ATP have not been shown so far [62–67] (Figure 1).

(1) Porins are water-filled β-barrel pores in the membrane of Gram-positive or the outer membrane
of Gram-negative bacteria that are permeable to water-soluble molecules. In E. coli K12, there are specific
porins, e.g., tsx, which transports nucleosides and deoxynuclosides [68,69] or lamB, which transports
maltose and maltodextrins [70]. However, there are also three unspecific porins called phoE, ompC,
and ompF that are permeable for solutes smaller than 600–700 Dalton. PhoE is especially induced by
phosphate starvation and has an anion selectivity, whereas ompC and ompF are rather cation-selective [71].
So far, no specific porin for nucleotides has been characterized and it is assumed that ATP is unspecifically
secreted by these porins [72,73]. It is currently not known if there is a mechanism that allows E. coli to
control the transport of ATP through the pore or if it is just passively governed by tonicity.
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Figure 1. Model of ATP turnover in gram-negative bacteria. (A) ATP is taken up by the bacterium,
possibly via general porins [41,42]. (B) Periplasmic ATP is subsequently hydrolyzed via alkaline
phosphatases and 5‘-nucleotidases to ADP, AMP and adenosine [42–46]. (C) Adenosine can then be
further metabolized or taken up into the cytoplasm via nucleoside permeases like NupC or NupG,
where it is recycled to ATP [41,47]. (D) ATP is mainly produced in the cytoplasm by the respiratory chain.
ATP is then transported into the periplasmic space by a hitherto unknown mechanism (?), since as known
so far, gram-negative bacteria do not code for an ATP-ADP translocase homologue. Periplasmic ATP
can subsequently be secreted in a growth-dependent manner by non-lytic mechanisms such as 1)
general porins [42,72,73], 2) mechanosensitive channels [74,75] or 3) outer membrane vesicles [42,76,77].
Most likely ATP surrounds the bacterial cell in a halo-like manner. It has been shown that outer
membrane vesicles contain ATP and have intrinsic ATPase activity. (E) It is also conceivable that lysis
contributes to measured eATP concentrations during growth 4) [78–82]. (F) Possibly, active systems
such as specific 5.1) efflux pumps or 5.2) secretion systems for ATP exist, but have not been identified
so far [62–67]. If a specific mechanism is predominating in ATP secretion or if a combination of these
mechanims are responsible for bacterial eATP remains to be elucidated.
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(2) It has been shown that if bacteria are exposed to hypotonic osmotic shock, they secrete ATP and
other metabolites and ions via MS channels to prevent bursting [74,75]. However, if this mechanism is
involved or responsible for the measured eATP concentrations during growth remains to be elucidated.

(3) OMVs are produced and released especially by Gram-negative bacteria and play a role in
promoting pathogenesis, bacterial survival, and interaction [76]. They pinch off the outer membrane of
Gram-negative bacteria and therefore contain periplasmic solutes. It was shown that OMVs contain
also ATP, which they secret in a concentration of 13± 5 nM/µg protein [42]. Furthermore, OMVs possess
intrinsic linear [eATP]-dependent ATPase activity [42]. That OMVs contain ATP and periplasmic
phosphatases was also shown by Proietti et al., however to what extent OMVs contribute to eATP
concentration remains unclear [77].

(4) Bacterial cell division is a highly complex mechanism that requires cell division proteins
like Fts- or Min.-proteins, murein hydrolases, and other proteolytic enzymes working together for
structured local breakdown of bacterial cell wall [78,79]. Furthermore, cellular integrity is highly
dependent on environmental factors like temperature, pH, osmolarity, and concentration of divalent
cations [80,81]. It is therefore conceivable that some degree of ATP secretion could happen within the
division process because of disturbances in any of these factors. Another reason for eATP could be full
lysis of bacteria during growth. It was shown that lysis in growing cultures is a rare phenomenon
but since the intracellular ATP concentration is up to 105-fold higher than in the extracellular space,
this may be at least partially responsible for eATP concentration [82].

4. Extracellular ATP as an Inter-Kingdom Signaling Molecule

Bacterial ATP has been shown to act as an inter-kingdom signaling molecule in different organ
systems. Follicular T helper cells (Tfh) in the Peyer’s patches of gut-associated lymphoid tissue
are modulated by bacterial ATP [83]. Tfh are key cells in B cell development and subsequent IgA
production and need therefore to be tightly regulated, which occurs, at least in part, via P2X7 mediated
apoptosis [83]. By gavaging E. coli or S. enterica either containing an empty plasmid or a plasmid
carrying an apyrase that hydrolyzes the secreted ATP and is polarly localized in the periplasmatic
space, the role of specifically bacterial ATP could be assessed [84]. Using this approach, Proietti et al.
have shown that bacterial ATP leads to P2X7 mediated apoptosis of Tfh, subsequent limitation of IgA
secretion from B cells, and therefore a decreased efficiency of oral vaccination [77,83]. Conversely,
such limited IgA secretion leads to a diverse microbiota and a favorable metabolic profile (blood sugar
levels, body weight) [85].

Atarashi et al. showed that after intraperitoneal and rectal application of 1.25 mg (2.3 µM)
ATPγS, the CD70highCD11clow intestinal lamina propria cells increase production of IL-6 and IL-23 as
well as TGF-β, leading to increased differentiation of naïve helper T cells to IL-17 producing
helper T cells (TH17) in germ-free ILC mice [86]. The authors stated that this mechanism could
be important for physiologic TH17 but also for pathologic TH17 differentiation, since severe combined
immunodeficient mice (SCID-mice) suffered from exacerbated colitis after intraperitoneal application
of 1.5 mg (2.9 µM) αβ-ATP [86]. Since germ-free mice had markedly reduced TH17 levels and antibiotic
treated (vancomycin and metronidazole) specific pathogen free mice showed a significant reduction
in TH17 and fecal ATP concentration, the group concluded that eATP is derived by commensal
bacteria [86].

Abbasian et al. have suggested that ATP secreted by uropathogenic bacteria (e.g., E. coli) acts as a
virulence factor in urgency urinary incontinence and overactive bladder disease by promoting Ca2+

influx into uroepithelial cells affecting subsequent bladder contractility [87].
Since eukaryotic cells are ubiquitously equipped with ecto-nucleoside triphosphate

diphosphohydrolases (e.g., CD39), ecto-5′-nucleotidases (e.g., CD73), ectonucleotide pyrophosphatases,
as well as alkaline phosphatases and are able to hydrolyze micromolar concentrations of ATP within
20–40 min, ATP signaling is generally considered as fast and short-termed [13,88]. However, the specific
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kinetics of bacterial ATP under the above-mentioned physiologic and inflammatory conditions still
have to be elucidated.

Bacteria are not only able to secrete ATP itself but also to stimulate host cells to release ATP.
Alvarez et al. have shown that concentration of apical ATP on a polarized monolayer of Caco-2 cells
that was exposed to E. coli suspension (2 × 107 bacteria) increased six-fold from basal concentration
of 123 ± 5 nM. Furthermore, rat jejunum segments that were flushed with E. coli suspensions
(5× 108 bacteria/mL) increased luminal ATP secretion two-fold from basal concentration of 13± 2 nM [42].
It has also been shown that the pore-forming toxins α-hemolysin from E. coli as well as leukotoxin A
from Aggregatibacter actinomycetemcomitans lead to ATP secretion of erythrocytes [89]. ATP is most likely
released through the toxin pore itself or by the damaged membrane around the toxin and subsequently
activates P2X1 and P2X7 receptors, leading to an amplification of the hemolytic process [90].

Furthermore, bacteria seem also to use host-derived eATP for its own purposes. Mempin et al.
has shown that addition of 10 or 100 µM ATP to stationary phase E. coli K12 and S. enterica cultures
increased survival over 7 days of incubation [37]. The group concluded that this could be of advantage
since these bacteria are able to invade host cells, where they could use intracellular ATP as a nutrient
or signaling molecule. It has also been shown that eATP promotes biofilm formation in periodontal
disease as well as detachment of bacteria from Fusobacterium nucleatum biofilm into its planktonic form
to build new colonies [91,92]. Extracellular ATP is also involved in maintaining inflammation and
bone resorption in periodontal disease via: (1) P2X7 mediated cytokine release by immune cells and
subsequent osteoclast activation [93], (2) direct P2X7 mediated fibroblast activation and chemokine
production (IL-8, CXCL-1, CXCL-2, and MCP-1) on the mRNA as well as the protein level, and (3) its
chemotactic properties as an attractant for leukocytes [94].

Other reports show that bacteria are able to modulate ATP. Porphyromonas gingivalis, an intracellular
bacterium, expresses a nucleoside-diphosphate kinase to hydrolyze ATP. This bacterium attenuated
ATP-P2X7 mediated inflammasome activation and subsequent release of Il-1β as well as release
of the DAMP high-mobility group box 1 [95]. Legionella pneumophila encodes an ecto-triphosphate
diphosphohydrolase, which is similar to human CD39. It has been shown that this enzyme is essential
for intracellular multiplication of the bacterium probably also by attenuating ATP-P2X7 receptor
mediated inflammasome activation or by attenuating the chemotactic ATP gradient [96]. S. aureus and
Bacillus anthracis use a cell wall anchored 5′-ectonuleotidase to escape phagocytotic clearance during
inflammation [97] and Streptococcus sanguinis exploits the immunosuppressive ATP to adenosine
hydrolyzation of a surface ecto-5′-nucleotidase [98].

5. Bacterial ATP as Potential Virulence Factor in Inflammation and Sepsis

ATP has various functions in inflammation and sepsis [5,6,99] and it is therefore conceivable that
bacteria exploit the pro-inflammatory properties of ATP for its own purposes or that bacterial ATP
interferes with host-derived ATP.

It has been shown that endothelial P2Y1 receptor signaling leads to an increased expression of
vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), as well as
P-selectin, favoring leucocyte rolling and adhesion to endothelial cells [100]. Endothelial cells also
actively release ATP after stimulation with bacterial membrane components in a Toll-like receptor
2 dependent way, promoting early immune response [101]. Furthermore, Maître et al. showed that
diapedesis of neutrophils is at least partly dependent on ATP–P2X1 interaction [102]. It is therefore
conceivable that ATP secreted by bacteria in the blood stream or by bacteria bound to platelets or
erythrocytes [103] favors extravasation of leukocytes. Furthermore, it is well known, that some bacteria
are able to survive within phagocytes and, therefore, these mechanisms could be exploited by some
bacteria for its own dispersal throughout the body [104].

Sepsis is a life-threatening organ dysfunction caused by a dysregulated immune response to
invading bacteria, which leads to extensive damage locally but also remote from the primary site
of infection [105,106]. Purinergic signaling has been shown to influence septic outcome in various
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studies [19,21,107–111] and it is therefore conceivable that bacterial ATP is able to activate purinergic
receptors and to influence septic outcome as well. It is highly likely that eATP concentration in the
surrounding of a bacterium or a bacterial colony is much higher in a halo-like manner than the diluted
eATP concentration measured in the supernatant mentioned above. It may therefore be possible
that bacterial ATP is able to activate all P2X receptors (even P2X7, which is activated at µmolar
concentrations) contributing to the complex system of purinergic signaling.

6. Conclusions

ATP is well-known as a major player of the intercellular purinergic signaling system.
Purinergic signaling has been extensively investigated especially in multicellular organisms,
however there is growing evidence that also phylogenetically much older organisms such as eukaryotic
and prokaryotic unicellular organisms use this versatile communication system. Bacteria secrete ATP in
a glucose triggered, respiratory chain- and growth-dependent manner. Furthermore, it has been shown
that bacteria actively take up and metabolize ATP in the periplasmic space and the cytoplasm. Still a
matter of discussion is though, how ATP is transported across the inner membrane from the cytoplasm
to the periplasmic space, how ATP is secreted, and if this is an active/specific process. Although eATP
has been shown to be an inter-kingdom signaling molecule especially at mucosal sites in the gut or the
mouth, the role of bacterial ATP in systemic inflammation and sepsis still has to be resolved and this
could lead towards new therapeutic avenues as outlined in the last section of this review.
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