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"And death shall have no dominion.
Dead man naked they shall be one

With the man in the wind and the west moon;
When their bones are picked clean and the clean bones gone,

They shall have stars at elbow and foot;
Though they go mad they shall be sane,

Though they sink through the sea they shall rise again;
Though lovers be lost love shall not;
And death shall have no dominion."

– Dylan Thomas
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ABSTRACT

In this thesis we derive a novel formulation of General Relativity that uses curved (spacetime-
dependent) Dirac matrices and generalized spin connections as degrees of freedom and pre-
serves full spin-base invariance - a symmetry of all fermionic matter sectors in nature. The
curved Dirac matrices are thereby defined by virtue of a generalized Clifford algebra, which
is postulated to hold locally. These Dirac matrices are the natural variables of the so called
spin-base formalism, which allows to define spinors in curved spacetimes without introducing a
coframe, i.e. a vielbein field is not required. In the generalization of the spin connection, we find
an unconstrained degree of freedom, which uncovers a new symmetry of the novel formulation
aside from the spin-base symmetry explicitly implemented. We investigate terms quadratic in
the curvature, which give rise to a kinetic term for this unconstrained degree of freedom pro-
moting it to a dynamical constituent of the theory.

In dieser Arbeit leiten wir eine neue Formulierung der Allgemeinen Relativitätstheorie ab, welche
koordinatenabhängige Dirac Matrizen und einen verallgemeinerten Spin-Zusammenhang als
Freiheitsgrade verwendet und die volle Spin-Basis-Invarianz - eine Symmetrie aller fermion-
ischen Materie in der Natur - bewahrt. Die koordinatenabhängigen Dirac Matrizen werden
dabei durch eine verallgemeinerte Clifford Algebra definiert, welche lokal postuliert wird. Diese
Dirac Matrizen sind die natürlichen Variablen des so genannten Spin-Basen Formalismus, der
es erlaubt, Spinore in gekrümmten Raumzeiten zu definieren, ohne ein spezielles Koordinaten-
system einzuführen zu müssen, d.h. ein Vielbein-Feld ist nicht erforderlich. In der Verallge-
meinerung des Spin-Zusammenhangs finden wir einen uneingeschränkten Freiheitsgrad, der
neben der explizit implementierten Spin-Basis-Symmetrie eine weitere Symmetrie der neuen
Formulierung aufdeckt. Weiter untersuchen wir in der Krümmung quadratische Terme, aus de-
nen ein kinetischer Term für diesen unbeschränkten Freiheitsgrad hervorgeht, der ihn zu einem
dynamischen Bestandteil der Theorie macht.





Contents

1. Introduction 1

2. Mathematical Foundations 3
2.1. Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Vielbein Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Spinors in Curved Spaces 11

4. Spinbase Formalism 15

5. Palatini formulation 21
5.1. Metric Palatini Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2. Vielbein Palatini Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6. Derivation of the spinbase invariant action 29
6.1. Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2. Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7. Palatini Principle in the Spinbase Framework 33

8. Higher Curvature Terms 37

9. Conclusion 41

A. Clifford Decomposition 43

B. Clifford Algebra Constraints 45

C. Calculations and Proofs 49





Notations

• Complex conjugation: a + i b = a − i b (a,b ∈R).

• Greek indices (α,β, ...) denote curved spacetime indices.

• Capital latin indices (A,B , ...) denote flat vielbein indices.

• Small latin indices (a,b, ...) denote spinor indices.

• Flat Minkowski spacetime is given by the metric ηI J with signature (1,-1,-1,-1).

• The covariant derivative ∇µ acts on curved and flat indices
with the connections Γα

βγ
and ω I

α J .

• The covariant derivative Dµ acts also on spinor indices
with the connection Γ i

µ j =: Γµ

• Connections not corresponding to the Levi-Civita connection
shall be denoted as Γ̃α

βγ
, ω̃ I

α J , Γ̃µ.

• Complete index antisymmetrization without prefactors is marked by [α1 . . .αn].

• Complete index symmetrization without prefactors is marked by (α1 . . .αn).

• We use the abbreviation: γα1 . . .γαn =: γα1...αn .





1. Introduction

One of the biggest challenges of modern theoretical physics is the formulation of a quantum
theory for gravity. The standard procedure to quantize the underlying classical theory from Ein-
stein via canonical quantization or path integral methods have failed, since the theory can be
shown to be non renormalizable [GSS85], [GS86], [van92]. There are many other candidates for
a quantum theory of gravity like string theory, loop quantum gravity or asymptotic safety scenar-
ios just to name a few. All of these approaches are based on different features of general relativity
and quantum theory to remain unchanged and others to be modified in a quantum theory for
gravity [Ish93], [Sor97]. Since it is assumed that quantum gravity effects will only play a relevant
role near the Planck scale, it is almost impossible to access this regime with today’s experiments
due to the huge energy that would be required. Therefore, there has not been much guidance
through experiments that could indicate how to formulate or what to include into a quantum
theory of gravity. Thus we rely on theoretical assumptions and instinct on the way to quantum
gravity until experiments help to exclude unsuitable candidates.
Since fermions are present in our universe, for example as part of the standard model, we would
wish for quantum gravity to be compatible with spinors, the mathematical construct describ-
ing fermions. Spinors were first introduced to differential geometry by Cartan [Car13] in 1913.
Fifteen years later Dirac used Dirac spinors to describe the quantum nature of electrons [Dir28]
and established the deep connection of spinors to fundamental physics. Ever since, spinors
have been essential to many theories and concepts that form the basis of modern physics to-
day. But formulating Dirac spinors in curved spacetimes brought up many difficulties due to
the definition of Dirac spinors via the covering of the Lorentz group. In a curved space one
would naively define spinors via the covering of general coordinate transformations, which does
not exist. This problem was solved by using vielbeins, introduced to general relativity by Weyl
[Wey29] in 1929. Fock and Ivanenko used vielbeins to give a consistent description of spinors
by finding a coordinate independent formulation of the Dirac equation [FI29], [Foc29]. Though
there are a few aesthetic subtleties coming with this formalism [Wel01], [GL14], this is still the
standard approach to describe fermions in curved spacetimes. Schrödinger pioneered in devel-
oping a different approach without the explicit usage of vielbeins [Sch32] in 1932, but couldn’t
give a consistent picture thereof as he didn’t include a generalization of the so called spin met-
ric. Soon after Schrödinger’s publication, this remaining obstacle was resolved by Bargmann
[Bar32] to result in the first consistent description of the so called spinbase formalism. This new
spinbase formalism was only occasionally picked up again, e.g. [FSY99], [Wel01], [CDN+13]. A
compact description with extension to spin torsion and arbitrary integer dimensions is given in
the publications by Gies and Lippoldt [GL14], [Lip15] and in the Ph.D thesis of Lippoldt [Lip16].
The advantages of the spinbase formalism became clear in the explicit construction of a global
realization of the Clifford algebra on a 2-sphere [GL15], which is not possible within the vielbein
formalism. Gies and Lippoldt thus suggested to include spinbase invariance as a possible feature
of gravity or a quantum theory for gravity.
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1. Introduction

Following this idea, we will establish a classical theory of gravity which is manifestly invariant
under spinbase and coordinate transformations in this thesis. The action will be written in terms
of coordinate dependent Dirac matrices, which yield the metric by virtue of a generalized Clif-
ford algebra for curved spacetimes. In a further step, we will include arbitrary spin connections
in spirit of the publication of Palatini [Pal19]. This generalization can be included without any
extra terms in the action. We will prove the validity of these theories on a classical level by de-
riving the Einstein equations form the equations of motion. In the perspective of quantum field
theory, we will extend the theory and consider terms quadratic in the spin curvature, which
corresponds to gravity theories quadratic in the Riemann tensor. Doing so, will uncover a new
symmetry contained in the theory aside from the spinbase symmetry explicitly implemented.

We try to structure the thesis in coherent way in order to explain and state the formalisms under-
lying our considerations. Therefore, we will start in chapter 2 by recapitulating basic constructs
from differential geometry. Here we will concentrate on the construction of tangent spaces at
manifolds and the bases which can be chosen. This builds a bridge for the introduction to the
vielbein formalism in section 2.2, that will be used to explain the description of spinors in curved
spaces in chapter 3. In chapter 4 we will extend the vielbein construction of spinors and state
the spinbase formalism. For later use and to draw analogies, we will introduce Palatini’s idea
[Pal19] in metric formulation in section 5.1 and in vielbein formulation in section 5.2. Chapter
6 is dedicated to the derivation of the spinbase invariant action for gravity, where we also will
derive the equation of motion and show that it is equivalent to Einstein’s equations. In chapter 7
we will apply Palatini’s idea to this new spinbase invariant action and we will also find Einstein’s
equations as the equation of motion. For the last chapter 8 we will consider terms quadratic in
the spin curvature and summarize our results in chapter 9.
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2. Mathematical Foundations

As an introduction to the spinbase formalism, some general remarks and concepts should be
mentioned that are essential for a basic understanding of the underlying mathematical con-
structs. Using differential geometry as an approach seems natural since the spinbase formalism
is primarily used to describe spinors in curved spacetime. Thus we want to explain the basic
terms of differential geometry and introduce the idea of vielbeins. Then, these vielbeins can
be used to describe spinors in curved spacetimes, which will be done in chapter 3. Extending
the vielbein formalism for spinors in chapter 4, will then lead to a coherent description of the
spinbase formalism. There will be no explicit proofs given in this chapter, as they can be looked
up in many text books about differential geometry and General Relativity (e.g. [Lee09], [Wal84],
[Nak03], [Car19]).

2.1. Differential Geometry

If spacetime is understood as a four dimensional topological manifold M carrying a smooth at-
las A, we can construct the so called tangent space TpM at each point p of the manifold M. The
tangent space TpM is defined as the vector spaces of all directional derivatives ϑγ,p of functions
f ∈C∞(M) along arbitrary smooth curves γ at a point p of the manifold M

TpM= {
ϑγ,p | γ smooth curve through p

}
. (2.1)

A smooth curve γ through p ∈M is thereby defined as a map γ : IR →M with γ(λ0) = p for some
λ0 ∈ IR, which is called smooth if it is smooth in the chart representation of M. The directional
derivative w.r.t γ at point p is then understood as the linear map (indicated by ~)

ϑγ,p : C∞(M)−̃→IR

f 7→ϑγ,p ( f ) := ( f ◦γ)′(λ0)
(2.2)

where the prime indicates the derivative w.r.t. the curve parameter λ. Similarly we can construct
the dual tangent space T ∗

p M (also called co-tangent space) as the vector space of all linear maps
v from TpM into the real numbers

T ∗
p M := {

v : TpM−̃→IR
}

. (2.3)

It is convenient to introduce the gradient (d f )p ∈ T ∗
p M of a function f ∈ C∞(M) at a point

p ∈M as a vector of the dual tangent space by defining

(d f )p : TpM−̃→IR

V 7→ (d f )p (V ) :=V ( f ) .
(2.4)
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2. Mathematical Foundations

The charts (U , x) with the bijective chart map x : U → IRdimM, chart map components xµ : U →
IR and the corresponding chart domain U ⊆M induce a basis to the tangent space TpU . This
can be shown since for every vector V ∈ TpU exists a curve γ such that V =ϑγ,p with γ(λ0) = p ∈
U . Applied to a function f ∈C∞(U ) this gives

V ( f ) =ϑγ,p ( f ) = ( f ◦γ)′(λ0) .

Inserting the identity idU = x−1 ◦x between f and γ yields

V ( f ) = ( ( f ◦x−1)  
IRdimM→IR

◦ (x ◦γ)  
IR→IRdimM

)′(λ0) ,

where we can use the multi dimensional chain rule in IRdimM with the Einstein sum convention
implicitly being understood

V ( f ) = ∂µ( f ◦x−1)(x(p)) (xµ ◦γ)′(λ0) .

If we define the symbols (
∂

∂xµ

)
p

( f ) := ∂µ( f ◦x−1)(x(p)) (2.5)

V µ
(x) := (xµ ◦γ)′(λ0) , (2.6)

we can finally write for a vector V ∈ TpU in the chart (U , x)

V ( f ) =V µ
(x)

(
∂

∂xµ

)
p

( f ) , (2.7)

where the set B,

B :=
{(

∂

∂xµ

)
p
∈ TpU

⏐⏐⏐ 0 ≤µ≤ dimM−1

}
, (2.8)

forms a basis for the tangent space TpU . Similarly the gradients of the chart map components
xµ induce a basis in the dual tangent space T ∗

p M, which furthermore have the property

(dxµ)p

[(
∂

∂xν

)
p

]
= ∂ν(xµ ◦x−1)(x(p)) = ∂ν(projµ)(x(p)) = δµν , (2.9)

which also makes
{
(dxµ)p

}
the dual basis w.r.t. to the basis B in TpM. The vectors and dual

vectors are independent concepts with regard to the chart induced basis and do not change
with a general change of basis. To facilitate this independence, the components of vectors or
dual vectors have to transform accordingly with a change of basis. A special change of basis
is given if we change the chart (or change of coordinates) (U , x) → (W, y) in an overlap region
U ∩W ⊆ M. The transformation behavior for the vector and dual vector components is then
given by

V µ
(y) =

(
∂

∂xν

)
p

(yµ)V ν
(x) , (2.10)

v(y)µ =
(
∂

∂yµ

)
p

(xν)v(x)ν . (2.11)
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2.1. Differential Geometry

In the following the subscript (x) etc. will be suppressed. The concept of tangent and dual tangent
vectors can be further generalized to so called (p, q)-tensors T over the vector space TpM, which
are defined as multi linear maps to IR

T : T ∗
p M⊗·· ·⊗T ∗

p M  
p copies

⊗TpM⊗·· ·⊗TpM  
q copies

−̃→IR , (2.12)

that again are equipped with a vector space structure over IR. In a chart (U , x) the tensor com-
ponent carries one upstair index for each copy of TpU and one downstair index for each copy
of T ∗

p U and each index transforms analogously to the transformations in (2.10) and (2.11) if the
charts are changed (coordinates transformed).

One can proceed further and equip spacetime with a special (0,2)-tensor g which satisfies the
following two conditions

(i) symmetric: g (X ,Y ) = g (Y , X ) ∀X ,Y ∈ TpM

(ii) non degeneracy: T ∗
p M ∋℘(X ) := g (X , ·) ̸= 0 ∀X ∈ TpM .

(2.13)

A tensor which satisfies these conditions is called a metric on M. The "inverse" metric g−1 is a
(2,0)-tensor which satisfies analogous conditions to (2.13) and is defined w.r.t to a metric g by

g−1(v, w) = v
(
℘−1(w)  
∈TpM

)
, v, w ∈ T ∗

p M . (2.14)

In a chart (U , x) this can be written in a more known form namely

g (X ,Y ) = gµνX µY ν

(
℘(X )

)
ν =

(
g (X , ·))ν = gµνX µ =: Xν

⎫⎬⎭ ∀ X ,Y ∈ TpU (2.15)

g−1(v, w) = (
g−1)µν vµwν(

℘−1(v)
)ν = (

g−1)µν vµ =: vν

⎫⎬⎭ ∀ v, w ∈ T ∗
p U . (2.16)

From this follows the relation

X µ = (
℘−1 (

℘(X )
))µ = (

g−1)µν gνσXσ ∀X ∈ TpU

⇒ (
g−1)µν gνσ = δνσ ,

(2.17)

that justifies the term "inverse" metric and we will simply write gµν := (
g−1

)µν
. Also we can

find a basis {ê I } in TpM with which the values of g (ê I , ê J ) =: ηI J are either 1,-1, or 0 and van-
ish for I ̸= J . The numbers ηI J are then called the signature of g and can be ordered in the way
that ηI J = diag(−1, . . . ,−1,1. . . ,1,0, . . . ,0). In the case of ηI J = diag(1,−1, . . . ,−1) we will call g a
Lorentzian metric.

So far all the concepts introduced were defined only locally at a point p ∈M or in a chart (U , x)
with the implicit usage of the atlas A covering the whole manifold and being well defined in the
overlaps of the charts contained in A. The notion of vectors, dual (co-) vectors and tensors can
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2. Mathematical Foundations

be pushed further to the whole manifold by using the construction of the tangent bundle T M ,
which is defined as the disjoint union of all tangent spaces associated to M

T M := ∐
p∈M

TpM . (2.18)

The tangent bundle can be equipped with a manifold structure inherited from M. This way
we can define the bundle (T M ,π,M) with the projection map π : T M → M as a continuous
surjective map. Simply by projecting down any given vector from the bundle to its base point
π(V ) := q ∈M for V ∈ TqM⊆ T M we get a map satisfying these constraints. "Putting" a vector
at each point of the manifold now corresponds to a map σ : M → T M called section, which
satisfies idM =σ◦π. This condition ensures that a section σ only "attaches" vectors from TpM
to a point p of the manifold M. The sectionσ is then also called a vector field on M. Graphically
the situation can be illustrated in the following way

T M

M

πσ

In the following, this is implicitly understood when speaking about vectors on the whole man-
ifold. Thus, we can suppress the subscript p in the definition of basis vectors etc. Dual vectors
can then be defined by using the dual tangent bundle T ∗M and tensor can be constructed with
tensor products of TM and T ∗M.

2.2. Vielbein Formalism

For the vielbein formalism we make use of the choice of basis in TpM. Before, a chart (U , x)
induced the basis in every tangent space, but we are not constrained to that choice of basis. If
M is equipped with a metric g we might choose a basis in which the metric coefficients take an
easy from. In chapter 2, we used a special basis to explain the signature of the metric. This basis
shall now be used as well in the vielbein formalism. So we define the vielbein basis vectors ê I as

g (ê I , ê J ) = ηI J =
{

1,−1 or 0 for I = J
0 for I ̸= J .

(2.19)

For a four dimensional Lorentzian spacetime, ηI J is equal to the Minkowski metric, which is also
the case we want to focus on. To reinterpret our findings, we can say that at each point of M a

flat Minkowskian tangent space is constructed. As
{

∂
∂xµ

}
and {ê I } both form a basis, we can use

both of them to span any vector in the tangent space. Making use of this we can write for the
basis vectors themselves

∂

∂xµ
= e I

µ ê I , (2.20)

ê I = eνI
∂

∂xν
, (2.21)

where the coefficients e I
µ and eνI are very different objects at this point They can be related to

another by reinserting the expressions (2.20) and (2.21) into each other

∂

∂xµ
= e I

µ ê I = e I
µ eνI

∂

∂xν
⇒ e I

µ eνI = δνµ (2.22)
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2.2. Vielbein Formalism

ê I = eνI
∂

∂xν
= eνI e J

ν ê J ⇒ eνI e J
ν = δJ

I . (2.23)

Similarly we can find for the dual tangent space the dual vielbein basis
{
Ê I

}
by demanding

Ê I (
ê J

) != δI
J , (2.24)

which also implies

dxµ = ẽµI Ê I (2.25)

Ê I = ẽ I
ν dxν . (2.26)

With the constraint (2.24) we can connect the coefficients for vectors and dual vectors by

δI
J

!= Ê I (
ê J

)= ẽ I
ν eµJ dxν

(
∂

∂xµ

)
= ẽ I

ν eνJ ⇒ ẽ I
ν = e I

ν (2.27)

δ
µ
ν

!= dxµ
(
∂

∂xν

)
= ẽµI e J

ν Ê I (
ê J

)= ẽµI e I
ν ⇒ ẽµI = eµI . (2.28)

Thus the coefficients e I
µ and eµI are the only relevant degrees of freedom and can be used fur-

ther to transfer vector, dual vector or tensor components from the coordinate to the vielbein
basis and back

V I = e I
µ V µ , VI = eµI Vµ , (2.29)

V µ = eµI V I , Vµ = e I
µ VI . (2.30)

This is especially true in the case of the metric tensor g for which we can write

gµνeµI eνJ = ηI J , gµν = e I
µ e J

ν ηI J . (2.31)

Together with the transformations (2.29) and (2.30) between bases, this implies we can raise and
lower indices of both types with either gµν, gµν, ηI J and ηI J .

There is still some freedom left in the choice of a vielbein basis, namely any basis satisfying
the definition (2.19) is well suited. This means any transformation leaving the coefficients ηI J

invariant is legitimate

ê I → ê I ′ = (Λ) I
I ′

(x)ê I , Ê I → Ê I
′
= (Λ) I

′

I Ê I , (2.32)

ηI ′ J ′ = (Λ) I
I ′ (Λ) J

J ′
ηI J . (2.33)

In our case of a Lorentzian metric, this corresponds to the (local) Lorentz transformations, which
can act differently at any point of the manifold M in general. As a result, it is possible to change
charts (coordinates) and to do local Lorentz transformations in the tangent spaces indepen-
dently of each other. This is not possible in the pure coordinate induced bases formalism, due to
the link between the basis vectors and the charts used to cover the chosen patch of the manifold.
So we get a general transformation behavior for a general tensor carrying mixed indices

T µ
′
I
′

ν
′ J ′

= ∂xµ
′

∂xµ
(Λ(x)) I

′

I
∂xν

∂xν
′ (Λ(x)) J

J ′
T µI

νJ , (2.34)

7



2. Mathematical Foundations

whereΛ(x) stresses the locality of the Lorentz transformations.

The locality of the transformations makes it necessary to introduce two connections in order
to be able to covariantly differentiate tensors. We introduce the event connection Γ̃α

βγ
to com-

pensate partial derivatives of coordinate transformations and the vielbein connection ω̃ I
α J to

compensate partial derivatives of local Lorentz transformations. The covariant derivative ∇̃ in-
duced from these connections acts differently on tensor components in different bases

∇̃αT µ
ν = ∂αT µ

ν+ Γ̃µασTσ
ν− Γ̃σανT µ

σ , (2.35)

∇̃αT I
J = ∂αT I

J + ω̃ I
α K T K

J − ω̃ K
α J T I

K . (2.36)

In order to identify ∇̃αT µ
ν and ∇̃αT I

J as tensor components, they have to transform accordingly
to (2.34) under general transformations. To achieve this, the coordinate dependent connections
have to transform inhomogenously under the associated transformations

Γ̃α
′

β
′
γ
′ = ∂xα

′

∂xα
∂xβ

∂xβ
′
∂xγ

∂xγ
′ Γ̃

α
βγ−

∂2xα
′

∂xβxγ
∂xβ

∂xβ
′
∂xγ

∂xγ
′ (2.37)

ω̃ I
′

α
′ J ′

=Λ I
′

I Λ J
J ′
ω̃ I
α J −Λ K

J ′
∂α

(
Λ I

′

K

)
. (2.38)

This ensures a homogeneous transformation behavior for the tensor components ∇̃αT µ
ν and

∇̃αT I
J . Further both connections can be related to each other, because the tensor ∇̃V has to be

independent of its basis representation. In the coordinate basis we get

∇̃V =
(
∇̃αV β

)
dxα⊗ ∂

∂xβ

=
(
∂αV β+ Γ̃βασV σ

)
dxα⊗ ∂

∂xβ
,

(2.39)

on the other hand, we can also use the vielbein basis and transform back to the coordinate basis

∇̃V = (∇̃αV I ) dxα⊗ ê I

=
(
∂α (e I

σ V σ)  
=V I

+ω̃ I
α K (e K

σ V σ)  
=V K

)
dxα⊗

(
eβI

∂

∂xβ

)

= eβI

(
e I
σ ∂αV σ+V σ∂αe I

σ + ω̃ I
α K e K

σ V σ
)

dxα⊗ ∂

∂xβ

=
(
∂αV β+eβI V σ∂αe I

σ + ω̃ I
α K e K

σ eβI V σ
)

dxα⊗ ∂

∂xβ
.

(2.40)

Comparing this result to (2.39) gives the relation between the event connection and the vielbein
connection, the so called vielbein postulate, which is true for all connections

Γ̃
β
ασ = eβI∂αe I

σ + ω̃ I
α K e K

σ eβI

⇔ 0 = ∂αe J
σ + ω̃ J

α K e K
σ − Γ̃βασe J

β
= ∇̃αe J

σ .
(2.41)
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2.2. Vielbein Formalism

Demanding metric compatibility and zero torsion

∇̃αgβγ
!= 0 (2.42)

Tα
βγ = Γ̃αβγ− Γ̃αγβ

!= 0 (2.43)

defines unique connections Γα
βγ

and ω I
α J , called the Levi-Civita connections, which only de-

pend on gµν and e I
µ respectively 1

Γ
γ

αβ
= Γγ

βα
= 1

2
gγδ

(
∂αgδβ+∂βgαδ−∂δgαβ

)
, (2.44)

ω I J
α =−ω J I

α = 1

2
e K
α

(
eρK eσI∂[ρe J

σ] +eρ J eσK ∂[ρe I
σ] −eρI eσJ∂[ρeσ]k

)
. (2.45)

These Levi-Civita connections and all objects referring to it shall be denoted without tilde in
comparison to a general connection. Furthermore, the covariant derivative ∇ making use of the
Levi-Civita connection allows for writing total derivative terms in volume integrals as we can
show

∇αTα = 1p−g
∂α

(p−g Tα
)

and (2.46)

∇α1 T [α1...αn ] = 1p−g
∂α1

(p−g T [α1...αn ]) , (2.47)

where [α1 . . .αn] indicates complete index antisymmetrization.2 The difference between a gen-
eral event connection Γ̃α

βγ
and the Levi-Civita event connection Γα

βγ
is called the contorsion

tensor Cα
βγ

Cα
βγ

:= Γ̃αβγ−Γαβγ , (2.48)

which transforms as a proper tensor. This allows to write for the covariant derivative ∇̃α
∇̃α = ∂α+Γ ·

α ·+C ·
α · . (2.49)

With the general covariant derivative we can define two curvature tensors R̃ δ
αβγ

and F̃ J
αβI

[∇̃α,∇̃β]Tγ = R̃ δ
αβγ Tδ

=
(
∂βΓ̃

δ
αγ−∂αΓ̃δβγ+ Γ̃δβρΓ̃

ρ
αγ− Γ̃δαρΓ̃ρβγ

)
Tδ

(2.50)

[∇̃α,∇̃β]TI = F̃ J
αβI TJ

=
(
∂βω̃

J
αI −∂αω̃J

βI + ω̃J
βK ω̃

K
αI − ω̃J

αK ω̃
K
βI

)
TJ ,

(2.51)

which are related to each other by

R̃αβγδ = F̃αβI J e I
γ e J

δ
. (2.52)

The vielbein formalism has a few more interesting features. One example is the application to
spinors in curved spaces discussed in the next chapter 3. A second one is the vielbein formula-
tion for General Relativity introduced at the beginning of section 5.1.

1 For a derivation see e.g. appendix B in [Pel94].
2 In this thesis antisymmetrization is used without prefactors see Notations.
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3. Spinors in Curved Spaces

Ever since spinors have been introduced to physics by Dirac in 1928 [Dir28], they have been es-
sential to many theories and concepts that form the basis of modern physics today. However,
Dirac spinors originally were defined on a flat Minkowski spacetime which made it difficult to
extend the concept to curved spacetimes, because there is no covering group for the group of
general coordinate transformations. The vielbein formalism gave first guidance, when it was
introduced to General Relativity by Weyl in 1929 [Wey29]. Fock and Ivanenko picked up viel-
beins to present a way to formulate the Dirac equation on curved spaces [FI29], [Foc29]. This
approach via vielbeins shall be discussed here as it will be the starting point for the spinbase
formalism following in chapter 4.

Vielbeins can be used to introduce Dirac spinors into Lorentzian curved spacetimes. The Dirac
matrices γI in flat Minkowski space are well known from the flat Clifford algebra{

γI ,γJ
}= 2ηI J14×4 . (3.1)

With the vielbeins, we can lift the flat Dirac matrices to coordinate dependent (curved) Dirac
matrices, carrying a proper coordinate basis index µ, with the definition

γµ(x) = e I
µ (x)γI . (3.2)

The curved Dirac matrices will then satisfy a general Clifford algebra for the curved spacetime{
γµ(x),γν(x)

}= 2gµν(x)14×4 . (3.3)

Thus we can equip every tangent space with flat Dirac matrices and introduce a Dirac structure.
This also ensures that we have well-defined Graßmann-valued spinors ψ and dual spinors ψ̄ in
the tangent spaces. The dual spinors ψ̄ are thereby constructed by using a spin metric h for Dirac
conjugation indicated with a bar

ψ̄=ψ†h , |det h| = 1 , (3.4)

which is equal to γ0 in the Dirac representation for flat Minkowski spacetime, but can be differ-
ent in other representations or coordinate systems [Lip16]. The determinant of the spin metric
is further set to 1 in order to introduce no scale between the spinor ψ and its dual spinor ψ̄. As
the vielbeins are fixed up to local Lorentz transformations, we have to identify the transforma-
tion behavior of spinors under local Lorentz transformations and coordinate transformations,
whereas spinors transform (trivially) as scalars under coordinate transformations. A Lorentz
transformation in flat space can be related to transformations in spinor space by virtue of the
identity

Λ J
I γJ = T −1γIT , (3.5)

where Λ ∈ SO+(1,3) and T = D(
1
2 ,0

)⊕(
0, 1

2

) (Λ) being the associated spin transformation, in the

Dirac representation
(1

2 ,0
)⊕ (

0, 1
2

)
, of the Lorentz transformation Λ. This does not mean that
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3. Spinors in Curved Spaces

the Dirac matrices themself change under Lorentz transformations. Rather, the Dirac matrices
can be understood as the tool to translate Lorentz transformations into spin transformations.
Demanding that objects like ψ̄γIψ transform as usual tangent vectors with index I under Lorentz
transformations, implies that spinors transform like

ψ→ T ψ , ψ̄→ ψ̄T −1 , (3.6)

under the associated spin transformations. But applying local Lorentz transformations to a
curved Dirac matrix corresponds to transforming the vielbein only, so we get

γµ→ γ
′
µ = e

′ I
µ γI = e J

µ Λ
I

J γI = T −1γµT . (3.7)

This is analogous to the behavior in flat space (3.5), which suggests again that spinorsψ and dual
spinors ψ̄ in curved space transform according to (3.6). As these transformations are local, we
require a spin connection Γ̃ i

µ j in order to properly transport spinors on the manifold, where the

indices i , j denote components in spinor space. This way we get a covariant derivative D̃ also
respecting spinor indices. We demand the usual properties for derivatives also for D̃ namely

linearity: D̃µ(λψ1 +ψ2) =λ D̃µψ1 + D̃µψ2 , λ ∈C , (3.8)

product rule: D̃µ(ψψ̄) = (D̃µψ)ψ̄+ψ(D̃µψ̄) , (3.9)

spin metric compatability: D̃µψ̄= D̃µψ . (3.10)

Furthermore we demand that D̃ reduces to the usual covariant derivative ∇̃ if applied to tensors,
i.e.

D̃µ

(
ψ̄ψ

)= ∂µ (
ψ̄ψ

)
, D̃µ

(
ψ̄γνψ

)= ∇̃µ
(
ψ̄γνψ

)
. (3.11)

Using the expressions in (3.11) and the properties (3.8)-(3.10) yields for D̃ acting on spinors ψ,
dual spinors ψ̄ and Dirac matrices γν

D̃µψ
i = ∂µψi + Γ̃ i

µ jψ
j = ∂µψ+ Γ̃µψ , (3.12)

D̃µψ̄i = ∂µψ̄i − Γ̃ j
µ i ψ̄ j = ∂µψ̄− ψ̄Γ̃µ , (3.13)

D̃µγν = ∇̃µγν+
[
Γ̃µ,γν

]
. (3.14)

The Levi-Civita spin connection Γµ, defined through Dµγν
!= 0 and using the Levi-Civita event

and vielbein connection, is then given by the solution to the equation

0 =Dµγν = e I
ν

(∇µγI +
[
Γµ,γI

])
⇔ 0 =ω J

µ IγJ +
[
γI ,Γµ

]
.

(3.15)

The connection Γµ can be spanned using the elements of the flat Clifford basis (see appendix A)

Γµ = pµγ∗+ v I
µ γI +a I

µ γ∗γI + t I J
µ [γI ,γJ ] , (3.16)

where the scalar part, coincides with the trace of Γµ, which can be neglected as it corresponds
to an external field [Pol10], [GL14]. This is will be further discussed in section 4. Using this
decomposition in equation (3.15) yields

pµ = 0 , a I
µ = 0 , v I

µ = 0 , t I J
µ = 1

8
ω I J
µ , (3.17)
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and thus we get for the spin connection Γµ

Γµ = 1

8
ω I
µ J

[
γI ,γJ

]
. (3.18)

Merging these results enables us to construct a kinetic term for spinors using a covariant deriva-
tive in a curved spacetime

ψ̄ /Dψ= ψ̄γµDµψ= ψ̄γµ (
∂µ+Γµ

)
ψ . (3.19)

Finally we want to mention that the matrix γ∗, defined for even dimensions only, does not
change from the flat description compared to the curved description which can be seen in 3+1
dimensions by

γ∗ :=− i

4!
εµνρλγµγνγργλ (3.20)

=− i

4!

ϵµνρλ

e
e I
α e J

β
e K
γ e L

δ  
with (5.33): =ϵI JK L=εI JK L

γIγJγKγL

=−iγ(f)0γ(f)1γ(f)2γ(f)3 , , (3.21)

where we have used that det η=−1 in Minkowski spacetime, and the subscript ( f ) is used in the
last line to explicitly indicate the use of flat Dirac matrices.
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4. Spinbase Formalism

The spinbase formalism extends the description of spinors using vielbeins to a more general for-
malism [Wel01], [GL14]. As we are only interested in spacetimes with 3+1 dimensions, we will
reduce the complexity and focus on 3+1 dimensional spacetimes. This also fixes the dimensions
for Dirac spinors to 4. General results in other dimensions can be found in [Lip15], [Lip16].

To introduce the spinbase formalism we postulate the curved Clifford algebra to hold locally{
γµ(x),γν(x)

}= 2gµν(x)14×4 , (4.1)

and do not give an explicit construction for the curved Dirac matrices like (3.2) a priori. Different
irreducible representations for the Clifford algebra are connected to each other via similarity
transformations [Pau36], [Cor89]. Thus a transformation

γµ→SγµS−1, (4.2)

with S ∈ SL(4,C) leaves the curved Clifford algebra (4.1) invariant. We demonstrated in chapter 3
how to transfer Lorentz transformations to spin transformations for spinors by means of the re-
lation (3.5). This, however, does not allow to transfer general coordinate transformations to spin
transformations as, for example, scaling of one coordinate is not covered by this (see [Lip16], p.
18, 19 and [GL15]). To derive a suitable formalism, we investigate non trivial coordinate transfor-
mations of the metric g and use the Clifford algebra (4.1) to relate to transformations of spinors.
A coordinate transformation changes the metric to

gµν→ ∂xσ

∂xµ
∂xλ

∂xν
gσλ . (4.3)

The Clifford algebra (4.1) indicates that the Dirac matrices also have to transform nontrivially

2gµν14×4 =
{
γµ(x),γν(x)

} → 2
∂xσ

∂xµ
∂xλ

∂xν
gσλ14×4 =

{
∂xσ

∂xµ
γσ(x),

∂xλ

∂xν
γλ(x)

}
. (4.4)

Also incorporating similarity transformations (4.2) gives the most general transformation law for
Dirac matrices under general coordinate transformations

γµ→ ∂xσ

∂xµ
Sγσ(x)S−1 . (4.5)

Hence a coordinate transformation of the Dirac matrices is composed out of the transforma-
tion of the spacetime vector part and a similarity transformation in spinor space. Introducing
Graßmann-valued spinors ψ and dual spinors ψ̄, where the dual spinors are again related to
spinors with a spin metric h 1 (Dirac conjugation)

ψ̄=ψ†h , (4.6)

1 A complete description of the spin metric is given in appendix F of [Lip16]. We only need the spin metric to
consistently define Dirac conjugated spinors ψ̄.
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4. Spinbase Formalism

enables a different point of view on these similarity transformations. Since objects like ψ̄γνψ
and ψ̄ψ shall transform trivially under transformations with SL(4,C), the transformation laws
need to satisfy

γµ→SγµS−1, ψ→Sψ, ψ̄→ ψ̄S−1, h → (S†)−1hS−1 . (4.7)

This can be understood as bases transformations in spinor space, so we name these transfor-
mations spinbase transformations instead of similarity transformations. The choice of SL(4,C)
as the transformation group is proven in appendix B of [Lip16] as the minimal transformation
group, which contains all similarity transformations and which does not miss any representa-
tion of the Clifford algebra. Furthermore, spinbase transformations can also be local, since we
may choose a different representation of the Dirac matrices from point to point of the space-
time manifold. This in turn makes it necessary to introduce a spin connection Γ̃ i

µ j for spinbase
transformations, where the indices i and j again label spinor components. The existence of the
spin connection is further guaranteed by the Weldon theorem [Wel01], [Lip15]

δγµ = 1

2

(
δgµν

)
γν+ [

δM ,γµ
]

, δM ∈ SL(4,C) , Tr(δM) = 0 . (4.8)

The Weldon theorem considers arbitrary variations of the Dirac matrices δγµ compatible with
the Clifford algebra (4.1) and connects them to the corresponding variation of the metric δgµν
and an arbitrary infinitesimal spinbase transformation δM . Thus we can always construct a
connection respecting the Clifford algebra. A proof of the theorem is given in appendix A of
[Lip16] or [Wel01]. The covariant derivative D̃ induced from this connection is required to satisfy
the usual properties for derivatives and to reduce to the usual covariant derivative ∇̃ for objects
like ψ̄γνψ and ψ̄ψ

linearity: D̃µ(λψ1 +ψ2) =λ D̃µψ1 + D̃µψ2 , λ ∈C , (4.9)

product rule: D̃µ(ψψ̄) = (D̃µψ)ψ̄+ψ(D̃µψ̄) , (4.10)

spin metric compatability: D̃µψ̄= D̃µψ , (4.11)

covariance: D̃µψ→ ∂xσ

∂xµ
S

(
D̃σψ

)
, (4.12)

reduction: D̃µ(ψ̄γνψ) = ∇̃µ(ψ̄γνψ) , D̃µ(ψ̄ψ) = ∂µ(ψ̄ψ) . (4.13)

Using (4.9), (4.10) and (4.13) we find analogously to (3.12)

D̃µψ
i = ∂µψi + Γ̃ i

µ jψ
j = ∂µψ+ Γ̃µψ , (4.14)

D̃µψ̄i = ∂µψ̄i − Γ̃ j
µ i ψ̄ j = ∂µψ̄− ψ̄Γ̃µ , (4.15)

D̃µγν = ∇̃µγν+
[
Γ̃µ,γν

]
. (4.16)

Considering (4.11) and the definition for Dirac conjugation of matrices

M̄ = h−1M †h , M ∈ SL(4,C) , (4.17)

gives the condition for spin metric compatibility

h−1∂µh = Γ̃µ+ ¯̃Γµ . (4.18)
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Finally, from (4.12) in combination with (4.13) we can deduce the transformation behavior for
the spin connection

Γ̃µ→SΓ̃µS−1 − (
∂µS

)
S−1 , Γ̃µ→ ∂xσ

∂xµ
Γ̃σ , (4.19)

with S ∈ SL(4,C), which also shows that Γ̃µ transforms as a connection for spinbase transforma-
tions and as a dual vector for coordinate transformations. Again we define the Levi-Civita spin
connection Γµ by using the Levi-Civita event connection Γσµν and demanding

Dµγν
!= 0 = ∂µγν−Γσµνγσ  

=∇µγν

+[
Γµ,γν

]
. (4.20)

The spin connection can be decomposed using the Clifford algebra basis

Γµ = pµγ∗+ v σ
µ γσ+a σ

µ γ∗γσ+ t σρ
µ [γσ,γρ] , (4.21)

where we can neglect the scalar part as the generators of SL(4,C) are traceless matrices Mat(4,C)
and thus we have Tr Γ̃µ = 0. The trace can be included if we extend the transformation group to
G⊗SL(4,C), with G being a compact Lie group. In that case we have to include a connection for
G also and would get

Γ̃(G⊗SL(4,C)) µ = i s(G)µ⊗ 1(SL(4,C)) + 1(G) ⊗ Γ̃(SL(4,C)) . (4.22)

The field sµ would then correspond to an external gauge field [GL14], [Lip16] and transform
trivially under spinbase transformations. Using the defining equation (4.20) and using the de-
composition (4.21) yields for the components of Γµ (see appendix C.1)

pµ = 1

32
Tr(γ∗γλ∂µγλ) , (4.23)

vµσ = 1

48
Tr

(
[γσ,γλ]∂µγλ

)
, (4.24)

aµσ =−1

8
Tr(γ∗∂µγσ) , (4.25)

tµσρ = 1

32
Tr(γρ∇µγσ) = 1

32
Tr(γρ∂µγσ)− 1

8
Γρµσ ≡−tµρσ . (4.26)

The antisymmetry in (4.26) follows from the construction in (4.21) and also from the metric com-
patibility of the covariant derivative ∇µ

∇µgαβ = 0 = 1

4
∇µTr(γαγβ) ⇔ 0 = Tr(∇µ(γα)γβ)+Tr(∇µ(γβ)γα) ,

where the cyclicity of the trace has been used. The coefficients (4.23)-(4.26) are written in a
slightly different way from the ones stated in [Wel01] or [GL14]. The difference is due to the
partial derivatives acting on Dirac matrices with lower spacetime index only. One can raise and
lower indices even though there is a partial derivative present. This only introduces a minus sign
in front of

Tr(γρ∂µγσ)gρν =−Tr(γσ∂µγ
ν)

in equation (4.26). Here we also want to mention a small typo in [GL14] in the coefficient a α
µ ,

which has to be multiplied with −1, as the axial vektor in [Wel01] is defined as a α
µ γαγ∗ in con-

trast to the definition in [GL14], where it is defined as a α
µ γ∗γα. All this is further explained in
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4. Spinbase Formalism

more detail in appendix B.1 and C.1.

We will call the difference of a general spin connection Γ̃µ to the Levi-Civita spin connection Γµ
the spin torsion ∆Γµ

∆Γµ := Γ̃µ−Γµ , Tr(∆Γµ) = 0 , (4.27)

where we can set the trace to zero as it again coincides to an external gauge field (see (4.22)). The
spin torsion will then transform homogeneously under spinbase transformations and as a dual
vector under coordinate transformations

∆Γµ→S∆ΓµS−1 , ∆Γµ→ ∂xµ

∂xν
∆Γν (4.28)

Using spin torsion and (2.48) we can rewrite the covariant derivative D̃µ as

D̃µ = ∂µ+Γ ·
µ ·+C ·

α ·  
=∇̃µ

+Γµ+∆Γµ  
=Γ̃µ

. (4.29)

Having a covariant derivative D̃µ allows to construct a spinor valued spin curvature tensor Φ̃ i
µν j

[D̃µ,D̃ν]ψ= Φ̃µνψ= (
∂µΓ̃ν−∂νΓ̃µ+ [Γ̃µ, Γ̃ν]

)
ψ , (4.30)

where we suppressed the spinor indices. The spin curvature built from the Levi-Civita spin con-
nection Γµ can be further related to the Riemann tensor in metric or vielbein formulation by the
identities (see appendix C.2)

Φαβ =
1

8
R στ
αβ

[
γσ,γτ

]= 1

4
R στ
αβ γσγτ (4.31)

= 1

8
F I J
αβ

[
γI ,γJ

]= 1

4
F I J
αβ

γIγJ . (4.32)

In a last step, we want to constrain the spin connection by imposing reasonable requirements
for a dynamical theory of spinors. We want the different constituents in the action to be real, so
we demand

ψ̄ψ=ψ†hψ
!= (
ψ̄ψ

)∗ =ψTh∗ψ∗ =
(
ψTh∗ψ∗

)T =−ψ†h†ψ , (4.33)

where the minus sign in the last step comes from a commutation of the Graßmann-valued
spinors. From this we conclude that the spin metric is antihermitean

h† =−h . (4.34)

The same is required for the kinetic term∫
M

d4x
p−g ψ̄ /̃Dψ=

∫
M

d4x
p−g

(
ψ̄ /̃Dψ

)∗
. (4.35)

To evalute (4.35) we have to use some identities

(
χ̄Mψ

)∗ =χ†h∗M∗ψ∗ =
(
χTh∗M∗ψ∗

)T =ψ†M †(−h†)χ= ψ̄M̄χ (4.36)
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where the minus sign is due to the commutation of the spinors and

0 =
∫
M

d4x
p−g ∇µ

(
ψ̄γ̄µψ

)

⇔
∫
M

d4x
p−g ∂µ(ψ̄)γ̄µψ=−

∫
M

d4x
p−g

(
ψ̄γ̄µ∂µψ+ ψ̄(∇µγ̄µ)ψ)

.2
(4.37)

Also we need the derivative ∇µγ̄ν

∇µγ̄ν = h−1(∇µγ†
ν

)
h + (

∂µh−1)γ†
νh +h−1γ†

ν

(
∂µh

)
= h−1(∇µγν)†h + [

γ̄ν,h−1 (
∂µh

)]
,

where we have used
∂µ(h−1h) = 0 = (

∂µh−1)h +h−1 (
∂µh

)
,

in the second term and property (4.12) of the covariant derivative in the first term. With (4.18)
and (4.20) we get

∇µγ̄ν =−[
Γ̄µ, γ̄ν

]+[
γ̄ν, Γ̃µ+ ¯̃Γµ

]
= [

γ̄ν, Γ̃µ−∆Γ̄µ
] . (4.38)

Now coming back to evaluate the second requirement (4.35). In a first step, we get using (4.36)
and (4.11)∫

M

d4x
p−g

(
ψ̄ /̃Dψ

)∗ = ∫
M

d4x
p−g

((
D̃µψ̄

)
γ̄µψ

)= ∫
M

d4x
p−g

((
∂µψ̄

)
γ̄µψ− ψ̄Γ̃µγ̄µψ

)
.

Replacing
(
∂µψ̄

)
γ̄µψ with (4.37) yields∫

M

d4x
p−g

(
ψ̄ /̃Dψ

)∗ =−
∫
M

d4x
p−g

(
ψ̄γ̄µ∂µψ+ ψ̄(∇µγ̄µ)ψ+ ψ̄Γ̃µγ̄µψ

)
.

Now using (4.38) for the second term results in∫
M

d4x
p−g

(
ψ̄ /̃Dψ

)= ∫
M

d4x
p−g

(
ψ̄ /̃Dψ

)∗ = ∫
M

d4x
p−g

(−ψ̄γ̄µD̃µψ+ ψ̄[
γ̄µ,∆Γ̄µ

]
ψ

)
, (4.39)

which has to be satisfied for arbitrary spinors. So we conclude

γµ =−γ̄µ , (4.40)[
γµ,∆Γµ

]= 0 . (4.41)

The spin torsion can be spanned again by the Clifford decomposition

∆Γµ = p(∆Γ)µγ∗+ v σ
(∆Γ)µ γσ+a σ

(∆Γ)µ γ∗γσ+ t στ
(∆Γ)µ [γσ,γτ] . (4.42)

2 We consider only manifolds M with no boundary, so that we can neglect surface terms.
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4. Spinbase Formalism

The constraint (4.41) then implies for the decomposition coefficients

p(∆Γ)µ = 0 , (4.43)

v(∆Γ)[µσ] = 0 , (4.44)

a µ
(∆Γ)µ = 0 , (4.45)

t σµ
(∆Γ)µ = 0 . (4.46)

One further constraint can be deduced for the possible trace of the spin torsion (see appendix F,
(F.28) in [Lip16]), if we consider the spin metric compatibility condition (4.18). It follows that the
a priori complex trace has to be purly imaginary

Re(sµ) = 0 , (4.47)

which we already have taken into account for the inclusion of the external gauge field (4.22).
We want to emphasize here that the constraints (4.40) (4.41) and (4.47) arise only if we couple
the connection to spinors. If we want to write down a theory without spinors, but still containing
the connection, we can lift these constraints.
The standard vielbein formalism for spinors from section 3 can be related to the spinbase for-
malism, if there is no spacetime torsion present. This can be seen from (4.29)

D̃µγν =Cσ
µνγσ+

[
∆Γµ,γν

] (4.41)= Cσ
µνγσ . (4.48)

Thus, generally the Dirac matrices are not covariantly constant, in contrast to the standard viel-
bein formalism where we have (3.15). But in absence of spacetime torsion we can always choose
a spinbase transformation to transform the Dirac matrices such that they are spanned as in (3.2)
[Wel01], [GL14].
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5. The Palatini Formulation for Gravity

Einstein’s theory for gravity is described by a dynamical metric obeying the Einstein equations
[Ein15] (here stated in vacuum)

Rαβ−
1

2
gαβ R = 0 . (5.1)

The Ricci tensor Rαβ and the Ricci scalar R in the Einstein equations are defined via the curvature
tensor (2.50) obtained from the Levi-Civita event connection (2.44) and are given by

Γ
γ

αβ
= 1

2
gγδ

(
∂αgδβ+∂βgαδ−∂δgαβ

)
, (5.2)

R δ
αβγ = ∂βΓδαγ−∂αΓδβγ+ΓδβρΓ

ρ
αγ−ΓδαρΓρβγ , (5.3)

Rαβ = R δ
αδβ , (5.4)

R = gαβRαβ . (5.5)

This makes the Einstein equations second order partial differential equations for the metric gαβ.
Test bodies are said to move on geodesics xα(λ) given by the solution to the geodesic equation

d 2xα

d 2λ
+Γαβγ

d xβ

dλ

d xγ

dλ
= 0 , (5.6)

with the curve parameter λ. The Einstein equations can be derived from the Einstein-Hilbert
action SE H [Hil15] via the variational principal (see e.g. [Wal84], [Car19])

SE H [g ] =
∫
M

d4x
√

−det g R . (5.7)

This is a theory in which the metric is the only dynamical degree of freedom. As introduced in
chapter 2, the event connection Γ̃α

βγ
and the metric gαβ are both independent concepts from

differential geometry and therefore do not need to be linked as in Einstein’s theory of gravity.
There are many other theories that correspond to Einstein’s theory on the classical level [Rom93],
[Pel94]. A natural generalization of Einstein’s theory is to detach the connection from the metric
and consider both as independent degrees of freedom of the theory. This idea has its origin
in the work of Palatini [Pal19] and is explained in terms of metric and vielbein formulation in
the following. In chapter 7 this procedure will be applied to a gravity theory in the spinbase
formalism derived in chapter 6.

5.1. Metric Palatini Formulation

The metric Palatini formulation [Pal19] of gravity considers the metric gαβ and event connection
Γα

βγ
as two independent degrees of freedom. The starting point is the usual Einstein Hilbert

action

SE H [g ] =
∫
M

d4x
√

−det g R . (5.8)
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5. Palatini formulation

To promote the event connection to be an independent degree of freedom we study arbitrary
event connections Γ̃α

βγ
. Following [DP12] and [Bla19], the general curvature R̃ δ

αβγ
, Ricci tensor

R̃αβ and Ricci scalar R̃ following from this new event connection are then given analogously to
(5.3), (5.4) and (5.5)

R̃ δ
αβγ = ∂βΓ̃δαγ−∂αΓ̃δβγ+ Γ̃δβρΓ̃

ρ
αγ− Γ̃δαρΓ̃ρβγ , (5.9)

R̃αβ = R̃ δ
αδβ , (5.10)

R̃ = gαβR̃αβ , (5.11)

and one gains a new Einstein-Palatini action depending now on gαβ and Γ̃α
βγ

SEP

[
g , Γ̃

]= ∫
M

d4x
p−g R̃ . (5.12)

To obtain the equations of motion for gαβ and Γ̃α
βγ

we have to consider the variations δgαβ and

δΓ̃α
βγ

. The calculation of these variations turns out to be less complicated if the event connec-

tion Γ̃α
βγ

is decomposed into the Levi-Civita connection Γα
βγ

and a general deviation therefrom

in form of the contorsion tensor Cα
βγ

Γ̃αβγ = Γαβγ+Cα
βγ , (5.13)

and hence we can conclude for the variation δΓ̃α
βγ

δΓ̃αβγ = δCα
βγ . (5.14)

Using (5.13) we can rewrite the curvature tensor R̃ δ
αβγ

into the following form

R̃ δ
αβγ = R δ

αβγ +∇βCδ
αγ−∇αCδ

βγ+Cδ
βρCρ

αγ−Cδ
αρCρ

βγ
, (5.15)

where ∇α stands for the covariant derivative associated to the Levi-Civita connection Γα
βγ

which

is connected to the general covariant derivative ∇̃α by

∇̃αT β = ∂αT β+ Γ̃βαγT γ = ∂αT β+ΓβαγT γ+Cβ
αγT γ

⇔∇̃αT β =∇αT β+Cβ
αγT γ ,

(5.16)

with the usual extension to higher rank tensors including lower indices etc. The second and
third term in (5.15) will not contribute to the equations of motions as they correspond to surface
terms in the action (5.12), due to the explicit properties of the Levi-Civita covariant derivative,
namely

∇αTα = 1p−g
∂α

(p−g Tα
)

and (5.17)

∇α1 T [α1...αn ] = 1p−g
∂α1

(p−g T [α1...αn ]) , (5.18)
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5.1. Metric Palatini Formulation

which do not hold for arbitrary covariant derivatives ∇̃α. The action (5.12) can now be rewritten
as

SEP

[
g ,C

]= ∫
M

d4x
p−g

(
R +∇αCα β

β
−∇αCβ α

β
+Cα

αρCρ β

β
−Cα

βρCρ β
α

)

= SE H

[
g
]+ ∫

M

d4x
p−g

(
Cα

αρCρ β

β
−Cα

βρCρ β
α

)
+ surface terms .

(5.19)

Requiring the action to be stationary under the variations δgαβ and δCα
βγ

and neglecting sur-

face terms, we get the equations of motion for gαβ and Cα
βγ

0
!= δSEP

δgµν
= Rµν− 1

2
gµνR + δ

p−g

δgµν

(
Cα

αρCρ β

β
−Cα

βρCρ β
α

)
, (5.20)

0
!= δSEP

δCσ
µν

=p−g
(
δ
µ
σCν β

β
+Cα

ασgµν−Cν µ
σ −Cµν

σ

)
, (5.21)

where the first two parts of (5.20) arises from the usual variation of the Einstein-Hilbert action
(see e.g. [Car19] or [Bla19]). Contracting (5.21) with gµν or g σ

µ we arrive at the two equations

C α
σα +4Cα

ασ−Cα
σα−Cα

ασ =C α
σα +3Cα

ασ−Cα
σα = 0 , (5.22)

4Cν α
α +Cα ν

α −Cν α
α −Cαν

α = 3Cν α
α +Cα ν

α −Cαν
α = 0 . (5.23)

Properly rearranging the indices and taking the difference between (5.22) and (5.23) one can
show

C α
σα =Cα

ασ , (5.24)

which brings (5.21) into the form

0 = gµνC α
σα + gµσC α

να −Cνσµ−Cµνσ . (5.25)

Adding and subtracting permutations of (5.25) in the following way gives

(5.25)µνσ− (5.25)σµν+ (5.25)νσµ⇔Cνσµ = gµνC α
σα , (5.26)

and yields for the connection Γ̃α
βγ

Γ̃αβγ = Γαβγ+δαγ Aβ , (5.27)

with an arbitrary covector Aβ :=C α
σβ

. Investigating metric compatibility (5.28) and the torsion

tensor Tα
βγ

for the general covariant derivative ∇̃α

∇̃αgβγ =∇αgβγ  
=0

−Cρ

αβ
gργ−Cρ

αγgβρ =−2gβγAα , (5.28)

Tα
βγ = Γ̃αβγ− Γ̃αγβ = δαγ Aβ−δαβAγ ⇒ Tα

βα = 3Aβ , (5.29)

shows that demanding either metric compatibility (5.28) or the vanishing of the trace of the tor-
sion tensor in (5.29) results in Aβ = 0. Consequently, we obtain the Levi-Civita connection from
the connection equation of motion.
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5. Palatini formulation

This contradicts the Palatini principle, which states that either metric compatibility or vanish-
ing of the entire torsion tensor must be required in advance to yield the Levi-Civita connection
[Pal19], [Bla19]. In principle it should be sufficient to demand tracelessness for Tα

βγ
. But we can

even drop all a priori assumptions [DP12], since the metric equation of motion reduces to the
Einstein equations

0 = Rµν− 1

2
gµνR , (5.30)

if the general solution for the connection (5.27) is being used. This is because the second part of
(5.20) yields

Cα
αρCρ β

β
−Cα

βρCρ β
α = AαAα− AβAβ = 0 . (5.31)

This way, we get a valid theory for gravity that is equal to Einstein’s theory, if the connection is
not further coupled to matter degrees of freedom etc.1

5.2. Vielbein Palatini Formulation

To also apply the idea from Palatini in the vielbein frame work, we have to us an equivalent action
for gravity expressed by vielbeins only. We start again with the Einstein-Hilbert action SE H

SE H [g ] =
∫
M

d4x
√

−det g gαβR σ
σα β . (5.32)

We begin rewriting the action with the determinant of the metric det g , which can be computed
using a general formula for determinants

ϵ j1... jn det(A) = ϵi1...in Ai1 j1 . . . Ain jn

⇔ det(A) = ϵi1...in ϵ j1... jn

n!
Ai1 j1 . . . Ain jn ,

(5.33)

with ϵ being the Levi-Civita symbol. One has to distinguish here between the Levi-Civita symbol
ϵ and the Levi-Civita tensor ε, where the later has to be used for contracting indices, in order to
preserve the tensorial character of contracted quantities

εµ1...µdimM = 1√−det g
ϵµ1...µdimM

εµ1...µdimM =
√

−det g ϵµ1...µdimM .

(5.34)

Then, the determinant of the metric can be related to the determinant of the vielbein by using
the defining equation (2.19)

det g =det η  
=−1

(det e)2

=− (det e)2

(5.35)

Using the relation between the curvature tensors in the metric and vielbein formalism (2.52)
yields for the Einstein Hilbert action (5.32)

SV E H [e] =
∫
M

d4x eeαI eβJ F I
αβ J , (5.36)

1 See [Bla19], [Pel94] and [ART89] for a further discussion.
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5.2. Vielbein Palatini Formulation

where omitting the tilde means that the Levi-Civita connection is being used.

Now we can apply the idea from Palatini to the vielbein formulation of gravity. Again, we state
the formulas for curvature and vielbein connection

F I
αβ J = ∂αω I

β J −∂βω I
α J +ω I

α Kω
K

β J −ω I
β Kω

K
α J , (5.37)

ω I
α J =

1

2
e K
α

(
eρK eσI∂[ρeσ]J +eρJ eσK ∂[ρe I

σ] −eρI eσJ∂[ρeσ]k

)
. (5.38)

The action (5.36) is an equivalent theory for gravity and yields the Einstein equations after vari-
ation w.r.t. δe I

α . Using an arbitrary connection ω̃ I
α J , one obtains a general curvature F̃ I

αβ J
analogous to (5.37) in the form of

F̃ I
αβ J = ∂αω̃ I

β J −∂βω̃ I
α J + ω̃ I

α K ω̃
K

β J − ω̃ I
β K ω̃

K
α J . (5.39)

With the decomposition
ω̃ I
α J =ω I

α J +D I
α J , (5.40)

where D I
α J is an a priori arbitrary mixed tensor, we can rewrite the general curvature F̃ I

αβ J into

F̃ I
αβ J = F I

αβ J +∇[αD I
β] J +D I

[α |K |D
K

β] J . (5.41)

Here we introduced ∇α as the covariant derivative utalizing the Levi-Civita connection with an
symmetric extension to spacetime indices. Remember that any covariant derivative annihilates
the vielbein (vielbein postulate (2.41)). The extension can be done because in (5.41) only the anti
symmetric part regarding the indices α and β is considered and hence any contribution from a
symmetric event connection drops out of equation (5.41). Furthermore the extension is done
explicitly with the Levi-Civita event connection (5.2) to use again its properties stated in (5.17)
and (5.18).
Here we want to comment on the literature being used as references. The extension to spacetime
indices is a crucial point and not mentioned in [Pel94]. Thus it is not clear how to arrive at
equation (2.12) of [Pel94], unless the extension is used and ∇̃αe I

β
= 0 2 is agreed on in general.

From our point of view this is of course true (see (2.41)). This in turn creates problems in the
equations of motion for the connection (2.14) of [Pel94], as it is trivially satisfied and hence does
not allow to determine the connection.
A different subtlety can be found in [Rom93]. There the convention uses a connection equal to
the connection in this thesis apart from a minus sign. When computing the equations of motion
for the connection, the identity

δF̃ I J
αβ

= ∇̃[αδω̃
I J

β] , 3

is used. But this is only true if written as

δF̃ I
αβ J = ∇̃[αδω̃

I
β] J ,

which can easily be checked. Raising the index J to get the first equation is not allowed as the
derivative ∇̃α does not annihilate the Minkowski metric ηI J . Also the same problems with the
covariant derivative acting on the vielbein mentioned above are contained in (6.10) of [Rom93]

2Here we use our convention for the covariant derivatives. In the convention of [Pel94] this equation has to be
written as Dαe I

β
= 0.

3 In the convention of [Rom93] this equation reads δ4F I J
ab = 4D[aδ

4 A I J
b] .
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5. Palatini formulation

etc. We suggest to follow [DP12] and use the decomposition (5.40) as this prevents one from
running into these subtleties.
Now following again the same line of reasoning as in section 5.1, we obtain a new action depend-
ing on the vielbein and the deviation from the Levi-Civita vielbein connection D I

α J

SV EP [e,D] =
∫
M

d4x eeαI eβJ F̃ I
αβ J , (5.42)

which can also be written as

SV EP [e,D] = SV E H [e]+
∫
M

d4x e∇[α

(
D I
β] J eαI eβJ

)
  

→ surface term

+eeαI eβJ D I
[α |K |D

K
β] J . (5.43)

Neglecting the surface term, the equations of motion for this action are

0
!= δSV EP

δe L
µ

= δSV E H

δe L
µ

+ δ
(
eeαI eβJ

)
δe L

µ

D I
[α K D K

β] J , (5.44)

0
!= δSV EP

δD L
µ M

= e
(
D M
β J eµLeβJ +D I

α LeαI eµM −D M
α J eαLeµJ −D I

β LeµI eβM
)

. (5.45)

The first variation in (5.44) is equivalent to the Einstein equations in vielbein formalism (see
e.g.[Pel94]) and gives

δSV E H

δe L
µ

=−2e eµI eαLeµJ F I
αβ J +e eµLeαI eβJ F I

αβ J . (5.46)

Equation (5.45) can be contracted with e L
σ eνM which yields, with the tensor Eβ

αγ introduced for
reasons of convenience and defined by

Eβ
αγ := D I

α J eβI e J
γ , (5.47)

0 = e
(
δ
µ
σEν β

β
+Eα

ασgµν−Eν µ
σ −Eµν

σ

)
, (5.48)

where the first two indices of Eβ
αγ have been swapped to achieve the same canonical form for

(5.48) as in (5.21). This again implies the same solution for Eβ
αγ as for Cα

βγ
in (5.27)

Eβ
αγ = δβγAα , (5.49)

⇔ D I
α J = δI

J Aα , (5.50)

with an arbitrary covector Aα. As before Aα = 0 corresponds to metric compatibility as well as
the vanishing of the trace of the torsion tensor T I

αβ
.
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5.2. Vielbein Palatini Formulation

The torsion tensor T I
αβ

and metric compatibility (5.51) in vielbein terms are given by

∇̃αgβγ = e I
β e J

γ ∇̃αηI J =−e I
β e J

γ

(
ωαJ I +ωαI J  

=0

+DαJ I +DαI J

)
=−2gβγAα , (5.51)

T I
αβ =

(
∂[αe I

β] +ω I J
[α eβ]J  

=0

+D I J
[α eβ]J

)
= Aαe I

β − Aβe I
α ⇒ T I

αβeβI = 3Aα , (5.52)

which proves the previous statement. Similar to the discussion in 5.1, the general solution (5.50)
will suffice to give the Einstein equations as

D I
[α |K |D

K
β] J = δI

J A[αAβ] = 0 . (5.53)

This reduces (5.44) to (5.46). With the relation between F I
αβ J and the usual Riemann tensor (5.3)

F I
αβ J = R γ

αβ δ
e I
γ eδJ , (5.54)

the remaining equations of motion equal the Einstein equations in (5.30).
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6. Derivation of a Spinbase Invariant Form of
the Einstein-Hilbert Action

As mentioned at the end of chapter 4, the vielbein formalism is included in the spinbase formal-
ism if there is no torsion present (see (4.48)). Since we could construct a theory for gravity by
means of the vielbeins only in section 5.2, it would be logical to ask weather there is a different
theory for gravity using the spinbase formalism. The vielbein would be replaced by the Dirac
matrices which are connected to the metric by virtue of the Clifford algebra for a curved space
time (4.1). Thus we get an equation of motion for the Dirac matrices which will yield the met-
ric for the underlying spacetime. The equation of motion can further be simplified to yield the
Einstein equations.

6.1. Derivation

We try to reformulate the classical Einstein-Hilbert action in the vielbein formalism (5.36)

SV E H ,Λ[e] =
∫
M

d4x
[

eeµI eνJ F I
µν J −2eΛ

]
(6.1)

now including the cosmological constantΛ1, into a manifestly spinbase invariant form. We take
this approach since we should be able to come back to this action once we have found a spinbase
invariant action. Rearranging the action gives

SV E H ,Λ[e] =
∫
M

d4x
[e

2

(
e[µ

I eν]J +e(µ
I eν)J

)
F I
µν J −2eΛ

]
, (6.2)

where we can make use of the antisymmetry in the first two indices of F I
µν J to cancel the sym-

metric part e(µ
I eν)

J . In a next step we use the two identities

e = 1

4!
ϵµνρλϵI JK Le I

µ e J
ν e K

ρ e L
λ , (6.3)

e e[µ
I eν]

J =
1

2
ϵµνρλϵI JK Le K

ρ e L
λ . (6.4)

A proof for (6.4) can be found in appendix C.3 and (6.3) follows from the general formula for
determinants (5.33).

1 Since we do not couple the theory to matter, it is not necessary to include the appropriate constant factor
1

2κ = c4

16πG . In the presence of matter we would need to write S = c4

16πG SV E H ,Λ+Smatter.
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6. Derivation of the spinbase invariant action

To eliminate the vielbein in (6.3) and (6.4) we use the identity (6.5) for the Levi-Civita symbol
ϵI JK L and the definition for the curved Dirac matrices in vielbein formulation (3.2)

ϵI JK L =− i

4
Tr[γ∗γIγJγKγL] , (6.5)

γµ = e I
µ γI . (6.6)

Merging the results yields

e =− i

96
ϵµνρλTr[γ∗γµγνγργλ] , (6.7)

e e[µ
I eν]

J =− i

8
ϵµνρλTr[γ∗γIγJγργλ] . (6.8)

Hence the action can be written as

SV E H ,Λ[e] =
∫
M

d4x

[
−iϵµνρλ

(F I J
µν

16
Tr[γ∗γIγJγργλ]− Λ

48
Tr[γ∗γµγνγργλ]

)]
. (6.9)

Here we emphasize the Levi-Civita symbol ϵµνρλ contained in the action. Expanding with
√−det g

would reinstall the usual integration measure and the Levi-Civita tensor εµνρλ in front. In a last
step we have to replace the curvature F I J

µν with the relation to the spin curvatureΦµν (4.32)

Φµν = 1

4
F I J
µν

[
γI ,γJ

]
. (6.10)

Pulling F I J
µν inside the trace and using the curvature relation yields for the action

SSE H ,Λ[γ] =
∫
M

d4x

[
−iϵµνρλ

4

(
Tr[γ∗Φµνγργλ]− Λ

12
Tr[γ∗γµγνγργλ]

)]

=
∫
M

d4x
√
−det g

[
−iεµνρλ

4

(
Tr

[
γ∗Φµνγργλ

]− Λ

12
Tr[γ∗γµγνγργλ]

)]
.

(6.11)

This action is now spinbase invariant. Interestingly it also does not make use of any inverse Dirac
matrices and is further fully contracted by using the Levi-Civita symbol or tensor if expanded
with

√−det g . The determinant det g in γ∗ for example can be computed with

gµν = 1

4
Tr

(
γµγν

)
, (6.12)

det g = 1

4!
ϵαβδψϵµνρλgαµ gβν gδρ gψλ . (6.13)

Thus the action is fully determined by the Dirac matrices obeying the Clifford algebra (4.1).

At this point we found no way of rewriting the action in pure metric formulation similar to the
form of (6.11). But we can start with the analog of the action depending only on the metric

SE H ,Λ[g ] =
∫
M

d4x
√

−det g
[
gµρgνσRµνρσ−2Λ

]
, (6.14)
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6.2. Equations of Motion

and use a rewritten form of relation (4.31)

Rµνρσ =−1

8
Tr

(
Φµν

[
γρ ,γσ

])
. (6.15)

Hence we get for

gµρgνσRµνρσ =−1

8
Tr

(
Φµν

[
γµ,γν

])= 1

4
Tr

(
γνΦνµγ

µ
)

, (6.16)

where we have used the antisymmetry ofΦµν =−Φνµ. This leads to the action

S̃SE H ,Λ[γ] =
∫
M

d4x
√

−det g

[
1

4
Tr

(
γνΦνµγ

µ
)−2Λ

]
, (6.17)

where det g can be computed with (6.12) and (6.13). To get a similar form as in (6.11) one would
need a similar identity as in (6.4) which is, to our knowledge, not possible using the metric in-
stead of vielbeins. So this would again be a spinbase invariant action, but which contains inverse
Dirac matrices. The equation of motion for this action yields the Einstein equations and thus
validates the theory. A computation of the equation of motion for (6.17) can be found in [Lip12].

6.2. Equations of Motion

Since we found a new action (6.11) for gravity, we should check whether or not we get the Ein-
stein equations if we require the action to be stationary under variations δγψ. To compute the
variation w.r.t. γψ we need the variations from appendix C.4

δdet g = (−det g )Tr
(
Kψ(δγψ)

)
, Kψ := 1

4 ·3
εψβστεµνρλgβνgσρgτλ γµ (6.18)

δγ∗ = 1

2
Tr

[
Kψ(δγψ)

]
γ∗− i

4!
εαβστ

(
− (δγτ)γβσα−γα(δγτ)γσβ

−γαβ(δγτ)γσ+γαβσ(δγτ)
)

, (6.19)

1

4
εµνρλδ

(
R δη
µν

)
Tr

[
γ∗δηρλ

]=−2i Rµψ(γµ) j
i (δγψ)i

j . (6.20)

With these identities the variation of the action (6.11) yields (see appendix C.4)

δSSE H ,Λ[γ] =− i

4

∫
M

d4x
√

−detg
[
Aψ−2i Rµψγµ+Bψ

] j
i (δγψ)i

j , (6.21)

Aψ = 1

4
εµνρλR δη

µν

[
δ
ψ

δ

{
γη,γρλ

}
γ∗+δψλγ∗

{
γρ ,γδη

}+2iεδηρλK
ψ+T

ψ

δηρλ

]
, (6.22)

Bψ =− Λ
12
εµνρλ

[
4δψµγνρλ∗+2iεµνρλK

ψ+T
ψ

µνρλ

]
, (6.23)

T
ψ

µνρλ
=− i

4!
εαβσψ

(
−γβσαµνρλ−γσβµνρλα−γσµνρλαβ+γµνρλαβσ

)
. (6.24)

Here we used the abbreviation for products of Dirac matrices

γα1 . . .γαn =: γα1...αn .
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6. Derivation of the spinbase invariant action

The equation of motion for γψ can be read of

0 =Aψ−2i Rµψγµ+Cψ . (6.25)

Multiplying (6.25) by 1
8i γχ and taking the trace gives the vacuum Einstein equations

Rψ
χ−

1

2
gψχR +Λgψχ = 0 .

This is most conveniently checked by using MATHEMATICA and FEYNCALC. Thus we obtained a
valid theory for gravity which yields the Einstein equations after variation.
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7. Palatini Principle in the Spinbase Framework

With the action derived in chapter 6 we found a manifestly spinbase invariant action which only
depends on the Dirac matrices γα. The spin curvature contained in the action makes explicit
usage of the Levi-Civita spin connection (4.21), (4.23) - (4.26) fully determined by the Dirac ma-
trices and its partial derivatives. In the spirit of chapter 5, we want to investigate arbitrary spin
connections Γ̃α

βγ
by using the idea of Palatini.

Starting from the action (6.11)

SSE H ,Λ[γ] =
∫
M

d4x
√

−det g

[
−iεµνρλ

4

(
Tr[γ∗Φµνγργλ]− Λ

12
Tr[γ∗γµγνγργλ]

)]
(7.1)

we can apply again Palatini’s idea and promote the spin connectionΓµ to an independent degree
of freedom by allowing arbitary deviations (spin torsion see (4.27))∆Γµ from the Levi-Civita spin
connection Γµ

Γ̃µ = Γµ+∆Γµ . (7.2)

Hence the new connection induces a new general spin curvature Φ̃µν given analogously to (4.30)

Φ̃µν = ∂µΓ̃ν−∂νΓ̃µ+ [Γ̃µ, Γ̃ν] , (7.3)

which also implies a new action

SSEP,Λ[γ, Γ̃] =
∫
M

d4x
√
−det g

[
−iεµνρλ

4

(
Tr[γ∗Φ̃µνγργλ]− Λ

12
Tr[γ∗γµγνγργλ]

)]
. (7.4)

Analogously to the approaches in section 5 we can rewrite the spin curvature Φ̃µν

Φ̃µν =Φµν+D[µ∆Γν] +
[
∆Γµ,∆Γν

]
, (7.5)

using the Levi-Civita covariant derivative Dµ which annihilates the Dirac matrices and which
can be used to arrange for surface terms in an action. Inserting the rewritten form (7.5) of Φ̃µν
into the action SSEP yields

SSEP,Λ[γ,∆Γ] = SSE H ,Λ− i

4

∫
M

d4x
√

−detg

[
DµTr

(
εµνρλγ∗∆Γνγργλ

)
  

→ surface term

+Tr
(
εµνρλγ∗

[
∆Γµ,∆Γν

]
γργλ

)]
.

(7.6)

The second part corresponds to a surface term and can be neglected. This is due to the Dirac
structure being eliminated by the trace and the derivative Dµ then corresponding to ∇µ.
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7. Palatini Principle in the Spinbase Framework

Thus the equation of motion for ∆Γµ follows from the last term and reads (see C.5)

0
!= δSSEP

δ
(
∆Γµ

) j
i

= (
∆ΓνGµν

)i
j −

(
Gµν∆Γν

)i
j , (7.7)

where Gαµ is defined for convenience as

Gµν =−Gνµ := ϵµνρλγργλγ∗ . (7.8)

To solve this equation it is useful to span ∆Γν in the Clifford basis

∆Γν = p(∆Γ)νγ∗+ v σ
(∆Γ)ν γσ+a σ

(∆Γ)ν γ∗γσ+ t στ
(∆Γ)ν [γσ,γτ] . (7.9)

Here we explicitly lift the constrains (4.43) - (4.46) for the spin torsion, which for example al-
lows for the pseudoscalar part p(∆Γ)µ, because we did not couple the spin connection to spinors.
Projecting out the different parts from (7.7) yields

(s) 0 = 0 , (7.10)

(p) 0 = 0 , (7.11)

(v) 0 = v σ
(∆Γ)σ δ

µ
ν − v µ

(∆Γ)ν , (7.12)

(a) 0 = a µ
(∆Γ)ν −a σ

(∆Γ)σ δ
µ
ν , (7.13)

(t ) 0 = δρν t σµ
(∆Γ) σ−δµν t σρ

(∆Γ) σ− t [ρµ]
(∆Γ) ν . (7.14)

This indicates that p(∆Γ)α is not constrained by the equations of motion. Contracting the indices
µ and ν in (7.12), (7.13) and (7.14) yields

0 = v σ
(∆Γ)σ , (7.15)

0 = a σ
(∆Γ)σ , (7.16)

0 = t σρ
(∆Γ) σ−4t σρ

(∆Γ) σ+ t ρσ
(∆Γ) σ  
=0

−t σρ
(∆Γ) σ =−4t σρ

(∆Γ) σ , (7.17)

which then results in

0 = v µ
(∆Γ)ν , (7.18)

0 = a µ
(∆Γ)ν , (7.19)

0 = t [ρµ]
(∆Γ) ν . (7.20)

Equation (7.20) implies that t(∆Γ) must be symmetric in the first two indices, t(∆Γ)ρµν = t(∆Γ)µρν. As
t(∆Γ)ρµν is antisymmetric in the last two indices by definition, this allows us to write

t(∆Γ)ρµν =−t(∆Γ)ρνµ =−t(∆Γ)νρµ = t(∆Γ)νµρ = t(∆Γ)µνρ =−t(∆Γ)µρν =−t(∆Γ)ρµν . (7.21)

Hence we conclude
0 = t(∆Γ)ρµν . (7.22)
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This constrains the spin torsion ∆Γν to

∆Γν = p(∆Γ)νγ∗ , (7.23)

as the pseudo scalar part could not be constrained by the connection equation of motion. The
equation of motion for the Dirac matrices will then correspond to (6.25) from δSSE H ,Λ plus ex-
tra terms from the last part in (7.6). The additional terms will always include

[
∆Γµ,∆Γν

]
. But

inserting the solution (7.23) yields[
∆Γµ,∆Γν

]= p(∆Γ)µp(∆Γ)ν

[
γ∗,γ∗

]= 0 .

Thus very similar to the results in chapter 5 we get an unrestricted vector degree of freedom,
which does not contribute to the equation of motion, which yields the Einstein equations.
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8. Higher Curvature Terms

In chapter 7 we found that the theory described by the action

SSEP,Λ[γ, Γ̃] =
∫
M

d4x
√

−det g

[
−iεµνρλ

4

(
Tr[γ∗Φ̃µνγργλ]− Λ

12
Tr[γ∗γµγνγργλ]

)]
(8.1)

has an arbitrary spin connection Γ̃µ as a new degree of freedom. The connection equation of
motion (7.7) restricted the spin connection Γ̃µ to

Γ̃µ = Γµ+pµγ∗ . (8.2)

Here Γµ is again fully determined by the Dirac matrices and their partial derivatives (4.21), (4.23)
- (4.26). Since the covector pµ remains unaffected by the connection equation of motion and
does not alter the equation of motion for the Dirac matrices, it is not necessary to artificially
restrict pµ by additional terms in the action. However, from the perspective of quantum field
theory, the natural question arises whether the apperently redundant degrees of freedom in
pµ could develop their own dynamics on a higher curvature level. Thus we investigate terms
quadratic in the spin curvature Φ̃µν which conserve parity and don’t introduce any inverse met-
rics as additional constraints. This means, we neglect terms with an in-total odd number of
Levi-Civita tensors and γ∗ matrices due to parity and neglect terms with objects carrying up-
stairs indices except for the Levi-Civita tensor to not introduce inverse metrics. Also, we consider
only the covector pµ as the remaining freedom for the spin torsion and, for reasons of general-
ity, include a scalar vector sµ degree of freedom which is known to carry an abelian gauge field
[GL14]. Thus we write

∆Γµ = sµ14×4 +pµγ∗ = sµ+pµγ∗ , (8.3)

as the remaining freedom for the spin torsion. This allows us to focus on the unconstrained cov-
ector pµ and keeps the calculations manageable.

To simplify the calculations we first reexamine (7.5)

Φ̃µν =Φµν+D[µ∆Γν] +
[
∆Γµ,∆Γν

]
.

Inserting (8.3) yields for the spin curvature Φ̃µν

Φ̃µν =Φµν+D[µsν] +D[µpν]γ∗ ,

because the commutator vanishes and the derivative Dµ annihilates the Dirac matrices. If we
define the field strength tensors

Sµν := ∂[µsν] =∇[µsν] =D[µsν] , (8.4)

Pµν := ∂[µpν] =∇[µpν] =D[µpν] , (8.5)
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8. Higher Curvature Terms

and use the relation to the Riemann tensor (4.31), we can write for Φ̃µν

Φ̃µν = Sµν+Pµνγ∗+ 1

8
R ρλ
µν

[
γρ ,γλ

]
. (8.6)

Keeping the restrictions from above in mind, we investigated the following additional terms

εµνρλTr
(
γ∗Φ̃µνΦ̃ρλ

)= 8εµνρλSµνPρλ+
i

4
εµνρλεαβστRµναβRρλστ , (8.7)

εµνρλεαβστTr
(
Φ̃µνγργλΦ̃αβγσγτ

)= 32PµνPµν+32SµνSµν+32iεµνρλPµνSρλ−4R2 , (8.8)

εµνρλεαβστTr
(
Φ̃µνγργσΦ̃αβγλγτ

)=−32iεµνρλPµνSρλ+8RµνRµν−4R2 , (8.9)

εµνρλεαβστTr
(
Φ̃µαγργλΦ̃νβγσγτ

)= 16PµνPµν+16SµνSµν−32iεµνρλPµνSρλ

−4R2 +12RµνRµν−2RµνρλRµνρλ , (8.10)

εµνρλεαβστTr
(
Φ̃µαγργσΦ̃νβγλγτ

)= 32iεµνρλPµνSρλ−2RµνRµν−2RµνρλRµνρλ . (8.11)

Other terms quadratic in Φ̃µν can be constructed from these terms. This is analogous to R2-
gravity theory where we have in principal three building blocks RµνRµν, R2 and RµναβRµναβ to
build the Lagrangian, minus the topological invariant Gauss-Bonnet term [BOS92]. The Gauss-
Bonnet term is given by

1

4
εµνρλεαβστRµναβRρλστ = RµνρλRµνρλ−4RµνRµν+R2

and can be shown to be a surface term in d = 4 spacetime dimensions. This allows to cancel one
of the three terms quadratic in the Riemann tensor. Thus we have two remaining terms quadratic
in R, plus three for PµνPµν, SµνSµν and iεµνρλSµνPρλ, so in total five terms. This means that
the five stated terms should suffice to write down all possible Lagrangians. Furthermore, we
want to restrict the terms (8.7) - (8.11) to be real, in order to appropriately include them into
a Lagrangian. Because we have three types of terms containing field strength tensors PµνPµν,
SµνSµν and iεµνρλSµνPρλ, we have to choose pµ real and sµ imaginary or pµ imaginary and sµ
real to restrict all three terms to be real simultaneously. Here we want to remind again, that if we
couple spinors to the connection, we would have to implement the constraints (4.40) (4.41) and
(4.47). This would constrain the spin torsion to

∆Γµ = i sµ , (8.12)

with sµ being real, in contrast to (8.3).
Looking at (8.7) - (8.11) we see that we find terms to promote pµ to a dynamical field in the the-
ory, at least to this order in the spin curvature. The way pµ is made dynamical, strongly reminds
us of the kinetic term for gauge fields from quantum field theory. Thus the new ingredient seems
to correspond to a new abelian symmetry of the theory, similar to the trace part contained in sµ.
Indeed we can show for the theories on the Einstein-Hilbert and -Palatini level (6.11) and (7.4),
that the transformations

Γµ → Γµ+pµγ∗ , Γ̃µ → Γ̃µ+pµγ∗ (8.13)

are local symmetries of the Lagrangians. This can easily be seen in the rewritten Lagrangian
(7.6), where the additional part ∆Γµ = pµγ∗ drops out, due to the commutator. Hence, we can
allow for Cd -shifts in pµ

pµ → pµ+p ′
µ(x) , (8.14)
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because these also leave the Lagrangain invariant on this level, due to the same argument as
above. For theories quadratic in the spin curvature, we would require shifts in pµ to leave the
field strength tensor Pµν invariant. Thus we would restrict to (C-)shifts with gradients of appro-

priately differentiable complex functions, p ′
µ(x)

!= ∂µp ′(x). These would leave the field strength
tensor invariant, because we have

P ′
µν = ∂[µ

(
pν] +∂ν]p

′(x)
)= ∂[µpν] +∂[µ∂ν]p

′(x)  
=0

= Pµν . (8.15)

As already indicated, these shifts can be local so that we can understand these shifts as gauge
transformations. But the underlying symmetry group has to be different from the spinbase
transformations, because the term containing pµ transforms homogeneously under spinbase
transformations, due to the transformation behavior of the spin torsion (4.28). Hence it can’t be
an element of the Lie algebra sl(4,C) and must correspond to a different gauge group.
This is almost analogous to the conclusions drawn in [DP12] about the remaining degrees of
freedom in the Palatini formalism, discussed in chapter 5. The difference to our result is that we
considered arbitrary spin connections by including spin torsion, not torsion in the event con-
nection as in [DP12]. In [DP12], the new gauge group is identified with the Rd gauge symmetry of
projective transformations, originally discussed in [JS98]. Since we uncovered a similar behavior,
but for an inclusion of spin torsion, we don’t want to identify the new group with the Rd gauge
symmetry or for example the U(1) group a priori. To specify the origin of this symmetry may be
a starting point for a future investigation.
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9. Conclusion

In this thesis we have revisited two formalisms for describing spinors in curved spacetimes. The
first one being the description using the construction of vielbeins in the tangent spaces of the
spacetime manifold. Historically, this corresponds to the first consistent description from Fock
and Ivanenko in 1929 [FI29], [Foc29]. The spinbase formalism, proposed secondly, is based on
the pioneering publication from Schrödinger in 1932 [Sch32] and completed by Bargman shortly
after [Bar32]. It was shown that the vielbein description can be reinstalled within the spinbase
formalism as a special choice of spin basis [Wel01], [GL14]. Further in 2015, Gies and Lippoldt
depicted a superiority of the spinbase formalism by constructing a global realization of the Clif-
ford algebra on a 2-sphere, which is not possible within the vielbein formalism [GL15]. The
publications from Weldon [Wel01] and Gies and Lippoldt [GL14] also demonstrated a relation
between the spin curvature and the Riemann tensor. This hence illustrates an underlying con-
nection to general relativity.

Following the suggestion of Gies and Lippoldt to include spinbase invariance as a new feature for
a theory for gravity [GL14], we presented such a candidate theory. The derived theory is mani-
festly invariant under spinbase and coordinate transformations by construction and is only writ-
ten in terms of coordinate dependent Dirac matrices. By virtue of a generalized Clifford algebra
we can reinstall the metric degree of freedom in the theory. We further computed the equations
of motion and showed that these yield the Einstein equations on a classical level. As a gener-
alization, we followed the publication from Palatini [Pal19] and Dadhich and Pons [DP12] and
allowed for an a priori unspecified spin connection. This new spin connection can be under-
stood as the inclusion of spin torsion alongside the corresponding Levi-Civita spin connection.
Also, the concept of spin torsion can be introduced in parallel to the usual torsion in the event
connection. We showed that the connection equation of motion constrained the spin torsion to
be equivalent to the Levi-Civita spin connection, except for the pseudo scalar part in the Clifford
decomposition. This pseudo scalar part remained unconstrained, but also does not influence
the dynamics of the Dirac matrices or the rest of the spin connection. Due to this behavior, we
conjectured that the pseudo scalar part might develop a kinetic term, if we were to consider
terms quadratic in the spin curvature. We showed indeed, that the pseudo scalar will obtain
own dynamics in this case. Because of the form of the kinetic term, it seems appropriate to
think of the pseudo scalar as a novel abelian gauge symmetry uncovered at this level in the spin
curvature. This is based on the fact, that the pseudo scalar transforms homogeneously under
spinbase transformations and hence should be associated to a different gauge symmetry group
then SL(4,C).

The striking similarity to the Rd gauge symmetry [JS98] within the Palatini formulation for tor-
sion in the event connection [DP12], might be a good starting point to investigate the origin
and nature of this symmetry. Also an approach to quantize the new theory with path integral
or functional renormalization methods could be the basis of future considerations. Since the
action does not require an a prior inverse metric and is also fully contracted with the Levi-Civita
tensor, calculations build on tensor networks or lattice gauge theory techniques may give further
guidance in this regard.
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A. Clifford Decomposition

The elements of the Clifford algebras in flat ( f ) or curved (c) spacetime{
γI ,γJ

}= 2ηI J14×4 ,
{
γµ,γν

}= 2gµν(x)14×4 , (A.1)

are capable of spanning any 4×4 complex matrix. The basis elements B of this span are

B( f ) =
{
14×4 , γ∗ , γI , γ∗γI ,

[
γI ,γJ

]}
, B(c) =

{
14×4 , γ∗ , γµ , γ∗γµ ,

[
γµ,γν

]}
. (A.2)

The following properties hold for both bases B( f ) or B(c) by replacing gµν with ηI J , so stick to B(c)

and drop the label (c). We introduce the scalar product 〈·, ·〉

〈A,B〉 := 1

4
Tr(AB) , A, B ∈B , (A.3)

for which elements of B are orthogonal but not normalized, 〈A,B〉 ∝ δA,B . With this scalar
product we can compute the proportionality factors

〈14×4,14×4〉 = 1 , (A.4)⟨
γ∗,γ∗

⟩= 1 , (A.5)⟨
γµ,γν

⟩= gµν , (A.6)⟨
γ∗γµ,γ∗γν

⟩=−gµν , (A.7)⟨[
γµ,γν

]
,
[
γρ ,γλ

]⟩=−4
(
gµρgνλ− gµλgνρ

)
. (A.8)

Any 4×4 complex matrix M has 16 complex degrees of freedom which can be encoded into the
form

M = s 14×4 +p γ∗+ vα γα+aα γ∗ γα+ tαβ [γα,γβ] , (A.9)

since we have 1 complex degree of freedom in s and p, 4 in vα and aα and 6 in tαβ = −tβα.
Further we call s the scalar part, p the pseudo scalar part, vα the vector part, aα the axial vector
part and tαβ the tensor part. The trace of M is related to the scalar part

Tr(M) = 4s . (A.10)
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A. Clifford Decomposition

We can use the scalar product 〈·, ·〉 also to project whole equations onto the different parts, e.g.
for

P = M +N ,

we get

(s) 〈P,14×4〉 = 〈M +N ,14×4〉 ⇔ sP = sM + sN ,

(p)
⟨

P,γ∗
⟩= ⟨

M +N ,γ∗
⟩ ⇔ pP = pM +pN ,

(v)
⟨

P,γµ
⟩= ⟨

M +N ,γµ
⟩ ⇔ vPµ = vMµ+ vNµ ,

(a)
⟨

P,γ∗γµ
⟩= ⟨

M +N ,γ∗γµ
⟩ ⇔ −aPµ =−aMµ−aNµ ,

(t )
⟨

P,
[
γµ,γν

]⟩= ⟨
M +N ,

[
γµ,γν

]⟩ ⇔ −8tPµν =−8tMµν−8tNµν .

This is an effective method used throughout thesis to determine components of matrices from
defining equations etc.
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B. Clifford Algebra Constraints

B.1. Constraints on the Partial Derivatives ∂µγν

The Clifford algebra {
γµ,γν

}= 2gµν14×4 , (B.1)

can be used to constrain the different parts from the Clifford decomposition of the partial deriva-
tives acting on the Dirac matrices, ∂αγµ. Taking the derivative of the Clifford algebra we find a
relation that ∂αγµ has to satisfy{

∂αγµ,γν
}+{

γµ,∂αγν
}= 2∂αgµν14×4 . (B.2)

With the relation

∂α
(
δ
µ
ν

)= ∂α (
gµρgρν

)= 0 ⇔ ∂α
(
gµρ

)
gρν =−gµρ∂α

(
gρν

)
, (B.3)

we can show, as a corollary, that the index placement with regard to µ and ν is not relevant{
∂αγµ,γν

}+{
γµ,∂αγν

}= 2∂αgµν14×4 (B.4)

⇔ {
gµρ∂α

(
γµ

)
,γν

}+{
γρ ,∂αγν

}= 2∂α
(
gµν

)
gµρ14×4

⇔ {
∂α

(
γρ

)−∂α (
gµρ

)
γµ,γν

}+{
γρ ,∂αγν

}=−2∂α
(
gµα

)
gµν14×4

⇔ {
∂α

(
γρ

)
,γν

}+{
γρ ,∂αγν

}−∂α (
gµρ

){
γµ,γν

}=−2∂α
(
gµα

)
gµν14×4

⇔ {
∂αγ

ρ ,γν
}+{

γρ ,∂αγν
}= 0 (B.5)

⇔
{
∂αγ

ρ ,γλ
}
+

{
γρ , gνλ∂α

(
γν

)}= 0

⇔
{
∂αγ

ρ ,γλ
}
+

{
γρ ,∂α

(
γλ

)
−γν∂α

(
gνλ

)}
= 0

⇔
{
∂αγ

ρ ,γλ
}
+

{
γρ ,∂α

(
γλ

)}
= ∂αgνλ

{
γρ ,γν

}
⇔

{
∂αγ

ρ ,γλ
}
+

{
γρ ,∂α

(
γλ

)}
= 2∂αgρλ 14×4 . (B.6)

If we span ∂αγµ by the Clifford basis

∂αγµ = sαµ+pαµγ∗+ v ρ
αµ γρ+a ρ

αµ γ∗γρ+ t ρλ
αµ

[
γρ ,γλ

]
, (B.7)

and insert this representaton into (B.4), we get for the different Clifford parts of the whole equa-
tion

(s) vα(µν) = ∂αgµν , (B.8)
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B. Clifford Algebra Constraints

(p) 0 = 0 , (B.9)

(v) sαµ = 0 , (B.10)

(a) ερµσλtαµρλ = 0 , (B.11)

(t ) a ρλ
α ερλµν = 0 . (B.12)

Thus we obtain the constraints

vα(µν) = ∂αgµν , (B.13)

sαµ = 0 , (B.14)

tα[µρλ] = 0 , (B.15)

a [ρλ]
α = 0 . (B.16)

We can link ∂αγµ to ∂αγµ simply by considering

∂αγ
µ = ∂α

(
γνgµν

)= ∂α (
γν

)
gµν+γν∂α

(
gµν

)
. (B.17)

Multiplying the relation (B.2) with gνλ yields

∂α

(
gµλ

)
=−gµρgνλ∂α

(
gρν

)
, (B.18)

so that we can write for (B.17)

∂αγ
µ = ∂α

(
γν

)
gµν−γνgµρgνλ∂α

(
gρλ

)
. (B.19)

If we use the span (B.7) and the constraints (B.13) and (B.14) we get

∂αγ
µ = p µ

α γ∗− v ρµ
α γρ+a µρ

α γ∗γρ+ t µρλ
α

[
γρ ,γλ

]
, (B.20)

∂αγµ = pαµγ∗+ v ρ
αµ γρ+a ρ

αµ γ∗γρ+ t ρλ
αµ

[
γρ ,γλ

]
, (B.21)

with the same components for both derivatives of the Dirac matrices. We emphasize that one
has to change the sign and the index placement in the vector part, if one wishes to change from
one representation to the other.

B.2. Constraints on γµ

In appendix A we mentioned that any set of matrices satisfying a Clifford algebra is well suited
to span any 4×4 complex matrices. Thus we could try to span a curved Dirac matrix γµ(x) with
the set of flat Dirac matrices γI satisfying{

γI ,γJ
}= 2ηI J14×4 . (B.22)

The vielbein formalism establishes this idea implicitly, because there the curved Dirac matrices
are spanned solely by the vector part

γµ = e I
µ γI .
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B.2. Constraints on γµ

As the curved Dirac matrices have to fulfill a generalized Clifford algebra, we can derive con-
straints, which have to be satisfied by the parts of the Clifford decomposition.

We start with the ansatz

γµ := sµ14×4 +pµγ∗+ v I
µ γI +a I

µ γ∗γI + t I J
µ

[
γI ,γJ

]
. (B.23)

Inserting (B.23) into the Clifford algebra{
γµ,γν

}= 2gµν14×4 , (B.24)

we can use the projection onto the Clifford basis, which yield

(s) gµν = sµsν+pµpν+ v I
µ vνJ −a I

µ aνJ −8t I J
µ tνI J , (B.25)

(p) 0 = 4iεI JK L tµI K tνJL +p(µsν) , (B.26)

(v) 0 = s(νpµ) −2i a(ν|I |tµ)JK ε
I JK M , (B.27)

(a) 0 =−s(µa M
ν) +2i v(µ|I |tν)JK εI JK M , (B.28)

(t ) 0 =−i a(ν|I |vµ)J ε
I J M N −2i p(νtµ)I J ε

I J M N −4s(νt M N
µ) . (B.29)

The constraints (B.25) - (B.29) can be written in a better way if we would use a basis which is
orthonormal. If we chose the basis

B=
{
14×4, γ∗, γ0, iγi ,−iγ∗γ0, −γ∗γi , −1

2

[
γ0,γi

]
,

i

2

[
γi ,γ j

]}
, (B.30)

and the scalar product (A.3), we can show that this is in deed a orthonormal basis. The small
latin indices now label spacial components, instead of spinor components as in the rest of the
thesis. We will label the A-th element from B as gA and implicitly sum over repeated indices.
Thus we could use the ansatz for γµ

γµ = E A
µ gA . (B.31)

Inserting the ansatz (B.31) in to the curved Clifford algebra (B.24), we can write{
γµ,γν

}= 2gµν14×4 ⇔ E A
µ E B

ν

{
gA ,gB

}= 2gµν g1 . (B.32)

Applying the scalar product with an arbitrary element gC from B, we get 16 equations

E A
µ E B

ν

⟨{
gA ,gB

}
,gC

⟩= 2gµν 〈g1,gC 〉 (B.33)

⇔ E A
µ E B

ν FABC = gµνδ1,C , (B.34)

where we defined

FABC = 1

2

⟨{
gA ,gB

}
,gC

⟩= 1

8
Tr

[{
gA ,gB

}
gC

]
. (B.35)

The object FABC is totally symmetric in the indices A, B , C and further reduces to δA,B if C = 1.
Thus we have two qualitatively different types of equations for C = 1 and C ̸= 1

E A
µ EνA = gµν , (B.36)

E A
µ E B

ν FABC = 0 , C = 2,3, . . . ,16 . (B.37)

Then, the equation (B.25) corresponds to (B.36) and equations (B.26) - (B.29) correspond to
(B.37). In this form it is easier to compute constraints in different dimensions then d +1 = 4.
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C. Calculations and Proofs

C.1. Derivation of the Levi-Civita Spin Connection

The Levi-Civita spin connection in the spinbase framework is implicitly defined by (4.20)

0 = ∂µγν−Γσµνγσ  
=∇µγν

+[
Γµ,γν

]
. (C.1)

With the span for Γµ and for ∂µγν

Γµ = pµγ∗+ v σ
µ γσ+a σ

µ γ∗γσ+ t σρ
µ [γσ,γρ] , (C.2)

∂µγν = p̃µνγ∗+ ṽ σ
µν γσ+ ã σ

µν γ∗γσ+ t̃ σρ
µν [γσ,γρ] , (C.3)

we can project out the Clifford parts of (C.1)

(s) 0 = 0 , (C.4)

(p) 0 = 2aµν+ p̃µν , (C.5)

(v) 0 =−8tµνρ+ ṽµνρ−Γρµν , (C.6)

(a) 0 =−2pµgνρ − ãµνρ , (C.7)

(t ) 0 = gνρvµλ− gνλvµρ −2t̃µνρλ . (C.8)

From these equations we conclude the following

(p) aµν =−1

2
p̃µν =−1

8
Tr

(
γ∗∂µγν

)
, (C.9)

(v) tµνρ = 1

8
ṽµνρ− 1

8
Γρµν = 1

32
Tr

(
γρ∂µγν

)− 1

8
Γρµν , (C.10)

(a) pµ =−1

8
gνρ ãµνρ = 1

32
gνρ Tr

[
γ∗γρ∂µγν

]= 1

32
Tr

[
γ∗γν∂µγν

]
, (C.11)

(t ) vµλ =
2

3
gνρ t̃µνρλ =

1

3
gνρ

(
gραgλβ− gρβgλα

)
t̃ αβ
µν

=− 1

48
Tr

([
γρ ,γλ

]
∂µγν

)
gνρ = 1

48
Tr

([
γλ,γν

]
∂µγν

)
. (C.12)

If we want to raise the indices on the components to get the same canonical form as in [Wel01]
we can do so for p, v and a due to the relations between (B.20) and (B.21). For the tensor part we
can just raise the index ρ and expand with −1 in the first term

t ρ
µν =−1

8

(−gνσṽ σρ
µ

)− 1

8
Γ
ρ
µν =− 1

32
Tr

(
γν∂µγ

ρ
)− 1

8
Γ
ρ
µν , (C.13)

to acquire the from stated in [GL14]. We easily raise the index ν also to get the form stated in
[Wel01], where the author has used Γρνµ = Γραµgαν = 1

4Γ
ρ
αµTr

(
γαγν

)
.
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C. Calculations and Proofs

C.2. Curvature Relation

Using the property of the Levi-Civita covariant derivative in the spinbase framework we can con-
sider

Dαγµ = 0 ⇒ D[αDβ]γµ = 0 .

This will allow to relate Rαβ
µν and F I J

µν with the spin curvature Φµν built from the Levi-Civita
spin connection Γµ. Applying twice the rule (4.16) for differentiating objects with one upstairs
and one downstairs spinor index yields

0 =D[αDβ]γµ =D[α
(∇β]γµ+

[
Γβ],γµ

])
=∇[α

(∇β]γµ+
[
Γβ],γµ

])+ [
Γ[α,

(∇β]γµ+
[
Γβ],γµ

])]
.

Expanding the last line gives

0 =∇[α∇β]γµ+
[∇[αΓβ]  
=∂[αΓβ]

,γµ
]+ [

Γ[β,∇α]γµ
]+ [

Γ[α,∇β]γµ
]  

=0

+[
Γ[α,Γβ]γµ

]− [
Γ[α,γ|µ |Γβ]

]
.

Investigating the last two terms we can show[
Γ[α,Γβ]γµ

]− [
Γ[α,γ|µ |Γβ]

]= Γ[αΓβ]γµ−Γ[βγ|µ |Γα] −Γ[αγ|µ |Γβ]  
=0

+γµΓ[βΓα]

= [[
Γα,Γβ

]
,γµ

]
,

which yields in total
0 =∇[α∇β]γµ+

[(
∂[αΓβ] +

[
Γα,Γβ

])
,γµ

]
=∇[α∇β]γµ+

[
Φαβ,γµ

]
.

(C.14)

This allows to relate the spin curvature to the Riemann tensor R δ
αβµ

or to the curvature F I J
αβ

if

the Dirac matrices are spanned with the vielbein γµ = e I
µ γI

0 = R δ
αβµ γδ+

[
Φαβ,γµ

]
, (C.15)

0 = e I
µ

(
F J
αβI γJ +

[
Φαβ,γJ

])
. (C.16)

SpanningΦαβ with the curved (c) and flat ( f ) Dirac matrices for (C.15) and (C.16) respectively

Φαβ = p(c)αβγ∗+ v σ
(c)αβ γσ+a σ

(c)αβ γ∗γσ+ t στ
(c)αβ

[
γσ,γτ

]
, (C.17)

Φαβ = p( f )αβγ∗+ v I
( f )αβ γI +a I

( f )αβ γ∗γI + t I J
( f )αβ

[
γI ,γJ

]
, (C.18)

yields

p(c)αβ = 0 , v σ
(c)αβ = 0 , a σ

(c)αβ = 0 , t στ
(c)αβ = 1

8
R στ
αβ , (C.19)

p( f )αβ = 0 , v I
( f )αβ = 0 , a I

( f )αβ = 0 t I J
( f )αβ

= 1

8
F I J
αβ

. (C.20)

Thus we can write for the spin curvature

Φαβ =
1

8
R στ
αβ

[
γσ,γτ

]= 1

4
R στ
αβ γσγτ (C.21)

= 1

8
F I J
αβ

[
γI ,γJ

]= 1

4
F I J
αβ

γIγJ . (C.22)
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C.3. Identity (6.4)

C.3. Identity (6.4)

For proving identity (6.4) we start with the formula for the determinant (5.33)

e = 1

24
ϵαβγδ ϵI JK Le I

α e J
β

e K
γ e L

δ (C.23)

which is equivalent to

ϵI JK Le = ϵαβγδe I
α e J

β
e K
γ e L

δ . (C.24)

Multiplying with eµI eνJ and contracting with ϵK LM N we get

ϵI JK LϵK LM N eµI eνJ e = ϵαβγδϵK LM N eµI eνJ e I
α e J

β
e K
γ e L

δ . (C.25)

With the definition of the vielbein in (2.19) it follows that

eµI e I
α = eµJ e I

α ηI J = gµν = δµν .

From the definition for the Levi-Civita symbol we can show that

ϵI JK LϵK LM N = ϵK LI JϵK LM N = 2
(
δI

Mδ
J
N −δI

Nδ
J
M

)
.

Using these two equations results in

2eeµI eνJ

(
δI

Mδ
J
N −δI

Nδ
J
M

)
= ϵµνγδϵK LM N e K

γ e L
δ

⇔ e e[µ
M eν]

N = 1

2
ϵµνγδϵM N K Le K

γ e L
δ . (C.26)

C.4. Variations for Section 6.2

To compute the equation of motion of (6.11) we introduce the abrevation

γα1 . . .γαn =: γα1...αn ,

and use the relation (4.31)

Φµν = 1

4
R δη
µν

[
γδ,γη

]
.

In a first step we get for the variation δSSE H ,Λ

δSSE H ,Λ[γ] =− i

4

∫
M

d4x ϵµνρλTr

[
1

4
R δη
µν δ(γ∗δηρλ)+ 1

4
δ

(
R δη
µν

)
γ∗δηρλ−

Λ

12
δ(γ∗µνρλ)

]

=− i

4

∫
M

d4x
√

−det g εµνρλTr

[
1

4
R δη
µν δ(γ∗δηρλ)+ 1

4
δ

(
R δη
µν

)
γ∗δηρλ−

Λ

12
δ(γ∗µνρλ)

]
.

(C.27)
We also need

δgαβ =
1

4
Tr

(
(δγα)γβ+γα(δγβ)

)
, (C.28)
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C. Calculations and Proofs

from which we can compute

δdetg = 1

4!
ϵαβστϵµνρλδ(gαµgβνgσρgτλ)

= 1

4!
ϵαβστϵµνρλgβνgσρgτλ 4 δ(gαµ)

= −detg

4!

ϵαβστ√−detg

ϵµνρλ√−detg
gβνgσρgτλTr

[
(δγα)γµ+γα(δγµ)

]
= −detg

4!
εαβστεµνρλgβνgσρgτλ  
→ symmetric in α and µ

Tr
[
(δγµ)γα+γα(δγµ)

]

= (−detg )Tr
[ 1

4 ·3
εαβστεµνρλgβνgσρgτλ γα  

:=Kµ

(δγµ)
]

= (−detg )Tr
[
Kµ(δγµ)

]
.

(C.29)

This allows us to compute

δγ∗ =− i

4!
δ

(
εαβστγαβστ

)

=− i

4!
δ

(
1√−detg

)
ϵαβστγαβστ−

i

4!
εαβστδ

(
γαβστ

)

=− i

4!
·
(

1

2
· −detg

−detg
Tr

[
Kψ(δγψ)

]) ϵαβστ√−detg
γαβστ−

i

4!
εαβστδ

(
γαβστ

)
= 1

2
Tr

[
Kψ(δγψ)

]
γ∗− i

4!
εαβστ

(
(δγα)γβστ+γα(δγβ)γστ+γαβ(δγσ)γτ+γαβσ(δγτ)

)
= 1

2
Tr

[
Kψ(δγψ)

]
γ∗− i

4!
εαβστ

(−(δγτ)γβσα−γα(δγτ)γσβ−γαβ(δγτ)γσ+γαβσ(δγτ)
)

.

(C.30)
Thus we can compute the variations

− Λ
12
εµνρλTr

[
δ(γ∗µνρλ)

]=− Λ
12
εµνρλTr

[
(δγ∗)γµνρλ+γ∗(δγµ)γνρλ+γ∗µ(δγν)γρλ

+γ∗µν(δγρ)γλ+γ∗µνρ(δγλ)
]

.

(C.31)
The last four terms can be simplified to

− Λ
12
εµνρλTr

[
γ∗(δγµ)γνρλ+γ∗µ(δγν)γρλ

+γ∗µν(δγρ)γλ+γ∗µνρ(δγλ)
]
=−Λ

3
εµνρλ(γνρλ∗) j

i (δγµ)i
j ,

(C.32)

and the first term in the trace can be shown to be

− Λ
12
εµνρλTr

[
(δγ∗)γµνρλ

]
=− Λ

12
εµνρλ

[
1

2
Tr

(
γ∗µνρλ

)
(Kψ) j

i −
i

4!
εαβσψ

(
−γβσαµνρλ
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C.4. Variations for Section 6.2

−γσβµνρλα−γσµνρλαβ+γµνρλαβσ
) j

i

]
(δγψ)i

j

=− Λ
12
εµνρλ

[
2iεµνρλ(Kψ) j

i +
(
T
ψ

µνρλ

) j

i

]
(δγψ)i

j , (C.33)

with T
ψ

µνρλ
defined as

T
ψ

µνρλ
:=− i

4!
εαβσψ

(
−γβσαµνρλ−γσβµνρλα−γσµνρλαβ+γµνρλαβσ

)
. (C.34)

Thus we get for the last term in (C.27)

− Λ
12
εµνρλδ(γ∗µνρλ) =− Λ

12
εµνρλ

[
4δψµ (γνρλ∗) j

i +2iεµνρλ(Kψ) j
i +

(
T
ψ

µνρλ

) j

i

]
(δγψ)i

j

=:
(
Bψ

) j
i (δγψ)i

j . (C.35)

Now we turn to the first term in (C.27)

1

4
εµνρλR δη

µν Tr
[
δ(γ∗δηρλ)

]= 1

4
R δη
µν εµνρλTr

[
(δγ∗)γδηρλ+γ∗(δγδ)γηρλ

+γ∗δ(δγη)γρλ+γ∗δη(δγρ)γλ+γ∗δηρ(δγλ)
]

.

(C.36)

the last four terms of the trace can again be simplified to

1

4
εµνρλR δη

µν Tr

[
γ∗(δγδ)γηρλ+γ∗δ(δγη)γρλ+γ∗δη(δγρ)γλ+γ∗δηρ(δγλ)

]

= 1

4
εµνρλR δη

µν

[
δ
ψ

δ

{
γη,γρλ

}
γ∗+δψλγ∗

{
γρ ,γδη

}] j

i
(δγψ)i

j ,

(C.37)

and the first term of the trace is similar to (C.33) instead of the indices µ and ν being replaced by
δ and η. Hence we get

1

4
εµνρλR δη

µν Tr
[
(δγ∗)γδηρλ

]= 1

4
εµνρλR δη

µν

[
2iεδηρλ(Kψ) j

i +
(
T
ψ

δηρλ

) j

i

]
(δγψ)i

j . (C.38)

Combining the results allows to write for the first part of (C.27)

1

4
εµνρλR δη

µν Tr
[
δ(γ∗δηρλ)

]= 1

4
εµνρλR δη

µν

[
δ
ψ

δ

{
γη,γρλ

}
γ∗+δψλγ∗

{
γρ ,γδη

}
+2iεδηρλK

ψ+T
ψ

δηρλ

] j

i
(δγψ)i

j

=:
(
Aψ

) j
i (δγψ)i

j

(C.39)

In a final step we need to compute the second term from (C.27), where we make use of the
relation

εµνρλTr
[
γ∗δηρλ

]= 4iεµνρλεδηρλ = 8i
(
δ
µ

δ
δνη−δνδδ

µ
η

)
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C. Calculations and Proofs

to write
1

4
εµνρλδ

(
R δη
µν

)
Tr

[
γ∗δηρλ

]= 4iδ
(
R µν
µν

)= 4i
[
δ(gµν)Rµν+ gµνδ

(
Rµν

)]
. (C.40)

If integrated, the term gµνδ
(
Rµν

)
corresponds to a surface term and can be neglected. For this to

be true we need the exact index placement, gµνδ
(
Rµν

)
. The standard derivation for this surface

term can be found in [Wal84], [Car19] or [Bla19]. To proceed we need to rewrite δgµν to

δgµν = δ(gαβgµαgνβ)

= (δgαβ)gµαgνβ+ gαβδ(gµα)gνβ+ gαβgµαδ(gνβ)

= (δgαβ)gµαgνβ−δ(gαβ)gµαgνβ−δ(gαβ)gµαgνβ

=−(δgαβ)gµαgνβ , (C.41)

where we have used

δ(δµν) = δ(gµρgνρ) = 0 ⇔ δ(gµρ)gνρ =−gµρδ(gνρ) .

Using (C.28) and (C.41) we can further reduce (C.40) to

1

4
εµνρλδ

(
R δη
µν

)
Tr

[
γ∗δηρλ

]=−i RµνTr
[
(δγµ)γν+γµ(δγν)

]=−2i Rµψ(γµ) j
i (δγψ)i

j . (C.42)

Merging all the results yields for (C.27)

δSSE H ,Λ[γ] =− i

4

∫
M

d4x
√

−detg
[
Aψ−2i Rµψγµ+Bψ

] j
i (δγψ)i

j , (C.43)

Aψ = 1

4
εµνρλR δη

µν

[
δ
ψ

δ

{
γη,γρλ

}
γ∗+δψλγ∗

{
γρ ,γδη

}+2iεδηρλK
ψ+T

ψ

δηρλ

]
, (C.44)

Bψ =− Λ
12
εµνρλ

[
4δψµγνρλ∗+2iεµνρλK

ψ+T
ψ

µνρλ

]
, (C.45)

T
ψ

µνρλ
=− i

4!
εαβσψ

(
−γβσαµνρλ−γσβµνρλα−γσµνρλαβ+γµνρλαβσ

)
. (C.46)

We require the action to be stationary under the variations and hence obtain the equation of
motion

Aψ−2i Rµψγµ+Bψ = 0 . (C.47)

Multiplying by 1
8i γχ and taking the trace yields Einstein’s equations

Rψ
χ−

1

2
gψχR +Λgψχ = 0 .

C.5. Variations for Chapter 7

The connection equation of motion (7.7) in the spinbase Palatini frame work is computed from

SSEP,Λ[γ,∆Γ] = SSE H ,Λ− i

4

∫
M

d4x
√
−detg

[
DµTr

(
εµνρλγ∗∆Γνγργλ

)
  

surface term

+Tr
(
εµνρλγ∗

[
∆Γµ,∆Γν

]
γργλ

)]
,

(C.48)
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by considering only variations in ∆Γµ. Thus only the last term will be non trivial. Therefore we
get

δSSEP,Λ[γ,∆Γ] =− i

4

∫
M

d4x
√

−detg

[
Tr

(
εµνρλγ∗

(
δ

[
∆Γµ,∆Γν

])
γργλ

)]
. (C.49)

We also find

εµνρλ
(
δ

[
∆Γµ,∆Γν

])= εµνρλ ([
δ∆Γµ,∆Γν

]+ [
∆Γµ,δ∆Γν

])
= εµνρλ ([

δ∆Γµ,∆Γν
]− [

∆Γν,δ∆Γµ
])

= 2εµνρλ
[
δ∆Γµ,∆Γν

]
. (C.50)

Applying this to (C.49) we obtain

Tr
(
εµνρλγ∗

(
δ

[
∆Γµ,∆Γν

])
γργλ

)
= 2Tr

(
εµνρλγ∗

[
δ∆Γµ,∆Γν

]
γργλ

)
= 2εµνρλTr

(
γ∗(δ∆Γµ)∆Γνγργλ−γ∗∆Γν(δ∆Γµ)γργλ

)
= 2εµνρλ

(
∆Γνγργλγ∗−γργλγ∗∆Γν

)i
j (δ∆Γµ) j

i . (C.51)

Defining
Gµν := εµνρλγργλγ∗ , (C.52)

the total equation reads

δSSEP,Λ[γ,∆Γ] =− i

2

∫
M

d4x
√

−detg

[
∆ΓνGµν−Gµν∆Γν

]i

j
(δ∆Γµ) j

i . (C.53)

From this we can read off the connection equation of motion

0 =∆ΓνGµν−Gµν∆Γν . (C.54)
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