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Tag der öffentlichen Verteidigung: 05. Juni 2020



Dein vor Freude und Zuneigung strahlendes Gesicht
ist eine meiner ersten und liebsten Erinnerungen.

Hoffentlich hast Du mich auch noch
irgendwie erkannt.

Zu meinem Geburtstag.

Mach’s gut, mein Freund!
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Zusammenfassung

Wir untersuchen Verbindungen zwischen deterministischen Kompartimentsystemen und
stochastischen Markow-Ketten.

Kompartimentsysteme sind spezielle nichtnegative dynamische Systeme, die den Fluss
von beispielsweise Masse oder Energie in ein System hinein, durch das System hindurch
und aus dem System heraus beschreiben, wobei ein solches System aus mehreren soge-
nannten Kompartimenten besteht. Wie allgemein üblich nehmen wir dabei an, dass das
System gut gemischt ist: Material, welches in ein ein neues Kompartiment gelangt, ist
sofort perfekt mit dem bereits vorhanden Material vermischt. Gemeinhin werden Kompar-
timentsysteme mathematisch durch ein System von gewöhnlichen Differentialgleichungen
der Form

d

dt
x = B x + u

beschrieben. Hierbei ist x der Vektor des Systeminhaltes, also der Größe von Interesse, die
wir im Weiteren Material nennen wollen. Der nichtnegative Eingangsvektor u beschreibt
Menge und Verteilung neu hinzukommenden Materials. Von der quadratischen Matrix B
fordern wir drei Eigenschaften: 1) alle Diagonalelemente sind nichtpositiv, 2) alle Nicht-
diagonalelemente sind nichtnegativ, und 3) alle Spaltensummen sind nichtpositiv. Unter
diesen Bedingungen werden sowohl die Matrix B als auch das System selbst als komparti-
mental bezeichnet und das System ist massenbilanziert. Wir nehmen weiterhin an, dass
das System sich im Gleichgewicht befindet. Das bedeutet x(t) = x∗ = −B−1 u. Bezüglich
Kompartimentsystemen im Gleichgewicht sind wir an den folgenden Größen interessiert:

• Das Systemalter beschreibt die seit dem Eintritt verstrichene Zeit von sich im System
befindlichem Material.

• Das Kompartimentalter beschreibt das Systemalter des Materials eines bestimmten
Kompartiments.

• Die Transitzeit beschreibt die Zeitspanne, die zwischen dem Eintritt von Material in
das System und seinem Austritt aus dem System verstreicht.

• Die Verbleibende Systemlebenszeit beschreibt, wie lange es dauert, bis Material,
welches sich im System befindet, das System verlässt.

• Die Verbleibende Kompartimentlebenszeit beschreibt die Verbleibende Systemlebens-
zeit des Materials eines bestimmten Kompartiments.

Wir betrachten außerdem eine absorbierende zeitstetige Markow-Kette X. Ihre An-
fangsverteilung ist durch den normierten Systemeingangsvektor u gegeben; ihre quadra-
tische Übergangsmatrix wird aus der Kompartimentmatrix B konstruiert, indem wir sie um
eine Dimension vergrößern, welche ein Umweltkompartiment darstellt, das alles das Sys-
tem verlassende Material aufsammelt. Jetzt konstruieren wir einen regenerativen Prozess
Z, indem wir X unendlich oft an sich selbst aneinander heften. Den in Z eingebetteten
Erneuerungsprozess bezeichnen wir mit J . Wir können X als die zufällige Reise eines

xix



xx Zusammenfassung

einzelnen Partikels durch das System interpretieren, bis es das System verlässt, während
Z die unendliche zufällige Reise eines Partikels beschreibt, der unmittelbar nach seinem
Systemaustritt wieder in das System eintritt. Der Erneuerungsprozess J beschreibt die
Wiedereintrittszeiten des Partikels zurück ins System. Wie sich herausstellt, hat jede der
fünf deterministischen Systemgrößen von Interesse ein stochastisches Gegenstück:

• Systemalter ←→ Rückwärtsrekurrenzzeit von J ,

• Kompartimentalter ←→ bedingte Rückwärtsrekurrenzzeit von Z,

• Transitzeit ←→ Absorptionszeit von X,

• Verbleibende Systemlebenszeit ←→ Vorwärtsrekurrenzzeit von J ,

• Verbleibende Kompartimentlebenszeit ←→ bedingte Vorwärtsrekurrenzzeit von Z;
und zusätzlich

• Gleichgewichtsvektor ←→ Vektor der mittleren Aufenthaltszeiten von X, und

• Austrittsvektor ←→ Verteilung des letzten Zustandes von X vor Absorption.

Des Weiteren gilt, dass sich die Rollen von Alter und Verbleibender Lebenszeit vertauschen,
falls wir das zeitinvertierte System betrachten.

Jetzt lassen wir die Gleichgewichtsannahme fallen, aber gehen davon aus, dass wir eine
eindeutige Lösungstrajektorie des Systems gegeben haben. Für diese spezielle Trajektorie
berechnen wir explizite Formeln sowohl der Verteilungen von System- und Kompartimen-
talter als auch der Verteilungen von System- und Kompartimentlebenszeit. Wie sich weiter
herausstellt, müssen wir hier zwischen zwei Arten von Transitzeiten unterscheiden. Die
Vorwärtstransitzeit beschreibt die Zeitspanne, die Material für seine Reise durch das Sys-
tem benötigen wird, zum Zeitpunkt seines Eintritts. Die Rückwärtstransitzeit beschreibt
die Zeit, die Material für seine Reise durch das System benötigt hat, zum Zeitpunkt seines
Austritts. Es wird dann deutlich, dass die beiden nur zeitverschobene Versionen von
einander sind. Außerdem leiten wir ein gewöhnliches Differentialgleichungssystem her, um
die zeitliche Entwicklung von Momenten der Kompartimentalter des Systems zu berech-
nen, und wir finden gewöhnliche Differentialgleichungen für die zeitliche Entwicklung von
Altersquantilen.

Anschließend versuchen wir, ein Komplexitätsmaß für Kompartimentsysteme auf Basis
der Shannon-Informationsentropie des zufälligen Pfades eines einzelnen durch das System
reisenden Teilchens zu entwerfen. Wir zeigen verschiedene Interpretationsmöglichkeiten
dieser sogenannten Pfadentropie auf und analysieren ihre Tauglichkeit, als Komplexitäts-
maß zu dienen. Wir setzen sie in Relation zu existierenden Komplexitätsmaßen für dy-
namische Systeme und zu verschiedenen Entropiekonzepten stochastischer Prozesse. Da
sowohl die Systemstabilität als auch seine Komplexität eng mit der mittleren Transitzeit
des Systems verbunden sind, lässt sich eine tiefe Verbindung zwischen Stabilität und Kom-
plexität zumindest erahnen.

xx



Abstract

We investigate connections between deterministic compartmental systems and stochastic
Markov chains.

Compartmental systems are particular nonnegative dynamical systems that describe
the flow of, for instance, mass or energy into, through, and out of a system that consists
of different so-called compartments. We make the common well-mixed assumption which
states that material that enters a compartment immediately mixes with the already present
material. Usually, compartmental systems are mathematically described by a system of
ordinary differential equations (ODEs) of the shape

d

dt
x = B x + u.

Here, x is the state vector containing the system content of the quantity of interest, which
we call material, and u is a nonnegative vector of newly incoming material. We require the
square matrix B to exhibit three properties: 1) all diagonal entries are nonpositive, 2) all
off-diagonal entries are nonnegative, and 3) all column sums are nonpositive. Under these
circumstances, both the matrix B and the system itself are called compartmental and the
system is mass balanced. Let us further assume that the system is in equilibrium, i.e.,
x(t) = x∗ = −B−1 u. Regarding compartmental systems in equilibrium, we are interested
in the following quantities that describe the system dynamics:

• The system age describes the time that has passed since material that is in the
system had entered it.

• The compartment age describes the system age of material in a particular compart-
ment.

• The transit time describes the time span between material entering the system and
leaving it.

• The remaining system lifetime describes how long material that is in the system will
still be in the system before leaving it.

• The remaining compartment lifetime describes the remaining system lifetime of ma-
terial in a particular compartment.

We also consider an absorbing continuous-time Markov chainX. Its initial distribution is
given by the normalized input vector u of the system, and its square transition-rate matrix
is constructed out of the system’s compartmental matrix B by adding one dimension for an
environmental compartment that collects all the material that leaves the system. Now, we
construct a regenerative process Z by concatenating X indefinitely with itself and denote
the embedded renewal process of Z by J . While we can interpret X as the stochastic travel
of a single particle through the system until its exit, Z describes the indefinite stochastic
travel of a particle that enters the system again immediately after each exit. The renewal
process J represents the reentry times of the particle back into the system. As it turns out,
each of the five deterministic system quantities of interest has a stochastic counterpart:
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xxii Abstract

• system age ←→ backward recurrence time of J ,

• compartment age ←→ conditional backward recurrence time of Z,

• transit time ←→ absorption time of X,

• remaining system lifetime ←→ forward recurrence time of J ,

• remaining compartment lifetime ←→ conditional forward recurrence time of Z; and
additionally,

• steady-state vector ←→ mean occupation time vector of X, and

• release vector ←→ distribution of last state of X before absorption.

Furthermore, we see that the roles of age and remaining lifetime interchange if we consider
the time-reversed system.

Now, we drop the equilibrium assumption but we assume to be given a unique solution
trajectory of the system. For this particular trajectory, we compute explicit formulas for
the distributions of system/compartment age and remaining system/compartment life-
times. As it also turns out, we have to distinguish between two types of transit time here.
The forward transit time describes the time span material will need to travel through the
system at the moment of entry. The backward transit time describes the time material
has needed to travel through the system at the moment of exit. It becomes then clear
that the two are simply time-shifted versions of one another. Furthermore, we derive an
ODE system to compute the evolution of moments of the compartment-age distribution
through time and ODEs for the time evolution of age quantiles.

Then, we try to establish a complexity measure for compartmental systems based on
the Shannon information entropy of the stochastic path created by a single particle while
it travels through the system. We show different interpretations of this so-called path
entropy and analyze its capability of serving as a complexity measure. We put it in
relation to existing complexity measures of dynamical systems and to different entropy
concepts of stochastic processes. Since both the system’s stability and its complexity are
closely related to the system’s mean transit time, a deep connection between stability and
complexity can at least be conjectured.
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Introduction

The aim of this thesis is to interconnect the two mathematical fields dynamical systems and
probability theory by means of compartmental systems theory and Markov chain theory.
To great extent, compartmental systems and Markov chains are studied independently of
each other, even though these two mathematical objects share a wide range of properties.
Their similarity is based on two underlying principles: 1) While compartmental systems
preserve mass or energy of some type, Markov chains preserve probability mass. 2) While
compartmental systems are usually considered to be well-mixed, Markov chains have the
property that the future is independent of the past. These two principles define the
structure and properties of both compartmental systems and Markov chains.

1. A historical retrospect

The first theoretical treatise of compartmental system reaches back to Sheppard et al.
(1962). Ten years later, Jacquez et al. (1972) published a seminal book in which they not
only presented the then state-of-the-art compartmental systems theory, but also pointed
in many directions of future research. Anderson (1983) then wrote a complete essay on the
topic addressing aspects such as general theory, structure, stability, model identification,
controllability, and tracer kinetics. The qualitative theory of compartmental systems in
terms of classification and stability properties was later addressed by Jacquez & Simon
(1993). A modern text on the topic is the monograph by Haddad et al. (2010).

The theory of Markov chains began in 1906 when Markov doubted the necessity of
independence for the Weak Law Of Large Numbers (Seneta, 1996). Kolmogorov (1931)
then extended the theory to continuous-time Markov chains and introduced many of the
main concepts such as transition functions or the Kolmogorov-Chapman equations. Based
on transition functions, Feller (e.g., 1954), Dynkin (e.g., 1965), and many others studied
evolution equations and ergodic behavior. There is a huge amount of standard literature
on Markov chains, we might only mention Anderson (1991) and Kallenberg (2002) here.

While there have been tentative approaches to connect Markov chains with ecosystem
models (Walter, 1979; Anderson, 1983), the idea does not seem to have fallen on fertile
ground at that time and has widely fallen into oblivion shortly after.

2. Some introductory technical notes

In mathematical modeling of natural systems it is often required that the trajectory re-
mains always in the positive orthant. Dynamical systems with this property are called
nonnegative dynamical systems. A particular subclass of these are the compartmental
systems as they additionally obey conservation laws regarding for instance mass, energy,
or money. Compartmental systems describe flow models in which material is exchanged
with the outside world and among different entities, called compartments. It is hereby
usually assumed that material entering a compartment immediately mixes with the al-
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ready present material. This property, called well-mixedness, is the reason why the future
behavior of material in the system depends only on its current position and is independent
of the past. Even though there are plenty of ways to describe well-mixed compartmental
systems, the most common way is by means of system of ordinary differential equations
(ODEs):

d

dt
x = B x + u.

Here, x is the state vector containing the system content of the quantity of interest, from
now on called material, and u is a nonnegative vector of newly incoming material. The
key property of compartmental systems is, in order for the system to balance mass, that
the square matrix B = (Bij) exhibits the three properties

(i) Bii ≤ 0 for all i,

(ii) Bij ≥ 0 for all i 6= j, and

(iii)
∑
i
Bij ≤ 0 for all j.

Then, B is called compartmental and governs all internal cycling of material as well as the
exit of material from the system.

A Markov process is a particular stochastic process in which the future of the process is
independent of the past. We call Markov processes that are continuous in time and have
a finite state space S̃ continuous-time Markov chains, even though in the literature there
are different names for them. The infinitesimal future of a probability distribution on S̃
is governed by a so-called infinitesimal generator or transition-rate matrix Q = (Qij). In
order for the Markov chain to preserve probability mass, this square transition-rate matrix
has the properties

(I) Qii ≤ 0 for all i,

(II) Qij ≥ 0 for all i 6= j, and

(III)
∑
i
Qij = 0 for all j.

It is important to note here that in standard probability literature the indices i and j are
interchanged.

We immediately notice that the only difference between the properties of B and Q can
be found in the difference between (iii) and (III). Suppose we are given a d-dimensional
compartmental system. We increase the system by one dimension by adding a column and
a row to B such that all columns sum to zero. This results in a transition-rate matrix of
a continuous-time Markov chain on the state space S̃ = {1, 2, . . . , d, d + 1}. This simple
observation is the basis of the thesis at hand and most of the results that follow are derived
from it.

3. Relevance of compartmental systems and Markov chains

In a large variety of scientific fields such as systems biology, toxicology, pharmacokinet-
ics (Anderson, 1983), ecology (Eriksson, 1971; Rodhe & Björkström, 1979; Matis et al.,
1979; Manzoni & Porporato, 2009), hydrology (Nash, 1957; Botter et al., 2011; Harman
& Kim, 2014), biogeochemistry (Manzoni & Porporato, 2009; Sierra & Müller, 2015), or
epidemiology (Jacquez & Simon, 1993), models are based on the principle of mass con-
servation. In many cases such models are nonnegative dynamical systems that can be
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described by first-order systems of ODEs with strong structural constraints. Such systems
are called compartmental systems (Anderson, 1983; Walter & Contreras, 1999; Haddad
et al., 2010). We can classify such systems as combinations of linear/nonlinear and au-
tonomous/nonautonomous (time-independent/time-dependent). For the sake of simplic-
ity, most classical examples model natural processes by linear autonomous compartmental
systems (e.g., tracer kinetics, carbon cycle, leaky fluid tanks). On the one hand, the
simple structure of such systems allows a good understanding of undergoing processes in
the modeled system. On the other hand, natural systems usually show highly complex
interactions and depend on a constantly changing environment. Consequently, most of
the time nonlinear nonautonomous compartmental models (Kloeden & Pötzsche, 2013)
are more appropriate to model natural systems.

The theory of Markov processes is the most extensively developed part of probability the-
ory. It covers, in particular, Poisson processes, Brownian motions, and all other Lévy pro-
cesses (Çinlar, 2011). They can be classified into time-homogeneous/time-inhomogeneous,
discrete/continuous state space, and finite/infinite state space. Consequently, they are
very flexible and find important applications in fields such as telecommunication net-
works, queuing theory, insurance theory (Asmussen, 2003), and almost infinitely many
more. In Chapter 2, absorbing continuous-time Markov chains are the basis to construct
renewal- and regenerative processes that appropriately link Markov chains with compart-
mental systems. The main advantage of this link is that when we solve a problem in
either Markov chain theory or compartmental systems theory, we automatically solve an
according problem in the other field.

4. Age, transit time, remaining lifetime, and entropy

Ages, transit times, and remaining lifetimes are key quantities of compartmental systems
that can be considered to better understand underlying system dynamics and to compare
models with different sizes or structures. While age describes how old material in the
system is, transit time describes how long material needs to travel through the entire
system from entry to exit. Remaining lifetime, on the other hand, describes how long
particles that are currently in the system still need until they leave the system (Bolin
& Rodhe, 1973). These quantities provide us with information about the time scales on
which systems operate. Also the concepts of residence time or turnover times can be
useful for that purpose. However, the latter two concepts have to be clearly separated
from what is presented in the present thesis. For more information about this issue and
also about the historical confusion regarding all the different age- and time concepts, see
Sierra et al. (2016). The results of Chapters 2 and 3 generalize classical approaches of
computing ages and transit times (Bolin & Rodhe, 1973; Thompson & Randerson, 1999;
Manzoni et al., 2009; Rasmussen et al., 2016). Furthermore, the concept of remaining
lifetime is introduced to compartmental systems theory.

The Shannon information entropy as a complexity measure is only one new approach to
the already confusing field of complexity of dynamical systems (Ebeling et al., 1998). It
can be used to describe the uncertainty of a particle’s path through the system, as a tool
for honest modeling by means of the maximum entropy principle (Jaynes, 1957a,b), and
as a means for comparing path properties of models with different sizes and structures.
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5. Organization of the thesis

In Chapter 1, we introduce the basic theory of compartmental systems along the lines of
Jacquez et al. (1972), Jacquez & Simon (1993), and Anderson (1983). From the princi-
ple of mass conservation, we derive the general structure of ODE systems that describe
compartmental systems. Afterwards, we introduce compartmental matrices, classify com-
partmental systems, and present a short excursion on stability properties. At the end, we
introduce the concepts of age, transit time, and remaining lifetime.

Chapter 2 is loosely based on Metzler & Sierra (2018). Here, we concentrate on the
links between open compartmental systems in equilibrium and absorbing continuous-time
Markov chains. We compute explicit formulas of the distributions of ages, transit times,
and remaining lifetimes of compartmental systems and show how they find their probabilis-
tic counterparts in backward recurrence times, absorption times, and forward recurrence
times of renewal- and regenerative processes, respectively. These processes are constructed
by repeatedly concatenating an absorbing Markov chain with itself. Subsequently, we ap-
ply the derived formulas to two well-known carbon cycle systems.

Chapter 3, which is free of probability theory and based on Metzler et al. (2018), ex-
tends the results on the distributions of ages, transit times, and remaining lifetimes to
nonautonomous and possibly even nonlinear systems. Furthermore, we derive ODEs to
compute the evolution of the mean age, higher-order moments, and age quantiles through
time in a very convenient way. Then, we apply the derived theoretical results to a simple
global carbon cycle model to answer two questions of high societal interest: How old is
atmospheric carbon? How long will a significant fraction of a pulse of fossil fuel carbon,
emitted to the atmosphere today, remain in the system? Finally, we show how existing
nonlinearities noticeably affect not only the total stocks but also the distributions of ages
and transit times in the employed model.

In Chapter 4, we focus on developing a complexity measure for compartmental systems
based on Shannon information entropy. To that end, we first give a short overview of
Shannon information entropy for random variables and stochastic processes along the lines
of Cover & Thomas (2006). Then, we introduce three entropy concepts for compartmental
systems in equilibrium: entropy rate per jump, entropy rate per unit time, and path
entropy. These concepts are then analyzed in terms of their capability of serving as
complexity measures. Furthermore, they are used as tools for model identification by
means of the maximum entropy principle (Jaynes, 1957a,b). For some historical remarks
on this principle, see Cover & Thomas (2006, Chapter 12). At the end, we extend the
concepts of path entropy and entropy rate to systems out of equilibrium.

Chapter 5 summarizes the results of the thesis and puts them in relation to each other.
Furthermore, we put the results in a broader context and give an outlook on possible
future research in the field.

The main text is followed by four appendices. Appendices A and B provide basic
properties of the matrix exponential and the state-transition matrix, respectively. Usually,
these properties are used tacitly throughout the main text, because we assume the reader
to be familiar with them.

A number of stochastic processes are central to the thesis. Appendix C presents them
along with their most important properties with respect to the main text.

In Appendix D, we present some small compartmental systems in equilibrium with
simple structure along with the densities of their age- and transit-time distributions as well
as the according mean values. The formulas shown are derived from the general theory
on age- and transit-time distributions in Chapter 2. They coincide with the formulas
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that were derived by Manzoni et al. (2009) on a tedious case-by-case basis via Laplace
transforms.

6. General notes on setup and notation

We work with the following number systems:

• the natural numbers N := {1, 2, 3, . . .},

• the real numbers R,

• the complex numbers C,

• for d ∈ N, the d-dimensional vector space Rd over R,

• for d1, d2 ∈ N, the space Rd1×d2 of real d1 × d2-matrices,

• the nonnegative real numbers R+ := {r ∈ R : r ≥ 0},

• for d ∈ N, the nonnegative orthant Rd+ := {v = (vi)i=1,2,...,d ∈ Rd : vi ≥ 0 for i =
1, 2, . . . , d}, and

• all obvious variants of them.

Throughout the entire thesis, vectors v = (vi)i are written in bold face and matrices
M = (Mij)i,j in upright face. The same holds true for vector- and matrix-valued functions,
respectively. A vector or matrix is considered nonnegative or positive if all their elements
are nonnegative or positive, respectively. The only vector norm used is the l1-norm given
by

‖v‖ :=
∑
i

|vi|,

where |vi| denotes the absolute value of vi. The only matrix norm used is the one induced
by the l1-norm, i.e., the norm of maximum absolute column sums

‖M‖ := max
j

∑
i

|Mij |.

We omit subscripts of vectors and matrices if it does not lead to confusion.
The number n is usually natural. The number d ∈ N usually denotes the dimension of

the ODE system that describes the compartmental system at hand. Equivalently, d denotes
the number of compartments of the considered system. Consequently, S := {1, 2, . . . , d}
is the state space of the absorbing continuous-time Markov chain X that describes the
travel of a single particle through the system, and S̃ := {1, 2, . . . , d, d + 1} is the state
space of X extended by an absorbing state d + 1, also called environmental state. The
regenerative process Z describes the travel of a particle that immediately reenters the
system after its exit, while its counterpart Z̃ describes the travel of a particle that remains
for some time in the environmental state before it reenters the system. To guarantee
that all particles eventually leave the system, we consider only systems in which the
compartmental matrix B is invertible. This invertibility is also required for all B(x, t),
where x ∈ Rd+ and t ≥ t0. Here, t0 ∈ R is some fixed initial time of the compartmental
system. We suppose that elements involved in stated ODE systems are such that the
systems are uniquely solvable, and that the solution is sufficiently smooth. Furthermore,
we consider well-mixed compartmental systems only.
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xxviii Introduction

All involved random variables and stochastic processes are supposed to be supported by
a sufficiently rich probability space (Ω,F ,P). In Chapter 2, we deal with random variables
Y : Ω→ R. Consequently,

FY (y) := P(Y ≤ y)→ 1 as y →∞.

We call FY the cumulative probability distribution of Y . Hence, for a given function
fY : R→ R+ such that

FY (y) =

y∫
−∞

fY (σ) dσ, y ∈ R,

we have
∞∫
−∞

fY (y) dy = 1.

We call fY the probability density function of Y . Note that we do not mention explicitly
that fY (y) = 0 for y < 0 when it is obvious (e.g., when Y describes an age or a transit
time). We use the nonstandard term cumulative probability distribution to veer away
from the terms used in Chapter 3 where we do not deal with probability masses but with
masses in general. In Chapter 3, the counterpart of the cumulative probability distribution
is called cumulative distribution and is denoted by P or, if it describes ages, cumulative age
distribution. The counterpart of the probability density function is simply called density
function and denoted by p.

Often in the literature, Markov chains are assumed to be supported on a discrete time
set and Markov processes on continuous time intervals. Since most of the time in this thesis
we deal with continuous-time objects, we do not make this distinction and always speak of
Markov chains. If necessary, we put discrete-time or continuous-time in front. This way, we
stick to the notation of Anderson (1991). In the following, all involved Markov chains are
equipped with a finite discrete state space called S or S̃. Such processes are also known as
Markov jump processes in the literature. Note that all our stochastic processes are assumed
to be right-continuous and we use the terms steady state and equilibrium interchangeably.
Furthermore, we omit the terms almost surely (a.s.) and almost everywhere (a.e.), because
the additional technical notation would not serve any practical purpose in this thesis.

Another important remark is that renewal processes are often defined to be counting
processes that count the number of occurrences of events. However, throughout this
thesis, we follow the definition of Asmussen (2003) which specifies renewal processes as
the sequence of moments in time at which evens occur.
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CHAPTER 1

Introduction to compartmental systems

Our goal in this chapter is to derive the general structure of ODE systems that describe
compartmental systems from the principle of mass conservation, to introduce compart-
mental matrices, to classify compartmental systems, and to introduce important system
diagnostics.

1.1. From mass conservation to a first-order ordinary differential
equation system

Following Jacquez & Simon (1993), a compartment is an amount of kinetically homoge-
neous material. Kinetically homogeneous means that any material entering the system is
immediately mixed with the material of the compartment. Compartmental systems de-
scribe the flow of material into different compartments, the subsequent distribution of the
material among the different compartments, and eventually the exit of the material from
the system of compartments.

Suppose we are given a fixed real-valued starting time t0 and a set S = {1, 2, . . . , d}
of compartments, with d being a natural number. Throughout this chapter, i and j are
assumed to be elements of S. For all j, the amount of material in compartment j at time
t ≥ t0 is denoted by xj(t). We collect the xj(t) in a vector x(t) := (x1(t), . . . , xd(t))

>,
where the superscript > stands for the transpose. Furthermore, let Ij(t) and Oj(t) describe
the flux of material entering and leaving compartment j at time t, respectively. For any
compartment j, the law of mass conservation implies

(i) d
dt xj(t) = Ij(t)−Oj(t), and

(ii) if a compartment is empty, nothing can flow out.

From condition (ii), we can derive the following lemma which is a variation of a result
of Jacquez & Simon (1993, Appendix 1), but with a more elaborate (multi-dimensional)
proof. The original proof is only given for the one-dimensional case.

Lemma 1.1 Let n ∈ N, i 6= j, and Fij : (x, t) 7→ Fij(x, t) ∈ R+ a nonnegative flux from
compartment j to compartment i, which is n times continuously differentiable in x with
Fij(x, t) = 0 if xj = 0. Then, there is a function Bij : (x, t) 7→ Bij(x, t) ∈ R+ such that
Fij(x, t) = Bij(x, t)xj. Furthermore, Bij is n− 1 times continuously differentiable in x.

Proof. We fix x ≥ 0 and t ≥ t0. For the sake of simplicity of notation omit t as the second
variable in functions. Moreover, for s ∈ [0, 1] we define a vector y(s) ∈ Rd+ by yk(s) := xk

1



2 1. Introduction to compartmental systems

for k 6= j and yj(s) := s xj , and we define a function G : [0, 1]→ R+ by G(s) := Fij(y(s)).
Taking the derivative of G with respect to s ∈ (0, 1), we obtain

d

ds
G(s) =

∑
k∈S

DkFij(y(s))
d

ds
yk(s),

where Dk denotes the partial derivative with respect to the kth coordinate, and d
ds yk(s) =

1{k=j} xj . Here, 1{k=j} is the indicator function, defined to be 1 if k = j and 0 otherwise.
Denoting by 0 the vector comprising zeros and using (ii), we can compute

Fij(x) = Fij(x)− 0 = Fij(x)− Fij(0)

= G(1)−G(0) =

1∫
0

d

ds
G(s) ds

=

1∫
0

∑
k∈S

Dk Fij(y(s))
d

ds
yk(s) ds

=

1∫
0

Dj Fij(y(s))xj ds

= xj Bij(x),

where Bij(x) :=
∫ 1
0 Dj Fij(y(s)) ds is n−1 times differentiable in x. Note that Bij depends

on x through the definition of y.

We now aim at applying this lemma so as to derive a system of ODEs that describes the
flow of material in a compartmental system. To this end, we need to split the inputs to
compartments into external and internal inputs. External inputs enter the compartment
from outside the system and internal inputs enter the compartment by coming in from
other compartments. For compartment i, we denote them by ui and Iint,i, respectively.
The same needs to be done for outputs from the compartments, where we write ri for
fluxes leaving the system from compartment i, and Oint,i denotes internal outputs from
compartment i that move to another compartment. From (i), for i ∈ S, we then obtain

d

dt
xi(t) = Ii(t)−Oi(t)

= ui(t) + Iint,i(t)− (ri(t) +Oint,i(t))

= ui(t) +
∑
j 6=i

Fij(x(t), t)−

ri(x(t), t) +
∑
j 6=i

Fji(x(t), t)

 .
(1.1)

For i 6= j, we can now use Lemma 1.1 to infer the existence of functions Bij , zi : Rd+ ×
[t0,∞)→ R+ such that

Fij(x(t), t) = Bij(x(t), t)xj(t),

Fji(x(t), t) = Bji(x(t), t)xi(t), and

ri(x(t), t) = zi(x(t), t)xi(t).

We plug the newly obtained functions Bij and zi into Eq. (1.1) and see

d

dt
xi(t) = ui(t) +

∑
j 6=i

Bij(x(t), t)xj(t)−

zi(x(t), t) +
∑
j 6=i

Bji(x(t), t

xi(t). (1.2)

2



1.2. Definition of compartmental matrices and compartmental systems 3

By defining

Bii(x(t), t) := −

zi(x(t), t) +
∑
j 6=i

Bji(x(t), t)

 , (1.3)

we see
d

dt
xi(t) = ui(t) +

∑
j∈S

Bij(x(t), t)xj(t).

In matrix notation we obtain

d

dt
x(t) = B(x(t), t) x(t) + u(x(t), t), (1.4)

where B = (Bij) : Rd+ × [t0,∞)→ Rd×d is a square matrix-valued function and u = (ui) :
Rd+ × [t0,∞)→ Rd+ is a nonnegative vector-valued function.

For the sake of simplicity of notation, from now on we occasionally omit the arguments
of the functions.

Remark 1.2 Let i 6= j. From Eq. (1.2), we can identify zi xi and
(∑

j 6=iBji

)
xi as the

external and internal outputs from compartment i, respectively. Eq. (1.3) makes us then
interpret −Bii xi as the total output from compartment i. Furthermore, the same equation
shows zi = −(Bii +

∑
j 6=iBji) = −

∑
j∈S Bji, or in vector notation

z> = −1>B, (1.5)

where 1 is the column vector filled with ones.

This observation motivates the following definition.

Definition 1.3 Let i 6= j. Then, the Bij ’s are called fractional transfer coefficients or
simply transfer rates. They describe the rates of how fast material moves from compart-
ment j to compartment i. The −Bii’s are called decay rates. They describe the rate of
how fast material leaves compartment i. Finally, the zi’s are called output rates or release
rates. They describe how fast material leaves the system from compartment i.

1.2. Definition of compartmental matrices and compartmental
systems

Matrix B in Eq. (1.4) has particular properties which we investigate more closely in this
section. Always bear in mind that by the law of mass conservation all fluxes are required
to be nonnegative as well as all components of the vector x. Since for all i,

0 ≤ Oi =

zi +
∑
j 6=i

Bji

xi = −Bii xi,

we have Bii ≤ 0. For all j 6= i, additionally 0 ≤ Fij = Bij xj . Consequently, Bij ≥ 0.
Furthermore, for all j,

0 ≤ rj = zj xj = −

Bjj +
∑
i 6=j

Bij

xj =

(
−
∑
i∈S

Bij

)
xj .

Hence,
∑

i∈S Bij ≤ 0. These results motivate the following definitions.
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4 1. Introduction to compartmental systems

Definition 1.4 A square matrix B = (Bij) is called a compartmental matrix if

(i) Bii ≤ 0 for all i,

(ii) Bij ≥ 0 for all i 6= j, and

(iii)
∑
i∈S

Bij ≤ 0 for all j.

Definition 1.5 Let f : Rd+ × [t0,∞)→ Rd+ be such that the initial value problem

d

dt
x(t) = f(x(t), t), t > t0,

x(t0) = x0 ∈ Rd+,
(1.6)

has a unique solution on [t0,∞). Furthermore, let B = (Bij) : Rd+ × [t0,∞) → Rd×d and
u = (ui) : Rd+ × [t0,∞)→ Rd+ be bounded continuous functions. If we can write f as

f(x(t), t) = B(x(t), t) x(t) + u(x(t), t), t ≥ t0,

with the matrix B(x, t) being compartmental for all x ∈ Rd+ and t ≥ t0, then we call the
first-oder system (1.6) of ODEs a compartmental system. We can state it more explicitly
as

d

dt
x(t) = B(x(t), t) x(t) + u(x(t), t), t > t0,

x(t0) = x0 ∈ Rd+.
(1.7)

The function x : [t0,∞)→ Rd+ is called system state trajectory or the system’s solution
trajectory, and u : Rd+ × [t0,∞) ∈ Rd+ is the system’s external input function.

If B(x, t) = B(t) and u(x, t) = u(t) for all x ∈ Rd+ and all t ≥ t0, i.e., B and u are
independent of the system state x(t), then the system is called linear, otherwise it is called
nonlinear.

If B(x, t) = B(x) and u(x, t) = u(x) for all x ∈ Rd+ and all t ≥ t0, i.e., B and u do
not explicitly depend on the time t, then the system is called autonomous, otherwise it is
called nonautonomous.

A linear autonomous compartmental system takes the particular shape

d

dt
x(t) = B x(t) + u, t > t0,

x(t0) = x0 ∈ Rd+,
(1.8)

where B is a compartmental matrix and u is a nonnegative external input vector.

Remark 1.6 Many models of vegetation processes include a state-dependent input func-
tion u. For instance, the amount of carbon coming into a vegetation system through
photosynthesis may depend on the available leaf carbon.

A compartmental system guarantees that no material gets lost or is produced out of
nowhere. Consequently, all components of the state vector are nonnegative at all times
provided that the initial state vector is nonnegative. However, three potential issues may
arise. We examine them for the case of a linear autonomous system:

(1) There exists a compartment j with Bjj = 0, which means that this compartment
does not lose any material. On the contrary, the compartment accumulates material
indefinitely if it receives inputs.

4



1.2. Definition of compartmental matrices and compartmental systems 5

(2) All column sums of B vanish. Since the negative column sums coincide with the
release rates, the system does not lose any material and might accumulate material
indefinitely.

(3) There exists a subsystem of compartments that does not lose any material, meaning
that some material remains stuck in a subcycle. If this subsystem receives external
inputs, it will accumulate material indefinitely.

To avoid all three of these undesired effects, we require the compartmental matrix B to
be invertible. This requirement is motivated by the following lemma.

Lemma 1.7 If a compartmental matrix B = (Bij) ∈ Rd×d is invertible, then

(i) Bjj < 0 for all j,

(ii) there is a compartment j with external outputs, i.e., zj > 0, and

(iii) there is no subsystem of compartments that does not lose any material.

Proof. We begin with proving (i). To this end, we assume that there is a compartment j
with Bjj = 0, and we fix this j. By Definition 1.4 of compartmental matrices, we know
Bij ≥ 0 for i 6= j. Furthermore, the release rate zj = −

∑
i∈S Bij ≥ 0 by the same

definition. Multiplying Eq. (1.3) by −1, we obtain

0 = −Bjj = zj +
∑
i 6=j

Bij ,

and it is immediately obvious that Bij = 0 for all i. Consequently, the jth column of
B vanishes, which prevents B from being invertible. Since B is invertible by assumption,
there cannot exist a j such that Bjj = 0 and (i) is proven.

Now, we prove (ii). To this end, we assume all column sums of B to be 0, which means
zj = 0 for all j. By Eq. (1.5), B> 1 = −z = 0. Consequently, the kernel of B> contains
a nonzero vector, which proves that B> and also B are not invertible. This again violates
the assumption of the lemma and Eq. (1.5) is proven.

To prove (iii), we assume that there is a d̂-dimensional subsystem that does not lose
any material. We collect the compartments of this subsystem in the set Ŝ and denote the
corresponding compartmental matrix by B̂. The release rates ẑj of the subsystem vanish.

Consequently, the d̂-dimensional vector 1> is in the kernel of B̂, and the nonnegative
vector y = (yj)j=1,2,...,d defined by

yj =

{
1, j ∈ Ŝ,
0, otherwise,

is in the kernel of B, which again contradicts the lemma’s assumption that B be invertible,
and the proof is complete.

The invertibility of the compartmental matrix thus guarantees that all material that
enters the system will eventually leave it. For a linear autonomous system this moti-
vates the definition of an open system. This definition naturally carries over to general
compartmental systems.

Definition 1.8 A compartmental system (1.7) is called open, if for all x ∈ Rd+ and all
t ≥ t0 the compartmental matrix B(x, t) is invertible.

5



6 1. Introduction to compartmental systems

Remark 1.9 From the preceding discussion, we know that open compartmental systems
have the following properties. For all x ∈ Rd+ and all t ≥ t0,

(i) Bii(x, t) < 0 for all i,

(ii) Bij(x, t) ≥ 0 for all i 6= j,

(iii)
∑
i∈S

Bij(x, t) ≤ 0 for all j,

(iv) there exists a compartment j with external outputs, i.e., zj(x, t) > 0, and

(v) there is no subsystem that does not have any outputs.

Since we know that for open linear autonomous compartmental systems all material
that enters the system will eventually leave the system, it is natural to ask the following
two questions: Can we infer some kind of stability properties of the system? How long
does material need to travel through the system, from entering the system to leaving it?
Let us turn our attention to the question of stability first.

1.3. Stability of compartmental systems

Definition 1.10 Let x and y be two solution trajectories of a compartmental system with
initial values x0 and y0, respectively. The compartmental system is called exponentially
stable if there exist K ≥ 1 and γ > 0 such that

‖x(t)− y(t)‖ ≤ K e−γ (t−t0) ‖x0 − y0‖ for all t ≥ t0.

Lemma 1.11 Let B be the compartmental matrix of an open linear autonomous compart-
mental system. Then all eigenvalues of B have negative real part.

Proof. We apply the Gershgorin circle theorem (Varga, 2009, Theorem 1.11). It guarantees
that all eigenvalues of B are located in the closed disc {λ ∈ C : |Bjj−λ| ≤ Rj} with radius
Rj =

∑
i 6=j Bij and centered at Bjj for at least one j. (Recall that Bjj is negative.)

By Definition 1.4 of compartmental matrices, the radius Rj ≤ −Bjj . Consequently, all
eigenvalues are located in the left half of the complex plane with the rightmost possible
eigenvalue being equal to zero. Since the system is supposed to be open, B is invertible
and cannot have a zero eigenvalue. Hence, all eigenvalues of B have negative real part.

Definition 1.12 Let Eq. (1.7) be a compartmental system with arbitrary initial value. If
there exists x∗ ∈ Rd+ such that, for all t ≥ t0,

B(x∗, t) x∗ + u(x∗, t) = 0,

then x∗ is called a steady state or equilibrium of the compartmental system.

Proposition 1.13 Every open linear autonomous compartmental system (1.8) is exponen-
tially stable. Furthermore, the system has the unique steady state x∗ = −B−1 u to which
all solutions converge as t→∞, independently of the initial value x0.

Proof. We denote by eM the matrix exponential (Appendix A) of a square matrix M and
by I the identity matrix. The unique solution x of the linear system (1.8) is given by

6



1.3. Stability of compartmental systems 7

(Brockett, 2015, Corollary of Theorem 1.6.1)

x(t) = e(t−t0) B x0 +

t∫
t0

e(t−τ) B u dτ, t ≥ t0, (1.9)

which we can compute to

x(t) = e(t−t0) B x0 + B−1
(
e(t−t0) B − I

)
u, t ≥ t0.

Now let x and y denote two solutions of Eq. (1.8) with initial values x0 and y0, respec-
tively. For t ≥ t0,

‖x(t)− y(t)‖ = ‖e(t−t0) B x0 − e(t−t0) B y0‖
= ‖e(t−t0) B

[
x0 − y0

]
‖

≤ ‖e(t−t0) B‖ · ‖x0 − y0‖.

From Lemma 1.11 we already know that all eigenvalues of B are negative. By Engel &
Nagel (2000, Theorem I.3.14) there exist K ≥ 1 and γ > 0 such that

‖e(t−t0) B‖ ≤ K e−(t−t0) γ . (1.10)

Note that the matrix norm here is supposed to be the operator norm. In our case, the
matrix norm of maximum absolute column sums coincides with the operator norm based
on the vector norm of the absolute coordinate sum. Consequently,

‖x(t)− y(t)‖ ≤ K e−γ (t−t0) · ‖x0 − y0‖

for all t ≥ t0, and the compartmental system is exponentially stable.
Obviously, since B x∗+u = −B B−1 u+u = 0, the vector x∗ = −B−1 u is a steady state

of the given compartmental system. The existence of another steady state y∗ 6= x∗ would
violate the exponential stability of the system. Also because of the exponential stability,
all solutions with an arbitrary initial value x0 ∈ Rd+ must necessarily converge toward x∗

as t→∞.

Corollary 1.14 As long as the compartmental matrix B is invertible, we see directly from
Eq. (1.10) that for any v ∈ Rd+ the term e(t−t0) B v vanishes as t→∞.

For linear nonautonomous systems, the concept of steady states is not very useful since
the system input as well as the transfer rates might permanently change. Nevertheless, the
concept of exponential stability from Definition 1.10 is still appropriate. In the autonomous
case, it describes how all trajectories approach one single point x(t) = x∗ in space. In
the nonautonomous case, exponential stability means that any pair of trajectories will
exponentially fast come arbitrarily close to each other as t → ∞, even though neither
of them might ever become constant (Figure 1.1). Very general conditions for an open
linear autonomous system to be exponentially stable are given in Rasmussen et al. (2016,
Theorem 1).

So far, we have only dealt with stability of linear compartmental systems, and we do
not engage in the topic of stability of nonlinear compartmental systems. This topic is
beyond the scope of this thesis. In nonlinear stability analysis, to quote Jacquez & Simon
(1993), “anything can happen.” Nevertheless, Jacquez & Simon (1993) categorize nonlinear
compartmental systems in terms of their stability properties. In addition to this paper,
also Anderson & Roller (1991) is a valuable resource for this opaque topic.

7



8 1. Introduction to compartmental systems

Figure 1.1. Trajectories of exponentially stable autonomous (upper plots) and exponentially stable
nonautonomous (lower plots) linear compartmental systems with respect to time (left) and in a two-
dimensional state space (right). In the autonomous case, all trajectories converge to a fixed point in
the state space (red dot) independently of their initial conditions, while in the nonautonomous case all
trajectories are forward attracting. In case of an infinite history of the system, there exists a unique
pullback attracting trajectory (red curve). (Figure and caption modified from Sierra et al. (2018).)

1.4. Ages, transit times, and remaining lifetimes of
compartmental systems

Now we turn our attention to the second question: How long does material need to travel
through the system, from entering the system to leaving it?

All exponentially stable open compartmental systems share the property that material
enters the system at its arrival time ta and exits from the system at a later point te in time.
The duration te − ta is the time that the material needs to travel through the system and
we call it transit time. Since a general compartmental system’s inner dynamics might be
subject to permanent change, we discriminate two types of transit time. The underlying
concept of this discrimination is the concept of age. We also split the concept of age into
two different quantities: the age of all particles in the system and the age of particles
that belong to a particular compartment. Both quantities play an important role not only
for their close relation to the idea of transit time but also in their own right. A third
important concept is, how long particles that are already in the system will still remain
there before they exit. We call this concept remaining lifetime and, again, we discriminate
between all particles in the system and particles that belong to a particular compartment.

Concept 1.15 The system age A(t) of a compartmental system at time t is the time
span t− ta that the system’s current material has already spent in the system under the
constraint that the material has entered the system at time ta.

The compartment age aj(t) with respect to compartment j of a compartmental system

8



1.4. Ages, transit times, and remaining lifetimes of compartmental systems 9

is the system age of the material contained in compartment j at time t.

We will define age more precisely in Section 2.2.6. For now, we assume to have a precise
definition of age. Based on this precise definition, we can now focus on the transit time.

Definition 1.16 The forward transit time FTT(ta) of a compartmental system is the age
that the material will have at time te of its exit from the system under the constraint that
the material enters the system at time ta.

The backward transit time BTT(te) of a compartmental system is the age of the material
in the output from the system at exit time te.

Definition 1.17 The remaining system lifetime L(t) of a compartmental system at time
t is the time span te − t that the system’s current material will still spend in the system
before its exit at time te.

The remaining compartment lifetime lj(t) with respect to compartment j of a compart-
mental system is the remaining system lifetime of the material contained in compartment
j at time t.

The concepts of age, transit time, and remaining lifetime are central to major parts of
this thesis in that we not only derive formulas to compute their distributions, moments,
and quantiles, but also connect them to appropriate probabilistic quantities. Afterwards,
we apply the derived formulas to relevant examples from soil organic matter decomposition
and the global carbon cycle.
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CHAPTER 2

Compartmental systems in equilibrium and continuous-time
Markov chains

For open compartmental systems, it is natural to ask for ages, transit times, and remain-
ing lifetimes. They give insight into the inner structure of the system and into internal
dynamics, and provide us with additional information to make us better understand the
system. Furthermore, they are important metrics if we want to compare different mod-
els that describe similar or different systems. Moreover, we can better constrain model
parameters when we compare tracer measurements with theoretical results on ages and
transit times. For example, we can improve our knowledge about the global carbon cycle
if we find out how old carbon is in the soils, in the vegetation, or in the atmosphere. If
we aim at constructing large-scale models by conflating many small-scale models, be it
spatially or temporally, even knowledge on ages and transit times on microbial scale turns
out to be useful.

In this chapter, which is loosely based on Metzler & Sierra (2018), we consider two eco-
logical models represented by compartmental systems in equilibrium and ask the questions
for their respective age structures, transit times, and remaining lifetimes. As it turns out,
these questions can be answered from two perspectives. The first perspective is the the
dynamical systems point of view, whereas the second one is of probabilistic nature. We
show that many deterministic concepts have a stochastic counterpart. This link between
two different mathematical fields is based on 1) the restrictions of keeping mass balanced
in compartmental systems and conserving probability mass in the theory of stochastic
processes, and 2) the well-mixedness of compartments and the future’s independence of
the past in Markov chains.

Throughout this chapter, several stochastic processes play a major role. They are intro-
duced in Appendix C along with some of their most important properties. Some examples
of compartmental systems in equilibrium with very simple structure along with applica-
tions of the formulas derived in this chapter to these systems are presented in Appendix D.

2.1. Introduction of two ecological examples

We consider two examples of carbon cycle models. Even though the first system is linear
and the second one is nonlinear, both systems’ properties can be investigated by the same
approach because the two systems find themselves in equilibrium. For each of the systems,
we ask for the internal carbon’s age structure and for how long carbon needs to transit
the system.

11



12 2. Compartmental systems in equilibrium and continuous-time Markov chains

2.1.1. A linear autonomous global carbon cycle model, I

We consider the global carbon cycle model introduced by Emanuel et al. (1981) (Fig-
ure 2.1). Since Thompson & Randerson (1999) numerically calculated age- and transit-
time distributions using an impulse response function approach, this model is a very good
test case once we have developed a general theory for ages and transit times. The model
comprises five compartments: non-woody tree parts x1, woody tree parts x2, ground
vegetation x3, detritus/decomposers x4, and active soil carbon x5. Since the model is
considered to be in equilibrium, the initial state is negligible and, the model is given by

d

dt
x(t) = B x(t) + u, t > 0,

where the input vector is given by u = (77.00; 0.00; 36.00; 0.00; 0.00)> Pg C yr−1 and the
compartmental matrix by

B =


−77/37 0 0 0 0
31/37 −31/452 0 0 0

0 0 −36/69 0 0
21/37 15/452 12/69 −48/81 0

0 2/452 6/69 3/81 −11/1121

 yr−1.

The numbers are chosen exactly as in Thompson & Randerson (1999). The input vector is
expressed in units of petagrams of carbon per year (Pg C yr−1) and the fractional transfer
coefficients in units of per year (yr−1). Because B is a lower triangular matrix with nonzero
diagonal entries, it is invertible. Furthermore, B is compartmental and hence we deal with
an open system, wherefore it is reasonable to ask for age and transit time of this model.
We are not yet in the position to answer these questions, but there are some interesting
quantities we can already compute. So is the steady-state vector of carbon contents given
by

x∗ = −B−1 u = (37.00; 452.00; 69.00; 81.00; 1, 121.00)> Pg C

and the respiration vector (external output vector, release vector) in steady state by

r = (zj x
∗
j )j=1,2,...,5 = (25.00; 14.00; 18.00; 45.00; 11.00)> Pg C yr−1.

2.1.2. A nonlinear autonomous soil organic matter decomposition model, I

Consider the nonlinear autonomous compartmental system

d

dt
x(t) = B(x(t)) x(t) + u, t > 0, (2.1)

where B : Rd → Rd×d is a matrix-valued mapping. In this setup, the fractional transfer
coefficients are not constant but depend on the system’s content.

Assume now that system (2.1) is in a steady state x∗. From d x∗/d t = 0 follows that the
compartment contents x∗j do not change in time, and the mapping B turns into a matrix
with constant coefficients. Hence, if we assume the nonlinear autonomous compartmental
system (2.1) to be in a steady state, we can treat it as a linear autonomous compartmental
system.

As an example, consider the nonlinear two-compartment carbon cycle model described
by Wang et al. (2014) (Figure 2.2). We denote by Cs and Cb soil organic carbon and soil mi-
crobial biomass (g C m−2), respectively, by ε the carbon use efficiency or fraction of assim-
ilated carbon that is converted into microbial biomass (unit-less), by µb the turnover rate

12



2.1. Introduction of two ecological examples 13

Figure 2.1. Schematic of the linear autonomous global carbon cycle model in steady state introduced
by Emanuel et al. (1981). The model comprises five compartments: non-woody tree parts x1 (2;
37 Pg C), woody tree parts x2 (3; 452 Pg C), ground vegetation x3 (4; 69 Pg C), detritus/decomposers
x4 (5; 81 Pg C), and active soil carbon x5 (6; 1, 121 Pg C). The atmosphere (1) is considered to
be outside of the modeled system but provides the system with external inputs and receives external
outputs from it. Numbers next to arrows indicate fluxes between compartments in Pg C yr−1. (Figure
extracted from Emanuel et al. (1981))
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14 2. Compartmental systems in equilibrium and continuous-time Markov chains

Figure 2.2. Scheme of the nonlinear autonomous carbon cycle model introduced by Wang et al.
(2014). The two compartments Cs and Cb are here denoted by soil organic carbon (SOC) and
microbial biomass carbon (MIC), the external input flux Fnpp is denoted by Inputs, the maximum
rate of soil carbon assimilation by Vs, the half saturation constant by Ks, the carbon use efficiency
by ε, and the turnover rate of microbial biomass by µb, respectively. (Figure extracted from Wang
et al. (2014))

of microbial biomass per year (yr−1), by Fnpp the carbon influx into soil (g C m−2 yr−1),
and by Vs and Ks the maximum rate of soil carbon assimilation per unit microbial biomass
per year (yr−1) and the half-saturation constant for soil carbon assimilation by microbial
biomass (g C m−2), respectively. Then, we can describe the model by

d

dt

(
Cs
Cb

)
=

(
−λ(x) µb
ελ(x) −µb

) (
Cs
Cb

)
+

(
Fnpp

0

)
.

The matrix B depends on x = (Cs, Cb)
> through λ’s dependence on x, which is given by

λ(x) =
CbVs

Cs +Ks
. (2.2)

Steady-state formulas for the compartment contents can be computed as

C∗s =
Ks

Vsε
µb
− 1

and C∗b =
Fnpp

µb
(
−1 + 1

ε

) .
From Wang et al. (2014), we take the parameter values Fnpp = 345.00 g C m−2 yr−1, µb =
4.38 yr−1, ε = 0.39, and Ks = 53, 954.83 g C m−2. Since the description of Vs is missing in
the original publication, we let it be equal to 59.13 yr−1 to approximately meet the given
steady-state compartment contents C∗s = 12, 650.00 g C m−2 and C∗b = 50.36 g C m−2.

With the given parameters, the steady-state transfer matrix B = B(x∗) and the input
vector u are given by

B =

(
−0.0447 4.38
0.0174 −4.38

)
yr−1 and u =

(
345.00
0.00

)
g C m−2 yr−1,

respectively. Obviously, the given parameter values lead to an open linear compartmental
system in equilibrium. Consequently, again we can ask for the age structure and the transit
time of the system.

In contrast to the system from the first example, this system exhibits a feedback. This
feedback results from dead soil microbial biomass being considered as new soil organic
matter. The feedback can also be recognized by noting that B is not triangular.
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2.2. Age, transit time, and remaining lifetime 15

2.2. Age, transit time, and remaining lifetime

Even if a compartmental system is in equilibrium, material permanently enters and leaves
the system. Consequently, the material in the system is a mix of material with different
ages as is the material that leaves the system at some fixed point in time. We aim at
finding explicit formulas for the age-, transit-time, and remaining lifetime distributions of
compartmental systems in equilibrium.

The advantages of considering systems in equilibrium are twofold. On the one hand, the
system’s internal dynamics remain unchanged. On the other hand, initial values do not
distort the age structure. Consequently, the point in time when we observe the system is
negligible. The well-mixedness of the compartments resembles the fact that the history of
particles has no influence on their future, while the linearity of the systems reflects that
particles behave independently from each other. Consequently, we can look at the typical
journey of a single particle and afterwards collect the indefinite amount of single particles
with infinitesimal weight and size.

2.2.1. The one-particle perspective

Consider a single particle that enters the system at a compartment according to u and then,
at each time step, whether it stays or moves on is decided on basis of its current position
and its schedule. If the decision is to move on, then it can move to another compartment
or leave the system, depending only on the connections of the current compartment. The
particle follows a schedule and a map given by the compartmental matrix B. The diagonal
entries of B govern how long the particle stays in a certain compartment, and the off-
diagonal entries provide the connections to other compartments. By leaving the system,
the particle finishes a cycle and immediately starts a new one by reentering the system.

During each cycle, the sequence of compartments to which the particle belongs at suc-
cessive time steps constitutes a stochastic process called discrete-time Markov chain. If
we let the size of the time steps tend to zero, the particle’s future becomes continuously
uncertain. We can then represent the particle’s path during a single cycle through the sys-
tem by a continuous-time Markov chain (Norris, 1997), which we call X throughout the
chapter. When the Markov chain changes its state from j to i, the particle is considered
to move from compartment j to compartment i. When the Markov chain is absorbed, the
particle leaves the system.

The act of sending the particle back into the system right after leaving has its stochastic
counterpart in a regenerative process Z with embedded renewal process J = (Jn)n≥0. The
renewals Jn, n > 1, coincide with the regeneration times of Z and represent the reentries
of the particle.

It is important to note that, with respect to standard notation in probability theory,
we use reversed index order in the following. For instance, in classical probability theory
notation we would use B> instead of B and also Q> instead of Q (defined in Eq. (2.4)
below). We deviate from the standard notation since the reversed index order is natural
for compartmental systems and this way the connections between the deterministic and
the stochastic mathematical structures involved become more obvious and notation less
confusing.

2.2.2. Compartmental systems and Markov chains

As nonlinear autonomous compartmental systems in equilibrium behave like linear au-
tonomous compartmental systems in equilibrium, for the remainder of this chapter we
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16 2. Compartmental systems in equilibrium and continuous-time Markov chains

consider the linear system of ODEs as given by Eq. (1.8), but already starting in equilib-
rium, i.e.,

d

dt
x(t) = B x(t) + u, t > 0,

x(0) = x∗.
(2.3)

Here u ∈ Rd+ and we assume the compartmental matrix B to be invertible to ensure that
the system is open. Furthermore, x∗ = −B−1 u such that the system is in steady state
from the very beginning. Without loss of generality, we can then assume t0 = 0.

Compartmental systems and Markov chains are very similar even though the former
are deterministic- and the latter are probabilistic objects. We now show that open linear
autonomous compartmental systems correspond to absorbing homogeneous continuous-
time Markov chains.

Material permanently leaves from the open system (2.3). We close the system by col-
lecting all leaving material in an additional environmental compartment d+ 1. To do so,
we add another row to the compartmental matrix B to make all column sums equal to
zero and we add another column that does not allow material to leave compartment d+ 1
once it has arrived there. The resulting (non-invertible) compartmental matrix is

Q =

(
B 0
z> 0

)
. (2.4)

We recall from Eq. (1.5) that z> = −1>B and see that Q is the transition-rate matrix of
an absorbing homogeneous continuous-time Markov chain X = (Xt)t≥0 on the state space
{1, 2, . . . , d, d+ 1}. Its absorbing state is state d+ 1. Let

β := ‖u‖−1 (u1, u2, . . . , ud)
>. (2.5)

The probability of the continuous-time Markov chain X with initial distribution β being
in state j ∈ S = {1, 2, . . . , d} at time t ≥ 0 is

P(Xt = j) =
(
etB β

)
j
. (2.6)

Assume now that material u ∈ Rd+ comes into system (2.3) at time τ > 0. Since the
system is linear, the way how this material will be distributed can be modeled by the
homogeneous linear ODE system

d

dt
x̃(t) = B x̃(t), t > τ,

x̃(τ) = u.
(2.7)

Furthermore, the fractional transfer coefficients of this system are time-independent, so
we can shift the entire system to the left and consider it to have started at time τ = 0.
From Eq. (1.9), we know that the content of compartment j at time t ≥ 0 is then given
by

x̃j(t) =
(
etB u

)
j
. (2.8)

This implies together with definition (2.5) of β and Eq. (2.6) that

P(Xt = j) =
x̃j(t)

‖u‖
.

Consequently, P(Xt = j) is the proportion of the initially present amount of material in
system (2.7) that is in compartment j at time t. Hence, the continuous-time Markov
chain X describes the stochastic travel of a single particle through the compartmental
system (2.3). When the traveling particle leaves the compartmental system, the process
X jumps to the absorbing state d+ 1.

16
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2.2.3. Transit time and absorption time

For compartmental systems, two types of transit time can be considered (Nir & Lewis,
1975) from the one-particle point of view. Recall from Definition 1.16 that the forward
transit time FTT(ta) is the time that a particle needs to travel through the system after
it arrives at time ta. The backward transit time BTT(te) specifies the age that a particle
has at the moment it is leaving the system, i.e., the time it needs to travel through the
system given that it exits at time te. For an autonomous system in steady state, one
would expect the two types of transit time to coincide and to be independent of ta and
te, respectively. For now, we will concentrate on the derivation of explicit formulas for the
forward transit-time distribution. We turn to the backward transit-time distribution later
because it requires results on age distributions of the system.

Recall that the absorbing continuous-time Markov chain X = (Xt)t≥0 describes the
travel of a particle through the compartmental system (2.3). When the particle leaves the
system, X jumps to its absorbing state d+ 1.

Definition 2.1 The absorption time of a continuous-time Markov chain X is a random
variable that tells the moment in time, when X reaches its absorbing state. It is defined
by

T := inf{ t ≥ 0 : Xt = d+ 1} (inf ∅ :=∞).

Lemma 2.2.1 in Neuts (1981) guarantees that T is finite with probability one if the
compartmental matrix B is invertible. Consequently,

lim
t→∞

P(Xt = i |X0 = j) = lim
t→∞

(
etB
)
ij

= 0, i, j ∈ S.

This corresponds well with Corollary 1.14 and the idea that every particle will eventually
leave the open system (2.3).

Proposition 2.2 Let T denote the absorption time of X. Then

(i) the cumulative probability distribution of T is given by

FT (t) = 1− 1> etB β, t ≥ 0, and

(ii) its probability density function by

fT (t) = z> etB β, t ≥ 0.

Proof. (1) At time t ≥ 0, the cumulative probability distribution FT (t) = P(T ≤ t) of the
absorption time T is equal to the probability of Xt not being in any of the states j ∈ S.
Consequently, Eq. (2.6) leads to

FT (t) = 1−
∑
j∈S

P(Xt = j) = 1− 1> etB β, t ≥ 0.

(2) Using z> = −1>B from Eq. (1.5), the probability density function of T is

fT (t) =
d

dt
FT (t) = z> etB β, t ≥ 0. (2.9)

17



18 2. Compartmental systems in equilibrium and continuous-time Markov chains

Definition 2.3 A probability distribution according to the probability density function fT
in Eq. (2.9) is called phase-type distribution with initial distribution β and transition-rate
matrix B. We denote it by PH(β,B).

The notation PH(β,B) and the unifying matrix formalism we use here were introduced
by Neuts (1981). Phase-type distributions constitute a highly versatile class of probability
distributions and are closely related to the solutions of systems of linear differential equa-
tions with constant coefficients. As mixtures of exponential distributions they generalize,
among others, the Erlang-, the hypoexponential, and the hyperexponential distributions.
We have proved the following theorem.

Theorem 2.4 The forward transit time FTT of an open compartmental system in equi-
librium with compartmental matrix B and input vector u and the absorption time T of
an absorbing continuous-time Markov chain with transition-rate matrix Q as defined in
Eq. (2.4) and initial distribution β (2.5) are identically and phase-type distributed. More
precisely, FTT, T ∼ PH(β,B).

We collect some properties of the forward transit time that follow immediately from
FTT ∼ PH(u/‖u‖,B).

Corollary 2.5 For x∗ = −B−1 u being the equilibrium of the system,

(i) the cumulative probability distribution of the forward transit time is given by

FFTT(t) = 1− 1> etB
u

‖u‖
, t ≥ 0,

(ii) its probability density function by

fFTT(t) = z> etB
u

‖u‖
, t ≥ 0,

(iii) its expected value by

E [FTT] = −1>B−1
u

‖u‖
=
‖x∗‖
‖u‖

, and

(iv) its nth moment by

E [(FTT)n] = (−1)n n! 1>B−n
u

‖u‖
, n ∈ N.

Here, n! = n (n− 1) · · · 2 · 1 denotes the factorial of n with the convention 0! := 1.

Remark 2.6 (1) Since for the forward transit time only the future after the particle’s
arrival is considered and not the past, Theorem 2.4 and Corollary 2.5 hold still true even
if the linear autonomous compartmental system is not in equilibrium.

(2) The relation E [T ] = E [FTT] = ‖x∗‖/‖u‖ (mean forward transit time equals total
stocks over total inputs) will be used frequently throughout this thesis without mentioning
it each single time. It is helpful to always keep it in mind.

18



2.2. Age, transit time, and remaining lifetime 19

2.2.4. Steady state and occupation time

The Markov chain X = (X)t≥0 takes on different states i ∈ S before it is absorbed. We
are now interested in the connection of the steady state of the compartmental system (2.3)
and occupation times of X.

Definition 2.7 The occupation time of state i ∈ S by the absorbing continuous-time
Markov chain X is the time that X spends in state i before absorption. It is defined by
Oi :=

∫∞
0 1{Xt=i} dt, and we denote by O := (Oi)i∈S the corresponding occupation time

vector.
Furthermore, we define the partial occupation time of state i ∈ S by X as the time that

X spends in i before a fixed time y ≥ 0. It is given by Oi(y) :=
∫ y
0 1{Xt=i} dt. We denote

the corresponding vector by O(y) := (Oi(y))i∈S .

Lemma 2.8 (1) The steady-state compartment content x∗i for i ∈ S is proportional to
the expected occupation time of state i by the absorbing continuous-time Markov chain X.
More precisely,

x∗i = ‖u‖E [Oi] .

(2) The sum of the mean occupation times of all states results in the mean forward transit
time of the compartmental system, i.e.,∑

i∈S
E [Oi] = E [T ] = E [FTT] .

Proof. (1) Using E
[
1{Xt=i}

]
= P(Xt = i), the stead-state content of compartment i ∈ S

can be computed to

‖u‖E [Oi] = ‖u‖
∞∫
0

P(Xt = i) dt =

∞∫
0

(
etB u

)
i

dt =
(
−B−1 u

)
i

= x∗i . (2.10)

(2) We sum the occupation times over all states i ∈ S and obtain∑
i∈S

E [Oi] =
∑
i∈S

x∗i
‖u‖

=
‖x∗‖
‖u‖

= E [T ] .

The following result is already well known (Anderson, 1983, Section 14A) and it helps
understand the meaning of −B−1.

Proposition 2.9 The matrix entry (−B−1)ij is the mean time the Markov chain X stays
in state i ∈ S before absorption, given it starts in state j ∈ S at time t0.

Proof. We can compute the conditional occupation time of state i by X given X0 = j by

E [Oi |X0 = j] =
E
[
Oi · 1{X0=j}

]
P(X0 = j)

=
E
[∫∞

0 1{Xt=i,X0=j} dt
]

P(X0 = j)

=

∞∫
0

P(Xt = i |X0 = j) dt =

∞∫
0

(
etB
)
ij

dt

=
(
−B−1

)
ij
.

19



20 2. Compartmental systems in equilibrium and continuous-time Markov chains

2.2.5. Release and last state before absorption

For j ∈ S, the release of material from compartment j at time t ≥ 0 to the environment is
denoted by rj(t). It can be computed as the product of the rate zj(t) of material leaving
compartment j toward the environment and the amount of material xj(t) contained in
compartment j. For a system in steady state, zj(t) = zj and xj(t) = x∗j remain constant,
and consequently rj = zj x

∗
j remains constant as well. Probabilistically, we expect rj to

be connected to the probability of the absorbing continuous-time Markov chain X to be
absorbed through state j, i.e., that j is the last state of X before X jumps to its absorbing
state d+ 1.

Lemma 2.10 Let E ∈ S denote the last state that X visits before it is absorbed by state
d+ 1. Then

P(E = j) = zj
(
−B−1 β

)
j

=
rj
‖u‖

, j ∈ S,

i.e., the probability of a state j being the last one before absorption is proportional to the
release from j to the environment.

Proof. Let fT (t |Xt = j) be the conditional probability density function of the absorption
time T of X at time t, given that Xt = j. Then,

P(E = j) =

∞∫
0

fT (t |Xt = j)P(Xt = j) dt. (2.11)

From Eq. (2.6), we know P(Xt = j) =
(
etB β

)
j
. We are left with computing the conditional

probability density function. Because X is homogeneous,

fT (t |Xt = j) = fT (0 |X0 = j).

As this is a probability density function, we can compute it by

fT (t |Xt = j) =
d

dt
P(T ≤ t |Xt = j)

if the derivative exists, and evaluate it at t = 0. With z> = −1>B from Eq. (1.5) we
obtain

fT (0 |X0 = j) =
d

dt

[
1−

∑
i∈S

(
etB
)
ij

]
t=0

= −
∑
i∈S

(
B etB

)
ij

∣∣∣
t=0

= −
∑
i∈S

Bij

= zj .

We plug fT (t |Xt = j) = zj in Eq. (2.11) and get

P(E = j) =

∞∫
0

zj P(Xt = j) dt = zj

∞∫
0

(
etB β

)
j

dt = zj
(
−B−1 β

)
j
, (2.12)
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2.2. Age, transit time, and remaining lifetime 21

which by Eq. (2.10) and β = u/‖u‖ turns into

P(E = j) = zj E [Oj ] = zj
x∗j
‖u‖

=
rj
‖u‖

.

Corollary 2.11 Summing P(E = j) over all j ∈ S, we get

‖r‖ = ‖u‖, (2.13)

since absorption of X is certain. Hence, in steady state the total release equals the total
input.

2.2.6. Age, occupation time, and backward recurrence time

Recall from Concept 1.15 that the age of material in the system or in a particular com-
partment is the time span between its entry into the system and the current time. The
steady-state content x∗ of system (2.3) has an age structure such that

x∗j = lim
y→∞

Pj(y), y ≥ 0,

where Pj(y) is the amount of material in compartment j ∈ S that is not older than y.
We call Pj the cumulative compartment-age distribution of compartment j. Furthermore,
each compartment has a nonnegative compartment-age density function pj such that

Pj(y) =

y∫
0

pj(σ) dσ, y ≥ 0.

We collect the cumulative compartment-age distributions Pj and the compartment-age
density functions pj in the cumulative age distribution vector P := (Pj)j∈S and in the age
density function vector p := (pj)j∈S , respectively, such that

x∗ = lim
y→∞

P(y) =

∞∫
0

p(σ) dσ.

Our next goal is to find a reasonable explicit definition for P and p. In population
dynamics, it is well known that the McKendrick-von Foerster equation governs the evolu-
tion of a population’s size and its age structure (McKendrick, 1926; von Foerster, 1959).
In resemblance of our notation, the one-dimensional McKendrick-von Foerster equation is
given by

∂

∂y
p(y, t) +

∂

∂t
p(y, t) = −κ(y, t) p(y, t),

where p(y, t) denotes the age density of the size of the population with age y at time t,
and κ is an age- and time-dependent death-rate function. In the spirit of this equation,
an age density function vector of the compartmental system (2.3) should satisfy some sort
of multi-dimensional McKendrick-von Foerster equation, where the according death-rate
function κ is independent of the age y since all compartments are well mixed, and κ is
also independent of time t because the system is in equilibrium.

21



22 2. Compartmental systems in equilibrium and continuous-time Markov chains

We look at the general solution equation (1.9) of the linear autonomous compartmental
system (2.3) and conjecture tentatively, for y ≥ 0,

P(y) = lim
t→∞

t∫
t−y

e(t−τ) B u dτ =

y∫
0

eσB u dσ

=
(
eyB − I

)
B−1 u =

(
I− eyB

)
x∗,

(2.14)

because the material u coming into the system at time τ ∈ [t− y, t] has age σ = t− τ ≤ y
at time t, and only the amount e(t−τ) B u of it is still present at time t. From Eq. (2.14),
we immediately derive the tentative age density function vector

p(y) = eyB u, y ≥ 0. (2.15)

Proposition 2.12 The tentative age density function vector as given by Eq. (2.15) satisfies
the multi-dimensional McKendrick-von Foerster equation(

∂

∂y
+
∂

∂t

)
p(y) = B p(y), y ≥ 0, (2.16)

where the compartmental matrix B plays the role of an age- and time-independent death
rate.

Proof. We consider the left hand side of Eq. (2.16) and see(
∂

∂y
+
∂

∂t

)
p(y) =

d

dy
p(y) =

d

dy
eyB u = B eyB,

which obviously coincides with the right hand side.

This result motivates the following definition.

Definition 2.13 The cumulative age distribution vector of system (2.3) is given by

P(y) =
(
I− eyB

)
x∗, y ≥ 0,

and the corresponding age density function vector by

p(y) = eyB u, y ≥ 0.

In this chapter, we aim at drawing links between properties of deterministic compart-
mental systems and probabilistic Markov chains. In order to do so for the age structure
of the system, we introduce the random age vector a = (aj)j∈S such that the random
variable aj describes the age of a randomly picked particle from compartment j. The cu-
mulative probability distribution of aj and the corresponding probability density function
can be obtained by normalizing, i.e., by dividing the cumulative compartment-age distri-
bution Pj and the associated compartment-age density function pj by the corresponding
compartment content x∗j .

Definition 2.14 For j ∈ S, the random variable aj with probability density function

faj (y) =
1

x∗j
pj(y), y ≥ 0,

22



2.2. Age, transit time, and remaining lifetime 23

is called compartment age of compartment j, while the random variable A with probability
density function

fA(y) =
1

‖x∗‖
‖p(y)‖, y ≥ 0,

is called system age. The random vector a = (aj)j∈S is called compartment age vector.

Corollary 2.15 Let x∗ = −B−1 u be the steady-state vector, X∗ := diag(x∗1, x
∗
2, . . . , x

∗
d),

and a the compartment-age vector of the compartmental system (2.3). Then,

(i) the cumulative probability distribution vector of a is given by

Fa(y) = 1− (X∗)−1 eyB x∗, y ≥ 0,

(ii) its probability density function vector by

fa(y) = (X∗)−1 eyB u, y ≥ 0,

(iii) its vector of expected values by

E [a] = −(X∗)−1 B−1 x∗, and

(iv) its vector of nth moments by

E [an] = (−1)n n! (X∗)−1 B−n x∗, n ∈ N.

As each compartment has one, also the entire system has an unknown age probability
density function fA, where A can be interpreted as the age of a randomly picked particle
from the system. We denote the cumulative probability distribution of A by FA.

Corollary 2.16 Let x∗ = −B−1 u be the steady-state vector, X∗ = diag(x∗1, x
∗
2, . . . , x

∗
d),

and A the system age of the compartmental system (2.3). Then

(i) the cumulative probability distribution of the system age A is given by

FA(y) = 1− 1> eyB
x∗

‖x∗‖
, y ≥ 0,

(ii) its probability density function by

fA(y) = z> eyB
x∗

‖x∗‖
, y ≥ 0.

(iii) its expected value by

E [A] = −1>B−1
x∗

‖x∗‖
, and

(iv) its nth moment by

E [An] = (−1)n n! 1>B−n
x∗

‖x∗‖
, n ∈ N.
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24 2. Compartmental systems in equilibrium and continuous-time Markov chains

Proof. We sum Pj over all compartments j ∈ S, normalize by dividing by the total system
content ‖x∗‖, and use x∗ = −B−1 u to see, for y ≥ 0,

FA(y) =
1

‖x∗‖
∑
j∈S

Pj(y) =
1

‖x∗‖
∑
j∈S

(
x∗ − eyB x∗

)
j

= 1− 1> eyB
x∗

‖x∗‖
.

To obtain fA(y), we take the derivative of FA(y) with respect to y and use z> = −1>B
from Eq. (1.5). The rest is done by straightforward calculation.

Remark 2.17 We immediately notice that the system age is phase-type distributed. In
contrast to the forward transit time with initial distribution β = u/‖u‖, the initial distri-
bution for the system age is η := x∗/‖x∗‖. Consequently, the system age A can also be
interpreted as the forward transit time T̃ of a linear autonomous compartmental system
with constant external input vector ũ := x∗ = −B−1 u.

Since we are interested in a connection between the age of material in the compartmental
system (2.3) and the absorbing continuous-time Markov chain X, we use Lemma 2.8 to
see

P(y) =
(
I− eyB

)
x∗ =

(
I− eyB

)
‖u‖E [O] .

Immediately, we recognize a link between the cumulative age distribution vector and the
vector E [O] of mean occupation times of the absorbing continuous-time Markov chain X.

Lemma 2.18 The cumulative age distribution vector of the compartmental system (2.3)
and the partial occupation times of the absorbing continuous-time Markov chain X are
connected through

P(y) = ‖u‖E [O(y)] , y ≥ 0.

Proof. For i ∈ S and y ≥ 0, we compute

‖u‖E [Oi(y)] = ‖u‖E

 y∫
0

1{Xt=i} dt

 = ‖u‖
y∫

0

P(Xt = i) dt =

y∫
0

(
etB u

)
i

dt,

which by Eq. (2.14) finishes the proof.

To this point, we have drawn a connection between age distributions of the compart-
mental system (2.3) and occupation times of the absorbing continuous-time Markov chain
X defined in Section 2.2.2. There is another interesting relation, namely between occupa-
tion times of X and renewal/regenerative processes, which in turn links the latter also to
compartment- and system ages.

We take up again the continuous-time Markov chain X = (Xt)t≥0 which describes
the travel of a single particle through the compartmental system. In contrast to earlier
situations, we now let the particle reenter the system immediately after it has left, and we
do so over and over again. We obtain a sequence (Zn)n≥1 with Z1 := X, of independent
cycles, all behaving like X, and a sequence of reentry times J := (Jn)n≥0 with J0 := 0.
The sequence J = (Jn)n≥0 of the particle’s reentry times constitutes a renewal process
with interarrival times Tn = Jn − Jn−1 (n ∈ N), T0 := 0, and T1 = T . The reentry times
of the particle are the renewals of J . The interarrival-time distribution is the phase-type
distribution describing the absorption time T of X. Hence FT is the interarrival-time
cumulative probability distribution. The number of renewals/reentries up to time t ≥ 0 is
defined by

Nt := max{n ≥ 0 : Jn ≤ t}.
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2.2. Age, transit time, and remaining lifetime 25

Now, we define a continuous-time process on the state space S by glueing the Zn’s together.
For t ≥ 0,

Zt :=

{
Znt−Jn−1

, Jn−1 ≤ t < Jn and n ∈ N,
0, else.

(2.17)

The process Z = (Zt)t≥0 is a regenerative process, because after each renewal a new cycle
begins, which is independent of the previous cycles and governed by the same probability
law as them. The cycle lengths of Z coincide with the interarrival times of J , the embedded
renewal process of Z.

Definition 2.19 Let t ≥ 0. The time span At := t − JNt is called backward recurrence
time and the time span Lt := JNt+1 − t is called forward recurrence time of J at time t.

Let additionally Zt = j ∈ S. Then Ajt := t − JNt is called j-conditional backward
recurrence time and the time span Ljt := JNt+1−t is called j-conditional forward recurrence
time of Z at time t.

In other words, At describes the time that has elapsed since the last renewal and Lt the
time span until the next renewal. The conditional recurrence times consider At and Lt
under the condition of Zt being in a predefined, fixed state.

For fixed t ≥ 0, y ≥ 0, and j ∈ S, the corresponding cumulative probability distributions
are given by

FAt(y) = P(At ≤ y),

F
Ajt

(y) = P(At ≤ y |Zt = j),

FLt(y) = P(Lt ≤ y), and

F
Ljt

(y) = P(Lt ≤ y |Zt = j).

The following lemma is the cornerstone to connect occupation times of X with the
regenerative process Z. It results from a straightforward application of Theorem VI.1.2
in Asmussen (2003) to the indicator function. The limiting probability (as t → ∞) of a
regenerative process, with the same cycle lengths as Z, of being in a certain state equals
the fraction of time of the process being in this state during the first cycle.

Lemma 2.20 Let Y = (Yt)t≥0 be a regenerative process with the same embedded renewal
process as Z and state space SY := {0, 1, . . . ,m} for some m ∈ N. Then, for j ∈ SY ,

lim
t→∞

P(Yt = j) =
1

E [T ]
E

 T∫
0

1{Yt=j} dt

 .
Lemma 2.21 The limiting distribution of Z as defined in Eq. (2.17) satisfies

lim
t→∞

P(Zt = j) =
E [Oj ]

E [T ]
=

x∗j
‖x∗‖

= ηj .

Proof. We apply Lemma 2.20 to Z and then use Lemma 2.8 and E [T ] = ‖x∗‖/‖u‖.

Now we are left with bringing the partial occupation times Oj(y) come into the game.

Lemma 2.22 Let Z denote the process defined in Eq. (2.17), and fix y ≥ 0. Then

lim
t→∞

P(At ≤ y, Zt = j) =
E [Oj(y)]

E [T ]
, j ∈ S.
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26 2. Compartmental systems in equilibrium and continuous-time Markov chains

Proof. We fix j ∈ S and y ≥ 0. Now we define a two-valued regenerative process Y j(y) =
(Y j
t (y))t≥0 with embedded renewal process J by

Y j
t (y) :=

{
1, At ≤ y and Zt = j,

0, else.

We apply Lemma 2.20 to Y j(y) and obtain

lim
t→∞

P(Y j
t (y) = 1) =

1

E [T ]
E

 T∫
0

1{Y jτ (y)=1} dτ

 =
1

E [T ]
E

 T∫
0

1{Aτ≤y,Xτ=j} dτ


=

1

E [T ]
E

 y∫
0

1{Xτ=j} dτ

 =
E [Oj(y)]

E [T ]
.

Theorem 2.23 (1) Let j ∈ S. The cumulative probability distribution of the j-conditional
backward recurrence time Ajt of the regenerative process Z converges with t → ∞ to the
cumulative probability distribution of the compartment age aj of the compartmental sys-
tem (2.3).

(2) The cumulative probability distribution of the backward recurrence time At of the
regenerative process Z converges with t → ∞ to the cumulative probability distribution of
the system age A of the compartmental system (2.3).

Proof. We fix y ≥ 0.
(1) From Lemma 2.18 we know Pj(y) = ‖u‖E [Oj(y)]. Together with Lemma 2.22 this

yields
Pj(y) = ‖u‖E [T ] lim

t→∞
P(At ≤ y, Zt = j)

= ‖u‖E [T ] lim
t→∞

P(At ≤ y |Zt = j)P(Zt = j),

and hence by Lemma 2.21

Pj(y) = ‖u‖ ‖x
∗‖
‖u‖

lim
t→∞

P(At ≤ y |Zt = j)
x∗j
‖x∗‖

= x∗j lim
t→∞

P(At ≤ y |Zt = j).

We normalize by dividing by x∗j and obtain

Faj (y) = lim
t→∞

P(At ≤ y |Zt = j) = lim
t→∞

F
Ajt

(y),

which finishes the proof of (1).
(2) As in the first part of the proof, we know

Pj(y) = ‖u‖E [T ] lim
t→∞

P(At ≤ y, Zt = j)

and hence ∑
j∈S

Pj(y) = ‖u‖ ‖x
∗‖
‖u‖

lim
t→∞

P(At ≤ y).

We normalize by dividing by ‖x∗‖ and obtain

FA(y) = lim
t→∞

P(At ≤ y) = lim
t→∞

FAt(y),

and the proof is finished.
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2.2. Age, transit time, and remaining lifetime 27

Remark 2.24 By Theorem 2.23 and Lemma 2.22,

FA(y) = lim
t→∞

P(At ≤ y) = lim
t→∞

∑
j∈S

P(At ≤ y, Zt = j)

=
1

E [T ]

∑
j∈S

E [Oj(y)] =
1

E [T ]

y∫
0

∑
j∈S

P(Xt = j) dt

=
1

E [T ]

y∫
0

[1− FT (t)] dt.

Consequently, FA is the cumulative probability distribution of the stationary distribution
of Z’s embedded renewal process J . Hence, FA reflects the relation of the steady state of
the compartmental system (2.3) and an infinite history of the regenerative process Z.

2.2.7. Remaining lifetime and forward recurrence time

Recall from Definition 1.17 that the remaining lifetime of material in the system is the
length of the time period until its exit from the system. The remaining compartment
lifetime vector l := (lj)j∈S has an unknown probability density function vector fl and we
denote its cumulative probability distribution vector by Fl.

Proposition 2.25 We consider the compartmental system (2.3). For j ∈ S,

(i) the cumulative probability distribution of compartment j’s remaining lifetime lj is
given by

Flj (y) = 1−
∑
i∈S

(
eyB

)
ij
, y ≥ 0,

(ii) its probability density function by

flj (y) = −
∑
i∈S

(
B eyB

)
ij

=
∑
i∈S

zi
(
eyB

)
ij
, y ≥ 0,

(iii) its expected value by

E [lj ] = −
∑
i∈S

(
B−1

)
ij
, and

(iv) its nth moment by

E [(lj)
n] = (−1)n n!

∑
i∈S

(
B−n

)
ij
, n ∈ N.

Proof. In steady state, compartment j contains an amount x∗j of material. Following

Eq. (2.8), y ≥ 0 units of time later the amount
∑

i∈S(eyB)ij x
∗
j of that is remaining in the

system. Consequently, the proportion of material in compartment j at an arbitrary point
in time that is still the system at y time units later is then

∑
i∈S(eyB)ij , and

Flj (y) = 1−
∑
i∈S

(eyB)ij , y ≥ 0.

The remaining statements follow from straightforward computations.
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28 2. Compartmental systems in equilibrium and continuous-time Markov chains

The time L that the material in the system is going to remain is called remaining system
lifetime. We denote its probability density function by fL and its cumulative probability
distribution by FL.

Proposition 2.26 The cumulative probability distribution of the remaining system lifetime
L of the compartmental system (2.3) is given by

FL(y) = 1− 1> eyB
x∗

‖x∗‖
, y ≥ 0.

Proof. The system contains an amount x∗j of material in compartment j. Following (2.8),

y ≥ 0 units of time later the amount
∑

i∈S(eyB)ij x
∗
j of that is remaining in the system.

Consequently, the proportion of material in the system at an arbitrary point in time that
is still the system y time units later, is then

∑
j∈S

∑
i∈S

(
eyB

)
ij

x∗j
‖x∗‖

.

Hence,

FL(y) = 1−
∑
i∈S

∑
j∈S

(eyB)ij
x∗j
‖x∗‖

= 1−
∑
i∈S

(
eyB x∗

)
i

1

‖x∗‖

= 1− 1> eyB
x∗

‖x∗‖
.

Theorem 2.27 (1) Let j ∈ S. The cumulative probability distribution of the j-conditional
forward recurrence time Ljt of the regenerative process Z converges with t → ∞ to the
cumulative probability distribution of the remaining compartment lifetime lj j of the com-
partmental system (2.3).

(2) The cumulative probability distribution of the forward recurrence time Lt of the
regenerative process Z converges with t → ∞ to the cumulative probability distribution of
the remaining system lifetime L of the compartmental system (2.3).

Proof. (1) For j ∈ S and y ≥ 0,

lim
t→∞

F
Ljt

(y) = lim
t→∞

P(Lt ≤ y |Zt = j) = lim
t→∞

P(Lt ≤ y, Zt = j)

P(Zt = j)
.

We start with the numerator and define a two-valued regenerative process

Y j(y) = (Y j
t (y))t≥0

with embedded renewal process J by

Y j
t (y) :=

{
1, Lt ≤ y and Zt = j,

0, else.
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2.2. Age, transit time, and remaining lifetime 29

We apply Lemma 2.20 to Y j(y) and obtain

lim
t→∞

P(Lt ≤ y, Zt = j) = lim
t→∞

P(Y j
t (y) = 1)

=
1

E [T ]
E

 T∫
0

1{Y jτ (y)=1} dτ


=

1

E [T ]
E

 T∫
0

1{Lτ≤y,Xτ=j} dτ

 .
For τ ≤ T , obviously {Lτ ≤ y} = {T ≤ τ + y}. Furthermore, Xτ = j guarantees τ ≤ T .
Hence,

lim
t→∞

P(Lt ≤ y, Zt = j) =
1

E [T ]
E

 ∞∫
0

1{T ≤τ+y,Xτ=j} dτ


=

1

E [T ]

∞∫
0

P(T ≤ τ + y,Xτ = j) dτ

=
1

E [T ]

∞∫
0

P(T ≤ τ + y |Xτ = j)P(Xτ = j) dτ

=
1

E [T ]

[
1−

∑
i∈S

(
eyB

)
ij

] ∞∫
0

P(Xτ = j) dτ

=
E [Oj ]

E [T ]

[
1−

∑
i∈S

(
eyB

)
ij

]
.

We turn to the denominator, and from Lemma 2.21 we know that

lim
t→∞

P(Zt = j) =
E [Oj ]

E [T ]
.

We divide the numerator by the denominator, the result coincides with Flj (y) from Propo-
sition 2.25, and the proof of (1) is complete.

(2) We invoke the result for the numerator from (1) to obtain

lim
t→∞

FLt(y) = lim
t→∞

P(Lt ≤ y) = lim
t→∞

∑
j∈S

P(Lt ≤ y, Zt = j)

=
∑
j∈S

E [Oj ]

E [T ]

[
1−

∑
i∈S

(
eyB

)
ij

]
.

We use ‖u‖E [Oj ] = x∗j from Lemma 2.8, E [T ] = ‖x∗‖/‖u‖, and get

lim
t→∞

FLt(y) =
∑
j∈S

x∗j
‖x∗‖

[
1−

∑
i∈S

(
eyB

)
ij

]
= 1−

∑
i∈S

∑
j∈S

(
eyB

)
ij

x∗j
‖x∗‖

= 1− 1> eyB
x∗j
‖x∗‖

,

which coincides with FL(y) from Proposition 2.26, and the proof of (2) is finished.
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30 2. Compartmental systems in equilibrium and continuous-time Markov chains

2.2.8. The time-reversed system

Recall η = x∗/‖x∗‖. We assume x∗j > 0 for all j ∈ S and consider the system

x̂(t) = B̂ x̂(t) + û, t > 0,

x̂(0) = x∗.
(2.18)

with B̂ = (diag η) B> (diag η)−1 and ûj = zj x
∗
j .

Lemma 2.28 System (2.18) is open, linear, autonomous, and compartmental.

Proof. Linearity is inherited from system (2.3) and autonomy is obvious. Furthermore, û
is nonnegative since z and x∗ are. We show that B̂ is a compartmental matrix by proving
that it satisfies the conditions of Definition 1.4:

(i) Let j ∈ S. Since B is compartmental and η > 0, B̂jj = ηj Bjj η
−1
j = Bjj ≤ 0.

(ii) Let i, j ∈ S with i 6= j. Since B is compartmental and η > 0, B̂ij = ηiBji η
−1
j ≥ 0.

(iii) Let j ∈ S. Since uj ≥ 0 and ηj > 0,

∑
i∈S

B̂ij =
∑
i∈S

ηiBji η
−1
j =

1

ηj

∑
i∈S

Bji ηi =
1

ηj
(B η)j .

We use η = x∗/‖x∗‖ and B x∗ = −u to see

∑
i∈S

B̂ij = −‖x
∗‖
x∗j

uj
‖x∗‖

= −uj
x∗j
≤ 0.

The openness of the system follows from

ẑj = −
∑
i∈S

B̂ij =
uj
x∗j
≥ 0 (2.19)

and the fact that here is at least one j ∈ S for which strict inequality holds. Otherwise sys-
tem (2.3) has no input and the steady state x∗ vanishes. This contradicts our assumption
x∗j > 0 for all j.

Analogously to compartmental system (2.3), we denote by X̂ and Ẑ the absorbing
continuous-time Markov chain and the regenerative process associated to system (2.18),
respectively. Other symbols are translated in the same manner.

Lemma 2.29 System (2.18) can be interpreted as the time-reversed system of system (2.3)
in the sense that, for h ≥ 0,

lim
t→∞

P(Zt−h = i |Zt = j) = lim
t→∞

P(Ẑt+h = i | Ẑt = j), i, j ∈ S.

Proof. On the one hand, limt→∞ P(Ẑt+h = i | Ẑt = j) = (eh B̂)ij . On the other hand,
using Bayes’ theorem, Lemma 2.21, as well as the properties (v) and (vi) of the matrix
exponential (Appendix A), we see
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2.2. Age, transit time, and remaining lifetime 31

lim
t→∞

P(Zt−h = i |Zt = j) = lim
t→∞

P(Zt = j |Zt−h = i)
P(Zt−h = i)

P(Zt = j)

= (ehB)ji
ηi
ηj

= ηi (ehB)>ij η
−1
j

= (eh B̂)ij

= lim
t→∞

P(Ẑt+h = i | Ẑt = j).

Definition 2.30 We call the compartmental system (2.18) the time-reversed system of
the original compartmental system (2.3).

The time-reversed and the original system share several important properties.

Proposition 2.31 The time-reversed system (2.18) and the original system (2.3) have the
same total amounts of inputs, the same steady state, and their respective distributions of
forward transit time and system age coincide.

Proof. First, we notice from Eq. (2.13) that ‖û‖ = ‖u‖. Furthermore,

et B̂ = (diag η)
(
etB
)>

(diag η)−1.

Then, for t ≥ 0, the cumulative probability distribution of the reversed forward transit
time F̂TT is given by Corollary 2.5 as

F
F̂TT

(t) = 1− 1>
(
etB̂
) û

‖û‖

= 1− 1> (diag η)
(
etB
)>

(diag η)−1
û

‖u‖

= 1−
∑
i∈S

∑
j∈S

ηi
(
etB
)
ji
η−1j

ûj
‖u‖

,

which turns with ûj = zj x
∗
j and ηi η

−1
j x∗j = x∗i into

F
F̂TT

(t) = 1−
∑
j∈S

zj
∑
i∈S

(
etB
)
ji

x∗i
‖u‖

= 1− z> etB
x∗

‖u‖
.

With z> = −1>B and B x∗ = −u, we see

F
F̂TT

(t) = 1− 1>
(
etB
) u

‖u‖
,

which equals FFTT(t) from Corollary 2.5.
We turn to the steady state. For i ∈ S,

x̂∗i = −(B̂−1 û)i = −
∑
j∈S

(
B̂−1

)
ij
ûj ,
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32 2. Compartmental systems in equilibrium and continuous-time Markov chains

which turns with B̂−1 = (diag η)
(
B−1

)>
(diag η)−1 and ûj = zj x

∗
j into

x̂∗i = −
∑
j∈S

ηi (B−1)ji η
−1
j zj x

∗
j .

We use zj = −
∑

k∈S Bkj and obtain

x̂∗i =
∑
j∈S

ηi (B−1)ji η
−1
j

∑
k∈S

Bkj x
∗
j = ηi ‖x∗‖

∑
k∈S

∑
j∈S

Bkj (B−1)ji.

Since
∑

k∈S
∑

j∈S Bkj
(
B−1

)
ji

= Iki, we get

x̂∗i = ηi ‖x∗‖ = x∗i .

In the remaining step, we show the equality of the system-age distributions. For y ≥ 0,
we know from Corollary 2.16 that

f
Â

(y) = ẑ> ey B̂
x̂∗

‖x̂∗‖
.

Consequently, using ẑ> = −1> B̂ and B̂ = (diag η) B> (diag η)−1

f
Â

(y) = −1> B̂ (diag η)
(
eyB

)>
(diag η)−1 η

= −1> (diag η) B>
(
eyB

)>
1

= −1> (diag η)
(
eyB

)>
B> 1.

This real number equals its transpose and hence

f
Â

(y) = −1>B
(
eyB

)
(diag η) 1 = z> eyB η = z> eyB

x∗

‖x∗‖
,

which equals fA(y) from Corollary 2.16.

However, these symmetries do not carry over to compartment age and remaining com-
partment lifetime. They show a different relationship.

Proposition 2.32 The compartment-age vector â of the time-reversed system (2.18) and
the vector l of remaining compartment lifetimes of the original system (2.3) are identically
distributed. Likewise, the vector a of compartment ages of the original system and the
remaining lifetime vector l̂ of the time-reversed system are identically distributed.

Proof. Because of Corollary 2.15 we can write the time-reversed compartment-age proba-
bility density function for j ∈ S and y ≥ 0 as

fâj (y) =
1

x̂∗j

(
ey B̂ û

)
j
,

which by ûi = zi x
∗
i becomes

fâj (y) =
1

x∗j

∑
i∈S

ηj
(
eyB

)
ij
η−1i zi x

∗
i .
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2.2. Age, transit time, and remaining lifetime 33

We use (x∗j )
−1 ηj η

−1
i x∗i = 1 to see

fâj (y) =
∑
i∈S

zi
(
eyB

)
ij
,

which coincides by Proposition 2.25 with the probability density function flj (y) of the
remaining compartment lifetime of the original system.

We continue with the proof of the second statement. Again by Corollary 2.15, we write
the compartment-age probability density function of the original system for j ∈ S and
y ≥ 0 as

faj (y) =
1

x∗j

(
eyB u

)
j

=
1

x∗j

∑
i∈S

(
eyB

)
ji
ui,

which by ui = ẑi x
∗
i from Eq. (2.19) becomes

faj (y) =
1

x∗j

∑
i∈S

ηj

(
ey B̂

)
ij
η−1i ẑi x

∗
i =

∑
i∈S

ẑi (ey B̂)ij =
∑
i∈S

ẑi (ey B̂)ij ,

which coincides by Corollary 2.25 with the probability density function f
l̂j

(y) of the re-

maining compartment lifetime of the time-reversed system.

Proposition 2.33 System (2.3) and its time-reversed version (2.18) are dual in the sense
that the time-reversed system of the time-reversed system is again the original system.

Proof. Obviously,

̂̂
B = (diag η) B̂> (diag η)−1

= (diag η) [(diag η) B> (diag η)−1]> (diag η)−1

= B.

Furthermore, by ẑj = uj/x
∗
j from Eq. (2.19) and x̂∗j = x∗j ,

̂̂uj = ẑj x̂
∗
j =

uj
x∗j
x∗j = uj , j ∈ S.

2.2.9. Backward transit time equals forward transit time

Recall from Definition 1.16 that the backward transit time BTT is the age of material as
it exits the system.

Proposition 2.34 The backward transit time and the forward transit time of the open
linear compartmental system (2.3) are identically distributed.

Proof. The backward transit time is a weighted average of compartment releases and
compartment ages. More precisely, for y ≥ 0,

fBTT(y) =
1

‖r‖
∑
j∈S

rj faj (y).
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34 2. Compartmental systems in equilibrium and continuous-time Markov chains

Corollary 2.15 tells us now, together with ‖r‖ = ‖u‖ from Eq. (2.13), that

fBTT(y) =
1

‖u‖
∑
j∈S

zj x
∗
j

1

x∗j

(
eyB u

)
j

= z> eyB
u

‖u‖
,

which by Corollary 2.5 coincides with the probability density function fFTT(y) of the
forward transit time.

Since the absorption time T of the continuous-time Markov chain X, the forward transit
time FTT, and the backward transit time BTT are all identically distributed in the sense
that their probability density functions coincide, we use the symbol T for either of them
in the remainder of this chapter.

2.3. Application to the two ecological examples

We return to the two ecological examples from Section 2.1 and apply the now established
theory about ages and transit times to them.

2.3.1. A linear autonomous global carbon cycle model, II

Recall the example introduced in Section 2.1.1. The transit time T is phase-type dis-
tributed with probability density function (Figure 2.3)

fT (t) ≈ 0.31 e−77/37 t + 0.018 e−31/452 t + 0.52 e−36/69 t

− 0.3 e−48/81 t + 0.001 e−11/1121 t, t ≥ 0.

Its expected value E [T ] ≈ 15.58 yr is identical to the value found by Thompson & Ran-
derson (1999), and the standard deviation of the transit time is σ [T ] ≈ 45.01 yr.

Figure 2.3. Graph of the probability density function of the transit time T of the model by Emanuel
et al. (1981). Its shape and the low value of fT at the mean value µ = 15.58 yr of T are evidence
of a long tail of this distribution. This long tail results from the relatively large amount of carbon
stored in the active soil compartment with its mean age of 107.62 yr. The standard deviation of T is
denoted by σ.

Furthermore, the probability density function of the system age is given by

fA(y) ≈ 0.096 e−77/37 y + 0.017 e−31/452 y + 0.064 e−36/69 y

− 0.033 e−48/81 y + 0.0066 e−11/1121 y, y ≥ 0.
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2.3. Application to the two ecological examples 35

Figure 2.4. Carbon content with respect to age in the model by Emanuel et al. (1981). Dotted lines
indicate the mean age denoted by µ, the standard deviation is denoted by σ. The top left panel is for
the entire system, whereas the other five panels correspond to the different compartments.

Its expected value E [A] = 72.83 yr is very similar to the value 72.82 yr reported by Thomp-
son & Randerson (1999). Its standard deviation is given by σ [A] = 94.18 yr.

Additionally, we can calculate the vector that contains the age probability density func-
tions for the compartments as

fa(y) =


2.1 0 0 0 0
−0.071 0.071 0 0 0

0 0 0.52 0 0
−0.35 0.025 1.1 −0.76 0

0.00052 −0.0033 −0.011 0.0035 0.01



e−77/37 y

e−31/452 y

e−36/69 y

e−48/81 y

e−11/1121 y

 , y ≥ 0,

from which we obtain the mean-age vector, which is given by

E [a] = (0.48; 15.06; 1.92; 7.08; 107.62)> yr.

Then the standard deviation vector is

σ [a] = (0.48; 14.59; 1.92; 10.64; 102.38)> yr.

From these probability density functions, the system’s and the compartments’ contents
can be plotted with respect to their age (Figure 2.4). This gives useful information about

35



36 2. Compartmental systems in equilibrium and continuous-time Markov chains

the range of ages for each compartment and how they contribute to the system-age dis-
tribution. In comparison to the results of Thompson & Randerson (1999), our approach
not only provides mean values for ages and transit times, but also exact formulas for their
respective probability distributions. In their approach, these authors obtained results that
depended on the simulation time and therefore include numerical errors, something that
can be easily avoided by using our derived explicit formulas.

2.3.2. A nonlinear autonomous soil organic matter decomposition model, II

We consider the example introduced in Section 2.1.2. The derived formulas allow us to
calculate the mean transit time and mean ages together with the according probability
density functions for different values of the model’s parameters (Figure 2.5). In particular,
we can explore the effects of different values of the parameter ε on the ages and transit
times. This parameter controls the proportion of carbon that is transferred from the
substrate Cs to the microbial biomass compartment Cb, and it is commonly referred to as
the carbon use efficiency. Interestingly, if the carbon use efficiency ε increases, the mean
transit time and the mean ages of the model decrease (Figure 2.6), a behavior that at
first glance appears counterintuitive. It can be explained by two opposing effects. On the
one hand, an increase of carbon use efficiency keeps a higher fraction of carbon in the
system due to lower respiration. This has an increasing effect on the transit time. On
the other hand, a higher carbon use efficiency ε implies a lower steady-state content of
compartment Cs and a higher one of compartment Cb. Consequently, from Eq. (2.2) we
obtain an increasing value of λ(x∗). This value is the process rate of the compartment
Cs. The higher it is, the faster the particles travel through the system. The latter effect
prevails here and a decrease in the transit time can be observed.

The graph of the mean transit time for this model with ε = 0.39 (Figure 2.6) lies directly
on the one of the mean system age. The huge difference in the compartments’ steady-
state contents causes very little difference in the initial probability vectors β and η of the
respective phase-type distributions. This results in very similar distributions of transit
time and system age.
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2.3. Application to the two ecological examples 37

Figure 2.5. Transit-time and age distributions of the model by Wang et al. (2014). Vertical dashed
lines represent the mean µ, the standard deviation is denoted by σ. All panels show graphs for two
different values of carbon use efficiency ε.

Figure 2.6. Mean transit time E [T ] and mean system age E [A] in dependence on the carbon use
efficiency ε of the two-compartment nonlinear model proposed by Wang et al. (2014). The small figure
shows the explosion of the mean transit time if the carbon use efficiency tends to 1.
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38 2. Compartmental systems in equilibrium and continuous-time Markov chains

2.4. Discussion

We derived simple, explicit, and general formulas for the cumulative probability distribu-
tions, probability density functions, expected values, and higher order moments of transit
time, ages, and remaining lifetimes of open compartmental systems in steady state. These
formulas can be found in different places in this chapter. For convenience, Table 2.1
provides a quick overview.

Table 2.1. Overview of derived formulas for open compartmental systems in equilibrium.

Metric Density nth moment First moment

Transit time z> etB u
‖u‖ (−1)n n! 1>B−n u

‖u‖
−1>B−1 u

‖u‖ ,
‖x∗‖
‖u‖

Age vector (X∗)−1 eyB u (−1)n n! (X∗)−1 B−n x∗ −(X∗)−1 B−1 x∗

Remaining lifetime
vector (j ∈ S)

∑
i∈S

zi (eyB)ij (−1)n n!
∑
i∈S

(B−n)ij −
∑
i∈S

(B−1)ij

System age,
remaining system

lifetime
z> eyB x∗

‖x∗‖ (−1)n n! 1>B−n x∗

‖x∗‖ −1>B−1 x∗

‖x∗‖

z> = −1> B is the row vector of release rates.
x∗ = −B−1 u is the steady-state vector.
X∗ = diag(x∗1, x

∗
2, . . . , x

∗
d) is the diagonal matrix comprising the components of the

steady-state vector.

Afterwards, we used these formulas and applied them to two examples of ecologically
motivated open compartmental systems in equilibrium. We obtained the associated nu-
merical results by using a Python package called LAPM, which we had released earlier. It
can be found at https://github.com/MPIBGC-TEE/LAPM, and it treats linear autonomous
compartmental models both symbolically and numerically.

In ecological systems, the problems of defining transit times in the first place (Sierra
et al., 2016) and then finding solutions have a long history. The traditional approach via
the impulse response function (Thompson & Randerson, 1999) depends on the availability
of computational resources, and the explicit formulas of Manzoni et al. (2009) hold only
for models with a very simple structure and were obtained by a tedious procedure using
Laplace transforms.

We not only obtained explicit formulas, we also drew links between the deterministic
setup of open compartmental systems in equilibrium and the stochastic setup of absorbing
continuous-time Markov chains and regenerative processes. As it turned out, all determin-
istic system diagnostics we considered have a probabilistic counterpart. So corresponds
the transit time of an open compartmental system in equilibrium to the absorption time
of a continuous-time Markov chain, whereas the ages and remaining lifetimes correspond
to backward- and forward recurrence times of a regenerative process, respectively (Fig-
ure 2.7). Analogous relations hold for compartment ages and conditional backward re-
currence times as well as for remaining compartment lifetimes and conditional forward
recurrence times. By connecting two fields of mathematics, namely dynamical systems
theory and probability theory, we showed that they can profit from each other and that
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Figure 2.7. Relations between deterministic (orange) and stochastic (blue) quantities. Horizontal
and vertical equal signs denote equality in distribution (i.e., equality of the cumulative probability
distributions), arrows denote convergence in distribution as t→∞ (i.e., convergence of the cumulative
probability distribution). The upper half considers the linear autonomous compartmental system (2.3)
in equilibrium, the lower half its time-reversed system (2.18). Deterministic quantities are – with or
without hat – forward transit time (FTT), backward transit time (BTT), remaining system lifetime
(L), and system age (A). Stochastic quantities are absorption time (T ), forward recurrence time (Lt),
and backward recurrence time (At).

it is possible to gain insight by considering both at the same time.
We dealt exclusively with well-mixed systems here and linked them to Markov chain

theory. However, in real-world systems fluxes might depend on the time the particle has
already spent in its current compartment. Such systems find its probabilistic counterpart
in the theory of Markov renewal processes, where the future state not only depends on
the process’ current state, but also on the elapsed time since the system has entered
this state. Since there is not much deterministic theory available on that topic while
Markov renewal processes have already been extensively studied (Çinlar, 1969; Çinlar,
1975; Janssen & Manca, 2006), it might be fruitful to further investigate the link between
these two research areas.
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CHAPTER 3

Ages, transit times, and remaining lifetimes of
compartmental systems out of equilibrium

In the previous chapter, we derived the distributions of ages, transit times, and remaining
lifetimes of well-mixed compartmental systems in equilibrium. However, the equilibrium
restriction is often very unrealistic since most systems in nature are intrinsically nonlin-
ear and influenced by time-dependent factors (e.g., a fluctuating external environment).
Hence, very often it is more reasonable to consider a well-mixed compartmental system
that is nonlinear and nonautonomous. Such a system can be described by

d

dt
x(t) = B(x(t), t) x(t) + u(x(t), t), t ∈ (t0, T )

x(t0) = x0.
(3.1)

Here, t0 ∈ R is a fixed initial time and we denote by S := {1, 2, . . . , d} the set of the
system’s compartments. Furthermore, x(t) ∈ Rd+ is the vector of compartment contents
at time t ∈ [t0, T ], B = (Bij)i,j∈S : Rd+ × [t0, T ] → Rd×d is a matrix-valued function
depending on the current system content and time, u : Rd+× [t0, T ]→ Rd+ is a nonnegative
vector-valued function depending on the current system content and time, and x0 ∈ Rd+
is the initial vector of compartment contents at time t0. Furthermore, B(x, t) is required
to be invertible for all (x, t) ∈ Rd+× (t, T ), such that the system is open by Definition 1.8.
We fix a terminal time T > t0 because data for B or u might be available on a bounded
time interval only.

For such systems out of steady state, formulas for age- and transit-time distributions
have been developed for one-compartment hydrological systems, without expanding the
theory to networks of multiple interconnected compartments (Botter et al., 2011; Calabrese
& Porporato, 2015; Harman, 2015). A first milestone in this direction was the introduction
of the mean age system (Rasmussen et al., 2016), a system of ODEs describing the time
evolution of mean compartment ages of linear systems with time-dependent coefficients.

In this chapter, along the lines of Metzler et al. (2018), we derive formulas not only
for means, but for entire distributions of ages, transit times, and remaining lifetimes of
nonautonomous models. Our approach even works for nonlinear models. We further
extend the mean age system to higher order moments. This allows a simple computation
also of the variance and the standard deviation. Additionally, we provide ODEs to describe
the time evolution of quantiles such as the median of age distributions. This new framework
results in fast computations of entire age distributions and their moments than what it
was possible before. These results generalize many earlier results from different scientific
fields such as atmospheric sciences, ecology, and hydrology.
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42 3. Compartmental systems out of equilibrium

As an example application of our theoretical results, we apply them to a simple global
carbon cycle model and address two questions: How old is atmospheric carbon? How long
will a significant fraction of a pulse of fossil-fuel carbon, emitted to the atmosphere today,
remain in the system? We compare transit times and ages of a nonlinear and a linear
version of the considered model and highlight significant differences in their age structure,
which are impossible to characterize by the mean ages alone.

In contrast to Chapter 2, here we do not deal with probabilities. The entire theory
of this chapter is deterministic. Instead of considering probability density functions faj
and cumulative probability distributions Faj of compartment ages, we now exclusively
consider nonnegative compartment-age density functions pj and cumulative compartment-
age distributions Pj such that, for t ∈ [t0, T ],

xj(t) =

∞∫
0

pj(a, t) da = lim
ξ→∞

Pj(ξ, t)

and

Pj(ξ, t) =

ξ∫
0

pj(a, t) da, ξ ≥ 0.

Here, Pj(ξ, t) denotes the amount of material in compartment j ∈ S at time t with
age a ≤ ξ. We collect the compartment-age density functions pj and the cumulative
compartment-age distributions Pj in the age density function vector p = (pj)j∈S and the
cumulative age distribution vector P = (Pj)j∈S , respectively. Analogies to the results
from Chapter 2 become obvious as soon as we normalize the pj ’s and the Pj ’s by the
respective compartment contents such that they turn into probability density functions
and cumulative probability distributions, respectively.

3.1. Linear interpretation of the nonlinear solution

Only in special cases can we find an analytical solution to the initial value problem (3.1).
Nevertheless, we assume to know the unique solution at least numerically and denote it by
x. We define a time-dependent and matrix-valued function B̃ by plugging the solution x
into B, i.e., B̃(t) := B(x(t), t). Likewise, we proceed with u and obtain ũ(t) := u(x(t), t).
The linear nonautonomous compartmental system

d

dt
y(t) = B̃(t) y(t) + ũ(t), t ∈ (t0, T ),

y(t0) = x0,
(3.2)

has a unique solution that we denote by y. Since x is the unique solution to system (3.1)
and both systems are equivalent, y = x. Below, we consider linear systems only, because
we can always think of the solution of a nonlinear system (3.1) as being the solution of
the equivalent linear system (3.2). This linear interpretation of x allows us to derive semi-
analytical formulas for many properties of nonlinear systems. The prefix “semi” reflects
here the fact that all the theory works only under the assumption that x is already known.
Moreover, derived distributions of ages, transit times, and remaining lifetimes relate to
this particular trajectory x only.
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3.2. General solution of the linear system 43

3.2. General solution of the linear system

We consider the linear nonautonomous compartmental system

d

dt
x(t) = B(t) x(t) + u(t), t ∈ (t0, T ),

x(t0) = x0.
(3.3)

The unique solution x to this system on [t0, T ] is given by (Brockett, 2015, Theorem 1.6.1)

x(t) = Φ(t, t0) x0 +

t∫
t0

Φ(t, τ) u(τ) dτ, t ∈ [t0, T ], (3.4)

where Φ denotes the state-transition matrix of the system (Appendix B). This state-
transition matrix describes the transport of material through the system. Since the system
is nonautonomous, Φ depends on two time variables, and since Φ is matrix-valued, it maps
an input vector to an output vector. In particular, if v := Φ(t, τ) u, then v is the vector
that describes the time-t-distribution of the material that was distributed according to u
at time τ ≤ t.

From Eq. (3.4), we see that the vector x(t) of compartment contents at time t is given as
the sum of two terms. The term Φ(t, t0) x0 describes the material that has remained from
the initial contents, whereas the term

∫ t
t0

Φ(t, τ) u(τ) dτ describes the material that has
remained until time t out of inputs that came later than t0. In particular, Φ(t, τ) u(τ) dτ
describes the material that has entered the system infinitesimally close to time τ and is
still in the system at time t. Consequently, at time t the amount Φ(t, τ) u(τ) dτ of material
in the system has age t− τ .

3.3. Age distributions

As mentioned in Section 2.2.6, in population dynamics the McKendrick-von Foerster equa-
tion governs the populations’ age structure and its size. In our notation, it is given by

∂

∂a
p(a, t) +

∂

∂t
p(a, t) = −κ(a, t) p(a, t),

where κ is an age- and time-depending death-rate function. As before in Chapter 2, in
the compartmental system (3.3) all compartments are well-mixed. Hence, the according
death-rate function is independent of the age a. However, it might depend on time because
exit rates from the system might do so. We now try to use the recent observations on
the age of Φ(t, τ) u(τ) dτ to identify the age density function vector p and to show that it
indeed satisfies a certain kind of McKendrick-von Foerster equation.

Recall from Concept 1.15 that the age A(t) of material in the system at time t ∈ [t0, T ]
is the time span t − ta between its arrival in the system at time ta and the current time
t. We assume that the initial content x0 has a given age density function p0 such that
x0 =

∫∞
0 p0(a) da, where p0(a) da ∈ Rd+ is the vector of material with age infinitesimally

close to a at time t0. The recent observation that the amount Φ(t, τ) u(τ) dτ has age t− τ
motivates the following theorem.

Theorem 3.1 The age density function vector of the linear nonautonomous compartmen-
tal system (3.3) at time t ∈ [t0, T ] and age a ≥ 0 is given by

p(a, t) = g(a, t) + h(a, t), (3.5)
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44 3. Compartmental systems out of equilibrium

where

g(a, t) = 1[t−t0,∞)(a) Φ(t, t0) p0(a− (t− t0))

is the age density vector of the material that has been in the system from the beginning,
and

h(a, t) = 1[0,t−t0)(a) Φ(t, t− a) u(t− a)

is the age density vector of the material that has entered the system after t0.

To prove this result, we show that p as given by Eq. (3.5) satisfies a multi-dimensional
version of the McKendrick-von Foerster equation for the compartmental system (3.3).

Proposition 3.2 For a > 0 and t ∈ (t0, T ), the vector p of age density functions as
defined in Eq. (3.5) satisfies the multi-dimensional McKendrick-von Foerster equation(

∂

∂a
+
∂

∂t

)
p(a, t) = B(t) p(a, t), (3.6)

with boundary condition

p(0, t) = u(t), t ∈ (t0, T ], (3.7)

and initial condition

p(a, t0) = p0(a), a ≥ 0. (3.8)

Remark 3.3 Eq. (3.6) can be interpreted as a multi-dimensional McKendrick-von Foerster
equation because, for the ith compartment,(

∂

∂a
+
∂

∂t

)
pi(a, t) = κi(t) pi(a, t),

where κi(t) =
∑

j 6=iBij(t) +Bii(t) is the combination of the incoming and outgoing rates
of material with age a at time t.

Proof of Proposition 3.2. We prove now that the age density function vector p satisfies
the multi-dimensional McKendrick-von Foerster equation (3.6). To that end, we compute
its total differential along the characteristics a(t) = a0 + (t− t0) by

d

dt
p(a, t) =

∂

∂a
p(a, t)

d

dt
a(t) +

∂

∂t
p(a, t)

d

dt
t

=

(
∂

∂a
+
∂

∂t

)
p(a, t),

where a0 ≥ 0 is some initial age. We continue in two steps. In the first step, we show that
Eq. (3.6) holds on C1 := {(a, t) : t ∈ (t0, T ), a ≥ t− t0} with initial condition (3.8). In the
second step, we show that Eq. (3.6) holds on C2 := {(a, t) : t ∈ (t0, T ), 0 ≤ a < t − t0}
with boundary condition (3.7).

Step 1. On C1 we have p(a, t) = g(a, t). Consequently, we prove the initial condi-
tion (3.8) by

p(a, t0) = Φ(t0, t0) p0(a− (t0 − t0)) = p0(a).

Furthermore,

p(a, t) = Φ(t, t0) p0(a0),
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3.3. Age distributions 45

where a0 = a(t)− (t− t0) does not change with time on the characteristics. Consequently,(
∂

∂a
+
∂

∂t

)
p(a, t) =

d

dt
p(a, t)

=
d

dt
Φ(t, t0) p0(a0)

= B(t) Φ(t, t0) p0(a0)

= B(t) p(a, t),

which proves Eq. (3.6) on C1.

Step 2. On C2 we have p(a, t) = h(a, t). Consequently, we prove the boundary condi-
tion (3.7) by

p(0, t) = Φ(t, t− 0) u(t− 0) = u(t).

Furthermore,

p(a, t) = Φ(t, τ) u(τ),

where τ = t− a(t) does not change with time on the characteristics because a(t) = t− τ .
Consequently, (

∂

∂a
+
∂

∂t

)
p(a, t) =

d

dt
p(a, t)

=
d

dt
Φ(t, τ) u(τ)

= B(t) Φ(t, τ) u(τ)

= B(t) p(a, t),

which proves Eq. (3.6) on C2.

We denote by capital letters the cumulative age distributions corresponding to age
density functions. This means for the initial age density function vector p0 = (p0j )j∈S and

ξ ≥ 0 that P0(ξ) = (P 0
j (ξ))j∈S =

∫ ξ
0 p0(a) da is the vector of initial compartment contents

with age a ≤ ξ. Then, the next result follows immediately from Eq. (3.5).

Corollary 3.4 The vector of cumulative distributions of the compartment ages of sys-
tem (3.3) is given by

P(ξ, t) = G(ξ, t) + H(ξ, t), (3.9)

where

G(ξ, t) = 1{ξ≥t−t0}Φ(t, t0) P0(ξ − (t− t0)) (3.10)

is the vector of compartment contents with age a ≤ ξ at time t that have been in the system
from the beginning, and

H(ξ, t) =

t∫
max{t−ξ, t0}

Φ(t, τ) u(τ) dτ (3.11)

is the vector of compartment contents with age a ≤ ξ at time t that came into the system
after t0. As long as ξ ≤ t−t0, the latter can also be expressed as the compartment contents
at time t minus all the material that was already in the system at time t− ξ and survived
until time t, i.e.,

H(ξ, t) = x(t)− Φ(t, t− ξ) x(t− ξ).
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46 3. Compartmental systems out of equilibrium

Corollary 3.5 The age density function of the entire system is the sum of the compart-
ment-age density functions. It is given by

‖p(a, t)‖ =
∑
i∈S

pi(a, t), a ≥ 0, t ∈ [t0, T ]. (3.12)

The material in the system with age a ≤ ξ at time t ∈ [t0, T ] is given by the cumulative
distribution of the system age, i.e., by ‖P(ξ, t)‖.

3.4. Moments of the age distributions

For any nonnegative integer k and any (not necessarily normalized) density vector p of a
d-dimensional nonnegative vector x =

∫∞
0 p(a) da,

āx,k := X−1
∞∫
0

ak p(a) da, (3.13)

denotes the kth moment of the density vector p, where X = diag(x1, x2, . . . , xd) is the
diagonal matrix comprising the components of x = (xj)j∈S . Note that āx,0 = 1, the vector
comprising ones. For k = 1 we obtain the mean-age vector. The unboundedness of the
upper limit of the integral causes issues in the numerical computation of an age moment
directly from Eq. (3.13). To circumvent this problem, we can use the McKendrick-von
Foerster equation (3.6).

From now on, we assume that the initial age density function vector p0 admits finite
moments up to a fixed order n ∈ N and denote them by ā0,k, k = 1, 2, . . . , n. We derive
two ways of computing moments of the age distributions of system (3.3). The first one is
using a semi-explicit formula.

Proposition 3.6 The nth moment ān(t) := āx(t),n of the age distribution of the compart-
mental system (3.3) at time t ∈ [t0, T ] is given by

ān(t) = X(t)−1

[
n∑
k=0

(
n

k

)
(t− t0)n−k Φ(t, t0) X0 ā0,k

+

t−t0∫
0

an Φ(t, t− a) u(t− a) da

]
.

(3.14)

Here, X(t) = diag(x1, x2, . . . , xd)(t) is the diagonal matrix containing the compartment
contents at time t, X0 = X(t0), and ā0,k (k = 0, 1, . . . , n) denote the moments of the
initial age distribution p0.

Proof. We define
y(t) := Φ(t, t0) x0, t ∈ [t0, T ], (3.15)

and

z(t) :=

t∫
t0

Φ(t, τ) u(τ) dτ, t ∈ [t0, T ]. (3.16)

Consequently, x = y + z, where y describes the evolution of the initial material and z
the evolution of material that comes later into the system. We use the shorthand ān for
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3.4. Moments of the age distributions 47

ān(t) = āx(t),n and note that we can compute the nth moment of the age density function
vector of x by the corresponding moments of the age density function vectors of y and z
by

āni =
yi ā

y,n
i + zi ā

z,n
i

xi
, i ∈ S, (3.17)

or, in vector notation,

ān(t) = X(t)−1 [Y(t) āy,n(t) + Z(t) āz,n(t)] . (3.18)

We see from Eq. (3.13) that

Y(t) āy,n(t) =

∞∫
0

an g(a, t) da,

which by
g(a, t) = 1[t−t0,∞)(a) Φ(t, t0) p0(a− (t− t0))

and a change of variables from a to τ = a− (t− t0) can be transformed into

Y(t) āy,n(t) = Φ(t, t0)

∞∫
0

[τ + (t− t0)]n p0(τ) dτ.

An application of the binomial theorem and Eq. (3.13) leads to

Y(t) āy,n(t) =

n∑
k=0

(
n

k

)
(t− t0)n−k Φ(t, t0) X0 ā0,k. (3.19)

Furthermore, again by Eq. (3.13),

Z(t) āz,n(t) =

∞∫
0

an h(a, t) da =

t−t0∫
0

an h(a, t) da. (3.20)

We plug the sum of Eq. (3.19) and Eq. (3.20) into Eq. (3.18) to complete the proof.

Note that the integral involved in Eq. (3.14) is now over the half-open but finite interval
[0, t− t0). Hence, a numerical computation of the nth age moment of the compartmental
system (3.3) does not have to deal with an indefinite integral such as that involved in
Eq. (3.13).

Another way to compute the age moments is to set up and solve an appropriate system
of first-order ODEs, which we call the compartment-age moment system. This system is
a straightforward d · (n + 1)-dimensional generalization of the mean age system derived
in Rasmussen et al. (2016). To derive the compartment-age moment system, we try to
represent the time derivative of the kth moment of the age of compartment i ∈ S by known
quantities. For that purpose, we need some auxiliary results based on y and z as defined
in Eq. (3.15) and Eq. (3.16), respectively.

Lemma 3.7 For k = 1, 2, . . . , n, and t ∈ [t0, T ],

d

dt

∞∫
0

ak gi(a, t) da =
∑
j∈S

Bij(t) yj(t) ā
y,k
j (t) + k yi(t) ā

y,k−1
i (t), i ∈ S.
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48 3. Compartmental systems out of equilibrium

Proof. For simplicity of notation, we do not consider a single component gi, but the entire
vector g. We begin with the left hand side

d

dt

∞∫
0

ak g(a, t) da

and use

g(a, t) = 1[t−t0,∞) Φ(t, t0) p0(a− (t− t0))

to obtain

d

dt
Φ(t, t0)

∞∫
t−t0

ak p0(a− (t− t0)) da,

which by the product rule turns into

B(t) Φ(t, t0)

∞∫
t−t0

ak p0(a− (t− t0)) da+ Φ(t, t0)
d

dt

∞∫
t−t0

ak p0(a− (t− t0)) da.

We transform the first term back, and together with a change of variables in the second
term from a to τ := a− (t− t0), this brings

B(t)

∞∫
0

ak g(a, t) da+ Φ(t, t0)
d

dt

∞∫
0

(τ + (t− t0))k p0(τ) dτ.

We use Eq. (3.13) in the first term, and in the second term we bring the derivative under
the integral by means of the dominated convergence theorem to get

B(t) Y(t) āy,k(t) + Φ(t, t0)

∞∫
0

k (τ + (t− t0))k−1 p0(τ) dτ.

We undo the change of variables in the second term and transform it back to obtain

B(t) Y(t)āy,k(t) + k

∞∫
t−t0

ak−1 g(a, t) da,

which equals

B(t) Y(t)āy,k(t) + kY(t) āy,k−1(t).

Computing the ith component, we get∑
j∈S

Bij(t) yj(t) ā
y,k
j (t) + k yi(t) ā

y,k−1
i (t),

and we are finished with the proof.

Lemma 3.8 For k = 1, 2, . . . , n, and t ∈ [t0, T ],

d

dt

∫ ∞
0

ak hi(a, t) da =
∑
j∈S

Bij(t) zj(t) ā
z,k
j (t) + k zi(t) ā

z,k−1
i (t), i ∈ S.
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Proof. Again for simplicity of notation, we do not consider a single component hi, but the
entire vector h. From

h(a, t) = 1[0,t−t0)(a) Φ(t, t− a) u(t− a),

we get
∞∫
0

ak h(a, t) da = lim
ε↘0

t−t0−ε∫
0

ak h(a, t) da.

We can interchange the limit and the derivative to see

d

dt

∞∫
0

ak h(a, t) da = lim
ε↘0

d

dt

t−t0−ε∫
0

ak h(a, t) da.

By an application of the Leibniz rule to the right hand side, we obtain

lim
ε↘0

t−t0−ε∫
0

ak
∂

∂t
h(a, t) da+ (t− t0 − ε)k h(t− t0 − ε, t). (3.21)

In Step 2 of the proof of Proposition 3.2, we derived that, for a ∈ [0, t− t0 − ε],

∂

∂t
h(a, t) = B(t) h(a, t)− ∂

∂a
h(a, t),

which we plug into the first term of expression (3.21) and turn it into

lim
ε↘0

t−t0−ε∫
0

ak
[
B(t) h(a, t)− ∂

∂a
h(a, t)

]
da,

which in turn equals by Eq. (3.13)

B(t) Z(t) āz,k(t)− lim
ε↘0

t−t0−ε∫
0

ak
∂

∂a
h(a, t) da.

We integrate by parts and use again Eq. (3.13) to get

B(t) Z(t) āz,k(t)− lim
ε↘0

(t− t0 − ε)k h(t− t0 − ε, t) + k Z(t) āz,k−1(t).

Together with expression (3.21), we have

d

dt

∞∫
0

ak h(a, t) da = B(t) Z(t) āz,k(t) + k Z(t) āz,k−1(t),

which completes the proof by considering the ith component.

Lemma 3.9 For k = 1, 2, . . . , n, and t ∈ [t0, T ],

d

dt

[
xi(t) ā

k
i (t)

]
=
∑
j∈S

Bij(t)xj(t) ā
k
j (t) + k xi(t) ā

k−1
i (t), i ∈ S.
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50 3. Compartmental systems out of equilibrium

Proof. For simplicity of notation, we will eventually omit the time-dependencies of func-
tions. From Eq. (3.13) and p(a, t) = g(a, t) + h(a, t), we know

d

dt

[
xi(t) ā

k
i (t)

]
=

d

dt

∞∫
0

ak pi(a, t) da =
d

dt

∞∫
0

ak gi(a, t) da+
d

dt

∞∫
0

ak hi(a, t) da.

Consequently, we can apply Lemmas 3.7 and 3.8 and use

xj āj
k = yj ā

y,k
j + zj ā

z,k
j

from Eq. (3.17) to obtain

d

dt

(
xi ā

k
i

)
=
∑
j∈S

Bij yj ā
y,k
j + k yi ā

y,k−1
i +

∑
j∈S

Bij zj ā
z,k
j + k zi ā

z,k−1
i

=
∑
j∈S

Bij

(
yj ā

y,k
j + zj ā

z,k
j

)
+ k

(
yi ā

y,k−1
i + zi ā

z,k−1
i

)
=
∑
j∈S

Bij xj ā
k
j + k xi ā

k−1
i .

We are now in the position to prove the following theorem.

Theorem 3.10 The compartment-age moments of order k ≤ n of the compartmental
system (3.3) on the time interval [t0, T ] can be obtained by solving the d·(n+1)-dimensional
first-order ODE system

d

dt


x
ā1

...
ān

 (t) =


B(t) x(t) + u(t)
γ1(t,x,1, ā1)

...
γn(t,x, ān−1, ān)

 , t ∈ (t0, T ),

(x, ā1, . . . , ān)(t0) = (x0, ā0,1, ā0,2, . . . , ā0,n),

(3.22)

where, for k = 1, 2, . . . , n, γk := (γk1 , γ
k
2 , . . . , γ

k
d )>, and for i = 1, 2, . . . , d,

γki (t,x, āk−1, āk) := k āk−1i +
1

xi

∑
j∈S

Bij xj

(
ākj − āki

)
− āki ui

 .
Notice that we occasionally omitted the time-dependencies to simplify notation.

Proof. Let k ∈ {1, 2, . . . , n}. We compute the time derivative of āki in t ∈ (t0, T ) by

d

dt
āki (t) =

d

dt

[
xi(t) ā

k
i (t)

xi(t)

]
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and apply the quotient rule and Lemma 3.9 to get

d

dt
āki =

1

x2i

[∑
j∈S

Bij xj ā
k
j + k xi ā

k−1
i

 xi − xi āki
d

dt
xi

]

= k āk−1i +
1

xi

[∑
j∈S

Bij xj ā
k
j − āki

∑
j∈S

Bij xj + ui

]

= k āk−1i +
1

xi

∑
j∈S

Bij xj

(
ākj − āki

)
− āki ui

 .
Now, we can bring all components i ∈ S into one vector and the proof is complete.

We call Eq. (3.22) the compartment-age moment system of the linear nonautonomous
compartmental system (3.3). Because of its particular structure, it has the advantage
of solving the compartments’ age moments through time alongside the compartments’
contents. This procedure is both fast and numerically robust.

So far, we have derived formulas to compute distributions of the compartment ages.
Now we turn to the system age. Following Eq. (3.13), the nth moment of the system age
at time t ∈ [t0, T ] is defined by

Ān(t) =
1

‖x(t)‖

∞∫
0

an ‖p(a, t)‖ da. (3.23)

Corollary 3.11 The nth moment of the system age of the compartmental system (3.3) is
given by

Ān(t) =
x>(t) ān(t)

‖x(t)‖
, t ∈ [t0, T ].

Proof. By definition of the system-age moment and by Eq. (3.13) applied to the compart-
ment-age moments ānj ,

Ān(t) =
1

‖x(t)‖

∞∫
0

an ‖p(a, t)‖ da =
1

‖x(t)‖
∑
j∈S

∞∫
0

an pj(a, t) da

=
1

‖x(t)‖
∑
j∈S

xj(t) ā
n
j (t) =

x>(t) ān(t)

‖x(t)‖
.

3.5. Quantiles of the age distributions

In addition to moments, quantiles are important statistics of age distributions.

Definition 3.12 Fix q ∈ (0, 1). The q-quantile of the age of compartment i ∈ S of the
compartmental system (3.3) at time t ∈ [t0, T ] is defined as ξi(t) such that

Pi(ξi(t), t) = q xi(t). (3.24)
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52 3. Compartmental systems out of equilibrium

Analogously, the q-quantile of the system age at time t ∈ [t0, T ] is defined as ξ(t) such that

‖P(ξ(t), t)‖ = q ‖x(t)‖. (3.25)

For the special case q = 1/2, the q-quantile is called median.

In general, the computation of quantiles relies on the computationally expensive inverse
of the cumulative age distribution. The following theorem allows us to compute a partic-
ular age quantile of a single compartment on the entire interval [t0, T ] by solving an ODE,
provided that we know the associated quantile of the initial age distribution.

Theorem 3.13 For q ∈ (0, 1), the q-quantile of the age of compartment i ∈ S of the
compartmental system (3.3) can be obtained by solving

d

dt
ξi(t) = 1 +

ui(t) (q − 1) + [B(t) (q x(t)−P(ξi, t))]i
pi(ξi, t)

, t ∈ (t0, T ),

ξi(t0) = ξ0i ,

(3.26)

where ξ0i is given such that P 0
i (ξ0i ) = q x0i .

Proof. Starting at time t = t0 with given ξi(t0) = ξ0i , the time evolution of the q-quantile
ξi(t) of the age of compartment i can be described by taking the time derivative in both
sides of Eq. (3.24), which gives

d

dt

ξi(t)∫
0

pi(a, t) da = q [B(t) x(t)]i + q ui(t). (3.27)

Using the Leibniz rule, we can rewrite the left hand side to

d

dt

ξi(t)∫
0

pi(a, t) da =

ξi(t)∫
0

∂

∂t
pi(a, t) da+ pi(ξi(t), t)

d

dt
ξi(t). (3.28)

Outside the Lebesgue-null set {a ≥ 0 : a = t − t0}, the McKendrick-von Foerster equa-
tion (3.6) holds. Consequently,

ξi(t)∫
0

∂

∂t
pi(a, t) da =

ξi(t)∫
0

(
[B(t) p(a, t)]i −

∂

∂a
pi(a, t)

)
da.

On the right hand side, we see

ξi(t)∫
0

[B(t) p(a, t)]i da = [B(t) P(ξi(t), t)]i .

Furthermore,
∫ ξi(t)
0

∂
∂a pi(a, t) da = pi(ξi(t), t)−pi(0, t), and we use the boundary condition

pi(0, t) = ui(t) to obtain

ξi(t)∫
0

∂

∂t
pi(a, t) da = [B(t) P(ξi(t), t)]i − pi(ξi(t), t) + ui(t).
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3.5. Quantiles of the age distributions 53

Now, we plug it into Eq. (3.28), get

d

dt

ξi(t)∫
0

pi(a, t) da = [B(t) P(ξi(t), t)]i − pi(ξi(t), t) + ui(t) + pi(ξi(t), t)
d

dt
ξi(t),

replace the left hand side by the right hand side of Eq. (3.27), and solve for d
dt ξi(t) to

finish the proof.

Analogously, we can prove the following result.

Corollary 3.14 For q ∈ (0, 1), the q-quantile of the system age of the compartmental
system (3.3) can be obtained by solving

d

dt
ξ(t) = 1 +

‖u(t)‖ (q − 1) +
∑
i∈S

[B(t) (q x(t)−P(ξ, t))]i

‖p(ξ, t)‖
, t ∈ (t0, T )

ξ(t0) = ξ0,

(3.29)

where ξ0 is given such that ‖P0(ξ0)‖ = q ‖x0‖.

Proof. Starting at time t = t0 with given ξ(t0) = ξ0, the time evolution of the q-quantile
ξ(t) of the system age can be described by taking the time derivative in both sides of
Eq. (3.25), which gives

d

dt

ξ(t)∫
0

‖p(a, t)‖ da = q
∑
i∈S

[B(t) x(t)]i + q ‖u(t)‖. (3.30)

Using the Leibniz rule, we can rewrite the left hand side to

d

dt

ξ(t)∫
0

‖p(a, t)‖ da =

ξ(t)∫
0

∂

∂t
‖p(a, t)‖ da+ ‖p(ξ(t), t)‖ d

dt
ξ(t). (3.31)

Outside the Lebesgue-null set {a ≥ 0 : a = t − t0}, the McKendrick-von Foerster equa-
tion (3.6) holds. Consequently,

ξ(t)∫
0

∂

∂t
‖p(a, t)‖ da =

ξ(t)∫
0

(∑
i∈S

[B(t) p(a, t)]i −
∂

∂a
‖p(a, t)‖

)
da.

On the right hand side, we see

ξ(t)∫
0

∑
i∈S

[B(t) p(a, t)]i da =
∑
i∈S

[B(t) P(ξi(t), t)]i .

Furthermore,
∫ ξ(t)
0

∂
∂a ‖p(a, t)‖ da = ‖p(ξ(t), t)‖ − ‖p(0, t)‖, and we use the boundary

condition p(0, t) = u(t) to obtain

ξ(t)∫
0

∂

∂t
‖p(a, t)‖ da =

∑
i∈S

[B(t) P(ξ(t), t)]i − ‖p(ξ(t), t)‖+ ‖u(t)‖.
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54 3. Compartmental systems out of equilibrium

Now, we plug it into Eq. (3.31), get

d

dt

ξ(t)∫
0

‖p(a, t)‖da =
∑
i∈S

[B(t) P(ξ(t), t)]i − ‖p(ξ(t), t)‖+ ‖u(t)‖+ ‖p(ξ(t), t)‖ d

dt
ξ(t),

replace the left hand side by the right hand side of Eq. (3.30), and solve for d
dt ξ(t) to finish

the proof.

3.6. Transit-time distributions

Recall from Definition 1.16 that the backward transit time BTT(te) is the age of material
in the output from the system at exit time te ∈ [t0, T ], and that we further assume that
for fixed n ∈ N the nth moment of the initial age density function vector p0 exists. We
furthermore denote by z(te) the vector of outflow rates from the system at time te. It is
given by

zj(te) = −
∑
i∈S

Bij(te), j ∈ S,

where zj is the outflow-rate function from compartment j. We can write the age density
function of the outflow at time te as

pBTT(a, te) = z>(te) p(a, te), a ≥ 0, te ∈ [t0, T ]. (3.32)

Owing to the well-mixed assumption, the outflow from compartment j at time te is given
by rj(te) = zj(te)xj(te). Consequently, r(te) denotes the vector of outflows from the
system at time te.

Proposition 3.15 The nth moment of the backward transit time at time te ∈ [t0, T ] of
the compartmental system 3.3 is given by

BTT
n
(te) =

r>(te) ān(te)

‖r(te)‖
.

Proof. By Eq. (3.13),

BTT
n
(te) =

1

‖r(te)‖

∞∫
0

an pBTT(a, te) da =
1

‖r(te)‖
z>(te)

∞∫
0

an p(a, te) da.

We use r>(te) = z>(te) X(te) and again Eq. (3.13) to complete the proof.

Recall, again from Definition 1.16, that for material entering the system at its arrival
time ta ∈ (t0, T ], we consider its forward transit time FTT(ta) as the age a ≥ 0 that the
material will have when it exits the system at time te = ta + a. The exit time te might be
later than the finite time horizon T , consequently the distribution of FTT(ta) is cut off at
the age a = T − ta A proper mean forward transit time cannot be computed, and proper
quantiles might not possible to compute. The density function

pFTT(a, ta) = z>(ta + a) p(a, ta + a), ta ∈ (t0, T ], (3.33)

describes the part from the input at time ta that leaves the system at time ta + a ≤ T .
We can now easily prove a generalized version of Niemi’s theorem (Niemi, 1977).
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3.7. Remaining lifetime distributions 55

Proposition 3.16 The forward- and backward transit time of the compartmental sys-
tem (3.3) are time-shifted versions of each other. More precisely, for t0 < ta ≤ te =
ta + a ≤ T ,

pFTT(a, ta) = pBTT(a, te). (3.34)

Proof. The relation te = ta+a yields by Eq. (3.32) that pBTT(a, te) = z>(ta+a) p(a, ta+a),
which coincides with the right hand side of Eq. (3.33).

Remark 3.17 If we want to compute the moments of FTT(ta), we must rely on Eq. (3.13)
and deal with the indefinite integral. Unfortunately, we cannot profit from the close link
between FTT and BTT provided by Eq. (3.34), since the exit time te = ta + a depends
on a.

3.7. Remaining lifetime distributions

Let t ∈ [t0, T ]. Recall from Definition 1.17 that the remaining lifetime L(t) of material in
the system at time t is the length of the time period from time t until the material’s exit
from the system. Furthermore, the remaining compartment lifetime lj(t) of a compartment
j ∈ S at time t is the remaining system lifetime of material in compartment j at time t.
Just as it is the case with the forward transit time, the exit time of the material might be
beyond the finite time horizon T , and the remaining lifetime distributions are cut off at
y = T − t.

A fixed compartment j ∈ S contains an amount xj(t) of material at time t. After a
period of y ≥ 0 units of time, the amount

∑
i∈S Φij(t + y, t)xj(t) of the original amount

xj(t) is still in the system, distributed over different compartments.

Corollary 3.18 We consider the compartmental system (3.3). For t ∈ [t0, T ] and j ∈ S,

(i) the cumulative distribution of compartment j’s remaining lifetime lj(t) at time t and
y ∈ [0, T − t] is given by

Plj (y, t) = xj(t)

[
1−

∑
i∈S

Φij(t+ y, t)

]
and

(ii) its density function by

plj (y, t) = −
∑
i∈S

[B(t+ y) Φ(t+ y, t)]ij xj(t) =
∑
i∈S

zi(t+ y) Φij(t+ y, t)xj(t).

The corresponding remaining system lifetime L(t) has

(iii) its cumulative distribution given by

PL(y, t) = ‖x(t)‖ − 1>Φ(t+ y, t) x(t) and

(iv) its density function given by

pL(y, t) = z>(t+ y) Φ(t+ y, t) x(t).
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56 3. Compartmental systems out of equilibrium

3.8. Consistency with systems in equilibrium

As a special case of the open linear nonautonomous compartmental system (3.3), we
consider now the autonomous system (1.8). Hence, we have the special situation that
B(t) = B and u(t) = u are both time-independent. Note that also z(t) = z does not
depend on time anymore. We denote the unique solution of this system by x and know from
Proposition 1.13 that x(t)→ x∗ = −B−1 u as t→∞. Our goal is to show that, as t→∞,
the distributions of ages, transit times, and remaining lifetimes of the nonautonomous
interpretation coincide with those of the equilibrium interpretation of Chapter 2.

In the autonomous case, the state-transition matrix becomes a matrix exponential (Ap-
pendices B and A). More precisely,

Φ(t+ y, t) = eyB, y ≥ 0, t ≥ t0.

The age density function vector from Eq. (3.5) has now the shape

p(a, t) = g(a, t) + h(a, t), a ≥ 0, t ≥ t0,

where

g(a, t) = 1[t−t0,∞)(a) e(t−t0) B p0(a− (t− t0))

and

h(a, t) = 1[0,t−t0)(a) eaB u.

By Corollary 1.14, limt→∞ g(a, t) = 0 for all a ≥ 0. Consequently,

lim
t→∞

p(a, t) = eaB u, a ≥ 0,

is the vector that contains the age density functions of the different compartments for
t→∞.

Recall that the density functions in this chapter are not normalized. In order to link
them to the normalized probability density functions of Chapter 2, we must normalize
them. To that end, we multiply p by (X∗)−1 = diag(x∗1, . . . , x

∗
d). We further divide pBTT

and pFTT by the total system input ‖u‖, and plj by x∗j for all j ∈ S. Then it becomes
immediately obvious that the results in the nonautonomous case are generalizations of the
respective results in the autonomous case.

3.9. Application to a simple global carbon cycle model

We consider the simple global carbon cycle model introduced by Rodhe & Björkström
(1979) and depicted in Figure 3.1.

3.9.1. Detailed model description

The model consists of three compartments: atmosphere (A), terrestrial biosphere (T ),
and surface ocean (S). The letter D stands for the external compartment deep ocean with
infinite content. We denote by CA = CA(t), CT = CT (t), and CS = CS(t) the respective
carbon contents in Pg C at time t in years (yr). Two external fluxes add carbon to the
system. The first one, uS , is constant and goes from the deep ocean to the surface ocean,
whereas the second one, uA = uA(t), is time-dependent and represents carbon added to
the atmosphere by the burning of fossil fuels. Carbon can leave the system only if it moves
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3.9. Application to a simple global carbon cycle model 57

Figure 3.1 Simple global carbon cycle
model with three compartments (solid
boxes within dashed square): atmosphere
(A), terrestrial biosphere (T ), and surface
ocean (S). The indicated carbon con-
tents are the respective equilibrium val-
ues. External to the modeled system are
fossil-fuel sources and the deep ocean (D).
The model compartments and the exter-
nal sources are connected by linear (solid
arrows) and possibly nonlinear (dashed ar-
rows) fluxes of carbon. (Figure extracted
from Metzler et al. (2018))

from the surface ocean to the deep ocean. A flux from compartment X to compartment
Y is denoted by FXY and the following fluxes exist in the model, all given in Pg C yr−1:

FAT = 60 (CA/700)α, FAS = 100CA/700,

FTA = 60CT /3000 + fTA, FSA = 100 (CS/1000)β,

FSD = 45CS/1000, uS = 45.

(3.35)

Here, fTA = fTA(t) represents an internal flux from the terrestrial biosphere to the atmo-
sphere caused by land-use change (e.g., deforestation). Its values and also the values of
the external inputs through fossil-fuel emissions uA(t) are taken as time series data from
the RCP/ECP8.5 scenario (Fujino et al., 2006; Meinshausen et al., 2011). These time
series data cover the period from the year t0 = 1765 until the year T = 2500. The two
parameters α and β control the fluxes from the atmosphere to the terrestrial biosphere
and from the surface ocean to the atmosphere, respectively. If both parameters are equal
to 1 and fTA vanishes, then the model is linear, otherwise it is nonlinear.

The model can now be described by the three ODEs, for t ∈ (t0, T ),

d

dt
CA(t) = FTA(t) + FSA − FAT − FAS + uA(t),

d

dt
CT (t) = FAT − FTA(t),

d

dt
CS(t) = FAS − FSA − FSD + uS .

(3.36)

Note that the right hand side of Eq. (3.36) depends through Eq. (3.35) not only on t, but
also on the state vector x(t) = (CA(t), CT (t), CS(t))>. If we now define the state- and
time-dependent compartmental matrix B = B(x(t), t) by

B =

−C−1A (FAT + FAS) C−1T FTA C−1S FSA
C−1A FAT −C−1T FTA 0

C−1A FAS 0 −C−1S (FSA + FSD)

 (3.37)

and u(t) = (uA(t), 0, uS)>, then the model fits in the framework of Eq. (3.1) describing
the nonlinear nonautonomous compartmental system

d

dt
x(t) = B(x(t), t) x(t) + u(t), t ∈ (t0, T ),

x(t0) = x0.
(3.38)

57



58 3. Compartmental systems out of equilibrium

We consider the system at time t0 = 1765 to be in equilibrium, hence

x0 = (700, 3000, 1000)>. (3.39)

3.9.2. Simulation and results

We consider two different parameter sets: (1) (α, β) = (0.2, 10) and (2) (α, β) = (1, 1). Pa-
rameter set (1) is from the original publication (Rodhe & Björkström, 1979) and describes
a nonlinear scenario. Parameter set (2) makes together with fTA = 0 the model become
linear and we use this scenario as a reference measure for the nonlinear version (1). In
the year 1765, the system is in equilibrium and exhibits different age density functions in
different compartments (Figure 3.2). After the year 1765, we perturb the system by an

Figure 3.2. Pre-industrial carbon age density functions of the three compartments atmosphere
(blue), terrestrial biosphere (green), and surface ocean (purple). The red curve shows the age density
function of the entire system. (Figure extracted from Metzler et al. (2018))

additional external input flux uA of carbon to the atmosphere caused by fossil-fuel combus-
tion, and by an additional internal flux fTA caused by land-use change (Figure 3.3). For
the interval 1765–2100, the data correspond to the Representative Concentration Path-
ways 8.5 Scenario (RCP8.5), whereas the data for the interval 2100–2500 stem from the
Extended Concentration Pathways Scenario 8.5 (ECP8.5). We assume constant emissions
after 2100, followed by a smooth transition to stabilized atmospheric CO2 concentrations
after the year 2250 achieved by linear adjustment of emissions after the year 2150. The
perturbations make the age density functions change with time such that they can be
depicted by two-dimensional surfaces in a three-dimensional space (Figure 3.4).

To obtain useful information from these density functions, we address two climate-
relevant questions inspired by O’Neill et al. (1997).

How old is atmospheric carbon?

The entire time evolutions of the atmospheric carbon’s age density functions derived from
the two versions of the model are depicted in Figure 3.4 (left panel: nonlinear, middle
panel: linear), and so we can answer the question of atmospheric carbon age for all times
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3.9. Application to a simple global carbon cycle model 59

Figure 3.3. Anthropogenic perturbations of the global carbon cycle by carbon inputs to the at-
mosphere caused by fossil-fuel emissions (uA, red) and land-use change (fTA, blue) according to
RCP/ECP8.5. (Figure extracted from Metzler et al. (2018))

Figure 3.4. Time evolution of the atmospheric carbon’s age density function. The left panel is for
the nonlinear version of the model, the middle panel for the linear version, and the right panel shows
the difference between the two (panel 1 minus panel 2). Red curves show the median age and blue
curves the mean age. The surface color is constant along the time-age diagonal, it reflects the moment
of entry into the system. At the very left edges of the first two panels (time = 1765 yr) we can identify
the equilibrium age density function of the atmospheric carbon (cf. Figure 3.2), whereas the front
edges (age = 250 yr) show how much carbon is in the system with age equal to 250 yr from the year
1765 through the year 2500. (Figure extracted from Metzler et al. (2018))
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60 3. Compartmental systems out of equilibrium

between 1765 and 2500. In the year 2017, its mean age in the nonlinear model version
is 126.35 yr (linear: 128.32 yr) and the median age is equal to 61.76 yr (62.69 yr). The
standard deviation equals 161.72 yr (162.92 yr) indicating that the age distribution has a
long tail, a feature which cannot be revealed from the mean alone.

In these numbers, we recognize only very little differences between the nonlinear and
the linear model versions. Nevertheless, we can observe important differences in the entire
evolution of the age distributions depicted in the left and the middle panel of Figure 3.4.
The differences are twofold. First, the pure amount of atmospheric carbon is much higher
in the nonlinear model version. Second, the age distributions of atmospheric carbon show
also different shapes for the two scenarios. This results in the non-flat surface to be seen
in the right panel depicting the difference between the density functions of atmospheric
carbon in the nonlinear and the linear version of the model.

How long will a significant fraction of a pulse of fossil-fuel carbon, emitted to the
atmosphere today, remain in the system?

We consider carbon entering directly into the atmosphere at specific times ta and want to
know how long it will take to remove it from the system. The forward transit time at time
ta describes how old material entering the system at time ta will be at the time of its exit.
As indicated by the left panel of Figure 3.5, for the nonlinear model version the forward
transit-time distribution of material injected between 1800 and 2170 constantly shifts to
older ages, while it shifts back to younger ages after 2170. The medians of the forward
transit time of material injected in the years 1800, 1990, 2015 (Paris Agreement), 2170,
and 2300 are given by 79.85 yr, 82.91 yr, 86.12 yr, 108.91 yr, and 102.61 yr, respectively.
As the right panel of Figure 3.5 shows, the situation is very different in the linear scenario.
Here, the forward transit-time distribution does not depend at all on the injection time
and remains the same as in the steady state in the year 1765 because the coefficients of B
remain constant over time. Obviously, taking into account nonlinear processes leads to a
significant increase of the lifetime of fossil-fuel derived carbon in the system according to
this model.

Figure 3.5. Forward transit-time density functions of fossil-fuel carbon entering the atmosphere in
the years 1800 (red), 1990 (blue), 2015 (green), 2170 (purple), and 2300 (orange). The left panel
shows the nonlinear version and the right panel the linear one. Orange curves end at the age of
200 yr, because our simulation only lasts until the year 2500. The medians (dashed vertical lines) in
the nonlinear version increase until the year 2170, and then start decreasing. In the linear version,
the distributions and medians remain constant. (Figure extracted from Metzler et al. (2018))
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3.9. Application to a simple global carbon cycle model 61

3.9.3. Derivation of the results from the example application

First of all, we solve the system (3.38) numerically on the time interval [1765, 2500] and
obtain a solution trajectory x = x(t). With this solution in hand, we can at all times
t ∈ (1765, 2500) compute the compartmental matrix B = B(x(t), t).

Equilibrium age densities

At time t0 = 1765, the system is supposed to be in equilibrium and the land-use change
flux fTA(t0) vanishes. We plug Eq. (3.35) and Eq. (3.39) in matrix (3.37) and get

B(x0, t0) =

−160/700 60/3000 100/1000
60/700 −60/3000 0
100/700 0 −145/1000

 .

If we set B0 := B(x0, t0) and u0 := u(t0) = (0, 0, 45)>, then B0 x0 + u0 = 0. We further
define X0 := diag(x01, x

0
2, x

0
3). The steady-state formula from Corollary 2.15 gives

fa(a) =
(
X0
)−1

eaB
0
u0, a ≥ 0.

Furthermore, p0 = X0 fa. Consequently, the initial age density function vector is given by

p0(a) = eaB
0
u0, a ≥ 0. (3.40)

Atmospheric age

The two leftmost panels of Figure 3.4 depict the two-dimensional surfaces (nonlinear and
linear model version) corresponding to p = p(a, t) in the time interval 1765–2500 yr and
the age interval 0–250 yr. The scalar field p can be obtained by Eq. (3.5). By Eq. (3.40),
we have already computed the initial age density function vector p0, and the vector-
valued input function u is given by the RCP/ECP8.5 scenario. Consequently, we are only
missing the state-transition matrix Φ. We compute Φ by numerically solving the matrix
ODE system (B.1) on {(t2, t1) ∈ [1765, 2500]× [1765, 2500] : t2 ≥ t1} and can then proceed
to compute p on [0, 250]× [1765, 2500].

To obtain a time trajectory of the mean age and the second moment of the atmospheric
carbon, we follow Eq. (3.22) and solve the 9-dimensional ODE system, for t0 = 1765 and
T = 2500,

d

dt

 x
ā1

ā2

 (t) =

 B(x(t), t) x(t) + u(t)
γ1(t,x(t),1, ā1(t))

γ2(t,x(t), ā1(t), ā2(t))

 , t ∈ (t0, T )

(x, ā1, ā2)(t0) = (x0, ā0,1, ā0,2),

where, for k = 1, 2, γk = (γk1 , γ
k
2 , γ

k
3 )> and for i = 1, 2, 3,

γki (t,x, āk−1, āk) = k āk−1i +
1

xi

 3∑
j=1

Bij xj

(
ākj − āki

)
− āki ui

 .
The initial age moments ā0,1 and ā0,2 can be obtained using the equilibrium formula from
Corollary 2.15, i.e.,

ā0,n = (−1)n n!
(
X0
)−1 (

B0
)−n

x0, n = 1, 2.
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62 3. Compartmental systems out of equilibrium

Then µ1(t) := ā11(t) is the mean age of the atmospheric carbon at time t and µ2(t) := ā21(t)
its second moment. The standard deviation at time t can be computed as the square root
of µ2(t)− µ21(t).

The trajectory of the age median of atmospheric carbon can be computed by solving
Eq. (3.26) for q = 0.5 and i = 1. To that end, the cumulative compartment-age distribution
P needs to be obtained by Eq. (3.9) together with

P0(a) =
(
B0
)−1 (

eaB
0 − I

)
u(t0), a ≥ 0. (3.41)

To obtain Eq. (3.41), we only need to integrate Eq. (3.40). The initial age median ξ01 of
the atmospheric carbon at time t0 needs to be approximated by a nonlinear optimization
algorithm such that P 0

1 (ξ01) = 0.5x01.

Forward transit time of fossil-fuel derived carbon

To compute the density function of the forward transit time of fossil-fuel derived carbon,
we simply change the input vector to u(t) := (uA(t), 0, 0)> and apply Eq. (3.33). By using
the new input vector, we consider the subsystem of only fossil-fuel derived carbon. We can
treat this subsystem separately by means of the linear system that we derived by plugging
the numerical solution into the nonlinear system.

Quantiles q, such as the median (q = 0.5), for the forward transit time at arrival time
ta need to be computed by nonlinear optimization algorithms. To that end, PFTT(ξ, ta) =
q ‖u(ta)‖ must be solved for ξ, where

PFTT(a, ta) = ‖u(ta)‖ − ‖Φ(ta + a, ta) u(ta)‖

describes the difference between the total input at time ta and what remained of it at time
ta + a. Then, ta + ξ is the time at which the proportion q of the total input ‖u(ta)‖ from
time ta will have left the system.

3.10. Discussion

We obtained age-, transit-time, and remaining lifetime distributions for well-mixed com-
partmental systems. Our results are not restricted to linear models or systems in steady
state, but hold even for nonlinear nonautonomous models. This fundamental advance al-
lows us to drop the assumption that the system is in equilibrium – an assumption which
is unreasonable for most natural systems.

The derivation of the formulas for the age density functions only relies on the general
solution formula (3.4) for linear nonautonomous systems. In nonlinear systems, a known
solution trajectory is interpreted linearly and then the system can be treated as if it were
linear – as long as we consider only one particular trajectory. This approach also allows
us to consider age density functions of subsystems such as all material that entered the
system through a specific compartment.

Additionally, we obtained ODEs to compute means, higher order moments, and quan-
tiles (e.g., the median) of ages. We can use these ODEs to obtain, by very fast computa-
tions, much more precise characterizations of age distributions than it was possible before
by only looking at the means.

The power of these results is shown in an application to a simple global carbon cycle
model. We demonstrated how much age- and transit-time distributions differ between a
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nonlinear and a linear version of the model. First of all, nonlinearities lead to a tremen-
dously higher amount of carbon in the atmosphere. Secondly, these two versions of a
simple model already suggest that the lifetime of fossil-fuel derived atmospheric carbon
before being absorbed by the deep ocean is substantially increased by nonlinear processes
(Archer & Brovkin, 2008). Such sizable differences in age- and transit-time distributions
of two models might be a criterion to select one model or the other.

We want to stress that the we model used here is very simple and used mainly to
demonstrate the power and versatile applications of our mathematical framework in a
comprehensible manner. However, it is important to emphasize that for any global carbon
cycle model represented as well-mixed compartmental system, no matter how many com-
partments it comprises, we could answer questions of high scientific and societal interest
(e.g., the age of the current atmospheric carbon, the future exit age of carbon that now
enters the system).

Our results are not restricted to carbon cycle models, of course, but can be readily ap-
plied to all kinds of well-mixed compartmental systems. To that end, we provide a Python
package that implements all theoretical results and makes them usable by a few simple
commands (https://github.com/MPIBGC-TEE/CompartmentalSystems). This package
also includes a demonstration (Jupyter) notebook and an HTML file with code to repro-
duce the figures and to show more characteristics of the presented model.

A different approach than ours is needed when the well-mixed assumption of the com-
partments is dropped. The fluxes could be age-dependent, a very common case in hydrol-
ogy, where the focus mostly lies on the annual water balance of catchments (McDonnell,
2017). Such catchments are usually modeled as one compartment with one influx (precip-
itation) and two age-dependent outfluxes (evaporation, runoff) (Botter et al., 2011; Har-
man, 2015; Porporato & Calabrese, 2015). Even though this case does not fit directly in our
framework, it is possible to approximate the one-compartment system with age-dependent
outflows by a multiple-compartment well-mixed system. For time-independent systems,
this approximation bases on the fact that every nonnegative probability distribution can
be approximated arbitrarily well by a phase-type distribution (Asmussen, 2003). Doing a
similar kind of approximation for a nonautonomous single-catchment model allows the full
application of the theory presented here. A recent commentary emphasizes the restrictions
of single-catchment models and highlights the need for splitting the single catchment into
several compartments (McDonnell, 2017). Our results deliver the demanded “theoretical
framework that includes both flow and the age distribution of these flowing and stored
waters”.

In Chapter 2, we used stochastic objects to infer deterministic results and vice versa. We
showed that many objects in the deterministic world have a counterpart in the stochastic
world. However, in the present chapter we used a purely deterministic setup in the frame-
work of linear nonautonomous compartmental systems. Since mass conservation in the
deterministic setup finds its counterpart as probability mass conservation in the stochastic
setup, there are good chances to transfer the present theory to inhomogeneous Markov
chains as well as to inhomogeneous renewal- (Daley & Vere-Jones, 2008) and regenera-
tive processes (Thorisson, 1986, 1988), and to discover new relationships between the two
fields.
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CHAPTER 4

Entropy and complexity of compartmental systems

4.1. Motivation

Ages, transit times, and remaining lifetimes are diagnostic tools of open compartmental
systems. They also help compare behavior and quality of different models. Nevertheless,
structurally very different models might show very similar ages, transit times, and remain-
ing lifetimes. If we are in the position to choose among such models, which is the one to
select? By common sense, the answer is to select the least complex model and we can ask
the question:

Can a model with fewer compartments reach the same complexity as a model with more
compartments?

Figure 4.1. Which model is more complex, the two-compartment model with feedback or the three-
compartment model without feedback?

This leads to the problem of how to define complexity for compartmental systems in
the first place (Figure 4.1). Walter & Contreras (1999, Chapter 23) ask a complexity
measure/index to have at least the following natural properties:

(1) For a given structure, the index should have its greatest value when the flow rates
are even (all the same).

(2) Given two structures with the same number of compartments and even flow rates,
the index should have a larger value for the one with more nonzero flow rates.

Many common complexity measures of dynamical systems are closely related to the
information content of the system and hence to some kind of entropy. Two examples are
the topological entropy and the Kolmogorov-Sinai/metric entropy. However, linear au-
tonomous compartmental systems are asymptotically stable. By Pesin’s theorem (Pesin,
1977), both the metric- and the topological entropy vanish and cannot serve as a complex-
ity measure here; we need a different concept.
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66 4. Entropy and complexity of compartmental systems

Alternatively, we can interpret compartmental systems as weighted directed graphs.
There are numerous different complexity measures for graphs. Dehmer & Mowshowitz
(2011) provide a comprehensive overview of the history of graph entropy measures. Un-
fortunately, most of such entropy measures are based on the number of vertices, vertex
degree, edges, or degree sequence (Trucco, 1956). Thus, they concentrate on only the
structural information of the graph. There are also graph theoretical measures that take
edges and weights into account by using probability schemes. Their drawback is that
the underlying meaning of complexity becomes difficult to interpret because the assigned
probabilities seem somewhat arbitrary (Bonchev & Buck, 2005).

Since in the previous chapters we, amongst others, addressed the transit times of par-
ticles that travel through the system, we are naturally guided to a different approach. In
terms of a single particle that moves through the system governed by a stochastic pro-
cess, we can ask how difficult it is for us to guess the particle’s current compartment, the
particle’s next compartment, and the particle’s previous compartment. The more difficult
it is to answer these three questions, the higher the complexity of the model should be.
Consequently, a model’s complexity should increase with the number of compartments,
the number of fluxes leaving compartments, and the number of fluxes entering compart-
ments. A weighted average of these numbers seems desirable. But how to choose the
correct weights?

Since in open systems all material that enters the system also exits it later on, in this
chapter we try to define a reasonable complexity measure for open compartmental systems
based on the Shannon entropy (Shannon & Weaver, 1949) of the stochastic path covered
by a particle from the moment of entering the system until the moment of leaving it. We
further define a model’s information content and touch the above mentioned problem of
model selection, based on the concept of maximum entropy.

4.2. Introduction to information entropy

We introduce basic concepts of information entropy along the lines of Cover & Thomas
(2006). There are two concepts of entropy of a random variable, depending on whether
the random variable has a discrete or a continuous distribution.

Definition 4.1 (1) Let Yd be a discrete real-valued random variable with range Rd and
probability mass function p. The Shannon information entropy or Shannon entropy or
information entropy, or simply entropy of Yd is defined by

H(Yd) = −
∑
y∈Rd

p(y) log p(y) = −E [log p(Yd)] .

By convention, 0 log 0 := 0.

(2) Let Yc be a continuous real-valued random variable with range Rc and probability
density function f . Then the differential entropy or simply entropy of Yc is defined by

H(Yc) = −
∫
Rc

f(y) log f(y) dy = −E [log f(Yc)] .

Remark 4.2 Depending on the base of the logarithm, the unit of the entropy changes.
For base 2, the unit is called bits and for base e, the unit is called nats. If not stated
differently, we use the value e as logarithmic base, i.e., we use the natural logarithm.
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The entropy H(Y ) of a random variable Y has two intertwined interpretations. On the
one hand, H(Y ) is a measure of uncertainty, i.e., a measure of how difficult it is to predict
the outcome of a realization of Y . On the other hand, H(Y ) is also a measure of the
information content of Y , i.e., a measure of how much information we gain once we learn
about the outcome of a realization of Y . It is important to note that, even though their
definitions and information theoretical interpretations are quite similar, the Shannon-
and the differential entropy have one main difference. The Shannon entropy is always
nonnegative, whereas the differential entropy can have negative values. Consequently,
the Shannon entropy is an absolute measure of information and makes sense in its own
right. The differential entropy, however, is not an absolute information measure. Hence,
the differential entropy of a random variable makes sense only in comparison with the
differential entropy of another random variable.

The left panel of Figure 4.2 depicts the Shannon entropy of a Bernoulli random variable
Yd with P(Yd = 1) = 1 − P(Yd = 0) = p with p ∈ [0, 1]. This random variable could
represent the outcome of a coin toss. We can see that the entropy is low when p is close
to 0 or 1. In these cases, we have some information that the coin is biased, and hence
we have a preference if we guess the outcome. The entropy is maximum if the coin is fair
(p = 1/2), since we have no additional information about the outcome of the coin toss.
The Shannon entropy of Yd is

H(Yd) = −p log p− (1− p) log(1− p).

The right panel of Figure 4.2 shows the differential entropy of an exponentially dis-
tributed random variable Yc ∼ Exp(λ) with rate parameter λ > 0, probability density
function f(y) = λ e−λ y for y ≥ 0, and E [Yc] = λ−1.

We can imagine it to represent the duration of stay of a particle in a well-mixed com-
partment in a linear autonomous compartmental system, where λ is the total outflow rate
from the compartment. The higher the outflow rate is, the likelier is an early exit of the
particle, and the easier it is to predict the moment of exit. Hence, the differential entropy
decreases with increasing λ. It is given by

H(Yc) = 1− log λ.

Definition 4.3 Let Y1, Y2 be two discrete random variables with joint probability mass
function p and ranges R1 and R2, respectively. The joint entropy of Y1 and Y2 is defined
by

H(Y1, Y2) = −
∑
y1∈R1

∑
y2∈R2

p(y1, y2) log p(y1, y2) = −E [log p(Y1, Y2)] .

Note that the joint entropy is symmetric, i.e., H(Y1, Y2) = H(Y2, Y1).

Definition 4.4 Let Y1 and Y2 be two discrete random variables with joint probability mass
function p. Furthermore, let p2 denote the probability mass function of Y2 and denote by
p(y1 | y2) the conditional probability P(Y1 = y1 |Y2 = y2).
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68 4. Entropy and complexity of compartmental systems

Then the conditional entropy of Y1 given Y2 is defined by

H(Y1 |Y2) =
∑
y2∈R2

H(Y1 |Y2 = y2) p2(y2)

= −
∑
y2∈R2

p2(y2)
∑
y1∈R1

p(y1 | y2) log p(y1 | y2)

= −
∑
y2∈R2

∑
y1∈R1

p(y1, y2) log p(y1 | y2)

= −E [log p(Y1 |Y2)] .

Figure 4.2. Entropy of Bernoulli- and exponentially distributed random variables. The left panel
shows the Shannon entropy (logarithmic base 2) of a Bernoulli random variable depending on its
success probability p. The right panel shows the differential entropy with logarithmic base e of an
exponentially distributed random variable depending on its rate parameter λ.

The joint entropy of two random variables is the entropy of one variable plus the con-
ditional entropy of the other. This is expressed in

H(Y1, Y2) = H(Y2) + H(Y1 |Y2). (4.1)

Let Y3 be a third discrete random variable. Then

H(Y1, Y2 |Y3) = H(Y1 |Y3) + H(Y2 |Y1, Y3). (4.2)

Let Y1, Y2, . . . , Yn be discrete random variables. By repeated application of Eq. (4.1)
and Eq. (4.2), we obtain the chain rule

H(Y1, Y2, . . . , Yn) =

n∑
k=1

H(Yk |Yk−1, . . . , Y1). (4.3)

Remark 4.5 We defined the joint- and conditional entropy for discrete random variables
only. Analogous definitions can be made for continuous random variables. Also the chain
rule holds for differential entropy.

Definition 4.6 The entropy rate of a discrete-time stochastic process Y = (Yn)n∈N is
defined by

θ(Y ) = lim
n→∞

1

n
H(Y1, Y2, . . . , Yn) = − 1

n
E [log pn(Y1, Y2, . . . , Yn)]

if the limit exists. Here, pn denotes the joint probability mass function of Y1, Y2, . . . , Yn.
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The discrete-time entropy rate describes the long-term average increase of the processes’
entropy per time step. The statements of the following lemma are proven in Cover &
Thomas (2006, Theorem 4.2.1).

Lemma 4.7 For a stationary discrete-time stochastic process Y = (Yn)n∈N, the entropy
rate is

θ(Y ) = lim
n→∞

H(Yn |Yn−1, . . . , Y1).

Consequently, if Y is a stationary discrete-time Markov chain, its entropy rate is

θ(Y ) = H(Y2 |Y1).

According to Bad Dumitrescu (1988) and Girardin & Limnios (2003), we can also define
the entropy rate for continuous-time processes. To that end, we first define the entropy
on a finite time interval.

Definition 4.8 The finite-time entropy of the continuous-time stochastic process Z =
(Zt)t≥0 until T ≥ 0 is defined as

HT (Z) = −
∫
fT (z) log fT (z) dµT (z),

where fT is the likelihood of (Zt)0≤t≤T with respect to some reference measure µT , if it
exists.

Definition 4.9 The entropy rate of a continuous-time stochastic process Z = (Zt)t≥0 is
defined by

θ(Z) = lim
T→∞

1

T
HT (Z)

if the limit exists.

4.3. Compartmental systems in equilibrium

We come back to the d-dimensional open linear autonomous system (2.3) in equilibrium
from Chapter 2 and denote it by M . Let X denote the associated absorbing continuous-
time Markov chain and Z the infinite continuous-time process from Eq. (2.17). The system
is given by

d

dt
x(t) = B x(t) + u, t > 0,

x(0) = x∗.
(4.4)

This system might have been linear from the beginning or it might result from an au-
tonomous nonlinear system that has reached an equilibrium. Since B is invertible, by
Proposition 1.13 this system has a globally attracting fixed point x∗ = −B−1 u, so it has
no positive Lyapunov exponents. Consequently, its metric- and topological entropy are
zero by Pesin’s theorem and cannot serve as complexity measures. We need a different
approach to define a complexity measure for such systems.

To that end, we look at the path that a single particle covers while it travels through
the system. This path is a finite sequence of pairs (ζn, Tn), where ζn stands for the nth
compartment visited by the particle and Tn for the sojourn time in the nth compartment.
A particle leaving the system is modeled as entering the so-called environmental compart-
ment d + 1. The particle is then supposed to stay there for an infinitesimal amount of
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time before it reenters the system. The particle’s then infinite path P∞ := ((ζn, Tn))n∈N
consists of two Markov processes. The first one, ζ = (ζn)n∈N with values in

S̃ = {1, 2, . . . , d, d+ 1}

describes the sequence of visited compartments and is a discrete-time Markov chain. The
second one, the sojourn-time process (Tn)n∈N, with values in R+ describes the sequence of
sojourn times. If at time step n ∈ N the particle is in compartment j ∈ S = {1, 2, . . . , d},
then Tn ∼ Exp(λj), where λj := −Bjj . Since we cannot model an infinitesimal sojourn
time for the environmental compartment d+ 1, we define its sojourn-time distribution to
be Exp(λd+1) for λd+1 := 1 and correct for it later.

Based on these basic structures of a path, we compute three different types of entropy.
For a better understanding, we provide a summary of the desirable relations among the
three different types:

(1) As a particle travels through the system, it jumps a certain number of times to
the next compartment until it finally jumps out of the system to the environmental
compartment d+ 1. Between two jumps, the particle resides in some compartment.
Each jump comes with the uncertainties about which compartment will be next
and how long will the particle stay there. The entropy rate per jump measures the
average of these uncertainties with respect to the mean number of jumps.

(2) The travel of the particle takes a certain time. In each unit time interval before the
particle leaves, uncertainties exist whether the particle jumps, where it jumps, and
even how often it jumps. The mean of these uncertainties over the mean length of
the travel interval is measured by the entropy rate per unit time.

(3) The path entropy measures the entire uncertainty about the particles travel through
the system. We should be able to compute it if we multiply the mean entropy rate
per jump by the mean number of jumps, and also if we multiply the entropy rate
per unit time by the mean transit time.

4.3.1. Entropy rate per jump

The noninvertible matrix

Q =

(
B β
z> −1

)
(4.5)

with z> = −1>B and β = u/‖u‖ is the transition-rate matrix of the continuous-time
Markov chain that represents the particle’s infinite journey. With aid from the diagonal
matrix

DQ : = − diag(Q11, Q22, . . . , Qdd, Qd+1,d+1)

= − diag(B11, B22, . . . , Bdd,−1)

= diag(λ1, λ2, . . . , λd, λd+1),

we define P := Q D−1Q + I. Then, with λj = −Bjj for j ∈ S = {1, 2, . . . , d}, the

Pij =


0, i = j,

λ−1j Bij i 6= j, i, j ≤ d,
βi, i ≤ d, j = d+ 1,

λ−1j zj , i = d+ 1, j ≤ d,

(4.6)
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constitute the transition matrix P of the discrete-time Markov chain ζ. Note the index
order: Pij = P(ζn+1 = i | ζn = j) is the conditional probability of ζ jumping to state i in
the next step given that it is in state j at time step n.

We define a (d+ 1)-dimensional column vector y := (x∗1, x
∗
2, . . . , x

∗
d, ‖u‖)> = (x∗, ‖u‖)>

and compute

(Q y)i =
d+1∑
j=1

Qij yj =
d∑
j=1

Bij x
∗
j + βi ‖u‖ = −ui + ui = 0, i ∈ S̃, (4.7)

because the system is in equilibrium. Then, π := ‖DQ y‖−1 DQ y is a stationary distribu-
tion of ζ, because

Pπ = ‖DQ y‖−1
[
Q D−1Q + I

]
DQ y

= ‖DQ y‖−1 (Q y + DQ y)

= ‖DQ y‖−1 DQ y

= π.

Since B is invertible, by Lemma 1.7 and definition (4.6) of P, the discrete-time Markov
chain ζ is irreducible. Lemma C.9 implies that

lim
n→∞

1

n

n∑
k=1

P(ζk = j) = πj , j ∈ S̃.

Our subsequent interest is in long-term averages of the type

lim
n→∞

1

n

n∑
k=1

P(ζk = j) f(i, j)

for functions f : S̃ × S̃ → R. Consequently, we can simply equip ζ with the stationary
initial distribution π, making ζ a stationary discrete-time Markov chain from now on.

Let PB := (Pij)i,j∈S denote the matrix P restricted to the first d coordinates, and define

DB := −diag(B11, B22, . . . , Bdd) = diag(λ1, λ2, . . . , λd).

Furthermore, from now on we denote by

N := E [inf{n ∈ N : ζn = d+ 1}]

the mean of the first hitting time of state d+ 1 by ζ. It is given by

N =
d∑
i=1

(Mβ)i,

where M = (I−PB)−1 is the fundamental matrix of the absorbing continuous-time Markov
chain X. Moreover, we denote by Ni the mean number of visits of ζ to compartment i ∈ S
per cycle, which is given by

Ni = (Mβ)i.

Lemma 4.10 With the definitions from above,

‖DQ y‖ = ‖u‖ (1 +N ).
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Proof. Recall that X denotes the absorbing continuous-time Markov chain that represents
one run of a particle through the system, and β = u/‖u‖. The fundamental matrix of X
is given by

M = (I− PB)−1 =
[
I− (B D−1B + I)

]−1
= −DB B−1.

Now, the total number of jumps of X before absorption is given by

N =
d∑
i=1

(Mβ)i = ‖u‖−1
d∑
i=1

(
−DB B−1 u

)
i

= ‖u‖−1
d∑
i=1

λi x
∗
i .

We finish the proof with

‖DQ y‖ =
d∑
i=1

λi x
∗
i + ‖u‖ = ‖u‖ (N + 1).

Remark 4.11 Since N denotes the mean of the first hitting time of the environmental
compartment,

1 +N =
‖DQ y‖
‖u‖

is the mean number of jumps per cycle. The 1 stands for the jump into the system.

Corollary 4.12 The ith component πi of the stationary distribution π of ζ represents
the fraction of the mean number of visits to compartment i per cycle. The environmental
compartment d+ 1 experiences exactly one visit per cycle.

Proof. For i ∈ S, the mean number of visits of state i per cycle is given by

Ni = (Mβ)i =
(
−DB B−1 β

)
i

= ‖u‖−1
(
−DB B−1 u

)
i

=
λi x

∗
i

‖u‖
=

(DQ y)i
‖u‖

=
πi ‖DQ y‖
‖u‖

= πi (1 +N ).

(4.8)

For i = d+ 1,

πd+1 =
‖u‖
‖DQ y‖

=
‖u‖

‖u‖ (1 +N )
=

1

1 +N
. (4.9)

Lemma 4.13 The entropy rate of the compartment chain ζ is given by

θ(ζ) =
d∑
j=1

πj

 d∑
i=1,i 6=j

−Bij
λj

log

(
Bij
λj

)
− zj
λj

log

(
zj
λj

)− πd+1

d∑
i=1

βi log βi. (4.10)

Proof. With the initial distribution π, the compartment chain ζ becomes stationary. We
invoke Lemma 4.7 and obtain

θ(ζ) = H(ζ2 | ζ1) =
d+1∑
j=1

P(ζ1 = j)H(ζ2 | ζ1 = j) =
d+1∑
j=1

πj

d+1∑
i=1

−Pij logPij

=

d∑
j=1

πj

 d∑
i=1,i 6=j

−Bij
λj

log

(
Bij
λj

)
− zj
λj

log

(
zj
λj

)− πd+1

d∑
i=1

βi log βi.
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Now that the entropy rate of the compartment chain ζ is determined, we seek the
entropy rate of the path P∞. To that end, we first consider a path of finite length.

Lemma 4.14 For n ∈ N,

H((ζ1, T1), . . . , (ζn, Tn)) =

n∑
k=1

H(Tk | ζk) + n θ(ζ).

Proof. For notational compactness, we write Hn for H((ζ1, T1), . . . , (ζn, Tn)). By the chain
rule Eq. (4.3) and Eqs. (4.2) and (4.1),

Hn =
n∑
k=1

H((ζk, Tk) | (ζk−1, Tk−1), . . . , (ζ1, T1))

=
n∑
k=1

H(Tk | ζk, (ζk−1, Tk−1), . . . , (ζ1, T1))

+

n∑
k=1

H(ζk | (ζk−1, Tk−1), . . . , (ζ1, T1))

=

n∑
k=1

H(Tk | ζk) +

n∑
k=1

H(ζk | ζk−1).

The compartment chain ζ is stationary, consequently H(ζk | ζk−1) = θ(ζ) and the proof is
complete.

Proposition 4.15 The entropy rate of the infinite path P∞ = ((ζn, Tn))n∈N is given by

θ(P∞) =
d∑
j=1

πj (1− log λj) + θ(ζ).

Proof. By Definition 4.6, and Lemma 4.14,

θ(P∞) = lim
n→∞

1

n
H((ζ1, T1), . . . , (ζn, Tn)) = lim

n→∞

1

n

n∑
k=1

H(Tk | ζk) + n θ(ζ).

Furthermore, for k ∈ N,

H(Tk |ζk) =
d+1∑
j=1

P(ζk = j)H(Tk | ζk = j) =
d+1∑
j=1

πj H(Tk | ζk = j).

For j ∈ S, we have Tk ∼ Exp(λj) if ζk = j. However, for the environmental compartment
j = d + 1 we assume an infinitesimal sojourn time, i.e., an immediate exit. Hence, we
truncate the sum at j = d and do not consider any entropy for the sojourn time of the
environmental pool. This leads to

H(Tk |ζk) =
d∑
j=1

πj (1− log λj),
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74 4. Entropy and complexity of compartmental systems

which is independent of k. We get

θ(P∞) = lim
n→∞

1

n

n d∑
j=1

πj (1− log λj) + n θ(ζ)

 ,
and the proof is finished.

Remark 4.16 Proposition 4.15 states, after a rearrangement of terms,

θ(P∞) =

d∑
j=1

πj

(1− log λj) +

d∑
i=1,i 6=j

−Bij
λj

log

(
Bij
λj

)
− zj
λj

log

(
zj
λj

)
− πd+1

d∑
i=1

βi log βi.

We plug in πj and πd+1 from Eqs. (4.8) and (4.9), respectively, and see

θ(P∞) =
1

1 +N

d∑
j=1

Ni

(1− log λj) +

d∑
i=1,i 6=j

−Bij
λj

log

(
Bij
λj

)
− zj
λj

log

(
zj
λj

)
− 1

N + 1

d∑
i=1

βi log βi.

Consequently, θ(P∞) is an entropy rate measured per jump and we can interpret it as

θ(P∞) =
1

N + 1

H(entry) +
∑
j∈S

Nj

[
H(sojourn time in j) + H(next jump)

] .

4.3.2. Entropy rate per unit time

Recall the continuous-time process Z defined in Eq. (2.17). It describes the continuous-
time path of a particle through the system and being sent back in immediately after its
exit. So, Z is the continuous-time version of the discrete-time path P∞. However, we
define Z̃ to describe the continuous-time path of the permanently reentering particle with
an Exp(1)-distributed sojourn time in the environmental compartment d+1. Note that Z
and Z̃ describe two similar yet different particle paths. While Z is a regenerative process
with state space S, Z̃ is a continuous-time Markov chain with state space S̃ and transition-
rate matrix Q from Eq. (4.5). Because its jump chain ζ is irreducible, Z̃ is irreducible too.
Furthermore, from Eq. (4.7) we know that ν = (νj)j∈S̃ := ‖Q y‖−1 Q y is its stationary
distribution.

Following Girardin & Limnios (2003),

θ(Z̃) =

d+1∑
j=1

νj

d+1∑
i=1,i 6=j

Pij (1− logPij). (4.11)
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4.3. Compartmental systems in equilibrium 75

Proposition 4.17 The entropy rate per unit time of the continuous-time path Z is given
by

θ(Z) =− 1

E [T ]

d∑
i=1

βi log βi

+
1

E [T ]

d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)


− 1

E [T ]

d∑
i=1

βi log βi

+

d∑
j=1

x∗j
‖x∗‖

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)

 .
Proof. Recall Q y = 0 with y = (x∗, ‖u‖)>, η = x∗/‖x∗‖, and E [T ] = ‖x∗‖/‖u‖. We
divide y by ‖x∗‖, obtain (η, 1/E [T ])>, and normalize this to

ν =
E [T ]

E [T ] + 1

(
η,

1

E [T ]

)>
=

1

E [T ] + 1

(
x∗

‖u‖
, 1

)>
. (4.12)

We see Qν = 0 and ‖ν‖ = 1. Consequently, the stationary distribution ν of Z̃ is given
by Eq. (4.12), and we obtain from Eq. (4.11)

θ(Z̃) =
1

E [T ] + 1

d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)


+

1

E [T ] + 1

d∑
i=1

βi(1− log βi)

= − 1

E [T ] + 1

(
d∑
i=1

βi log βi + 1

)

+
1

E [T ] + 1

d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)

 .
To get to the entropy rate of Z, we need to do two corrections here. First, the 1 inside the
first parenthesis comes from 1 = 1− log 1 and represents the entropy of the sojourn time in
the environmental compartment d+ 1. Second, θ(Z̃) indicates a cycle length of E [T ] + 1,
where again the 1 stands for the mean sojourn time in the environmental compartment.
Since Z jumps immediately out of this compartment, there is no uncertainty in the sojourn
time here, because no time is spent in this compartment. Hence, the cycle length of Z is
E [T ]. We omit the 1’s in question and use E [T ] = ‖x∗‖/‖u‖ to finish the proof.

Remark 4.18 For a one-dimensional compartmental system Mλ with rate λ > 0, positive
external input, and associated regenerative process Zλ,

θ(Zλ) =
1

λ−1
(1− log λ),

which equals the differential entropy 1− log λ of T ∼ Exp(λ) divided by E [T ] = λ−1. The
exponential distribution Exp(λ) is the interarrival-time distribution of a Poisson process
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76 4. Entropy and complexity of compartmental systems

with intensity rate λ. The renewals of this Poisson process determine the moments of exit
of the particle from the system. Consequently, θ(Zλ) is is the entropy rate per unit time
of the Poisson process.

Migrating to a d-dimensional system, for i 6= j, Bij (1 − logBij) is the entropy rate of
a Poisson process that determines whether the particle jumps to compartment i, as long
as it resides in compartment j. With x∗j/‖u‖ = E [Oj ] being the mean occupation time of
compartment j during a single run through the system,

θ(Z) =
1

E [T ]

H(entry) +

d∑
j=1

E [Oj ]

 d∑
i=1,i 6=j

H(Poisson(i | j)) + H(Poisson(exit | j))

 .
4.3.3. Path entropy

We shift our interest away from a average uncertainties such as entropy rates toward
the uncertainty of one entire particle run through the system. Consequently, our object
of study is now the absorbing continuous-time Markov chain X from Chapter 2, which
describes one single particle run through the system. We consider X on the state space
S̃ = {1, 2, . . . , d, d+ 1} with initial distribution β = u/‖u‖ on S = {1, 2, . . . , d} and with
state-transition matrix Q as defined by Eq. (2.4), i.e.,

Q =

(
B 0
z> 0

)
.

Along the lines of Albert (1962), we construct a space ℘ that contains all possible
paths that can be taken by a particle that runs through the system until it leaves. Let
℘n := (S×R+)n×{d+1} denote the space of paths that visit n compartments/states before
ending up in the environmental compartment/absorbing state d + 1. By ℘ :=

⋃∞
n=1 ℘n

denote the space of all eventually absorbed paths. Note that, since B is invertible, a path
through the system is finite with probability 1. Let l denote the Lebesgue measure on R+

and c the counting measure on S. Furthermore, let σn be the sigma-finite product measure
on ℘n. It is defined by σn := (c⊗ l)n ⊗ c. Almost all sample functions of (Xt)t≥0 can be
represented as a point p ∈ ℘ (Doob, 1953, Chapter VI). Consequently, we can represent X
by a finite-length path P(X) = ((ξ1, T1), (ξ2, T2), . . . , (ξn, Tn), ξn+1) for some n ∈ N, where
ξn+1 = d+ 1.

For each set W ⊆ ℘ for which W ∩ ℘n is σn-measurable for each n ∈ N, we define
σ∗(W ) :=

∑∞
n=1 σn(W ∩ ℘n). It is defined on the σ-field F∗ which is the smallest σ-field

containing all sets W ⊆ ℘ whose projection on Rn+ is a Borel set for each n ∈ N. Let σ be
a measure on all sample functions, defined for all subsets W whose intersection with ℘ is
in F∗. We define it by σ(W ) := σ∗(W ∩ ℘).

Let p = ((x1, t1), (x2, t2, ), . . . , (xn, tn), d+ 1) ∈ ℘ for some n ∈ N. For i 6= j, we denote
by Nij(p) the total number of path p’s transitions from j to i and by Rj(p) the total
amount of time spent in j.

Lemma 4.19 The probability density function of P = P(X) with respect to σ is given by

fP(p) = βx1

(
d∏
j=1

d+1∏
i=1,i 6=j

(Qij)
Nij(p)

)
d∏
j=1

e−λj Rj(p),

p = ((x1, t1), (x2, t2), . . . , (xn, tn), d+ 1) ∈ ℘.
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4.3. Compartmental systems in equilibrium 77

Proof. Let x1, x2, . . . , xn ∈ S, xn+1 = d+ 1, and t1, t2, . . . , tn ∈ R+. Since

P((ξ1 = x1, T1 ≤ t1), (ξ2 = x2, T2 ≤ t2), . . . , (ξn = xn, Tn ≤ tn), ξn+1 = d+ 1)

= P(ξn+1 = d+ 1 | ξn = xn)

n∏
k=1

P(ξk = xk, Tk ≤ tk | ξk−1 = xk−1)

= Pd+1,xn

[
n∏
k=2

Pxkxk−1

(
1− e−λxk tk

)]
βx1

(
1− e−λx1 t1

)
=

∫
Tn

βx1

n∏
k=1

Qxk+1xk e
−λxk τk dτ1dτ2 · · · dτn

with Tn = {(τ1, τ2, . . . , τn) ∈ Rn+ : 0 ≤ τ1 ≤ t1, 0 ≤ τ2 ≤ t2, . . . , 0 ≤ τn ≤ tn}, the
probability density function of P = P(x) with respect to σ is given by

fP(p) = βx1

n∏
k=1

Qxk+1xk e
−λxk tk ,

p = ((x1, t1), (x2, t2), . . . , (xn, tn), d+ 1) ∈ ℘.

The term Qxk+1xk = Qij enters exactly Nij(p) times. Furthermore,

n∏
k=1

e−λxk tk =
n∏
k=1

d∏
j=1

1{xk=j} e
−λj tk =

d∏
j=1

e
−λj

n∑
k=1

1{xk=j} tk
=

d∏
j=1

e−λj Rj(p).

We make the according substitutions and the proof is finished.

Theorem 4.20 The entropy of the absorbing continuous-time Markov chain X is given
by

H(X) = −
d∑
i=1

βi log βi +
d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)

 .
Proof. Let X have the finite path representation

P = P(X) = ((ξ1, T1), (ξ2, T2), . . . , (ξn, Tn), d+ 1)

for some n ∈ N, and denote by fP its probability density function. Then, by Lemma 4.19,

− log fP(P) = − log βξ1 −
d∑
j=1

d+1∑
i=1,i 6=j

Nij(P) logQij +

d∑
j=1

λj Rj(P).

We compute the expectation and get

H(X) = H(P) = −E [log fP(P)]

= −E [log βξ1 ]−
d∑
j=1

d+1∑
i=1,i 6=j

E [Nij(P)] logQij +

d∑
j=1

λj E [Rj(P)]

= H(ξ1) +

d∑
j=1

λj E [Rj(P)]−
d∑
j=1

d+1∑
i=1,i 6=j

E [Nij(P)] logQij .
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78 4. Entropy and complexity of compartmental systems

Obviously, E [Rj(P)] = E [Oj ] = x∗j/‖u‖ is the mean occupation time of compartment

j ∈ S by X. Furthermore, for i ∈ S̃ and j ∈ S such that i 6= j, by Eqs. (4.8) and (4.6),

E [Nij(P)] = E [Nj(P)] Pij =


x∗j
‖u‖ Bij , i ≤ d,
x∗j
‖u‖ zj , i = d+ 1.

Together with λj =
∑d

i=1,i 6=j Bij + zj , we obtain

H(X) = H(ξ1) +

d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij + zj

− d∑
i=1,i 6=j

Bij logBij − zj log zj


= −

d∑
i=1

βi log βi +
d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)

 .

Proposition 4.21 The entropy H(X) is consistent with the entropy rate per jump θ(P∞)
and the entropy rate per unit time θ(Z). More precisely,

H(X) = (1 +N ) θ(P∞) = E [T ] θ(Z).

Proof. The relation H(X) = E [T ] θ(Z) is immediately obvious from Proposition 4.17.
From Proposition 4.15 and Lemma 4.13, we have

θ(P∞) =

d∑
j=1

πj (1− log λj) +

d∑
j=1

πj

 d∑
i=1,i 6=j

−Bij
λj

log

(
Bij
λj

)
− zj
λj

log

(
zj
λj

)
− πd+1

d∑
i=1

βi log βi

With Eqs. (4.8) and (4.9), we obtain

(1 +N ) θ(P∞) =
d∑
j=1

x∗j
‖u‖

λj (1− log λj)

+
d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

−Bij log

(
Bij
λj

)
− zj log

(
zj
λj

)
−

d∑
i=1

βi log βi

=
d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij + zj

 (1− log λj)

+

d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij( log λj − logBij) + zj (log λj − log zj)


−

d∑
i=1

βi log βi
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= −
d∑
i=1

βi log βi +
d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)


= H(X).

Remark 4.22 Analogously to the interpretation of θ(Z) in Remark 4.18, we can interpret
the entropy of X as

H(X) = H(entry) +
d∑
j=1

E [Oj ]

 d∑
i=1,i 6=j

H(Poisson(i | j)) + H(Poisson(exit | j))

 .
Definition 4.23 If u ∈ Rd+, and B ∈ Rd×d is compartmental and invertible, then we denote
by (u,B) the linear autonomous compartmental system (4.4) and by X, P∞, and Z the
associated absorbing continuous-time Markov chain, infinite path, and infinite continuous-
time path, respectively.

Furthermore, the path entropy of M = (u,B) is defined as HP(M) := H(X), its entropy
rate per jump by θP∞(M) := θ(P∞), and its entropy rate per unit time by θZ(M) := θ(Z).

4.3.4. The maximum entropy principle

Let us again consider a Bernoulli random variable Y with P(Y = 1) = 1 − P(Y = 0) = p
with p ∈ [0, 1]. As shown in the left panel of Figure 4.2, the entropy of this class of
distributions is maximum if p = 1/2, when heads and tails are equally likely. Consequently,
it is most difficult to predict the outcome of a coin toss in case of a fair coin. The farther
away p is from 1/2, the more information we have about the future outcome. In the
extreme cases of p = 0 or p = 1 we know the outcome perfectly.

Assume we know that a coin is being tossed for 100 times, but we have no information
about the value p that belongs to the probability of a heads outcome in one coin toss. If
we were to bet on the number of heads that will have occurred after 100 trials, how would
we decide? We are looking for the expected value (and multiply it by 100) of a probability
distribution in the class of Bernoulli distributions with p ∈ [0, 1] that represents our state
of knowledge best. As already mentioned, we have no information about p whatsoever.
Consequently, we have to assume p = 1/2 and bet on 50 heads after 100 trials. Any
p 6= 1/2 lowers the entropy of the according Bernoulli distribution. The entropy difference
between the distributions with p = 1/2 and p 6= 1/2 represents a positive amount of
additional information that we have about p. Since we have no additional information
about p, the probability distribution that represents our knowledge best is the maximum
entropy distribution with p = 1/2. Any other choice of p = 1/2 implies that we use
knowledge about p that we do not have.

This so-called maximum entropy principle arose in statistical mechanics. Its relation-
ships to information theory and stochastics were established in Jaynes (1957a,b). The goal
of this section is to transfer the maximum entropy principle to compartmental systems in
order to identify the compartmental system that represents our state of knowledge best in
different situations.
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80 4. Entropy and complexity of compartmental systems

Examples of maximum entropy models

Recall that the path entropy of a linear autonomous compartmental system M = (u,B)
is given by

HP(M) = H(X) = −
d∑
i=1

βi log βi +

d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)

 .
In order to obtain maximum entropy models under simple constraints, we now adapt ideas
of Girardin (2004).

Proposition 4.24 Consider the setM of open compartmental systems (4.4) with a prede-
fined nonzero input vector u, a predefined mean transit time E [T ], and an unknown steady-
state vector comprising nonzero components. The compartmental system M = (u,B) with

B =


−λ 1 · · · 1
1 −λ 1 · · · 1
...

. . .
...

1 · · · 1 −λ

 ,

where λ = d− 1 + 1/E [T ], is the maximum entropy model in M.

Remark 4.25 Intuitively, this result is obvious. The system has a high symmetry, the
particle is equally likely to jump among different pools, and the Poisson process with
intensity rate 1 is the one with maximum entropy rate. Furthermore, the resulting rates
zj = 1/E [T ] of leaving the system are chosen such that the mean transit time constraint
is fulfilled.

Proof of Proposition 4.24. We can express the constraint E [T ] = ‖x∗‖/‖u‖ by

C1 =
1

‖u‖

d∑
j=1

x∗j − E [T ] = 0.

From the steady-state formula x∗ = −B−1 u, we obtain another set of d constraints, which
we can describe by

1

‖u‖
(B x∗)i = −βi, i = 1, 2, . . . , d.

We rewrite the left hand side as

1

‖u‖
(B x∗)i =

1

‖u‖

d∑
j=1

Bij x
∗
j =

1

‖u‖

 d∑
j=1,j 6=i

Bij x
∗
j +Bii x

∗
i


=

1

‖u‖

d∑
j=1,j 6=i

Bij x
∗
j −

1

‖u‖
x∗i

 d∑
k=1,k 6=i

Bki + zi

 ,

which leads to the constraints

C2,i =
1

‖u‖

d∑
j=1,j 6=i

Bij x
∗
j −

1

‖u‖
x∗i

 d∑
k=1,k 6=i

Bki + zi

+ βi = 0, i ∈ S. (4.13)
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The Lagrangian is now given by

L = H(X) + γ0C1 +
d∑
i=1

γiC2,i (4.14)

and its partial derivatives with respect to Bij (i 6= j), zj , and x∗j by

‖u‖ ∂

∂Bij
L = −x∗j logBij + γi x

∗
j − γj x∗j ,

‖u‖ ∂

∂zj
L = −x∗j log zj − γj x∗j ,

and

‖u‖ ∂

∂x∗j
L =

d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)

+ γ0 +

d∑
i=1,i 6=j

γiBij − γj

 d∑
k=1,k 6=j

Bkj + zj

 ,

respectively. Setting ∂
∂Bij

L = 0 gives Bij = eγi−γj , and setting ∂
∂zj

L = 0 gives zj = e−γj .

We plug this into ∂
∂x∗j

L = 0 and get

0 =

d∑
i=1,i 6=j

eγi−γj [1− (γi − γj)] + e−γj [1− (−γj)]

+ γ0 +
d∑

i=1,i 6=j
γi e

γi−γj − γj

 d∑
k=1,k 6=j

eγk−γj + e−γj


=

∑
i 6=j,i6=j

eγi−γj + e−γj + γ0.

Subtracting e−γj from both sides and multiplying with eγj leads to

γ0 e
γj +

d∑
i=1,i 6=j

eγi = −1, j = 1, 2, . . . , d.

This is equivalent to the linear system Y v = −1 with

Y =


γ0 1 · · · 1
1 γ0 1 · · · 1
...

. . .
...

1 · · · 1 γ0

 , v =


eγ1

eγ2

...
eγd

 , −1 =


−1
−1
...
−1

 .

The case γ0 = 1 has no solution v since eγi > 0 > −1. For γ0 6= 1 the matrix Y has a
nonzero determinant which makes the system uniquely solvable. For symmetry reasons,
γi = γj =: γ for all i, j = 1, 2, . . . , d. Consequently, for i 6= j, we get Bij = 1, and by
summing Eq. (4.13) over i ∈ S,

0 = ‖u‖
d∑
i=1

C2,i =

d∑
i=1

d∑
j=1,j 6=i

Bij x
∗
j −

d∑
i=1

x∗i

 d∑
k=1,k 6=i

Bki + zi

− ‖u‖
= −

d∑
i=1

x∗i zi − ‖u‖,
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which can also be expressed by zT x∗ = ‖u‖. We simply plug in zi = e−γ and get
e−γ ‖x∗‖ = ‖u‖, which means zi = 1/E [T ]. Consequently,

B =


−λ 1 · · · 1
1 −λ 1 · · · 1
...

. . .
...

1 · · · 1 −λ

 .

Uniqueness of this solution follows from its construction, we remain with showing maxi-
mality. To this end, we split the entropy into to three parts, i.e., H(X) = H1 + H2 + H3

with

H1 = −
d∑
i=1

βi log βi,

H2 =
d∑
j=1

x∗j
‖u‖

zj (1− log zj), and

H3 =

d∑
j=1

x∗j
‖u‖

d∑
i=1,i 6=j

Bij (1− logBij).

The term H1 is independent of Bij and zj for all i, j ∈ S and i 6= j, and can thus be
ignored. By Lemma 2.10, we can rewrite the second term as

H2 =
d∑
j=1

P(E = j) (1− log zj) =
d∑
j=1

H(TE |E = j)P(E = j) = H(TE |E),

where E denotes X’s last state before absorption and TE the exponentially distributed
sojourn time in E right before absorption. We see that H2 becomes maximal if the
knowledge of E contains no information about TE . Hence, zj = zi for i, j ∈ S. Since we
need to ensure the systems’ constraint on E [T ], we get zj = 1/E [T ] for all j ∈ S.

In order to see that Bij = 1 (i 6= j) leads to maximal entropy, we first note that

H3 =
d∑
j=1

x∗j
‖u‖

d∑
i=1,i 6=j

1 · (1− log 1) = (d− 1)
d∑
j=1

E [Oj ] = (d− 1)E [T ]

by Lemma 2.8. We now disturb Bkl for fixed k, l ∈ S with k 6= l by a sufficiently tiny ε,
which may be positive or negative. We define Bkl(ε) := Bkl + ε, and a change from λj
to λj(ε) := λj + ε > 0 ensures zj(ε) = zj , implying that the system’s mean transit time
remains unchanged, i.e., E [T (ε)] = E [T ]. The ε-disturbed H3 is given by

H3(ε) =
d∑
j=1

x∗j (ε)

‖u‖

d∑
i=1,i 6=j

1 · (1− log 1)
(
1− 1{i=k, j=l}

)
+
x∗l (ε)

‖u‖
(1 + ε) [1− log(1 + ε)]

=

d∑
j=1

x∗j (ε)

‖u‖

d∑
i=1,i 6=j

(
1− 1{i=k, j=l}

)
+
x∗l (ε)

‖u‖
(1− δ)

for some δ > 0 since the map x 7→ x (1 − log x) has its global maximum at x = 1.
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Consequently,

H3(ε) =

 d∑
j=1

x∗j (ε)

‖u‖

d∑
i=1,i 6=j

1

− δ x∗l (ε)
‖u‖

= (d− 1)
d∑
j=1

E [Oj(ε)]− δ
x∗l (ε)

‖u‖

= (d− 1)E [T (ε)]− δ
x∗l (ε)

‖u‖
= (d− 1)E [T ]− δ

x∗l (ε)

‖u‖
< H3.

Hence, disturbing Bij away from 1 reduces the entropy of the system, and the proof is
complete.

Remark 4.26 In the special case d = 1 for a one-dimensional compartmental system, we
obtain B = −1/E [T ]. Since in this case T ∼ Exp(−B11), we see that the exponential
distribution is the maximum entropy distribution in the class of all nonnegative continuous
probability distributions with fixed expected value. This special case is very well known
(Cover & Thomas, 2006, Example 12.2.5).

Proposition 4.27 Consider the set M of open compartmental systems (4.4) with a pre-
defined nonzero input vector u and a predefined positive steady-state vector x∗. The com-
partmental system M = (u,B) with B = (Bij)i,j∈S given by

Bij =


√

x∗i
x∗j
, i 6= j,

−
d∑

k=1,k 6=j

√
x∗k
x∗j
− 1√

x∗j
, i = j,

is the maximum entropy model in M.

Proof. The mean transit time E [T ] = ‖x∗‖/‖u‖ of the system is fixed. Hence, the La-
grangian L is the same as in Eq. (4.14), and setting ∂

∂Bij
L = 0 leads to

− logBij + γi − γj = 0, i 6= j.

An interchange of the indices and summing the two equations gives

logBij + logBji = 0.

Hence, Bij Bji = 1. A good guess gives B2
ij = x∗i /x

∗
j and γj = 1

2 log x∗j . From ∂
∂zj

L = 0,
we get

− log zj − γj = 0, j ∈ S,

and in turn zj = (x∗j )
−1/2. Maximality and uniqueness of this solution follow from the

strict concavity of H(X) as a function of Bij and zj for fixed x∗. We can see this strict
concavity by

∂2

∂B2
ij

H(X) =
∂

∂Bij

−x∗j
‖u‖

logBij = −
x∗j

‖u‖Bij
< 0

and
∂2

∂z2j
H(X) =

∂

∂zj

−x∗j
‖u‖

log zj = −
x∗j
‖u‖ zi

< 0.

83



84 4. Entropy and complexity of compartmental systems

Structural model identification via the maximum entropy principle

Suppose we observe a natural system and conduct measurements from which we try to
construct a linear autonomous compartmental model in equilibrium that represents the
observed natural system as well as possible. The first question that arises is the one
for the number of compartments the model should ideally have. The maximum entropy
principle cannot be helpful here because by adding more and more compartments we can
theoretically increase the entropy of the model indefinitely. Consequently, the problem of
finding the right dimension of system (4.4) has to be solved by other means. One way to do
it is to analyze an impulse response function of the system and its Laplace transform, the
transfer function of the system, which might be possible to obtain by tracer experiments
(Anderson, 1983; Walter, 1986).

In Anderson (1983, Chapter 16) the structural identification problem of linear au-
tonomous systems is described as follows. Suppose we are interested in determining a
d-dimensional system of form (4.4). We are interested in sending an impulse into the sys-
tem at time t = 0 and analyzing its further behavior. To that end, we rewrite the system
to

d

dt
x(t) = B x(t) + A u, t ≥ 0,

x(0) = 0,

y(t) = C x(t), t ≥ 0.

(4.15)

Note that the roles of A and B are interchanged here with respect to Anderson (1983). In
a typical tracer experiment, we choose an input vector u and the input distribution matrix
A, which defines how the input vector enters the system. Then, we decide which compart-
ments we can observe to determine the output connection matrix C. The experiment is
now to inject an impulse into the system and to record the output function y(t) = C x(t).
Bellman & Åström (1970) pointed out that the input-output relation is given by

y(t) = C x(t) = C

t∫
0

e(t−τ) B A u(τ) dτ

=
[
C etB A

]
∗ u(t),

where ∗ is the convolution operator. The model parameters enter the input-output relation
only in the matrix-valued impulse response function

Ψ(t) := C etB A, t ≥ 0,

or in the transfer function

Ψ̂(s) := C (s I− B)−1 A,

the Laplace transform matrix of Ψ. Consequently, all identifiable parameters of A, B, and
C must be identified through Ψ or Ψ̂. Difficulties arise because the entries of the matrices
Ψ and Ψ̂ are usually nonlinear expressions of the elements of A, B, and C.

Definition 4.28 System (4.15) is called identifiable if this nonlinear system of equations
has a unique solution (A,B,C) for given Ψ or Ψ̂. Otherwise the system is called noniden-
tifiable.

Usually, the matrices A and C are already know from the experiment’s setup. What
remains is to identify the compartmental matrix B. The following example is inspired by
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4.3. Compartmental systems in equilibrium 85

Anderson (1983, Example 16 C). It shows how the maximum entropy principle can help
take a decision which model to use if not all parameters can be uniquely determined from
the transfer function Ψ̂.

Example 4.29 We are interested in determining the entries of the compartmental matrix
B belonging to the 2-dimensional linear autonomous compartmental system

d

dt

(
x1
x2

)
(t) =

(
B11 B12

B21 B22

) (
x1
x2

)
(t) +

(
1
0

)
, t > 0. (4.16)

We immediately notice u = (1, 0)> and A = I. Further, we decide to measure the contents
of compartment 1 such that C = (1, 0). We recall z> = −1>B and obtain z1 = −B11−B21

and z2 = −B22 −B12. The real-valued transfer function is then given by

Ψ̂(s) =
s+ γ1

s2 + γ2 s+ γ3
,

where
γ1 = B12 + z2,

γ2 = B21 + z1 +B12 + z2,

γ3 = z1B12 + z1 z2 +B21 z2.

(4.17)

We assume that Ψ̂ is known from measurements, i.e., γ1, γ2, and γ3 are known impulse
response parameters. We have the four unknown parameters B11, B12, B21, and B22, or
equivalently, B12, B21, z1, and z2, but only three equations to determine them. Conse-
quently, the system is nonidentifiable and it remains a classM of models which all satisfy
Eq. (4.17). Which model out of M are we going to select now?

Here, the maximum entropy principle comes into play. We intend to select the model
that best represents the information given by our measurement data. We have to find
M∗ = (u,B∗) such that

M∗ = arg max
M∈M

θZ(M).

We maximize the entropy rate per unit time here instead of the path entropy, because by
slowing down the model, we could potentially increase its mean transit time and with it
its path entropy indefinitely.

Let us turn to a numerical example in which we suppose to be given γ1 = 3, γ2 = 5,
and γ3 = 4. A nonlinear optimization algorithm with the arbitrarily chosen initial values
B12 = 3, B21 = 0, z1 = 1, and z2 = 1 ends approximately with the terminal compartmental
matrix

B∗ ≈
(
−2.00 1.90
1.05 −3.00

)
and the terminal entropy rate per unit time θZ(M∗) ≈ 1.92. Unfortunately, it is not
guaranteed that this solution is a global maximum entropy model in M.

The nonidentifiability of the model from Ψ̂ alone is underlined by the fact that another
system M̃ = (u, B̃) ∈M with

B̃ =

(
−2.00 2.00
1.00 −3.00

)
results in the same transfer function, but a different entropy rate per unit time, i.e.,
θZ(M̃) ≈ 1.90 (Figure 4.3).
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86 4. Entropy and complexity of compartmental systems

Figure 4.3. Entropy rate per unit time of system (4.16). The blue curve shows the evolution of the
entropy rate per unit time during the nonlinear optimization process. Peaks higher than the terminal
value show attempts of the optimization algorithm that do not perfectly satisfy all constraints. The
black line shows the entropy rate per unit time of model M̃ .

This example is only supposed to give a first impression of how the maximum entropy
principle can be used in combination with entropy rates or path entropy in similar situa-
tions. Practical examples usually have a high level of complexity such that existence and
uniqueness of a maximum entropy model have to be studied on a case-by-case basis.

4.3.5. Entropy as a measure of complexity

We come back to the two desired properties that a complexity measure for compartmental
systems should have, as stated in Section 4.1:

(1) For a given structure, the index should have its greatest value when the flow rates
are even (all the same).

(2) Given two structures with the same number of compartments and even flow rates,
the index should have a larger value for the one with more nonzero flow rates.

Do the path entropy or the entropy rates of compartmental systems satisfy these proper-
ties?

Consider the three compartmental systems M0 = (u,B), M1 = (u,B1
R), and M2 =

(u,B2
R) as depicted in Figure 4.4 with compartmental matrices

B =

(
−1 0
0 −1

)
, B1

R =

(
−1 R
0 −(1 +R)

)
, B2

R =

(
−(1 +R) R

R −(1 +R)

)
,

respectively. The three systems are supposed to have the input vector u = (1, 1)> in
common, and the parameter R is a nonnegative real.

86



4.3. Compartmental systems in equilibrium 87

Figure 4.4 Schematics of the compart-
mental systems M0, M1, and M2 associ-
ated to the different compartmental matri-
ces B, B1

R, and B2
R, respectively. The dif-

ferent compartmental matrices lead to dif-
ferent connections between the pools. The
1’s represent the external input- and out-
put rates, while R ≥ 0 is a parameter that
defines the rates between the two compart-
ments. In the upper model M0, the param-
eter R is equal to 0.

For R = 0, we see B = B1
R = B2

R and the systems M0, M1, and M2 have no internal
connections. If we change R to an arbitrary positive number, we introduce one internal
connection to M1 and two internal connections to M2. In both cases, the entropy (path
entropy and entropy rate per unit time) should increase in order to have the desired
property (2) of complexity measures. But as shown in Figure 4.5, depending on the value
of R also a decrease can happen. Consequently, the entropy does not have property (2).
The maximum entropy of the system M1 clearly occurs for R < 1, when not all rates of
the system are equal. So the entropy also lacks property (1). However, this property is
satisfied if the system does not lack any connections as shown by system M2. Here, the
maximum entropy occurs at R = 1, which reflects the statement of Proposition 4.24.

Figure 4.5. Path entropy (solid lines) and entropy rate per unit time (dashed lines) of the systems
M0 (black), M1 (blue), and M2 (olive), respectively. Path entropy and entropy rate coincide for all
models and for all R ≥ 0 because the mean transit remains constant (E [T ] = 1). The vertical dotted
line at R = 1 indicates the situation in which all existing fluxes have the same rate.

Path entropy and entropy rate are measures for the complex behavior of particles while
they travel through the system. They are additional concepts to classical complexity
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88 4. Entropy and complexity of compartmental systems

measures such as number of compartments, number of connections, Kolmogorov complex-
ity, effective measure complexity, logical depth, ZIV-Lempel coding, or total information
(Ebeling et al., 1998). All of these can be applied to compartmental systems and each one
is a measure for a different system property. Hence, the choice of the complexity concept
is highly subjective and context-dependent. The book by Ebeling et al. (1998) treats this
delicate topic in a very comprehensive way.

For instance, the question which of the two models in Figure 4.1 is more complex cannot
be answered definitely the way it is posed. A definite answer requires the formulation of a
more precise question. The answer depends on the property of interest as Table 4.1 shows.
Depending on whether we consider the entropy rate per jump, the entropy rate per unit
time, or the path entropy, we get different results - even with different model orders.

Table 4.1. Overview of different entropies of simple models with different structures. The columns
from left to right represent a schematic of the model, its mathematical representation, its entropy
rate per jump, its entropy rate per unit time, its mean transit time, and its path entropy. Underlined
numbers are the highest values per column. The two gray rows emphasize the examples of the model
structures considered at the beginning of the chapter in Figure 4.1.

Even though the entropy of compartmental systems as introduced here does not sat-
isfy classical properties of complexity measures with respect to single models, it exhibits
complexity properties with respect to model classes. Consider the model class

M := {M = (u,B) compartmental : B is invertible,

Bjj = −1,

Bij = 0 or Bij = 1/nj , zj = 0 or zj = 1/nj ,

uj = 0 or uj = 1}.

Here, nj =
∑

i 6=j 1{Bij>0} + 1{zj>0} is the number of fluxes leaving compartment j, and
in the third line we assume i 6= j. Since B is required to be invertible, nj > 0 for all j.
Furthermore, the dimension of models M ∈M is arbitrary. In other words,M consists of
models in which all compartments have the same velocity −1, and for each compartment
all possible outgoing jumps are equally likely, having probability 1/nj . Not all jumps are
possible, because the corresponding connection does not necessarily exist. All existing
input connections have rate 1. All models in this class are maximum entropy rate models
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4.4. Compartmental systems out of equilibrium 89

with respect to their connective structure. Note that this connective structure includes
both external and internal fluxes.

(a) entropy rate per unit time (b) path entropy

Figure 4.6. Distribution of models with up to three compartments in the space spanned by entropy
and number of connections/edges. Each dot in the plane represents a compartmental system. On
the x-axis we see the number of internal and external connections or edges of the model. The y-axis
represents the entropy rate per unit time in panel (a) and the path entropy in panel (b). The color
of the dots represents the number of compartments (1: black, 2: red, 3: blue). The darker the color
of the dots in terms of transparency, the more models have the same number of edges and entropy.

We can now identify classical complexity-measure properties of the entropy rate per
unit time on M. We denote by M(d, n) ⊆ M the subclass of models with d compart-
ments and n connections or edges, and we denote by Mmax(d, n) an arbitrary model with
maximal entropy rate per unit time in this subclass. In panel (a) of Figure 4.6 we see
that θZ(Mmax(d, n)) ≤ θZ(Mmax(d + 1, n)) and θZ(Mmax(d, n)) ≤ θZ(Mmax(d, n + 1)).
This means that adding compartments or edges increases the maximum entropy rate per
unit time in M, even though it does not necessarily increase the entropy per unit time
of a particular model. This property does not hold for the path entropy, because adding
compartments or connections might shorten the path and the maximum path entropy
decreases. Additionally, we see from Proposition 4.24 that the entropy rate becomes max-
imum for equal rates if the model is totally connected. Consequently, the entropy rate
per unit time is a complexity measure on specific model classes rather than one for single
models.

Furthermore, we can answer the initial question of this chapter. In both panels of
Figure 4.6, we can identify two-dimensional systems (red dots) with equally many or fewer
edges in the realm of the three-dimensional systems (blue dots). Depending on the model
structure, it is possible to find lower-dimensional systems being more complex than higher
dimensional ones.

4.4. Compartmental systems out of equilibrium

So far, we considered entropy only for systems in equilibrium. The goal of this section is
to extend the concept of entropy to systems out of equilibrium. We abstain from using
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90 4. Entropy and complexity of compartmental systems

a fixed finite time horizon for the sake of simplicity of the presentation, even though in
practical applications data might be available only for a limited amount of time. In this
case, the according integrals have to be cut off at the appropriate points.

We consider the d-dimensional linear nonautonomous compartmental system (3.3), given
by

d

dt
x(t) = B(t) x(t) + u(t), t > t0,

x(t0) = x0.
(4.18)

Recall from Definition 1.5 that B(t) is required to be bounded for all t ≥ t0. We denote this
system by M = (u,B, t0,x

0). As in Section 3.1, the system might have been linear from
the beginning or result from a linear interpretation of a solution trajectory of a nonlinear
system. The unique solution x to this system is given by

x(t) = Φ(t, t0) x0 +

t∫
t0

Φ(t, τ) u(τ) dτ, t ≥ t0, (4.19)

where Φ denotes the state-transition matrix of the system (Appendix B).
Analogously to Section 2.2.2, we first establish a link between this system and an inho-

mogeneous continuous-time Markov chain. To that end, assume that material u(s0) ∈ Rd+
comes into system (4.18) at time s0 > t0. Since the system is linear, the way how this
material will be distributed can be modeled by the homogeneous linear ODE system

d

dt
x̃(t) = B(t) x̃(t), t > s0,

x̃(s0) = u(s0).

From Eq. (4.19), we know that the proportion of the material uj(s0), entering the system
through compartment j, that is in compartment i at time t > s0 equals

x̃i(t) = Φij(t, s0).

Consequently, an inhomogeneous continuous-time Markov chain Xs0 = (Xs0
t )t≥s0 with

state space S = {1, 2, . . . , d}, initial distribution β(s0) = u(s0)/‖u(s0)‖, and transition
probabilities

P(Xs0
t = i |Xs0

s = j) = Φij(t, s), s0 ≤ s ≤ t, i, j ∈ S,

describes the stochastic travel of a single particle through system (4.18) if the particle
arrives at time s0 > t0. When the particle leaves the system, Xs0 jumps to its absorbing
state d+ 1.

Corollary 4.30 For t ≥ s0,

P(Xs0
t = j) =

{
[Φ(t, s0)β(s0)]j , j ≤ d,
1− ‖Φ(t, s0)β(s0)‖, j = d+ 1.

4.4.1. Path entropy and instantaneous entropy

We fix s0 > t0 and are interested in the path entropy and the entropy rate per unit time
of a particle that enters the system at time s0. Hence, we need to identify the entropy
of Xs0 . The jump-chain approach from Section 4.3.1 and the entropy-rate approach from
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Section 4.3.2 rely heavily on the existence of a stationary distribution. To find a stationary
distribution of an inhomogeneous Markov chain with potentially permanently changing
transition probabilities is possible only in very special cases. Furthermore, the construction
of the measure σ∗ along the lines of Albert (1962) in Section 4.3.3 holds for homogeneous
Markov chains only.

Consequently, we use a different and more direct approach that coincides with the
idea of τ -entropy per unit time as defined in Gaspard & Wang (1993). For T > s0
and N ∈ N, let τ := (T − s0)/N be a grid size, and consider the interval partitioning
s0 < s1 = s0 + τ < · · · < sN = s0 + N τ = T on [s0, T ]. First, we are interested in the
joint entropy

HT,τ (Xs0) := H(Xs0
s0 , X

s0
s1 , . . . , X

s0
sN

), (4.20)

which we call τ -entropy of X on [s0, T ]. Second, we decrease the grid size to obtain the
finite-time entropy

HT (Xs0) := lim
τ→0

HT,τ (Xs0) = lim
N→∞

HT,τ (Xs0).

Then, we increase the time horizon to determine the entropy

H(Xs0) = lim
T→∞

HT (Xs0).

Furthermore, we define

Pij(sk) := P(Xsk+1
= i |Xsk = j)

for k = 0, 1, . . . , N − 1, j ∈ S = {1, 2, . . . , d}, and i ∈ S̃ = {1, 2, . . . , d, d+ 1}.

Lemma 4.31 By the above definitions,

Pij(sk) =


Bij(sk) τ + o(τ), i 6= j, i ≤ d,
zj(sk) τ + o(τ), i = d+ 1,

1− [λj(sk) τ + o(τ)], i = j,

where o(τ) is little-o notation for o(τ)/τ → 0 as τ → 0.

Proof. Let Xsk = j ∈ S. As mentioned in Remark 4.18, in the autonomous case the time
until the next jump to i 6= j is exponentially distributed with rate Bij . Consequently, the
probability of a jump to i in the time interval Ik = [sk, sk + τ) is associated to a Poisson
process with intensity rate Bij .

In the nonautonomous case, the rates Bij depend on time and the jump probabilities
are associated to an inhomogeneous Poisson process with intensity functions Bij(t) (i 6=
j, i ≤ d) for internal jumps and zj(t) (i = d + 1) for jumps to the absorbing state d + 1.
The probability of not jumping at all in Ik (i = j) is expressed by the complementary
event to having a jump. The probability of more than one jump in the small interval is
o(τ) by the very nature of Poisson processes.

Lemma 4.32 The τ -entropy of X on [s0, T ] is given by

HT,τ (X) = H(Xs0)

+
d∑
j=1

N−1∑
k=0

τ P(Xsk = j)

[
d∑

i=1,i 6=j
−Bij(sk) logBij(sk)− zj(sk) log zj(sk)
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− 1

T − s0
log

(
1− λj(sk) (T − s0)

N

)N ]

+
d∑
j=1

N−1∑
k=0

τ P(Xsk = j)λj(sk) log [1− λj(sk) τ ]

− log(τ)

 d∑
j=1

N−1∑
k=0

τ P(Xsk = j)λj(sk)

 .
Proof. Recall from Eq. (4.20) that

HT,τ (X) = H(Xs0 , Xs1 , . . . , XsN ),

which by an application of the chain rule Eq. (4.3) turns into

HT,τ (X) = H(Xs0) +
N−1∑
k=0

H(Xsk+1
|Xsk).

Definition 4.4 of conditional entropy leads to

HT,τ (X) = H(Xs0) +

N−1∑
k=0

d+1∑
j=1

P(Xsk = j)H(Xsk+1
|Xsk = j).

From the moment on in which the particle leaves the system, there will be no additional
uncertainty anymore. Consequently, it suffices to consider j ≤ d. By Lemma 4.31, we
obtain

HT,τ (X) = H(Xs0) +
N−1∑
k=0

d∑
j=1

P(Xsk = j)H(Xsk+1
|Xsk = j)

= H(Xs0)−
N−1∑
k=0

d∑
j=1

P(Xsk = j)
d+1∑
i=1

Pij(sk) logPij(sk)

= H(Xs0)−
d∑
j=1

d+1∑
i=1

N−1∑
k=0

P(Xsk = j)Pij(sk) logPij(sk).

(4.21)

From now on, we concentrate on the term

−
N−1∑
k=0

P(Xsk = j)Pij(sk) logPij(sk).

According to Lemma 4.31, we distinguish three cases. In all cases, we omit the o(τ)’s from
Lemma 4.31, because when we take the limit N →∞ later on, the result is the same, and
this way we can keep the structure of the proof clean. To keep that in mind, we replace
the equal sign “=” by “≈” until we finally take the limit N →∞.

1) Let i 6= j, i ≤ d. We have

−
N−1∑
k=0

P(Xsk = j)Pij(sk) logPij(sk) ≈ −
N−1∑
k=0

P(Xsk = j)Bij(sk) τ log [Bij(sk) τ ]

≈ −
N−1∑
k=0

P(Xsk = j)Bij(sk) τ logBij(sk)
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−
N−1∑
k=0

P(Xsk = j)Bij(sk) τ log τ

≈ −
N−1∑
k=0

τ P(Xsk = j)Bij(sk) logBij(sk)

− log(τ)

[
N−1∑
k=0

τ P(Xsk = j)Bij(sk)

]
.

2) Let i = d+ 1. Analogously to 1),

−
N−1∑
k=0

P(Xsk = j)Pij(sk) logPij(sk) ≈ −
N−1∑
k=0

P(Xsk = j) zj(sk) τ log [zj(sk) τ ]

≈ −
N−1∑
k=0

τ P(Xsk = j) zj(sk) log zj(sk)

− log(τ)

[
N−1∑
k=0

τ P(Xsk = j) zj(sk)

]
.

3) Let i = j. In this case, the particle does not move to another compartment in the
interval [sk, sk+1), hence

−
N−1∑
k=0

P(Xsk = j)Pij(sk) logPij(sk)

≈ −
N−1∑
k=0

P(Xsk = j) [1− λj(sk) τ ] log [1− λj(sk) τ ]

≈ −
N−1∑
k=0

P(Xsk = j) τ
N

T − s0
log [1− λj(sk) τ ]

+

N−1∑
k=0

P(Xsk = j)λj(sk) τ log [1− λj(sk) τ ]

≈ −
N−1∑
k=0

τ P(Xsk = j)
1

T − s0
log

(
1− λj(sk) (T − s0)

N

)N

+

N−1∑
k=0

τ P(Xsk = j)λj(sk) log [1− λj(sk) τ ].

We plug the results from 1), 2), and 3) into Eq. (4.21) and use

− log(τ)

N−1∑
k=0

τ P(Xsk = j)

 d∑
i=1,i 6=j

Bij(sk) + zj(sk)


= − log(τ)

[
N−1∑
k=0

τ P(Xsk = j)λj(sk)

]

to complete the proof.
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Remark 4.33 The term

− log(τ)

 d∑
j=1

N−1∑
k=0

τ P(Xsk = j)λj(sk)


represents an offset, which is a direct result of the discretization process. The smaller the
grid size τ , the larger this offset, which tends to infinity with a rate proportional to − log τ
as τ → 0.

The effect is the same as in computing the differential entropy of a continuous random
variable by discretizing its range, computing the discrete entropy based on the discretiza-
tion, and then letting the grid size tend to zero. The reason behind this effect is that a
realization of a continuous random variable, if transmitted, requires an infinite amount of
bits if it is to be recovered with perfect precision (Cover & Thomas, 2006, Theorem 8.3.1).

Theorem 4.34 The path entropy of particles entering system (4.18) at time s0 > t0 is
given by

H(Xs0) = −
d∑
j=1

βj(s0) log βj(s0)

+
d∑
j=1

∞∫
s0

[Φ(t, s0)β(s0)]j

×

 d∑
i=1,i 6=j

Bij(t) [1− logBij(t)] + zj(t) [1− log zj(t)]

 dt.

Proof. We look at the τ -entropy HT,τ (X) of X on [s0, T ] as given by Lemma 4.32. As
mentioned in Remark 4.33, the offset of HT,τ (X) explodes as τ → 0. We drop it for now.
While we elaborate on the reasoning in Section 4.5, we concentrate now on the remaining
terms. The first term, H(Xs0) describes the uncertainty of through which compartment
the particle enters the system at time s0. It is obviously given by

H(Xs0) = −
d∑
j=1

βj(s0) log βj(s0).

The term

N−1∑
k=0

τ P(Xsk = j)

− d∑
i=1,i 6=j

Bij(sk) logBij(sk)− zj(sk) log zj(sk)


is a Riemann sum and converges to

T∫
s0

P(Xt = j)

− d∑
i=1,i 6=j

Bij(t) logBij(t)− zj(t) log zj(t)

 dt

as N → ∞. Since B(t) is required to be bounded for all t > t0, also λj(sk) is bounded
and even uniformly bounded on [s0, T ]. For t ∈ [s0, T ], choose a sequence (kN (t))N∈N such
that t ∈ [skN (t), skN (t)+1] for all N ∈ N. Then,(

1− λj(sk) (T − s0)
N

)N
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converges to e−λj(t) (T−s0) as N →∞. The convergence is even uniform on [s0, T ]. Then,

log

(
1− λj(sk) (T − s0)

N

)N
converges uniformly to −λj(t) (T − s0) on [s0, T ]. Thanks to this uniform convergence,

lim
N→∞

−
N−1∑
k=0

τ P(Xsk = j)
1

(T − s0)
log

(
1− λj(sk) (T − s0)

N

)N
=

T∫
s0

P(Xt = j)λj(t) dt.

Furthermore, from Corollary 4.30 we know

P(Xt = j) = [Φ(t, s0)β(s0)]j , j ∈ S.

The remaining term

d∑
j=1

N−1∑
k=0

τ P(Xsk = j)λj(sk) log [1− λj(sk) τ ]

vanishes as N →∞ since, owing to the uniform boundedness of λj(sk) on [s0, T ], the term
log [1− λj(s) τ ] converges uniformly to 0.

We combine these partial results, substitute λj(t) by
∑d

i=1,i 6=j Bij(t) + zj(t), and obtain

HT (Xs0) = −
d∑
j=1

βj(s0) log βj(s0)

+
d∑
j=1

T∫
s0

[Φ(t, s0)β(s0)]j

×

 d∑
i=1,i 6=j

Bij(t) [1− logBij(t)] + zj(t) [1− log zj(t)]

 dt.

Letting T →∞ completes the proof.

Corollary 4.35 The entropy H(Xs0) is consistent with the autonomous case.

Proof. We consider system (4.4) as nonautonomous and compute

H(Xs0) = −
d∑
j=1

βj(s0) log βj(s0)

+
d∑
j=1

∞∫
s0

[Φ(t, s0)β(s0)]j

×

 d∑
i=1,i 6=j

Bij(t) [1− logBij(t)] + zj(t) [1− log zj(t)]

 dt

= −
d∑
j=1

βj log βj
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+
d∑
j=1

∞∫
s0

[
e(t−s0) B β

]
j

dt

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)


= −

d∑
j=1

βj log βj

+

d∑
j=1

(
−B−1 β

)
j

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)


+

d∑
j=1

x∗j
‖u‖

 d∑
i=1,i 6=j

Bij (1− logBij) + zj (1− log zj)

 .

Definition 4.36 We call

θinst(X
s0 , t) =

d∑
j=1

[Φ(t, s0)β(s0)]j

×

 d∑
i=1,i 6=j

Bij(t) [1− logBij(t)] + zj(t) [1− log zj(t)]


the instantaneous entropy rate of Xs0 at time t ≥ s0.

We intend to extend the path entropy and the instantaneous entropy rate of a single
particle entering the system at time s0 > t0 to the entire system. To that end, we compute
a weighted average of the path entropy of all particles that ever enter the system. The
weights are based on the amount of input at a particular time. Furthermore, we have to
consider the initial value x0. We denote the path entropy of a particle in the system at
time t0 by H0. Accordingly to H(Xs0), it is given by

H0 :=−
d∑
j=1

η0j log η0j

+
d∑
j=1

∞∫
t0

[
Φ(t, t0)η

0
]
j

 d∑
i=1,i 6=j

Bij(t) [1− logBij(t)] + zj(t) [1− log zj(t)]

 dt,

where η0 = x0/‖x0‖. Analogously, the instantaneous entropy rate at time t ≥ t0 of a
particle that has been in the system at time t0 is given by

θ0(t) :=

d∑
j=1

[
Φ(t, t0)η

0
]
j

 d∑
i=1,i 6=j

Bij(t) [1− logBij(t)] + zj(t) [1− log zj(t)]

 .
Definition 4.37 Denote by M = (u,B, t0,x

0) the linear nonautonomous compartmental
system (4.18). The path entropy of M is defined as

HP(M) = lim
T→∞

1

U(t0, T ) (T − t0)

‖x0‖H0 +

T∫
t0

‖u(s0)‖H(Xs0) ds0

 ,
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where U(t0, T ) = ‖x0‖ +
∫ T
t0
‖u(s0)‖ ds0 denotes the total initial system content plus the

total amount of system input in the interval (t0, T ].

The instantaneous entropy rate of system M at time t ≥ t0 is defined as

θinst(M, t) =

d∑
j=1

xj(t)

‖x(t)‖

 d∑
i=1,i 6=j

Bij(t) [1− logBij(t)] + zj(t) [1− log zj(t)]

 .
Note the similarity of the nonautonomous system’s instantaneous entropy rate and the

entropy rate per unit time of systems in equilibrium.

4.5. Discussion

In the two previous chapters, we focused on diagnostics of compartmental systems such
as transit time, age, and remaining lifetime. These diagnostics were then computed for
different models and also used to compare them. The main motivation of the present
chapter was to compare models also in terms of complexity and to find out whether a model
with fewer compartments can be at least as complex as a model with more compartments.
As it turned out, the answer highly depends on the choice of the complexity measure.
There is not one single complexity measure that is the correct choice for all purposes. One
has to asses carefully which is the particular model property of interest.

This leads automatically to the problem of either using an already existing complexity
measure for compartmental systems or introducing a new one. Some examples for exist-
ing and well-studied complexity measures for dynamical systems are topological entropy,
Kolmogorov-Sinai/metric entropy, effective measure complexity, forecasting complexity,
total information, and Shannon-Kolmogorov entropy. For detailed overviews over differ-
ent kinds of entropy-related complexity measures, see Gaspard & Wang (1993), Ebeling
et al. (1998), and Cover & Thomas (2006).

Since two of the most popular complexity measures for dynamical systems, namely
topological and metric entropy, vanish and cannot measure complexity of compartmental
systems, we introduced another concept. In the style of Chapter 2, we interpreted the
system from a one-particle point of view and analyzed it in terms of information entropy.
When a particle moves through the system, it creates a path from the time of its entry
until the time of its exit. We can describe this path in three ways: (1) as a discrete
sequence of pairs consisting of visited compartments and associated sojourn times; (2)
as a continuous-time stochastic process representing the visited compartments; (3) as a
random variable in the path space. Based on these three ways, we introduced for systems
in equilibrium (1) the entropy rate per jump, (2) the entropy rate per unit time, and (3)
the entropy of the entire path. Then, we showed that these three interpretations lead to
the same path entropy, which is a measure of how difficult the path of the particle is to
predict at the moment of entry.

We then identified the maximum entropy models in two situations in which different
kinds of information about the system are given. Furthermore, we showed with the help
of an example how the maximum entropy principle can help pick a particular model
out of a remaining set of models, when a unique model identification based on available
(measurement) information fails. The idea behind this procedure was that we wanted to
select the model that reflects best the state of our given knowledge and in this sense is
the most honest model. Here, the maximum entropy principle cannot only help identify
parameter values of the model but also the model’s connectivity structure.
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98 4. Entropy and complexity of compartmental systems

We then examined whether the entropy rate per unit time and the path entropy satisfy
two classical properties of complexity measures. We found out that they do not; adding
compartments and/or edges to a given model does not necessarily increase the entropy, at
least not on a single-model basis. However, if we consider certain model classes, then we
see that the maximum entropy rate per unit time in such classes fulfills this property.

There is also another way of looking at compartmental systems. We can interpret the
compartmental system as a weighted directed graph, and there are plenty of complexity
measures on graphs (Dehmer & Mowshowitz, 2011). But in contrast to most of the ex-
isting complexity measures on graphs, the weights of the path entropy do not seem to be
arbitrarily chosen just to guarantee typical properties of complexity measures. Instead,
they naturally emerge from the question of what happens to a particle in the system.
However, from the viewpoint of how complicated the compartmental matrix looks, the in-
terpretation of the path entropy is counterintuitive. Usually, the more symmetrically and
simple the matrix looks, the more complex becomes the system in terms of path entropy
(e.g., Proposition 4.24).

If we can find the maximum entropy model in a class M of models, then the difference
between the maximum entropy and the entropy of another model M ∈ M could serve
as a complexity measure for M , even though Shannon called this difference information
(Bonchev & Buck, 2005). Such an alternative complexity measure works in the opposite
direction of the path entropy. In fact, it measures the additional information a modeler
put into M with respect to the most uninformed model, and this additional information
is then called complexity. The path entropy, however, values the most stupid model as
highly complex. As with all other complexity measures, it is important to have clearly
in mind, what the system property of interest exactly is. This is already true for purely
structural complexity aspects that ignore transfer rates (Dehmer & Mowshowitz, 2011).

As mentioned in Sections 4.1 and 4.3, Pesin’s theorem implies that the metric entropy of
all open compartmental system vanishes. Furthermore, the metric entropy of continuous-
time stochastic processes is infinite which is caused by the discretization in time, on which
the metric entropy relies. When we introduced the entropy rate per jump in Section 4.3.1,
from the very beginning we used discrete (states) and continuous (sojourn times) random
variables. This way, by the definition of differential entropy, we avoided a discretiza-
tion in time. However, for the path entropy of nonautonomous systems we used a time-
discretization approach and obtained an infinite offset as mentioned in Remark 4.33. This
infinite offset is the very reason why the metric entropy for continuous-time stochastic
processes is infinite (Gaspard & Wang, 1993, Eq. (3.30)). If we ignore it justified by the
alternative derivation of the path entropy by means of differentiable entropy, we obtain an
entropy measure that allows us to evaluate the complexity of open compartmental systems.

Probabilistically, the path entropy is the entropy of an absorbing continuous-time Markov
chain. Just as in Chapter 3, where we extended the theory of ages, transit times, and re-
maining lifetimes from systems in equilibrium to systems out of equilibrium, in Section 4.4
we extended the concept of path entropy to nonautonomous systems, now by discretizing
in time – the fourth way to obtain the path entropy. In nonautonomous systems, the path
entropy of a particle is no longer constant but depends on the particle’s entry time into
the system. It might be interesting to investigate seasonal entropy cycles and long-term
entropy trends for natural systems such as carbon cycle systems and to figure out what
certain entropy patterns can tell us about the real world and vice versa. Nevertheless,
the introduction of entropy for nonautonomous compartmental systems in this chapter is
to be conceived as a first step in this direction only. Transferring autonomous entropy
concepts such as maximum entropy and model identification to nonautonomous systems
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might be a profound field of research in the future. In particular, measurement data are
usually time-dependent, and it is an intriguing question how complex a model needs to be
to be capable of reproducing a data set with a certain information content.
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CHAPTER 5

Conclusions and outlook

Compartmental systems are particular deterministic dynamical systems that describe the
flow of material, energy, or other quantities such as money through a system that comprises
a number of well-mixed compartments (Jacquez et al., 1972; Anderson, 1983; Jacquez &
Simon, 1993; Walter & Contreras, 1999; Haddad et al., 2010). Continuous-time Markov
chains are stochastic processes on a state space, in which the future state is independent
of the past (Kallenberg, 2002).

In this thesis, we mainly investigated the relation between compartmental systems and
continuous-time Markov chains based on the properties mass balance and well-mixedness
of compartmental systems as well as on the probability mass balance and the Markov
property of continuous-time Markov chains. This way, we built a bridge between a deter-
ministic and a stochastic theory.

First, we derived compartmental systems as systems of ODEs from the two principles of
conservation of mass and well-mixedness of compartments. This lead to the main objects
of study: compartmental matrices. As it turned out, compartmental matrices have the
same properties as transition-rate matrices of absorbing continuous-time Markov chains.
Thereby, we found that for open compartmental systems in equilibrium the determinis-
tic quantities system age, transit time, and remaining system lifetime follow phase-type
distributions with respective parameters. We also derived explicit formulas for the dis-
tributions of compartment ages and remaining compartment lifetimes. Furthermore, we
showed that if we consider the time-reversed system, the roles of age and remaining lifetime
interchange.

Manzoni et al. (2009) had also identified the compartment-age and transit-time distri-
butions, but only for compartmental systems with a very simple structure. Even earlier,
Thompson & Randerson (1999) had already derived age- and transit-time distributions
for the global ecosystem model introduced by Emanuel et al. (1981). However, their
method was purely numerical and computationally intensive. With the explicit formulas
we derived, we can easily address systems of arbitrary size with immediate and precise
results.

We also found that system age and remaining system lifetime of open compartmental
systems in equilibrium find their stochastic counterparts in the backward and forward
recurrence times of a particular renewal process, respectively. Furthermore, compartment
ages and remaining compartment lifetimes are related to conditional backward- and for-
ward recurrence times of a particular regenerative process, respectively. The construction
of this regenerative process relies on an absorbing continuous-time Markov chain whose
absorption time is the stochastic counterpart of the deterministic transit time of the com-
partmental system. It is this back and forth between determinism and stochasticism,
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which shows how deterministic and stochastic theory can profit from each other. Each
time one solves a problem in one of the two fields, automatically a second problem is solved
in the other field. If the second problem has not existed so far, it might be worth to inves-
tigate where it can be found. This way, one might gain a deeper knowledge of the entire
structure of the particular field or subfield of interest. We implemented the stochastically
motivated formulas for the deterministic concepts of age, transit time, remaining lifetime
in the Python package https://github.com/MPIBGC-TEE/LAPM. The derivation of the
mainly stochastically motivated formulas for the distributions of age, transit time, and re-
maining lifetime for compartmental systems in equilibrium solved a deterministic problem
that had been around for decades, at least in ecology (Rodhe & Björkström, 1979).

Once the structures of these formulas were clear, it was straightforward to extend them
to systems out of equilibrium. Consequently, we obtained formulas for the distributions
of age, transit time, and remaining lifetime for nonautonomous compartmental systems.
These systems can even be nonlinear as long as we are given a unique solution trajectory.
The results are then valid for this particular trajectory only because we need to construct
a linear system with the same unique solution. This is a step forward with respect to the
classical approach of linearizing the system in the neighborhood of a single point, usually
an equilibrium. Yet there is still a long way to go to find a consistent age- and transit-time
theory for nonlinear systems themselves, not only for single solution trajectories of them.

Furthermore, we developed an ODE system to efficiently compute the evolution of mo-
ments of the age distributions through time. This ODE system, called compartment-age
system, generalizes the mean age system introduced by Rasmussen et al. (2016). An-
other set of ODEs allows an efficient computation of quantiles of the age distributions
through time. Moreover, we showed that forward and backward transit time are sim-
ply time-shifted versions of one another, which is a multi-dimensional generalization of
Niemi’s theorem (Niemi, 1977). The Python package https://github.com/MPIBGC-TEE/

CompartmentalSystems which we developed allows us to easily apply these results to
nonautonomous compartmental systems.

For open compartmental systems in equilibrium, a finite mean transit time, or mean
absorption time, E [T ] = ‖x∗‖/‖u‖ = ‖ − B−1 u‖/‖u‖ implies the invertibility of B, and
in turn Proposition 1.13 implies the system’s exponential stability. However, for nonau-
tonomous systems exponential stability seems to be a much stronger property than finite-
ness of the mean transit time. Rasmussen et al. (2016, Theorem 1) provide sufficient
conditions for a linear nonautonomous compartmental system to be exponentially stable.
However, the compartmental matrix

B =

(
−1 1
0 −2

)
,

which clearly leads to an exponentially stable autonomous system, does not satisfy the
provided sufficient conditions if considered nonautonomous. Consequently, one could pos-
sibly define a stability concept for nonautonomous compartmental systems based on the
mean transit time that is more appropriate than exponential stability. Such a more relaxed
stability concept might then also be used to find out how fast a system is allowed to slow
down and still retain stability. Stability here in the sense that the system avoids congestion
by still turning over the input fast enough, even though the turnover decelerates.

While in Chapter 2 we drew links between deterministic and probabilistic theory and
transferred knowledge in both directions, in Chapter 3 the entire theory for nonautonomous
compartmental systems was purely deterministic. The field of nonautonomous dynamical
systems has been prospering in the last decades (e.g., Kloeden & Rasmussen 2011 and
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references therein). Transferring important results over to probability theory could also
help push forward the theory of inhomogeneous Markov chains.

In Chapter 4, we focused on the construction of a complexity measure of open compart-
mental systems in equilibrium. We considered the path of a single particle that travels
through the system and introduced three measures of uncertainty regarding this path.
(1) The entropy rate per jump is the mean uncertainty of the particle’s travel per the
mean number of jumps. A jump occurs each time the particle leaves its compartment
of residence. We obtained it by considering the path as a pair of a discrete-time and a
continuous-time Markov chain, one describing the sequence of visited compartments and
the other one describing the respective sojourn times. (2) The mean entropy rate per unit
time is the mean uncertainty of the particle’s travel averaged over the mean length of the
travel. We obtained it by considering a regenerative process that describes the infinite
journey of a particle through the system that develops if the particle enters the system
again immediately after its exit from the system. (3) The path entropy corresponds to
the total uncertainty of one travel of a particle through the system. We obtained it by
considering the path as a random variable in an appropriately constructed path space and
identifying the path’s probability density function. As it turned out, the three entropy
concepts are consistent, and each one has its advantages depending on the purpose of
study.

Furthermore, we found that the mean transit time is not only tightly connected with the
stability of the system but also with the system’s entropy. By transitivity, also stability
and entropy are related, and it might well be worth to investigate this relation more closely.
For instance, Haddad et al. (2010) examine the relation between stability and entropy of
compartmental systems by considering compartmental systems as directed graphs. Look-
ing at the relation between mean transit time and path entropy as stated in Theorem 4.20
(note that E [T ] =

∑d
j=1 x

∗
j/‖u‖), it can be speculated that the system’s stability increases

with decreasing path entropy. This idea is inspired by the fact, that in the one-dimensional
compartmental system Mλ from Remark 4.18, a low value of the path entropy 1 − log λ
is achieved for large values of λ. Furthermore, in terms of Definition 1.10, a high value
of γ = λ leads to a high convergence rate of trajectories and a high degree of exponential
stability of the system. The concept of community complexity in ecology, however, goes
exactly in the opposite direction. MacArthur (1955) states that “[t]he amount of choice
which the energy has in following the paths up through the food web is a measure of the
stability of the community.” In this light, we can interpret the entropy rate θ(ζ) given by
Eq. (4.10) of the pure jump process ζ describing the sequence of visited compartments as a
stability measure of the community. Consequently, a higher path entropy implies a higher
stability of an ecological community. These two counteracting interpretations of the link
between path entropy and stability certainly deserve a closer investigation in the future.
The latter approach considers compartmental systems as systems of flow. How entropy
can serve as a measure for complexity of systems of flow is discussed by Ulanowicz (2001).
From his discussion, we can also infer that since path entropy and entropy rates incorpo-
rate stocks, connections, and rates, they are well-suited for describing system dynamics
and hence complement age, transit time, and remaining lifetime in this regard.

The fact that the path entropy tends to increase along with the mean transit time has
another interesting implication. Paths of particles through slow systems are more difficult
to predict than paths through fast systems. If it is true that slow compartments are the
ones that contain the highest amount of carbon in soils, then the entropy of soil carbon
systems is intrinsically high. Consequently, carbon cycle in soil systems is very difficult
to model because it is challenging to make accurate predictions for them. This might be
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the reason for the high variety of predicted soil carbon by different models (Friedlingstein
et al., 2006, 2014), which has been stimulating the studies of scientists for more than a
decade.

As mentioned before, in the course of deriving the path entropy in Section 4.3.3, we
constructed the path space of the particle. With the path space and the path’s probability
density function in hand, we can evaluate any kind of functionals on paths, only one
of which is the path entropy. Others encompass diverse cost functionals or efficiency
functionals of different nature.

The idea of using an entropy-based approach for the determination of complexity of a
system has widespread applications to social networks, mathematical psychology, traffic
planning, machine learning, software development processes, linguistics, ecological sys-
tems, and systems biology (Ulanowicz, 2001). There are many scientific fields in which we
can investigate the idea further. The presentation here is just one first step.

Usually, compartmental systems are described by systems of ODEs. This approach
works well as long as the compartments are considered well-mixed. In natural systems
(e.g., water flow through rivers, spilled oil in the sea), the well-mixed assumption is not
bearable, and simple ODE systems are not capable of representing such situations ade-
quately. For instance, one way of representing systems with age-dependencies is to model
them by Markov renewal processes. In Markov renewal processes, the future of the system
is not anymore independent of the past, but might additionally depend on how long the
system has already been in the current state. Such processes have been extensively exam-
ined (Çinlar, 1969; Çinlar, 1975; Janssen & Manca, 2006), and a translation to dynamical
systems might open an interesting way of dealing with age-dependencies in a determinis-
tic setup. Another way of looking at compartmental systems is from the perspective of
stochastic point processes. Just as a single Poisson process represents a one-dimensional
compartmental system, a point process on the product space [t0,∞) × S can represent a
multi-dimensional system. An element (t, j) of this product space bears the information
that at time t ∈ [t0,∞) the process changes its state to j ∈ S. In this setup, restrictions
such as continuous time or well-mixedness are unnecessary because the point process can
be defined in a very general manner (Daley & Vere-Jones, 2003, 2008). However, this is
still not the most general way to represent compartmental systems because in nonlinear
systems particles also interact with each other. These interactions could be reflected by
interacting Markov chains (Spitzer, 1970).

If we imagine a particular scientific discipline to be a single snowflake in a snowstorm,
then we should spread our arms and catch as many of them as we can. Afterwards we put
them together into one pot and let them melt.
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APPENDIX A

The matrix exponential

Definition A.1 For t ∈ R and B being be a real square matrix, the series

etB := I + tB +
1

2!
t2 B2 + · · · =

∞∑
k=0

(tB)k

k!
,

where I is the identity matrix, is called the matrix exponential of tB.

Since etB has an infinite radius of convergence as a function of t (Norris, 1997, Sec-
tion 2.10), it is straightforward to prove the following lemma which provides us with with
all the properties of the matrix exponential that are used in the main text. The proofs
can also be found in Horn & Johnson (1994) and Kwak & Hong (2004).

Lemma A.2 Let s, t ∈ R. The matrix exponential has the following properties:

(i)
e(s+t) B = esB etB;

(ii) the matrices B and etB commute, i.e.,

B etB = etB B;

(iii) if B is invertible, then the matrices B−1 and etB commute, i.e.,

B−1 etB = etB B−1;

(iv) if B is invertible, then

e(tB)−1
=
(
etB
)−1

;

(v)

etB
>

=
(
etB
)>

;

(vi) if P is any invertible square matrix with the same dimensions as B, then

etPBP−1
= P etB P−1;

(vii) etB is differentiable in all t ∈ R and

d

dt
etB = B etB = etB B;
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106 A. The matrix exponential

(viii) for t ≥ 0, the identity

B

t∫
0

eτ B dτ = −I + etB

holds;

(ix) if B is invertible, then
∞∫
0

eτ B dτ = −B−1.
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APPENDIX B

The state-transition matrix

In contrast to the one-dimensional or the time-independent case, the state-transition ma-
trix of a time-dependent multi-dimensional system can in general not be computed ana-
lytically. It has nevertheless some useful properties some of which we collect here. They
can be found in Brockett (2015) and Desoer & Vidyasagar (2009).

Definition B.1 The state-transition matrix of the linear nonautonomous system described
by Eq. (3.3) is the solution of the matrix equation

d

dt
Φ(t, s) = B(t) Φ(t, s), t0 < s ≤ t < T

Φ(s, s) = I,
(B.1)

where I is the identity matrix.

In general, the state-transition matrix is given by the Peano-Baker series

Φ(t, s) = I +

t∫
s

B(τ1) dτ1 +

t∫
s

B(τ1)

τ1∫
s

B(τ2) dτ2 dτ1

+

t∫
s

B(τ1)

τ1∫
s

B(τ2)

τ2∫
s

B(τ3) dτ3 dτ2 dτ1 + · · · .

If B(t) = b(t) is a scalar, then the Peano-Baker series can be summed to

Φ(t, s) = e
∫ t
s b(τ) dτ .

If B(t) = B is a real constant square matrix, then

Φ(t, s) = I +
1

1!
(t− s)1 B1 +

1

2!
(t− s)2 B2 + · · ·

= e(t−s) B,

where e(t−s) B denotes the matrix exponential (Appendix A).
If B(t) = b(t) B is a scalar multiplied with a constant matrix, then

Φ(t, s) = e
∫ t
s b(τ) dτ B.
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APPENDIX C

Some stochastic processes

In the course of the main text, some stochastic processes occur over and over again and
are central to this thesis. Here, we introduce them and some of their properties in a not
too rigorous way, just to provide the basic ideas behind them.

C.1. Poisson processes

We intend to follow Ross (2010) to have a look at the Poisson process, one of the most
important counting processes. Consequently, we introduce counting processes first.

Definition C.1 A counting process is a stochastic process N = (Nt)t≥0 with nonnegative
and nondecreasing integer values.

A counting process counts events. If s < t, then Nt−Ns is the number of events occurred
in the time interval (s, t]. A counting process is said to possess independent increments if
the numbers of events that occur in disjoint time intervals are independent. A counting
process is said to possess stationary increments if the distribution of the number of events
that occur in any time interval depends only on the length of the interval. In order to
introduce the Poisson process, we need to introduce the little-o notation.

Definition C.2 A function f : R → R is said to be o(h) if limh→0 f(h)/h = 0. We then
also write f ∈ o(h).

Definition C.3 The counting process N = (Nt)t≥0 is called a (homogeneous) Poisson
process with intensity rate λ > 0 if

(i) N0 = 0,

(ii) N has stationary and independent increments,

(iii) P(Nh = 1) = λh+ o(h), and

(iv) P(Nh ≥ 2) = o(h).

Consider a Poisson process and denote the moment of the first event’s occurrence by
T1. For n > 1, denote by Tn the elapsed time between the (n − 1)st and the nth event.
Then, the sequence (Tn)n∈N is called the sequence of interarrival times. It is an important
property of the Poisson process that for any n ∈ N the interarrival time Tn is exponentially
distributed with rate λ and mean 1/λ, i.e., Tn ∼ Exp(λ).
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110 C. Some stochastic processes

Since the minimum T := min {T1, T2} of two independent exponentially distributed
random variables T1 ∼ Exp(λ1) and T2 ∼ Exp(λ2) is again exponentially distributed, i.e.,
T ∼ Exp(λ1 + λ2), it is not surprising that the superposition of two independent Poisson
processes with intensity rates λ1 and λ2 is a Poisson process with intensity rate λ = λ1+λ2
(Norris, 1997, Theorem 2.4.4).

If we omit the claim for stationary increments in Definition C.3, N becomes an inho-
mogeneous Poisson process. The constant intensity rate λ turns then into an intensity
function λ(t). Note that the superposition of two inhomogeneous Poisson processes with
intensity rates λ1(t) and λ2(t) is again an (inhomogeneous) Poisson process with intensity
function λ(t) = λ1(t) + λ2(t) (Daley & Vere-Jones, 2003).

C.2. Renewal processes

Poisson processes are generalized by renewal processes in the sense that the interarrival
times are not necessarily exponentially distributed anymore. In the literature, we can find
two different ways of defining renewal processes. One way is to define a renewal process
as a particular counting process N , the other way is to define a renewal process as the
sequence of times at which events of N occur. Throughout the entire thesis, we stick to
the latter definition, which is also used by Asmussen (2003).

Definition C.4 Let N be a counting process with (Tn)n∈N being its sequence of interar-
rival times. The process J = (J0, J1, J2, . . .) with J0 = 0, and Jn = T1 + T2 + · · ·+ Tn for
n ∈ N is called a renewal process if the sequence (T1, T2, . . .) is independent and identically
distributed.

Definition C.5 Let J be a renewal process, let F denote the cumulative probability
distribution of its interarrival times, and let µ be its mean interarrival time. Then the
probability distribution whose cumulative probability distribution is given by

G(t) =
1

µ

t∫
0

[1− F (τ)] dτ, t > 0,

is called the stationary distribution of J .

Freely adapted from Janssen & Manca (2006, Section 2.9), when we start observing a
renewal process that has already been running, the moment in time of the first observed
event occurrence does not correspond to the current interarrival time but in fact to the
current forward recurrence time. A (so-called delayed) renewal process, in which the
first interarrival time is defined to be distributed according to the process’ stationary
distribution, takes that into account in the sense that now T1 is the forward recurrence
time of a renewal process that has already been running for an infinite amount of time.

C.3. Markov chains

Following Norris (1997, Chapter 1), we now introduce discrete-time Markov chains.

Definition C.6 Let S be a finite set. A nonnegative vector λ = (λj)j∈S with
∑

j∈S νj = 1
is called a distribution on S. A matrix P = (Pij)i,j∈S is called stochastic on S if every
column sum is a distribution on S.
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Note that in contrast to standard notation in probability theory, we are interested in
column sums instead of row sums. The reversed index order is more convenient when
working with Markov chains and compartmental system contemporaneously.

Definition C.7 Let λ = (λj)j∈S be a distribution on a finite set S, let P be a stochastic
matrix on S, and let Y = (Yn)n=0,1,2,... be a sequence of S-valued random variables.
Furthermore, for all n = 0, 1, 2, . . . and j0, j1, . . . , jn, jn+1 ∈ S,

(i) P(Y0 = j0) = λi0 and

(ii) P(Yn+1 = jn+1 |Yn = jn, Yn−1 = jn−1, . . . , Y0 = j0) = Pjn+1jn .

Then we call Y a (homogeneous) discrete-time Markov chain on the state space S with
transition matrix P and initial distribution λ.

Definition C.8 Let Y be a discrete-time Markov chain on a finite state space S with
transition matrix P. A positive distribution π on S is called a stationary distribution of
Y if Pπ = π. If the initial distribution of Y is stationary, then Y itself is also called
stationary. Furthermore, Y is said to be irreducible if there is a path from state j to state
i for all i, j ∈ S.

The following ergodic lemma is a combination of Theorem 1.7.7 and the Ergodic theo-
rem 1.10.2 in Norris (1997) applied to the function f(i) = 1{i=j}, i, j ∈ S.

Lemma C.9 Let Y be an irreducible discrete-time Markov chain on a finite state space S
with a stationary distribution π = (πj)j∈S, and fix j ∈ S. Then,

lim
n→∞

1

n

n−1∑
k=0

P(Yk = j) = πj .

Consequently, π is the unique stationary distribution of Y .

In Chapter 2 of Norris (1997), continuous-time Markov chains are introduced. To that
end, first the concept of Q-matrices is presented.

Definition C.10 Let S be a finite set. A Q-matrix on S is a matrix Q = (Qij)i,j∈S
satisfying the conditions

(i) Qjj ≤ 0 for all j,

(ii) Qij ≥ 0 for all i 6= j, and

(iii)
∑
i∈S

Qij = 0 for all j.

Definition C.11 Let Q be a Q-matrix and λ a distribution on a finite set S. We say that
a stochastic process X = (Xt)t≥0 is a continuous-time Markov chain on the state space S
with transition-rate matrix Q and initial distribution λ if the following conditions hold:

(i) P(X0 = j) = λj for all j ∈ S;

(ii) for all n = 0, 1, 2, . . ., all times 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn+1,
and all j0, j1, . . . , jn+1 ∈ S,

P(Xtn+1 = jn+1 |Xtn = jn, Xtn−1 = jn−1, . . . , Xt0 = j0) =
(
e(tn+1−tn)Q

)
jn+1jn

.
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112 C. Some stochastic processes

Let i, j ∈ S and 0 ≤ s ≤ t. Then

P(Xt = i |Xs = j) = P(Xt−s = i |X0 = j)

does not explicitly depend on s and t but only on their distance t− s. Hence, X is called
homogeneous. More generally, Q can be a function depending on time, then

P(Xt = i |Xs = j)

depends explicitly on s and t and not only on the distance t − s. Then X is called
inhomogeneous.

Let X be a (homogeneous) continuous-time Markov chain on a finite state space S with
transition-rate matrix Q and initial distribution λ. Then, for i, j ∈ S, the probability of
X being in state i at time t having started in state j is equal to

P(Xt = i |X0 = j) =
(
etQ
)
ij
.

By the law of total probability, the unconditional probability of being in state i ∈ S at
time t is ∑

j∈S
P(Xt = i |X0 = j)P(X0 = j) =

∑
j∈S

(
etQ
)
ij
λj ,

which gives

P(Xt = i) =
(
etQ λ

)
i
.

Property (ii) of Definition C.11 states that the future evolution of a Markov process de-
pends only on its current state and not on its history. This is called Markov property.

Definition C.12 Let X be a continuous-time Markov chain on a finite state space S with
transition-rate matrix Q. A positive distribution ν on S is called a stationary distribution
of X if Qν = 0, where 0 is the appropriate column vector comprising zeros. If the initial
distribution of X is stationary, then X itself is also called stationary. Furthermore, X is
said to be irreducible if P(Xt = i |X0 = j) > 0 for all i, j ∈ S and t ≥ 0.

The following ergodic lemma is a combination of Theorem 3.5.3 and the Ergodic theo-
rem 3.8.1 in Norris (1997) applied to the function f(i) = 1{i=j}, i, j ∈ S.

Lemma C.13 Let X be an irreducible continuous-time Markov chain on a finite state
space S with a stationary distribution ν = (νj)j∈S, and fix j ∈ S. Then,

lim
t→∞

1

t

t∫
0

P(Xt = j) dt = νj .

Consequently, ν is the unique stationary distribution of X.

Closely connected to a continuous-time Markov chain X is the discrete-time Markov
chain Y = (Yn)n=0,1,2,... that keeps track of the jumps of X. This process is defined such
that Y0 := X0 and every time t > 0 the process X jumps into another state, the process
Y takes on the new value of Xt. Hence, Yn represents the state of the process X after the
nth jump. Clearly, the state-space of Y is also S.
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C.3. Markov chains 113

Definition C.14 Let X be a continuous-time Markov chain on a finite state space S with
transition-rate matrix Q and initial distribution λ. The discrete-time Markov chain Y
with state space S, initial distribution λ, and transition matrix P = (Pij)i,j∈S given by

Pij =

{
−Qij/Qjj , j 6= i and Qjj 6= 0,

0, j 6= i and Qjj = 0,

Pjj =

{
0, Qjj 6= 0,

1, Qjj = 0.

is called embedded chain or jump chain of X.

Let us now consider a continuous-time Markov chain X = (Xt)t≥0 with a special struc-

ture. Its finite state-space S̃ is supposed to be equal to {1, 2, . . . , d, d+1} for some natural
number d ≥ 1, and its transition-rate matrix has the shape

Q =

(
B 0
z> 0

)
∈ R(d+1)×(d+1).

Let S = {1, 2, . . . , d} ⊆ S̃. The d × d-matrix B = (Bij)i,j∈S is supposed to meet the
requirements (i) and (ii) of a Q-matrix, but instead of property (iii) of Definition C.10, it
fulfills only the weaker condition∑

i∈S
Bij ≤ 0 for all j ∈ S.

Additionally, we ask B to be invertible. Since Q is required to be a Q-matrix, the vector
z ∈ Rd must contain the missing parts to make the columns sum to zero. Consequently,
zj = −

∑
i∈S Bij or, in matrix notation,

z> = −1>B,

where 1> denotes the d-dimensional row vector comprising ones. This means that the zj ’s
are nonnegative and denote the transition rates from j to d + 1. The (d + 1)st column
of Q comprises zeros. Hence, the process X cannot change its state anymore once it has
reached state d+ 1. For that reason, d+ 1 is called the absorbing state of X. We exclude
the trivial case in which the process starts in its absorbing state by considering only initial
distributions λ = (λj)j∈S̃ with λd+1 = 0 and define

β := (λ1, λ2, . . . , λd)
> ∈ Rd

to be the new initial distribution of X.

Definition C.15 We call X an absorbing continuous-time Markov chain on the finite
state space S = {1, 2, . . . , d} with transition-rate matrix B, initial distribution β, and
absorbing state d+ 1.

A standard linear algebra argument shows that

etQ =

(
etB 0
∗ 1

)
, t ≥ 0,
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114 C. Some stochastic processes

where the asterisk ∗ is a place holder for a d-dimensional row vector. This means that, for
i, j ∈ S,

P(Xt = i |X0 = j) =
(
etB
)
ij
, t ≥ 0,

and
P(Xt = i) =

(
etB β

)
i
, t ≥ 0.

Definition C.16 Let X be an absorbing continuous-time Markov chain on a finite state
space S, and denote by P the transition matrix of the jump chain Y of X. Then

M :=
∞∑
k=0

Pk = (I− P)−1

is called the fundamental matrix of X and Y .

The element Mij is the mean number of visits to state i before absorption, given that
the chain started in state j.

C.4. Regenerative processes

A certain combination of continuous-time Markov chains and renewal processes leads to
regenerative processes. Ross (2010) gives an understandable definition without being too
technical.

Definition C.17 A process Z = (Zt)t≥0 on a finite state space S with the property that
there exist time points J1, J2, . . . at which the process probabilistically restarts itself, is
called a regenerative process. The time points J1, J2, . . . are called the regeneration times
of Z.

In other words, with probability 1 there exists a time J1, such that the continuation of
the process beyond J1 is a probabilistic replica of the whole process starting at 0. Then,
automatically, there exist further times J2, J3, . . . with the same property as J1. Using
the definition given by Asmussen (2003), with J0 := 0 the process J = (Jn)n=0,1,2,... is
a renewal process with interarrival times T1 = J1 − J0, T2 = J2 − J1, . . . We call J the
embedded renewal process of Z.
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APPENDIX D

Examples of simple compartmental systems in equilibrium

D.1. One single compartment

Consider the one-compartment system represented by the linear ODE

d

dt
x(t) = −λx(t) + u, t > 0,

for λ > 0. In this simplest possible framework, B = −λ, z = λ, B−1 = −1/λ, and β = 1.
The according phase-type distribution is just the exponential distribution. The cumulative
probability distribution of the transit time T is

FT (t) = 1− e−λ t, t ≥ 0,

its probability density function is

fT (t) = λ e−λ t, t ≥ 0,

and the expected absorption time or mean transit time is E [T ] = 1/λ. The mean-age
vector a coincides with the system age A and its probability density function is

fA(y) = λ e−λ y, y ≥ 0,

which leads to the mean age of E [A] = 1/λ. The fact that transit time and age have the
same distribution reflects the memorylessness of the exponential distribution.

D.2. Two compartments without feedback

A more interesting example is a two-compartment system given by

d

dt
x1(t) = −λ1 x1(t) + u1,

d

dt
x2(t) = αλ1 x1(t)− λ2 x2(t) + u2,

with λ1 > 0, λ2 > 0, and 0 ≤ α ≤ 1. We furthermore assume λ1 6= λ2. Then

B =

(
−λ1 0
αλ1 −λ2

)
, B−1 =

(
− 1
λ1

0

− α
λ2
− 1
λ2

)
,

z = (−αλ1 + λ1, λ2)
>, u = (u1, u2)

>, and β =
(

u1
u1+u2

, u2
u1+u2

)>
.
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The matrix exponential is given by

etB =

(
e−λ1t 0

αλ1
λ1−λ2

(
e−λ2t − e−λ1t

)
e−λ2t

)
and the cumulative probability distribution of the transit time T is

FT (t) = −
αλ1u1

(
e−λ2t − e−λ1t

)
(λ1 − λ2) (u1 + u2)

− u1e
−λ1t

u1 + u2
− u2e

−λ2t

u1 + u2
+ 1.

Its probability density function is given by

fT (t) =
λ2u2e

−λ2t

u1 + u2
+

u1
u1 + u2

(
αλ1λ2
λ1 − λ2

(
e−λ2t − e−λ1t

)
+ (−αλ1 + λ1) e

−λ1t
)

and its mean absorption time by

E [T ] =
u1

(
α
λ2

+ 1
λ1

)
u1 + u2

+
u2

λ2 (u1 + u2)
.

For the age distribution we first need to compute the steady-state solution and its
normalized version. We obtain

x∗ = −B−1 u =

(
u1
λ1
,
αu1
λ2

+
u2
λ2

)>
,

η =
x∗

‖x∗‖
=

 u1

λ1

(
αu1
λ2

+ u2
λ2

+ u1
λ1

) , αu1
λ2

+ u2
λ2

αu1
λ2

+ u2
λ2

+ u1
λ1

> .
Using A ∼ PH(η,B) leads for y ≥ 0 to

FA(y) = −
αu1

(
e−λ2y − e−λ1y

)
(λ1 − λ2)

(
αu1
λ2

+ u2
λ2

+ u1
λ1

) −
(
αu1
λ2

+ u2
λ2

)
e−λ2y

αu1
λ2

+ u2
λ2

+ u1
λ1

+ 1− u1e
−λ1y

λ1

(
αu1
λ2

+ u2
λ2

+ u1
λ1

) ,
fA(y) =

λ2

(
αu1
λ2

+ u2
λ2

)
e−λ2y

αu1
λ2

+ u2
λ2

+ u1
λ1

+
u1

λ1

(
αu1
λ2

+ u2
λ2

+ u1
λ1

) ( αλ1λ2
λ1 − λ2

(
e−λ2y − e−λ1y

)
+ (−αλ1 + λ1) e

−λ1y
)
,

E [A] =
αu1
λ2

+ u2
λ2

λ2

(
αu1
λ2

+ u2
λ2

+ u1
λ1

) +
u1

(
α
λ2

+ 1
λ1

)
λ1

(
αu1
λ2

+ u2
λ2

+ u1
λ1

) .
The probability density function of the compartment-age vector a is given by

fa(y) =

(
λ1e
−λ1y,

αλ1λ2u1
(
e−λ2y − e−λ1y

)
(λ1 − λ2) (αu1 + u2)

+
λ2u2e

−λ2y

αu1 + u2

)>
,

which leads to the mean-age vector

E [a] =

(
1

λ1
,

αu1
λ1 (αu1 + u2)

+
αu1
λ2

+ u2
λ2

αu1 + u2

)>
.
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D.2.1. Serial compartments - hypoexponential distribution

If u2 = 0 and α = 1, the particle enters the system in compartment 1 and must travel
through compartment 2 before absorption. This leads to the transit time T being hy-
poexponentially distributed. That is, T is distributed like the sum of two independent
exponential distributions. Consequently, for t ≥ 0,

FT (t) = − λ1
λ1 − λ2

(
e−λ2t − e−λ1t

)
+ 1− e−λ1t,

fT (t) =
λ1λ2
λ1 − λ2

(
e−λ2t − e−λ1t

)
,

E [T ] =
1

λ2
+

1

λ1
.

The steady-state solution and its normalized version are

x∗ =

(
u1
λ1
,
u1
λ2

)>
and η =

 u1

λ1

(
u1
λ2

+ u1
λ1

) , u1

λ2

(
u1
λ2

+ u1
λ1

)
> .

For the system age A and y ≥ 0 follows

FA(y) = −
u1
(
e−λ2y − e−λ1y

)
(λ1 − λ2)

(
u1
λ2

+ u1
λ1

) + 1− u1e
−λ2y

λ2

(
u1
λ2

+ u1
λ1

) − u1e
−λ1y

λ1

(
u1
λ2

+ u1
λ1

) ,
fA(y) =

λ2u1
(
e−λ2y − e−λ1y

)
(λ1 − λ2)

(
u1
λ2

+ u1
λ1

) +
u1e
−λ2y

u1
λ2

+ u1
λ1

,

E [A] =
u1

λ22

(
u1
λ2

+ u1
λ1

) +
u1

(
1
λ2

+ 1
λ1

)
λ1

(
u1
λ2

+ u1
λ1

) .
For u1 = 1 this turns into

FA(y) = −
α
(
e−λ2y − e−λ1y

)
(λ1 − λ2)

(
α
λ2

+ 1
λ1

) − αe−λ2y

λ2

(
α
λ2

+ 1
λ1

) + 1− e−λ1y

λ1

(
α
λ2

+ 1
λ1

) ,
fA(y) =

αe−λ2y

α
λ2

+ 1
λ1

+
1

λ1

(
α
λ2

+ 1
λ1

) ( αλ1λ2
λ1 − λ2

(
e−λ2y − e−λ1y

)
+ (−αλ1 + λ1) e

−λ1y
)
,

E [A] =
α

λ22

(
α
λ2

+ 1
λ1

) +
1

λ1
.

The probability density function of the compartment-age vector a is given by

fa(y) =

(
λ1e
−λ1y,

λ1λ2
λ1 − λ2

(
e−λ2y − e−λ1y

))>
,

which leads to the mean-age vector E [a] =
(

1
λ1
, 1
λ2

+ 1
λ1

)>
.

If furthermore λ1 = λ2, then the hypoexponential distribution turns into an Erlang
distribution, which is the convolution of two independent and identically distributed ex-
ponential distributions.
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D.2.2. Parallel compartments - hyperexponential distribution

The case of α = 0 represents a purely parallel system and the transit time T is hyperex-
ponentially distributed. For t ≥ 0 this means

FT (t) = −u1e
−λ1t

u1 + u2
− u2e

−λ2t

u1 + u2
+ 1,

fT (t) =
λ1u1e

−λ1t

u1 + u2
+
λ2u2e

−λ2t

u1 + u2
,

E [T ] =
u2

λ2 (u1 + u2)
+

u1
λ1 (u1 + u2)

.

The steady-state solution and its normalized version are given by

x∗ =

(
u1
λ1
,
u2
λ2

)>
and η =

 u1

λ1

(
u2
λ2

+ u1
λ1

) , u2

λ2

(
u2
λ2

+ u1
λ1

)
> .

For the system age A and y ≥ 0 follows

FA(y) = 1− u2e
−λ2y

λ2

(
u2
λ2

+ u1
λ1

) − u1e
−λ1y

λ1

(
u2
λ2

+ u1
λ1

) ,
fA(y) =

u1e
−λ1y

u2
λ2

+ u1
λ1

+
u2e
−λ2y

u2
λ2

+ u1
λ1

,

E [A] =
u2

λ22

(
u2
λ2

+ u1
λ1

) +
u1

λ21

(
u2
λ2

+ u1
λ1

) .
The probability density function of the compartment-age vector a is given by fa(y) =(
λ1e
−λ1y, λ2e

−λ2y
)>

. This leads to the mean-age vector E [a] =
(

1
λ1
, 1
λ2

)>
.

D.3. Two compartments with feedback

Manzoni et al. (2009) considered also the simple two-compartment system with feedback

d

dt
x1(t) = −λ1 x1(t) + λ2 x2(t) + u1,

d

dt
x2(t) = αλ1 x1(t)− λ2 x2(t),

in which material enters and leaves the system only through the first compartment, but
in between it might spend some time in the second compartment. The compartmental
matrix and the input vector are

B =

(
−λ1 λ2
αλ1 −λ2

)
and u =

(
u1
0

)
,

where 0 < α < 1. Manzoni et al. (2009) provide the Laplacians of the probability density
functions of the transit time and the system age. The Laplacian of the probability density
function of a PH(β,B)-distribution is given by

f̂PH(β,B)(s) = z> (s I− B)−1 β.
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Consequently, the Laplacian of the probability density function of the transit time is given
by

f̂T (s) =
λ1 (α− 1) (λ2 + s)

αλ1λ2 − (λ1 + s) (λ2 + s)

and the Laplacian of the probability density function of the system age by

f̂A(s) =
λ1λ2 (α− 1) (αλ1 + λ2 + s)

(αλ1 + λ2) (αλ1λ2 − (λ1 + s) (λ2 + s))
.

The expected values are given by

E [T ] = − αλ1 + λ2
λ1λ2 (α− 1)

and

E [A] = −αλ1 (λ1 + λ2) + λ2 (αλ1 + αλ2 − λ2 (α− 1))

λ1λ2 (α− 1) (αλ1 + λ2)
,

respectively.
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