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Summary 

Non-Ribosomal Peptide Synthetases (NRPS) are mega synthetases that are predominantly found in 

bacteria and fungi. They produce small peptides that serve numerous biological functions and crucial 

ecological roles. NRPSs are organized into different modules, each responsible for processing 

(substrate activation or chemical modifications) and incorporation of single substrate monomers. A 

single module of NRPS has three domains such as Adenylation (A), Condensation (C), and 

Thiolation (T). Substrate selection and their activation by adenylation is a key step in the non-

ribosomal peptide (NRPs) biosynthesis. A-domains catalyze ATP dependent activation of substrates 

harboring carboxy terminus. A-domain substrates include not only natural amino acids (D and L 

forms) but also non-proteinogenic amino acids. The inclusion of non-proteinogenic amino acid 

increases the structural and chemical diversity of biosynthesized peptides. C-domains have also been 

reported to show moderate specificity towards a substrate that is activated by an A-domain. Norine 

database has listed 543 monomers (247 NRPS specific) in their repository, these monomers are 

extracted from the complete chemical structures of characterized NRPs. As the substrate repertoire 

is large and specificity rules for fungi are not established well, there is a difficulty in predicting 

substrates for fungal A-domains. In bacteria, ten amino acid residues were established as “NRPS 

code”, which determine specificity of A-domains. These residues were identified by mutagenesis 

studies done with a phenylalanine binding A-domain. 

To study relationships between fungal A-domains and their specificity, I ran the cluster analysis of 

NRPS code residues. Fungal A-domain sequences with known substrates and corresponding NRPS 

code residues were obtained from the NRPSpredictor2 dataset (released in 2011). This dataset was 

expanded by adding manually curated sequences that were published after 2011. NRPSpredictor2 is 

A-domain substrate specificity classifier, which uses support vector machine models for the 

prediction. NRPS code residues were encoded by physicochemical properties essential for binding 

small molecules and these residues were clustered by their similarity. Cluster analysis showed 

similar NRPS codes for α-amino adipic acid, phenylalanine, and tryptophan, etc. between bacteria 

and fungi. Fungal NRPS codes for substrates such as tyrosine, serine, and proline, did not cluster 

together with bacteria, which indicates an independent evolution of substrate specificity in fungi. 

This emphasizes the pressing need for the development of a fungus-specific prediction tool. 

Currently available A-domain sequence-based specificity prediction tools accurately identify 



9 

substrates for bacteria but fail to provide correct predictions for fungi. SANDPUMA, an ensemble 

classifier for A-domain substrate specificity prediction, developed in 2017, uses only 90 fungal 

sequences (complete dataset – 928 sequences) but does not give accurate substrate predictions for 

fungal sequences.  

I present here a novel approach for fungal A-domain substrate specificity prediction, which is based 

on a neural network (NN). I developed the NN-based A-domain substrate specificity classifier 

(NNassc) using Keras with TensorFlow backend using Python scripting language. It was trained 

solely using fungal NRPS codes and combines physicochemical and structural features for 

specificity predictions. Internal and external validation datasets of experimentally verified NRPS 

codes were used to assess the performance of NNassc. NNassc predictions were compared with 

SANDPUMA using these two validation datasets. As opposed to earlier sequence-based prediction 

tools, our approach involves the prediction of substrate substructures rather than mere substrate 

classes. NNassc identifies correct substrates within the top three or five predictions in all cases except 

for phenylalanine, while SANDPUMA works only with alanine or tyrosine NRPS codes. The 

substrate is encoded as a Morgan fingerprint bit vector, such that each bit encodes certain molecular 

property or a substructure. Prediction of substructures has an advantage that the novel (not part of 

the training dataset) substrates could also be predicted that harbor these substructures. In the case of 

NNassc, comparisons of predicted fingerprint bit-vectors were done only with training dataset 

substrates, although a larger database (e.g. Norine database) of probable substrates could be used in 

difficult cases. In the future, A-domain substrate specificity predictions could be improved by 

including more NRPS codes for each substrate and structural information about specific binding 

interactions. 
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Zusammenfassung 

Nicht-Ribosomale Peptidsynthesen (NRPS) sind Megasynthetasen, die überwiegend in Bakterien 

und Pilzen vorkommen. Sie produzieren kleine Peptide, die zahlreiche biologische Funktionen und 

wichtige ökologische Funktionen erfüllen. NRPSs bestehen aus verschiedenen Modulen, die jeweils 

für die Verarbeitung (Substrataktivierung oder chemische Modifikationen) und die Einbindung 

einzelner Substratmonomere verantwortlich sind. Ein einzelnes NRPS-Modul besteht aus drei 

Domänen: Adenylierung (A), Kondensation (C) und Thiolierung (T). Die Substratselektion und 

seine Aktivierung durch Adenylierung ist ein wichtiger Schritt in der Biosynthese von nicht-

ribosomalen Peptiden (NRPs). A-Domänen katalysieren die ATP-abhängige Aktivierung von 

Substraten mit Carboxyterminus. A-Domänen-Substrate umfassen nicht nur natürliche Aminosäuren 

(D- und L-Form), sondern auch nicht-proteinogene Aminosäuren. Das Zulassen von nicht-

proteinogenen Aminosäuren erhöht die strukturelle und chemische Vielfalt der biosynthetisierten 

Peptide. Es wurde auch berichtet, dass C-Domänen eine moderate Spezifität gegenüber einem 

Substrat aufweisen, das durch eine A-Domäne aktiviert wird. Die Norine-Datenbank hat 543 

Monomere (247 NRPS spezifisch) in ihrem Repositorium aufgelistet. Diese Monomere wurden aus 

den kompletten chemischen Strukturen charakterisierter NRPs extrahiert. Da das Substratrepertoire 

groß ist und Spezifitätsregeln für Pilze nicht ausreichend bekannt sind, gibt es Schwierigkeiten bei 

der Vorhersage von Substraten für Pilz A-Domänen. In Bakterien wurden zehn Aminosäurereste als 

"NRPS-Code" etabliert, die die Spezifität für A-Domänen bestimmen. Diese Aminosäurereste 

wurden durch Mutagenese-Studien einer Phenylalanin-Bindungs A-domäne identifiziert.  

Um den Zusammenhang zwischen Pilz-A-Domänen und ihrer Spezifität zu untersuchen, führte ich 

eine Clusteranalyse von NRPS-Code-Resten durch. Pilz-A-Domänen-Sequenzen mit bekannten 

Substraten und entsprechenden NRPS-Code-Resten wurden aus dem NRPSpredictor2-Datensatz 

(entwickelt 2011) bezogen. Ich habe nach 2011 entdeckte Sequenzen manuell kuratiert und dem 

NRPSpredictor2-Datensatz hinzugefügt. NRPSpredictor2 ist ein Substratspezifitätsklassifizierer für 

die A-Domäne, der zur Vorhersage Support-Vektor-Maschinenmodelle verwendet. NRPS-Code-

Reste wurden durch physikalisch-chemische Eigenschaften codiert, die für die Bindung kleiner 

Moleküle wesentlich sind, und diese Reste wurden aufgrund ihrer Ähnlichkeit geclustert. Die 

Clusteranalyse zeigte ähnliche NRPs-Codes für α-Aminoadipinsäure, Phenylalanin und Tryptophan, 

etc. zwischen Bakterien und Pilzen. Pilz NRPS-Codes für Substrate wie Tyrosin, Serin und Prolin 
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bildeten keine Cluster mit Bakterien, was auf eine unabhängige Evolution der Substratspezifität in 

Pilzen hindeutet. Dies unterstreicht die dringende Notwendigkeit der Entwicklung eines 

pilzspezifischen Vorhersagetools. 

Derzeit verfügbare sequenzbasierte A-Domänen-Spezifitätsvorhersageprogramme identifizieren 

Substrate für Bakterien genau, liefern aber keine korrekten Vorhersagen für Pilze. SANDPUMA, ein 

2017 entwickelter Ensemble-Klassifizierer für die Vorhersage der Substratspezifität in der A-

Domäne verwendet nur 90 Pilzsequenzen (vollständiger Datensatz - 928 Sequenzen) und liefert 

keine genauen Substratvorhersagen für Pilzsequenzen. 

Ich präsentiere hier einen neuartigen Ansatz zur Vorhersage der Substratspezifität von Pilz-A-

Domänen, der auf einem neuronalen Netzwerk (NN) basiert. Ich habe einen NN-basierten A-

Domain-Substratspezifitätsklassifizierer (NNassc) unter Verwendung von Keras mit TensorFlow-

Backend in der Python-Skriptsprache entwickelt. Er wurde ausschließlich unter Verwendung von 

NRPS-Codes für Pilze trainiert und kombiniert physikalisch-chemische und strukturelle Merkmale 

zur Vorhersage der Substratspezifität. Interne und externe Validierungsdatensätze von experimentell 

verifizierten NRPS-Codes wurden verwendet, um die Performanz von NNassc zu beurteilen. 

NNassc-Vorhersagen wurden mit SANDPUMA anhand dieser beiden Validierungsdatensätze 

verglichen. Im Gegensatz zu früheren sequenzbasierten Vorhersagewerkzeugen beinhaltet unser 

Ansatz die Vorhersage von Substratunterstrukturen und nicht nur von Substratklassen. NNassc 

identifiziert in allen Fällen mit Ausnahme von Phenylalanin korrekte Substrate innerhalb der ersten 

drei oder fünf Vorhersagen, während SANDPUMA nur mit Alanin- oder Tyrosin-NRPS-Codes 

arbeitet. Das Substrat wird als Morgan-Fingerabdruck-Bitvektor kodiert, so dass jedes Bit eine 

bestimmte molekulare Eigenschaft oder eine Teilstruktur kodiert. Die Vorhersage von Teilstrukturen 

hat den Vorteil, dass auch neuartige (nicht Teil des Trainingsdatensatzes) Substrate vorhergesagt 

werden konnten, die diese Teilstrukturen besitzen. Im Falle von NNassc wurden Vergleiche der 

vorhergesagten Fingerabdruck-Bitvektoren nur mit Trainingsdatensatz-Substraten durchgeführt, 

obwohl eine größere Datenbank (z. B. Norine-Datenbank) mit wahrscheinlichen Substraten in 

schwierigen Fällen verwendet werden könnte. In Zukunft könnten die Vorhersagen der 

Substratspezifität in der A-Domäne verbessert werden, indem mehr NRPS-Codes für jedes Substrat 

und strukturelle Informationen über spezifische Bindungsinteraktionen einbezogen werden. 
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“Trying to understand the way nature works involves a most terrible test of 

human reasoning ability. It involves subtle trickery, beautiful tightropes of logic 

on which one has to walk in order not to make a mistake in predicting what will 

happen. The quantum mechanical and the relativity ideas are examples of 

this”. 
 

Richard P. Feynman 

(“The Uncertainty of Science”, John Danz Lecture Series, 1963) 
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1. Introduction 

Secondary metabolites or natural products are specialized metabolites produced by different (micro) 

organisms, which gives them survival advantages in their respective environmental niches. These 

metabolites play multifarious roles (biological, ecological, pharmaceutical and agricultural purposes) 

and hence these could be exploited for human use. Nature has endowed us with diverse sources of 

these metabolites, namely bacteria, fungi, plants and marine animals (metabolites were produced by 

microbial symbionts, Unson et al., 1993). Recent metagenomic studies have helped unearth many 

unimagined and previously unexplored sources of natural products (NPs), e.g., the human gut 

microbiome (Donia et al., 2014), marine samples, etc. (Hyde et al., 2019). Besides, NPs crucial 

ecological role, they have been important for the humankind in pharmacological (the inspiration for 

drugs) and agricultural (insecticides, fungicides) areas. “The golden age of antibiotic discovery” was 

termed for the period of the 1930s till the 1950s, during which the potent antibiotics were discovered. 

It all started with the serendipitous discovery of penicillin by Alexander Fleming in 1928. Traditional 

drug discovery after this era involved time-consuming steps of isolation and purification of small 

molecules that modulate biological targets. Target-based (specific biological target) screening was 

practiced for a long time, but with the advent of gene sequencing technologies and usage of 

computational chemistry, this changed. During the 1980s to early 1990, many pharmaceutical 

companies moved from NP based drugs to synthetic compounds. It was also the time when molecular 

biology techniques were gaining widespread attention. In recent years NPs have received renewed 

attention from many academic research labs for novel compounds for drug discovery, although 

finding chemically distinct scaffolds is still a big challenge. Despite technological advances and a 

better understanding of disease mechanisms, there are still low success rates in drug discovery 

programs. 

For this thesis, the main goal was to predict substrates for fungal adenylation domains, which are 

key enzymes of non-ribosomal peptide synthetase (NRPS) involved in substrate selection. NRPSs 

are mega synthetases for secondary metabolite biosynthesis, which are generally organized into 

different modules. The neural network-based machine learning model for the prediction of substrates 

for adenylation domains was developed and validated. With this model, it would be possible to assign 

substrates to fungal A-domains from sequenced genomes. Consequently, it helps to move one step 

closer to predict the complete structure of fungal non-ribosomal peptides. 
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In the following sections, I shall give a brief overview of NPs and their potential in drug discovery. 

I shall also describe molecular representation for small molecules and introduce machine learning 

methods in the upcoming sections, which will be useful later for the development of the model.  

1.1 Why is there a need for new drugs?  

Many neglected tropical diseases e.g. African trypanosomiasis (sleeping sickness), leishmaniasis, 

lymphatic filariasis, schistosomiasis have limited treatment options, hence more research for the 

development of novel treatments is warranted. One of the other crucial reasons for discovering or 

designing novel drugs is to combat infections caused by microbes, as they are becoming highly 

resistant to currently available drugs.  

1.1.1 Antibiotic resistance 

Antibiotic resistance is the ability by which bacteria acquire or develop resistance against previously 

effective drugs. Horizontal transfer of antibiotic resistance genes is one of many mechanisms by 

which microbes become resistant (Von Wintersdorff et al. 2016) (Table 1). These resistance genes 

are acquired from the bacteria that produce these antibiotics (Martinez, J. L. 2014, Reygaert W. 

2018). The second reason for the prevalence of antibiotic resistance is their widespread and 

haphazard use. To circumvent this problem of resistance, there is an urgent need for novel drugs or 

therapies. 

1.2 Natural products-based drug discovery 

Drug discovery must fulfill two prime conditions that, the drugs are safe and effective. 

Accomplishing these conditions relies on a range of other factors namely bioavailability, absorption, 

distribution, metabolism, excretion, and toxicology, which are also termed as ADMET properties. 

Drug discovery involves laborious steps of from the target identification up to the clinical trials; 

hence it is a long and expensive endeavor. Computational efforts help accelerate this process and 

effectively reduce the monetary burden. Recent efforts towards computational drug discovery 

encompass structure-based, ligand-based, or fragment-based drug design approaches (Macalino et 

al., 2015). Structure-based drug design methods have been synergistically used with other 

experimental methods for the development of few drugs (e.g. Boceprevir is used as a protease 
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inhibitor to treat hepatitis). Some of these drugs are at different stages of clinical trials (Talele et 

al., 2010).  

Table 1. List of antibiotics and year of their development and year when resistance was first observed 

in bacteria. Source: Centers for disease Control and Prevention.  

Antibiotic (year introduced) Year resistance was reported (bacteria) 

Penicillin (1943) 1965 (Penicillin-R Pneumococcus) 

Tetracycline (1950) 1959 (Tetracycline-R Shigella) 

Erythromycin (1953) 1968 (Erythromycin-R Streptococcus) 

Methicillin (1960) 1962 (Methicillin-R Staphylococcus) 

Gentamicin (1967) 1979 (Gentamicin-R Enterococcus) 

Vancomycin (1972) 1988 (Vancomycin-R Enterococcus),  

2002 (Vancomycin-R Staphylococcus) 

Imipenem and Ceftazidime (1985) 1987 (Ceftazidime-R Enterobacteriaceae) 

Levofloxacin (1996) 1996 (Levofloxacin-R Pneumococcus) 

Linezolid (2000) 2001 (Linezolid-R Staphylococcus) 

Ceftaroline (2011) 2011 (Ceftaroline-R Staphylococcus) 

 

NPs possess certain physicochemical properties that make them promising candidates for drug 

discovery. These properties vary depending upon the class of compounds. Some classes of the 

studied NPs show many chiral centers, sp3 configured atoms, characteristic 3D shape, higher 

molecular complexity, lower hydrophobicity, larger molecular scaffolds than synthetic drugs which 

are crucial properties to act as potential drug candidates (Stratton et al., 2016). Many NPs follow the 

rule of five (Lipinski et al., 1997), hence they are good starter molecules for drug design. Many US 
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food and drug administration-approved drugs are either derived from NPs or NPs themselves 

(Patridge et al., 2016), e.g. in case of drugs approved for cancer (between the 1940s - 2014) – 49% 

are NPs or direct derivatives (Newman et al., 2016). NPs harbor substructures or functional groups 

that are optimized through the course of evolution to selectively bind biological targets. 

Computational tools such as ChemGPS-NP (Larsson et al. 2007), ScaffoldHunter (Wetzel et 

al. 2009) have been pivotal in finding NP derived fragments (Rekar et al. 2014). NP derived 

fragments have been successfully used as inhibitors for p38a MAP kinase of by Waldmann and 

coworkers (Björn et al. 2013). NPs could be used to selectively target, proteins of interest, as they 

are less promiscuous in comparison to synthetic drugs (Schneider et al., 2016, Tiago et al., 2016). 

Peter Ertl and coworkers compared NPs produced by different organisms and they found out that, 

NPs produced by fungi and plants are most closely related. This is because the NPs produced by 

fungi and plants share more functional groups with each other than with bacteria (Ertl et al., 2019). 

1.3 Fungi – a source of novel natural products  

Fungi produce an array of structurally and chemically diverse NPs that could have detrimental or 

beneficial effects for humans or other organisms. These different classes include but are not limited 

to polyketides, ribosomal and non-ribosomal peptides, terpenes, alkaloids, etc. The structures of few 

fungal non-ribosomal peptides are shown in Fig1. Precursors for NP biosynthesis are obtained either 

from primary metabolism or from pathways dedicated to their synthesis. Genes involved in NP 

synthesis are often arranged in one contiguous genetic locus, which is called the biosynthetic gene 

cluster (BGC). BGCs are comprised of a set of genes that are co-localized (on chromosome) and are 

co-expressed under certain conditions. BGCs are composed of genes for core enzymes responsible 

for the complete biosynthesis of NPs from monomers, as well as genes for accessory enzymes. In 

addition to this, genes for transcription factors (for the regulation of expression), transporters (for 

detoxification of compounds) could also be a part of BGCs (Keller et al., 2019). Minimum 

Information about a Biosynthetic Gene Clusters (MIBiG), a systematic and well-curated resource 

and a standard for deposition of BGCs (in bacteria, fungi, and algae) was conceptualized by 

Medema et al., 2015. Multiple studies have suggested that fungal genomes are replete with cryptic 

BGCs without any knowledge of encoded compounds. Li et al., 2016 collected experimentally 

characterized 197 NPs, and they highlight that only certain compound classes e.g. Aflatoxin or fungal 

phyla e.g. Aspergilli are overrepresented in these. Specifically, fungal species of Basidiomycota are 
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less well characterized, and these studies point towards their tremendous untapped potential to 

produce novel NPs (Lackner et al., 2012, Li et al., 2016, Stadler et al., 2015, Frisvad et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Chemical structures for fungal NPs. Cyclosporin A, Penicillin G, Peramine, HC-toxin, and 

Tryptoquialanine. Structures were edited in MarvinSketch (version 19.24, developed by ChemAxon, 

http://www.chemaxon.com) and SDF files were obtained from the PubChem database. 
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1.4 Why are fungal natural products not studied well?  

The numbers of bacterial genomes sequenced is manifold higher than in fungi, hence comparative 

analysis of bacterial sequences to study their biosynthetic potential is possible. While many bacterial 

BGCs are well studied, characterization of fungal BGCs and their products lags well behind their 

actual capacity. The difficulty to study fungal biosynthetic machinery arises due to multifarious 

factors such as slower growth rates, lower product yields, inactive BGCs, etc. Some of the strategies 

to study fungal NP repertoire are changing growth conditions, providing osmotic or oxidative stress, 

the addition of elicitors, co-culture with other microorganisms, and heterologous expression of BGC 

genes (Hoefgen et al., 2018). However, many fungi are not amenable to genetic manipulations. All 

these factors make NP characterization in fungi much slower and less intensive than that in bacteria. 

Also, the experimental approaches are time and labor-intensive, and they do not guarantee success 

in discovering novel compounds. Many a time, same NPs are rediscovered after experimental 

characterization of seemingly novel BGCs. This calls for an alternative, yet powerful approach of 

using state-of-the-art computational methods to mine fungal genomes for new chemical structures. 

In last few years, computational prediction of NPs followed by systematic experimental 

characterization has become commonplace because of the development of powerful bioinformatics 

algorithms e.g. antiSMASH 4.0 (identification of BGCs in bacteria and fungi and prediction of 

encoded NPs) (Blin et al., 2017), CASSIS (BGC prediction in genomes of eukaryotes) (Wolf et 

al., 2016), SMURF (prediction of BGCs in fungi) (Khaldi et al., 2010), PhytoClust (identification of 

BGCs in plants) (Töpfer et al., 2017), PRISM 3.0 (prediction of chemical structures of NRPs) 

(Skinnider et al., 2017). The development of better tools for fungal and plant genome sequence 

analysis are needed, as previously developed tools use bacterial data to train their algorithms. 

In the following sections, Non-ribosomal peptide synthetases and roles of individual domains 

(mainly adenylation and condensation) in the biosynthesis of peptides are discussed. This lays the 

groundwork for the main research work of this thesis i.e. substrate specificity prediction of 

adenylation domains.  
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1.5 Non-ribosomal peptide synthetases (NRPS) 

NRPSs are megasynthetases that biosynthesize non-ribosomal peptides (NRPs) from small building 

blocks. NRPSs are composed of one or more self-sufficient modules required for selective activation 

of amino acids and their incorporation into the peptide chain. The minimal module consists of an 

adenylation (A), thiolation (T) or peptidyl carrier protein (PCP) and condensation (C) domains. A-

domains are capable of specifically selecting substrates and activating them by adenylation. These 

domains transfer activated amino acids to a phosphopantetheine moiety attached to T-domain. This 

moiety is covalently linked to conserved serine hydroxy groups in T-domain. C-domains are 

involved in condensation of substrates activated by A-domains. Although the substrate selection is 

primarily done by A-domains, C-domains are known to show moderate specificity towards substrates 

activated by downstream A-domains (Rausch et al., 2007). NRPSs also contain accessory domains, 

which are involved in modifying the growing peptide or monomers or substrates. For e.g. 

Epimerization (E) domain inverts the stereochemistry of the alpha carbon of the substrates amino 

acids, methyltransferase (M) domain transfers methyl group on oxygen or nitrogen. The terminal 

domain of NRPS is responsible for the catalytic release of the complete peptide. Thioesterase (TE) 

and cyclization (Cy) or condensation like (CT) domains are usually found in bacterial and fungal 

NRPSs respectively (Fig 2.). 

The modular nature of the NRPS mega synthetases makes them promising candidates for the 

engineering of desired compounds. There are multiple ways of the engineering of NRPSs such as 

directed evolution, random mutagenesis, single residue mutations or module recombination. 

Although each of them is associated with their own set of challenges, to overcome these, further 

understanding of the NRPSs biosynthesis mechanism is required. One of the important steps is to 

better understand the fine mechanisms of A- and C-domain substrate specificities. 
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Figure 2. Schematic representation for NRPS mega synthetase biosynthetic mechanism. A-domains 

select substrates and activate them by adenylation reaction, C-domains possess two binding sites for 

substrates activated by adjacent A-domains. T-domain tethers activated substrate and the growing 

peptide. A-Adenylation, T-Thiolation, C- Condensation, and TE- Thioesterase domain. NRPSs are 

terminated usually by TE and CT domains in bacteria and fungi respectively except in ACVS 

synthetases found in fungi have TE domains at their termini. 

1.6 Adenylation domains  

NRPS A-domains are a part of ANL (Acyl-CoA synthetase, Non-ribosomal peptide 

synthetase, Luciferase) family which belongs to adenylate forming enzyme superfamily. Other 

members of this superfamily include class I and II aminoacyl-tRNA synthetases, which are involved 

in ribosomal peptide synthesis. They have different structural folds compared to NRPS A-domains 

but catalyze the same biochemical reaction. 

A-domains have large N-terminal and smaller C-terminal subdomains. A-domains catalyze two 

enzymatic reactions, the first one being recognition and activation of the carboxyl group-containing 

substrates by adenylation reaction and the second, transfer of acyl-AMP intermediate to the 

AAA C C T

S

TE
Sub
1

S

T

ONH2

R1

O
NH2

R1

Sub
2

O

NH2 R2

S

Sub
3

S
O

NH

R2

E
T

O

NH2 R1

O

NH2 R3

S S
O

NH

R3

O

NH R2

O
NH2

R1

MODULE 1 MODULE 2 MODULE 3



23 

phosphopantetheine arm of the T (or PCP) domain. A-domains are crucial as they catalyze ATP 

dependent activation of otherwise unreactive carboxylic acids. Mechanism of substrate recognition 

and activation by adenylation reaction has been studied by structural analysis of individual (or in 

complexes) domains for NRPSs. A-domain 3D structures that are deposited in Research 

Collaboratory for Structural Bioinformatics Protein data bank (RCSB PDB) are listed in Table 2. 

Table 2. NRPS A-domain three dimensional structures deposited in RCSB PDB database. PDB ID 

and bound substrate information is given along with year of structure determination.  

PDB ID Protein  Secondary 

metabolite 

Bound substrate  Year 

3ITE  SidNA3 Siderophore N(d)-cis-anhydromevalonyl-

N(d)-hydroxy-L-ornithine 

2010 

6P4U, 6P3I, 6OYF, 

6OZV, 6P1J  

Txo1 Teixobactin - 2019 

5N82 TycA - (S)-beta-phe 2018 

5WMM ThioS Thiocoraline Norcoronamic acid (and L-val) 2018 

5N9W, 5N9X Thr1 Chloro Thr L-Thr 2017 

5JJQ IdnL1 Incednine 3S-3-aminobutyeic acid 2017 

5JJP CmiS6 Cremimycin 3-aminononanoic acid 2017 

5ES8 LgrA Linear gramicidin L-Val 2016 

4ZXI AB3404 Unknown Gly 2016 

5T3D EntF Enterobactin L-Ser 2016 

4WV3 AuaEII Aurachin Anthranilic acid 2016 
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4R0M McyG Microcystin L-Phe 2015 

4D56, 4D57 ApnA-A1 Anabenopeptin L-Arg/L-Tyr 2015 

4OXI AlmE LPS modification Gly 2014 

3WV5 VinN Vicenistatin Beta-methyl-L-Asp 2014 

4GR5 SlgN1 Streptolydigin Beta-methyl-L-Asp 2013 

4DG8, 4DG9 PA1211 Unknown L-Val 2012 

2VSQ SrfA-C Surfactin L-Leu 2008 

3DHV DLTA D-alanylation of 

lipoteichoic acid 

D-Ala 2008 

3VNR, 3VNQ, 

3VNS 

CytC1 Cytotrienin 2-aminobutyaric acid 2007 

1AMU  PheA Gramicidin L-Phe 1997 

 

1.7 Substrate specificity of A-domains 

A-domains are known to selectively activate substrates by coordinating with them through a set of 

binding site residues. Marahiel and coworkers (Stachelhaus et al., 1999) defined the 10 residues 

involved in recognition of substrates as “NRPS code” (Fig 3). These residues were deduced from 

bacterial phenylalanine activating A-domain (PheA). Mutations of NRPS code residues in PheA are 

shown to alter the substrate specificity to activate non-cognate substrates. Pyrophosphate (PPi) 

exchange assay with a highly purified enzyme is a standard method to elucidate substrates activated 

by A-domains. 

A-domains recognize not only twenty natural amino acids but other non-proteogenic acids such as 

fatty acids, hydroxy acids, aromatic acids, aryl acids, keto acids, etc. Recent studies by De Mattos-
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Shipley et al. 2018 show that methylated amino acids could also be accepted by A-domains. 

Incorporation of these non-proteinogenic amino acids into NRP provides increased structural 

diversity, protease degradation resistance, and stereochemical constraints. A-domain substrates and 

NRP monomers that are incorporated in NRPs are deposited in the Norine database by Pupin and 

coworkers (Flissi et al., 2015). Although this database does not include all A-domain substrates 

characterized, 247 A-domain monomers pertinent to NRPS mega synthetases are listed there. 

Accessory enzymes modify monomers or growing peptides, hence monomers deduced from the final 

peptide structure could be different from substrates activated by A-domains.  

 

 

 

 

 

 

  

 

 

 

Figure 3. NRPS code residues from bacterial and fungal A-domains. Nine residues for the bacterial 

PheA (binds phenylalanine) NRPS code is shown (highly conserved catalytic lysine residue is not 

shown). 17 residues from fungal SidNA3 (binds large substrate, N(d)-cis-anhydromevalonyl-N(d)-

hydroxy-L-ornithine) are shown. W239 from PheA at the base of pocket controls the pocket size (in 

fungi this residue is replaced by G235). 

Substrate specificity differences in A-domains could be brought about by mechanisms such as 

sequence divergence, duplication, recombination events or sequence polymorphisms. A-domains 

PDB ID: 3ite (Fungal) PDB ID: 1amu (Bacterial)   
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share sequence identity in the twilight zone (20-35%) with its homologs, hence there is a difficulty 

in building reliable 3D structural models. Despite high sequence divergence on the overall low 

sequence identity background, 3D structural folds are well conserved. Lee Verena and coworkers 

employed A-domain 3D modeling and ligand-docking based approach for substrate specificity 

inference, but they emphasized that the accuracy of models built was a major bottleneck to predict 

substrates correctly (Lee et al., 2015). 

A-domains are the gatekeepers for substrates incorporated into growing NRPs. The logic behind the 

selection of specific substrates lies in substrate binding residues. Structural elucidation of A-domains 

and other NRPS proteins through x-ray crystallography, nuclear magnetic resonance or cryo-EM 

microscopy is possible but is not always straightforward. In such difficult cases, computational 

approaches could be used to predict A-domain substrates and relevant protein-protein interactions. 

Some residues of NRPS code coordinate directly with the substrate, while others are involved in 

positioning directly interacting residues for optimal interactions (Lee et al. 2010). Substrates could 

have directional hydrogen bond interactions with polar residues or hydrophobic interactions with 

aliphatic or aromatic residues. There are multiple ways of binding the same substrate, which is 

exemplified by the presence of many non-redundant NRPS codes for the same substrates. These 

differential interactions cannot be identified without experimentally solved structures of A-domain–

substrate complexes. Out of all A-domain 3D structures deposited in the RCSB PDB database, only 

one is of eukaryotic origin (PDB ID: 3ITE): the third A-domain of the fungal SidN with specificity 

to N(d)-cis-anhydromevalonyl-N(d)-hydroxy-L-ornithine (Lee et al. 2010). In contrary to ten NRPS 

code residues extracted from bacterial A-domain (substrate - phenylalanine), fungal SidN suggests 

17 binding residues to interact with an unusually large substrate (L-ornithine derivative). 

Depending on the size and locations of charged residues of a binding pocket, different substrates can 

be bound and activated by the same pocket. For example, tyrosine and arginine which are 

structurally, and chemically different substrates could bind to the same ApnA A1 pocket (Kaljunen et 

al. 2015). Crystal structures (PDB IDs: 4D56, 4D57) of bound substrates depict identical binding 

shapes and interactions for both substrates. These insights are not possible without high-resolution 

structures of A-domain-substrate complexes. A structural basis for non-proteogenic amino acid 

binding NRPS codes was recently studied (Kudo et al., 2018). These studies reiterate the importance 

of structural information to deduce A-domain substrate recognition rules. 
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1.8 Condensation domains                    

Condensation (C) domains catalyze amide bond formation between two amino acids (or hydroxy or 

aryl acids) in a growing peptide chain. C-domains have two binding sites, one for aminoacyl acceptor 

and the other for binding a peptidyl donor. C domains are suspected to favor only some substrates 

activated by A-domains and hence imparting one more layer of specificity. Rauch et al., 2007 

categorized bacterial C-domains based on stereochemistry of substrates condensed (L or D- amino 

acids) or accessory chemical reactions catalyzed. These groups are LCL, DCL, Starter C domains, 

heterocyclization (Cyc) and, dual Epimerization/Condensation domains. These C-domains or C-

domain like enzymes catalyze other chemical reactions in place or along with condensation reaction 

(Kraas et al., 2012; Linne and Marahiel, 2000; Rausch et al., 2007; Stachelhaus and Marahiel, 1995). 

C-domains harbor catalytic motif HHXXXDG, residue mutations from this motif have shown to alter 

condensation activity (Bergendahl et al., 2002). Bloudoff et al., 2016 provided the first C-domain 

acceptor substrate analog bound structure (PDB ID: 5DU9 and 5DUA), which is obtained by 

covalent tethering this analogue near the active site. The acceptor substrate a-amino group acts as an 

H bond donor and interacts with H157 and S386. Mutational analysis performed in this work also 

suggested that H157 plays a key role in substrate positioning and S309 imparts acceptor substrate 

selectivity. 

In bacteria, thioesterase (TE) domains are dedicated to cyclization of peptide precursors, while in 

fungi, C-domain like CT domains catalyze the release of peptide products or their macrocyclization. 

Phylogenetic analysis suggests that these CT domains show higher similarity among different multi 

and mono modular NRPSs than with C-domains from the same NRPS (Haynes et al., 2014). 

Cyclosporine, tryptoquialanine or fumiquinazoline (alkaloids) are some compounds whose NRPSs 

harbor CT domains at the end. 

There have been several attempts to engineer NRPS assembly lines, but there were difficulties to 

produce desired compounds in higher amounts (Zobel et al., 2016, Winn et al., 2016). This could be 

due to an incomplete understanding of and A and C-domain substrate specificities (Rausch et 

al., 2007) and protein-protein interactions among various domains. Helge Bode and coworkers 

introduced a novel concept of exchange units (XUs) to engineer NRPS assembly lines. Linker 

regions (are short sequences that connect adjacent domains or modules) were also included along 
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with A-PCP-C domains while swapping the modules, which resulted in the efficient production of 

novel peptides (Bozhüyük et al., 2018). 

In the following section, an explanation is given for how small molecules are represented in 

computational chemistry methods, which will be useful when structural comparisons of fungal A-

domain substrates and NRP monomers was done. Ideally, molecules should be encoded into a format 

without losing too much information about the structure and stereochemistry. Also, to handle a 

collection of molecular structures, they must be encoded into a simple format, such that they could 

be easily queried from a database and compared.   

1.9 Encoding of small molecules 

1.9.1 Molecular representation  

There are many ways of encoding small molecules in a machine-readable format (Engel 2003). One 

dimensional Simplified molecular-input line-entry system (SMILES) is a text-based molecular 

representation format with ASCII characters for atom and bonds, e.g., SMILES for Propyl alcohol 

is CCCO. Depending on which heavy atom is used to start writing SMILES strings, multiple 

SMILES strings could be produced, which introduces ambiguity. Canonical SMILES were 

developed to overcome this problem, but they also produce redundant entries for some molecules. 

SMARTS can describe small fragments of molecules. SMARTS has additional symbols than 

SMILES that describe special atomic properties, e.g. valence, ring connectivity, chirality, etc. 

SMARTS strings give flexibility in molecular substructure comparisons; hence they are used to 

query large molecular databases. SMILES are a subset of SMARTS representations. To provide a 

unique and non-proprietary standard identifier, which might circumvent the problems associated 

with other identifiers, International Chemical Identifier (InChI) was introduced in 2006 (McNaught 

2006). InChI has a hierarchical layered format to represent different features of a chemical structure 

(Heller et al., 2015). These different layers could encode information such as charge, 

stereochemistry, empirical formula, atom connectivity and number and connectivity of hydrogen 

atoms.  
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1.9.2 Molecular descriptors  

Molecular descriptors are numerical representations of molecular characteristics derived from their 

structures or chemical constitutions. These descriptors are calculated either by an algorithm through 

a predefined set of rules or by experimental measurements or quantum mechanical calculations.  

1D or 0D descriptors are calculated from the empirical formula of the molecules. These are simple 

descriptors such as the number of atoms, bond order, molecular weights. 2D descriptors are 

computed using 2D structures of molecules; examples include topological distances and charges, 

etc. Similarly, 3D descriptors need to be derived from the 3D structural representation of molecules, 

such as surface/volume ratio, solvent accessible surface area. 4D, 5D and 6D descriptors are 

composite descriptors, they encode dynamic information of the molecular structure along with other 

molecular properties. Dragon 7.0, commercial software can compute as many as 5270 molecular 

descriptors. There are other freeware alternatives for molecular descriptor computations such as 

MODEL (3778 descriptors, Li et al., 2007), PaDEL (1875 descriptors, Chun 2010).  

1.9.3 Molecular fingerprints  

 

 

 

 

 

 

 

Figure 4. Schematic representation for Morgan fingerprint computation. For each heavy atom, all 

the neighborhood atoms with a given radius (radius signifies the number of atoms to traverse around 

the atom) are found. The circular neighborhood for two heavy atoms (shown with an asterisk) with 

radius 1 or 2 (circles with dotted lines) are shown. After finding these sets of atoms or substructures, 
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they are encoded into a bit vector of a fixed length. Bit value indicates the presence or absence of a 

substructure, which is shown by an arrow pointing at their positions in the bit vector. 

Molecular fingerprints allow encoding of molecules into bit vectors. Bits map to either presence (or 

absence) or counts of molecular properties and substructures. Simple fingerprints include atom pair 

fingerprints, atom connectivity information for pair of atoms is stored. Molecular substructure-based 

fingerprints are Molecular ACCess System (MACCS) keys, which are binary fingerprint bit vectors 

with the size equal to 166, each of the bit encodes predefined MACCS keys. Each of the MACCCS 

keys is predefined substructures and atom types. As substructure types are limited, this imposes 

difficulty in encoding diverse chemical compounds. Morgan fingerprints, which are widely used 

fingerprints that calculate circular neighborhood around heavy atoms dynamically hence could be 

used for chemically distinct molecules. 

Morgan fingerprints are computed as shown in Fig 4. Generally, functional-class fingerprints (FCFP) 

definitions for Morgan fingerprints are used to build structure-function relationships. In FCFP, 

functionally similar atoms could be used interchangeably e.g., OH and SH groups are treated same 

since both O and S atoms act as hydrogen bond donors. CDK (Willighagen et al. 2017), RDKit 

(Landrum 2006) and Open Babel (Boyle et al. 2011) are widely used packages to handle small 

molecules into various fingerprints and other structural analysis. 

1.9.4 Molecular similarity  

Tanimoto (or Jaccard) and Dice are widely used coefficients for molecular structure comparisons. 

Other distance-based metrics include Euclidean and Manhattan distances. A comparison of eight 

metrics by Bajusz et al., 2015, has put Tanimoto, Dice, Cosine and Soergel coefficient in the same 

basket as these produce similar rankings for structurally similar compounds. 

Tanimoto and Dice coefficients are calculated as shown in below. 

𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| 

	

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =
2 ∗ |𝐴 ∩ 𝐵|
|𝐴| + |𝐵|  



31 

A and B are sets of molecular descriptors or properties of two molecules  

Distances are calculated as 1- Tanimoto (A, B) or 1- Dice (A, B). 

1.10 Computational methods for A-domain substrate specificity predictions 

For many bacterial A-domains, substrate specificity determinants (NRPS code) have been 

determined through experiments, although in absence of homologs (with known substrates) it is 

difficult to assign specificity for novel fungal A-domains. Computational methods are developed to 

leverage this specificity information for accurate substrate predictions.  

A-domain substrate specificity prediction tools that are developed so far (Table 3) use protein 

sequences or features derived thereof for the prediction of the substrates. Although single residue 

changes have a detrimental effect on non-covalent interactions, shape and charge microenvironment, 

hence structural insights are crucial for successful specificity prediction. For other protein classes, 

3D structure-based ligand-protein fragment-fragment interactions have been exploited to predict 

possible ligands with the use of artificial neural network models (Tang et al. 2014). Such data-driven 

approaches are feasible when enough ligand-protein complex structural information is available. The 

scarcity of experimentally elucidated structural data for fungal A-domains has hindered the 

development of structure-based machine learning methods. More efforts shall be devoted to 

crystallizing A-domain structures to decipher substrate recognition mechanisms. 

The tools listed in Table 3 use more bacterial sequences for training classifier, hence they work well 

with bacterial sequences but fail to give accurate predictions for fungi. For example, SANDPUMA 

uses only 9.6% (90) fungal sequences to train its algorithms in contrast to 88.3% (819) bacterial 

sequences. This shows bias towards studying prokaryotic over eukaryotic NRPS mega synthetases.   

1.10.1 SANDPUMA: an ensemble classifier  

SANDPUMA (Chevrette et al., 2017) is a relatively recently developed tool for substrate specificity 

inference. This tool is incorporated into a widely used pipeline, antiSMASH (Blin et al., 2017), 

which is used worldwide for secondary metabolite structure prediction by analyzing genomic 

sequences. SANDPUMA is an ensemble classifier that combines binding site (active site motif and 

support vector machine) and full-length sequence (profile HMM and prediCAT) based methods to 
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predict substrates of A-domains. SANDPUMA considers percent sequence identity (with training 

examples) and predictions from individual algorithms to assign specificity to A-domains.  

Table 3: A-domain substrate specificity prediction tools. Accuracy and F measure values are listed 

here (obtained from the publication) for each algorithm with their datasets. Fungal A-domain 

substrate specificity accuracy or F measure is mentioned for NRPSpredictor2 and LSI. SB = 

Substrates, SQ = Sequences, F= F measure.  

Tool  Algorithm Dataset Accuracy Current 
Status 

SANDPUMA (Chevrette et 
al., 2017) 

Decision tree 928 SQ        
104 SB 

0.84 incorporated into 
antiSMASH 4.0 

Virtual screening (Lee et al., 
2015) 

Ligand 
docking 

10 (structures) 
12 (models) 
59 SB 

1.0 (structures) 
0.61 (models) 

no web tool 

SEQL-NRPS (Knudsen et al., 
2015) 

Sequence 
learner 

537 SQ           
37 SB 

0.71 active 

NRPSpredictor2 (Röttig et al., 
2011) 

Support vector 
machine 

576 SQ          
75 SB 

F 0.94 (bacterial) 

F 0.84 (fungal) 

inactive 

 

LSI (Baranašić et al., 2014) Latent 
semantic 
indexing 

397 SQ 

47 SB 

0.89 (bacterial) 

0.85 (fungal) 

inactive 

NRPSsp (Prieto et al., 2012) Hidden 
Markov 
models 

1578 SQ 0.86 active  

NRPS/PKS substrate 
predictor (Khayatt et al., 
2013) 

Hidden 
Markov 
models 

571 SQ 

58 SB 

0.66 inactive 
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1.10.2 Limitations and drawbacks of the previously developed tools  

As already mentioned above, the main drawback of the existing tools is the strong bias towards 

bacterial sequences, hence resulting in unreliable predictions for eukaryotic A-domains. The tools 

shown in Table 3 do not give accurate substrate predictions for fungal A-domains, e.g. A-domains 

which do not share NRPS code similarity with training set dataset sequences. This could be partly 

because of the usage of sequence-derived features for specificity prediction, which might not 

accurately model atomic-level interactions between substrates and NRPS code residues. 

SANDPUMA is incorporated into antiSMASH, hence it can be used through antiSMASH webserver 

(or locally by downloading binary files). Other tools, which have a web-based interface and are 

currently active include SEQL-NRPS and NRPSsp and remaining tools are either inactive or 

unavailable for use through a web interface. 

As stated before, the primary aim of this research work was to develop a fungal adenylation domain 

substrate specificity prediction tool, this was accomplished by training a neural network model. 

These models belong to widely used machine learning methods and hence a short overview of 

machine learning and neural network methods is given in the following sections.       

1.11 Machine learning  

Machine learning (ML) is defined by Stanford University as “Science of getting computers to act 

without being explicitly programmed” (http://cs229.stanford.edu, CS229: Machine Learning). It is 

based on a premise that computers could learn the inherent pattern in the data so that derived models 

are useful in the future. ML could be used in scenarios, where humans cannot discern patterns in 

high dimensional complex data. Depending on the problem at hand and the amount or type of data 

one possesses, a pertinent algorithm needs to be selected. While building ML models, a few things 

that need to be carefully considered are the correct splitting of data for the training (and the validation 

and testing purposes), the proper handling of hidden variables or experimental noise and defining 

the clear objectives for the prediction model (Rile 2019).  

We have witnessed advances in ML in image recognition (Simonyan et al., 2014), spam detection 

(Crawford et al., 2015), and sentiment analysis areas (Gautam et al., 2014). ML algorithms have also 

been successfully used in biological applications, e.g., protein structure prediction, protein-ligand 
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fragment binding predictions (Tang et al., 2014), protein folding, virtual screening, etc. (Carpenter et 

al., 2018). Recently held critical assessment of protein structure prediction (CASP13) competition 

(to test the ability of computational methods to predict 3D structures of proteins from sequences) 

was won by Google’s DeepMind firm with their AlphaFold algorithm (AlQuraishi et al., 2019). 

AlphaFold uses deep learning to predict distances between protein atoms by training on Protein Data 

Bank (PDB) three-dimensional structural data. Such advances surely give hope that ML could be 

wisely used to solve long-standing, challenging biological problems. 

Principally, ML methods could be subdivided into two types, supervised and unsupervised methods. 

For supervised ML, ground truth labels are required i.e. the mapping between input and output needs 

to be known beforehand, though, labeling of samples is a time consuming and labor-intensive 

process. Support vector machines, random forest, k-nearest neighbor classifications are examples of 

supervised ML algorithms. Classification algorithms would categorize samples to a predefined set 

of groups or classes e.g. logistic regression. These could be binary or multi-class classification, where 

two or multiple classes could be predicted respectively. Regression methods involve predicting 

continuous value as an output, e.g. linear or polynomial regression methods. 

No verified labels or predefined classes are required for unsupervised methods. This approach could 

be used for certain tasks such as clustering (k-means clustering) or dimensionality reduction 

(principal component analysis) analysis. Semi-supervised learning methods combine a higher 

amount of unlabeled data with generally limited labeled data to leverage the gap between two data 

sources. 

1.11.1 Artificial neural networks 

Artificial neural network (NN) is a supervised learning algorithm, proposed long back in the 1940s, 

which was inspired by the human brain’s neuronal structure. Neuropsychologist Donald Hebb had 

proclaimed that “Neurons that fire together, wire together” to illustrate neuronal communication 

through neurotransmitter release, which forms the basis for artificial NN algorithms. In the human 

brain, neurons are heavily interconnected to each other and are responsible for the transmission of 

information. Likewise, neurons are a fundamental unit of artificial NN. Neurons are mathematical 

functions, each of them is associated with certain weights and biases. Artificial NN architecture is 
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such that neurons are arranged in multiple layers and are interconnected to each other. Simplified 

representation for an artificial NN with 3 layers is shown in figure 5.   

 

 

 

 

 

 

 

 

 

 

Figure 5. Simple artificial NN with three layers. An input layer, to which input is supplied and hidden 

layer where all the computations happen and all neurons are connected between this and other layers, 

and the output layer gives the encoded outputs. Connections between neurons of different layers are 

shown with arrows (blue). 

There are certain NN parameters that need to be optimized to map input features to outputs correctly. 

Parameters for neural network model developed here (for A-domain substrate specificity prediction) 

were optimized and hence they are mentioned below briefly.   

Activation or transfer function is a nonlinear complex function that maps input features to the output. 

Examples include binary step, sigmoid, Rectified Linear Unit (ReLU), Scaled Exponential Linear 

Unit (SELU) functions, etc. The input layer is the first layer of neurons to which input data (or 

variables) is supplied. Hidden layers are the workhorses of the NN, where all the computations 

happen and all the neurons in this layer are connected to every other neuron in the next layer. The 

Input layer  
Hidden layer  

Output layer  
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output layer is the last layer, whose neurons are encoded as the possible outputs (finite) expected 

from the model. Loss or cost function determines the error rate of NN predictions by comparing 

predicted and expected outputs. The learning rate, which is also called step size, is a scalar value 

between 0.0 to 1.0 that determines how fast the NN model learns weights. The batch size determines 

the number of samples passed to through NN, after dividing training data into different partitions. 

One epoch is completed when a complete dataset is presented to NN once. 

Weights determine the connectedness of neurons between two layers and their magnitude signifies 

the strengths of these connections. Bias is incorporated to ensure that a neuron is activated. In the 

case of artificial NN, “learning” refers to finding the right combination of weights and biases, such 

that output is precisely predicted. 

Artificial NN topology, the way neurons are interconnected affects how the predictions are made. 

The inclusion of more layers adds more complexity and hence the time required to train the 

algorithm. As for any ML approach, the training dataset should be a large and well-represented 

sample (of actual phenomena under investigation), as this determines generalizability and usability. 

1.11.2 Evaluation of predictor performance 

After the ML model has been built, its performance needs to be evaluated on previously unseen data 

to assess its generalizability. It would also be useful to know if the predicted output correctly matches 

with an expected output. In the case of classification, one could check if the model assigns class 

membership correctly. The simplest measure to determine this is to calculate accuracy. For binary 

classification, with two classes A and B, there are four scenarios (TP, FP, FN, and TN) as shown in 

Table 4. 

Table 4. Confusion matrix, for a binary classification example, four outcomes could be expected. 

 Class A (predicted)  Class B (predicted) 

Class A (actual) TP (true positive) FN (false negative) 

Class B (actual)  FP (false positive) TN (true negative) 

 



37 

The accuracy of the model is calculated by taking proportions of values obtained in the confusion 

matrix as shown in the equation below.  

            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"#!$
!"#!$#%"#%$

                      

The other measure that is widely used is the F1 Score, which is defined as a harmonic mean of 

precision and recall. Precision, recall and F1 score are calculated as follows. Precision is determined 

by counting, of all predicted memberships to a class, how many belong to it. Recall measures, of all 

class members (belonging to a one class), how many members are correctly predicted by the model 

to belong. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2. 𝑇𝑃

2. 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

 

Accuracy and F1 scores are insensitive to the imbalanced nature of the dataset, hence in such 

scenarios, alternative measures such as the Matthews correlation coefficient (MCC) is used. 

MCC is a balanced measure to assess the performance of the model. It varies from -1 to 1, where 1 

represents the complete agreement between prediction and expected output and -1 show perfect 

disagreement. Zero suggests no better prediction than a random guess. 

    𝑀𝐶𝐶 = !".!$–%".%$
((!"#%").(!"#%$).(!$#%").(!$#%$)

  

As all the topics that relate to the research work done here are introduced, paragraphs below briefly 

mention the aims of the thesis and composition of each of the sub-sections. The primary aim of the 

thesis was to develop a fungal A-domain substrate specificity prediction classifier. Neural network-

based substrate specificity classifier (NNassc) was trained by combining the physicochemical and 
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structural properties of NRPS code residues. The data used to train the model was solely from fungi, 

hence this model shall be specifically used to assign substrates for fungal A- domains.  

“Methods” section gives information about A-domain substrate specificity data curation, from the 

published literature and subsequent phylogenetic analysis. Also, the neural network model 

hyperparameter optimizations and development workflow for substrate prediction is explained in 

detail. To evaluate the developed model, internal and external validation datasets were used and 

predictions for each of these datasets are listed. In the “Results and discussion” section, 

investigations into substrate specificity differences and phylogenetic relationships between fungal 

and bacterial A-domains (and NRPS codes) are included. Clustering of full-length A-domain 

sequences captures overall differences in different NRPS mega synthetase and product type, while 

NRPS code residues give an idea about substrates activated. Comparisons of SANDPUMA (an 

ensemble classifier for adenylation domain substrate specificity predictor) with neural network 

model (developed here) using independent validation datasets are incorporated. Substrates for which 

NNassc gives correct predictions are listed and strategies for the improvement of prediction 

performance are also mentioned. 
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2. Methods  

2.1 A-domain substrate specificity data 

The collection of A-domain sequences used in this work combined data from two sources: 

i) Existing mixed (eukaryotes and bacteria) collection: NRPSpredictor2 is a support vector machine-

based A-domain substrate specificity classifier which also contains fungal specific predictor 

(Röttig et al., 2011). NRPSpredictor2 dataset of A-domains with experimentally verified substrates 

consisted of 576 sequences from bacteria and fungi. This collection contains 111 fungal sequences. 

ii) New fungal collection: Manually curated list of experimentally characterized fungal A-domain 

sequences published during the period 2011-2018. We assumed that all sequences published before 

2011 have been included in the NRPSpredictor2 dataset; therefore, the new collection aimed at the 

sequences published thereafter. The sequences were collected by text mining of PubMed and Google 

Scholar, searching for terms related to fungal A-domain substrate specificity. It was carefully 

checked that A-domain substrates are elucidated by ATP-PPi exchange assay; computationally 

predicted substrate specificity information was not included in the dataset. For the identified 

domains, corresponding UniProt identifiers were obtained from the UniProtKB database. The new 

fungal collection counted 33 sequences. 

The final dataset (merged from i and ii) referred in the following sections as fungal A-domain dataset 

(Appendix, Table 1) is populated with 144 fungal A-domain sequences with characterized substrates. 

2.2 Phylogenetic analysis 

2.2.1 Phylogenetic analysis of fungal A-domain sequences  

The multiple sequence alignment was obtained for 144 sequences of the fungal A-domain dataset by 

using MUSCLE (Edgar 2004). The maximum likelihood phylogenetic tree was built by PhyML 3.0 

with 100 bootstrap cycles. Bacterial phenylalanine binding A-domain (PheA, UniProt identifier: 

P0C061) was used as an outgroup. The phylogenetic tree was visualized and processed further using 

FigTree v1.4.4. Leaves of the phylogenetic tree were labeled with substrate specificity information 

for each A-domain. 
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2.2.2 Extraction of C-domains and phylogenetic analysis 

For every A-domain with known substrate specificity, C-domains upstream to it were extracted from 

complete NRPS mega-synthetase protein sequences. These pairs of domains (Cupstream-

Adownstream) were obtained by matching with Pfam models (for A-domains: PF00501 and C-

domains: PF00668). Coordinates for domain boundaries were obtained from the Pfam database, 

which stores domain architecture for protein families. 113 out of 144 A-domains (fungal A-domain 

dataset) had C-domains upstream as suggested by Pfam domain matches. After extracting 113 pairs 

of domains, substrate specificity information from A-domain was transferred to the corresponding 

upstream C-domain. Truncated or incomplete C-domains were not included in multiple sequence 

alignment and phylogeny analysis. Eventually, 94 C-domains were used to build a rooted 

phylogenetic tree using the same procedure as described for A-domains. PheA C-domain was used 

as an outgroup and leaves were labeled by transferring substrate specificity information from 

downstream A-domain. 

2.3 Clustering of bacterial and fungal A-domain NRPS codes 

NRPS codes were obtained for all sequences from the fungal A-domain dataset. After removing 

redundant NRPS codes that bind the same substrates, 262 codes were retained. Bacterial NRPS codes 

were directly used from the NRPSpredictor2 dataset, without updating their dataset. Amino acid 

residues of the code were encoded by physicochemical properties essential for binding to small 

molecules: size (WOLS870102), hydrophobicity (WOLS870101) and electronic properties 

(WOLS870103) (Sandberg et al., 1988). The last amino acid of the code, lysine, was not included, 

as this catalytic residue is perfectly conserved in all NRPS codes. Each amino acid of the code has 

three associated properties; hence descriptor vector was created with a total of 27 properties (for 9 

NRPS code amino acids). Euclidean distances were computed for these descriptor vectors and were 

clustered using Pvclust (Suzuki et al., 2015) package in R. 

2.4 Clustering of non-ribosomal peptide monomers  

Non-ribosomal peptide (NRP) monomers and A-domain substrates from different NRPs are 

deposited in the Norine database (Caboche et al., 2008). 13 new substrates were obtained from the 

fungal A-domain dataset, these substrates are not found in the Norine database. Monomer simplified 

molecular-input line-entry system (SMILES) strings were obtained from the PubChem database if 
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those were absent in the Norine database. In total, 204 (191 from Norine and 13 new) SMILES 

strings were used for clustering. SMILES were then transformed into Morgan fingerprints using the 

RDKit package (Landrum, 2016). Morgan fingerprints were used with a radius of two (around each 

heavy atom). Tanimoto coefficient values were computed for each pair of monomer fingerprints, and 

distances (1- similarity) were used to construct dendrogram using hclust package in R. 

2.5 Development of NN-based A-domain substrate specificity classifier (NNassc) 

NNassc was programmed in Python scripting language and RDKit package (Landrum, 2016) and 

Keras (Chollet et al., 2015) with TensorFlow (Abadi et al., 2016) backend was used for the encoding 

of substrates and training a neural network respectively.  

2.5.1 Dataset preparation for NNassc 

NRPS code and substrate information were obtained for experimentally characterized A-domains 

(see 3.1) from the research articles describing them. Substrate SMILES were procured from the 

PubChem database. There were 41 different substrates in the fungal specificity prediction dataset. 

After removing redundant NRPS codes (two or more instances of same NRPS code-substrate pair), 

the final dataset was reduced to 136 NRPS codes. Substrates along with number of NRPS codes that 

were used for training NNassc are listed in Table 5. 

Table 5. NNassc substrate specificity prediction dataset. Substrates and the number of NRPS codes 

identified for that substrate through experimental characterization are listed. In the last row, 

substrates with only one NRPS code per substrate are listed. 

Substrate # NRPS codes  Substrate # NRPS codes  

Alanine 14 Tyrosine 4 

Valine 11 Serine  4 

Leucine 10 Isoleucine 3 

a-amino-iso-butyric acid 10 Glycine  3 
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Tryptophan 9 Homoserine 3 

a-amino-adipic acid 9 Anthranilic acid 3 

Phenylalanine 8 Pipecolic acid 2 

Isovaline 7 Glutamine 2 

Proline 6 Cysteine 2 

Tyrosine 4 b-alanine 2 

Fumaric acid 2 4-hydroxy-phenylpyruvic acid 2 

s-nmethoxy-tryptophan, ornithine, meval, mephe, hmp-D, hiv-D, hiv, glutamic acid, aoda, D-

alanine, aeo, phenylpyruvicacid, meOhVal, Indole-3-pyruvic acid, Grifolic acid, cisAMHO, a-

hydroxy-isocaproic acid, 5-methyl-orsellinic acid, 4-hydroxy-ornithine 

cisAMHO : N(d)-cis-anhydromevalonyl-N(d)-hydroxy-L-ornithine, D-ala : D-alanine, abu : a-amino-isobutyric acid, 

aad : a-amino adipic acid, pip : pipecolic acid, hiv : 2-hydroxy isovaleric acid (hiv-d, D isomer), bmt : (4R)-4-[(E)-2-

butyl]-4-methyl-L-Thr, aoda : (S)‐2‐amino‐8‐oxodecanoic acid, meval : N-methyl-valine, mephe : N-methyl 

phenylalanine, hmp-D : D-2-hydroxy-3-methylpentanoic acid, aeo : L-2-amino-8-oxo-9,10-decanoate. 

2.5.2 Preprocessing 

2.5.2.1 Encoding of NRPS code residues 

NRPS codes were encoded by two sets of features, physicochemical & molecular structural 

properties. The physicochemical properties are procured from Sandberg et al. 1998 (Wold 

encoding), those are the size (WOLS870102), hydrophobicity (WOLS870101) and electronic 

properties (WOLS870103). NRPSpredictor2 (Röttig et al., 2011) also uses Wold encoding to encode 

NRPS codes for A-domain substrate prediction. Structural features were obtained by encoding each 

of NRPS code amino acids into Morgan fingerprint (see fig 4, for computation of fingerprints) bit 

vector (size = 4096) with functional class fingerprints definitions. Bit positions that are ON (i.e., the 

substructure is present) in at least one amino acid (among all the NRPS code amino acids) were 

considered while others were discarded. Out of 4096 bits in amino acid fingerprints, only 30 bits 

were ON in at least one of the amino acids found in the code and thus retained. A new bit vector of 
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size 30 was created. Eventually, each amino acid of the code is represented by 3 physicochemical 

and 30 structural properties derived from Wold encoding and Morgan fingerprints respectively. With 

9 amino acids of the code, the input feature vector size was 297 (9 * 3 + 9 * 30). 

2.5.2.2. Encoding of substrates 

Previously developed tools for A-domain substrate specificity prediction did not consider substrate 

structure while training. Here, substrate SMILES were encoded in Morgan fingerprint bit-vectors 

and classifier output was a bit vector (size = 1024) as opposed to simple substrate class in previous 

tools. Each bit of the bit vector signifies chemical features or substructures the substrate possesses. 

2.5.3 Parameter optimization and training NNassc 

Neural network hyperparameters were optimized with Hyperopt (Bergstra J. et al., 2013), a python 

library that allows optimization with real-valued, discrete and conditional dimensions. The number 

of input features equal to the size of the feature vector (size = 297) was specified by the 

input_dim parameter in the Keras library. input_dim parameter was kept unchanged during the 

optimization procedure. 

Four parameters: number of neurons in the first hidden layer, type of optimizer, batch size and 

number of epochs, were optimized through Hyperopt by providing initial search spaces. The search 

spaces were arbitrarily chosen and could be different depending on the training dataset and the type 

of features used. Parameters with corresponding search spaces are shown below. 

• Number of neurons in the first hidden layer 

X= integer (size of input feature vector/d) 

where d = {20, 10, 5, 2, 1, ½, 1/5, 1/10, 1/20} and size of input feature vector = 297 

• Batch size = {10, 20, 30, 40, 50} 

• Epochs = {50, 75, 100, 125} 

• Optimizer = {‘adam’, ‘RMSprop’, ‘sgd’} 
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The number of neurons in the output layer was equal to the size of the substrate Morgan fingerprint 

bit vector (bit size = 1024). Sigmoid activation function was used for the output layer. Unlike 

SoftMax function, Sigmoid function allows treating individual class probabilities independent 

without squashing their sum equal to 1. As a result of this, each bit position of bit vector could be 

predicted independently. The output layer produces probability values suggesting confidence for the 

presence or absence of a substructure. As the output layer encodes different substructures for the 

substrate bit vector, this is a multi-label classification example. Binary cross-entropy loss was used, 

which calculates the loss for each of the multiple labels separately. 

2.5.4 Matching predicted bit vector with substrates from training dataset  

 

 

 

 

 

 

 

 

Figure 6. Overview of NNassc method. NRPS code residues are encoded into a feature vector and 

are provided as an input for the ANN. The input is processed through ANN to produce a 1024 size 

bit vector which gives a probability for the presence or absence of substructures. The output bit 

vector is matched with possible substrates by comparing these substructures. 

After predicting the fingerprint bit-vector probabilities for each bit position, it was important to know 

what substrate it shares close similarity with, to assign the specificity for NRPS code. To transform 

these probability values into a binary encoding, a generally accepted cutoff of 0.5 was used. Bit 

NNassc working flowchart   

N 
R 
P   
S 
C 
O 
D 
E 

Input layer   
Hidden layer    

Output layer   

Wold 
encoding  

Morgan 
fingerprints  

1. Encoding NRPS code 
residues  

Output: Bit vector        

3. Matching predicted 
bit vectors to substrates     

2. Building artificial neural 
network  

Input: Feature vector   



46 

positions with probability values above 0.5 were set to 1 (ON or substructure is present) otherwise 0 

(OFF or substructure is absent). Such a bit-vector representation has been used previously to assign 

metabolites to a mass spectrum (Dührkop et al., 2015). In the end, the Tanimoto similarity 

coefficient was used to compare predicted bit vector with training dataset substrate fingerprint bit 

vectors. Rank ordered list of possible substrates was obtained with the decreasing values of Tanimoto 

similarity. Top three or five predictions were checked to see if predicted bit-vectors match the actual 

substrates. 

20 different models were generated by dividing A-domain substrate specificity data randomly into 

training (80%) and validation dataset (20%). The best model was chosen by assessing accuracy on 

the internal and external validation dataset. As there are many model selection strategies, different 

ways of selecting models could be tested in the future.   

2.5.5 Validation and benchmarking  

2.5.5.1 Internal validation dataset 

For many substrates, only a few NRPS codes were identified so far, hence dividing them into separate 

training, validation and testing dataset was not feasible. To find the structurally similar substrates 

and combine them into classes for validation, this clustering exercise was done. Substrates from the 

training dataset were encoded into Morgan fingerprints and were clustered by their structural 

similarity. This clustering helped find 3 classes (Table 6) of substrates from the training dataset 

substrates. After dividing substrates (and corresponding NRPS codes) into 3 classes, 20% dataset 

was used for validation, which comprised of representatives from each of these classes. 

2.5.5.2 External validation dataset  

To assess the performance of NNassc and demonstrate its generalizability on novel data, I used two 

sets of NRPS codes that were not included the training dataset. The first source of these NRPS codes 

was from an article that describes cycloaspeptide biosynthesis (Mattos-Shipley et al., 2018) and the 

second set was from our collaborators (Dr. Daniel Berry, Massey University, New Zealand) obtained 

through personal communications. In total, there were 10 NRPS codes in the external validation 

dataset. The prediction was run by the NNassc and SANDPUMA. The top three substrate predictions 

obtained through NNass for each NRPS code are shown in Table 11. 
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Table 6. Substrate classes obtained by structural similarity-based clustering (for validation of the 

NNassc). Representatives from each substrate class and corresponding NRPS codes were included 

in the internal validation dataset. 

Class 1 Class 2 Class 3 

Valine Tryptophan Ornithine 

Alanine Indole-3-pyruvic acid Glutamine 

Allo-isoleucine s-n-methoxy tryptophan 2-amino adipic acid 

2-aminobutyric acid Fumaric acid Homoarginine  

Leucine Phenylpyruvic acid Arginine 

D-2-hydroxyisovalerate 4-hydroxy phenyl pyruvic acid 2S-2-amino-8-oxodecanoic acid 

a-hydroxy-isocaproic acid Phenylalanine 2-amino-8-oxiran-2-yl-8-oxo 

octanoic acid 

D-2-hydroxy-3-methyl-

pentanoic acid 

Tyrosine N(d)-cis-anhydromevalonyl-N(d)-

hydroxy-L-ornithine 

Beta-alanine Grifolic acid  

Glycine 5-methyl-orsellinic acid 

Pipecolic acid Anthranilic acid 

Proline  

Serine 

Homoserine 

Cysteine  
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3. Results and discussion  

3.1 Phylogenetic analysis of fungal A-domains 

In the following subsections, I shall describe fungal A-domain (full length) clustering depicted in 

Fig 7. To study phylogenetic relationships between fungal A-domains and to better understand the 

evolution of their substrate specificity this analysis was done. This helped decipher relationships 

between various fungal A-domains that are either a part of the same NRPS or bind the same or similar 

substrate. Clustering results for different NRPS mega synthetases are summarized in Table 7 and 

subsections are given below.  

3.1.1 A-domains activating uncommon non-proteogenic substrates 

ArmA A-domain (G3FLZ5), experimental studies (Misiek et al., 2011) suggest probable substrates 

leu, thr or val as, but it is clustered with non-proteogenic substrate 5-methyl-orsellinic acid and 

grifolic acid binding domains.  

3.1.2 ACVS synthetase  

ACVS synthetases (Q9C1G0, P25464, P26046, P19787, and P7742) are involved in L-δ-(α-amino 

adipoyl)-L-cysteinyl-D-valine (ACV) biosynthesis, which is a penicillin and cephalosporin 

precursor. ACVS synthetases belong to a gene cluster horizontally transferred from bacteria 

(Brakhage 1998). All the A-domains belonging to ACVS synthetases tend to cluster together in a 

single clade and do not cluster with other A-domains binding the same substrates, for example, alpha-

amino adipic acid binding A-domains from ACVS synthetases and lysine biosynthesis (M2PFR6, 

P007702, P40976) do not cluster together. Lysine biosynthesis A-domains belong to NRPS-like 

carboxylic acid reductases family and they utilize ATP or NADPH for the reduction of carboxylic 

acids. 

3.1.3 PKS-NRPS hybrids  

A-domains from hybrid PKS-NRPS synthetases A0JJU1 (Tenellin Synthetase from Beauveria 

bassiana), A1CLY8 (Mycotoxin biosynthesis, from Aspergillus clavatus), A8KNE2 (from 

Penicillium expansum), B6F209 (Cyclopiazoinic acid synthetase from Aspergillus oryzae), C9K4U2 
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(from Aspergillus flavus), Q0D159 (Isoflavipucine biosynthesis, from Aspergillus terreus), 

Q5ATG8 (Aspyridones biosynthesis, from Aspergillus nidulans), Q3L7Y0 and C6KDY5 belong to 

Ascomycota division of fungi and are all clustered together in a single monophyletic group. 

Homoserine and aromatic amino acid (tyr, trp and phe) binding A-domains form a separate clade, 

However, the clade for aromatic acid binding A-domains is interspersed by two smaller substrates 

(ser or leu) binding domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Fungal A-domain (full-length) phylogenetic analysis. Leaves of the tree were labeled with 

substrate specificity and clades for A-domains from the same NRPS are colored and the name of the 

gene is also mentioned. UniProt identifier and A-domain number as a part of NRPS protein was 0.4
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obtained from the Pfam database (only A and C-domains were numbered in a complete NRPS mega-

synthetase protein sequence). 

Table 7. Fungal A-domain (full length) phylogeny analysis. NRPS mega synthetase type (UniProt 

identifier) and their clustering behavior are listed. For A-domains that cluster together, 

corresponding substrates are mentioned along with some information about clusters (number of 

clades for A-domains from the same NRPS type or substrate specificity-wise clustering, etc.).     

NRPS   Substrates A-domain clustering and 

NRPS architecture  

ACVS synthetase aad, cys, val cluster together in a single clade 

Siderophores (Q5BFS3 

and K7NCP5) 

val  

cisAMHO  

cluster together irrespective of 

binding different substrates 

Emericellamides 

(C8VPS9) 

ala, gly, leu  cluster in a single clade 

Aureobasidin A1 

biosynthetic complex 

(B6SF67) 

phe, methyl-phe, pro, methyl-

val, methyl-hydroxy val, leu, 

allo-isoleucine  

cluster in a single clade 

Despipeptides 

D1FVF0, G3GBU7, 

Q00869 

hiv, hiv-d 

val, leu, phe 

Two sets of clades  

 HC-toxin (D2IKP5 and 

Q01886) 

s-nmethoxy trp, aoda, ile, pip All A-domains of this NRPS 

cluster separately. Pro and aoda 

binding A-domains cluster with 

domains with similar substrates 
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Destruxins (insecticidal 

cyclic hexadepsipeptides) 

E9FCP4 

ile or val, pro or pip, beta-

alanine, 4-hydroxy-caproic acid 

ala, val 

A-domains of this NRPS cluster 

in two clades with 2 set of 

substrates as shown  

Cyclosporine synthetase 

(Q09164) 

val, ala 

 D-ala, abu, bmt  

leu 

Three clades with the substrates 

shown  

Peptaibols (Q8NJX1), 

jgi40498  

Binds various small aliphatic and 

polar substrates  

pro 

For Q8NJX1 and jgi40498, A-

domains are clustered in a single 

clade except for few pro and ala  

A1DN09, A1DNS5, 

Q4WLW5 

anthranilic acid  A-domains from different 

NRPSs binding this substrate 

cluster together 

Uncommon substrates  

 

4-hydroxy-phenylpyruvic acid, 

phenylpyruvic acid, indole-3-

pyruvic acid 

A-T-TE domain architecture and 

lack C-domain 

 5-methyl orsellinic acid, grifolic 

acid 

leu or thr or val 

part of NRPS like enzymes. A-

domain followed by NAD 

binding domain. 

ArmA is a part of A-T-TE 

cisAMHO - N(d)-cis-anhydromevalonyl-N(d)-hydroxy-L-ornithine, D-ala – D-alanine, abu- a-

amino-isobutyric acid, aad- a-amino adipic acid, pip – pipecolic acid, hiv (hiv-d) - 2-hydroxy 

isovaleric acid (D form), bmt - (4R)-4-[(E)-2-butyl]-4-methyl-L-Thr, aoda- (S)‐2‐amino‐8‐

oxodecanoic acid. 

Our results for A-domain (full-length sequence) phylogenetic analysis are in line with similar studies 

done for mycotoxins (Gallo et al., 2013). A-domains cluster together with other domains from the 
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same NRPS mega synthetase irrespective of their substrate specificity. A-domains belonging to PKS-

NRPS or NRPS-like enzymes are clustered together according to their NRPS mega synthetase type 

or nature of biosynthesized chemical products. Because of this, full-length A-domain sequences 

would be of little help in decoding their substrate specificity. 

 

3.2 Cluster analysis of NRPS code residues   
Usually, full-length sequences are used to study phylogenetic relationships among A-domains. 

However, amino acid residues that are within a small distance (<4Å) around substrate atoms (as 

determined by substrate-bound 3D enzyme structural complexes) determine specificity. For A-

domains, these residues are defined as “NRPS code”. To study the similarity or differences in 

substrate specificity between bacteria and fungi, clustering of NRPS code residues was done (Fig 8). 

3.2.1 Similarity/differences between fungal and bacterial NRPS codes 

Cluster analysis of fungal and bacterial NRPS code residue shows differences for few substrates. 

This suggests that there could be an independent evolution of fungal and bacterial substrate 

specificity to bind the same substrate. There are some substrates for which there exist only a few 

characterized fungal A-domains and in turn fewer NRPS codes. Those A-domains and substrates 

have not been included in the previously developed tools for substrate specificity predictions and are 

underrepresented. Fungal A-domains are found to activate some special substrates that are rarely or 

not activated by bacteria e.g. phenyl-pyruvic acid, fumaric acid, 5-methyl-orsellinic acid. As these 

substrates are not well characterized in other A-domains, specificity predictions have been so far 

difficult. 
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Figure 8. Bacterial and fungal NRPS code residue cluster analysis. Fungal (blue) and bacterial 

(orange) NRPS code residues were clustered after encoding them into physicochemical properties. 

Distinct clusters are obtained depending upon the type of substrate that binds. UniProt identifiers, 

substrate name, unique identifier and A-domain origin (ba- Bacterial and eu- Eukaryotic) are used 

to label the leaves of the tree. 
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Table 8. Results for cluster analysis of NRPS code residues. NRPS code residue similarity or 

differences between fungi and bacteria binding the same substrate are listed here. 

Substrates Clusters for bacterial and fungal NRPS codes 

pro, pip bacterial codes cluster together in a single clade, fungal 

codes do not cluster together and not with bacteria  

gly, ser, homoserine do not cluster together between bacteria and fungi 

abu, iva found in fungi, clustered together for these two substrates 

gly, pro, ala binding codes are interspersed between them 

ala, leu, ile, val  codes are similar in fungi and bacteria 

hiv, tcl, hmp-d, a-hydroxy-isocaproic acid fungal and bacterial codes are in close proximity  

phe few codes are similar in bacteria and fungi 

trp well clustered in fungi but in bacteria, dispersed between 

different clades 

aad for ACVS synthetases, similar between bacteria and fungi 

indole-3-pyruvic acid, 4-hydroxy-phenyl 

pyruvic-acid, phenyl-pyruvic acid  

for these unusual substrates, clustered together in fungi 

5-methyl-orsellinic acid, grifolic acid cluster together in fungi 

abu : a-amino-isobutyric acid, iva : isovaline, tcl : (4S)-5,5,5-trichloro-leucine, aad : a-amino adipic 

acid, pip : pipecolic acid, hiv : 2-hydroxy isovaleric acid. 
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3.3 Phylogenetic relationships among fungal C-domains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Fungal C-domain phylogenetic analysis. Leaves of the phylogenetic tree are labeled with 

substrate specificity information for downstream A-domain and UniProt identifier and number 

represents domain number obtained through Pfam domain architecture (Only A and C-domains were 

numbered in the entire NRPS sequence). 

As opposed to A-domains, ACVS synthetase C-domains that are involved in condensation of val and 

cys do not cluster together. All A-domains of ACVS synthetases are clustered together in a single 

clade, while substrate specificity-wise clustering is maintained in the case of C-domains.  
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Hybrid PKS-NRPS synthetases C-domains are clustered together in a single clade and substrate 

specificity-wise clustering is observed.  

All C-domains of NRPS (Peptaibols - Q8NJX1 and Aureobasidin A1 biosynthetic complex - 

B6SF67) are well clustered in a single clade. C-domain (K0E4D7) binding ornithine, clusters with a 

clade from C8VPS9 C-domains binding ala and leu. Cyclosporine synthetase (Cyclosporine 

synthetase - Q09164) C-domains show clustering in three smaller clades. C-domains from NRPS 

(B6HJU6 and O94205 – fungal ergot alkaloid) binding aromatic substrates trp and phe respectively, 

cluster together. C-domains (which may or may not bind to the same substrates) from the same NRPS 

mega synthetase do not cluster together, but clustering is observed for C-domains condensing similar 

substrates. This points to further investigation on finding key residues that contribute towards 

substrate specificity. 

3.4 Clustering of NRP monomers and A-domain substrates 

To find out structural similarities between A-domain substrates and NRP monomers, this clustering 

exercise was done. The dendrogram shown in Fig 10 could be used as reference when testing a set 

of possible substrates for enzymatic assays. Molecules having similar functional groups tend to 

cluster together in a single clade. It would also be expected that structurally or chemically similar 

substrates could bind the same A-domain with variable binding strengths. Accessory enzymes in 

NRPS mega synthetases modify incorporated monomers at any stage of peptide synthesis, hence 

monomers deduced from the final NRP structure could be different from substrates added by A-

domains. 

3.4.1 Modifications 

Monomer diversity points towards the types of modifications that are previously found and could be 

expected in new NRPs. Accessory enzymes may bring about modifications (N or O methylation, 

formylation, acetylation, hydroxylation) to alter the substrate that is incorporated into the growing 

peptide chain. Structurally similar monomers that contain similar modifications are clustered 

together (Fig 10) e.g. N-formyl-isoleucine, N-formyl-leucine. 
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Figure 10. Structurally similarity of NRP monomers and A-domain substrates (whose NRPS codes 

are known). Substrates with at least one NRPS code identified through experimental characterization 

of fungal A-domains are colored in red and the closest node to the substrate is colored in cyan, to 

suggest a group of structurally similar substrates or monomers.  
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ANTHRA – anthranilic acid, 4HPPA- 4-hydroxy phenyl pyruvic acid, CAMHO - N(d)-cis-

anhydromevalonyl-N(d)-hydroxy-L-ornithine, aeo - L-2-amino-8-oxo-9,10-decanoate, aoda - (S)‐2‐

amino‐8‐oxodecanoic acid, FUMA - fumaric acid, 4HLO – 4-hydroxy-L-ornithine, AHICA - a-

hydroxy-isocaproic acid, GRFLA - Grifolic acid, 5MOA – 5-methyl orsellinic acid.  

3.4.2 A-domain substrates and NRPS code similarity 

The rationale behind the A-domain substrate and NRP monomer cluster analysis was to see 

correlations between the structural similarity of substrates and NRPS code similarity. This 

correspondence was observed in few substrate pairs that are structurally very similar to each other 

(Table 9) e.g. proline and pipecolic acid, phenyl-pyruvic acid and 4-hydroxy-phenylpyruvic acid, 2-

aminoisobutyric acid, and isovaline. 

Table 9: Pair of structurally similar substrates and corresponding NRPS code residues. NRPS code 

residues that are similar between them are shown in boldface letters. 

Structurally similar 
substrates 

Substrate Structures  NRPS code 
residues 

Phenylpyruvic acid 

 

 

 

 

 

4-hydroxy-phenylpyruvic 
acid 

 

VATFIGGAG 

 

 

 

 

 

VAEFIGAAG 
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Proline  

 

 

 

Pipecolic acid  

  

 

DIAVITVLI 

 

 

 

DVVALVVLI 

 

3.5 Substrate specificity predictions with NNassc   

NRPS code residues were used as an input to NNassc and bit vectors with probability for the presence 

or absence of the substructures were predicted as an output. Tanimoto similarity coefficient values 

were calculated to match predicted bit vectors with probable training dataset substrate bit vectors. 

With decreasing values of coefficient, a ranked ordered list of probable substrates was obtained. The 

results obtained through NNassc were confronted with those with SANDPUMA. 
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3.5.1 Predictions - internal validation dataset 

For 17 NRPS codes (73% of the internal validation dataset), correct substrates could be identified 

within the top five predictions (Table 10 and Appendix, Table 2, for a list of predictions for 

individual NRPS codes). Substrates with small size (aad, ala, pro, hiv-d, hmp-d, fumaric acid and 

abu) could be correctly predicted within top five predictions given by NNassc. However, some NRPS 

code residues binding substrates (phe, trp, gly and homoserine) the correct substrates could not be 

identified within the top five. 

Table 10: NNassc and SANDPUMA substrate specificity prediction performance on the internal 

validation dataset (23 NRPS codes). SANDPUMA gives only one substrate prediction per NRPS 

code. Percentages of internal validation dataset substrates correctly identified within topmost ranked 

predictions for NNassc are listed. The number of NRPS codes out of the total dataset, the fraction 

corresponds is added into brackets. 

SANDPUMA NNassc 

Top 1 Top 1 Top 3 Top 5 

30% (7) 56% (13) 65% (15) 73% (17) 

 

3.5.2 Predictions - external validation dataset  

Predictions for the external validation dataset (10 NRPS codes) are shown in Table 11. The top three 

predictions are given along with Tanimoto similarity values between the predicted fingerprint and 

closest substrate bit vector from the training dataset. The rank-ordered list of prediction is shown 

with decreasing values of Tanimoto similarity values. Our tool makes correct substrate predictions 

within the top three for all cases except for phenylalanine (NRPS code, DAYAVGGICK) and 4-

hydroxyproline. In the case of 4-hydroxyproline, in the 2nd and 3rd place structurally similar 

substrates, proline and pipecolic acid respectively are found. SANDPUMA classifies only 

phenylalanine substrate correctly in one instance (NRPS code, DAYTSGGICK). 



62 

Table 11: External validation dataset predictions. NRPS codes are listed along with actual substrates 

and predictions from SANDPUMA and NNassc. For NNassc, the top three predictions are provided 

with Tanimoto similarity coefficient values (in brackets) between predicted and training dataset 

substrate fingerprints. When predictions match with the actual substrates, they are marked with 

boldface letters. pHMM – profile hidden markov model, ASM – active site motif. 

NRPS code residues       NNassc predictions  SANDPUMA Actual substrates 

DVHHVTEIN 1. Ornithine (0.88) 
2. Proline (0.74) 
3. Pipecolic acid (0.7) 

Alanine 

pHMM: abu-iva 

4-hyroxyproline 

DVHHVSGIN 

 

1. Proline (1.0) 
2. Pipecolic acid (0.95) 
3. Ornithine (0.67) 

Alanine 

pHMM: abu-iva 

Proline 

DVHQVSAIN 1. Proline (1.0) 
2. Pipecolic acid (0.95) 
3. Ornithine (0.67) 

Alanine 

pHMM: abu-iva 

Proline 

DVHQVSGIN 1. Proline (1.0) 
2. Pipecolic acid (0.95) 
3. Ornithine (0.67) 

Alanine 

pHMM: abu-iva 

Proline 

DIHQVSGIN 1. Ornithine (0.84) 
2. Proline (0.8) 
3. Pipecolic acid (0.76) 

Alanine 

pHMM: abu-iva 

Proline 

GVIFIAAGI 1. Anthranilic acid (0.83) 
2. Glycine (0.3) 
3. Alanine (0.29) 

Alanine 

pHMM: gln 

Anthranilic acid 

DVFFVVGVL 

 

1. Alanine (0.92) 
2. 2-amino-butyric acid 

(0.87) 
3. Isoleucine (0.77) 

Valine 

ASM: ala, SVM: val 

pHMM: aeo 

Alanine 

DAYAVGGIC 1. Alanine (0.85) 
2. 2-amino-butyric acid 

(0.8) 
3. Isoleucine (0.71) 

Alanine 

pHMM: abu-iva 

Phenylalanine 

DLMLVGAVI 1. Alanine (0.86) 
2. Isoleucine (0.82) 
3. Leucine (0.71) 

Alanine 

pHMM: gln 

Leucine 

DAYTSGGIC 1. Phenylalanine (0.95) 
2. Tyrosine (0.83) 
3. Alanine (0.55) 

Phenylalanine 

SVM: phe, pHMM: gln 

Tyrosine/Phenylalanin
e 
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NNassc differs from other A-domain substrate prediction tools by various aspects that are described 

below.  

3.5.3 Structural insights into substrate specificity prediction 

As there is not enough 3D structural information (PDB ID: 3ITE, only one solved eukaryotic A-

domain crystal structure) for fungal A-domains, no structure-based prediction tool has been 

developed yet. A-domain specificity prediction by molecular docking was attempted by Lee et 

al. 2010, although they concluded that the accuracy of the 3D structural models imposes a limitation 

on deciphering correct substrates. Hence, concerted efforts towards crystalizing A-domains would 

help in modeling structures for homologous sequences through template-based modeling tools e.g. 

MODELLER (Eswar et al. 2006). 3D structures of A-domain-substrate complexes are required to 

map atomic-level interactions between substrates and binding site residues. For the working of 

NNassc, by the inclusion of structural properties of substrates and NRPS code amino acids in the 

form of Morgan fingerprints, attempts are made to fill gaps of structural information. 

3.5.4 Prediction of substrate bit vectors  

Previously developed A-domain substrate specificity prediction tools such as NRPSpredicttor2, 

SANDPUMA suggest substrate class or group of substrates as outputs. Here, substrates are 

represented as multilabel vectors encoded into Morgan fingerprints; multiple labels are nothing but 

substructures of the molecule. By comparing the presence or absence of molecular substructures, 

one could find structurally similar molecules. Prediction of their molecular fingerprints of 

metabolites from their tandem mass spectra has been previously deployed by Dührkop et al., 2015. 

In the future, larger databases of carboxy group-containing molecules could be collated and used to 

match probable substrates. This bit vector presentation for substrates is better than substrate classes, 

as these allow us to find novel substrates that share molecular substructures. Morgan fingerprint was 

chosen because they allow the generation of molecular substructures dynamically, rather than 

obtaining them from the predefined library of substructures.  

 

 

 



64 

NNassc accuracy could be further improved by considering the factors mentioned below.  

3.5.5 Inclusion of more training data 

Aromatic substrates (Phenylalanine and Tryptophan) have a larger size and could interact with most 

residues of NRPS code. Glycine and Homoserine have a smaller size, hence they can interact directly 

with only a few NRPS code residues. For these two substrate classes, NNassc could not infer correct 

substrates, but predictions could be improved by including more NRPS codes that represent different 

modes of binding. 

The inclusion of more data for every substrate type would help improve the overall accuracy of 

NNassc. Machine learning algorithms depend on a huge amount of data to train their algorithms, the 

inclusion of more training examples always helps in building robust models. 

3.5.6 Extraction of correct NRPS code residues   

NNassc solely relies on nine residues of the NRPS code hence use of precise NRPS code is 

paramount to assigning correct substrates. When defining the NRPS code, Marahiel and coworkers 

used bacterial PheA structure, but for many fungal A-domains, homologous sequences (with known 

substrates) are used to extract NRPS codes. Given that A-domains share sequence identity in the 

range of 10-40%, finding their homologs through sequence alignments is uneasy. Hence, sequence 

alignment-free methods could be synergistically used with sequence-based methods e.g. profile 

HMM, etc. to identify remote homologs of A-domains (Guillermin et al. 2013) and subsequently 

extracting NRPS code residues precisely. 
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4. Conclusions 

To assign a function for newly discovered A-domains, a phylogenetic analysis could be useful in 

certain scenarios. Here, phylogenetic analysis of A-domains was performed, which showed 

clustering by NRPS mega-synthetase or biosynthesized product type. Full-length A-domain 

phylogeny analysis did not give insights into substrate binding as clustering was observed for A-

domains from the same NRPS megasynthetase. To understand relationships between A-domains and 

their substrate specificity, NRPS code residues were clustered. The clusters obtained show substrate 

specificity-wise clustering and suggests that, for few substrates, these residues are very different 

between fungi and bacteria. Along with A-domains, C-domains are also suspected to be involved in 

selecting substrates. Phylogeny analysis done here shows that for certain substrates, C-domains 

cluster together which share specificity.  

As fungal and bacterial NRPS code do not share similarity for certain substrates, a novel approach 

for the prediction of fungal A-domain substrate specificity prediction is presented here. This involves 

predicting substrates using a combination of physicochemical properties and substructures of the 

NRPS code residues. Before this work on NNassc, there was no dedicated tool for fungal A-domain 

substrate specificity predictions. In spite of the scarcity of the data for fungal A-domain substrate 

specificity (only 136 NRPS codes and 41 substrates), correct predictions could be obtained for many 

NRPS codes. NNassc could be retrained when more fungal substrate specificity data becomes 

available in the future. As NNassc predicts substructures rather than substrates, novel substrates (not 

part of the training dataset) matching these properties could be suggested by NNassc. The 

performance of NNassc was evaluated on the internal validation dataset (23 NRPS codes) and 

external validation dataset (10 NRPS codes) to ensure that it gives reliable predictions for novel 

fungal A-domains. Though these validation datasets are small, they include quite diverse substrates. 

For the internal and external validation datasets, correct substrates could be predicted within the top 

five NNassc predictions for 17 and 8 NRPS codes respectively. Changes in A-domain substrate 

specificity, upon alterations in NRPS code residues, could also be predicted by NNassc when 

mutated residues are provided as an input. NNassc could be used to deduce substrate specificities for 

fungal A-domains and subsequently predict complete chemical structures of encoded peptides for 

newly sequenced fungal genomes. 
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Appendix 

Table 1. Fungal adenylation domain dataset, 116 NRPS code residues binding 41 different substrates. 

UniProt or similar identifier and 9 NRPS code residues along with experimentally characterized 

substrates are listed.  

Identifier (UniProt) 9 NRPS code residues Substrates 
 

O76858 VDAVVSFGD ala-b 
O94205 DLFFCGGPL ala 
Q01886 DAGGCAMVA ala 
Q01886 DLLFGISVL ala 
Q09164 DLWFYIAVV ala-d 
Q09164 DVFIYAAIL ala 
Q8NJX1 DVGFVAGVL ala 
Q8NJX1 DIFVVAGVI ala 
Q4WLW8 DLFVLAGCI ala 
C8VPS9 DASQIGGIY ala 
C8VPS9 DLLVVAGIL ala 
C8VPS9 DIAILVAIL ala 
Q4WF61 DVYFTGGVL ala 
E9FCP4 DIFYAIATA ala-b 
E9FCP4 DVWIYAAVI ala 
#Triat1_40498 DILICALIC ala 
#Triat1_40498 DVGFLAGVF ala 
Q09164 DIQMFVAMQ gly 
Q8NJX1 DIGMVVGVL gly 
C8VPS9 DIQGVLAMQ gly 
Q8NJX1 DVGYLAAVY ser 
M2R747 DMWIAASIV ser 
Q3L7Y0 DLLMTWWIV ser 
#Triat1_40498 DVGYLMAVL ser 
Q6J228 DMTFVWGII HSER 
I1RUB2 DMTFVWGIN HSER 
C6KDY5 DMTFSWGIN HSER 
O94205 DLVGMAAVG phe 
A7UC77 DAYTMAAIC phe 
A7UC77 DAYTSWAIC phe 
A1CLY8 DMSESWCFC phe 
G3GBU7 DGYCMAGAL phe 
B6SF67 DAWVLAGIQ phe 
Q4WMJ7 DAGTLGALM phe 
A0A0S2LUK9 DGYNAGSIC phe 
A0JJU1/Q5ATG8 DMVICGCAA tyr 
A0JJU1/E2GC99 DMVITWCAA tyr 
B8NTZ9/B8NWW5 DVFAFGAIF tyr 
A8KNE2 DMIICGCAA trp 
Q4WAW3 DVMFIGAVN trp 
B6F209 DMALAWSAC trp 
C9K4U2 DMALTWSAC trp 
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A8KNE2 DMIITWCAA trp 
B6HJU6 DIAMIGSMY trp 
#AFI_55290 DVMFVGEVA trp 
B6F209/C9K4U2 DMALCGSAC trp 
D2IKP5 DAFTLGCVF s-nmethoxy-trp 
O94205 DITLVAGLI pro 
Q01886 DIAVITVLI pro 
B6SF67 DVWVFSAIQ pro 
Q4WAW3 DVYFVGGIC pro 
E9FCP4 DLHEIGIIS pro 
Q8NJX1/#Triat1_40498 DVLFCGLIC pro 
D2IKP5 DVVALVVLI pip 
P07702 DPRHFVMRA aad 
P25464 EPRHIVEFV aad 
P40976 DPRHFVMRS aad 
Q9C1G0 EPRNVVEFV aad 
Q5BFS3 DPMMWMAIN aad 
Q12572 DPRHFVMIK aad 
P07702 DPRHFVMVK aad 
M2PFR6 DPRHFVMIP aad 
P19787/P26046/P27742 EPRNIVEFV aad 
Q09164 DAWLYGAVM leu 
Q8NJX1 DFLYFGGVV leu 
B6SF67 DAWMYGAVI leu 
D1FVF0 DGYIIGGVF leu 
C8VPS9 DIHFVGAIA leu 
Q0D159 DASLQWAIM leu 
#Triat1_40498 DFSYLGAVM leu 
#Triat1_40498 DAALVVGVF leu 
#Triat1_40498 DMGWMGGVI leu 
D2IKP5 DAGGCSMVA ile 
Q8NJX1 DAALIGAVF val 
Q00869 DGWFIGIII val 
Q09164 DAWMFAAVL val 
Q8NJX1 DMGFLGGVC val 
Q5BFS3 DPLSTGAIG val 
E9FCP4 DAWFYGGTF val 
E9FCP4 DGLFIGIPV ile 
Q8NJX1 DAIIIVGVT val 
P19787/P25464/P26046/P27742/Q9C1G0 DFESTAAVY val 
Q09164/B6SF67 DAWMFAAIL val 
Q09164 DAWFHAVAY abu 
Q8NJX1 DLGFLAGLF abu 
Q8NJX1 DLGWLCGVF abu 
Q8NJX1 DCGWVVGVV abu 
Q8NJX1 DLGYLAGCF abu 
#Triat1_40498 DMGFIAGVV abu 
#Triat1_40498 DLGYVAGVF abu 
#Triat1_40498 DAFLLGIVA abu 
Q8NJX1/#Triat1_40498 DLGYLAGVF abu 
Q8NJX1/#Triat1_40498 DLGFLAGVF abu 
Q5BFS3 DVQHTITVV cys 
P19787/P25464/P26046/P27742/Q9C1G0 DHESDVGIT cys 
Q4WLW5 GVIILAAGI ANTHRA 
A1DNS5 GIILGAAGI ANTHRA 
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A1DN09/#AFI_55290 GALFFAAGV ANTHRA 
Q5B7T4 VATFIGGAG PPA 
I6NXV7/B7STY1/A0A0S1RUN4 VAEFSGGAC 4HPPA 
A0A0S2E7Z1/A0A0S2E7V8/A0A0S2E7W7 VAEFIGAAG 4HPPA 
A7XRY0 VAHFTGAAC I3PA 
B6SF67 GALLVGITV hmp-D 
E9FCP4 GANLIGATV AHICA 
Q00869 GALHVVGSI hiv 
D1FVF0/G3GBU7 GALMVVGSI hiv-d 
Q0CRQ4 GFLTAGHAI 5MOA 
A0A193PS46 GFVTGGFPL GRFLA 
Q8NJX1 DGGMVGGNY gln 
#Triat1_40498 DAAILVGVG gln 
K7NCP5 DVGGGGVIG cisAMHO 
K0E4D7 DVMELSSIT orn 
Q4WF61 SARGTVSQL FUMA 
A0A0S2LUK9 SARDVGSQL FUMA 
Q01886 DVLLCTGIM aeo 
D2IKP5 DGLTCGVII aoda 
 

cisAMHO : N(d)-cis-anhydromevalonyl-N(d)-hydroxy-L-ornithine, D-ala : D-alanine, abu : a-amino-isobutyric acid, 

aad : a-amino adipic acid, pip : pipecolic acid, hiv : 2-hydroxy isovaleric acid (hiv-d, D isomer), bmt : (4R)-4-[(E)-2-

butyl]-4-methyl-L-Thr, aoda : (S)‐2‐amino‐8‐oxodecanoic acid, meval : N-methyl-valine, mephe : N-methyl 

phenylalanine, hmp-D : D-2-hydroxy-3-methylpentanoic acid, aeo : L-2-amino-8-oxo-9,10-decanoate, ANTHRA : 

anthranilic acid, 4HPPA : 4-hydroxy phenyl pyruvic acid, FUMA : fumaric acid, 4HLO : 4-hydroxy-L-ornithine, 

AHICA : a-hydroxy-isocaproic acid, GRFLA : Grifolic acid, 5MOA : 5-methyl orsellinic acid, HSER : homoserine, ala-

b : beta-alanine.  

Table 2. Internal validation dataset predictions. Substrate predictions by SANDPUMA and NNassc 

are listed. Predictions by individual algorithms from SANDPUMA are given along with the name of 

an algorithm (ASM – active site motif, SVM – support vector machine, pHMM – profile hidden 

markov model). Top 5 substrate matches for the NNassc are given along with Tanimoto coefficient. 

The number represents rank obtained by descending Tanimoto similarity values and rank for correct 

substrate is also given. 

Nine NRPS code 
residues  

Actual substrates SANDPUMA 

predictions 

NNassc (rank ordered substrate 
predictions)  

EPRNVVEFV 2-aminoadipic acid 2-aminoadipic 
acid 

ASM: aad 

1. 2-aminoadipic acid (1.0) 
2. Ornithine (0.67) 
3. 2-aminobutyric acid (0.65) 
4. Glutamine (0.64) 
5. Leucine (0.6) 
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SVM: aad 

pHMM: aad 

EPRNIVEFV 2-aminoadipic acid 2-aminoadipic 
acid 

ASM: aad 

SVM: aad 

pHMM: aad 

1. 2-aminoadipic acid (1.0) 
2. Ornithine (0.67) 
3. 2-aminobutyric acid (0.65) 
4. Glutamine (0.64) 
5. Leucine (0.6) 

DGGMVGGNY Glutamine Glutamine 

ASM: gln 

SVM: gln 

pHMM: gln 

1. 2-aminobutyric acid (0.88) 
2. Alanine (0.8) 
3. Leucine (0.78) 
4. Glutamine (0.74) 
5. 2-amino-8-oxodecanoicacid (0.72) 

DGYCMAGAL Phenylalanine Alanine 

pHMM: leu 

1. Alanine (0.92) 
2. 2-aminobutyric acid (0.87) 
3. Leucine (0.77) 
4. Valine (0.75) 
5. Isoleucine (0.67) 

16.  Phenylalanine (0.5) 

DGYNAGSIC Phenylalanine Alanine 

ASM: dpg 

pHMM: trp 

1. Alanine (0.85) 
2. 2-aminobutyric acid (0.8) 
3. Isoleucine (71) 
4. Leucine (0.71) 
5. Ornithine (0.71) 

19.   Phenylalanine (0.52) 

DMIICGCAA Tryptophan Leucine 

SVM: leu 

pHMM: gly 

1. Phenylalanine (0.95) 
2. Tyrosine (0.83) 
3. Alanine (0.55) 
4. Tryptophan (0.53) 
5. Phenylpyruvic acid (0.52) 

DVMFVGEVA Tryptophan Leucine 1. Alanine (0.79) 
2. Ornithine (0.77) 
3. 2-aminobutyric acid (0.75) 
4. 2-aminoadipic acid (0.72) 
5. Glutamine (0.72) 

28.   Tryptophan (0.34) 

DMALCGSAC Tryptophan Alanine 

pHMM: gly 

1. Tryptophan (1.0) 
2. Indole-3-pyruvic acid (0.67) 
3. Phenylalanine (0.56) 
4. Tyrosine (0.48) 
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5. S-n-methoxy-trp (0.47) 

SARGTVSQL Fumaric acid Alanine 

pHMM: trp 

1. Fumaric acid (0.91) 
2. Glycine (0.57) 
3. Alanine (0.53) 
4. Cinnamic acid (0.53) 
5. Caffeic acid (0.48) 

DLFFCGGL Alanine Alanine/Glycine 

ASM: ala 

SVM: ala 

pHMM: gln 

1. Alanine (1.0) 
2. 2-amino-butyric acid (0.8) 
3. Valine (0.8) 
4. Isoleucine (0.71) 
5. Leucine (0.71) 

 

DLFVLAGCI Alanine Alanine 

pHMM: abu-iva 

1. Alanine (1.0) 
2. 2-amino-butyric acid (0.8) 
3. Valine (0.8) 
4. Isoleucine (0.71) 
5. Leucine (0.71) 

 

DVGFLAGVF Alanine Alanine 1. Alanine (1.0) 
2. 2-amino-butyric acid (0.8) 
3. Valine (0.8) 
4. Isoleucine (0.71) 
5. Leucine (0.71) 

 

DIQGVLAMQ Glycine Alanine 

SVM: ala 

pHMM: gln 

1. Alanine (0.85) 
2. Ornithine (0.71) 
3. 2-amino-butyric acid (0.69) 
4. Valine (0.69) 
5. 2-aminoadipic acid (0.67) 

9. Glycine (0.64) 

DMTFVWGII Homoserine Alanine 

pHMM: gly 

1. Alanine (0.93) 
2. 2-amino-butyric acid (0.87) 
3. Isoleucine (0.77) 
4. Leucine (0.77) 
5. Valine (0.75) 

7. Homoserine (0.63) 

DVWVFSAIQ Proline Alanine 

SVM: ala 

pHMM: leu 

1. Proline (0.9) 
2. Pipecolic acid (0.85) 
3. Ornithine (0.75) 
4. Alanine (0.58) 
5. 2-amino-butyric acid (0.57) 

DVYFVGGIC Proline Alanine 

pHMM: abu-iva 

1. Proline (0.94) 
2. Pipecolic acid (0.9) 
3. Trans-4-hydroxy-Proline (0.65) 
4. Ornithine (0.62) 
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5. Alanine (0.53) 

DVVALVVLI Pipecolic acid  Alanine 

pHMM: pro 

1. Pipecolic acid (0.95) 
2. Proline (0.9) 
3. Ornithine (0.6) 
4. Trans-4-hydroxy-Proline (0.56) 
5. Alanine (0.5) 

DMGFLGGVC Valine Alanine 

ASM: val 

pHMM: abu-iva 

1. 2-amino-butyric acid (0.95) 
2. Alanine (0.86) 
3. Leucine (0.82) 
4. Isoleucine (0.72) 
5. Ornithine (0.72) 

6. Valine (0.71) 

DAWFYGGTF Valine Valine 

ASM: ile, leu, 
val 

SVM: val 

pHMM: leu 

1. Alanine (0.92) 
2. 2-amino-butyric acid (0.75) 
3. Valine (0.75) 
4. Isoleucine (0.67) 
5. Leucine (0.67) 

DGLFIGIPV Isoleucine Alanine 

ASM: ile, val 

pHMM: gln 

1. Alanine (0.86) 
2. 2-amino-butyric acid (0.81) 
3. Isoleucine (0.72) 
4. Leucine (0.72) 
5. Ornithine (0.72) 

DLGYVAGVF 2-amino-butyric acid 2-amino-
butyric acid/ 
isovaline 

1. 2-amino-butyric acid (0.93) 
2. Alanine (0.86) 
3. Leucine (0.72) 
4. Valine (0.71) 
5. Isoleucine (0.63) 

GALLVGITV Hmp-d Alanine 1. a-hydroxy-caproic acid (0.82) 
2. D-2-hydroxyisovalerate (0.71) 
3. D-2-hydroxy-3-methyl-pentanoic 

acid (0.63) 
4. Valine (0.45) 
5. Alanine (0.44) 

GALMVVGSI Hiv-d Alanine 

ASM: hyv 

pHMM: abu-iva 

1. D-2-hydroxyisovalerate (1.0) 
2. D-2-hydroxy-3-methyl-pentanoic 

acid (0.78) 
3. a-hydroxy-caproic acid (0.68) 
4. Valine (0.43) 
5. Alanine (0.42) 
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