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Zusammenfassung

Wir untersuchen Verbindungen zwischen deterministischen Kompartimentsystemen und
stochastischen Markow-Ketten.

Kompartimentsysteme sind spezielle nichtnegative dynamische Systeme, die den Fluss
von beispielsweise Masse oder Energie in ein System hinein, durch das System hindurch
und aus dem System heraus beschreiben, wobei ein solches System aus mehreren soge-
nannten Kompartimenten besteht. Wie allgemein {iblich nehmen wir dabei an, dass das
System gut gemischt ist: Material, welches in ein ein neues Kompartiment gelangt, ist
sofort perfekt mit dem bereits vorhanden Material vermischt. Gemeinhin werden Kompar-
timentsysteme mathematisch durch ein System von gewohnlichen Differentialgleichungen
der Form

%X:Bx+u

beschrieben. Hierbei ist x der Vektor des Systeminhaltes, also der Grofle von Interesse, die
wir im Weiteren Material nennen wollen. Der nichtnegative Eingangsvektor u beschreibt
Menge und Verteilung neu hinzukommenden Materials. Von der quadratischen Matrix B
fordern wir drei Eigenschaften: 1) alle Diagonalelemente sind nichtpositiv, 2) alle Nicht-
diagonalelemente sind nichtnegativ, und 3) alle Spaltensummen sind nichtpositiv. Unter
diesen Bedingungen werden sowohl die Matrix B als auch das System selbst als komparti-
mental bezeichnet und das System ist massenbilanziert. Wir nehmen weiterhin an, dass
das System sich im Gleichgewicht befindet. Das bedeutet x(t) = —B~! u. Beziiglich

Kompartimentsystemen im Gleichgewicht sind wir an den folgenden Gréflen interessiert:

e Das Systemalter beschreibt die seit dem Eintritt verstrichene Zeit von sich im System
befindlichem Material.

e Das Kompartimentalter beschreibt das Systemalter des Materials eines bestimmten
Kompartiments.

e Die Transitzeit beschreibt die Zeitspanne, die zwischen dem Eintritt von Material in
das System und seinem Austritt aus dem System verstreicht.

e Die Verbleibende Systemlebenszeit beschreibt, wie lange es dauert, bis Material,
welches sich im System befindet, das System verlésst.

e Die Verbleibende Kompartimentlebenszeit beschreibt die Verbleibende Systemlebens-
zeit des Materials eines bestimmten Kompartiments.

Wir betrachten auflerdem eine absorbierende zeitstetige Markow-Kette X. Thre An-
fangsverteilung ist durch den normierten Systemeingangsvektor u gegeben; ihre quadra-
tische Ubergangsmatrix wird aus der Kompartimentmatrix B konstruiert, indem wir sie um
eine Dimension vergrofiern, welche ein Umweltkompartiment darstellt, das alles das Sys-
tem verlassende Material aufsammelt. Jetzt konstruieren wir einen regenerativen Prozess
Z, indem wir X unendlich oft an sich selbst aneinander heften. Den in Z eingebetteten
Erneuerungsprozess bezeichnen wir mit J. Wir kénnen X als die zufillige Reise eines

Xix



XX Zusammenfassung

einzelnen Partikels durch das System interpretieren, bis es das System verlésst, wahrend
Z die unendliche zufillige Reise eines Partikels beschreibt, der unmittelbar nach seinem
Systemaustritt wieder in das System eintritt. Der Erneuerungsprozess J beschreibt die
Wiedereintrittszeiten des Partikels zuriick ins System. Wie sich herausstellt, hat jede der
fiinf deterministischen Systemgréfien von Interesse ein stochastisches Gegenstiick:

e Systemalter <— Riickwértsrekurrenzzeit von J,

o Kompartimentalter «— bedingte Riickwértsrekurrenzzeit von Z,
e Transitzeit «+— Absorptionszeit von X,

e Verbleibende Systemlebenszeit «— Vorwirtsrekurrenzzeit von J,

e Verbleibende Kompartimentlebenszeit <— bedingte Vorwartsrekurrenzzeit von Z;
und zusétzlich

o Gleichgewichtsvektor +— Vektor der mittleren Aufenthaltszeiten von X, und
o Austrittsvektor «— Verteilung des letzten Zustandes von X vor Absorption.

Des Weiteren gilt, dass sich die Rollen von Alter und Verbleibender Lebenszeit vertauschen,
falls wir das zeitinvertierte System betrachten.

Jetzt lassen wir die Gleichgewichtsannahme fallen, aber gehen davon aus, dass wir eine
eindeutige Losungstrajektorie des Systems gegeben haben. Fiir diese spezielle Trajektorie
berechnen wir explizite Formeln sowohl der Verteilungen von System- und Kompartimen-
talter als auch der Verteilungen von System- und Kompartimentlebenszeit. Wie sich weiter
herausstellt, miissen wir hier zwischen zwei Arten von Transitzeiten unterscheiden. Die
Vorwdartstransitzeit beschreibt die Zeitspanne, die Material fiir seine Reise durch das Sys-
tem benétigen wird, zum Zeitpunkt seines Eintritts. Die Rickwdrtstransitzeit beschreibt
die Zeit, die Material fiir seine Reise durch das System benétigt hat, zum Zeitpunkt seines
Austritts. Es wird dann deutlich, dass die beiden nur zeitverschobene Versionen von
einander sind. Auflerdem leiten wir ein gewohnliches Differentialgleichungssystem her, um
die zeitliche Entwicklung von Momenten der Kompartimentalter des Systems zu berech-
nen, und wir finden gewohnliche Differentialgleichungen fiir die zeitliche Entwicklung von
Altersquantilen.

Anschlieflend versuchen wir, ein Komplexitdtsmaf} fiir Kompartimentsysteme auf Basis
der Shannon-Informationsentropie des zufilligen Pfades eines einzelnen durch das System
reisenden Teilchens zu entwerfen. Wir zeigen verschiedene Interpretationsmoglichkeiten
dieser sogenannten Pfadentropie auf und analysieren ihre Tauglichkeit, als Komplexitéts-
mafl zu dienen. Wir setzen sie in Relation zu existierenden Komplexitdtsmafien fiir dy-
namische Systeme und zu verschiedenen Entropiekonzepten stochastischer Prozesse. Da
sowohl die Systemstabilitdt als auch seine Komplexitit eng mit der mittleren Transitzeit
des Systems verbunden sind, lésst sich eine tiefe Verbindung zwischen Stabilitdt und Kom-
plexitdat zumindest erahnen.
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Abstract

We investigate connections between deterministic compartmental systems and stochastic
Markov chains.

Compartmental systems are particular nonnegative dynamical systems that describe
the flow of, for instance, mass or energy into, through, and out of a system that consists
of different so-called compartments. We make the common well-mixed assumption which
states that material that enters a compartment immediately mixes with the already present
material. Usually, compartmental systems are mathematically described by a system of
lordinary differential equations (ODEs)| of the shape

%X:Bx—i—u.

Here, x is the state vector containing the system content of the quantity of interest, which
we call material, and u is a nonnegative vector of newly incoming material. We require the
square matrix B to exhibit three properties: 1) all diagonal entries are nonpositive, 2) all
off-diagonal entries are nonnegative, and 3) all column sums are nonpositive. Under these
circumstances, both the matrix B and the system itself are called compartmental and the
system is mass balanced. Let us further assume that the system is in equilibrium, [i.e.
x(t) = —B~! u. Regarding compartmental systems in equilibrium, we are interested
in the following quantities that describe the system dynamics:

e The system age describes the time that has passed since material that is in the
system had entered it.

e The compartment age describes the system age of material in a particular compart-
ment.

e The transit time describes the time span between material entering the system and
leaving it.

e The remaining system lifetime describes how long material that is in the system will
still be in the system before leaving it.

e The remaining compartment lifetime describes the remaining system lifetime of ma-
terial in a particular compartment.

We also consider an absorbing continuous-time Markov chain X. Its initial distribution is
given by the normalized input vector u of the system, and its square transition-rate matrix
is constructed out of the system’s compartmental matrix B by adding one dimension for an
environmental compartment that collects all the material that leaves the system. Now, we
construct a regenerative process Z by concatenating X indefinitely with itself and denote
the embedded renewal process of Z by J. While we can interpret X as the stochastic travel
of a single particle through the system until its exit, Z describes the indefinite stochastic
travel of a particle that enters the system again immediately after each exit. The renewal
process J represents the reentry times of the particle back into the system. As it turns out,
each of the five deterministic system quantities of interest has a stochastic counterpart:
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xxii Abstract

e system age +— backward recurrence time of J,

e compartment age <— conditional backward recurrence time of Z,
e transit time +— absorption time of X,

e remaining system lifetime <— forward recurrence time of J,

e remaining compartment lifetime <— conditional forward recurrence time of Z; and
additionally,

e steady-state vector +— mean occupation time vector of X, and

e release vector «— distribution of last state of X before absorption.

Furthermore, we see that the roles of age and remaining lifetime interchange if we consider
the time-reversed system.

Now, we drop the equilibrium assumption but we assume to be given a unique solution
trajectory of the system. For this particular trajectory, we compute explicit formulas for
the distributions of system/compartment age and remaining system/compartment life-
times. As it also turns out, we have to distinguish between two types of transit time here.
The forward transit time describes the time span material will need to travel through the
system at the moment of entry. The backward transit time describes the time material
has needed to travel through the system at the moment of exit. It becomes then clear
that the two are simply time-shifted versions of one another. Furthermore, we derive an
[ODE] system to compute the evolution of moments of the compartment-age distribution
through time and for the time evolution of age quantiles.

Then, we try to establish a complexity measure for compartmental systems based on
the Shannon information entropy of the stochastic path created by a single particle while
it travels through the system. We show different interpretations of this so-called path
entropy and analyze its capability of serving as a complexity measure. We put it in
relation to existing complexity measures of dynamical systems and to different entropy
concepts of stochastic processes. Since both the system’s stability and its complexity are
closely related to the system’s mean transit time, a deep connection between stability and
complexity can at least be conjectured.
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Introduction

The aim of this thesis is to interconnect the two mathematical fields dynamical systems and
probability theory by means of compartmental systems theory and Markov chain theory.
To great extent, compartmental systems and Markov chains are studied independently of
each other, even though these two mathematical objects share a wide range of properties.
Their similarity is based on two underlying principles: 1) While compartmental systems
preserve mass or energy of some type, Markov chains preserve probability mass. 2) While
compartmental systems are usually considered to be well-mixed, Markov chains have the
property that the future is independent of the past. These two principles define the
structure and properties of both compartmental systems and Markov chains.

1. A historical retrospect

The first theoretical treatise of compartmental system reaches back to [Sheppard et al.
(1962). Ten years later, |Jacquez et al.| (1972)) published a seminal book in which they not
only presented the then state-of-the-art compartmental systems theory, but also pointed
in many directions of future research. |Anderson (1983)) then wrote a complete essay on the
topic addressing aspects such as general theory, structure, stability, model identification,
controllability, and tracer kinetics. The qualitative theory of compartmental systems in
terms of classification and stability properties was later addressed by |[Jacquez & Simon
(1993). A modern text on the topic is the monograph by Haddad et al.| (2010]).

The theory of Markov chains began in 1906 when Markov doubted the necessity of
independence for the Weak Law Of Large Numbers (Seneta, [1996). [Kolmogorov| (1931)
then extended the theory to continuous-time Markov chains and introduced many of the
main concepts such as transition functions or the Kolmogorov-Chapman equations. Based
on transition functions, Feller 1954)), Dynkin 1965)), and many others studied
evolution equations and ergodic behavior. There is a huge amount of standard literature
on Markov chains, we might only mention Anderson| (1991)) and [Kallenberg) (2002)) here.

While there have been tentative approaches to connect Markov chains with ecosystem
models (Walter, 1979; Anderson, [1983)), the idea does not seem to have fallen on fertile
ground at that time and has widely fallen into oblivion shortly after.

2. Some introductory technical notes

In mathematical modeling of natural systems it is often required that the trajectory re-
mains always in the positive orthant. Dynamical systems with this property are called
nonnegative dynamical systems. A particular subclass of these are the compartmental
systems as they additionally obey conservation laws regarding for instance mass, energy,
or money. Compartmental systems describe flow models in which material is exchanged
with the outside world and among different entities, called compartments. It is hereby
usually assumed that material entering a compartment immediately mixes with the al-
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ready present material. This property, called well-mixedness, is the reason why the future
behavior of material in the system depends only on its current position and is independent
of the past. Even though there are plenty of ways to describe well-mixed compartmental
systems, the most common way is by means of system of [ordinary differential equations|

ax:Bx+u.

Here, x is the state vector containing the system content of the quantity of interest, from
now on called material, and u is a nonnegative vector of newly incoming material. The
key property of compartmental systems is, in order for the system to balance mass, that
the square matrix B = (B;;) exhibits the three properties

(1) Bu < 0 for all i,
(ii) Bi; > 0 for all i # j, and
(ili) >_ By < 0 for all j.

Then, B is called compartmental and governs all internal cycling of material as well as the
exit of material from the system.

A Markov process is a particular stochastic process in which the future of the process is
independent of the past. We call Markov processes that are continuous in time and have
a finite state space S continuous-time Markov chains, even though in the literature there
are different names for them. The infinitesimal future of a probability distribution on S
is governed by a so-called infinitesimal generator or transition-rate matriz Q = (Q;;). In
order for the Markov chain to preserve probability mass, this square transition-rate matrix
has the properties

(I) Q” < 0 for all i,
(II) Q5 > 0 for all ¢ # j, and
(IIT) > Q;; = 0 for all j.

It is important to note here that in standard probability literature the indices ¢ and j are
interchanged.

We immediately notice that the only difference between the properties of B and Q can
be found in the difference between (iii) and (III). Suppose we are given a d-dimensional
compartmental system. We increase the system by one dimension by adding a column and
a row to B such that all columns sum to zero. This results in a transition-rate matrix of
a continuous-time Markov chain on the state space S = {1,2,...,d,d + 1}. This simple
observation is the basis of the thesis at hand and most of the results that follow are derived
from it.

3. Relevance of compartmental systems and Markov chains

In a large variety of scientific fields such as systems biology, toxicology, pharmacokinet-
ics (Anderson, 1983)), ecology (Eriksson, 1971} Rodhe & Bjorkstrom) [1979; Matis et al.,
1979; [Manzoni & Porporato, 2009), hydrology (Nash, [1957; Botter et al [2011; [Harman
& Kim), [2014])), biogeochemistry (Manzoni & Porporatol [2009; Sierra & Miiller], |2015)), or
epidemiology (Jacquez & Simon) [1993), models are based on the principle of mass con-
servation. In many cases such models are nonnegative dynamical systems that can be
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described by first-order systems of with strong structural constraints. Such systems
are called compartmental systems (Anderson) 1983; Walter & Contreras, 1999; Haddad
et all [2010). We can classify such systems as combinations of linear/nonlinear and au-
tonomous/nonautonomous (time-independent/time-dependent). For the sake of simplic-
ity, most classical examples model natural processes by linear autonomous compartmental
systems tracer kinetics, carbon cycle, leaky fluid tanks). On the one hand, the
simple structure of such systems allows a good understanding of undergoing processes in
the modeled system. On the other hand, natural systems usually show highly complex
interactions and depend on a constantly changing environment. Consequently, most of
the time nonlinear nonautonomous compartmental models (Kloeden & Po&tzschel, 2013)
are more appropriate to model natural systems.

The theory of Markov processes is the most extensively developed part of probability the-
ory. It covers, in particular, Poisson processes, Brownian motions, and all other Lévy pro-
cesses (Cinlar, 2011). They can be classified into time-homogeneous/time-inhomogeneous,
discrete/continuous state space, and finite/infinite state space. Consequently, they are
very flexible and find important applications in fields such as telecommunication net-
works, queuing theory, insurance theory (Asmussen, 2003)), and almost infinitely many
more. In Chapter [2] absorbing continuous-time Markov chains are the basis to construct
renewal- and regenerative processes that appropriately link Markov chains with compart-
mental systems. The main advantage of this link is that when we solve a problem in
either Markov chain theory or compartmental systems theory, we automatically solve an
according problem in the other field.

4. Age, transit time, remaining lifetime, and entropy

Ages, transit times, and remaining lifetimes are key quantities of compartmental systems
that can be considered to better understand underlying system dynamics and to compare
models with different sizes or structures. While age describes how old material in the
system is, transit time describes how long material needs to travel through the entire
system from entry to exit. Remaining lifetime, on the other hand, describes how long
particles that are currently in the system still need until they leave the system (Bolin
& Rodhe} [1973)). These quantities provide us with information about the time scales on
which systems operate. Also the concepts of residence time or turnover times can be
useful for that purpose. However, the latter two concepts have to be clearly separated
from what is presented in the present thesis. For more information about this issue and
also about the historical confusion regarding all the different age- and time concepts, see
Sierra et al. (2016). The results of Chapters [2[ and [3| generalize classical approaches of
computing ages and transit times (Bolin & Rodhel [1973; Thompson & Randerson, [1999;
Manzoni et all, [2009; [Rasmussen et al., |2016). Furthermore, the concept of remaining
lifetime is introduced to compartmental systems theory.

The Shannon information entropy as a complexity measure is only one new approach to
the already confusing field of complexity of dynamical systems (Ebeling et al., |1998). It
can be used to describe the uncertainty of a particle’s path through the system, as a tool
for honest modeling by means of the maximum entropy principle (Jaynes, 1957a.b), and
as a means for comparing path properties of models with different sizes and structures.
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5. Organization of the thesis

In Chapter |1}, we introduce the basic theory of compartmental systems along the lines of
Jacquez et al.| (1972)), |[Jacquez & Simon (1993), and |Anderson (1983). From the princi-
ple of mass conservation, we derive the general structure of systems that describe
compartmental systems. Afterwards, we introduce compartmental matrices, classify com-
partmental systems, and present a short excursion on stability properties. At the end, we
introduce the concepts of age, transit time, and remaining lifetime.

Chapter [2] is loosely based on Metzler & Sierra (2018). Here, we concentrate on the
links between open compartmental systems in equilibrium and absorbing continuous-time
Markov chains. We compute explicit formulas of the distributions of ages, transit times,
and remaining lifetimes of compartmental systems and show how they find their probabilis-
tic counterparts in backward recurrence times, absorption times, and forward recurrence
times of renewal- and regenerative processes, respectively. These processes are constructed
by repeatedly concatenating an absorbing Markov chain with itself. Subsequently, we ap-
ply the derived formulas to two well-known carbon cycle systems.

Chapter [3| which is free of probability theory and based on |[Metzler et al,| (2018), ex-
tends the results on the distributions of ages, transit times, and remaining lifetimes to
nonautonomous and possibly even nonlinear systems. Furthermore, we derive to
compute the evolution of the mean age, higher-order moments, and age quantiles through
time in a very convenient way. Then, we apply the derived theoretical results to a simple
global carbon cycle model to answer two questions of high societal interest: How old is
atmospheric carbon? How long will a significant fraction of a pulse of fossil fuel carbon,
emitted to the atmosphere today, remain in the system? Finally, we show how existing
nonlinearities noticeably affect not only the total stocks but also the distributions of ages
and transit times in the employed model.

In Chapter 4] we focus on developing a complexity measure for compartmental systems
based on Shannon information entropy. To that end, we first give a short overview of
Shannon information entropy for random variables and stochastic processes along the lines
of |(Cover & Thomas| (2006). Then, we introduce three entropy concepts for compartmental
systems in equilibrium: entropy rate per jump, entropy rate per unit time, and path
entropy. These concepts are then analyzed in terms of their capability of serving as
complexity measures. Furthermore, they are used as tools for model identification by
means of the maximum entropy principle (Jaynes, 1957alb). For some historical remarks
on this principle, see (Cover & Thomas (2006, Chapter 12). At the end, we extend the
concepts of path entropy and entropy rate to systems out of equilibrium.

Chapter [b] summarizes the results of the thesis and puts them in relation to each other.
Furthermore, we put the results in a broader context and give an outlook on possible
future research in the field.

The main text is followed by four appendices. Appendices [A] and [B] provide basic
properties of the matrix exponential and the state-transition matrix, respectively. Usually,
these properties are used tacitly throughout the main text, because we assume the reader
to be familiar with them.

A number of stochastic processes are central to the thesis. Appendix [C] presents them
along with their most important properties with respect to the main text.

In Appendix [D] we present some small compartmental systems in equilibrium with
simple structure along with the densities of their age- and transit-time distributions as well
as the according mean values. The formulas shown are derived from the general theory
on age- and transit-time distributions in Chapter They coincide with the formulas
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that were derived by Manzoni et al| (2009) on a tedious case-by-case basis via Laplace
transforms.

6. General notes on setup and notation

We work with the following number systems:
e the natural numbers [N|:= {1,2,3,...},
e the real numbers
e the complex numbers [C]
o for d the d-dimensional vector space [Rf* over
e for dy,ds the space 1Xd2 of real di x ds-matrices,
e the nonnegative real numbers = {r dR]: r > 0},

o for d the nonnegative orthant = {v = (vi)i=12,..4 =‘ cv; > 0fori =
1,2,...,d}, and

e all obvious variants of them.

Throughout the entire thesis, vectors v = (v;); are written in bold face and matrices
M = (M;;);; in upright face. The same holds true for vector- and matrix-valued functions,
respectively. A vector or matrix is considered nonnegative or positive if all their elements
are nonnegative or positive, respectively. The only vector norm used is the [;-norm given

" ””ﬂ: Z mﬂ

where |vf] denotes the absolute value of v;. The only matrix norm used is the one induced
by the l-norm, the norm of maximum absolute column sums

”Mﬂ‘: mjax; \Mijﬂ

We omit subscripts of vectors and matrices if it does not lead to confusion.

The number n is usually natural. The number d € N usually denotes the dimension of
the[ODE]system that describes the compartmental system at hand. Equivalently, d denotes
the number of compartments of the considered system. Consequently, S := {1,2,...,d}
is the state space of the absorbing continuous-time Markov chain X that describes the
travel of a single particle through the system, and S := {1,2,...,d,d + 1} is the state
space of X extended by an absorbing state d + 1, also called environmental state. The
regenerative process Z describes the travel of a particle that immediately reenters the
system after its exit, while its counterpart Z describes the travel of a particle that remains
for some time in the environmental state before it reenters the system. To guarantee
that all particles eventually leave the system, we consider only systems in which the
compartmental matrix B is invertible. This invertibility is also required for all B(x,1),
where x = and ¢ Here, is some fixed initial time of the compartmental
system. We suppose that elements involved in stated [ODE] systems are such that the
systems are uniquely solvable, and that the solution is sufficiently smooth. Furthermore,
we consider well-mixed compartmental systems only.
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All involved random variables and stochastic processes are supposed to be supported by
a sufficiently rich probability space (2, F @ In Chapter |2, we deal with random variables
Y : Q@ —[R] Consequently,

Fy(y) =By <y)—lasy

We call Fy the cumulative probability distribution of Y. Hence, for a given function

fy {R]—=[Ry]such that

)
Fr) = [ fo)do. ydE
-

=i
We call fy the probability density function of Y. Note that we do not mention explicitly
that fy(y) = 0 for y < 0 when it is obvious when Y describes an age or a transit
time). We use the nonstandard term cumulative probability distribution to veer away
from the terms used in Chapter [3] where we do not deal with probability masses but with
masses in general. In Chapter [3] the counterpart of the cumulative probability distribution
is called cumulative distribution and is denoted by P or, if it describes ages, cumulative age
distribution. The counterpart of the probability density function is simply called density
function and denoted by p.

Often in the literature, Markov chains are assumed to be supported on a discrete time
set and Markov processes on continuous time intervals. Since most of the time in this thesis
we deal with continuous-time objects, we do not make this distinction and always speak of
Markov chains. If necessary, we put discrete-time or continuous-time in front. This way, we
stick to the notation of |Anderson| (1991)). In the following, all involved Markov chains are
equipped with a finite discrete state space called S or S. Such processes are also known as
Markov jump processes in the literature. Note that all our stochastic processes are assumed
to be right-continuous and we use the terms steady state and equilibrium interchangeably.
Furthermore, we omit the terms almost surely (a.s.) and almost everywhere (a.e.), because
the additional technical notation would not serve any practical purpose in this thesis.

Another important remark is that renewal processes are often defined to be counting
processes that count the number of occurrences of events. However, throughout this
thesis, we follow the definition of |Asmussen| (2003) which specifies renewal processes as
the sequence of moments in time at which evens occur.

we have

S~
L<

(y)dy = 1.
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CHAPTER 1

Introduction to compartmental systems

Our goal in this chapter is to derive the general structure of [ODE] systems that describe
compartmental systems from the principle of mass conservation, to introduce compart-
mental matrices, to classify compartmental systems, and to introduce important system
diagnostics.

1.1. From mass conservation to a first-order ordinary differential
equation system

Following |Jacquez & Simon| (1993), a compartment is an amount of kinetically homoge-
neous material. Kinetically homogeneous means that any material entering the system is
immediately mixed with the material of the compartment. Compartmental systems de-
scribe the flow of material into different compartments, the subsequent distribution of the
material among the different compartments, and eventually the exit of the material from
the system of compartments.

Suppose we are given a fixed real-valued starting time [to| and a set S = {1,2,...,d}
of compartments, with d being a natural number. Throughout this chapter, ¢ and j are
assumed to be elements of S. For all j, the amount of material in compartment j at time
t is denoted by z;(t). We collect the x;(t) in a vector x(t) := (1(t),...,zq(t)fT,
where the superscript T stands for the transpose. Furthermore, let I;(t) and O;(t) describe
the flux of material entering and leaving compartment j at time ¢, respectively. For any
compartment j, the law of mass conservation implies

(i) §;(t) =I;(t) = 05(t), and
(ii) if a compartment is empty, nothing can flow out.

From condition we can derive the following lemma which is a variation of a result
of Jacquez & Simon| (1993, Appendix 1), but with a more elaborate (multi-dimensional)
proof. The original proof is only given for the one-dimensional case.

Lemma 1.1 Let n i # j, and Fyj : (x,t) — Fj;(x,1) a nonnegative flux from
compartment j to compartment i, which is n times continuously differentiable in x with
Fij(x,t) = 0 if x; = 0. Then, there is a function B;j : (x,t) — Bj;(x,t) such that

Fij(x,t) = Byj(x,t) x;. Furthermore, B;; is n — 1 times continuously differentiable in x.

Proof. We fix x > 0 and t >[#g] For the sake of simplicity of notation omit ¢ as the second
variable in functions. Moreover, for s € [0, 1] we define a vector y(s) by yi(s) == zx



2 1. Introduction to compartmental systems

for k # j and y;(s) := s x;, and we define a function G : [0, 1] ={R4]by G(s) := Fy;(y(s)).
Taking the derivative of G with respect to s € (0,1), we obtain

<o) = ]g%mj(y(s)) L)

where @C denotes the partial derivative with respect to the kth coordinate, and % yp(s) =
k:j} z;. Here, k:j} is the indicator function, defined to be 1 if k = j and 0 otherwise.
Denoting by |§| the vector comprising zeros and using we can compute

Fij(X):F ( ) 0=F, X zy@

1
d
=G(1 / 1 G(s
0
1
d
- Fiily(s)) £ vn(s) ds
S
o ke
1
=  Fij(y(s)) zjds
0
= Bij(x),
where B;j(x fo@ Fij(y(s))dsis n—1 times differentiable in x. Note that B;; depends
on x through the definition of y O

We now aim at applying this lemma so as to derive a system of that describes the
flow of material in a compartmental system. To this end, we need to split the inputs to
compartments into external and internal inputs. External inputs enter the compartment
from outside the system and internal inputs enter the compartment by coming in from
other compartments. For compartment i, we denote them by w; and [y s, respectively.
The same needs to be done for outputs from the compartments, where we write r; for
fluxes leaving the system from compartment 7, and Ojn; denotes internal outputs from
compartment ¢ that move to another compartment. From for ¢ € S, we then obtain

d

a l‘l(t) = L;(t) — Oz(t)

= ui(t) + Lint,i(t) — (ri(t) + Omnt,i(t))
= u;(t) + Z Fij(x(t),t) — | ri(x(t),t) + Z Fji(x(t),1)
J# J#
For i # j, we can now use Lemma to infer the existence of functions B;j, 2; X

ES) such that

(1.1)

Fij(x(t),1) = Bij(x(t), 1) z;(t),
Fji(x(t),t) = Bji(x(t),t) zi(t), and
ri(x(t), 1) = zi(x(t), t) zi(t).

We plug the newly obtained functions B;; and z; into Eq. (1.1)) and see

% (t) = ui(t) + Y Bij(x(t),t) x;(t) — |zi(x(t),t) + Y Bj(x(t), t| i(t).  (1.2)
J#i J#i
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By defining

Bii(x(t),t) := — | zi(x(t),t) + > _ Bji(x(t),8)| , (1.3)
i

%xim —ui(t)+ Y Bi(x(t), 1) a;(0).

we see

jES
In matrix notation we obtain
d
T x(t) = B(x(t),t) x(t) + u(x(t), ), (1.4)

Where B = (By;) {RY| x .. ~>.'l><d is a square matrix-valued function and u = (u;) :

>< .,. is a nonnegative vector-valued function.

For the sake of simplicity of notation, from now on we occasionally omit the arguments
of the functions.

Remark 1.2 Let ¢ # j. From Eq. , we can identify z; x; and <Z#i Bji> x; as the
external and internal outputs from compartment ¢, respectively. Eq. makes us then
interpret — B;; x; as the total output from compartment i. Furthermore, the same equation
shows z; = —(By; + Zj# Bj;) = — ZjeS Bj;, or in vector notation

11" B, (1.5)

where [Tl is the column vector filled with ones.
This observation motivates the following definition.

Definition 1.3 Let ¢ # j. Then, the B;;’s are called fractional transfer coefficients or
simply transfer rates. They describe the rates of how fast material moves from compart-
ment j to compartment ¢. The —B;;’s are called decay rates. They describe the rate of
how fast material leaves compartment i. Finally, the z;’s are called output rates or release
rates. They describe how fast material leaves the system from compartment 4.

1.2. Definition of compartmental matrices and compartmental
systems

Matrix B in Eq. (1.4) has particular properties which we investigate more closely in this
section. Always bear in mind that by the law of mass conservation all fluxes are required
to be nonnegative as well as all components of the vector x. Since for all 4,

0<0;= 12 +ZBji x; = —Bj; x;,
J#i
we have B;; < 0. For all j # 4, additionally 0 < F;; = B;; x;. Consequently, B;; > 0.
Furthermore, for all j,

OST’J':ZJ'IL‘J':— Bjj+ZBij l’j:<—ZBij):Ej.

i#] i€S

Hence, 3, g Bij < 0. These results motivate the following definitions.
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Definition 1.4 A square matrix B = (B;;) is called a compartmental matriz if
(1) B“ < 0 for all i,
(ii) Bi; > 0 for all i # j, and

(ili) > Bj; <0 for all j.
ieS

Definition 1.5 Let f X be such that the initial value problem

S xt) = Jx(0).0), 1

x(@) = x° &7

has a unique solution on |LE) Furthermore, let B = (B;;) X Xd and
u = (u;) X be bounded continuous functions. If we can write f as
fx(t),1) = B(x(t), 1) x(t) + u(x(t), 1), ¢

with the matrix B(x,t) being compartmental for all x and t then we call the
first-oder system (|1.6]) of a compartmental system. We can state it more explicitly
as

(1.6)

%x(t) = B(x(t),£) x(t) + u(x(t),1), t
x(fo) = x°

The function x : toj;[) R4 |is called system state trajectory or the system’s solution
trajectory, and u 1&“; X [to E) EIM is the system’s external input function.

If B(x,t) = B(t) and u(x,t) = u(t) for all x  R%|and all ¢ B and u are
independent of the system state x(t), then the system is called linear, otherwise it is called
nonlinear.

If B(x,t) = B(x) and u(x,t) = u(x) for all x and all ¢ B and u do
not explicitly depend on the time ¢, then the system is called autonomous, otherwise it is
called nonautonomous.

A linear autonomous compartmental system takes the particular shape

d
&X(t) =Bx(t)+u, t

where B is a compartmental matrix and u is a nonnegative external input vector.

(1.7)

(1.8)

Remark 1.6 Many models of vegetation processes include a state-dependent input func-
tion u. For instance, the amount of carbon coming into a vegetation system through
photosynthesis may depend on the available leaf carbon.

A compartmental system guarantees that no material gets lost or is produced out of
nowhere. Consequently, all components of the state vector are nonnegative at all times
provided that the initial state vector is nonnegative. However, three potential issues may
arise. We examine them for the case of a linear autonomous system:

(1) There exists a compartment j with Bj;; = 0, which means that this compartment
does not lose any material. On the contrary, the compartment accumulates material
indefinitely if it receives inputs.
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(2) All column sums of B vanish. Since the negative column sums coincide with the
release rates, the system does not lose any material and might accumulate material
indefinitely.

(3) There exists a subsystem of compartments that does not lose any material, meaning
that some material remains stuck in a subcycle. If this subsystem receives external
inputs, it will accumulate material indefinitely.

To avoid all three of these undesired effects, we require the compartmental matrix B to
be invertible. This requirement is motivated by the following lemma.

Lemma 1.7 If a compartmental matriz B = (B;j) Xd is invertible, then
(i) Bjj <0 for all j,
(ii) there is a compartment j with external outputs, zj >0, and

(iii) there is no subsystem of compartments that does not lose any material.

Proof. We begin with proving To this end, we assume that there is a compartment j
with B;; = 0, and we fix this j. By Definition of compartmental matrices, we know
Bij > 0 for i # j. Furthermore, the release rate z; = — 3, ¢ Bij; > 0 by the same
definition. Multiplying Eq. by —1, we obtain

0= —Bjj =Zj + ZBij’
i#]
and it is immediately obvious that B;; = 0 for all i. Consequently, the jth column of
B vanishes, which prevents B from being invertible. Since B is invertible by assumption,
there cannot exist a j such that B;; = 0 and |(i)|is proven.

Now, we prove To this end, we assume all column sums of B to be 0, which means
zj = 0 for all j. By Eq. , BI:D = —z :@ Consequently, the kernel of BT contains
a nonzero vector, which proves that BT and also B are not invertible. This again violates
the assumption of the lemma and Eq. is proven.

To prove we assume that there is a d-dimensional subsystem that does not lose
any material. We collect the compartments of this subsystem in the set S and denote the
corresponding compartmental matrix by B. The release rates zj of the subsystem vanish.
Consequently, the d-dimensional vector is in the kernel of ]§, and the nonnegative
vector y = (y;);j=1,2,..4 defined by

1, jes,
y; =

0, otherwise,

is in the kernel of B, which again contradicts the lemma’s assumption that B be invertible,
and the proof is complete. O

The invertibility of the compartmental matrix thus guarantees that all material that
enters the system will eventually leave it. For a linear autonomous system this moti-
vates the definition of an open system. This definition naturally carries over to general
compartmental systems.

Definition 1.8 A compartmental system (1.7]) is called open, if for all x and all
t the compartmental matrix B(x,t) is invertible.
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Remark 1.9 From the preceding discussion, we know that open compartmental systems
have the following properties. For all x and all ¢

(i) Bii(x,t) <0 for all i,
(i) Bij(x,t) >0 for all i # j,
(ili) > Bij(x,t) <0 for all j,
€S
(iv) there exists a compartment j with external outputs, zj(x,t) > 0, and

(v) there is no subsystem that does not have any outputs.

Since we know that for open linear autonomous compartmental systems all material
that enters the system will eventually leave the system, it is natural to ask the following
two questions: Can we infer some kind of stability properties of the system? How long
does material need to travel through the system, from entering the system to leaving it?
Let us turn our attention to the question of stability first.

1.3. Stability of compartmental systems

Definition 1.10 Let x and y be two solution trajectories of a compartmental system with
initial values x° and y°, respectively. The compartmental system is called ezponentially
stable if there exist K > 1 and v > 0 such that

Ix(t) — y(8l] < K[ D 0 — yf] for all ¢

Lemma 1.11 Let B be the compartmental matriz of an open linear autonomous compart-
mental system. Then all eigenvalues of B have negative real part.

Proof. We apply the Gershgorin circle theorem (Varga;, 2009, Theorem 1.11). It guarantees
that all eigenvalues of B are located in the closed disc {A € C]: |Bj; — N < R;} with radius
Rj = >, ,;Bij and centered at Bj; for at least one j. (Recall that Bj; is negative.)
By Definition of compartmental matrices, the radius R; < —Bj;. Consequently, all
eigenvalues are located in the left half of the complex plane with the rightmost possible
eigenvalue being equal to zero. Since the system is supposed to be open, B is invertible
and cannot have a zero eigenvalue. Hence, all eigenvalues of B have negative real part. [

Definition 1.12 Let Eq. (1.7) be a compartmental system with arbitrary initial value. If

there exists such that, for all ¢
B )T+ ufx 1) {0}

then [x*] is called a steady state or equilibrium of the compartmental system.

Proposition 1.13 Every open linear autonomous compartmental system (1.8 is exponen-
tially stable. Furthermore, the system has the unique steady state [x*|= —B~'u to which
all solutions converge as t independently of the initial value x°.

Proof. We denote by the matrix exponential (Appendix of a square matrix M and
by [I] the identity matrix. The unique solution x of the linear system ((1.8)) is given by
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(Brockett], [2015], Corollary of Theorem 1.6.1)

x(t) to) B 0+/|‘ Budr, zl (1.9)

which we can compute to

0 8o 00 o 3

Now let x and y denote two solutions of Eq. (1.8)) with initial values x" and y°, respec-

tively. For ¢
I(t) 0= ([t B ItByom

=||Et@3 [ =y
< [ EDH - x° -y

From Lemma [I.11] we already know that all eigenvalues of B are negative. By
(2000, Theorem 1.3.14) there exist & > 1 and v > 0 such that

et B < s [ (b, (1.10)

Note that the matrix norm here is supposed to be the operator norm. In our case, the
matrix norm of maximum absolute column sums coincides with the operator norm based
on the vector norm of the absolute coordinate sum. Consequently,

Ix(t) = y(efll < Kl D - -y

for all ¢ and the compartmental system is exponentially stable.

Obviously, since B+ u=-BBlu+u :@ the vector x*| = —B~! u is a steady state
of the given compartmental system. The existence of another steady state y* would
violate the exponential stability of the system. Also because of the exponential stability,
all solutions with an arbitrary initial value x° must necessarily converge toward

as t —[odl O

Corollary 1.14 As long as the compartmental matrix B is invertible, we see directly from

Eq. that for any v = the term tB v vanishes as t .

For linear nonautonomous systems, the concept of steady states is not very useful since
the system input as well as the transfer rates might permanently change. Nevertheless, the
concept of exponential stability from Definition|1.10}is still appropriate. In the autonomous
case, it describes how all trajectories approach one single point x(t) in space. In
the nonautonomous case, exponential stability means that any pair of trajectories will
exponentially fast come arbitrarily close to each other as t even though neither
of them might ever become constant (Figure . Very general conditions for an open
linear autonomous system to be exponentially stable are given in Rasmussen et al.| (2016,
Theorem 1).

So far, we have only dealt with stability of linear compartmental systems, and we do
not engage in the topic of stability of nonlinear compartmental systems. This topic is
beyond the scope of this thesis. In nonlinear stability analysis, to quote |Jacquez & Simon|
(1993)), “anything can happen.” Nevertheless, [Jacquez & Simon| (1993) categorize nonlinear
compartmental systems in terms of their stability properties. In addition to this paper,
also |Anderson & Roller| (1991) is a valuable resource for this opaque topic.
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Xj Xj

Time Xi

Time

Figure 1.1. Trajectories of exponentially stable autonomous (upper plots) and exponentially stable
nonautonomous (lower plots) linear compartmental systems with respect to time (left) and in a two-
dimensional state space (right). In the autonomous case, all trajectories converge to a fixed point in
the state space (red dot) independently of their initial conditions, while in the nonautonomous case all
trajectories are forward attracting. In case of an infinite history of the system, there exists a unique
pullback attracting trajectory (red curve). (Figure and caption modified from [Sierra et al.| (2018]).)

1.4. Ages, transit times, and remaining lifetimes of
compartmental systems

Now we turn our attention to the second question: How long does material need to travel
through the system, from entering the system to leaving it?

All exponentially stable open compartmental systems share the property that material
enters the system at its arrival time ¢, and exits from the system at a later point ¢, in time.
The duration t. — t, is the time that the material needs to travel through the system and
we call it transit time. Since a general compartmental system’s inner dynamics might be
subject to permanent change, we discriminate two types of transit time. The underlying
concept of this discrimination is the concept of age. We also split the concept of age into
two different quantities: the age of all particles in the system and the age of particles
that belong to a particular compartment. Both quantities play an important role not only
for their close relation to the idea of transit time but also in their own right. A third
important concept is, how long particles that are already in the system will still remain
there before they exit. We call this concept remaining lifetime and, again, we discriminate
between all particles in the system and particles that belong to a particular compartment.

Concept 1.15 The system age A(t) of a compartmental system at time ¢ is the time
span t — t, that the system’s current material has already spent in the system under the
constraint that the material has entered the system at time t,.

The compartment age a; (t) with respect to compartment j of a compartmental system
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is the system age of the material contained in compartment j at time t.

We will define age more precisely in Section For now, we assume to have a precise
definition of age. Based on this precise definition, we can now focus on the transit time.

Definition 1.16 The forward transit time ta) of a compartmental system is the age
that the material will have at time ¢, of its exit from the system under the constraint that
the material enters the system at time ¢,.

The backward transit time (te) of a compartmental system is the age of the material
in the output from the system at exit time ..

Definition 1.17 The remaining system lifetime L(t) of a compartmental system at time
t is the time span t. — t that the system’s current material will still spend in the system
before its exit at time t..

The remaining compartment lifetime [;(t) with respect to compartment j of a compart-
mental system is the remaining system lifetime of the material contained in compartment
j at time t.

The concepts of age, transit time, and remaining lifetime are central to major parts of
this thesis in that we not only derive formulas to compute their distributions, moments,
and quantiles, but also connect them to appropriate probabilistic quantities. Afterwards,
we apply the derived formulas to relevant examples from soil organic matter decomposition
and the global carbon cycle.






CHAPTER 2

Compartmental systems in equilibrium and continuous-time
Markov chains

For open compartmental systems, it is natural to ask for ages, transit times, and remain-
ing lifetimes. They give insight into the inner structure of the system and into internal
dynamics, and provide us with additional information to make us better understand the
system. Furthermore, they are important metrics if we want to compare different mod-
els that describe similar or different systems. Moreover, we can better constrain model
parameters when we compare tracer measurements with theoretical results on ages and
transit times. For example, we can improve our knowledge about the global carbon cycle
if we find out how old carbon is in the soils, in the vegetation, or in the atmosphere. If
we aim at constructing large-scale models by conflating many small-scale models, be it
spatially or temporally, even knowledge on ages and transit times on microbial scale turns
out to be useful.

In this chapter, which is loosely based on Metzler & Sierral (2018), we consider two eco-
logical models represented by compartmental systems in equilibrium and ask the questions
for their respective age structures, transit times, and remaining lifetimes. As it turns out,
these questions can be answered from two perspectives. The first perspective is the the
dynamical systems point of view, whereas the second one is of probabilistic nature. We
show that many deterministic concepts have a stochastic counterpart. This link between
two different mathematical fields is based on 1) the restrictions of keeping mass balanced
in compartmental systems and conserving probability mass in the theory of stochastic
processes, and 2) the well-mixedness of compartments and the future’s independence of
the past in Markov chains.

Throughout this chapter, several stochastic processes play a major role. They are intro-
duced in Appendix [C] along with some of their most important properties. Some examples
of compartmental systems in equilibrium with very simple structure along with applica-
tions of the formulas derived in this chapter to these systems are presented in Appendix[D]

2.1. Introduction of two ecological examples

We consider two examples of carbon cycle models. Even though the first system is linear
and the second one is nonlinear, both systems’ properties can be investigated by the same
approach because the two systems find themselves in equilibrium. For each of the systems,
we ask for the internal carbon’s age structure and for how long carbon needs to transit
the system.

11
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2.1.1. A linear autonomous global carbon cycle model, |

We consider the global carbon cycle model introduced by Emanuel et al. (1981) (Fig-
ure . Since Thompson & Randerson| (1999) numerically calculated age- and transit-
time distributions using an impulse response function approach, this model is a very good
test case once we have developed a general theory for ages and transit times. The model
comprises five compartments: non-woody tree parts xi, woody tree parts xo, ground
vegetation x3, detritus/decomposers x4, and active soil carbon z5. Since the model is
considered to be in equilibrium, the initial state is negligible and, the model is given by

d
&x(t) =Bx(t)+u, t>0,

where the input vector is given by u = (77.00; 0.00; 36.00; 0.00; 0.00)T[F Cly1} ! and the

compartmental matrix by

—77/37 0 0 0 0
31/37  —31/452 0 0 0
B= 0 0 —36/69 0 0 yi[ !
21/37  15/452  12/69 —48/81 0
0 2/452  6/69  3/81 —11/1121

The numbers are chosen exactly as in Thompson & Randerson| (1999). The input vector is
expressed in units of petagrams of carbon per year (Pg Clyr[~!) and the fractional transfer
coefficients in units of per year (yr["!). Because B is a lower triangular matrix with nonzero
diagonal entries, it is invertible. Furthermore, B is compartmental and hence we deal with
an open system, wherefore it is reasonable to ask for age and transit time of this model.
We are not yet in the position to answer these questions, but there are some interesting
quantities we can already compute. So is the steady-state vector of carbon contents given
by

= —B~"u = (37.00; 452.00; 69.00; 81.00; 1, 121.00)HPE ]

and the respiration vector (external output vector, release vector) in steady state by
r = (2 2})j=12..5 = (25.00; 14.00; 18.00; 45.00; 11.00) 5B Cfyrf .

2.1.2. A nonlinear autonomous soil organic matter decomposition model, |

Consider the nonlinear autonomous compartmental system

d

™
where B Xd is a matrix-valued mapping. In this setup, the fractional transfer
coeflicients are not constant but depend on the system’s content.

Assume now that system is in a steady state From dd t = 0 follows that the
compartment contents x; do not change in time, and the mapping B turns into a matrix
with constant coefficients. Hence, if we assume the nonlinear autonomous compartmental
system to be in a steady state, we can treat it as a linear autonomous compartmental
system.

As an example, consider the nonlinear two-compartment carbon cycle model described
by Wang et al (2014) (Figure[2.2). We denote by C; and C}, soil organic carbon and soil mi-
crobial biomass 2), respectively, by € the carbon use efficiency or fraction of assim-
ilated carbon that is converted into microbial biomass (unit-less), by up the turnover rate

(t) = B(x(t))x(t) +u, >0, (2.1)

12
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Figure 2.1. Schematic of the linear autonomous global carbon cycle model in steady state introduced

by [Emanuel et al| (1981). The model comprises five compartments: non-woody tree parts z1 (2;

37|Pg C)), woody tree parts x2 (3; 452, ground vegetation z3 (4; 697 detritus/decomposers
za (5; 81, and active soil carbon z5 (6; 1, 121. The atmosphere (1) is considered to
be outside of the modeled system but provides the system with external inputs and receives external
outputs from it. Numbers next to arrows indicate fluxes between compartments inl. (Figure
extracted from [Emanuel et al.| (1981))

13
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V. /K, 1-

)

Figure 2.2. Scheme of the nonlinear autonomous carbon cycle model introduced by [Wang et al.
(2014). The two compartments Cs and C, are here denoted by [soil organic carbon (SOC)| and
[microbial biomass carbon (MIC)| the external input flux Fyp, is denoted by Inputs, the maximum
rate of soil carbon assimilation by Vi, the half saturation constant by K, the carbon use efficiency
by &, and the turnover rate of microbial biomass by us, respectively. (Figure extracted from Wang
et al.| (2014))

of microbial biomass per year (y1] D), by F,pp the carbon influx into soil 21),

and by Vs and K, the maximum rate of soil carbon assimilation per unit microbial biomass

per year (yr[ ') and the half-saturation constant for soil carbon assimilation by microbial
biomass (g Cfml~2), respectively. Then, we can describe the model by

L= my (&) (Tm)

The matrix B depends on x = (Cs, C’b)m through \’s dependence on x, which is given by

CyVs
AX) = ———. 2.2
(x) Cs + K (22)
Steady-state formulas for the compartment contents can be computed as
. K N F,
Cs = 3= i and Cj = PP

m py (1+12)

From Wang et al. (2014), we take the parameter values F,, = 345.0021, Wy =
4.38[y1[ !, £ = 0.39, and K, = 53, 954.832. Since the description of V; is missing in
the original publication, we let it be equal to 59.131 to approximately meet the given
steady-state compartment contents C* = 12, 650.00|g C|m 2 and Cy = 50.362.

With the given parameters, the steady-state transfer matrix B = B and the input
vector u are given by

_(—0.0447 4.38 1 _(345.00 o L1
b= < 0.0174 —4.38> and = < 0.00 ) g ’
respectively. Obviously, the given parameter values lead to an open linear compartmental
system in equilibrium. Consequently, again we can ask for the age structure and the transit
time of the system.
In contrast to the system from the first example, this system exhibits a feedback. This

feedback results from dead soil microbial biomass being considered as new soil organic
matter. The feedback can also be recognized by noting that B is not triangular.

14
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2.2. Age, transit time, and remaining lifetime

Even if a compartmental system is in equilibrium, material permanently enters and leaves
the system. Consequently, the material in the system is a mix of material with different
ages as is the material that leaves the system at some fixed point in time. We aim at
finding explicit formulas for the age-, transit-time, and remaining lifetime distributions of
compartmental systems in equilibrium.

The advantages of considering systems in equilibrium are twofold. On the one hand, the
system’s internal dynamics remain unchanged. On the other hand, initial values do not
distort the age structure. Consequently, the point in time when we observe the system is
negligible. The well-mixedness of the compartments resembles the fact that the history of
particles has no influence on their future, while the linearity of the systems reflects that
particles behave independently from each other. Consequently, we can look at the typical
journey of a single particle and afterwards collect the indefinite amount of single particles
with infinitesimal weight and size.

2.2.1. The one-particle perspective

Consider a single particle that enters the system at a compartment according to u and then,
at each time step, whether it stays or moves on is decided on basis of its current position
and its schedule. If the decision is to move on, then it can move to another compartment
or leave the system, depending only on the connections of the current compartment. The
particle follows a schedule and a map given by the compartmental matrix B. The diagonal
entries of B govern how long the particle stays in a certain compartment, and the off-
diagonal entries provide the connections to other compartments. By leaving the system,
the particle finishes a cycle and immediately starts a new one by reentering the system.

During each cycle, the sequence of compartments to which the particle belongs at suc-
cessive time steps constitutes a stochastic process called discrete-time Markov chain. If
we let the size of the time steps tend to zero, the particle’s future becomes continuously
uncertain. We can then represent the particle’s path during a single cycle through the sys-
tem by a continuous-time Markov chain (Norris, |1997), which we call X throughout the
chapter. When the Markov chain changes its state from j to i, the particle is considered
to move from compartment j to compartment i. When the Markov chain is absorbed, the
particle leaves the system.

The act of sending the particle back into the system right after leaving has its stochastic
counterpart in a regenerative process Z with embedded renewal process J = (Jp,)n>0. The
renewals J,,, n > 1, coincide with the regeneration times of Z and represent the reentries
of the particle.

It is important to note that, with respect to standard notation in probability theory,
we use reversed index order in the following. For instance, in classical probability theory
notation we would use BT instead of B and also QI instead of Q (defined in Eq.
below). We deviate from the standard notation since the reversed index order is natural
for compartmental systems and this way the connections between the deterministic and
the stochastic mathematical structures involved become more obvious and notation less
confusing.

2.2.2. Compartmental systems and Markov chains

As nonlinear autonomous compartmental systems in equilibrium behave like linear au-
tonomous compartmental systems in equilibrium, for the remainder of this chapter we

15
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consider the linear system of as given by Eq. (1.8), but already starting in equilib-

rium,
%x(t) =Bx(t)+u, t>0,

x(0) =x71

Here u and we assume the compartmental matrix B to be invertible to ensure that
the system is open. Furthermore, = —B~!u such that the system is in steady state
from the very beginning. Without loss of generality, we can then assume [to| = 0.

Compartmental systems and Markov chains are very similar even though the former
are deterministic- and the latter are probabilistic objects. We now show that open linear
autonomous compartmental systems correspond to absorbing homogeneous continuous-
time Markov chains.

Material permanently leaves from the open system ([2.3). We close the system by col-
lecting all leaving material in an additional environmental compartment d + 1. To do so,
we add another row to the compartmental matrix B to make all column sums equal to
zero and we add another column that does not allow material to leave compartment d + 1
once it has arrived there. The resulting (non-invertible) compartmental matrix is

Q= @n g) . (2.4)

We recall from Eq. (1.5) that A0 = B and see that Q is the transition-rate matrix of
an absorbing homogeneous continuous-time Markov chain X = (X¢);>0 on the state space
{1,2,...,d,d + 1}. Tts absorbing state is state d + 1. Let

B = | (u,us, ..., ugf. (2.5)

The probability of the continuous-time Markov chain X with initial distribution 3 being
in state j € S ={1,2,...,d} at time ¢t > 0 is

Bx. =5 =E"8);- (2.6)

Assume now that material u § R%| comes into system (2.3) at time 7 > 0. Since the
system is linear, the way how this material will be distributed can be modeled by the
homogeneous linear [DDE] system

d . ~
Ex(t) =Bx(t), t>r,

X(T) =u.

(2.3)

(2.7)

Furthermore, the fractional transfer coefficients of this system are time-independent, so
we can shift the entire system to the left and consider it to have started at time 7 = 0.
From Eq. (1.9), we know that the content of compartment j at time ¢t > 0 is then given

by
7)) = [ w);. (2.8)
This implies together with definition (2.5) of 3 and Eq. (2.6]) that

o T()
<Xt—j>— A,

Consequently, @(Xt = j) is the proportion of the initially present amount of material in
system that is in compartment j at time t. Hence, the continuous-time Markov
chain X describes the stochastic travel of a single particle through the compartmental
system . When the traveling particle leaves the compartmental system, the process
X jumps to the absorbing state d + 1.

16
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2.2.3. Transit time and absorption time

For compartmental systems, two types of transit time can be considered (Nir & Lewis,
1975)) from the one-particle point of view. Recall from Definition that the forward
transit time (ta) is the time that a particle needs to travel through the system after
it arrives at time t,. The backward transit time (te) specifies the age that a particle
has at the moment it is leaving the system, the time it needs to travel through the
system given that it exits at time t.. For an autonomous system in steady state, one
would expect the two types of transit time to coincide and to be independent of ¢, and
te, respectively. For now, we will concentrate on the derivation of explicit formulas for the
forward transit-time distribution. We turn to the backward transit-time distribution later
because it requires results on age distributions of the system.

Recall that the absorbing continuous-time Markov chain X = (X;);>¢ describes the
travel of a particle through the compartmental system . When the particle leaves the
system, X jumps to its absorbing state d + 1.

Definition 2.1 The absorption time of a continuous-time Markov chain X is a random
variable that tells the moment in time, when X reaches its absorbing state. It is defined

by
M=inf{t>0: X, =d+1} (inf0]:={od).

Lemma 2.2.1 in Neuts (1981) guarantees that m is finite with probability one if the
compartmental matrix B is invertible. Consequently,

. . . . B .o
thm ﬁ(Xt:MXO:j):tlL% )Z.j:O, i,j € 8.

This corresponds well with Corollary and the idea that every particle will eventually
leave the open system (2.3)).

Proposition 2.2 Let[T] denote the absorption time of X. Then
(i) the cumulative probability distribution of [T] is given by
Fn(t) =1 B,@, t>0, and
(ii) its probability density function by
fm(t) =29 P8, 1 >0
Proof. (1) At time ¢ > 0, the cumulative probability distribution Fp(t) < t) of the

absorption time [T]is equal to the probability of X; not being in any of the states j € S.
Consequently, Eq. (2.6)) leads to

@w:hgﬁwsﬁ:hiﬁ%itzo

(2) Using 40 = B from Eq. (1.5]), the probability density function of @ is

folt) = < Bty = AP, 120 (2.9

17



18 2. Compartmental systems in equilibrium and continuous-time Markov chains

Definition 2.3 A probability distribution according to the probability density function fr
in Eq. (2.9) is called phase-type distribution with initial distribution 3 and transition-rate
matrix B. We denote it by (,@, B).

The notation (,6, B) and the unifying matrix formalism we use here were introduced
by Neuts (1981)). Phase-type distributions constitute a highly versatile class of probability
distributions and are closely related to the solutions of systems of linear differential equa-
tions with constant coefficients. As mixtures of exponential distributions they generalize,
among others, the Erlang-, the hypoexponential, and the hyperexponential distributions.
We have proved the following theorem.

Theorem 2.4 The forward transit time [FTT] of an open compartmental system in equi-
librium with compartmental matriz B and input vector w and the absorption time [T] of

an absorbing continuous-time Markov chain with transition-rate matriz Q as defined in

Eq. (2.4) and initial distribution B (2.5]) are identically and phase-type distributed. More
precisely, | 7]~ PH(3,B).

We collect some properties of the forward transit time that follow immediately from

FTT~PH(u/|[d]} B)-
Corollary 2.5 For: —B~u being the equilibrium of the system,

(i) the cumulative probability distribution of the forward transit time is given by

Fern(t) = 1BHE{H]’ t>0,

(ii) its probability density function by

fern(t) = sz ”fﬂ] t>0,

(iii) its expected value by

RS
E|FT =B vu bl
] ]
(iv) its nth moment by

ey o f3

Here, nm =n(n—1)---2-1 denotes the factorial of n with the convention (ﬂ =1,

Remark 2.6 (1) Since for the forward transit time only the future after the particle’s
arrival is considered and not the past, Theorem [2.4] and Corollary [2.5] hold still true even
if the linear autonomous compartmental system is not in equilibrium.

(2) The relation [E|[T] = |/ |[d]] (mean forward transit time equals total
stocks over total inputs) will be used frequently throughout this thesis without mentioning
it each single time. It is helpful to always keep it in mind.

18



2.2. Age, transit time, and remaining lifetime 19

2.2.4. Steady state and occupation time

The Markov chain X = (X)¢>0 takes on different states i € S before it is absorbed. We
are now interested in the connection of the steady state of the compartmental system ([2.3))
and occupation times of X.

Definition 2.7 The occupation time of state ¢ € S by the absorbing continuous-time
Markov chain X is the time that X spends in state i before absorption. It is defined by
O; = Xt:i} dt, and we denote by O := (O;);es the corresponding occupation time
vector.

Furthermore, we define the partial occupation time of state i € S by X as the time that
X spends in ¢ before a fixed time y > 0. It is given by O;(y) := f(]Xt:i} dt. We denote
the corresponding vector by O(y) := (O;(y))ies-

Lemma 2.8 (1) The steady-state compartment content x} for i € S is proportional to
the expected occupation time of state i by the absorbing continuous-time Markov chain X.

More precisely,
i = [[uJE[O;]

(2) The sum of the mean occupation times of all states results in the mean forward transit
time of the compartmental system, [i.€l,

P o fiem

Proof. (1) Using @ Xt:i}] :@(Xt = 1), the stead-state content of compartment i € S
can be computed to

o

) We sum the occupation times over all states i € S and obtain
Seoi=% =T {50
2 ]~ Tl

The following result is already well known (Anderson, 1983, Section 14A) and it helps
understand the meaning of —B~!

/'\

Xt:i)dt:/Bu)i dt = (-B7'u), = a;. (2.10)
0

O]

Proposition 2.9 The matriz entry (—B™1);; is the mean time the Markov chain X stays
in state i € S before absorption, given it starts in state j € S at time [f]

Proof. We can compute the conditional occupation time of state i by X given Xg = j by

[E][0; | Xo = j] = @ i {o=s)] I 0 |Lxi=i, xo=4} 4]
Pl Xo = j) (X0 = 7)

(o7e]
Xt:i\onj)dt:/B)
0

19
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2.2.5. Release and last state before absorption

For j € S, the release of material from compartment j at time ¢ > 0 to the environment is
denoted by r;(t). It can be computed as the product of the rate z;(t) of material leaving
compartment j toward the environment and the amount of material ;(¢) contained in

compartment j. For a system in steady state, z;(t) = z; and z;(¢) = z} remain constant,

and consequently r; = z; ch remains constant as well. Probabilistically, we expect r; to
be connected to the probability of the absorbing continuous-time Markov chain X to be
absorbed through state j, that j is the last state of X before X jumps to its absorbing
state d + 1.

Lemma 2.10 Let E € S denote the last state that X wisits before it is absorbed by state

d+ 1. Then
E=7) = B~ /3 e S
( ]) Zj ( ) HL{”] J €0,

the probability of a state j being the last one before absorption is proportional to the
release from j to the environment.

Proof. Let fm(t| X = j) be the conditional probability density function of the absorption
time [T] of X at time ¢, given that X; = j. Then,

xi

= [ fmte 1% = dfpx = ). (2.11)

0

From Eq. (2.6)), we knowlﬂ (X: =7) ' B . We are left with computing the conditional
probability density function. Because X is homogeneous,

Jn(t | Xe = j) = fm(0] Xo = j)-

As this is a probability density function, we can compute it by

fo(t| Xy =j) = I@<txt_]

if the derivative exists, and evaluate it at ¢t = 0. With A0 = B from Eq. (1.5) we
obtain

01 X0 =4) = - ll—ZI ]
t=0

i€S —
zeS
=-2_Bi
€S
= Zj.

We plug fin(t| X¢ = j) = 2; in Eq. (2.11)) and get

X1 X1
= / P(X; = j)dt = / " 8), at =2 (-B7"8),, (2.12)
0 0
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which by Eq. (2.10) and 8 = u/|[uf] turns into

H(E =j)= Zj[Oj] =% Tl

Corollary 2.11 Summing [P{E = j) over all j € S, we get

] = Nlul (2.13)

since absorption of X is certain. Hence, in steady state the total release equals the total
mput.

2.2.6. Age, occupation time, and backward recurrence time

Recall from Concept that the age of material in the system or in a particular com-
partment is the time span between its entry into the system and the current time. The
steady-state content [x*|of system (2.3|) has an age structure such that

i = lim P; >0
7 Y] j(y)7 y=U,
where Pj(y) is the amount of material in compartment j € S that is not older than y.
We call P; the cumulative compartment-age distribution of compartment j. Furthermore,
each compartment has a nonnegative compartment-age density function p; such that

)
Pj(y):/pj(o')dO', y > 0.
0

We collect the cumulative compartment-age distributions P; and the compartment-age
density functions p; in the cumulative age distribution vector P := (Pj);jcg and in the age
density function vector p := (pj);es, respectively, such that

=1
x*[= lim P(y) = o)do.
Jim P() = [ p(0)
0

Our next goal is to find a reasonable explicit definition for P and p. In population
dynamics, it is well known that the McKendrick-von Foerster equation governs the evolu-
tion of a population’s size and its age structure (McKendrick, 1926; von Foerster, 1959).
In resemblance of our notation, the one-dimensional McKendrick-von Foerster equation is

. -I
yp y7t p y?t y)t p y7t 9

where p(y,t) denotes the age density of the size of the population with age y at time ¢,
and x is an age- and time-dependent death-rate function. In the spirit of this equation,
an age density function vector of the compartmental system should satisfy some sort
of multi-dimensional McKendrick-von Foerster equation, where the according death-rate
function x is independent of the age y since all compartments are well mixed, and & is
also independent of time ¢ because the system is in equilibrium.

21



22 2. Compartmental systems in equilibrium and continuous-time Markov chains

We look at the general solution equation ([1.9)) of the linear autonomous compartmental
system (2.3) and conjecture tentatively, for y > 0,

P(y) = IEI% = Budr =

t—y 0
= (@) B u= @4 ")[x]

because the material u coming into the system at time 7 € [t —y,t] hasage 0o =t —7 <y
at time ¢, and only the amount t*T)B u of it is still present at time ¢. From Eq. (2.14)),
we immediately derive the tentative age density function vector

p(y) 4 u, y=>0. (2.15)

Proposition 2.12 The tentative age density function vector as given by Eq. (2.15|) satisfies
the multi-dimensional McKendrick-von Foerster equation

(2.14)

(5% 5 ) P = Bpl). =0, (2.16)

where the compartmental matriz B plays the role of an age- and time-independent death
rate.

Proof. We consider the left hand side of Eq. (2.16]) and see

0 0 d d|lB y B
_— —_— = — = — eV = B ¥

which obviously coincides with the right hand side. O

This result motivates the following definition.

Definition 2.13 The cumulative age distribution vector of system (2.3) is given by

P(y) = [{[-{4")x] v=>o0

and the corresponding age density function vector by

py) 4 ¢Bu, y>o.

In this chapter, we aim at drawing links between properties of deterministic compart-
mental systems and probabilistic Markov chains. In order to do so for the age structure
of the system, we introduce the random age vector a = (a;);jcs such that the random
variable a; describes the age of a randomly picked particle from compartment j. The cu-
mulative probability distribution of a; and the corresponding probability density function
can be obtained by normalizing, by dividing the cumulative compartment-age distri-
bution P; and the associated compartment-age density function p; by the corresponding
compartment content :L‘;k

Definition 2.14 For j € S, the random variable a; with probability density function

1
faj(y)zi*p](y)a y207
Ty

22



2.2. Age, transit time, and remaining lifetime 23

is called compartment age of compartment j, while the random variable A with probability

density function
1
a0) = g PO v =0
BT

is called system age. The random vector a = (a;);es is called compartment age vector.

Corollary 2.15 Let = —B~'u be the steady-state vector, :az’{,xz, ce, ),

and a the compartment-age vector of the compartmental system (2.3). Then,

(i) the cumulative probability distribution vector of a is given by
Fa(y) 41~ &) "k v >0,
(ii) its probability density function vector by
faw) = &) Pu y >0,
(iii) its vector of expected values by
[a] = —_1 B_1 and
(iv) its vector of nth moments by
Ea") = (0" AlX) B »
As each compartment has one, also the entire system has an unknown age probability

density function f4, where A can be interpreted as the age of a randomly picked particle
from the system. We denote the cumulative probability distribution of A by F4.

Corollary 2.16 Let = —B~!u be the steady-state vector, :U’{,:L‘E, ce,Th),
and A the system age of the compartmental system (2.3). Then

(i) the cumulative probability distribution of the system age A is given by

K7
FA<y)=1B .y =0,
(sl

(ii) its probability density function by

:PB@, > 0.
fA(y> c || Y=z

X

” T
bl

E[[A"] = (—1)" n|}F B~ =, =

[ J=( ) S

(i) its expected value by

(iv) its nth moment by

23



24 2. Compartmental systems in equilibrium and continuous-time Markov chains

Proof. We sum P; over all compartments j € S, normalize by dividing by the total system
content H. and use [x . Lu to see, for y > 0,

1 k7
F * y Bl * =1 |Il yB .
4w ||-Z ||j§ D, [ESill

To obtain f4(y), we take the derivative of F4(y) with respect to y and use 280 = —1II0B
from Eq. (1.5). The rest is done by straightforward calculation. O

Remark 2.17 We immediately notice that the system age is phase-type distributed. In
contrast to the forward transit time with initial distribution 8 = u/||d][} the initial distri-
bution for the system age is n : H Consequently, the system age A can also be
interpreted as the forward transit time [7] of a linear autonomous compartmental system
with constant external input vector u : =-Btu

Since we are interested in a connection between the age of material in the compartmental
system ([2.3) and the absorbing continuous-time Markov chain X, we use Lemma to

see
v) = @)= @) 1B

Immediately, we recognize a link between the cumulative age distribution vector and the
vector [O] of mean occupation times of the absorbing continuous-time Markov chain X.

Lemma 2.18 The cumulative age distribution vector of the compartmental system ([2.3)
and the partial occupation times of the absorbing continuous-time Markov chain X are

connected through
P(y) = [[u[[E[O(y)], v =0.

Proof. For i € S and y > 0, we compute

Y| Y
'I 'I /Ex _pdt| = (Xt:i)dt:/Bu)i dt,
0 0

which by Eq. (2.14]) finishes the proof. O

To this point, we have drawn a connection between age distributions of the compart-
mental system and occupation times of the absorbing continuous-time Markov chain
X defined in Section There is another interesting relation, namely between occupa-
tion times of X and renewal/regenerative processes, which in turn links the latter also to
compartment- and system ages.

We take up again the continuous-time Markov chain X = (X¢);>0 which describes
the travel of a single particle through the compartmental system. In contrast to earlier
situations, we now let the particle reenter the system immediately after it has left, and we
do so over and over again. We obtain a sequence (Z"),>1 with Z; := X, of independent
cycles, all behaving like X, and a sequence of reentry times J := (Jp)n>0 with Jy := 0.
The sequence J = (Jp)n>0 of the particle’s reentry times constitutes a renewal process
with interarrival times T,, = J,, — Jp—1 (n , To := 0, and T} :m The reentry times
of the particle are the renewals of J. The interarrival-time distribution is the phase-type
distribution describing the absorption time [Tpf X. Hence Fp is the interarrival-time
cumulative probability distribution. The number of renewals/reentries up to time ¢ > 0 is
defined by

N :=max{n >0: J, <t}
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2.2. Age, transit time, and remaining lifetime 25

Now, we define a continuous-time process on the state space S by glueing the Z™’s together.

For t > 0,
7 = {?—Jnl’ Jl"l st<Juandn (2.17)
, else.

The process Z = (Z;)1>0 is a regenerative process, because after each renewal a new cycle
begins, which is independent of the previous cycles and governed by the same probability
law as them. The cycle lengths of Z coincide with the interarrival times of J, the embedded
renewal process of Z.

Definition 2.19 Let ¢t > 0. The time span A; := t — Jy;, is called backward recurrence
time and the time span L; := Jy, 11 — t is called forward recurrence time of J at time t.

Let additionally Z; = j € S. Then Al =t — Jy, is called j-conditional backward
recurrence time and the time span L] := Jy, 1 —t is called j-conditional forward recurrence
time of Z at time t.

In other words, A; describes the time that has elapsed since the last renewal and L; the
time span until the next renewal. The conditional recurrence times consider A; and L;
under the condition of Z; being in a predefined, fixed state.

For fixedt > 0,y > 0, and j € 5, the corresponding cumulative probability distributions
are given by

Fa,(y) 4F(A: <),

Fy(y) A <yl Z = j),
FLt (y) (Lt < y)? and
FL{(ZJ) (L <ylZ =)

The following lemma is the cornerstone to connect occupation times of X with the
regenerative process Z. It results from a straightforward application of Theorem VI.1.2
in |Asmussen| (2003)) to the indicator function. The limiting probability (as ¢ —f oc]) of a
regenerative process, with the same cycle lengths as Z, of being in a certain state equals
the fraction of time of the process being in this state during the first cycle.

Lemma 2.20 Let Y = (Y3)¢>0 be a regenerative process with the same embedded renewal
process as Z and state space Sy :={0,1,...,m} for some m . Then, for j € Sy,

. . 1
thm (Yt:]):]E

Lemma 2.21 The limiting distribution of Z as defined in Eq. (2.17)) satisfies

: L [Eo;] 7
lim|P(Z, = j) = 7j =L _—np.
; mﬁ t=17) m || nj

Proof. We apply Lemma to Z and then use Lemma 2.8l and [E|[7] = [KJ/|lu]l O

Now we are left with bringing the partial occupation times O;(y) come into the game.

Lemma 2.22 Let Z denote the process defined in Eq. (2.17)), and fir y > 0. Then

. : 0;(y)] .
< g —_ - .
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26 2. Compartmental systems in equilibrium and continuous-time Markov chains

Proof. We fix j € S and y > 0. Now we define a two-valued regenerative process Yi(y) =
(Y (y))i>0 with embedded renewal process J by

Y/ (y) = {

We apply Lemma to Y7(y) and obtain

17 AtSya’nd Zt:ja

0, else.

lnn7 () = 1) =E
LO
i
olul ¥

O]

Theorem 2.23 (1) Let j € S. The cumulative probability distribution of the j-conditional
backward recurrence time A] of the regenerative process Z converges with t to the
cumulative probability distribution of the compartment age a; of the compartmental sys-

tem .

(2) The cumulative probability distribution of the backward recurrence time A; of the
regenerative process Z converges with t to the cumulative probability distribution of
the system age A of the compartmental system (2.3)).

Proof. We fix y > 0.
(1) From Lemma we know Pj(y) = |[J[[E][O;(y)]. Together with Lemma this

yields
Pi(y) = Hlﬂﬁm Mm[PAA; <y, Z; = j)
= lluﬂﬁm [P <yl Z = )2 = ),

and hence by Lemma
0 = I B iplefn <120y
o] ¢ bl

=z} thm (A <yl|Zi =37).
We normalize by dividing by 27 and obtain
Faj(y):thm AtSy|Zt:]):t£%FAi(y)a

which finishes the proof of (1).
(2) As in the first part of the proof, we know

Pi(y) = H‘-ﬂﬁm tlim Ay <y, Zy = j)

3 i) = ||u}':ﬁﬂ] A@At <y).

We normalize by dividing by |[x][] and obtain
Fay) = Jim[P(A; < y) = lim Fa, (y),

and hence

and the proof is finished. O
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2.2. Age, transit time, and remaining lifetime 27

Remark 2.24 By Theorem and Lemma

Faly) = t(At <y) = tg%mt <y.% =)
JE

1 1 i
= = B0 W) = = [ D | F(Xe =) dt
alia /

jeS

1 Y
. .
ElT] O/

Consequently, F4 is the cumulative probability distribution of the stationary distribution
of Z’s embedded renewal process J. Hence, F4 reflects the relation of the steady state of
the compartmental system ([2.3) and an infinite history of the regenerative process Z.

2.2.7. Remaining lifetime and forward recurrence time

Recall from Definition that the remaining lifetime of material in the system is the
length of the time period until its exit from the system. The remaining compartment
lifetime vector 1 := (/;)jcs has an unknown probability density function vector f; and we
denote its cumulative probability distribution vector by Fj.

Proposition 2.25 We consider the compartmental system (2.3)). For j € S,
(i) the cumulative probability distribution of compartment j’s remaining lifetime 1; is
given by
B
€S

(ii) its probability density function by

fy)==>_ (BB)U => B)ij, y >0,

i€S i€S

(iii) its expected value by

(iv) its nth moment by

€S

[(zjm = (1" > (BT, n =

Proof. In steady state, compartment j contains an amount zj of material. Following

Eq. (2.8), ¥y > 0 units of time later the amount ZiGSB)ij z; of that is remaining in the
system. Consequently, the proportion of material in compartment j at an arbitrary point
in time that is still the system at y time units later is then ZieSB)U, and

Flj<y>=1—ZB>lj, y > 0.

€S

The remaining statements follow from straightforward computations. O

27



28 2. Compartmental systems in equilibrium and continuous-time Markov chains

The time L that the material in the system is going to remain is called remaining system
lifetime. We denote its probability density function by f; and its cumulative probability
distribution by F7.

Proposition 2.26 The cumulative probability distribution of the remaining system lifetime
L of the compartmental system (2.3) is given by

=
A =1 S v
[

Proof. The system contains an amount z of material in compartment j. Following (2.8),

y > 0 units of time later the amount » SB)U z; of that is remaining in the system.
Consequently, the proportion of material in the system at an arbitrary point in time that
is still the system y time units later, is then

eV B) i .
22 @7,

jeS ies

Hence,

0 x* : * 1
Fily) =1~ ZZ o - Zs @D, ol
1€

i€S jeS

7
_1 B.
f [l

Theorem 2.27 (1) Let j € S. The cumulative probability distribution of the j-conditional
forward recurrence time L] of the regenerative process Z converges with t to the
cumulative probability distribution of the remaining compartment lifetime l; j of the com-
partmental system .

(2) The cumulative probability distribution of the forward recurrence time Ly of the
regenerative process Z converges with t to the cumulative probability distribution of
the remaining system lifetime L of the compartmental system .

O

Proof. (1) For j € S and y > 0,

. . . . @(Lt S Y, Zt — .7)
. — < 7y =9)= lim=>——2""~_ -/
thm FL{ (y) = th(Lt <ylZi=j) tliﬂE Bz, =)

We start with the numerator and define a two-valued regenerative process

Y (y) = (Y7 (y))e=0

with embedded renewal process J by

Y/ (y) =

1, Ly<yand Z =j,
0, else.
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29

We apply Lemma to Y7 (y) and obtain
tlimaﬂ(Lt <y, Zi =j) = Nl P(Y{ (y) = 1)

t

1

H7] Vi (y)=1}

=

dr

S|
=

1
= B[] Ly <y, X-=j} 47

LO

For 7 {T] obviously {L. <y} = {T|< 7+ y}. Furthermore, X; = j guarantees 7 <[ 7T]

Hence,

We turn to the denominator, and from Lemma we know that

gg@@ )= %%] |

We divide the numerator by the denominator, the result coincides with Fj, (y) from Propo-

sition and the proof of (1) is complete.
(2) We invoke the result for the numerator from (1) to obtain

tli)%FLt(y) = thm| ﬂLt < y) = t&%%ﬂ(Lt <y, % :])
J

-z

€S

jES

We use ||1ﬂ@[0]] =z from Lemma m = ”Hlﬂ, and get
%k ’ ’ x*
- 5 ” [1 5> B)U] XY@, o

ieS €S jeS

which coincides with Fr,(y) from Proposmon and the proof of (2) is finished.
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30 2. Compartmental systems in equilibrium and continuous-time Markov chains

2.2.8. The time-reversed system

Recall n = x*|/||x*|l We assume z% > 0 for all j € S and consider the system
J

X(t) =Bx(t)+1, t>0,
x(0) =[x

with B = 77)B|:D17)_1 and u; = z; x}.

Lemma 2.28 System (2.18)) is open, linear, autonomous, and compartmental.

(2.18)

Proof. Linearity is inherited from system ([2.3) and autonomy is obvious. Furthermore, u
is nonnegative since z and [x*| are. We show that Bisa compartmental matrix by proving
that it satisfies the conditions of Definition [T.4}

(i) Let 7 € S. Since B is compartmental and 1 > 0, Ejj =, Bj; 77]._1 = Bj; <0.
(ii) Let 4,7 € S with i # j. Since B is compartmental and 1 > 0, Eij =n; Bji nj_l > 0.
(iii) Let j € S. Since u; > 0 and n; > 0,

ZEZ']' = Zm Bji 77j_1 ZBJZ i = )j‘

€S ieS iesS
We use n =[x/ |[x]]| and Bx|= —u to see
H- UJ _ Y

By = —1<0
Z J x* ” x*

€S J J

The openness of the system follows from

Z = 1_ (2.19)
es

]

and the fact that here is at least one j € S for which strict inequality holds. Otherwise sys-
tem (2.3)) has no input and the steady state [x*| vanishes. This contradicts our assumption
z; > 0 for all j. O

Analogously to compartmental system ([2.3)), we denote by X and Z the absorbing
continuous-time Markov chain and the regenerative process associated to system (2.18]),
respectively. Other symbols are translated in the same manner.

Lemma 2.29 System (2.18]) can be interpreted as the time-reversed system of system ([2.3)
i the sense that, for h > 0,

[Pz, =i|Z = j) = [} Zin =i| Z=3). ijeS.

[od

Proof. On the one hand, limt(ZHh = Z|Z =j) = ﬁ)ij. On the other hand,
using Bayes’ theorem, Lemma as well as the properties and of the matrix
exponential (Appendix , we see

30
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= PR - P
B0 =12 =5) = By =51 2 = ) g )

Il
o]
@
S—
<
-~
|

O]

Definition 2.30 We call the compartmental system (2.18) the time-reversed system of
the original compartmental system (2.3)).

The time-reversed and the original system share several important properties.

Proposition 2.31 The time-reversed system ([2.18)) and the original system (2.3)) have the
same total amounts of inputs, the same steady state, and their respective distributions of
forward transit time and system age coincide.

Proof. First, we notice from Eq. (2.13)) that ||| = |[u]] Furthermore,

[ ® = (aiagm) (™)™ (diaghn) "

Then, for ¢ > 0, the cumulative probability distribution of the reversed forward transit
time [E'TT] is given by Corollary as

Frm(t) = 1 E) H?i]]]

. s , u
:1 diag|n) 1 B) diag|n) lﬂll;]]]

~

=133 M@

i€S jes

: Hh T — s ek Lk ks
which turns with u; = z; 27 and 7;n; 2} = 27 into
*
i

Fp(t) =1 - sz ZB)jz’ ”ﬁ]]]

jes €S

1 _sz'X_f'.
]
With 2 = B and B: —u, we see

Fegp(t) =1 B) IIEI]]]

which equals Fgrr(t) from Corollary
We turn to the steady state. For ¢ € S,

7=-Bw=-Y (B7) @,

.
= J
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32 2. Compartmental systems in equilibrium and continuous-time Markov chains

which turns with B~ = (diag|n) (B_l)Ijj diagln) ™! and u; = z; 7 into

= m (BT 7.

jes
We use zj = — >, cg Brj and obtain
=Y mB Y Byl =m0 By B
JjES keS keS jes

Since Y gD jes Brj (B_l)jz. Z-, we get
7 = n; |l = =7

In the remaining step, we show the equality of the system-age distributions. For y > 0,

we know from Corollary that
#I
1=

4B = (diagln) BT [diagln) -

17B an

~r B (diag| ) (¢ B)Dj diagln) ' n
- TPl T

" diag|n ) B)m BI:D

This real number equals its transpose and hence

= o @ - Hfl - Ao £
v) ©”) lag")l T =21 =l

which equals f4(y) from Corollary O

Consequently, using 20 =

However, these symmetries do not carry over to compartment age and remaining com-
partment lifetime. They show a different relationship.

Proposition 2.32 The compartment-age vector a of the time-reversed system and
the vector 1 of remaining compartment lifetimes of the original system are identically
distributed. Likewise, the vector a of compartment ages of the original system and the
remaining lifetime vector 1 of the time-reversed system are identically distributed.

Proof. Because of Corollary we can write the time-reversed compartment-age proba-
bility density function for j € S and y > 0 as

1 5~

faj (y) = ? " u)j,
J

which by u; = z; ] becomes

*
fa,(y 277]" )i M i

J i€S
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2.2. Age, transit time, and remaining lifetime 33

We use (:E;‘f)_l n;n; txf =1 to see

fay ) =D = (@),

€S

which coincides by Proposition @ with the probability density function fi,(y) of the
remaining compartment lifetime of the original system.

We continue with the proof of the second statement. Again by Corollary 2.15 we write
the compartment-age probability density function of the original system for j € S and

y >0 as
faJ 'IB % Z'J ula

] €S

which by u; = z; 7 from Eq. (2.19)) becomes
foy (0 Zm ),,n{lax;“—zéz Uzzz
, ij ;
€8 €8

which coincides by Corollary with the probability density function f; (y) of the re-
J

maining compartment lifetime of the time-reversed system. O

Proposition 2.33 System (2.3)) and its time-reversed version ([2.18|) are dual in the sense
that the time-reversed system of the time-reversed system is again the original system.

Proof. Obviously,

agln) BT (diagln) !

= (diagln) [(diagln) BT (diagn) "7 (diagln)

I
™

Furthermore, by zj = u;/z} from Eq. ( and 7} = 7,

2.2.9. Backward transit time equals forward transit time

Recall from Definition that the backward transit time [BTT]is the age of material as
it exits the system.

Proposition 2.34 The backward transit time and the forward transit time of the open
linear compartmental system (2.3)) are identically distributed.

Proof. The backward transit time is a weighted average of compartment releases and
compartment ages. More precisely, for y > 0,

JerT(y) Hlﬂ]] Z'r‘jfaj

JjES
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34 2. Compartmental systems in equilibrium and continuous-time Markov chains

Corollary tells us now, together with ||f]= ||| from Eq. (2:13), that

fTm(y) ||u|]]] ZZJ Ti 7 'B

jES

_ zmsu
Tl

which by Corollary coincides with the probability density function fErm(y) of the
forward transit time. O

Since the absorption time[T]of the continuous-time Markov chain X, the forward transit
time [FTT} and the backward transit time BTT]are all identically distributed in the sense
that their probability density functions coincide, we use the symbol [T] for either of them
in the remainder of this chapter.

2.3. Application to the two ecological examples

We return to the two ecological examples from Section [2.I] and apply the now established
theory about ages and transit times to them.

2.3.1. A linear autonomous global carbon cycle model, Il

Recall the example introduced in Section The transit time [7] is phase-type dis-
tributed with probability density function (Figure [2.3)

(] 0.31[77/37t 4 0.018[d31/452¢ 4 (.52[d-36/69¢
_ 0,348/81t i 0.00111/1121,5’ £> 0.

Its expected value m 15.58 is identical to the value found by [Thompson & Ran-
derson| (1999)), and the standard deviation of the transit time is @m 45.01

0.6

transit time
M = 15.58yr
0 = 45.01yr

0.5 -

0.4
~— 0.3

= 0.2 A
0.1 -

0.0 T T ™
0 5 10 15 20

Time t in years

Figure 2.3. Graph of the probability density function of the transit time mof the model by Emanuel
et al.| (1981). Its shape and the low value of f at the mean value p = 15.58 ofm are evidence
of a long tail of this distribution. This long tail results from the relatively large amount of carbon
stored in the active soil compartment with its mean age of 107.62 The standard deviation of m is
denoted by o.

Furthermore, the probability density function of the system age is given by

y) 24 0.006[d"77/37Y 4 0.017[d31/452 + 0.064[d36/69
— 0.033[]#8/81v  0.0066[e /1121y, 4 > 0.
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120 100

total system non-woody tree parts
90 M= T72.83yr 75 M= 0.48 yr
0= 94.18 yr 0= 0.48 yr

60 =

0 20 40 60 80 100 0.0 0.4 0.8 1.2 1.6 2.0
30.0 40
woody tree parts ground vegetation
22.5 o M = 15.06yr 30 — M= 1.92yr

0 =1.92yr

0 =14.59yr

Content in PgC

active soil carbon
M = 107.62yr

detritus/decomposers

15 = M = T7.08yr 7.5 -
0 = 10.64 yr o = 102.38yr
10 - 5.0
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0 2 4 6 8 10 0 60 120 180 240 300
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Figure 2.4. Carbon content with respect to age in the model by [Emanuel et al.| (1981). Dotted lines
indicate the mean age denoted by pu, the standard deviation is denoted by o. The top left panel is for
the entire system, whereas the other five panels correspond to the different compartments.

Its expected value|E|[A] = 72.83 is very similar to the value 72.82 reported by [Thomp-
son & Randerson| (1999). Its standard deviation is given by [o][A] = 94.18]y1]

Additionally, we can calculate the vector that contains the age probability density func-
tions for the compartments as

2.1 0 0 0 0
—0.071  0.071 0 0 0

fa)=1| 0 0 0.52 0 0 y >0,
—0.35 0025 11 —0.76 0

0.00052 —0.0033 —0.011 0.0035 0.01

from which we obtain the mean-age vector, which is given by

[El[a] = (0.48; 15.06; 1.92; 7.08; 107.62) Ty}
Then the standard deviation vector is

lolla] = (0.48; 14.59; 1.92; 10.64; 102.38)Tfy]

From these probability density functions, the system’s and the compartments’ contents
can be plotted with respect to their age (Figure [2.4]). This gives useful information about
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36 2. Compartmental systems in equilibrium and continuous-time Markov chains

the range of ages for each compartment and how they contribute to the system-age dis-
tribution. In comparison to the results of [Thompson & Randerson (1999), our approach
not only provides mean values for ages and transit times, but also exact formulas for their
respective probability distributions. In their approach, these authors obtained results that
depended on the simulation time and therefore include numerical errors, something that
can be easily avoided by using our derived explicit formulas.

2.3.2. A nonlinear autonomous soil organic matter decomposition model, 1l

We consider the example introduced in Section The derived formulas allow us to
calculate the mean transit time and mean ages together with the according probability
density functions for different values of the model’s parameters (Figure . In particular,
we can explore the effects of different values of the parameter € on the ages and transit
times. This parameter controls the proportion of carbon that is transferred from the
substrate C to the microbial biomass compartment Cj, and it is commonly referred to as
the carbon use efficiency. Interestingly, if the carbon use efficiency ¢ increases, the mean
transit time and the mean ages of the model decrease (Figure , a behavior that at
first glance appears counterintuitive. It can be explained by two opposing effects. On the
one hand, an increase of carbon use efficiency keeps a higher fraction of carbon in the
system due to lower respiration. This has an increasing effect on the transit time. On
the other hand, a higher carbon use efficiency € implies a lower steady-state content of
compartment Cs and a higher one of compartment Cp. Consequently, from Eq. we
obtain an increasing value of )\. This value is the process rate of the compartment
Cs. The higher it is, the faster the particles travel through the system. The latter effect
prevails here and a decrease in the transit time can be observed.

The graph of the mean transit time for this model with ¢ = 0.39 (Figure lies directly
on the one of the mean system age. The huge difference in the compartments’ steady-
state contents causes very little difference in the initial probability vectors B and n of the
respective phase-type distributions. This results in very similar distributions of transit
time and system age.
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2.3. Application to the two ecological examples
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Figure 2.5. Transit-time and age distributions of the model by Wang et al.| (2014). Vertical dashed
lines represent the mean p, the standard deviation is denoted by @ All panels show graphs for two
different values of carbon use efficiency e.
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Figure 2.6. Mean transit time m and mean system age @[A} in dependence on the carbon use

efficiency ¢ of the two-compartment nonlinear model proposed by |Wang et al.|(2014)). The small figure
shows the explosion of the mean transit time if the carbon use efficiency tends to 1.
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38 2. Compartmental systems in equilibrium and continuous-time Markov chains

2.4. Discussion

We derived simple, explicit, and general formulas for the cumulative probability distribu-
tions, probability density functions, expected values, and higher order moments of transit
time, ages, and remaining lifetimes of open compartmental systems in steady state. These
formulas can be found in different places in this chapter. For convenience, Table
provides a quick overview.

Table 2.1. Overview of derived formulas for open compartmental systems in equilibrium.

Metric Density nth moment First moment
III Bfl

I B LB- I
Transit time ZI:D ”u (_1)n { " ﬂum <
[l
reeveor () H P )R] () B

Remaining lifetime Z P ',, B)ij (_1)71 nz| Z (B_n)ij _ Z (B_l)ij

u

mﬂr

vector (j € S)

icS ieS 1€S
System age,
o yB ] n —n K] -1 &
¢ Zet —1)" B 1B
remaiﬁler;ig Hi}:s em % T (-1 A [ES I

A0 = B is the row vector of release rates.

= —B~!u is the steady-state vector.

= diag(z},23,...,)) is the diagonal matrix comprising the components of the
steady-state vector.

Afterwards, we used these formulas and applied them to two examples of ecologically
motivated open compartmental systems in equilibrium. We obtained the associated nu-
merical results by using a Python package called LAPM, which we had released earlier. It
can be found at https://github.com/MPIBGC-TEE/LAPM, and it treats linear autonomous
compartmental models both symbolically and numerically.

In ecological systems, the problems of defining transit times in the first place (Sierra
et all 2016) and then finding solutions have a long history. The traditional approach via
the impulse response function (Thompson & Randerson) |1999) depends on the availability
of computational resources, and the explicit formulas of Manzoni et al. (2009) hold only
for models with a very simple structure and were obtained by a tedious procedure using
Laplace transforms.

We not only obtained explicit formulas, we also drew links between the deterministic
setup of open compartmental systems in equilibrium and the stochastic setup of absorbing
continuous-time Markov chains and regenerative processes. As it turned out, all determin-
istic system diagnostics we considered have a probabilistic counterpart. So corresponds
the transit time of an open compartmental system in equilibrium to the absorption time
of a continuous-time Markov chain, whereas the ages and remaining lifetimes correspond
to backward- and forward recurrence times of a regenerative process, respectively (Fig-
ure . Analogous relations hold for compartment ages and conditional backward re-
currence times as well as for remaining compartment lifetimes and conditional forward
recurrence times. By connecting two fields of mathematics, namely dynamical systems
theory and probability theory, we showed that they can profit from each other and that
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Figure 2.7. Relations between deterministic (orange) and stochastic (blue) quantities. Horizontal
and vertical equal signs denote equality in distribution equality of the cumulative probability
distributions), arrows denote convergence in distribution as ¢ convergence of the cumulative
probability distribution). The upper half considers the linear autonomous compartmental system
in equilibrium, the lower half its time-reversed system . Deterministic quantities are — with or
without hat — forward transit time , backward transit time , remaining system lifetime
(L), and system age (A). Stochastic quantities are absorption time (7]), forward recurrence time (L),
and backward recurrence time (Ag).

it is possible to gain insight by considering both at the same time.

We dealt exclusively with well-mixed systems here and linked them to Markov chain
theory. However, in real-world systems fluxes might depend on the time the particle has
already spent in its current compartment. Such systems find its probabilistic counterpart
in the theory of Markov renewal processes, where the future state not only depends on
the process’ current state, but also on the elapsed time since the system has entered
this state. Since there is not much deterministic theory available on that topic while
Markov renewal processes have already been extensively studied (Cinlar, 1969; |Cinlar,
11975; Janssen & Mancal, 2006)), it might be fruitful to further investigate the link between
these two research areas.
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CHAPTER 3

Ages, transit times, and remaining lifetimes of
compartmental systems out of equilibrium

In the previous chapter, we derived the distributions of ages, transit times, and remaining
lifetimes of well-mixed compartmental systems in equilibrium. However, the equilibrium
restriction is often very unrealistic since most systems in nature are intrinsically nonlin-
ear and influenced by time-dependent factors a fluctuating external environment).
Hence, very often it is more reasonable to consider a well-mixed compartmental system
that is nonlinear and nonautonomous. Such a system can be described by

%x(t) = B(x(t),t) x(t) + u(x(t),t), te {tlT)

X = XO.

Here, is a fixed initial time and we denote by S := {1,2,...,d} the set of the
system’s compartments. Furthermore, x(t) = is the vector of compartment contents
at time t € T], B = (Bij)ijes ><] | RP*4 is a matrix-valued function
depending on the current system content and time, u X T is a nonnegative
vector-valued function depending on the current system content and time, and x°
is the initial vector of compartment contents at time |to} Furthermore, B(x,t) is required
to be invertible for all (x,t) € R%|x (¢,T), such that the system is open by Definition
We fix a terminal time T because data for B or u might be available on a bounded
time interval only.

For such systems out of steady state, formulas for age- and transit-time distributions
have been developed for one-compartment hydrological systems, without expanding the
theory to networks of multiple interconnected compartments (Botter et al. 2011} |Calabrese
& Porporato, 2015; [Harman) 2015). A first milestone in this direction was the introduction
of the mean age system (Rasmussen et al., 2016), a system of describing the time
evolution of mean compartment ages of linear systems with time-dependent coefficients.

(3.1)

In this chapter, along the lines of Metzler et al. (2018), we derive formulas not only
for means, but for entire distributions of ages, transit times, and remaining lifetimes of
nonautonomous models. Our approach even works for nonlinear models. We further
extend the mean age system to higher order moments. This allows a simple computation
also of the variance and the standard deviation. Additionally, we provide[ODEg|to describe
the time evolution of quantiles such as the median of age distributions. This new framework
results in fast computations of entire age distributions and their moments than what it
was possible before. These results generalize many earlier results from different scientific
fields such as atmospheric sciences, ecology, and hydrology.
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42 3. Compartmental systems out of equilibrium

As an example application of our theoretical results, we apply them to a simple global
carbon cycle model and address two questions: How old is atmospheric carbon? How long
will a significant fraction of a pulse of fossil-fuel carbon, emitted to the atmosphere today,
remain in the system? We compare transit times and ages of a nonlinear and a linear
version of the considered model and highlight significant differences in their age structure,
which are impossible to characterize by the mean ages alone.

In contrast to Chapter [2| here we do not deal with probabilities. The entire theory
of this chapter is deterministic. Instead of considering probability density functions f,;
and cumulative probability distributions F,; of compartment ages, we now exclusively
consider nonnegative compartment-age density functions p; and cumulative compartment-
age distributions P; such that, for t € T],

<
2i(0) = [ pilat)da= Jim P60
0

and

£
Pj(g,t):/pj(a,t)da, £>0.
0

Here, Pj({,t) denotes the amount of material in compartment j € S at time ¢ with
age a < . We collect the compartment-age density functions p; and the cumulative
compartment-age distributions P; in the age density function vector p = (p;);jes and the
cumulative age distribution vector P = (Pj);cg, respectively. Analogies to the results
from Chapter |2| become obvious as soon as we normalize the p;’s and the P;’s by the
respective compartment contents such that they turn into probability density functions
and cumulative probability distributions, respectively.

3.1. Linear interpretation of the nonlinear solution

Only in special cases can we find an analytical solution to the initial value problem .
Nevertheless, we assume to know the unique solution at least numerically and denote it by
x. We define a time-dependent and matrix-valued function B by plugging the solution x
into B, B(t) := B(x(t),t). Likewise, we proceed with u and obtain u(t) := u(x(t),t).
The linear nonautonomous compartmental system

%y(t) =B(t)y(t) +u(t), te (),

y(td) = <,

(3.2)

has a unique solution that we denote by y. Since x is the unique solution to system
and both systems are equivalent, y = x. Below, we consider linear systems only, because
we can always think of the solution of a nonlinear system as being the solution of
the equivalent linear system . This linear interpretation of x allows us to derive semi-
analytical formulas for many properties of nonlinear systems. The prefix “semi” reflects
here the fact that all the theory works only under the assumption that x is already known.
Moreover, derived distributions of ages, transit times, and remaining lifetimes relate to
this particular trajectory x only.
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3.2. General solution of the linear system 43

3.2. General solution of the linear system

We consider the linear nonautonomous compartmental system

%x(t) =B(t)x(t) +u(t), te(tolT),

x = x0.

The unique solution x to this system on | is given by (Brockett, 2015, Theorem 1.6.1)

:Itx +/|t T dr, t € [tol, T, (3.4)

where |®| denotes the state-transition matrix of the system (Appendix . This state-
transition matrix describes the transport of material through the system. Since the system
is nonautonomous, [P| depends on two time variables, and since[®]is matrix-valued, it maps
an input vector to an output vector. In particular, if v :(t, T)u, then v is the vector
that describes the time-t-distribution of the material that was distributed according to u
at time 7 < t.

(3.3)

From Eq. . we see that the vector x(t) of compartment contents at time ¢ is given as
the sum of two terms. The term |®| . t. XO descr1bes the material that has remained from
the initial contents, whereas the term (t,7)u(r)dr describes the material that has
remained until time ¢ out of inputs that came later than [fg} In particular, [®f¢,7) u(r) dr
describes the material that has entered the system 1nﬁn1tes1mally close to time 7 and is
still in the system at time t. Consequently, at time ¢ the amount [®|(¢, 7) u(r) dr of material
in the system has age t — 7.

3.3. Age distributions

As mentioned in Section [2.2.6] in population dynamics the McKendrick-von Foerster equa-
tion governs the populations’ age structure and its size. In our notation, it is given by

0 0
%p(a,t) ‘l‘ ap(a7t) - _H(a7t> p(a’7t)7

where £ is an age- and time-depending death-rate function. As before in Chapter [2] in
the compartmental system all compartments are well-mixed. Hence, the according
death-rate function is independent of the age a. However, it might depend on time because
exit rates from the system might do so. We now try to use the recent observations on
the age of [®f(¢,7) u(7) dr to identify the age density function vector p and to show that it
indeed satisfies a certain kind of McKendrick-von Foerster equation.

Recall from Concept that the age A(t) of material in the system at time ¢ € [to}, T
is the time span t — t, between its arrival in the system at time ¢, and the current time
t We assume that the initial content x° has a given age density function p® such that

fmp )da, where p°(a)da is the vector of material with age infinitesimally
close to a at tlme The recent observation that the amount [®f¢,7) u(7) dr has age t — 7
motivates the following theorem.

Theorem 3.1 The age density function vector of the linear nonautonomous compartmen-
tal system (3.3) at time t € T] and age a > 0 is given by

p(a,t) = g(a,t) + h(a,t), (3.5)

43



44 3. Compartmental systems out of equilibrium

where
g(a,t) = 1 g (@) [ t]td) p°(a — (¢ 2d))

is the age density vector of the material that has been in the system from the beginning,
and

h(a,t) = To i) (@)@t t — a) u(t - a)
is the age density vector of the material that has entered the system after[to|

To prove this result, we show that p as given by Eq. (3.5]) satisfies a multi-dimensional
version of the McKendrick-von Foerster equation for the compartmental system ([3.3)).

Proposition 3.2 For a > 0 and t € T), the vector p of age density functions as
defined in Eq. (3.5)) satisfies the multi-dimensional McKendrick-von Foerster equation

0 0
(5 +5) plat) = B)p(a.0) 3.
with boundary condition
p(0,t) = u(t), te (tl 1, (3.7)

and initial condition

p(a = po(a), a>0. (3.8)

Remark 3.3 Eq. (3.6) can be interpreted as a multi-dimensional McKendrick-von Foerster
equation because, for the ith compartment,

(; N gt) pila,t) = ri(t) pila,t),

where r;(t) = >, ; Bij(t) + Bii(t) is the combination of the incoming and outgoing rates
of material with age a at time t.

Proof of Proposition[3.3. We prove now that the age density function vector p satisfies
the multi-dimensional McKendrick-von Foerster equation (3.6)). To that end, we compute
its total differential along the characteristics a(t) = a® + (t —-{to) by

Cp(a1) = - plat) L alt) + 5 plost) T
o 0
= <8a + 8t> p(a,t),
where a” > 0 is some initial age. We continue in two steps. In the first step, we show that
Eq. holds on C} := {(a,t): t € T),a>t with initial condition (3.8). In the
second step, we show that Eq. holds on Cy := {(a,t) : t € T), 0<a<t

with boundary condition (3.7]).
Step 1. On C; we have p(a,t) = g(a,t). Consequently, we prove the initial condi-

tion by
p(afte) F Akt p°(a — (td [ta)) = p°(a).

p(a,t) =L B|t[t) p°(a®),

Furthermore,
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3.3. Age distributions 45

where a° = a(t) — (t does not change with time on the characteristics. Consequently,

4 2 plat) = Lol
oa " ot) P\Y T @ P\

= ot to) pO(0)
= B(t)[@|t[te) p°(a®)

= B(t) p(a, 1),

which proves Eq. (3.6)) on Cj.
Step 2. On Cy we have p(a,t) = h(a,t). Consequently, we prove the boundary condi-

tion (3.7) by
p(0,t) S P|¢,t — 0)u(t — 0) = u(?).
Furthermore,

p(a,t) &t ) u(7),

where 7 =t — a(t) does not change with time on the characteristics because a(t) =t — 7.

Consequently,
9 19 bat) = L e
oa " ot) POV T @ P\
d
= Slalt, 1) u(r)
= B()[@|t, ) u(r)
= B(t) p(a,1),
which proves Eq. on Cj. O

We denote by capital letters the cumulative age distributions corresponding to age
density functions. This means for the initial age density function vector p° = (pg-)) jes and

€ >0 that PO(¢) = (P]Q (€))jes = Ofpo(a) da is the vector of initial compartment contents
with age a < £. Then, the next result follows immediately from Eq. (3.5]).

Corollary 3.4 The vector of cumulative distributions of the compartment ages of sys-
tem (3.3) is given by
P(¢,t) = G(&,t) + H(&, 1), (3.9)

where

G(&, 1) F Tyexr-p [t 1) PO(¢ — (¢ {a)) (3.10)

1s the vector of compartment contents with age a < & at time t that have been in the system
from the beginning, and

H(E, 1) = / (t,7) u(r) dr (3.11)
rnax{t—{7
1s the vector of compartment contents with age a < & at time t that came into the system

afterftol Aslong as & < t—{ig], the latter can also be expressed as the compartment contents
at time t minus all the material that was already in the system at time t — & and survived

until time t,
H(E, 1) = x(t) Pt t — &) x(t - &).
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46 3. Compartmental systems out of equilibrium

Corollary 3.5 The age density function of the entire system is the sum of the compart-
ment-age density functions. It is given by

Ip(a. tfl[= > pila,1), a0, teT]. (3.12)

€S

The material in the system with age a < £ at time t € T] is given by the cumulative
distribution of the system age, by |P(&, t)]

3.4. Moments of the age distributions

For any nonnegative integer k and any (not necessarily normalized) density vector p of a
d-dimensional nonnegative vector x = fémp(a) da,

=1
Fo=Xx1 /akp (3.13)
0
denotes the kth moment of the density vector p, where X = diag(xy,z2,...,24) is the

diagonal matrix comprising the components of x = (z;)jes. Note that a*° the vector
comprising ones. For k& = 1 we obtain the mean-age vector. The unboundedness of the
upper limit of the integral causes issues in the numerical computation of an age moment
directly from Eq. (3.13). To circumvent this problem, we can use the McKendrick-von
Foerster equation .

From now on, we assume that the initial age density function vector p® admits finite
moments up to a fixed order n and denote them by a%, k = 1,2,...,n. We derive
two ways of computing moments of the age distributions of system (3.3)). The first one is
using a semi-explicit formula.

t),n

Proposition 3.6 The nth moment é”(t) =a* of the age distribution of the compart-

mental system at time t € is given by

E_ln(t) :X(t)_l ln kltl XO =0,k

- (3.14)
+ / a” (t,t—a)u(t—a)da].
0
Here, X(t) = diag(z1,z2,...,24)(t) is the diagonal matriz containing the compartment

contents at time t, X = X, and a% (k = 0,1,...,n) denote the moments of the
initial age distribution p°.

Proof. We define

t) oY t[t) x°, ¢ € ftol 71, (3.15)

z(t) ;== (t,7)u(r)dr, te [tolT). (3.16)
i

Consequently, x = y + z, where y describes the evolution of the initial material and z
the evolution of material that comes later into the system. We use the shorthand a™ for

and
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3.4. Moments of the age distributions 47

a"(t) = a*(¥"" and note that we can compute the nth moment of the age density function
vector of x by the corresponding moments of the age density function vectors of y and z
by
al" +oza
ar=2% TEY ey, (3.17)

T

or, in vector notation,
a"(t) = X(t)_1 [Y(t)aY"(t) + Z(t) a®"(t)] . (3.18)

We see from Eq. (3.13)) that

Y(t)a¥"(t) = / a"g(a,t)da,

[e=]

which by

g(a,t) altpoa— t)

and a change of variables from a to 7 = a — (t —to|) can be transformed into

ﬂw Jrwos

An application of the binomial theorem and Eq. - ) leads to

n
k=0

= 1l
Z(1) 8% (1) = / " h(a, 1) da = / a" h(a, 1) da. (3.20)
0

o

We plug the sum of Eq. (3.19)) and Eq. (3.20) into Eq. (3.18) to complete the proof. [

Note that the integral involved in Eq. is now over the half-open but finite interval
[0,¢ . Hence, a numerical computation of the nth age moment of the compartmental
system does not have to deal with an indefinite integral such as that involved in
Eq. .

Another way to compute the age moments is to set up and solve an appropriate system
of first-order which we call the compartment-age moment system. This system is
a straightforward d - (n + 1)-dimensional generalization of the mean age system derived
in Rasmussen et al,| (2016]). To derive the compartment-age moment system, we try to
represent the time derivative of the kth moment of the age of compartment ¢ € S by known
quantities. For that purpose, we need some auxiliary results based on y and z as defined

in Eq. (3.15) and Eq. (3.16]), respectively.

Lemma 3.7 For k=1,2,...,n, andt € T],

j/aglatda—ZBm yi(t) @y () + kyi(t)a " (t), ies.
0 jES
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48 3. Compartmental systems out of equilibrium

Proof. For simplicity of notation, we do not consider a single component g;, but the entire
vector g. We begin with the left hand side

o0

% /ak g(a,t)da
0
and use
g(a,t) 5 1, [ t{td) p°(a — (t {td))
to obtain

tm

which by the product rule turns into

=1 4 =1
t)I(t / a"p°(a—(t ) da l(t T / af p°(a — (t Htg)) da.
g t—to]

We transform the first term back, and together with a change of variables in the second
term from a to 7 :=a — —. this brings

B()/a"’gat +I<tH§t/(T+<t to))* p°(7) dr.
0 0

We use Eq. (3.13)) in the first term, and in the second term we bring the derivative under
the integral by means of the dominated convergence theorem to get

B(t) Y(t) a¥ " (t) +I<t/k<T+(t to))* 1 p(r) dr.
0

We undo the change of variables in the second term and transform it back to obtain

9)
B(t)Y(t)aY*(t) + k / a*1g(a,t)da,
|

which equals
B(t) Y(t)a¥"*(t) + kY(t) a¥ 1 (¢).

Computing the ith component, we get

7 Bi(0) yy (1) @ (1) + kyi(t) ),

jeS
and we are finished with the proof. O

Lemma 3.8 For k=1,2,...,n, and t € T],

% [Cdhanaa= Y B0 0@ 0 ka0, ies.
jES
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49

Proof. Again for simplicity of notation, we do not consider a single component h;, but the

entire vector h. From

h(a,t) :l(”—. .(tt—a u(t —a),

we get
=1 t—ftgl-¢
/ak h(a,t)da = lim / a*h(a,t)da.
e\0
0 0

We can interchange the limit and the derivative to see

a7 q B
T /ak h(a,t) da—il\r{% T / a*h(a,t) da.
0 0

By an application of the Leibniz rule to the right hand side, we obtain

t—tol-¢ 9
gi{%/aathatdcu— to|— &) h(t to|— e, t).
0

In Step 2 of the proof of Proposmon 3 we derived that, for a € [0, —n— el,

9 0
5 (a1) =B(t)h(a.t) - o h(a,1),

which we plug into the first term of expression (3.21)) and turn it into

t €

a® [B(t) h(a,t) — ;lh(a,t)] da,

lim

e\0

o\éj

which in turn equals by Eq. (3.13)

e
52,k R T kY
B(t) 2(t) a** (1) — lim / @ < h(a,)da.
0

We integrate by parts and use again Eq. (3.13)) to get
B(t) Z(t) a®* (t) — lin (¢ _ &) h(t — e, t) + kZ(t)a® 1 (t).
g
Together with expression (3.21)), we have

d/ — B(1) 2(t) 8 (1) + K Z(1) &L (1),
0

CL

which completes the proof by considering the ith component.

Lemma 3.9 For k=1,2,...,n, and t € [t T7,

= [m ] > Bij(t) ab(t) + kai(t)ay'(t), i€S.

dt ey

(3.21)
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50 3. Compartmental systems out of equilibrium

Proof. For simplicity of notation, we will eventually omit the time-dependencies of func-
tions. From Eq. (3.13)) and p(a,t) = g(a,t) + h(a,t), we know

=i =i <]

d d d d

T [wz(t) df(t)} =5 /akpi(a,t) da = T /akgi(a,t) da + T /ak hi(a,t) da.
0 0 0

Consequently, we can apply Lemmas [3.7] and [3.8| and use
gk
Tja;” =yY;a j —|—zj J

from Eq. (3.17)) to obtain

d _
T (xz ) ZBwa a; My kyiad 1+ZBZ]ZJ a Fkzatt!
Jjes jes
=> By (?JJ ay* + 2 a )+k (yl’azy’k +zayt” 1)
JES
= By +kzia; .
JES

We are now in the position to prove the following theorem.

Theorem 3.10 The compartment-age moments of order k < n of the compartmental
system (3.3) on the time interval [tol T can be obtained by solving the d-(n+1)-dimensional
first-order [ODE system

X B(t)x(t) +u(t)
=1 1 1
d |2 v (tx,1,a")
- . t = . , t E t T ’
ar| ]! ) : for ) (3.22)
a” (1%, & &)
(x,a',...,a" () = (x",a%!,a%%,...,a""),

where, for k=1,2,...,n, ¥ := (’yf,’yé“,...,’ys)m, and fori1=1,2,...,d,

VE(t, x,ar 1 ak) = kat ! ZBU xj (a —a; ) —alu;
JES
Notice that we occasionally omitted the time-dependencies to simplify notation.

Proof. Let k € {1,2,...,n}. We compute the time derivative of d,’f in t € (toh T) by

d _p.d [zi(t)ak(t)
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3.5. Quantiles of the age distributions 51

and apply the quotient rule and Lemma [3.9] to get

d 1 d
~k ~k ~k—1 ~k
— a4 = — g Bijxja; + kxia; T — X3 Gy — T
x; :
¢ jES

e, 1 -
:kaéC 1+f ZBijxjaf—af ZBijxj—i-ui
Ljes j€S

1

~k—1 ~k_ -k ~k
=ka; +— g Bij x; (aj —ai) —a; u;
| jes

Now, we can bring all components ¢ € .S into one vector and the proof is complete. O

We call Eq. the compartment-age moment system of the linear nonautonomous
compartmental system . Because of its particular structure, it has the advantage
of solving the compartments’ age moments through time alongside the compartments’
contents. This procedure is both fast and numerically robust.

So far, we have derived formulas to compute distributions of the compartment ages.
Now we turn to the system age. Following Eq. , the nth moment of the system age
at time t € [tol 7] is defined by

xa
iy = L a" ||p(a a
An(t) = IIX(t)I]l]O/ Ip(a, t)|da. (3.23)

Corollary 3.11 The nth moment of the system age of the compartmental system (3.3)) is
given by
. x(t) an (¢
Angy = WM | 7).
()l

Proof. By definition of the system-age moment and by Eq. (3.13|) applied to the compart-
ment-age moments a;,

1 xi i
AM(t) = m O/a" lp(a,t)|de = O/a"pj(a,t) da

1
= el quj(t) aj(t) =

3.5. Quantiles of the age distributions
In addition to moments, quantiles are important statistics of age distributions.

Definition 3.12 Fix ¢ € (0,1). The g-quantile of the age of compartment i € S of the
compartmental system (3.3)) at time ¢ € T] is defined as &;(t) such that

Pi(&i(t),t) = qui(?). (3.24)
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52 3. Compartmental systems out of equilibrium

Analogously, the g-quantile of the system age at time t € [to}, T'] is defined as £(t) such that

1P, o)l = a Il ()T (3.25)

For the special case ¢ = 1/2, the g-quantile is called median.

In general, the computation of quantiles relies on the computationally expensive inverse
of the cumulative age distribution. The following theorem allows us to compute a partic-
ular age quantile of a single compartment on the entire interval T] by solving an
provided that we know the associated quantile of the initial age distribution.

Theorem 3.13 For q € (0,1), the g-quantile of the age of compartment i € S of the
compartmental system (3.3]) can be obtained by solving

ui(t) (¢ — 1) + [B(t) (¢x(t) — P(&,1))];
* pilE.) tE ‘ T

d
afi(t) =1
57: = 5@07
0

where £ is given such that PP (€£)) = q .

(3.26)

Proof. Starting at time ¢ with given §Z~ = ¢Y, the time evolution of the g-quantile
&i(t) of the age of compartment 7 can be described by taking the time derivative in both

sides of Eq. (3.24)), which gives

/ pila,t) da = q [B(t) x(D)]; + qui(t). (3.27)

o

fz(t) fz(t)

d 0 d

e / pi(a,t)da = / api(a, t)da + pi(&(t),t) s &i(t). (3.28)
0 0

Outside the Lebesgue-null set {a > 0: a =t , the McKendrick-von Foerster equa-
tion (3.6) holds. Consequently,

&i(t) &i(t)
/ %pi(a,t) da = / <[B(t) p(a,t)];, — ;api(a’t)> da.
0 0

On the right hand side, we see
&i(t)
[ BP0, do = BEOPE.0),.

0

Furthermore, foi(t) % pi(a,t)da = p;(&(t),t) —pi(0,t), and we use the boundary condition
pi(0,t) = u;(t) to obtain

&i(t)
/ gtpi(a,t) da = [B(t)P(&(t),t)];, — pi(&i(t),t) + ui(2).
0
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3.5. Quantiles of the age distributions 53

Now, we plug it into Eq. , get
t)
pi(a,t)da = [B(t) P(&§(t),t)]; — pi(&i(t), 1) + ui(t) + pi(&i(t), 1)

&i

—~

d

i
D\

replace the left hand side by the right hand side of Eq. (3.27)), and solve for % &i(t) to
finish the proof. O

Analogously, we can prove the following result.

Corollary 3.14 For q € (0,1), the g-quantile of the system age of the compartmental
system (3.3) can be obtained by solving

q Hu(t)wq -+ ; [B(t) (gx(t) = P(&,1)));
&) = ¢°,

where % is given such that HPO@O)M: q onlm

Proof. Starting at time ¢ with given & = ¢9, the time evolution of the g-quantile
&(t) of the system age can be described by taking the time derivative in both sides of

Eq. (3.25]), which gives
&(t)

/ Ip(a, tfllda =g > [B(#)x(t)]; +¢llu(t (3.30)
0 ics

d
dt
Using the Leibniz rule, we can rewrite the left hand side to

£(t) £(t)

d 0 d

G [ e tflda= [ S ipla.tflda+ Ipeo.ofl §eo- @3
0 0

Outside the Lebesgue-null set {a > 0: a =t , the McKendrick-von Foerster equa-
tion (3.6)) holds. Consequently,

£(t

) £(t)
[ 5 Ipta.tffac= [ (Z[B@)p(a,t)]i—;aup(a,wﬂ) da
0

o \ies
On the right hand side, we see

(1)

[ S B p(an)], da= 3 B0 P& (o)1),

o ies i€S

Furthermore, fog(t) 8% ||p(a,t)|ﬂ|da = ||p(§(t),t)|ﬂ|— ||p(0,t)|ﬂ and we use the boundary
condition p(0,¢) = u(t) to obtain

aa)

(t)
gtllp(a,t da =" [B(t)P(E(t),1)]; — Ip(ECE), )l + [[u(t)

€S

o
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54 3. Compartmental systems out of equilibrium

Now, we plug it into Eq. (3.31)), get

€S

£(t)
S [ Intat da—Z[BmP(s(t),tm—|rp<s<t>,t>m+uu<t>m+\p<£<t>,tﬂjt§<t>,
0

replace the left hand side by the right hand side of Eq. (3.30]), and solve for % &(t) to finish
the proof. 0

3.6. Transit-time distributions

Recall from Definition that the backward transit time [BTT|(t.) is the age of material
in the output from the system at exit time ¢, € T], and that we further assume that
for fixed n the nth moment of the initial age density function vector p® exists. We
furthermore denote by z(t.) the vector of outflow rates from the system at time .. It is
given by
Zj(te) = _ZBij(te)a JE S,
€S

where z; is the outflow-rate function from compartment j. We can write the age density
function of the outflow at time t. as

meTT(a, te) = 20(t) plate), a >0, t.€ [t T). (3.32)

Owing to the well-mixed assumption, the outflow from compartment j at time t. is given
by rj(te) = zj(te)z;(te). Consequently, r(t.) denotes the vector of outflows from the
system at time t..

Proposition 3.15 The nth moment of the backward transit time at time t. € T] of
the compartmental system [3.3 is given by

o

OTT ) an(te)
(te) = T

Proof. By Eq. (3.13),

1 ya 1 a
BTT (t.) = /a” mETT(a, te) da = zm(te) /a” p(a,t.) da.
0 0

We use 1(t.) = 25(t.) X(t.) and again Eq. (3.13)) to complete the proof. O

Recall, again from Definition that for material entering the system at its arrival
time t, € T, we consider its forward transit time [FTT|t,) as the age a > 0 that the
material will have when it exits the system at time ¢, = £, + a. The exit time ¢, might be
later than the finite time horizon T', consequently the distribution of FTT|t,) is cut off at
the age a =T — t, A proper mean forward transit time cannot be computed, and proper
quantiles might not possible to compute. The density function

prTT(a, te) = zm(ta +a)p(a,ty +a), tq € (toh T, (3.33)

describes the part from the input at time ¢, that leaves the system at time ¢, +a < T.
We can now easily prove a generalized version of Niemi’s theorem (Niemi, [1977)).
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3.7. Remaining lifetime distributions 55

Proposition 3.16 The forward- and backward transit time of the compartmental sys-
tem (3.3)) are time-shifted versions of each other. More precisely, for [to| < to < te =
te+a < T,

PETTIa ta) = pETTI(A, te)- (3.34)

Proof. The relation t, = t,+a yields by Eq. (3.32) that pgrm(a, te) = 20(ta+a) p(a, ta+a),
which coincides with the right hand side of Eq. (3.33]). O

Remark 3.17 If we want to compute the moments of [FTT|t,), we must rely on Eq. (3.13)
and deal with the indefinite integral. Unfortunately, we cannot profit from the close link
between [F'TT| and [BTT| provided by Eq. (3.34]), since the exit time t. = t, + a depends

on a.

3.7. Remaining lifetime distributions

Let ¢ € [to, T]. Recall from Definition that the remaining lifetime L(¢) of material in
the system at time ¢ is the length of the time period from time ¢ until the material’s exit
from the system. Furthermore, the remaining compartment lifetime /;(¢) of a compartment
j € S at time t is the remaining system lifetime of material in compartment j at time t¢.
Just as it is the case with the forward transit time, the exit time of the material might be
beyond the finite time horizon T, and the remaining lifetime distributions are cut off at
y=1T—1.

A fixed compartment j € S contains an amount z;(t) of material at time ¢. After a
period of y > 0 units of time, the amount Ziej (t +y,t)x;(t) of the original amount
xj(t) is still in the system, distributed over different compartments.

Corollary 3.18 We consider the compartmental system (3.3). Fort € T] and j € 5,

(i) the cumulative distribution of compartment j’s remaining lifetime 1;(t) at time t and
y € [0, T —t] is given by

Py (y,t) = x;(t) [1 - j(t +y,t)

(ii) its density function by

and

(Y t) = =Y B+t +y,0)],; 2(t) =) alt+ y)j(t +y,t) z;(t).

i€S €S
The corresponding remaining system lifetime L(t) has

(iii) its cumulative distribution given by
Pr(y,t) = <@l -{H@ft + v, 1) (1) and
(iv) its density function given by

pr(y.t) = 29(¢ + y)[@lt + y, 1) x(t).
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56 3. Compartmental systems out of equilibrium

3.8. Consistency with systems in equilibrium

As a special case of the open linear nonautonomous compartmental system , we
consider now the autonomous system . Hence, we have the special situation that
B(t) = B and u(t) = u are both time-independent. Note that also z(t) = z does not
depend on time anymore. We denote the unique solution of this system by x and know from

Proposition that x(t) = B luast Our goal is to show that, as ¢

the distributions of ages, transit times, and remaining lifetimes of the nonautonomous
interpretation coincide with those of the equilibrium interpretation of Chapter
In the autonomous case, the state-transition matrix becomes a matrix exponential (Ap-

pendices [B| and . More precisely,

@kt +v,6) LB, y>0, >t

The age density function vector from Eq. (3.5)) has now the shape

p(a,t) = g(a,t) +h(a,t), a>0, t

where

g(a,t) = 1}, g (@[ PP p(a — (¢t Jtd))
h(a,t) 07t (a)B u.

By Corollary lim¢_zg8(a, t) ={0] for all @ > 0. Consequently,

. 01 B
>
thm p(a,t) u, a>0,

is the vector that contains the age density functions of the different compartments for
t —{cal

Recall that the density functions in this chapter are not normalized. In order to link
them to the normalized probability density functions of Chapter [2, we must normalize
them. To that end, we multiply p by (X*)~! (x{, ..., x}). We further divide ppT7Ty
and prr by the total system input ||1ﬂ|, and py; by azj for all j € S. Then it becomes
immediately obvious that the results in the nonautonomous case are generalizations of the
respective results in the autonomous case.

and

3.9. Application to a simple global carbon cycle model

We consider the simple global carbon cycle model introduced by Rodhe & Bjorkstrom
(1979) and depicted in Figure

3.9.1. Detailed model description

The model consists of three compartments: atmosphere (A), terrestrial biosphere (7),
and surface ocean (S). The letter D stands for the external compartment deep ocean with
infinite content. We denote by Cy4 = C4(t), Cr = Cr(t), and Cg = Cg(t) the respective
carbon contents in at time ¢ in years . Two external fluxes add carbon to the
system. The first one, ug, is constant and goes from the deep ocean to the surface ocean,
whereas the second one, ugy = ux4(t), is time-dependent and represents carbon added to
the atmosphere by the burning of fossil fuels. Carbon can leave the system only if it moves
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3.9. Application to a simple global carbon cycle model 57

Figure 3.1 Simple global carbon cycle
model with three compartments (solid
boxes within dashed square): atmosphere

T (A), terrestrial biosphere (T'), and surface
i ocean (S). The indicated carbon con-
Cr = 3000 PgC : tents are the respective equilibrium val-

ues. External to the modeled system are
fossil-fuel sources and the deep ocean (D).

7y The model compartments and the exter-
Frai i Fyp {  nal sources are connected by linear (solid
LA : arrows) and possibly nonlinear (dashed ar-
A Fg, S rows) fluxes of carbon. (Figure extracted
< C% =1000 PgC| i from Metzler et al|(2018))
C5 =700 PgC [ :

fossil fuels deep ocean (D)

from the surface ocean to the deep ocean. A flux from compartment X to compartment
Y is denoted by Fxy and the following fluxes exist in the model, all given in 1:

Fap =60 (C4/700)%, Fag = 100 C4/700,
Fra =60C7p/3000 4+ fra,  Fga = 100(Cs/1000)", (3.35)
Fgp = 45C5/1000, ug = 45.

Here, fra = fra(t) represents an internal flux from the terrestrial biosphere to the atmo-
sphere caused by land-use change deforestation). Its values and also the values of
the external inputs through fossil-fuel emissions u4(t) are taken as time series data from
the RCP/ECP8.5 scenario (Fujino et al., |2006; Meinshausen et al., [2011)). These time
series data cover the period from the year [tg| = 1765 until the year T" = 2500. The two
parameters « and S control the fluxes from the atmosphere to the terrestrial biosphere
and from the surface ocean to the atmosphere, respectively. If both parameters are equal
to 1 and fp4 vanishes, then the model is linear, otherwise it is nonlinear.
The model can now be described by the three for t € T),

d

X Ca(t) = Fra(t) + Fsa — Far — Fas + ua(t),

d

T Cr(t) = Far — Fra(t), (3.36)
d

T Cs(t) = Fas — Fsa — Fsp + usg.

Note that the right hand side of Eq. (3.36) depends through Eq. (3.35)) not only on ¢, but
also on the state vector x(t) = (Ca(t), Cr(t), Cs(t)Z. If we now define the state- and
time-dependent compartmental matrix B = B(x(t),t) by

~Cy  (Far + Fas) Cr'Fra Cg' Fsa
B= Cy' Far ~Cr' Fra 0 (3.37)
Cy' Fas 0 ~Cg' (Fsa+ Fsp)

and u(t) = (ua(t),0,us)™, then the model fits in the framework of Eq. (3.1) describing

the nonlinear nonautonomous compartmental system

%X(t) = B(x(t), ) x(t) +u(t), te {@T),

X = XO.

(3.38)
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58 3. Compartmental systems out of equilibrium

We consider the system at time [fg]= 1765 to be in equilibrium, hence

x? = (700, 3000, 1000)L. (3.39)

3.9.2. Simulation and results

We consider two different parameter sets: (1) («, 5) = (0.2,10) and (2) («, 5) = (1,1). Pa-
rameter set (1) is from the original publication (Rodhe & Bjorkstrom) 1979) and describes
a nonlinear scenario. Parameter set (2) makes together with fra4 = 0 the model become
linear and we use this scenario as a reference measure for the nonlinear version (1). In
the year 1765, the system is in equilibrium and exhibits different age density functions in
different compartments (Figure . After the year 1765, we perturb the system by an

50-
— total
40- — atmosphere
— terrestrial biosphere
= — surface ocean
>
=~
©)
o))
S
»
191
©
=

0 50 100 150 200 250
Age (yr)

Figure 3.2. Pre-industrial carbon age density functions of the three compartments atmosphere
(blue), terrestrial biosphere (green), and surface ocean (purple). The red curve shows the age density
function of the entire system. (Figure extracted from [Metzler et al.| (2018))

additional external input flux u4 of carbon to the atmosphere caused by fossil-fuel combus-
tion, and by an additional internal flux fr4 caused by land-use change (Figure . For
the interval 1765-2100, the data correspond to the Representative Concentration Path-
ways 8.5 Scenario (RCP8.5), whereas the data for the interval 2100-2500 stem from the
Extended Concentration Pathways Scenario 8.5 (ECP8.5). We assume constant emissions
after 2100, followed by a smooth transition to stabilized atmospheric COy concentrations
after the year 2250 achieved by linear adjustment of emissions after the year 2150. The
perturbations make the age density functions change with time such that they can be
depicted by two-dimensional surfaces in a three-dimensional space (Figure .

To obtain useful information from these density functions, we address two climate-
relevant questions inspired by |O’Neill et al.| (1997)).

How old is atmospheric carbon?

The entire time evolutions of the atmospheric carbon’s age density functions derived from
the two versions of the model are depicted in Figure (left panel: nonlinear, middle
panel: linear), and so we can answer the question of atmospheric carbon age for all times
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3.9. Application to a simple global carbon cycle model 59

30
— fossil-fuel input

— land-use change

20-

Flux (PgCl/yr)

1765 2000 2250 2500

Time (yr)

Figure 3.3. Anthropogenic perturbations of the global carbon cycle by carbon inputs to the at-
mosphere caused by fossil-fuel emissions (ua, red) and land-use change (fra, blue) according to
RCP/ECPS8.5. (Figure extracted from Metzler et al|(2018))
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Figure 3.4. Time evolution of the atmospheric carbon’s age density function. The left panel is for
the nonlinear version of the model, the middle panel for the linear version, and the right panel shows
the difference between the two (panel 1 minus panel 2). Red curves show the median age and blue
curves the mean age. The surface color is constant along the time-age diagonal, it reflects the moment
of entry into the system. At the very left edges of the first two panels (time = 1765[yr)) we can identify
the equilibrium age density function of the atmospheric carbon Figure , whereas the front
edges (age = 250@ show how much carbon is in the system with age equal to 250@ from the year
1765 through the year 2500. (Figure extracted from Metzler et al|(2018))
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60 3. Compartmental systems out of equilibrium

between 1765 and 2500. In the year 2017, its mean age in the nonlinear model version
is 126.35[y1] (linear: 128.32[yx) and the median age is equal to 61.76[yr (62.69[y1). The
standard deviation equals 161.7 2 (162.92 indicating that the age distribution has a
long tail, a feature which cannot be revealed from the mean alone.

In these numbers, we recognize only very little differences between the nonlinear and
the linear model versions. Nevertheless, we can observe important differences in the entire
evolution of the age distributions depicted in the left and the middle panel of Figure [3.4]
The differences are twofold. First, the pure amount of atmospheric carbon is much higher
in the nonlinear model version. Second, the age distributions of atmospheric carbon show
also different shapes for the two scenarios. This results in the non-flat surface to be seen
in the right panel depicting the difference between the density functions of atmospheric
carbon in the nonlinear and the linear version of the model.

How long will a significant fraction of a pulse of fossil-fuel carbon, emitted to the
atmosphere today, remain in the system?

We consider carbon entering directly into the atmosphere at specific times ¢, and want to
know how long it will take to remove it from the system. The forward transit time at time
t, describes how old material entering the system at time ¢, will be at the time of its exit.
As indicated by the left panel of Figure for the nonlinear model version the forward
transit-time distribution of material injected between 1800 and 2170 constantly shifts to
older ages, while it shifts back to younger ages after 2170. The medians of the forward
transit time of material injected in the years 1800, 1990, 2015 (Paris Agreement), 2170,
and 2300 are given by 79.85[yr} 82.91[yx} 86.12[yx} 108.91[y1] and 102.61[y1] respectively.
As the right panel of Figure shows, the situation is very different in the linear scenario.
Here, the forward transit-time distribution does not depend at all on the injection time
and remains the same as in the steady state in the year 1765 because the coefficients of B
remain constant over time. Obviously, taking into account nonlinear processes leads to a
significant increase of the lifetime of fossil-fuel derived carbon in the system according to
this model.

0.015- 0.015;

—1800 —1800

—1990 —1990

— 2015 (Paris Agreement) — 2015 (Paris Agreement)
= —2170 (max. median) = —2170
3 2300 Zo010, 5500
(o] je)]
o o
1] (2]
%] (%]
3 @ 0.005
= =

——
0.000, 50 100 150 200 250 0.000, 50 100 150 200 250
Age (yr) Age (yr)

Figure 3.5. Forward transit-time density functions of fossil-fuel carbon entering the atmosphere in
the years 1800 (red), 1990 (blue), 2015 (green), 2170 (purple), and 2300 (orange). The left panel
shows the nonlinear version and the right panel the linear one. Orange curves end at the age of
200 because our simulation only lasts until the year 2500. The medians (dashed vertical lines) in
the nonlinear version increase until the year 2170, and then start decreasing. In the linear version,
the distributions and medians remain constant. (Figure extracted from |Metzler et al.| (2018]))
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3.9. Application to a simple global carbon cycle model 61

3.9.3. Derivation of the results from the example application

First of all, we solve the system (3.38)) numerically on the time interval [1765,2500] and
obtain a solution trajectory x = x(¢). With this solution in hand, we can at all times
t € (1765,2500) compute the compartmental matrix B = B(x(¢), ).

Equilibrium age densities

At time [tg] = 1765, the system is supposed to be in equilibrium and the land-use change

flux fr A vanishes. We plug Eq. (3.35) and Eq. (3.39) in matrix (3.37) and get

—160/700  60/3000  100/1000
B(x°[to) = [ 60/700  —60/3000 0
100,700 0 —145/1000

If we set B? := B(x%]to) and u’ := u = (0,0,45), then B®x% + u® =[ 0] We further
define X° :(x[l), 29, 29). The steady-state formula from Corollary gives

fala) = (XO)_1BO u’, a>0.

Furthermore, p = X° f,. Consequently, the initial age density function vector is given by
p’(a) BO u’, a>0. (3.40)

Atmospheric age

The two leftmost panels of Figure depict the two-dimensional surfaces (nonlinear and
linear model version) corresponding to p = p(a,t) in the time interval 176572500 and
the age interval 07250 The scalar field p can be obtained by Eq. . By Eq. ,
we have already computed the initial age density function vector p%, and the vector-
valued input function u is given by the RCP/ECPS8.5 scenario. Consequently, we are only
missing the state-transition matrix [f] We compute [] by numerically solving the matrix
ODE]|system on {(t2,t1) € [1765,2500] x [1765,2500] : t2 > t1} and can then proceed
to compute p on [0, 250] x [1765,2500].

To obtain a time trajectory of the mean age and the second moment of the atmospheric
carbon, we follow Eq. (3.22) and solve the 9-dimensional system, for [to|= 1765 and
T = 2500,

4 [ B(x(t),t) x(t) +u(t)
= al | ()= ~'tx(t),1,al@) |, te(to,T)
a2 Y2 (t, x(t),a' (t),a*(t))
0 ~01 A0,

_ 1 k- _
’yf(t,x,ékil,ék):kdf e ZBijﬂ?j (af—af) —afu,
The initial age moments a%! and a%? can be obtained using the equilibrium formula from

Corollary

a0 = (1)t ()7 (B) R n=1,2
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62 3. Compartmental systems out of equilibrium

Then j1(t) := @i (t) is the mean age of the atmospheric carbon at time t and pso(t) := a(t)

its second moment. The standard deviation at time ¢ can be computed as the square root
of pia(t) — 13().

The trajectory of the age median of atmospheric carbon can be computed by solving
Eq. for g = 0.5 and ¢ = 1. To that end, the cumulative compartment-age distribution
P needs to be obtained by Eq. together with

P(a) = (B) B° u, a>0. (3.41)

To obtain Eq. (3.41]), we only need to integrate Eq. (3.40). The initial age median &) of
the atmospheric carbon at time [fg| needs to be approximated by a nonlinear optimization
algorithm such that PP(£9) = 0.5 9.

Forward transit time of fossil-fuel derived carbon

To compute the density function of the forward transit time of fossil-fuel derived carbon,
we simply change the input vector to u(t) := (ua(t),0, 0)Ijj and apply Eq. (3.33). By using
the new input vector, we consider the subsystem of only fossil-fuel derived carbon. We can
treat this subsystem separately by means of the linear system that we derived by plugging
the numerical solution into the nonlinear system.

Quantiles ¢, such as the median (¢ = 0.5), for the forward transit time at arrival time
to need to be computed by nonlinear optimization algorithms. To that end, Rrrm(€, ta) =
q||u(ty)|| must be solved for &, where

Herm(a, ta) = Hu(ta)lﬂ]— ||(ta + a,tq) u(ta)lm

describes the difference between the total input at time ¢, and what remained of it at time
tqo +a. Then, t, + £ is the time at which the proportion ¢ of the total input Hu(ta)ﬂ]] from
time t, will have left the system.

3.10. Discussion

We obtained age-, transit-time, and remaining lifetime distributions for well-mixed com-
partmental systems. Our results are not restricted to linear models or systems in steady
state, but hold even for nonlinear nonautonomous models. This fundamental advance al-
lows us to drop the assumption that the system is in equilibrium — an assumption which
is unreasonable for most natural systems.

The derivation of the formulas for the age density functions only relies on the general
solution formula for linear nonautonomous systems. In nonlinear systems, a known
solution trajectory is interpreted linearly and then the system can be treated as if it were
linear — as long as we consider only one particular trajectory. This approach also allows
us to consider age density functions of subsystems such as all material that entered the
system through a specific compartment.

Additionally, we obtained to compute means, higher order moments, and quan-
tiles the median) of ages. We can use these to obtain, by very fast computa-
tions, much more precise characterizations of age distributions than it was possible before
by only looking at the means.

The power of these results is shown in an application to a simple global carbon cycle
model. We demonstrated how much age- and transit-time distributions differ between a
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nonlinear and a linear version of the model. First of all, nonlinearities lead to a tremen-
dously higher amount of carbon in the atmosphere. Secondly, these two versions of a
simple model already suggest that the lifetime of fossil-fuel derived atmospheric carbon
before being absorbed by the deep ocean is substantially increased by nonlinear processes
(Archer & Brovkin, [2008]). Such sizable differences in age- and transit-time distributions
of two models might be a criterion to select one model or the other.

We want to stress that the we model used here is very simple and used mainly to
demonstrate the power and versatile applications of our mathematical framework in a
comprehensible manner. However, it is important to emphasize that for any global carbon
cycle model represented as well-mixed compartmental system, no matter how many com-
partments it comprises, we could answer questions of high scientific and societal interest
the age of the current atmospheric carbon, the future exit age of carbon that now
enters the system).

Our results are not restricted to carbon cycle models, of course, but can be readily ap-
plied to all kinds of well-mixed compartmental systems. To that end, we provide a Python
package that implements all theoretical results and makes them usable by a few simple
commands (https://github.com/MPIBGC-TEE/CompartmentalSystems). This package
also includes a demonstration (Jupyter) notebook and an HTML file with code to repro-
duce the figures and to show more characteristics of the presented model.

A different approach than ours is needed when the well-mixed assumption of the com-
partments is dropped. The fluxes could be age-dependent, a very common case in hydrol-
ogy, where the focus mostly lies on the annual water balance of catchments (McDonnell,
2017)). Such catchments are usually modeled as one compartment with one influx (precip-
itation) and two age-dependent outfluxes (evaporation, runoff) (Botter et al., 2011; Har-
man), 2015; |Porporato & Calabrese, |[2015). Even though this case does not fit directly in our
framework, it is possible to approximate the one-compartment system with age-dependent
outflows by a multiple-compartment well-mixed system. For time-independent systems,
this approximation bases on the fact that every nonnegative probability distribution can
be approximated arbitrarily well by a phase-type distribution (Asmussen, [2003)). Doing a
similar kind of approximation for a nonautonomous single-catchment model allows the full
application of the theory presented here. A recent commentary emphasizes the restrictions
of single-catchment models and highlights the need for splitting the single catchment into
several compartments (McDonnell, 2017). Our results deliver the demanded “theoretical
framework that includes both flow and the age distribution of these flowing and stored
waters”.

In Chapter [2| we used stochastic objects to infer deterministic results and vice versa. We
showed that many objects in the deterministic world have a counterpart in the stochastic
world. However, in the present chapter we used a purely deterministic setup in the frame-
work of linear nonautonomous compartmental systems. Since mass conservation in the
deterministic setup finds its counterpart as probability mass conservation in the stochastic
setup, there are good chances to transfer the present theory to inhomogeneous Markov
chains as well as to inhomogeneous renewal- (Daley & Vere-Jones, 2008) and regenera-
tive processes (Thorisson 1986, [1988), and to discover new relationships between the two
fields.
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CHAPTER 4

Entropy and complexity of compartmental systems

4.1. Motivation

Ages, transit times, and remaining lifetimes are diagnostic tools of open compartmental
systems. They also help compare behavior and quality of different models. Nevertheless,
structurally very different models might show very similar ages, transit times, and remain-
ing lifetimes. If we are in the position to choose among such models, which is the one to
select? By common sense, the answer is to select the least complex model and we can ask
the question:

Can a model with fewer compartments reach the same complexity as a model with more
compartments?

=
X1 == Xp ¥

= P
X X2 X3
> L =

Figure 4.1. Which model is more complex, the two-compartment model with feedback or the three-
compartment model without feedback?

This leads to the problem of how to define complexity for compartmental systems in
the first place (Figure [A.1)). [Walter & Contreras| (1999, Chapter 23) ask a complexity
measure/index to have at least the following natural properties:

(1) For a given structure, the index should have its greatest value when the flow rates
are even (all the same).

(2) Given two structures with the same number of compartments and even flow rates,
the index should have a larger value for the one with more nonzero flow rates.

Many common complexity measures of dynamical systems are closely related to the
information content of the system and hence to some kind of entropy. Two examples are
the topological entropy and the Kolmogorov-Sinai/metric entropy. However, linear au-
tonomous compartmental systems are asymptotically stable. By Pesin’s theorem (Pesin,
1977)), both the metric- and the topological entropy vanish and cannot serve as a complex-
ity measure here; we need a different concept.
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66 4. Entropy and complexity of compartmental systems

Alternatively, we can interpret compartmental systems as weighted directed graphs.
There are numerous different complexity measures for graphs. [Dehmer & Mowshowitz
(2011)) provide a comprehensive overview of the history of graph entropy measures. Un-
fortunately, most of such entropy measures are based on the number of vertices, vertex
degree, edges, or degree sequence (Trucco, [1956)). Thus, they concentrate on only the
structural information of the graph. There are also graph theoretical measures that take
edges and weights into account by using probability schemes. Their drawback is that
the underlying meaning of complexity becomes difficult to interpret because the assigned
probabilities seem somewhat arbitrary (Bonchev & Buck, 2005]).

Since in the previous chapters we, amongst others, addressed the transit times of par-
ticles that travel through the system, we are naturally guided to a different approach. In
terms of a single particle that moves through the system governed by a stochastic pro-
cess, we can ask how difficult it is for us to guess the particle’s current compartment, the
particle’s next compartment, and the particle’s previous compartment. The more difficult
it is to answer these three questions, the higher the complexity of the model should be.
Consequently, a model’s complexity should increase with the number of compartments,
the number of fluxes leaving compartments, and the number of fluxes entering compart-
ments. A weighted average of these numbers seems desirable. But how to choose the
correct weights?

Since in open systems all material that enters the system also exits it later on, in this
chapter we try to define a reasonable complexity measure for open compartmental systems
based on the Shannon entropy (Shannon & Weaver, [1949) of the stochastic path covered
by a particle from the moment of entering the system until the moment of leaving it. We
further define a model’s information content and touch the above mentioned problem of
model selection, based on the concept of maximum entropy.

4.2. Introduction to information entropy

We introduce basic concepts of information entropy along the lines of |Cover & Thomas
(2006). There are two concepts of entropy of a random variable, depending on whether
the random variable has a discrete or a continuous distribution.

Definition 4.1 (1) Let Yy be a discrete real-valued random variable with range Ry and
probability mass function p. The Shannon information entropy or Shannon entropy or
information entropy, or simply entropy of Yy is defined by

<Yd> ==Y ply) logp(y) = [logpm)] .
YyERy

By convention, 0 log0 := 0.
(2) Let Y, be a continuous real-valued random variable with range R, and probability
density function f. Then the differential entropy or simply entropy of Y. is defined by

<Yc> =~ [ 1) vos 5w ay = ﬂ[log Y.
R

Remark 4.2 Depending on the base of the logarithm, the unit of the entropy changes.
For base 2, the unit is called and for base [¢] the unit is called If not stated
differently, we use the value [¢] as logarithmic base, we use the natural logarithm.
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The entropy [H(Y) of a random variable Y has two intertwined interpretations. On the
one hand, [H[Y) is a measure of uncertainty, a measure of how difficult it is to predict
the outcome of a realization of Y. On the other hand, (Y) is also a measure of the
information content of Y, a measure of how much information we gain once we learn
about the outcome of a realization of Y. It is important to note that, even though their
definitions and information theoretical interpretations are quite similar, the Shannon-
and the differential entropy have one main difference. The Shannon entropy is always
nonnegative, whereas the differential entropy can have negative values. Consequently,
the Shannon entropy is an absolute measure of information and makes sense in its own
right. The differential entropy, however, is not an absolute information measure. Hence,
the differential entropy of a random variable makes sense only in comparison with the
differential entropy of another random variable.

The left panel of Figure [£.2] depicts the Shannon entropy of a Bernoulli random variable
Yy with P[Yy = 1) = 1 -{P(Yy = 0) = p with p € [0,1]. This random variable could
represent the outcome of a coin toss. We can see that the entropy is low when p is close
to 0 or 1. In these cases, we have some information that the coin is biased, and hence
we have a preference if we guess the outcome. The entropy is maximum if the coin is fair
(p = 1/2), since we have no additional information about the outcome of the coin toss.
The Shannon entropy of Yy is

H(Ys) = —p logp — (1 — p) log(1 — p).

The right panel of Figure [4.2] shows the differential entropy of an exponentially dis-
tributed random variable Ym()\ with rate parameter A > 0, probability density
function f(y) = /\r/\y for y > 0, and @[ W =A"L

We can imagine it to represent the duration of stay of a particle in a well-mixed com-
partment in a linear autonomous compartmental system, where \ is the total outflow rate
from the compartment. The higher the outflow rate is, the likelier is an early exit of the
particle, and the easier it is to predict the moment of exit. Hence, the differential entropy
decreases with increasing A. It is given by

H(Y.) =1 —log A

Definition 4.3 Let Y7,Y> be two discrete random variables with joint probability mass
function p and ranges R; and Rp, respectively. The joint entropy of Y1 and Y3 is defined
by

y1€R1 y2€R2

Y1,Y2 = > > plyrwe) logp(yr,y2) = [IOgP(YhYé)]-

Note that the joint entropy is symmetric, [H(Y1,Y2) = H(Y2,Y1).

Definition 4.4 Let Y7 and Y5 be two discrete random variables with joint probability mass
function p. Furthermore, let po denote the probability mass function of Y5 and denote by
p(y1|y2) the conditional probability [F{Y1 = y1 | Y2 = y2).
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68 4. Entropy and complexity of compartmental systems

Then the conditional entropy of Y7 given Y5 is defined by

(Y |Y2) = > ﬁ (Y1[Y2 = y2) p2(y2)

y2€Ry

== > paly2) Y pyrly2) logp(ys |y2)

y2€R2 y1€R
== > > pyr,v2) logp(yr [ v2)
y2€R2 y1€R)

= —{E|[log p(Y1 | Y2)] .
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Figure 4.2. Entropy of Bernoulli- and exponentially distributed random variables. The left panel
shows the Shannon entropy (logarithmic base 2) of a Bernoulli random variable depending on its
success probability p. The right panel shows the differential entropy with logarithmic base [e]| of an
exponentially distributed random variable depending on its rate parameter \.

The joint entropy of two random variables is the entropy of one variable plus the con-
ditional entropy of the other. This is expressed in

(Y1, Y2) <{H(Y2) HH(Y: | Y2). (4.1)

Let Y3 be a third discrete random variable. Then

[E(Y1, Y2 | Ys) =[H(Y1|Ys) HH(Y2 | Y3, Y3). (4.2)

Let Y1,Y5,...,Y, be discrete random variables. By repeated application of Eq. (4.1))
and Eq. (4.2), we obtain the chain rule

n
(Yl,Yg,...,Yn) = )ﬁ Yi | Yie1,...,Y1). (4.3)
k=

Remark 4.5 We defined the joint- and conditional entropy for discrete random variables
only. Analogous definitions can be made for continuous random variables. Also the chain
rule holds for differential entropy.

Definition 4.6 The entropy rate of a discrete-time stochastic process Y = (Y},)ndy is

defined by
.1 1
(Y) = nhm n(Yl,Yg, LY = —n[logpn(Yl,YQ, oY)

if the limit exists. Here, p, denotes the joint probability mass function of Y7,Y5,...,Y,.
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4.3. Compartmental systems in equilibrium 69

The discrete-time entropy rate describes the long-term average increase of the processes’
entropy per time step. The statements of the following lemma are proven in [Cover &
Thomas| (2006, Theorem 4.2.1).

Lemma 4.7 For a stationary discrete-time stochastic process Y = (Yy,)ndm, the entropy
rate s

Y) = lim (Yn | Ynfl, . ,Yl).

n—AXg

Consequently, if Y is a stationary discrete-time Markov chain, its entropy rate is

A {HY2 [ Y2).

According to|Bad Dumitrescu| (1988) and |Girardin & Limnios (2003), we can also define
the entropy rate for continuous-time processes. To that end, we first define the entropy
on a finite time interval.

Definition 4.8 The finite-time entropy of the continuous-time stochastic process Z =
(Z¢)t>0 until T' > 0 is defined as

bl 2) = - [ #1(:) og (2) (o)

where fr is the likelihood of (Z;)o<t<7 with respect to some reference measure pr, if it
exists.

Definition 4.9 The entropy rate of a continuous-time stochastic process Z = (Z;)t>0 is

defined by
. 1
<Z> = Thf!m(z)

if the limit exists.

4.3. Compartmental systems in equilibrium

We come back to the d-dimensional open linear autonomous system (2.3)) in equilibrium
from Chapter [2| and denote it by M. Let X denote the associated absorbing continuous-
time Markov chain and Z the infinite continuous-time process from Eq. (2.17). The system
is given by

d
ax(t) =Bx(t)+u, t>0,

x(0) =x71

This system might have been linear from the beginning or it might result from an au-
tonomous nonlinear system that has reached an equilibrium. Since B is invertible, by
Proposition this system has a globally attracting fixed point x*{= —B~!u, so it has
no positive Lyapunov exponents. Consequently, its metric- and topological entropy are
zero by Pesin’s theorem and cannot serve as complexity measures. We need a different
approach to define a complexity measure for such systems.

To that end, we look at the path that a single particle covers while it travels through
the system. This path is a finite sequence of pairs ((,,T},), where (, stands for the nth
compartment visited by the particle and 7;, for the sojourn time in the nth compartment.
A particle leaving the system is modeled as entering the so-called environmental compart-
ment d + 1. The particle is then supposed to stay there for an infinitesimal amount of

(4.4)
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time before it reenters the system. The particle’s then infinite path = ((¢n, Th) )nem
consists of two Markov processes. The first one, ( = (¢, )ndr With values in

S=1{1,2,...,d,d+1}

describes the sequence of visited compartments and is a discrete-time Markov chain. The
second one, the sojourn-time process (T3,),dN, with values in describes the sequence of
sojourn times. If at time step n the particle is in compartment j € S = {1,2,...,d},
then T;[ ~JExp|(\;), where \; := —Bj;. Since we cannot model an infinitesimal sojourn
time for the environmental compartment d 4+ 1, we define its sojourn-time distribution to
be ()\d+1) for A\gy1 := 1 and correct for it later.

Based on these basic structures of a path, we compute three different types of entropy.
For a better understanding, we provide a summary of the desirable relations among the
three different types:

(1) As a particle travels through the system, it jumps a certain number of times to
the next compartment until it finally jumps out of the system to the environmental
compartment d + 1. Between two jumps, the particle resides in some compartment.
Each jump comes with the uncertainties about which compartment will be next
and how long will the particle stay there. The entropy rate per jump measures the
average of these uncertainties with respect to the mean number of jumps.

(2) The travel of the particle takes a certain time. In each unit time interval before the
particle leaves, uncertainties exist whether the particle jumps, where it jumps, and
even how often it jumps. The mean of these uncertainties over the mean length of
the travel interval is measured by the entropy rate per unit time.

(3) The path entropy measures the entire uncertainty about the particles travel through
the system. We should be able to compute it if we multiply the mean entropy rate
per jump by the mean number of jumps, and also if we multiply the entropy rate
per unit time by the mean transit time.

4.3.1. Entropy rate per jump
The noninvertible matrix

Q= (Z% _ﬂl) (4.5)

with 20 = B and B8 = u/ Hulm is the transition-rate matrix of the continuous-time
Markov chain that represents the particle’s infinite journey. With aid from the diagonal
matrix

Dq : = {diag(Q11, Q22 - - -, Qud> Qu+1,4+1)
= —{diag| B11, Ba2, - . ., Bqa, —1)
= ()\17)\27'-'7)‘d7)‘d+1)7

we define P := QD(S1 Then, with \; = —Bj; for j € S ={1,2,...,d}, the

0, i=7J
AN 1B i i j<d

py =N Bu 2‘75‘7, hisd, (4.6)
ﬁia Z§d7 J:d+17

Nz, i=d+1,  j<d,

70
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constitute the transition matrix P of the discrete-time Markov chain (. Note the index
order: FP;; (Cn+1 = i|{, = j) is the conditional probability of ¢ jumping to state i in
the next step given that it is in state j at time step n.

We define a (d + 1)-dimensional column vector y := (7, 23,..., 2}, Hlﬂl}m = Hulm)m
and compute

d+1 d
Qy); =D Qijyi=> By +Bi|dl|=—u; +u; =0, i€, (4.7)
j=1 =1

because the system is in equilibrium. Then, 7 := ||Dq yIHI“ 1Dqy is a stationary distribu-

tion of ¢, because
Pr= IIDQYN1 [aDg! +{1] Dqy

= Doy ! (Qy +Dqy)
= Doy Dqy
=T

Since B is invertible, by Lemma and definition (4.6 of P, the discrete-time Markov
chain ( is irreducible. Lemma implies that

L& . .
o =9 = e

Our subsequent interest is in long-term averages of the type

Jim S TFG = ) £ )

for functions f : S xS Consequently, we can simply equip ¢ with the stationary
initial distribution 7, making ¢ a stationary discrete-time Markov chain from now on.
Let Py := (P;j)i jes denote the matrix P restricted to the first d coordinates, and define

Dg := —{diag| Bi1, Boa, . . ., Baa) = diag[(A1, A2, ..., Ag).
Furthermore, from now on we denote by
V]: < El[inf{n DG =d+ 1}
the mean of the first hitting time of state d + 1 by (. It is given by
d
i=1

where M = — Pp)~! is the fundamental matrix of the absorbing continuous-time Markov
chain X. Moreover, we denote by N; the mean number of visits of { to compartment i € S
per cycle, which is given by

N; = (M B);.

Lemma 4.10 With the definitions from above,

Dq ¥l = Il (1 H{A).
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72 4. Entropy and complexity of compartmental systems

Proof. Recall that X denotes the absorbing continuous-time Markov chain that represents
one run of a particle through the system, and 8 = u/||u]] The fundamental matrix of X

is given by
M= (- Pp) = [I- BD; 4[] ' = ~DpB.

Now, the total number of jumps of X before absorption is given by

d d
= > MB), = [l > (DB w), = | Zm

We finish the proof with

waofl- 3ot ol flbdo

Remark 4.11 Since [V] denotes the mean of the first hitting time of the environmental

compartment,
) @: [Da ]
Bl

is the mean number of jumps per cycle. The 1 stands for the jump into the system.

O]

Corollary 4.12 The ith component mw; of the stationary distribution w of ( represents
the fraction of the mean number of visits to compartment i per cycle. The environmental
compartment d + 1 experiences exactly one visit per cycle.

Proof. For i € S, the mean number of visits of state ¢ per cycle is given by

N;=(MB); = (-DgB™' 8), = [d["* (~-DsB'u),
_ Ai T} (DQy _ T ”Dlem (4.8)
TR I RSl o] '
=m; (1 H{N).

T Iof] =
T = ooyl Tl (49)

Fori=d+1,

Lemma 4.13 The entropy rate of the compartment chain  is given by

d d d
’L B’L . .
¢) = ij Z J lo < )\]> — )Z\—] log <§\j> — Tyl Zﬁi log B;.  (4.10)
j=1 J J J i=1

=1,

Proof. With the initial distribution 7, the compartment chain { becomes stationary. We
invoke Lemma [£.7] and obtain

d+1 d+1
=IC2|C1 jﬂ ICZ!Cl—J Z%Z —Fjj log P

Bij J ~j
—Zm Z -, s (Aj)—Mlog<Aj> —wdﬂzﬁzlog@

i=1,i#]
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O

Now that the entropy rate of the compartment chain ¢ is determined, we seek the
entropy rate of the path To that end, we first consider a path of finite length.

Lemma 4.14 For n N,

H(Cth):“w(can)) = Tk|Ck)+nC)
k=

Proof. For notatlonal compactness, we write [H], for [H|((¢1,T1), .. ., (Co, Th)). By the chain

rule Eq. ( and Eqgs. . ) and ( .,

= qﬂ((Ck,Tk) | (Cr—1,Th—1)5 -+ (C1,T1))
%TM@, Ch—1,Th—1) -+, (C1,T1))

+ )H Cr | (Ch1, Th—1) - -+, (C1,T1))

k=

= %Tk | Ck) + (Ck | Ck—1)-
k= k=

The compartment chain ( is stationary, consequently @(Ck | Ck—1) C ) and the proof is
complete. 0

Proposition 4.15 The entropy rate of the infinite path [P = ((Cn, Th))ndR is given by

d
Pm = 7 (1—1log)) <<>-
j=1

Proof. By Definition and Lemma

n—ean

k=

Furthermore, for k& N|

(Tk k) =

For j € S, we have T)\j) if { = j. However, for the environmental compartment
j = d+ 1 we assume an infinitesimal sojourn time, an immediate exit. Hence, we
truncate the sum at j = d and do not consider any entropy for the sojourn time of the
environmental pool. This leads to

ﬁ Ti [Gr) = Zm —log );)
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which is independent of k. We get

Pxi) = lim — ;i (1 —logA\j) +n)9(C) |,

3
HM&

and the proof is finished. ]

Remark 4.16 Proposition states, after a rearrangement of terms,

d d
AP =D m |1 -logA) + > ~ ”1 (i@)—jﬁlog(i{)
Jj=1 J J

1= 7Z7£.7 J

d
— a1 Y Bi log ;.

i=1

We plug in 7; and 7441 from Egs. (4.8) and (4.9), respectively, and see

d d
1 B..
@‘ [.ZO]) = = E N’L (1 — IOgA + 2‘7 lo < ZJ) _ 1 ( >
AP = 5 HA = 2 - IV ADY by

i= 1vl3é]
1 d
= > Bilog ;.
+1 i=1

Consequently, is an entropy rate measured per jump and we can interpret it as

1

entry) + Z N; [Hf(sojourn time in j) next jump)]
JjES

4.3.2. Entropy rate per unit time

Recall the continuous-time process Z defined in Eq. . It describes the continuous-
time path of a particle through the system and being sent back in immediately after its
exit. So, Z is the continuous-time version of the discrete-time path [f= However, we
define Z to describe the continuous-time path of the permanently reenterlng particle with
an ( )-distributed sojourn time in the environmental compartment d+ 1. Note that Z
and Z describe two similar yet different particle paths. While Z is a regenerative process
with state space S, Z is a continuous time Markov chain with state space S and transition-
rate matrix Q from Eq. (| . Because its jump chain C is irreducible, Z is irreducible too.
Furthermore, from Eq. - we know that v = (I/J) ||Qyiﬂ|“ Qy is its stationary
distribution.
Following |Girardin & Limnios| (2003),

d+1 d+1
H ZV] Z i (1 —log Pyj). (4.11)

J=1 i=1,i#j
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Proposition 4.17 The entropy rate per unit time of the continuous-time path Z is given

|]jI|] Z ”( *10gBij)+Zj (1*10g2j)

d
+Z J > Bij(1-1logBy) + 2 (1 - log z;)
2 Tl

i=1,i#j

Proof. Recall Qy :E with y = Hulﬂbm, 7 :-/H and [E lm = ”-/H‘m We

divide y by H[lm obtain (1, 1/E] /lm U and normalize this to
__BO <,7 1 >m_ L (Q 1>m (4.12)
CE@O+\TED) B+
We see Qv :@ and ||I/M| = 1. Consequently, the stationary distribution v of Z is given
by Eq. (4.12)), and we obtain from Eq. (4.11]

d * d
~ 1 X,
(Z):Eim—kl Zi”[im Z B,‘j (1_10gBij)+zj (1—10g2’j)
Jj=1 i=1,i#j

lﬂfﬂ+1 Zﬁz —log )

1
= *m 1 (;51 logﬂiﬁLl)

d * d
1 T
= Y Bij (1 —log B;;) + zj (1 — log 2;
B 1 2 | 2, ) o (s

To get to the entropy rate of Z, we need to do two corrections here. First, the 1 inside the
first parenthesis comes from 1 = 1—log 1 and represents the entropy of the sojourn time in
the environmental compartment d + 1. Second,(Z ) indicates a cycle length of @m +1,
where again the 1 stands for the mean sojourn time in the environmental compartment.
Since Z jumps immediately out of this compartment, there is no uncertainty in the sojourn
time here, because no time is spent in this compartment. Hence, the cycle length of Z is
[E][T]. We omit the 1’s in question and use [E][T] = |/ ||lU]] to finish the proof. O

Remark 4.18 For a one-dimensional compartmental system M) with rate A > 0, positive
external input, and associated regenerative process Zy,

20 = 35 (1 - toa),

which equals the differential entropy 1 —log A of [T]~JExp|(\) divided by[E|[T] = A~*. The
exponential distribution )\) is the interarrival-time distribution of a Poisson process
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76 4. Entropy and complexity of compartmental systems

with intensity rate A\. The renewals of this Poisson process determine the moments of exit
of the particle from the system. Consequently, (Z \) is is the entropy rate per unit time
of the Poisson process.

Migrating to a d-dimensional system, for i # j, B;; (1 — log B;j) is the entropy rate of
a Poisson process that determines whether the particle jumps to compartment ¢, as long
as it resides in compartment j. With 27/ Hum [Oj] being the mean occupation time of
compartment j during a single run through the system,

d
(Z) = (entry) + (0] Z Poisson(i | j)) |Poisson(exit 7))

i=1,i#

4.3.3. Path entropy

We shift our interest away from a average uncertainties such as entropy rates toward
the uncertainty of one entire particle run through the system. Consequently, our object
of study is now the absorbing continuous-time Markov chain X from Chapter [2, which
describes one single particle run through the system. We consider X on the state space
S ={1,2,...,d,d+ 1} with initial distribution 8 = u/|[u|]on § = {1,2,...,d} and with
state-transition matrix ) as defined by Eq. ,

o~ (B 1)

Along the lines of |Albert| (1962), we construct a space |p| that contains all possible
paths that can be taken by a particle that runs through the system until it leaves. Let
= (SXR4)"™x{d+1} denote the space of paths that visit n compartments/states before
ending up in the environmental compartment/absorbing state d + 1. By |p| := U?il
denote the space of all eventually absorbed paths. Note that, since B is invertible, a path
through the system is finite with probability 1. Let [ denote the Lebesgue measure on
and c¢ the counting measure on S. Furthermore, let o, be the sigma-finite product measure
on [p,. It is defined by oy, := ({®]1)"[®]c. Almost all sample functions of (X;)¢>o can be
represented as a point p (Doob, 1953, Chapter VI). Consequently, we can represent X
by a finite-length path P(X) = ((&1,T1), (£2,T2), - - -, (€ny T), &nt1) for some n where
€n+1 =d+ 1.

For each set W ¢ for which W Mg, is o,-measurable for each n € N| we define
(W) =32 o, (W ) It is defined on the o-field F* which is the smallest o-field
containing all sets W whose projection on [R]} is a Borel set for each n N} Let o be
a measure on all sample functions, defined for all subsets W whose intersection with [g] is
in F*. We define it by o(W) := o*(W {g).

Let p = ((z1,t1), (z2,t2,), ..., (Tn, tn), d + 1) € ¢| for some n For i # j, we denote
by Ni;(p) the total number of path p’s transitions from j to ¢ and by R;(p) the total
amount of time spent in j.

Lemma 4.19 The probability density function of P = P(X) with respect to o is given by

76



4.3. Compartmental systems in equilibrium 77

Proof. Let x1,29,...,2p € S, Tpy1 =d+1, and t1,t9,...,t, R;] Since

P(& =21, Th < 1), (Ea =22, T2 < t2),..., (€n = 2, Tp < tp), Eny1 = d+1)

(§n+1 =d+ 118 = zn) [[|P(& = 25 Te <t | &1 = z121)

k=

[ ()] 0 0 f7)
/5351 H kaﬂxk Ao Tk drydry - - - d,

k=1

- Pd+1 Tn

with T,, = {(71,72,...,7%) Rl : 0 <7 < 6,0 <1 < tg,...,0 <7, <t} the
probability density function of P = P(z) with respect to o is given by

p) = 611 Hka+lzk Azk tk?
k=1
p= ((xlatl)a (‘T27t2)7 vy ($n7tn)7d+ 1)

The term Qg+, = Qij enters exactly N;;(p) times. Furthermore,

H T, J}I
k=

We make the according substitutions and the proof is finished. O

Theorem 4.20 The entropy of the absorbing continuous-time Markov chain X is given
by

d

Zﬁzlogmzuﬂm] Y Bij(1—log Bij) + 2 (1 —log )

1=1,i#j
Proof. Let X have the finite path representation
P:P(X) = ((511T1)7(€27T2)7 (gna ) d+1)

for some n € N| and denote by fp its probability density function. Then, by Lemma [£.19]

d+1
—log fp(P) = —log B¢, — Z > N 1ogQU+ZAR
J=1 i=1i#j j=1

We compute the expectation and get

P)
d d+ d
= [10g Bel =Y [Nz‘j (P)] log Qij + Y M[E[[R;(P)]
j=1 i=1,i# j=1

d d d+1
51) +Y NER; (P - [Nij<7>)] log Qij-
j=1 j=1 i=1,i#
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78 4. Entropy and complexity of compartmental systems

Obviously, [E [R(P)] [Oj] = 2}/ ||u|H| is the mean occupation time Of compartment
j € S by X. Furthermore, for ¢ € S and j € S such that i # j, by Eqgs. and (| .,

x*

Ny (P) BN, (P By = | TIPS
ijzj, 1=d+ 1.

Together with \; = Zglzl i+ Bij + zj, we obtain

d T d d
(X) Z ] Z Bij +z2 | = Z Bij log Bij — Zj log Zj
Jj=1 i=1,i#j i=1,i7#j
d * d
:—ZﬁiIOgﬂi‘f‘ZTim > By (1-1logBj;) + 2 (1 - log z;)
i=1 j=1 i=1,i#j

O]

Proposition 4.21 The entropy (X) s consistent with the entropy rate per jump
and the entropy rate per unit time (Z) More precisely,

Fx) = (1 HO)AFD -BEe 2

Proof. The relation [H(X) =[ E|[T][6(Z) is immediately obvious from Proposition
From Proposition and Lemma [4.13] we have

d d d
By By ~ :
:Zﬂj(l_logkj)‘kzﬂj Z —)\'J 10g<)\']>—j\].log<j\]')
7j=1 j=1 J J ] ¥l

i=1,i#j

d
— a1 »_ Bi log B
=1

With Egs. and , we obtain
d vt
LMD =) T @ e
j=1

ZM}] > B”l"g<B)‘z”"g<§§)

i=1,i#j
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4.3. Compartmental systems in equilibrium 79

d d * d
$ .
= — E /Bz log ﬁz + E r[iﬂ] E Bij (1 — log Bij) + 25 (1 — log Zj)
i=1 j=1 i=1,i4j

={H(X).
O

Remark 4.22 Analogously to the interpretation of [f{ Z) in Remark we can interpret
the entropy of X as

d
(X) (entry) + Y |E[[O;] Z (Poisson(i | 7)) (Poisson(exit | j))
j i=1,i%

Definition 4.23 Ifu and B =‘ *d is compartmental and invertible, then we denote
by (u,B) the linear autonomous compartmental system and by X, and Z the
associated absorbing continuous-time Markov chain, infinite path, and infinite continuous-
time path, respectively.

Furthermore, the path entropy of M = (u, B) is defined as [Hp|(M) :=H|(X), its entropy
rate per jump by (M) :, and its entropy rate per unit time by (M) :(Z).

4.3.4. The maximum entropy principle

Let us again consider a Bernoulli random variable Y with P{Y = 1) =1 {P(Y =0) =p
with p € [0,1]. As shown in the left panel of Figure the entropy of this class of
distributions is maximum if p = 1/2, when heads and tails are equally likely. Consequently,
it is most difficult to predict the outcome of a coin toss in case of a fair coin. The farther
away p is from 1/2, the more information we have about the future outcome. In the
extreme cases of p = 0 or p = 1 we know the outcome perfectly.

Assume we know that a coin is being tossed for 100 times, but we have no information
about the value p that belongs to the probability of a heads outcome in one coin toss. If
we were to bet on the number of heads that will have occurred after 100 trials, how would
we decide? We are looking for the expected value (and multiply it by 100) of a probability
distribution in the class of Bernoulli distributions with p € [0, 1] that represents our state
of knowledge best. As already mentioned, we have no information about p whatsoever.
Consequently, we have to assume p = 1/2 and bet on 50 heads after 100 trials. Any
p # 1/2 lowers the entropy of the according Bernoulli distribution. The entropy difference
between the distributions with p = 1/2 and p # 1/2 represents a positive amount of
additional information that we have about p. Since we have no additional information
about p, the probability distribution that represents our knowledge best is the maximum
entropy distribution with p = 1/2. Any other choice of p = 1/2 implies that we use
knowledge about p that we do not have.

This so-called mazimum entropy principle arose in statistical mechanics. Its relation-
ships to information theory and stochastics were established in |Jaynes (1957allb). The goal
of this section is to transfer the maximum entropy principle to compartmental systems in
order to identify the compartmental system that represents our state of knowledge best in
different situations.
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80 4. Entropy and complexity of compartmental systems

Examples of maximum entropy models

Recall that the path entropy of a linear autonomous compartmental system M = (u,B)
is given by

d
%(M) i( Zﬁz IOgﬁ'L‘FZHl{H Z ’L]( _IOgBij)+zj (1_10g2j)
i=1,i#j

In order to obtain maximum entropy models under simple constraints, we now adapt ideas
of (Girardin, (2004).

Proposition 4.24 Consider the set M of open compartmental systems (4.4) with a prede-
fined nonzero input vector u, a predefined mean transit time m, and an unknown steady-
state vector comprising nonzero components. The compartmental system M = (u, B) with

A 1 - 1
1 =X 1--- 1
B=1| . , .
1 - 1 =X

where A\=d — 1+ 1@, s the maximum entropy model in M.

Remark 4.25 Intuitively, this result is obvious. The system has a high symmetry, the
particle is equally likely to jump among different pools, and the Poisson process with
intensity rate 1 is the one with maximum entropy rate. Furthermore, the resulting rates
zj =1 /@m of leaving the system are chosen such that the mean transit time constraint
is fulfilled.

Proof of Proposition[{.2, We can express the constraint [E|[T] = |/ |[u] by

= Hd]]]Z m_o

From the steady-state formula = —B~!u, we obtain another set of d constraints, which

we can describe by
=—0; 1=1,2,...,d.
)=

We rewrite the left hand side as

)

d 1 d
By @} + By
R =g (X, et v e
d 1 d
:12 T; — miﬁj Z Bri+zi |,

k=1,ki

é\

which leads to the constraints

d
Coi= Hlﬂ]] Z B} - Tﬂ]]f > Bri+z|+8=0 icS (4.13)

j=1,j#1i k=1,k#i
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4.3. Compartmental systems in equilibrium 81

The Lagrangian is now given by

d
L (X) +9C1+ > % Cay (4.14)
i=1

and its partial derivatives with respect to Bj; (i # j), 2;, and x} by

0 « X *
H‘ﬂ83~ L = —xj log Bij + vizj — vj 23,
i

0 . N
HLNQZ]L = —z; log zj — v; 2],

and

d

9

”'ﬂaﬁ L= 3 By(l—logBy)+z(1-logz)
J i=1,i#j

d d
+7 + Z Yi Bij — 7j Z Byj+ 25 |,
i=Litj e

respectively. Setting a%ij L = 0 gives B;; i*'yﬂ', and setting a%j L =0 gives z; 'YJ'.
We plug this into % L =0 and get
J

d
0= > i_” [L— (v =) e 1= (=)

i=1,i

d d
+ o + Z Yilei T — Z ele =i oY
i=1,i#j k=1k#
_ Z el =i W+ .
15,17

Subtracting W from both sides and multiplying with J' leads to

d
Yole + Y z‘:—1, i=1,2,....d

i=1,i#
This is equivalent to the linear system Y v = —1 with
Yo 1 1 —1
1 7 1 1 -1
Y = . ) ) —1= .
1 1 v -1

The case 79 = 1 has no solution v since [¢" > 0 > —1. For 79 # 1 the matrix Y has a
nonzero determinant which makes the system uniquely solvable. For symmetry reasons,
vi = =y forallij=12,...,d Consequently, for i # j, we get B;; = 1, and by
summing Eq. over i € S,

d d d d d
0= ZCM:Z Z Bijx}‘—zxf Z Bii+zi | — |
=1 =1

i=1 j=1,ji k=1,k#i
d
==Y wia-|
i=1
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82 4. Entropy and complexity of compartmental systems

which can also be expressed by z’[x*| = ||Lm We simply plug in z; 7 and get
el Il = [lull, which means z; = 1/E|[T]. Consequently,

A1 .- 1

1 =X 1 1
B= )

1 1 =A

Uniqueness of this solution follows from its construction, we remain with showing maxi-
mality. To this end, we split the entropy into to three parts, (X )= Hy + Hy + Hj

with
Z@mm

(1 —logz;), and

d
Z (l—logBij).

The term H; is independent of B,-j and z; for all 4,5 € S and 7 # j, and can thus be
ignored. By Lemma [2.10] we can rewrite the second term as

Tp|E = j)E =) (TE | E),

where E denotes X'’s last state before absorption and Tg the exponentially distributed
sojourn time in F right before absorption. We see that Hs becomes maximal if the
knowledge of E contains no information about Tr. Hence, z; = z; for 4,5 € S. Since we
need to ensure the systems’ constraint on @m, we get z; = 1 m for all j € S.

In order to see that B;; =1 (i # j) leads to maximal entropy, we first note that

[0j] = (d - 1)|f|

by Lemma We now disturb By, for fixed k,l € S with k # [ by a sufficiently tiny e,
which may be positive or negative. We define By(¢) := By + ¢, and a change from \;
to Aj(e) := A\j + & > 0 ensures z;(e) = z;, implying that the system’s mean transit time
remains unchanged, [El[T])] ={E|[T]. The e-disturbed Hj is given by

xh(e d
Hy(e) =} Hjlgl]]]) S 11 -logl) (1 {Tpick, o) + Hq]]] (1+¢)[1 - log(1 +¢)]

i=1 i=Li#j
d * d
zj(€) 7 (¢)
S EE S ) + 2 (-0
i=1 i=L,ij
for some § > 0 since the map = — z (1 — logx) has its global maximum at z = 1.
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4.3. Compartmental systems in equilibrium 83

Consequently,

d_ d -
) =12 \flgﬂ?]).z oo \ltg{sm) -

Hence, disturbing B;; away from 1 reduces the entropy of the system, and the proof is
complete. 0

Remark 4.26 In the special case d = 1 for a one-dimensional compartmental system, we
obtain B = —1/E|[T]. Since in this case [T] 7] Exp[—Bi1), we see that the exponential
distribution is the maximum entropy distribution in the class of all nonnegative continuous
probability distributions with fixed expected value. This special case is very well known
(Cover & Thomas| [2006, Example 12.2.5).

Proposition 4.27 Consider the set M of open compartmental systems (4.4) with a pre-

defined nonzero input vector u and a predefined positive steady-state vector x* The com-
partmental system M = (u,B) with B = (B;j)i jes given by

NE?S i # J,

Z * * ) Z = j
=tk V5V ’
s the maximum entropy model in M.

Proof. The mean transit time [E[[T] = |[J/|/u] of the system is fixed. Hence, the La-
grangian L is the same as in Eq. (4.14)), and setting 8%“ L =0 leads to

—logBij +vi—v; =0, i#J.
An interchange of the indices and summing the two equations gives
log Bi]’ + log Bji =0.

Hence, B;; Bj; = 1. A good guess gives B,;Qj = x:‘/x;‘ and v; = % log 7. From a%j L =0,
we get
—logzj —v; =0, j€&,

and in turn z; = (2%)~Y/2. Maximality and uniqueness of this solution follow from the

strict concavity of [H((X) as a function of B;; and z; for fixed We can see this strict

concavity by
9? o) x;
—H(X) = log Bij = ——0=— < 0
33%- 9By Hlﬂ] T B

0? 0 T
— [H(X log z; = I _ <0
82?( )= 0z Hlﬂ]] T ||1ﬂ]]zz

and
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84 4. Entropy and complexity of compartmental systems

Structural model identification via the maximum entropy principle

Suppose we observe a natural system and conduct measurements from which we try to
construct a linear autonomous compartmental model in equilibrium that represents the
observed natural system as well as possible. The first question that arises is the one
for the number of compartments the model should ideally have. The maximum entropy
principle cannot be helpful here because by adding more and more compartments we can
theoretically increase the entropy of the model indefinitely. Consequently, the problem of
finding the right dimension of system has to be solved by other means. One way to do
it is to analyze an impulse response function of the system and its Laplace transform, the
transfer function of the system, which might be possible to obtain by tracer experiments
(Anderson, [1983; |Walter, [1986)).

In |Anderson| (1983, Chapter 16) the structural identification problem of linear au-
tonomous systems is described as follows. Suppose we are interested in determining a
d-dimensional system of form . We are interested in sending an impulse into the sys-
tem at time ¢ = 0 and analyzing its further behavior. To that end, we rewrite the system
to

%x(t) =Bx(t)+Au, t>0,

x(0) =0} (4.15)

y(t)=Cx(t), t>0.
Note that the roles of A and B are interchanged here with respect to Anderson| (1983)). In
a typical tracer experiment, we choose an input vector u and the input distribution matrix
A, which defines how the input vector enters the system. Then, we decide which compart-
ments we can observe to determine the output connection matriz C'. The experiment is
now to inject an impulse into the system and to record the output function y(¢) = Cx(t).
Bellman & Astrom (1970) pointed out that the input-output relation is given by

t
y(t) = Cx(t)=C [l B Au(r)dr

0
= [Cl” Al ue),

where [*|is the convolution operator. The model parameters enter the input-output relation
only in the matrix-valued impulse response function

U(t):=ClBA, t>o0,
or in the transfer function R
U(s) == C (sl - B)~" A,

the Laplace transform matrix of ¥. Consequently, all identifiable parameters of A, B, and
C must be identified through ¥ or ¥. Difficulties arise because the entries of the matrices
W and V¥ are usually nonlinear expressions of the elements of A, B, and C.

Definition 4.28 System (4.15)) is called identifiable if this nonlinear system of equations
has a unique solution (A, B, C) for given ¥ or W. Otherwise the system is called noniden-
tifiable.
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