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Summary 

The two most prevalent, but phylogenetically distant pathogenic Candida species, 

C. albicans and C. glabrata, normally exist as harmless commensals on mucosal 

surfaces of most healthy humans. However, under certain circumstances, these 

species can become opportunistic pathogens causing superficial or systemic 

candidiasis, of which the latter is associated with high mortality rates.  

During systemic infections, C. albicans and C. glabrata grow in different morphological 

forms and follow distinct infection strategies, but also show a common pattern of 

pathogenicity. Both species are able to colonize multiple organs, though face different 

humoral and cellular defense activities of the host’s immune system. These include 

internalization by innate immune cells, like macrophages. Inside phagosomes of 

macrophages, fungal cells face a hostile environment with a low pH, containing high 

levels of reactive oxygen species and antimicrobial substances, but also low nutrient 

levels. 

C. albicans and C. glabrata cells are efficiently phagocytosed by macrophages, but 

have evolved different strategies to survive phagocytosis, proliferate within, and escape 

from these cells. Besides a comprehensive detoxification system against the 

antimicrobial activities, C. albicans and C. glabrata cells adapt to nutrient limitations 

inside the phagosome by adjusting their central metabolic pathways. The prerequisite 

for essential micronutrients, however, cannot be bypassed as these are often co-

factors of important metabolic enzymes. Micronutrients comprise trace metals but also 

vitamins, like biotin (vitamin H) – a vitamin for which both Candida species are 

auxotrophic. The main aim of this thesis was to gain new insights into the relevance of 

biotin acquisition of C. albicans and C. glabrata on fungal proliferation, survival in 

specific host niches, such as the phagosome of macrophages, and virulence.  

The transcription factor gene VHR1 and its biotin-related target genes were 

characterized in C. albicans and C. glabrata. One major finding of this thesis was the 

identification of the putative biotin transporter gene VHT1 in both species. Similar to its 

ortholog in S. cerevisiae, VHT1 of C. albicans and C. glabrata contributed to biotin-

dependent growth. The expression of VHT1 in both species was shown to be regulated 

by biotin availability and was modulated by Vhr1 in a species-specific manner. 

Expression analyses further suggested that VHT1 is regulated by yet unknown 

additional factors besides Vhr1 and growth assays hinted at the involvement of VHR1 

in other metabolic processes independent of biotin. In silico and growth analyses 

showed that some, but not all, medically important Candida species possess an 

incomplete biotin biosynthesis gene cluster which allows growth on biotin biosynthesis 

intermediates. This gene cluster was not required for C. albicans during interaction with 
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macrophages. Instead, biotin pre-starvation of C. albicans and C. glabrata or the 

deletion of VHR1 diminished survival within macrophages. The importance of Vht1-

mediated biotin acquisition for intraphagosomal proliferation together with the 

increased expression of VHR1, VHT1, and other biotin-related genes in phagocytosed 

C. albicans and C. glabrata cells was a fundamental observation in this study. These 

data suggest that biotin access is limited in phagosomes containing these Candida 

cells. Finally, the Vht1-mediated biotin acquisition was also crucial for efficient 

colonization of C. glabrata and C. albicans in distinct organs and for virulence of 

C. albicans during systemic candidiasis. Overall, these results propose that C. albicans 

and C. glabrata experience biotin limitation in certain host niches and that Vht1-

dependent biotin import represents a mechanism by which fungi can overcome this 

limitation.  

The evolutionary adaptation of pathogenic Candida species may have originated from 

ancient interactions of these fungi with environmental amoebae. In another project of 

this thesis it was shown that amoeba predation targets fungal copper and redox 

homeostasis to incapacitate ingested C. parapsilosis cells. A peroxiredoxin-mediated 

redox homeostasis system depending on the gene PRX1 was shown to be essential for 

survival of C. parapsilosis in this alternative phagocyte model and to withstand killing 

by macrophages. Since PRX1 is conserved among different pathogenic Candida 

species it can be concluded that peroxiredoxins are part of a basic survival package to 

resist phagocytic attacks.  

Taken together, these data showed the importance of micronutrient and redox 

homeostasis as counterstrategies of different pathogenic Candida species to survive 

phagocytosis and pivotal virulence determinants. Future studies to elucidate fungal 

pathogenicity mechanisms will benefit from sophisticated gene manipulation 

approaches in Candida species, in particular non-albicans species. New gene 

reintegration, overexpression and complementation, and RNA-mediated gene knock-

down protocols established in this thesis will contribute to future analyses of gene 

functions in C. glabrata. 
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Zusammenfassung 

Die häufigsten, aber phylogenetisch voneinander separaten, Candida Spezies 

C. albicans und C. glabrata existieren als harmlose Kommensale auf Schleimhäuten 

von vielen gesunden Menschen. Unter bestimmten Umständen können beide Spezies 

allerdings opportunistische Infektionen verursachen, die sich entweder oberflächlich 

oder systemisch manifestieren, wobei letztere durch hohe Mortalitätsraten 

gekennzeichnet sind. C. albicans und C. glabrata unterschieden sich während einer 

systemischen Blutstrominfektion in ihren morphologischen Wachstumsformen und 

Infektionsstrategien, folgen aber einem ähnlichen Pathogenitätsmuster. Beide Candida 

Spezies können verschiedene Organe kolonisieren, werden aber mit verschiedenen 

Verteidigungslinien des humoralen und zellulären Immunsystems konfrontiert. Diese 

beinhalteten die Aufnahme durch Immunzellen der angeborenen Immunität, wie 

beispielsweise durch Makrophagen. Pilzzellen finden im Phagosom von Makrophagen 

eine feindliche Umgebung vor, die durch einen niedrigen pH, hohe Konzentrationen an 

reaktiven Sauerstoffspezies und antimikrobiellen Substanzen, aber auch durch eine 

niedrige Nährstoffverfügbarkeit charakterisiert ist.  

C. albicans und C. glabrata Zellen werden erfolgreich durch Makrophagen 

phagozytiert, haben jedoch Mechanismen entwickelt die Phagozytose zu überleben, 

intrazellulär zu proliferieren und aus Makrophagen auszubrechen. Neben den 

ausgeprägten Systemen zur Detoxifizierung der antimikrobiellen Aktivitäten im 

Phagosom können sich C. albicans und C. glabrata durch die Umstrukturierung von 

zentralen metabolischen Strömen an die Nährstofflimitierung in diesem Kompartiment 

anpassen. Die Anforderung an essentielle Mikronährstoffe kann allerdings nicht 

umgangen werden, da diese oftmals Kofaktoren von wichtigen metabolischen 

Enzymen sind. Zur Gruppe der Mikronährstoffe gehören neben Spurenelementen auch 

Vitamine, wie beispielswiese Biotin (Vitamin H), für das beide Candida Spezies 

auxotroph sind. Der Fokus dieser Arbeit lag darin, neue Erkenntnisse über die 

Biotinaufnahme von C. albicans und C. glabrata zu erlangen und dessen Relevanz für 

das Wachstum, das Überleben in bestimmten Wirtsnischen, wie beispielsweise einem 

Phagosom von Makrophagen, und die Virulenz zu bestimmen. 

Das Gen des Transkriptionsfaktors VHR1 sowie dessen Biotin-assoziierten Zielgene 

wurden in C. albicans und C. glabrata charakterisiert. Ein wichtiger Fund dieser Arbeit 

war die Identifizierung des putativen Biotintransportergens VHT1 in beiden Candida 

Spezies. VHT1 von C. albicans und C. glabrata förderte das Biotin-abhängigen 

Wachstum, vergleichbar mit der Funktion des Orthologs in S. cerevisiae. Es konnte 

verdeutlicht werden, dass die Expression von VHT1 durch die Verfügbarkeit von Biotin 

reguliert und durch Vhr1 Spezies-spezifisch moduliert wird. Expressions- und 
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Wachstumsanalysen legten zusätzlich nahe, dass VHT1 außer durch Vhr1 von 

anderen bis jetzt unbekannten Faktoren reguliert wird. Darüber hinaus scheint Vhr1 an 

anderen Biotin-unabhängigen Stoffwechselprozessen beteiligt zu sein. Das 

Vorhandensein von unvollständigen Biotinsynthese Genclustern konnte über in silico 

und Wachstumsanalysen in einigen medizinisch-relevanten Candida Spezies gezeigt 

werden. Ein solches Gencluster ermöglicht das Wachstum mit Biotinvorstufen, war 

jedoch nicht relevant für die Interaktion von C. albicans mit Makrophagen. Stattdessen 

verminderte das Aushungern von C. albicans und C. glabrata für Biotin oder die 

Inaktivierung von VHR1 das Überleben in Makrophagen. Eine wesentliche 

Beobachtung in dieser Arbeit war die Bedeutsamkeit der Vht1-vermittelten 

Biotinaufnahme auf die intraphagosomale Proliferation sowie die erhöhte Expression 

von VHR1, VHT1 und anderen Biotin-assoziierten Genen in C. glabrata und 

C. albicans Zellen nach dessen Phagozytose. Diese Daten suggerieren eine 

verminderte Biotinverfügbarkeit in Phagosomen, welche Candida Zellen enthalten. 

Schließlich war der Vht1-vermittelte Biotintransport auch essentiell für die erfolgreiche 

Kolonisierung von bestimmten Organen in Mäusen durch C. glabrata und C. albicans 

sowie die Virulenz von C. albicans bei systemischen Mausinfektionen. Insgesamt 

deuten die Ergebnisse darauf hin, dass C. albicans und C. glabrata in bestimmten 

Wirtsnischen Biotinmangel ausgesetzt sind, welcher durch die Vht1-abhängige 

Biotinaufnahme überwunden werden kann. 

Die evolutionäre Anpassung von pathogenen Candida Spezies könnte ihren Ursprung 

in einer Interaktion zwischen Pilzen und in der Umwelt vorkommenden Amöben haben. 

In einem weiteren Projekt dieser Arbeit konnte gezeigt werden, dass die Kupfer- und 

Redoxhomöostase von Pilzzellen durch die Prädation von Amöben angegriffen wird, 

um aufgenommene C. parapsilosis Zellen abzutöten. Das Peroxidoxin-vermittelte 

System der Redoxhomöostase ist abhängig von dem PRX1 Gen und notwendig für das 

Überleben von C. parapsilosis in diesem alternativen Phagozytenmodell, sowie in 

Makrophagen. Da PRX1 in verschiedenen Candida Spezies konserviert ist, kann 

geschlussfolgert werden, dass Peroxiredoxine ein Teil eines grundlegenden 

Überlebensprogramms gegenüber Angriffen durch Phagozyten sind. 

Zusammenfassend konnten die Daten dieser Arbeit die Bedeutung der Mikronährstoff- 

und Redoxhomoöstase als Gegenstrategie von pathogenen Candida Spezies zum 

Überleben in Phagozyten, sowie als wichtige Virulenzdeterminanten zeigen. Zukünftige 

Studien zur Aufklärung von pilzlichen Pathogenitätsmechanismen werden von weiter 

entwickelten Genmanipulationsansätzen in Candida Spezies und insbesondere in 

nicht-albicans Spezies profitieren. Die in dieser Arbeit neu entwickelten Methoden zur 

Genintegration, -Überexpression und -Komplementierung, sowie zu einem RNA-
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vermittelten Gen-Knockdown Protokoll, werden zu zukünftigen funktionalen 

Genanalysen in C. glabrata beitragen. 
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1 Introduction 

 

1.1 Candida spp. infections 

Candida species are the second most common agents causing invasive fungal 

infections worldwide and belong to the fourth leading cause of nosocomial infections 

[1]. In contrast to most other fungal pathogens, Candida species exist as human 

commensals and belong to the normal microbiota of 30-70% of the human population 

[2], while they are rarely found in soil, insects, and on fruits or plants [3]. Under certain 

circumstances, some Candida species can become opportunistic pathogens causing 

candidiasis. This encompasses superficial infections, either of the skin (cutaneous 

candidiasis) or mucosal surfaces (oropharyngeal, esophageal, vulvovaginal 

candidiasis) and systemic bloodstream infections leading to invasive candidiasis (IC) of 

internal organs. The latter are associated with high mortality rates ranging from 15 to 

75% dependent on different patient groups and Candida species [1, 4-6], and each 

episode of IC costs approximately $ 40,000 per patient [7, 8]. The highest mortality 

rates among the most common four Candida species are documented for infection with 

C. albicans, C. tropicalis, and C. glabrata and the lowest mortality rates are caused by 

C. parapsilosis [9-11].  

Predisposing risk factors leading to mucosal or systemic candidiasis vary significantly. 

The development of disseminated candidiasis occurs under common iatrogenic and/or 

nosocomial conditions, prolonged hospitalization, parenteral nutrition, breakdown of 

anatomical barriers by surgery, vascular catheter insertion, anticancer chemotherapy, 

and broad-spectrum antibacterial therapies and require the colonization with Candida 

cells [12-14]. Other risk factors that predominantly predispose to mucosal candidiasis 

are an immunosuppressive status, for example caused by chemotherapy (neutropenia, 

corticosteroids), infection with HIV, metabolic dysfunction (diabetes), impaired salivary 

gland function, dentures or pregnancy [15, 16]. An early diagnosis of invasive Candida 

infections is essential for a timely initiation of antifungal therapy [17]. Unfortunately, the 

lack of highly sensitive and specific diagnosis tools and the limited number of available 

antifungal agents (which cause few side effects) contribute to the high mortality rates of 

systemic candidiasis [18]. The understanding of pathogenicity mechanisms is therefore 

critical as a basis for the development of new diagnosis tools or antifungal therapies 

[19]. 
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1.2 Candida genetics, phylogeny and pathogenicity mechanisms  

The genus Candida is member of the subphylum Saccharomycotina (phylum 

ascomycota) [20] and currently consists of about 150 species [21, 22]. However, only 

fifteen species were so far isolated from patients and the majority of Candida infections 

(> 90%) are caused by C. albicans, C. glabrata, C. tropicalis, C. parapsilosis and a few 

other species [4, 23] (Table 1). Medically important Candida species are different in 

their frequency of isolation, the morphology and the ploidy (Table 1). 

 

Table 1: Characteristics of clinically important Candida species (adapted from [24]). 

species frequency range morphologies ploidy 

C. albicans 49 – 68% yeast, pseudohyphae, hyphae diploid 

C. glabrata 7 – 21% yeast, pseudohyphae1  haploid 

C. tropicalis 5 – 13% yeast, pseudohyphae, hyphae diploid 

C. parapsilosis 4 – 14% yeast, pseudohyphae diploid 

C. krusei 1 – 4% yeast, pseudohyphae diploid 

C. guilliermondii 0.1 – 2% yeast, pseudohyphae haploid 

C. lusitaniae 0.5 – 0.6% yeast, pseudohyphae haploid 

C. dubliniensis 0.1 – 0.2% yeast, pseudohyphae, hyphae diploid 

C. auris 
few outbreaks 
reported [25]  

yeast, pseudohyphae2  haploid 

1 pseudohyphae rarely described [26] 
2 pseudohyphae found in some isolates and under certain conditions [27]  

 

 

Figure 1: Phylogeny of Candida species. Important pathogenic Candida species belong to 
either the Saccharomycetaceae or the CUG clade. A common ancestor of C. glabrata and the 
baker´s yeast S. cerevisiae underwent the whole genome duplication (WGD). The figure is 
adapted from [24]. 
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Candida species belong to different clades. The CUG clade contains organisms that 

translate the triplet codon CUG as serine instead of leucine, including C. albicans and 

C. parapsilosis [28]. A second major clade (Saccharomycetaceae) contains species 

whose genomes have undergone whole genome duplication (WGD) and in which the 

CUG codon encodes leucine (Figure 1) [29], including C. glabrata. Furthermore, 

Candida species differ in their ploidy (Table 1), independent from the CUG and WGD 

clades, and the ploidy can be different in different clinical isolates [30]. 

 

1.2.1 Candida albicans 

C. albicans has a diploid genome with 6198 ORFs (haploid total) [31] and is the most 

prevalent (Table 1) and best-investigated Candida species. The transition between 

yeast and hypha (Figure 2) in response to changing environmental conditions 

represent an important virulence factor of C. albicans [32], and mutant strains of 

C. albicans, either locked in the yeast or hypha morphology, are attenuated in virulence 

[33]. Moreover, other morphologies, including pseudohyphae [34] and chlamydospores 

[35] contribute to a high morphological flexibility of C. albicans. Furthermore, 

C. albicans can undergo phenotypic switching (white-to-opaque switching with is 

associated with different characteristic [36]) and mating [37]. 

 

 

Figure 2: Common morphotypes of Candida albicans. During certain environmental 
circumstances C. albicans can grow as (A) yeast, (B) pseudohypha (elongated non-separated 
yeast cells) or (C) true hypha (divided by septa), and can develop (D) chlamydospores, 
characterized by a thick cell wall (gray) [38]. C. albicans can undergo the transition into an (D) 
white or (E) opaque phenotype.  

 

The hyphal form of C. albicans has increased adhesion, invasion, and host tissue 

damage potential during interaction with epithelial cells due to the expression of hypha-

associated factors like adhesins (Hwp1 [39] and Als3 [40]), invasins (Als3 [40, 41] and 

Ssa1 [42]), the peptide toxin candidalysin [43], and secretory aspartic proteases (Saps) 

[44]. The yeast form is believed to be important for spreading and disseminating during 
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systemic infection [45] and promoting colonization and persistence on mucosal 

surfaces [46, 47]. Interestingly, commensal and infecting C. albicans are genetically 

similar or identical [48, 49] and it is believed that the gut represents a main reservoir of 

systemic C. albicans infections [50, 51]. 

 

1.2.2 Non-albicans Candida species 

The prevalence of infections with non-albicans Candida species (NAC) species 

increased in the last decades, and NAC account now for 35-65% of all systemic 

candidiasis cases with geographic and patient group variations [9, 22, 52, 53]. 

C. glabrata represents the most common NAC species in many studies (Table 1) and 

is frequently isolated in North America, whereas C. tropicalis is more frequently found 

in Asia-Pacific and C. parapsilosis is three times more often found in America than in 

Europe [52]. Recently, C. auris emerged in different countries all over the world, a 

species that can cause severe illness of hospitalized patients [54, 55] and is often 

multidrug-resistant [56]. 

 

1.2.2.1 Candida glabrata  

C. glabrata has a haploid genome with 5293 ORFs and was described as strict asexual 

yeast [31]. It is mainly found in the yeast form, does not form true hyphae and only 

infrequently forms pseudohyphae [26]. This yeast is phylogenetically more related to 

the baker´s yeast Saccharomyces cerevisiae than to other Candida species (Figure 1) 

[57]. Surprisingly, not only the genetic machinery for phenotypic switching [58], but also 

the potential for sexual recombination has been identified [59]. Therefore, it seems that 

C. glabrata can potentially mate [60], and it has been suggested that mating probably 

occurs at sites of infection [61]. C. glabrata is found as a commensal among the 

microbiota of warm-blooded animals and frequently colonizes the oral cavity, with 

increased colonization rates in elderly individuals and diabetic patients [62, 63]. 

Possibly because of that, systemic C. glabrata infections are commonly found in these 

individuals [64, 65]. 

C. glabrata is, compared to C. albicans, less virulent in mouse models of systemic 

candidiasis without causing mortality in immunocompetent mice [66-68]. However, 

C. glabrata can adhere to human epithelial cells dependent on fungal GPI-anchored 

cell wall adhesins (Epa, epithelial adhesin), mainly Epa1, Epa6, and Epa7 [69, 70]. 

C. glabrata lacks any secreted proteolytic activity [71], but the genome contains eleven 

genes encoding for extracellular GPI-anchored aspartic proteases (CgYPS1-11) [72], 

regulating cell wall remodeling, biofilm formation, and cellular homeostasis, which in 

turn can influence the interaction with host cells [72-75]. C. glabrata possesses a 
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relative high level of intrinsic fluconazole resistance and rapidly develops further 

resistance potential after fluconazole prophylaxis by different mechanisms, which likely 

contributes significantly to the high frequency of C. glabrata infections [76-78]. 

C. glabrata is, in contrast to other pathogenic Candida species, auxotrophic for niacin, 

pyridoxine, thiamine and cannot catabolize galactose and allantoin [79, 80]. 

 

1.2.2.2 Candida parapsilosis 

C. parapsilosis has a diploid genome with 5837 ORFs (haploid total) [31] and grows as 

yeast or pseudohyphae, but in contrast to C. albicans, it cannot form true hyphae [81, 

82]. C. parapsilosis is part of the healthy microbiota of skin and nails [83], however, the 

yeast is also found in diverse environmental sources and insects [82, 84-86]. The 

presence of C. parapsilosis on the skin of health care personnel and the frequent 

isolation from medical devices (catheters and surfaces) are potential iatrogenic factors 

leading to nosocomial infection with this fungus. Therefore, it is not surprising that 

C. parapsilosis is an emerging pathogen of invasive infections in neonates, which are 

caused by direct transmission through health care workers, catheterization or inunction 

[87-89]. Contrary to C. albicans-caused disseminated infections, the majority of 

C. parapsilosis infections are due to exogenous sources [90, 91]. C. parapsilosis 

displays, compared to C. albicans, a lower virulence, probably due to the lack of true 

hypha formation [21], and is less virulent in mouse models [92]. The adhesion to medial 

plastic devices and catheters, and the subsequent formation of a tenacious and 

carbohydrate-rich biofilm is an important virulence factor of C. parapsilosis [93, 94]. In 

addition to that, secreted aspartic proteases and lipases contribute to its virulence [95-

98]. 

 

1.3 Genetic tools to investigate pathogenicity mechanisms of 

Candida spp. 

The genomes of all medically important Candida species are now sequenced and 

publically available via the Candida Genome Database (CGD) [31]. Over the last three 

decades, researchers developed several genetic manipulation techniques to elucidate 

the function of C. albicans genes, especially of those required for pathogenicity of 

C. albicans (summarized in [99]). The most frequently used strategy is the classical 

gene disruption method, using different nutritional or drug-resistant selection marker 

genes [100-102] and based on homologous recombination. Other techniques were 

developed to study the role of essential genes by using conditional knock-outs [103] or 

to epitope-tag proteins [104]. These new techniques permit a more dynamic view about 

the importance and function of certain genes (during infection). Pleiotropic effects of 
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ectopically expressed selection marker genes can have an impact on the pathogenicity 

and virulence potential of C. albicans [105-107]. Therefore, researchers are 

encouraged to reintroduce the gene into the mutated organism (which lack this gene), 

fulfilling molecular Koch’s postulates [108]. The SAT1 flipper and CIp10-based 

protocols were established to recycle drug-resistant marker genes in clinical isolates, 

and to standardize the localization of genomic reintegration, respectively [109, 110]. 

Some of these techniques were also transferable to other Candida species, like the 

replacement of genes by nutritional and drug-resistant marker genes. However, 

noncanonical translation of CUG codons of classically used markers [111], the 

decreased homologous recombination efficiency [112-114], and the haploid genome 

architecture in C. glabrata reduced the transferability. 

 

1.4 Immunology of Candida spp. infections 

Mammals are equipped with a complex innate and adaptive immune system consisting 

of humoral and cellular components to fight against invading microbes [115]. The 

innate immune system is an ancient part of the host defense mechanism and responds 

very fast and efficient [116]. If natural barriers are surmounted by Candida cells and 

these cells reach the bloodstream, they can colonize multiple organs. The complement 

cascade represents the first line of innate immune response to coordinate further 

cellular responses of the innate and adaptive immune system [117]. C. albicans 

induces the complement system followed by a pro-inflammatory response [118-120], 

which decreases the susceptibility for systemic candidiasis [121, 122]. As a part of an 

invading C. albicans population survives within a complement-competent host, it is not 

surprising that this fungus evolved specific mechanisms to evade the complement 

system by direct binding of inhibitory proteins, proteolytic degradation or invasion into 

host cells [123, 124]. A second wave of host activities towards invading Candida cells 

is facilitated by the innate immune cell population involved in phagocytosis, fungal 

killing and induction of pro-inflammatory responses, mainly encompassing 

macrophages, neutrophils, and monocytes (only in the blood) [125, 126]. An activated 

innate immune response is important for coping with invading Candida cells, but is also 

required for subsequent stimulation of the cellular adaptive immune response, needed 

to sufficiently eradicate the fungus [127]. Especially, a protective T-cell response (Th1 

and Th17), mediated by dendritic cells (DCs)[128], decreases the susceptibility to 

systemic candidiasis [129]. 

The outer structure of the fungal cell, the cell wall, exposes different pathogen-

associated molecular patterns (PAMPs) - absent in mammalian cells - which can be 

recognized by the host innate immune system [130, 131]. The cell wall consists of an 
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outer O- and N-linked mannose polymer (mannan layer), followed by an inner three-

dimensional network of microfibrils consisting of covalently bound β-glucan and chitin 

[132]. Host immune cells detect fungal PAMPs by pattern recognition receptors 

(PRRs), consisting of Toll-like receptors (TLRs), C-type lectins (CLRs), Nucleotide-

binding oligomerization domain (NOD)-like receptors (NLRs), and retinoic-acid-

inducible gene I (RIGI)-like receptors (RLRs) [133, 134]. These receptor families are 

differently expressed in innate immune cells and recognize different fungal PAMPs, 

either extracellularly on the plasma membrane or intracellularly in endosomes or the 

cytoplasm [126, 134]. Each fungal pathogen possesses species-specific differences in 

their recognition and cytokine response, probably due to slightly different cell wall 

structures [131]. 

The process of phagocytosis by specialized cells, called phagocytes, was discovered 

by Ilya Mechnikov and awarded with the Nobel prize in 1908 [135]. He observed that 

leucocytes can migrate towards infectious agents, can take them up and digest them 

intracellularly [136]. Today, we know that phagocytes can migrate towards the 

pathogen and use the dynamic and proceeded receptor-mediated process, named 

phagocytosis to engulf the pathogen in membrane-enclosed compartments, termed 

phagosomes [137, 138]. Subsequently, the phagosome matures by different fusion 

events with other intracellular compartments (endosomes and lysosomes), creating a 

hostile environment for microbes. Their highly microbicidal activity is attributed to the 

acidification of the phagosomal lumen, the production of reactive oxygen (ROS) and 

nitrogen species (RNS) and the release of antimicrobial peptides (mostly cationic 

antimicrobial peptides) and lysosomal acidic hydrolases (summarized in [139, 140]). 

 

1.4.1 Surveillance by neutrophilic granulocytes 

Neutrophilic granulocytes (short: neutrophils or polymorphonuclear leukocytes (PMNs)) 

are important innate immune cells and play a pivotal role in elimination of invading 

pathogens [141]. They are produced in the bone marrow and are released into the 

bloodstream for constant patrolling [142]. 

Neutropenia is a major risk factor for systemic candidiasis, associated with a poor 

prognosis [143-145]. Neutrophils are essential to control C. albicans cells infecting the 

liver, spleen and kidney during invasive candidiasis [143, 146, 147], as well as mucosal 

tissues [148, 149], and are the most potent leukocytes that can inhibit the yeast to 

hypha transition [150]. The fast neutrophil recruitment into C. albicans-infected organs 

such as the liver and the spleen lead to fungal clearance, whereas the late neutrophil 

infiltration in kidneys is linked to immunopathology [147]. Neutrophils use phagocytosis, 

degranulation and NETosis (Neutrophil extracellular traps) as main killing strategies 
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[151, 152]. Further on, the NADPH-oxidase and myeloperoxidase (MPO)-dependent 

killing is essential for fungal control [153-156] and the inhibition of NADPH-oxidase 

decreases the fungicidal activity against C. albicans [157, 158]. Candida cells, 

phagocytosed by neutrophils, react towards these oxidative stresses with a 

transcriptional activation of stress-responsive genes [159-161]. 

 

1.4.2 Surveillance by mononuclear phagocytes 

Mononuclear phagocytes are a heterogeneous subset of leukocytes that mature in the 

bone marrow and comprise monocytes, monocyte-derived macrophages (MDMs), 

tissue-resident macrophages, and DCs with cell type-specific characteristics [162-164]. 

Circulating monocytes represent 2% to 8% of the whole blood count (WBC) count in 

humans and app. 1% to 2% in mice [165]. They can differentiate into MDMs and DCs, 

determined by the inflammatory milieu and location, to contribute directly to immune 

defense against microbial pathogens, inflammation, and adaptive immune response 

[163, 164, 166, 167]. Tissue-resident macrophages are essential for maintaining 

homeostasis in all organs by clearance of apoptotic cells. They differ from monocyte-

derived phagocytes as they are still able in self-renewing [163, 168], except 

macrophages of the intestine, dermis, pancreas and heart [167]. 

The role of mononuclear phagocytes during disseminated candidiasis is, compared to 

neutrophils, less investigated and originated mostly from in vivo studies. First studies 

revealed a controversial role of mononuclear phagocytes during systemic candidiasis. 

While splenic macrophage elimination in vivo decreased clearance of C. albicans from 

the bloodstream and increased mortality [169], monocytopenia alone did not increase 

the susceptibility to systemic candidiasis [170]. Recent studies, however, showed an 

expansion of inflammatory monocytes in the blood and all organs, and the disrupted 

trafficking of these cells into the kidneys worsened fungal clearance and survival 

outcome [147, 171]. Recently, it was shown that the protective effect of inflammatory 

monocytes is dependent on phagocytosis of C. albicans and further activation of other 

immune cells [172, 173]. Also, macrophages accumulate during systemic candidiasis in 

spleen and liver [147] and tissue-resident macrophages in the liver, called Kupffer cells, 

are involved in limiting fungal dissemination [174]. 

In addition to studies based on animal models, isolated immune cells and 

environmental phagocytic organisms (like amoebae) are used to investigate the 

interaction with Candida cells. These in vitro models help to identify host factors which 

mediate fungal killing, and fungal factors which promote resistance against 

antimicrobial activities. Therefore, different host cell models, like immortalized cell lines 
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[33, 175, 176] or primary monocytes and macrophages [177, 178] as well as predatory 

amoebae [179, 180] have been used. 

 

1.5 Survival and immune evasion strategies of Candida cells towards 

mononuclear phagocytes 

The resistance against the host immune system is a striking feature of pathogens, that 

can help establishing and maintaining infections in a susceptible host. Cells of all 

Candida species are efficiently phagocytosed by macrophages, exemplary shown for 

Candida species of the CUG clade [181], but have evolved different strategies to 

prevent detection or prohibit intracellular killing by these phagocytes. 

 

1.5.1 Evading immune recognition  

The recognition of invading pathogens is essential for generating a protective 

antimicrobial response. Fungal pathogens have evolved sophisticated strategies to 

avoid the recognition of highly immunogenic cell wall components like β-glucan by the 

host immune system [182]. For example, shielding of β-1,3-glucan on the cell wall 

surface of Candida spp. by highly mannosylated glycoproteins promotes escape from 

immune cell recognition [131, 183, 184]. Several environmental and host-derived 

signals or drug treatment can dynamically influence the exposure of β-1,3-glucan and, 

indeed, a differential exposure modulates immune recognition and pro-inflammatory 

response [185-190]. Besides shielding PAMPs, hiding in non-immune cells can serve 

as an immune evasion strategy. C. parapsilosis can be internalized by and replicate 

within endothelial cells thereby preventing killing by immune cells [191]. 

 

1.5.2 Modulating immune cell function 

The recognition of fungal cell wall components is associated with immune cell 

activation coupled to downstream processes like phagocytosis and cytokine response 

[192]. Not surprisingly, alterations in fungal recognition or masking of immunogenic 

components and Candida species-specific surface properties influence these immune 

cell functions. Furthermore, Candida cells can interfere with immune cells causing 

dampening of their antifungal activities or the modulating of one immune cell type, 

which then diminished the antifungal response of a second immune cell [182]. One 

interesting example is C. glabrata, which hardly elicits any pro-inflammatory responses 

in macrophages [178, 193]. Ex vivo whole blood models and isolated immune cells 

studies showed that C. glabrata attracts monocytes or associates more with these cells 

compared to other medially relevant Candida spp. and that C. glabrata increases 

phagocytosis by monocytes to prevent engulfment by neutrophils [Kaemmer et al., 
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unpublished data]. Additionally, C. glabrata activates neutrophils differently compared 

to C. albicans, and C. glabrata-infected neutrophils secrete less chemokines and 

cytokines, which are known to recruit further PMNs [194]. These ex vivo studies 

confirmed the situation observed during systemic infection and vise versa. In vivo, 

C. glabrata cells are mostly associated with mononuclear cells in murine organs and 

cause almost no infiltration of neutrophils [68]. In stark contrast, a predominant 

association with neutrophils in a whole blood model and a massive neutrophil 

infiltration during systemic infections are characteristic for C. albicans [147, 195, 196], 

which is mostly caused by candidalysin [197]. 

Pathogenic Candida species are also able to modulate immune cell function directly. 

Increased chitin exposure of C. albicans induces the expression of the host arginase 

and modulates macrophage polarization with impact on fungal killing [198]. 

Prostaglandin production of C. parapsilosis increases the fungal survival and 

diminishes pro-inflammatory cytokine secretion influencing fungal persistence in vivo 

[199, 200]. Interestingly, C. albicans is also known as producer of immunomodulatory 

prostaglandins in presence of arachidonic acid [201]. 

 

1.5.3 Escaping from or persisting in the phagosome 

Successful pathogens either escape early from hostile phagosomes or stay in and 

adapt to the phagosomal niche and may escape later. Microbial escape strategies are 

myriad and widely described for bacterial intracellular pathogens [202-204]. Sooner or 

later, all facultative intracellular microbes have to exit from the phagosome to 

disseminate or transmit in the host. Fungal pathogens have evolved different strategies 

to escape from the phagosome. An non-lytic expulsion from macrophages, as 

described for Cryptococcus (Cr.) neoformans [205, 206], is rarely observed in 

C. albicans [207] and C. parapsilosis [208]. C. glabrata can replicate or persist in 

macrophages, probably due the protective shielding from detection, missing 

filamentation, immune cell activation, and elimination [68, 75, 178, 209]. An increase in 

fungal biomass by intracellular proliferation of C. glabrata yeast cells and of 

C. parapsilosis pseudohyphal cells can finally lead to bursting of the infected 

macrophage and the release of fungal cells [178, 208]. 

C. albicans proliferates inside phagosomes as well, but does so in the hyphal growth 

form, which is induced early after phagocytosis [33, 210]. Within hours, C. albicans 

escapes from macrophages by intraphagosomal hypha formation in vitro [211, 212], 

and mutants with defects in filamentation are typically more sensitive to phagocytosis-

mediated killing [176]. Another early escape mechanism, the triggering of host cell 

pyroptosis and/or damage, is used by C. albicans [213, 214] and requires cell wall 
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remodeling [215, 216], hypha formation [211, 213, 214, 217], and the fungal peptide 

toxin candidalysin [218]. Expanding filaments generate discontinuities in the 

phagosomal membrane integrity and luminal alkalinization, which probably allows the 

fungus to have access to the nutrient-rich cytosol [219]. 

 

1.5.4 Coping with the intraphagosomal environment 

Phagocytes destruct invading microorganisms by engulfment into phagosomes to 

bundle their antimicrobial activities and prevent damage of surrounding host cells. 

Some Candida species, however, found ways to create their own less-hostile 

intracellular environment. 

 

Modulating intracellular trafficking  

Many intracellular pathogens modulate the maturation of phagosomes by interfering 

with intracellular signaling cascades to prevent the formation of an antimicrobial and 

hostile compartment [139]. Viable C. glabrata cells block phagosome acidification and 

remain in a late endosomal compartment [178, 220]. C. albicans delays 

phagolysosome maturation dependent on cell wall composition and morphogenesis 

[221, 222] until the phagosomal membrane is ruptured by hyphal expansion [219]. 

 

Withstanding phagocyte-induced stress and nutrient limitation 

Phagocytosis by macrophages induces DNA damage repair mechanisms, 

detoxification systems and significant reorganization of metabolic processes in 

C. albicans [175] and C. glabrata [72, 178]. Phagocytosed fungal cells also have to 

cope with ROS and RNS inside the phagosome. The rapid induction of genes encoding 

proteins with antioxidant properties, like fungal catalases, glutathione peroxidases, 

thioredoxines, and superoxide dismutases are important to detoxify and withstand the 

oxidative burst of phagocytes [160, 223-227]. While both, C. albicans and C. glabrata, 

have nearly the same enzymatic systems for oxidative stress responses, these two 

species react differentially to this stress [228]. C. albicans suppresses the production of 

nitric oxide and ROS in macrophages in a dose-dependent manner [229], while 

C. glabrata possesses a high intrinsic oxidative stress resistance partially due to a 

highly active and phagocytosis-induced catalase Cta1 [230, 231]. 

Phagocytes use the intoxication with trace metals inside phagosomes, mainly by 

copper and zinc to kill engulfed microbes due to redox cycling, mismetallation and 

further excessive oxidative and nitrosative stress due to the generation of free radicals 

[232-234]. In line with this, an efficient copper detoxification system is essential for 

survival of C. albicans during copper stress within phagosomes [235-237] and zinc 
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intoxication by macrophages is used as fungicidal response to phagocytosed 

C. glabrata cells [238]. 

Phagocytosed Candida cells are not only bombarded with toxic compounds. The 

limitation of preferred macronutrients and essential micronutrients in the phagosome, 

as indicated by transcriptional data [72, 175], represents a major stress factor fungal 

cells have to deal with. C. albicans and C. glabrata have evolved strategies to 

counteract the severe deprivation of favorable nutrients [72, 175, 224, 239], by 

constantly sensing carbon- and nitrogen sources and changing its metabolism. 

Different nutritional sensors [240, 241] and signaling pathways [242-245] are closely 

intertwined for adaptation to nutritional conditions on transcriptional, translational and 

posttranslational levels. 

Intracellular C. albicans and C. glabrata cells induce the expression of genes involved 

in alternative carbon source utilization (glyoxylate cycle, β-oxidation of fatty acids, 

gluconeogenesis, methyl citrate cycle) [72, 175]. Moreover, these cells activate their 

proteolytic machinery, possibly to degrade phagosomal proteins or to recycle own 

proteins, and simultaneously induce genes associated with the uptake and assimilation 

of amino acids and ammonium [72, 175]. Interestingly, arginine biosynthesis pathway is 

upregulated in both Candida species [72, 175]. At the same time phagocytosed cells 

represses the energy consuming protein synthesis to safe energy [72, 175]. The 

starvation mode of phagocytosed C. glabrata cells is underlined by the fact that 

phagocytosed fungal cells activate autophagy (protein degradation process) and 

pexophagy, a process to degrade damaged peroxisomes [231, 246]. Not surprisingly, 

defects in alternative carbon utilization pathways worsen survival within phagocytes, 

immune evasion, and fungal virulence [247-258]. 

 

1.6 Nutrition during infection  

The efficient utilization of nutrients and especially the adaptation to changes in 

nutritional composition or nutritionally restrictive environments represents an important 

pathogenicity mechanism as it is essential for pathogens to drive nutritional 

homeostasis and establish an acute infection [239, 259, 260].  

When nutrients are getting limited inside phagocytes, Candida cells have to use 

alternative strategies to overcome the lack of nutrients essential for cellular 

homeostasis of metabolic pathways, development, production of energy, and biomass 

– all processes that are needed to colonize and survive in different host niches [261]. 

During colonization of different mucosal surfaces in the commensal state, Candida 

cells have access to several favorable nutrients despite their competition with the 

bacterial microbiota, which often restrict nutrient availability and fungal overgrowth 
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[262]. This is especially true for the orogastrointestinal tract, a nutrient-rich environment 

due to regular food uptake of the host [263]. However, the host and the host’s immune 

system has developed mechanisms to actively restrict the accessibility of nutrients, 

thereby limiting microbial growth, a phenomenon called ‘nutritional immunity’ [264-266]. 

This process is best investigated for trace metals like iron, zinc and manganese. 

Phagocytes sequestrate these trace metals from the phagosome using the cation 

transporter NRAMP1 [267] or iron exporter Fpn1 [268, 269]. Candida species have 

evolved the reductive pathway, the receptor-mediated uptake, and siderophore-

mediated iron acquisition as high affinity systems to cope with iron limitation [270]. A 

siderophore (Sit1)-mediated iron uptake system and iron homeostasis in general are 

essential for C. glabrata to survive macrophage killing [271, 272]. 

The preferred carbon source glucose of many microbes [273] including C. albicans and 

C. glabrata is present in the blood but often scarce in other host niches [274]. Instead, 

other carbon sources like lactate and acetate are potentially available in the gut, in the 

kidney tissue or within phagocytes [72, 175, 259, 275-277]. The sensing and 

metabolism of glucose trigger the resistance against oxidative stress and antifungal 

agents as well as cell wall remodeling [278-282] reflecting that carbon source 

availability within different host niches have a strong impact on fungal virulence [259]. 

On the other hand, amino acid sensing and metabolism trigger important virulence 

features of C. albicans like morphogenesis [283-285] and biofilm formation [286]. 

 

1.7 Vitamin acquisition during host-pathogen interaction 

As described above, intracellular Candida cells face a phagosomal environment that 

lacks certain nutrients. So far, it is unknown whether vitamins are present in the 

phagosome, but it is likely that vitamins are not present in excess. The uptake or 

synthesis of essential vitamins by Candida cells could therefore be crucial for survival 

and fitness during an intracellular lifestyle. Vitamins, belonging to micronutrients, are 

required in very small quantities for any organism [287]. Vitamins are chemically 

diverse, involved in different cellular functions and the uptake from the environment is 

essential in case an organism is not able to synthesize the corresponding vitamin 

de novo [287-289]. Depending on their abilities to synthesize or take up certain 

vitamins, different successful pathogens have their own vitamin requirements when 

growing in the host [290]. Vitamin auxotrophies increase the dependency of pathogens 

on external supply by the host or the microbial community in certain micro-niches [291]. 

The biosynthesis and uptake of vitamins is particularly well characterized in bacteria. 

For example, Mycobacterium tuberculosis depends on its own synthesis of riboflavin, 

biotin, pyridoxine and pantothenic acid synthesis [292-295]. Contrary, some other 
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bacterial pathogens lack the biosynthetic pathway and need riboflavin transporter 

systems, probably for their survival in host niches [296, 297]. For example, the uptake 

of riboflavin modulates important virulence traits of Listeria monocytogenes [298]. 

Vitamin biosynthesis pathways of pathogens, that lack vitamin uptake machineries and 

which dependent on endogenous vitamin biosynthesis, have been considered as 

potential drug targets [293, 299-302].  

 

Table 2: Currently described vitamins impairing pathobiology of fungal pathogens. 

vitamin  essential for   reference 

riboflavin (B2)  

Aspergillus spp. 
[303] 

[304] 

H. capsulatum 

C. albicans 

[305] 

[306] 

pantothenic acid (B5) 
A. fumigatus 

H. capsulatum 

[303] 

[305] 

pyridoxine (B6)  Aspergillus spp. 
[303] 

[304] 

folate (B9)  Aspergillus spp.  [307, 308] 

 

The role of vitamin biosynthesis for fungal pathogens during the interaction with their 

host is less investigated and only a few examples are described by now (Table 2). As 

described for bacterial pathogens, not only the biosynthesis, but also the uptake from 

the host may be essential during infection in case the pathogen is auxotrophic for that 

vitamin. C. glabrata possesses more vitamin auxotrophies than C. albicans. It 

possesses an intrinsic auxotrophy for niacin, pyridoxine and thiamine, whereas 

S. cerevisiae and C. albicans are prototrophic for these vitamins [79, 80, 309]. All 

medically relevant Candida species are biotin auxotrophic, and some isolates are also 

thiamine auxotrophic [310, 311], suggesting that an transport system for these vitamins 

might be essential for viability, the survival in specific host niches, and probably 

virulence. 
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1.8 Aim of this study 

Candida species are common colonizers of mucosal surfaces, but can also cause 

superficial and life-threatening systemic infections under predisposing conditions [2]. 

Infections are characterized by recruitment of innate immune cells which limit fungal 

proliferation and spreading [147-149]. However, pathogenic Candida species have 

evolved mechanisms to survive phagocytosis, proliferate within and escape from innate 

immune cells [312]. 

This study aimed to convey a better understanding on how Candida species cope with 

nutrient limitation within the phagosome of macrophages, representing an important 

phagocytic immune cell during candidiasis [147, 313]. Manuscript I of this thesis was 

written in order to compare nutrient acquisition and adaptation strategies of different 

bacterial and fungal pathogens with a facultative intracellular lifestyle within 

macrophages (manuscript I). 

Since Candida species are naturally dependent on biotin, and the putative regulator of 

biotin-related processes Vhr1 was shown to promote survival within macrophages and 

virulence of C. glabrata [314, 315], the focus was set on this essential vitamin. Hence, 

this study aimed to characterize VHR1 and its downstream target genes to unveil new 

insights into the regulation and maintenance of biotin homeostasis in C. glabrata, but 

also in the phylogenetically distant pathogenic Candida species, C. albicans, using 

transcriptional analysis, mutagenesis of biotin-metabolic genes, biotin-dependent 

growth analyses, as well as macrophage infection experiments and a systemic murine 

infection model (manuscript II). 

As further improvement of genetic and molecular tools for assaying C. glabrata-host 

interaction, a RNA-mediated gene knock-down, a gene complementation strategy in 

C. glabrata and a flow cytometry-based method for determination of intraphagosomal 

replication rates were established and described in further manuscripts (manuscript II, 

III & V). 

Finally, predatory amoebae are often used to understand how fungal pathogens 

evolved resistance strategies against mammalian phagocytes [316] and why species-

specific differences occur in fungal immune evasion mechanisms [180]. Therefore, 

transcriptional analyses and mutagenesis approaches were used to gain new insights 

into the interaction of C. parapsilosis with amoeba and to compare these to the 

established macrophage model (manuscript IV). 
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2 Manuscripts 

 

2.1 Manuscript I: Sprenger et al., Int J Med Microbiol., 2018 

 

Metabolic adaptation of intracellular bacteria  

and fungi to macrophages 

 

Marcel Sprenger, Lydia Kasper, Michael Hensel, Bernhard Hube 

 

Int J Med Microbiol. 2018 Jan;308(1):215-227.  

doi: 10.1016/j.ijmm.2017.11.001. Epub 2017 Nov 7. 

 

Summary 

Successful intracellular pathogens evolved strategies to withstand antimicrobial 

activities within macrophages and resist destruction by these immune cells. Nutrient 

limitation within the phagosomal compartment represents one important mechanism to 

restrict microbial growth and further spreading in the host. This review focusses on 

adaptation mechanisms of selected bacterial and fungal pathogens to metabolic 

conditions of the phagosomal compartment as well as the cytosolic environment, with a 

focus on species-specific requirements.  

 

Own contribution 

Marcel Sprenger conceived the topic, conducted the literature research, wrote the 

review article and conceptualized the tables and figures. 

 

Estimated authors’ contributions:   

Marcel Sprenger  62% 

Lydia Kasper   18% 

Michael Hensel  8%  

Bernhard Hube  12%  
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Prof. Bernhard Hube
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2.2 Manuscript II: Sprenger et al., Cell. Microbiol., 2020 

 

Fungal biotin homeostasis is essential for immune evasion 

after macrophage phagocytosis and virulence 

 

Marcel Sprenger, Teresa Sofie Hartung, Stefanie Allert, Stephanie Wisgott, Maria 

Joanna Niemiec, Katja Graf, Ilse D. Jacobsen, Lydia Kasper and Bernhard Hube 

 

Cell Microbiol. 2020 Feb 21;e13197. 

doi: 10.1111/cmi.13197. 

 

Summary 

The vitamin biotin is essential for all organisms, including human pathogenic microbes 

like fungi of the genus Candida as well as their mammalian hosts. Candida spp. are 

auxotrophic for this vitamin and must thus possess an efficient uptake system to allow 

biotin acquisition during infection. This study characterized a conserved metabolic 

pathway facilitating biotin homeostasis in two medically important Candida species, 

C. albicans and C. glabrata.  

Biotin-related genes are upregulated upon phagocytosis by macrophages and the 

transcription factor Vhr1 is mainly involved in this regulation. The intracellular 

proliferation of both Candida species was reduced by biotin pre-starvation and deletion 

of VHR1 or the biotin importer gene VHT1. Moreover, VHT1 was essential for full 

virulence of C. albicans and the colonization of certain mouse organs. This study 

showed the first time biotin acquisition of C. albicans and C. glabrata mediated by Vht1 

is linked to immune evasion and virulence. 

 

Own contribution 

Marcel Sprenger planned, performed and evaluated all experiments, interpreted the 

data of following experiments: construction of deletion and complementation strains 

(Cgvhr1∆, Cgvhr1∆ - CgVHR1, Cgvht1∆, Cgvht1∆ - CgVHT1, Cavht1∆/∆, and 

Cavht1∆/∆ - CaVHT1), their verification by PCR and Southern blot, growth and 

filamentation assays in different formats, RNA isolation and qRT-PCR, macrophage 

confrontation assays and animal experiments. The co-authors assisted in the 

generation and verification of mutant strains, the design and conceptualization of the 

study, the application and performance of the animal experiments, and editing of the 

initial manuscript. Marcel Sprenger wrote the manuscript and generated all figures. 
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Marcel Sprenger  54% 

Teresa Sofie Hartung   6% 

Stefanie Allert   5% 

Stephanie Wisgott  2% 

Maria Joanna Niemiec 1% 

Katja Graf   1% 

Ilse D. Jacobsen  4% 

Lydia Kasper   20%  

Bernhard Hube  7%  
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pathogenic yeast Candida glabrata 
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Marcel Sprenger, Lydia Kasper, Sascha Brunke, Bernhard Hube, Torbjörn Säll, 

Thomas Hellmark, Birgitta Gullstrand, Christian Brion, Kelle Freel, Joseph Schacherer, 

Birgitte Regenberg, Wolfgang Knecht and Jure Piškur 

 

Front Microbiol. 2019 Jul 24;10:1679.  

doi: 10.3389/fmicb.2019.01679. eCollection 2019. 

 

Summary: 

For a better understanding and treatment of infections caused by C. glabrata, it is 

essential to investigate the molecular basis of fungal virulence and resistance. The 

established RNA interference (RNAi) system in C. glabrata uses Dicer and Argonaute 

genes from Saccharomyces castellii and results in 30 and 70% knockdown of reporter 

genes and putative virulence genes. The screening of an RNAi mutant library identified 

new virulence-related genes involved in the maintenance of cell integrity, antifungal 

drug and ROS resistance, which could be promising targets for the treatment of 

C. glabrata infections. 

 

Own contribution: 

Marcel Sprenger performed and analyzed the macrophage survival experiments, and 

edited the manuscript. 
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Complete supplemental material for this article can be found at: 

 

https://www.frontiersin.org/articles/10.3389/fmicb.2019.01679/full#supplementary-

material  
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2.4 Manuscript IV: Radosa et al., in revision Cell. Microbiol. 
 

Phagocytic predation by the fungivorous amoeba  

Protostelium aurantium targets metal ion and redox 

homeostasis 

 

Silvia Radosa, Jakob L. Sprague, Renáta Tóth, Thomas Wolf, Marcel Sprenger, 

Sascha Brunke, Jörg Linde, Gianni Panagiotou, Attila Gácser, and Falk Hillmann 

 

Preprint posted July 03, 2019 at bioRxiv  

doi: https://doi.org/10.1101/690503 

 

Summary: 

Predatory interactions among microbes are considered as a major evolutionary driving 

force for defense against phagocytic killing. The transcriptional response induced in 

C. parapsilosis upon confrontation with the fungivorous amoeba 

Protostelium aurantium highlights fungal copper- and redox homeostasis as primary 

targets during intracellular killing. Site-directed mutagenesis confirmed the role of the 

copper exporter Crp1 and the thioredoxin peroxidase Prx1 in copper and redox 

homeostasis, respectively and identified methionine biosynthesis as a metabolic target 

during predation. Both genes contributed to survival of C. parapsilosis encountering 

P. aurantium, but PRX1 additionally impacts on the survival within human 

macrophages. The fact that both genes are conserved within the entire Candida clade 

suggested that they could be part of a basic toolkit to survive phagocytic attacks.       

 

Own contribution: 

Marcel Sprenger assisted the macrophage experiments for fungal RNA isolation, 

performed and analyzed the macrophage survival experiments for the revised 

manuscript. Marcel Sprenger edited the manuscript. 
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Summary 

Predatory interactions among microbes are considered as a major evolutionary driving 

force for biodiversity and the defence against phagocytic killing. Here we show that 

confrontation with the fungivorous amoeba Protostelium aurantium triggers selective 

predatory responses in three different yeasts of the genus Candida. While C. albicans 

escaped initial recognition, C. glabrata was rapidly taken up, but remained undigested 

with prolonged survival. Phagocytic killing and feeding by P. aurantium were highly 

effective for the third major pathogen, C. parapsilosis. These three different outcomes 

of the confrontation with the predator were reflected by distinct transcriptional 

responses, indicating fungal copper- and redox homeostasis as primary targets during 

intracellular killing. Gene deletions for the highly expressed copper exporter Crp1 and 

the peroxiredoxin Prx1 confirmed their role in copper and redox homeostasis, 

respectively and identified methionine biosynthesis as a metabolic target during 

predation. Both, intact Cu export and redox homeostasis contributed to the survival of 

C. parapsilosis not only when encountering P. aurantium, but also in the presence of 

human macrophages. As both genes were found to be widely conserved within the 

entire Candida clade, our results suggest that they could be part of a basic tool-kit to 

survive phagocytic attacks by environmental predators.       
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Introduction 

Members of the genus Candida are among the leading causative agents of fungal 

infections worldwide with Candida albicans being responsible for the majority of 

candidiasis cases, followed by C. glabrata and C. parapsilosis (Dadar et al., 2018). All 

three Candida species are known to be commensals being frequent residents of the oral 

cavities, the gastrointestinal tract or the skin. Environmental reservoirs for any of these 

species have rarely been documented, but recent isolations of C. parapsilosis or C. 

albicans from pine and oak trees, respectively, suggest that these might exist 

(Bensasson et al., 2018, Robinson et al., 2016, Maganti et al., 2012). C. glabrata, in 

turn, has been enriched from fermented foods and grape juice (Greppi et al., 2015, 

Morrison-Whittle et al., 2018). Within the human host, all three are able to counteract 

the phagocytic attacks of macrophages and neutrophilic granulocytes to some extent, 

using different strategies and molecular tool-kits (Erwig & Gow, 2016).  

An outer layer of mannoproteins masks pathogen-associated molecular patterns 

(PAMPs) on the surface of C. albicans, hence hindering their initial recognition via cell 

wall ß-glucans (Seider et al., 2010). Even after its ingestion, C. albicans can escape 

from innate immune phagocytes following a morphological switch from yeast to hyphae 

which triggers the cytolytic death of the host cell (Uwamahoro et al., 2014, Wellington 

et al., 2014, Kasper et al., 2018). C. parapsilosis is also able to survive the restricted 

phagosomal environment and forms pseudohyphae after internalization by macrophages 

(Toth et al., 2014). However, its rates of ingestion and killing by neutrophils and 

macrophages were reported to be higher than for C. albicans (Linden et al., 2010, 

Sasada & Johnston, 1980, Toth et al., 2014). Intracellular filamentation, in turn, is not 

the typical escape strategy for C. glabrata, which can survive and even replicate inside 

modified phagosomal compartments of macrophages (Kasper et al., 2015).  

Estimates indicate that C. glabrata may be separated from the other two Candida 

species by more than 300 million years (Pesole et al., 1995), and hence, well before 

their time as commensals. Comparative genome analysis of C. glabrata and its closest 

relatives have suggested that adaptations preceding its commensal stage may have 

facilitated traits that later enabled pathogenicity (Gabaldon et al., 2013, Turner & 

Butler, 2014, Gabaldon & Fairhead, 2019). The increasing clinical records of fungal 

infections originating from species even without any clear history of commensalism 

have further raised questions on the role of environmental factors as early promoters of 

virulence-associated traits.  
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Predator-prey interactions are considered as drivers of an evolutionary arms race and 

frequently occur also among microbes. Humans and higher animals are indirectly 

affected as some microbial defences against phagocytic predators are thought to be 

effective against innate immune cells such as macrophages and neutrophilic 

granulocytes. These trained defences may have favoured certain microbes to establish 

commensalism or appear as new pathogens (Casadevall et al., 2019).  Experimental 

studies have corroborated this idea using well-known model organisms such as 

Dictyostelium discoideum or Acanthamoeba castellanii (Steenbergen et al., 2003, 

Steenbergen et al., 2001, Van Waeyenberghe et al., 2013, Hillmann et al., 2015, Koller 

et al., 2016). Protostelium aurantium is a representative of a widely spread group of 

amoebae with a fungivorous life-style (Aguilar et al., 2007, Ndiritu et al., 2009, 

Shadwick et al., 2009a, Zahn et al., 2014, Hillmann et al., 2018). The amoeba was 

recently found to feed on a wide range of basidiomycete and ascomycete yeast species 

with C. parapsilosis being the most efficient food source, while C. albicans and C. 

glabrata were discriminated at the stage of recognition or intracellular processing, 

respectively (Radosa et al., 2019). In this study, we investigated the responses of C. 

albicans, C. glabrata, and C. parapsilosis when confronted with the fungivorous 

predator. Our findings demonstrate that copper and redox homeostasis are central 

targets during phagocytic predation by P. aurantium and suggest that such basic anti-

phagocytic defence strategies may have been trained during an arms race with an 

environmental predator.  
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Results 

The predation responses of the three Candida species reflect their different prey 

patterns  

While C. albicans and C. glabrata can escape P. aurantium at the stage of recognition 

or intracellular processing, respectively, C. parapsilosis serves as a comparably efficient 

food source (Radosa et al., 2019). To elucidate common, as well as species-specific 

reactions to the presence of the predator, we conducted high-throughput RNA 

sequencing of each of the three Candida species in co-cultures with P. aurantium. Yeast 

cells were confronted with trophozoites of P. aurantium for 30 and 60 minutes prior to 

sampling for RNA isolation. For C. parapsilosis, a total of 667 genes were upregulated 

(log2FC > 1.5), and 588 genes were downregulated (log2FC < -1.5), while in C. 

albicans, a total of 903 genes were significantly upregulated, and 937 genes were 

downregulated at both time points (Fig. 1A). In C. glabrata, 1218 genes were 

upregulated, while only 273 genes were found to be downregulated (Fig. 1A). A 

complete list of DEGs for each species and time point is listed in Dataset S1.   

To address the biological significance of up- and downregulated genes, we analysed 

their annotations for the enrichment of defined categories in molecular function, cell 

component and biological process (Fig. 1B, Fig. S1, Dataset S2). Overall, the enriched 

categories for all three Candida species partially overlapped, most likely resulting from 

general metabolic adaptations, e. g. when grouped by molecular function, transferase 

and ligase activity were categories common to all three fungi among the upregulated 

genes. However, for C. glabrata, there was no significantly enriched biological process 

among the downregulated genes (Fig. S1) Also, transporter and kinase activity were the 

only two molecular functions which were enriched among the downregulated genes of 

C. glabrata. In sharp contrast, transporters were found to be generally upregulated in C. 

albicans and C. parapsilosis. Higher expression of RNA binding, helicases, and 

nucleotidyl transferases was unique to C. parapsilosis, the preferred prey, implicating 

that transcription and translation could be most severely affected in this fungus. The 

finding that the nucleolus and that the biological process categories for RNA 

metabolism and ribosome biogenesis were all enriched only in C. parapsilosis provides 

additional support for this idea. Further, the extracellular region and the cell wall were 

more severely affected in C. parapsilosis than in C. albicans or C. glabrata (Fig. 1B).  
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Fig. 1: Differentially gene expression in C. parapsilosis, C. albicans and C. glabrata in 
response to P. aurantium. A, Total numbers of differentially expressed genes (DEGs) of 
Candida spp. in the presence of P. aurantium after 30 and 60 min. Genes were considered as 
differentially expressed when the log2 fold-change in the transcript level was ≥1.5 or ≤-1.5 and 
p≤0.01 according to EdgeR at either of the two tested time points. B, Gene ontology (GO) 
clusters for cellular components enriched in up- and downregulated genes of C. parapsilosis 
(blue) and their expression in C. glabrata (green) and C. albicans (orange) C, Principle 
component analysis (PCA) for read count values from orthologous genes of the three Candida 
species. PC1 and PC2 explain about 68% of the overall variance within the data set and clearly 
separate all C. glabrata samples (green, top left) from those of C. albicans (orange) and C. 
parapsilosis (blue). For the two latter species, there is an additional separation between control 
time point at 0 min (round) and time points 30/60 min (square/diamond). D, Venn diagram 
displaying an overlap in the differential expression of orthologues at 30 and 60 min. Of 3,735 
orthologues in total, 2,201 were differentially expressed orthologues (DEOs) and 79 were 
common (3.6%) to all three species.  
 

The core response of C. albicans, C. parapsilosis, and C. glabrata to the presence of 

P. aurantium 

A principal component analysis was used to determine the dynamic variations in the 

orthologous DEGs. The response of C. glabrata to amoeba predation showed less 

variation between the time points (see the cluster dendrogram in Fig. S2) and was 

clearly distinguishable from C. parapsilosis and C. albicans (Fig 1C). For the latter two, 

it was evident, that their transcription profiles at time point 30 and 60 min clustered 
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closer together and displayed a higher variance when compared to the initial time point. 

To identify a commonly responsive gene set of all three fungi, we compared the 

differential expression among all their orthologues (DEOs). Overall, 3735 orthologous 

genes showed differential expression at either one of the two time points (Fig. 1D). 

Within all three Candida species, 79 genes were differentially regulated, representing a 

core response to the presence of P. aurantium (Fig. 1D). Among those, 48 genes were 

commonly induced, and eight genes were commonly repressed in all three species at 

either of the time points, while 23 genes showed opposite regulation between the 

species (Fig.2).  
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Fig. 2: Heat map of expression for all 79 differentially expressed orthologues (DEOs) 
during the confrontation with P. aurantium. All DEOs were grouped according to their 
transcript profile at 30 min and 60 min p.i. and considered as commonly induced or commonly 
repressed if they shared the expression pattern within all three species. DEOs were considered 
as oppositely regulated if their expression differed between two species. Red and blue colors 
represent down- and upregulated genes, respectively. Gene names are based on the orthologues 
of C. albicans.  
 

The corresponding sets of genes were further analysed for significantly shared GO 

terms in biological processes (Dataset S3). Enriched categories included the sulfur 

amino acid metabolic process (GO:0000096) comprising genes such as SAM2, MET3, 

ECM17 (MET5), MET15, MET16, all playing a role in the metabolism of methionine. A 

plethora of genes, predicted to be involved in organo-nitrogen compound biosynthetic 

process (GO:1901566) such as the amino acid biosynthesis enzymes ILV2 and ARG8, a 

P-type calcium-transporting ATPase encoded by SPF1 or genes with role in fatty acid 

beta-oxidation (GO:0006635) like ANT1, FOX2 or POX1-3, were commonly induced as 

well. The most highly enriched GO term was found to be “negative regulation of 

helicase activity” comprising three MCM genes: CDC54 (MCM4), CDC46 (MCM5) and 

MCM3; all known to be a part of MCM complex, necessary for unwinding the DNA 

double helix and triggering fork progression during DNA replication (Bochman & 

Schwacha, 2009).  

Noteworthy is further the induction of the DUR1,2 gene, encoding the urea amidolyase 

and shown to be important for the survival of C. albicans in macrophages (Navarathna 

et al., 2012). No GO category was found to be enriched within the eight commonly 

downregulated genes. Nevertheless, three out of eight genes, namely OLE1, SCT2 and 

AUR1, function in lipid biosynthetic processes and most probably play an important role 

in the integrity of cell membrane. Interestingly, GO enrichment analysis revealed the 

glycolytic process through fructose-6-phosphate (GO:0061615) as a highly 

overrepresented category within the oppositely regulated set of genes: all genes 

annotated to this category, namely TPI1, PFK1 and PFK2, were downregulated in C. 

albicans and C. parapsilosis, while in C. glabrata they showed an increase in transcript 

level.  

 

P. aurantium predation targets copper and redox homeostasis in C. parapsilosis 

Of all three species, C. parapsilosis represented the preferential food source for P. 

aurantium, and thus, we conducted a deeper characterization of the 1255 DEGs (667 

genes with log2FC > 1.5, and 588 genes with log2FC > -1.5) from C. parapsilosis using 
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the GO Slim tool which maps DEGs to more general terms and broad categories 

(Skrzypek et al., 2017). Most genes could not be categorized, were involved in 

unknown biological processes, or mapped to regulation as a general category. These 

were not analysed further. Transport and stress response were the two most frequent 

biological processes and were further selected to search for more specific categories 

(Fig. 3). The extra-nuclear transport of ribonucleoproteins was highly enriched as could 

be expected from the results obtained from the general enrichment analysis for C. 

parapsilosis. We further found the transport of transition metal ions to be 

overrepresented with several genes encoding orthologous proteins for the transport of 

Fe and Zn being deregulated in response to P. aurantium (Tables S1 and S2).  

 

 

Fig. 3: GO Slim categorization of the DEGs from C. parapsilosis during the confrontation 
with P. aurantium. A, All 1255 DEGs from 30 min and 60 min after the confrontation with P. 
aurantium were categorized according to GO SLIM processes. B, Genes mapped to the GO 
SLIM categories transport and response to stress were further analyzed for more specific GO 
Terms. Categories with the highest enrichment (top 7 for transport and top 5 for response to 
stress) are displayed as a 2D dot plot for the number of genes in the respective cluster and fold 
enrichment (p-value <0.005 ). 
 

Two Cu transporters were among the most highly deregulated genes in C. parapsilosis 

(Table 1.) The most upregulated gene upon amoeba predation (log2FC of approx. 9 at 

30 min and 8 at 60 min) was found to be CPAR2_203720. This gene is an orthologue to 

C. albicans CRP1 (orf19.4784), encoding a copper-transporting P1-type ATPase, which 
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mediates copper resistance and is induced by high copper concentrations (Weissman et 

al., 2000). 

Interestingly, the second most downregulated gene at 30 min (log2FC = -9.8), we 

identified CPAR2_602990, an orthologue of C. albicans CTR1 (orf19.3646) with 

copper importing activity. Four other genes annotated as copper transporters were also 

repressed at both time points.  

 

Table 1: Expression of C. parapsilosis genes involved in the transport of Cu ions (GOID 

6825)   

 

 

The differential expression of these genes was validated by quantitative real-time PCR 

and further tested, whether they would also respond to phagocytosis by monocyte-

derived human primary macrophages (MDMs). Only for the CpCRP1 gene, expression 

in response to P. aurantium and MDMs was fully in accordance, while the expression 

of CpCTR1 was regulated in an opposite manner when the yeast encountered MDMs 

(Fig. 4A+B). We further investigated the expression of CpCRP1 and CpCTR1 during 

copper excess and depletion. As expected, the putative copper exporter gene CpCRP1 

showed induction when Candida was treated with 100 µM of Cu, and repression in the 

presence of the copper chelator BCS (Fig. 4C). Even though the expression of CpCTR1 

was not significantly influenced by the presence of BCS in the media, remarkable 

downregulation of this gene was measured at high copper concentration. It is 

noteworthy that differences in the expression levels for both genes, CpCRP1 and 

CpCTR1, were more pronounced during encounters with P. aurantium than with 

macrophages or the metal itself. 

 



 Manuscript IV 
 

117 
 

 

Fig. 4: Expression of copper and redox homeostasis genes. Expression of the CRP1 
(CPAR2_203720), CTR1 (CPAR2_602990), and PRX1 (CPAR2_805590) of C. parapsilosis 
was analyzed by qRT-PCR using total RNA isolated after the exposure to P. aurantium (A, D), 
human monocyte-derived macrophages (MDMs, B, D), and in the presence of the copper ion 
chelator BCS or CuSO4. All data show average expression levels relative to time point 0 based 
on three biological and three technical replicates. Error bars indicate the standard deviation.   

 

Intriguingly, four genes encoding superoxide dismutases (SODs) of the Cu/Zn type 

(CPAR2_500330, CPAR2_500390, CPAR2_213540, CPAR2_213080) and one Fe/Mn-

SOD (CPAR2_109280) were strongly repressed in the presence of P. aurantium (Table 

2).  

In contrast, genes involved in the thioredoxin antioxidant pathway were found to be 

highly upregulated, such as CPAR2_304080, CPAR2_500130 or CPAR2_805590. The 

latter one is an orthologous gene to C. albicans PRX1, a thioredoxin-linked peroxidase, 

shown to be primarily involved in the reduction of cellular organic peroxides (Srinivasa 

et al., 2012). More than a 5-fold increase in transcript level was observed in C. 

parapsilosis after 30 min of co-incubation with P. aurantium. This upregulation further 

increased up to 9-fold after another 30 min of co-incubation with the predator but 

remained unaffected in response to primary macrophages (Fig. 4D). 
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Table 2: Expression of C. parapsilosis genes involved in response to oxidative stress (GOID 

6979)*   

 

*only genes with p <0.01 according to EdgeR are displayed 
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C. parapsilosis is exposed to ROS during phagocytosis by P. aurantium  

The induction of genes involved in redox homeostasis prompted us to analyse whether 

this occurred as a direct response to ROS production by the amoeba. When co-

incubating C. parapsilosis with P. aurantium in the presence of the superoxide (O2
●-) 

indicator dihydroethidium (DHE), an increase in red fluorescence of cultures was 

specific to the presence of amoebae and reached a maximum after 10 min of co-

incubation (Fig. 5A). Fluorescence microscopy of single cells of P. aurantium using 

either DHE or the alternative ROS sensor CellROX®Deep Red further revealed that 

ROS production was locally specific to P. aurantium actively feeding on C. 

parapsilosis (Fig. 5B) suggesting that yeast cells are exposed to increased levels of ROS 

upon phagocytic processing in P. aurantium. 

 

 

Fig. 5: ROS production by P. aurantium during phagocytosis of C. parapsilosis. A, ROS 
were determined indirectly as the increase in DHE oxidation over 30 min in co-incubations of 
C. parapsilosis with P. aurantium. Data represent mean RFU (λex 522/ λem 605 nm) of three 
independent samples over 30 min. B, ROS production was primarily localized to feeding cells 
of P. aurantium. Cells were co-incubated with C. parapsilosis in the presence of ROS sensitive 
probes DHE or CellROX® Deep Red and images were taken after 30 min. 
 
 
Copper and redox homeostasis contribute to the resistance against P. aurantium 

and macrophages  

The expression profile and its similarity to its orthologue of C. albicans suggested a role 

for Crp1p of C. parapsilosis in detoxification of high Cu levels.  Deleting CpCRP1 

(∆/∆crp1) displayed no apparent growth defect in SD medium at 30°C and the mutant 

strain tolerated even high concentrations of Cu above 1 mM. Its sensitivity towards this 

transition metal changed dramatically when cells were exposed to a more acidic pH on 

solid or in liquid media (Fig. 6). At a pH of 3, CpCRP1 proved to be essential for 
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growth at Cu concentrations between 500 and 1000 µM, indicating that the function of 

Crp1p could be crucial under the acidic conditions of the phagolysosome.  

 

Fig. 6: Crp1 protects C. parapsilosis from high Cu levels at acidic pH. A, The ∆/∆ crp1 
mutant strain showed a pH-dependent copper sensitivity in comparison to the wildtype during 
growth at pH 3. B, Increased sensitivity of ∆/∆ crp1 mutant strain to high Cu concentrations in 
liquid medium with malt extract broth (pH=3) in comparison to the wildtype and 
complementation strains. Data represent the mean and standard deviation of three biological 
replicates with asterisks indicating statistical significance in an unpaired Student’s t-test 
between the values obtained for the ∆/∆crp1 strain and the wild type (∗∗∗, p < 0.001). 

 

We also addressed the antioxidant function of PRX1 in C. parapsilosis, by subjecting a 

homozygous mutant (Δ/Δprx1) to oxidative stress delivered by hydrogen peroxide 

(H2O2) and tert-butyl hydroperoxide (t-bOOH). The sensitivity of the mutant towards 

H2O2 was nearly indistinguishable from the wild type, and even the organic peroxide 

had only a mild effect on the growth of Δprx1 on a solid medium supplemented with 

adenine, uracil, and 9 amino acids (Fig. 7A). However, the impact of oxidative stress 

was more severe when these supplements were omitted from the medium. Under these 

conditions, growth in liquid medium was significantly reduced for Δ/Δprx1 even in the 

absence of an external stressor (Fig. 7B). When using 11 selective dropouts with each 

one lacking a different component, we found that a lack of methionine was responsible 

for the growth defect of Δ/Δprx1. The Omission of methionine from the normal 
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medium, in combination with the organic peroxide, affected the wild type and the 

mutant strains to similar extents (Fig. 7C).   

 

 

Fig. 7: The antioxidant role of PRX1 in C. parapsilosis. A, Growth of C. parapsilosis on solid 
SD media with or without amino acid drop-out supplement (DO) in the presence of tBOOH or 
H2O2 as oxidative stressors. B and C, Growth of the wildtype and the Δprx1 null mutant in 
liquid SD media, supplemented with drop-out solutions, selectively missing one essential amino 
acid (B) and in the presence of tbOOH (C). Growth was measured as optical density at 600 nm. 
Data represent the mean and standard deviation of three biological replicates with asterisks 
indicating statistical significance in an unpaired Student’s t-test between the values obtained for 
the Δprx1 null mutant in comparison to the parental strain, wt (∗p < 0.05, ∗∗ p < 0.01, ∗∗∗p < 
0.001). 
 

Both, CRP1 and PRX1, are widely conserved across the Candida clade, including 

several species without any record as commensals or pathogens (Fig. S3). To test 

whether these two genes are part of the defence against amoeba predation, deletion 

mutants for CRP1 and PRX1 were confronted with P. aurantium. Both mutants showed 

decreased survival in comparison to the wild type after 3 hours of co-incubation (Fig. 

8A). As we hypothesized that both mechanisms for stress defence could also contribute 

to survival when encountering innate immunity, we performed another co-incubation 

assay with primary macrophages (MDMs) from healthy donors. Both, Δ/Δcrp1 and 
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Δ/Δprx1 displayed reduced survival when confronted with MDMs (Fig. 8B), indicating 

that these genes mediating resistance to copper and oxidative stress during predation 

could also play a role during evasion in the human host.   

 

 

Fig. 8: Survival of C. parapsilosis mutant strains during amoeba predation (A) and 
phagocytosis by primary macrophages (B).  Strains of C. parapsilosis were incubated with P. 
aurantium for 3 h at a yeast-to-amoeba ratio of 10:1 (A) or with primary macrophages isolated 
from at least 6 different anonymous donors at a yeast-to-macrophage ratio of 1:1 (B). The 
number of survivors was determined by plating the cells on YPD media and counting the CFUs. 
The boxes signify the 25th and 75th percentile. The median is represented by a short black line 
within the box for each strain. The whiskers indicate the highest and lowest values from three 
independent biological and six technical replicates. Asterisks show statistical significance in an 
unpaired Student’s t-test between the values obtained for the null mutants in comparison to the 
parental strain, wt (∗∗∗, p<0.001). 
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Discussion 

The arms race between phagocytic predators and their microbial prey is thought to have 

shaped virulence determinants of bacteria and fungi (Casadevall et al., 2019, Brussow, 

2007). Amoebae are predominant environmental micro-predators, but only a few of 

them have been described to actively feed on fungi (Old & Darbyshire, 1978, Old, 

1977, Chakraborty et al., 1983). Such a fungivorous lifestyle was also described for 

Protostelium mycophagum, the type species for the polyphyletic group of protosteloid 

amoebae that form microscopic, stalked fruiting bodies from single cells and are found 

on nearly all continents (Spiegel et al., 2017, Kang et al., 2017, Shadwick et al., 2009b, 

Shadwick et al., 2018). We have recently isolated and characterized a strain of P. 

aurantium (formerly known as Planoprotostelium aurantium), which was found to 

selectively recognize, kill and feed on a wide range of ascomycete and basidiomycete 

yeasts, including major human pathogens of the Candida clade (Radosa et al., 2019). 

While C. parapsilosis acted as a preferred food source, C. albicans was found to be 

protected from initial recognition by an extensive coat of mannoproteins, and C. 

glabrata showed delayed processing after ingestion. A similar survival strategy seems 

to rescue C. glabrata when encountering macrophages. Here, its ability to persist and 

even replicate inside the phagocyte has been well documented and characterized to the 

level of single genes (Seider et al., 2011, Kasper et al., 2015, Kaur et al., 2007). A 

functional genomic approach identified 23 genes in C. glabrata which were critically 

involved in the survival of macrophage phagocytosis (Seider et al., 2014). When 

comparing this set of 23 genes to all genes expressed during predation by P. aurantium, 

we found 7 genes to be highly upregulated (log2FC >1.5) at both time points. The three 

most upregulated genes with a log2FC of more than 2 were GNT1 (CAGL0I09922g) 

OST6 (CAGL0G07040g), and PMT2 (CAGL0J08734g), all involved either in cell wall 

modification or protein glycosylation. 

All these genes share orthologues with the other two Candida species, but when 

confronted with P. aurantium, only PMT2 was upregulated in C. parapsilosis and even 

more so in C. albicans. In the latter, the gene encodes an essential protein O-

mannosyltransferase, which renders the cell more resistant to antifungals and cell wall 

perturbing agents (Lengeler et al., 2007, Peltroche-Llacsahuanga et al., 2006). The 

upregulation of mannan synthesis in C. albicans in the presence of the predator seems 

not to be limited to O-linked mannans, but was also observed for the N-linked type. 

MNN2 and MNN22 are two members of another well-characterized family of N-
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mannosyltranferses which absence severely affects the mannoprotein coat of C. 

albicans (Hall et al., 2013, Hall & Gow, 2013). Both genes showed induction levels 

comparable to PMT2. The pivotal role of the mannan coat of C. albicans during an 

interaction with phagocytes of the innate immunity is well documented, as defective O- 

and N-linked mannosylation led to an increased uptake and phagosomal maturation, 

most likely through unmasking of β-glucans and enhanced recognition of C. albicans 

via the Dectin-1 receptor (Bain et al., 2014, McKenzie et al., 2010). The fact that 

mannan biosynthesis was upregulated in C. albicans supports the previous finding that 

mannosidase treated cells were internalized more frequently by P. aurantium (Radosa et 

al., 2019).  

The different interaction patterns of the three yeasts were partially reflected throughout 

the transcriptome of their orthologous genes. The general response to the predator 

comprised only 79 orthologues. Of these 48 were commonly induced, among them the 

orthologues of CDC54, CDC46, and MCM3, indicating that all three yeast species were 

metabolically active in the M/G1 phase of the cell cycle (Cote et al., 2009). Genes 

involved in fatty acid catabolism were generally induced while their biosynthesis was 

rather repressed. In contrast, amino acid biosynthesis was commonly upregulated, 

presumably in response to the nutrient-deprived growth medium used during the 

confrontation.   

Of over 1500 orthologous genes that were differentially regulated in either C. albicans 

or C. parapsilosis, only 251 were common DEOs for both species. Within this gene set, 

the impact on copper homeostatic genes was preeminent especially for C. parapsilosis 

and the null mutant for CRP1, the gene with the highest induction, pointed towards a 

vital role of copper during predation by P. aurantium. Intoxication by copper is 

especially effective in highly acidic environments as occurring during early maturation 

of the phagolysosome. This strategy was also found to be effective in the bacteriovorous 

amoeba Dictyostelium discoideum and has most likely contributed to the spread of 

copper resistance islands among bacterial pathogens (Hao et al., 2016). From this 

perspective, it cannot be surprising that highly tuned copper homeostatic systems were 

elucidated in the major environmentally acquired fungal pathogens A. fumigatus and 

Cryptococcus neoformans (Ding et al., 2013, Wiemann et al., 2017). Both fungi also 

exploit similar escape strategies when confronted with amoebae or innate immune 

phagocytes (Hillmann et al., 2015, Novohradska et al., 2017, Steenbergen et al., 2001). 
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A recent screening approach identified SUR7 as a Cu-protective protein which reduces 

membrane permeability to Cu in C. albicans (Douglas & Konopka, 2019).  Although 

downregulation of SUR7 was observed at both time points after confrontation with the 

amoeba, its putative orthologue (CPAR2_602600) showed higher expression in C. 

parapsilosis after one hour of co-incubation with P. aurantium. Also, for C. glabrata 

which seems to lack a CRP1 orthologue, SUR7 (CAGL0L01551g) was highly induced 

at both time-points. 

At least some of the toxic effects of Cu are inflicted via Fenton-type chemistry with 

ROS, which were actively produced in feeding P. aurantium. Their impact on the yeast 

will likely be further aggravated by the downregulation of nearly all SODs, as seen for 

C. parapsilosis during confrontation with the predator. In contrast, expression of the 

one-cysteine peroxiredoxin PRX1 was increased in C. parapsilosis. Higher expression 

of the orthologous gene from C. albicans was also found during co-incubation with 

macrophages (Lorenz et al., 2004). We found that an essential cellular function of PRX1 

is tightly linked to a lack of methionine. Intriguingly, among the only 48 commonly 

upregulated genes in all three Candida species, 5 are involved in the metabolism of 

sulfur-containing amino acids (ECM17, MET15, MET16, MET3, SAM2). For all five 

genes, the induction was lowest for C. glabrata. Amino acid deprivation, and more 

specifically, a limitation in methionine, also occurs in the phagolysosome of 

neutrophilic granulocytes (Rubin-Bejerano et al., 2003, Miramón et al., 2012). Its 

sensitivity to ROS is phenotypically well established for baker’s yeast, as mutants 

lacking either SOD1 or its chaperone CCS1 were unable to grow in normoxic 

environments due to a methionine auxotrophic phenotype (Chang & Kosman, 1990, 

Culotta et al., 1997).  

 

In conclusion, our results show that the fungivorous feeding of the predator P. 

aurantium affects essential biosynthetic pathways by targeting the fungal Cu and redox 

homeostasis. With regard to the millions of years of coevolution of amoebae and fungi, 

it is well conceivable that basic molecular tool-kits for resistance against environmental 

phagocytes were later expanded for survival in other hosts.     
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Material and Methods 

 

Strains and growth conditions  

Protostelium aurantium var. fungivorum has been isolated in Jena, Germany, as 

described in (Hillmann et al., 2018). Isolated amoebae were further grown in standard 

size Petri dishes (94x16 mm, Greiner Bio-One, Austria) in PBS (80 g l-1 NaCl, 2 g l-1 

KCl, 26.8 g l-1 Na2HPO4 x 7 H2O, 2.4 g l-1 KH2PO4, pH 6.6) with Rhodotorula 

mucilaginosa as a food source at 22°C, if not stated differently. All yeast strains are 

listed in Table S3. If not indicated otherwise, all fungi were grown in YPD medium at 

30°C, supplemented with 1.5 % [w/v] agar for growth on solid media. Mutant strains of 

C. parapsilosis were grown on the SD-agar (0.4 % [w/v] yeast nitrogen base with 

ammonium sulfate, 2 % [w/v] glucose, 1.5 % [w/v] agar), supplemented with 10 % 

[v/v] of a selective drop-out solution excluding leucine or histidine. Complemented 

strains were grown on YPD agar supplemented with 100 µg/ml nourseothricin 

(clonNAT, Werner BioAgents, Jena, Germany).  

 

RNA isolations from yeast cells and co-cultures with P. aurantium 

Frozen cell pellets from yeast cultures or co-incubations with P. aurantium were 

resuspended in TES buffer (10 mM Tris-HCl, pH 7.5, 10 mM EDTA, 0.5% [w/v] SDS) 

and transferred into a chilled tube containing zirconia beads (ZYMO Research, Irvine, 

CA, USA). Primary extractions of RNA were performed with acidic phenol:chloroform 

(5:1) shaking at 1500 rpm at 65°C for 30 min in a thermoblock.  Afterwards, samples 

were frozen at -80°C for 30 min, centrifuged at 10.000 g for 15 min for phase 

separation. Samples underwent two more extractions using phenol:chloroform (5:1) and 

chloroform:isoamyl alcohol (24:1). The RNA was equilibrated with 10% [w/v] of 3 M 

sodium acetate (pH 5.2) and precipitated in ice-cold ethanol. After centrifugation, 

pellets were washed in 70 % [v/v] ethanol, air dried and resuspended in nuclease-free 

water. RNA samples were stored at -80°C.   

 

RNA isolations from yeast cells after confrontation with monocyte-derived 

macrophages (MDMs) 

Adherent macrophages with attached and ingested yeast cells were washed and 

subsequently lysed by adding RLT lysis buffer containing β-mercaptoethanol (Qiagen, 

Hilden, Germany) and shock-freezing the plate in liquid nitrogen. Cells were detached 
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by scraping and transferred into screw cap tube, sedimented by centrifugation and 

washed once with RLT buffer to remove most of the host RNA. Yeast pellets were 

shock-frozen again in liquid nitrogen and stored at -80°C. For RNA isolation, pellets 

were resuspended in 400 µl of AE buffer (50 mM Na-acetate pH 5.3 and 10 mM 

EDTA) and 40 µl of 10% [w/v] SDS. After mixing for 30 sec, cells were extracted with 

phenol: chloroform: isoamyl alcohol [25:24:1] for 5 min at 65°C and then frozen at -

80°C. Phase separations, precipitation and resuspension of the purified RNA were 

performed as above.    

 

RNA sequencing and analysis of expression data 

The preparation of cDNA libraries from total RNA and the sequencing was performed 

at LGC Genomics GmbH (Berlin, Germany). Briefly, the quality of RNA samples was 

first controlled using 2100 Bioanalyzer (Agilent, CA, USA). Next, samples were 

enriched for mRNA using oligo-dT binding and magnetic separation using the 

NEBNext Poly(A) Magnetic Isolation Module (New England Biolabs). Samples were 

reverse transcribed using the NEBNext RNA First and Second Strand Synthesis 

Modules (New England Biolabs) and purified. The Encore Rapid DR Multiplex system 

(Nugen) was used for preparation cDNA-libraries which were amplified in a volume of 

100 µl for 15 cycles using MyTaq (Bioline) and standard Illumina primers. From these 

libraries, 2 x 75 bp (C. parapsilosis) or 2x 150 bp (C. albicans and C. glabrata) paired-

end reads were sequenced on an Illumina MiSeq platform.  FastQC (Andrew, 2010) and 

Trimmomatic v0.32 (Bolger et al., 2014) were used for quality control and trimming of 

library adaptors. Mapping of reads was achieved with TopHat2 v2.1.0 (Kim et al., 

2013) against the reference genomes of C. parapsilosis, C. glabrata and C. albicans, in 

combination with the genome of P. aurantium. Differential gene expression between 

time points was analysed with DEseq2 (Love et al., 2014) and EdgeR (Robinson et al., 

2010). A list of all differentially expressed genes is provided as Dataset S1. All 

sequencing data is available from the GEO repository under the accession number 

GSE116535. The Venn diagram was computed using the package “VennDiagram” from 

the statistical programming language R. The genes in all areas of the Venn diagram are 

listed in supplementary dataset III.  The PCA was conducted using the method 

“prcomp” from the “stats” package of R.  

 

Gene ontology analysis 
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Gene ontology (GO) clustering analysis was performed on all differentially up- and 

downregulated genes of three Candida species using GO Slim (Mi et al., 2017) -Mapper 

tool available at the Candida Genome Database (http://www.candidagenome.org/cgi-

bin/GO/goTermMapper) for biological process, molecular function and cellular 

component. All data from the Gene Ontology analysis is provided as Dataset S2. 

Quantitative real-time reverse transcription-PCR (qRT-PCR) 

For all qRT-PCR reactions, RNA concentration was determined via NanoDrop ND1000 

Spectrophotometer (NanoDrop Technologies Inc., USA). 1 µg of RNA was treated with 

DNase using RQ1 RNase-free DNase (Promega, USA) and transcribed into cDNA 

(RevertAid First Strand cDNA Synthesis Kit, Thermo Scientific). The cDNA was 

diluted 1:10 and used for qRT-PCR that included SYBR Select Master Mix (Applied 

Biosystems). The experiments were performed in a thermal cycler (Step One Plus, 

Applied Biosystems), in three biological and three technical replicates. The expression 

rates reported here are relative to the expression values of the housekeeping gene ACT1 

of C. parapsilosis. All primers are listed in Table S4.  

 

Detection of reactive oxygen species 

The production of reactive oxygen species during amoeba predation was measured 

using dihydroethidium (DHE; Thermofisher, Dreieich, Germany) at a final 

concentration of 10 µM. Amoebae and yeasts were seeded at the MOI of 10. Increased 

fluorescence, indicating ROS production, was measured using an Infinite M200 Pro 

fluorescence plate reader (Tecan, Männedorf, Switzerland) in intervals of 2 min over 30 

min period at λex 522 nm/λem 605 nm. ROS production was further visualized by using 

DHE staining as mentioned above or CellROX®Deep Red staining (Thermofisher) at a 

final concentration of 5 µM. Fluorescence images were captured using the Zeiss Axio 

Observer 7 Spinning Disk Confocal Microscope (Zeiss, Germany) at the 

λex 370 nm/λem 420 nm (for non-oxidized DHE), λex 535 nm/λem 610 nm (for oxidized 

DHE), and at λex 640 nm/λem 665 nm for Cell Rox Deep Red staining.  

 

Construction of gene deletions and complementations in C. parapsilosis  

Target genes were deleted from the leu2-/his1- CLIB2014 parental strain using a fusion 

PCR method described previously (Noble & Johnson, 2005) and adapted to C. 

parapsilosis (Holland et al., 2014). All primer sequences and target genes are listed in 

Table S4. Briefly, approximately 500 bp of the upstream and downstream DNA loci of 
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the coding sequence were amplified by PCR with the primer pairs P1/P3 and P4/P6, 

respectively. The selectable markers, C. dubliniensis HIS1 and C. maltosa LEU2 genes 

were amplified with the P2/P5 primer pair from the plasmids pSN52 and pSN40, 

respectively. All PCR products were further purified using Gel/PCR DNA Fragments 

Extraction Kit (Geneaid Biotech, New Taipei City, Taiwan) and connected via PCR 

through overlapping sequences of the P2/P3 and P4/P5 primer pairs. The entire deletion 

cassette was amplified using primers P1 and P6 and transformed into the recipient strain 

in two rounds of transformation. The first allele was replaced by the CmLEU2 marker 

and the second allele with the CdHIS1 marker. Site-specific integration of the selection 

marker was checked by PCR at both ends of the deletion constructs. Loss of expression 

was also confirmed by qRT-PCR targeting the respective ORF (Supplementary Fig. 

S4A-D).  

To generate reintegrant strains, the neutral locus NEUT5L was targeted as described in 

(Gerami-Nejad et al., 2013). The promoter-OR-terminator regions were amplified from 

the CLIB214 parental strain using specific rec_F/R primers listed in Table S4.  The 

dominant nourseothricin resistance marker NAT1, and a modified sequence of C. 

parapsilosis NEUT5L locus, were amplified from plasmid 

pDEST_TDH3_NAT_CpNEUT5L_NheI using Clon_F/Clon_R primers. The 5’ tails of 

gene name_rec_F/gene name_rec_R primers contained flanking regions complementary 

to the sequence of Clon_F/Clon_R primers to allow fusion via circular polymerase 

extension cloning (CPEC cloning). The completely assembled plasmids (Supplementary 

Fig. S4E) were directly used for transformation of E. coli DH5α without further 

purification. After purification from E. coli up to 3 µg of plasmid were enzymatically 

digested with StuI or HpaI and EcoRI to confirm their correct size. The modified 

sequence of C. parapsilosis NEUT5L locus contains a specific restriction site for StuI 

which linearised the plasmid and enables the integration of the vector into the NEUT5L 

locus of C. parapsilosis via duplication. Integration of the vector into the genome of the 

parental strain was confirmed by PCR. 

 

Chemical transformation of C. parapsilosis 

 Overnight culture of C. parapsilosis leu2-/his1- were diluted to an OD600 of 0.2 in YPD 

media and grown at 30°C/180 rpm to an OD600 of 1. The culture was harvested by 

centrifugation at 4000 g for 5 min and the pellet was suspended in 3 ml of ice-cold 

water. After collecting the cells, the pellet was resuspended in 1 ml of TE with LiAc 
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(0.1 M Lithium acetate, 10 mM Tris-HCl, 1 mM EDTA, pH 7.5), followed by 

centrifugation for 30 s at 14,000 g. Cells were then suspended in 200 µl of the ice-cold 

TE-LiAc buffer. For transformation 10 µl of boiled herring sperm DNA (2 mg/ml), 20 

µl of transforming DNA were added to 100 µl of competent cells. The mixture was 

incubated at 30°C without shaking for 30 min followed by the addition of 700 µl of 

PLATE solution (0,1 M Lithium acetate, 10 mM Tris-HCl, 1 mM EDTA, pH = 7,5 and 

40 % PEG 3350). Afterwards, the samples were incubated overnight at 30°C. The next 

day, samples were heat-shocked at 44°C for 15 min, centrifuged and washed twice with 

YPD medium. Following incubation in 100 µl of YPD for 2 hours (180 rpm, 30°C), 

samples were plated on SD agar plates, supplemented with essential amino acids, and 

histidine or leucine to obtain heterozygous mutant strains. To select for homozygous 

mutant histidine and leucine were omitted from the medium. Selective plates were 

incubated for two days at 30°C. To select for reintegrants, cells were plated on YPD 

agar with 100 µg ml-1 of nourseothricin.  

 

Sensitivity assays 

Yeasts were grown overnight in YPD at 30°C/180 rpm, harvested by centrifugation at 

10,000 g for 1 min and washed twice with PBS. For droplet assays, cells were diluted to 

the concentration of 5x107 ml-1 and 5 µl of serial 10-fold dilutions were dropped on agar 

plates. To determine the MIC50 of Cu, 2.5x104 cells were seeded in a 96 well plate with 

malt extract broth buffered to pH 3 and CuSO4. For oxidative stress sensitivity assays, 

11 selective drop-out solutions, each missing one component, were added to SD base 

(0.4 % yeast nitrogen base with ammonium sulfate, 2 % glucose) with or without 2 mM 

of t-BOOH (Luperox® TBH70X, Sigma-Aldrich, USA) and approx. 3x102 cells were 

seeded in 48 well plates. All plates were incubated at 30°C for two days. Growth in well 

plates was evaluated by measuring the optical density (OD600) in a plate reader (Infinite 

M200 Pro, Tecan, Männedorf, Switzerland). Data represent the average of 3 biological 

replicates.  

 

Isolation of monocyte-derive macrophages (MDMs) 

Human peripheral blood mononuclear cells (PBMCs) were isolated by density 

centrifugation. PBMCs from buffy coats donated by healthy volunteers were separated 

through Lymphocytes Separation Media (Capricorn Scientific, Ebersdorfergrund, 

Germany) in Leucosep™ centrifuge tubes (Greiner Bio-One). Magnetically labelled 
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CD14 positive monocytes were selected by automated cell sorting (autoMACs; Miltenyi 

Biotec, Bergisch-Gladbach, Germany). To differentiate monocytes into MDMs, 1.7×107 

cells were seeded into 175 cm² cell culture flasks in RPMI 1640 media with L-

glutamine (Thermo Fisher Scientific) containing 10 % heat-inactivated fetal bovine 

serum (FBS; Bio&SELL, Feucht, Germany) and 50 ng ml-1 recombinant human M-CSF 

(ImmunoTools, Friesoythe, Germany) and incubated for five days at 37 °C and 5 % 

CO2 until the medium was exchanged. Stimulation with human M-CSF favours the 

differentiation to M2-type macrophages. After two additional days, adherent MDMs 

were detached with 50 mM EDTA in PBS and seeded in 6-well plates (for expression 

analysis) or in 96-well plates (for killing assay) to a final concentration of 1×106 or 

4×104 MDMs/well, respectively in RPMI complete and incubated overnight. 

Macrophage infection experiments were performed in serum-free RPMI medium. 

Ethics statement 

Blood donations for subsequent isolation of PBMCs were obtained from healthy donors 

after written informed consent. This is in accordance with the Declaration of Helsinki, 

all protocols were approved by the Ethics Committee of the University Hospital Jena 

(permission number 2207-01/08).  

 

Co-incubation of C. parapsilosis with monocyte-derived macrophages (MDMs) 

Overnight cultures of yeast cells were harvested by centrifugation at 5 000 rpm/4°C for 

5 min and cells were washed three times in ice-cold H2O. Cells were counted in a 

Neubauer-improved cell counting chamber and added to macrophages in 96-well plates 

at an MOI of 1 (killing assays) or in 6-well plates at an MOI of 10 (isolation of total 

RNA) with RPMI medium.  Media control wells for each time point were included, 

where the yeast cells were incubated in RPMI alone without the macrophages. Plates 

were incubated at 37°C in atmosphere 5% CO2.   

 

P. aurantium and macrophage killing assays 

Yeast strains were grown overnight in YPD medium at 30°C/180 rpm, harvested by 

centrifugation and counted in CASY® TT Cell Counter (OLS Bio, Bremen, Germany). 

Amoebae were grown to confluency in PB, harvested by scraping and counted. Yeast 

cells were co-incubated with amoebae or macrophages in 96-well plates at MOIs of 10 

and 1, respectively, and incubated at 22°C or 37°C/5% CO2, respectively, for 3 hours. 

Yeast cells surviving the amoeba predation were collected by vigorous pipetting and 
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plated on YPD agar. Cells surviving the macrophage killing were first collected from 

the supernatant, then, intracellular survivors were obtained after lysis of macrophages 

with 0.5% Triton-X-100 for 15 min. The number of survived yeast cells was calculated 

as a percentage of CFUs compared to the inoculum. Data are based on three biological 

and six technical replicates (P. aurantium) and six different anonymous donors with 6 

technical replicates (macrophages), respectively. 
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Summary: 

The molecular Koch´s postulates define criteria that must be satisfied to show that a 

certain gene has a role during pathogenesis. This includes reintroduction of the gene of 

interest into the mutated organism. However, gene complementation strategies are 

only rarely used in the haploid yeast C. glabrata so far. Here we developed a new gene 

complementation strategy, expressing the selection marker TRP1 at its native locus. In 

addition, we used our strategy to overexpress fluorescence markers, the antigen 

ovalbumin, or to overexpress and modify genes associated with the vitamin biotin in 

C. glabrata. The TRP1 locus in C. glabrata is a suitable locus to reintegrate gene of 

interest, either with their native DNA sequence, with specific sequence variations or 

with alternative promotors, to investigate the role and function of these genes for fungal 
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Abstract 
 

Although less prevalent than its relative Candida albicans, Candida glabrata is a 

successful human-pathogenic yeast, causing life threatening candidiasis. It is thus vital 

to understand the pathogenicity mechanisms and the contributing genes of C. glabrata. 

However, gene complementation as a tool to restore the function of a previously 

deleted gene is not standardized in C. glabrata and less frequently used as compared 

to C. albicans. 

In this study, we established a gene complementation strategy using genomic 

integration at the TRP1 locus. We prove that our approach can not only be used for 

integration of complementation cassettes but also for overexpression of fluorescence 

markers, the antigen ovalbumin or the putative biotin transporter gene VHT1. On the 

example of urea amidolyase Dur1,2 we show that the complementation cassettes can 

also be used to study the effects of sequence-modifications in genes. With this 

approach, we found that changes in the lysine-residue within the biotinylation motif of 

Dur1,2 impaired the usage of urea by C. glabrata. Taken together, the TRP1-based 

gene complementation approach is a valuable tool for investigating novel gene 

functions and for elucidating their role in pathobiology of C. glabrata.  

 

 

Key words 

Candida glabrata, TRP1, gene complementation, overexpression, green 

fluorescent protein  
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Introduction 

The opportunistic pathogen Candida glabrata is a constitutively haploid fungus. It 

belongs to the Nakaseomyces clade (Kurtzman & Robnett, 2003) and is evolutionarily 

related to the baker’s yeast Saccharomyces cerevisiae (Gabaldón & Carrete, 2016). 

C. glabrata is normally associated with the mammalian host and is the second most 

prevalent Candida species to cause life-threatening candidasis, after Candida albicans 

(Diekema et al., 2012). It is therefore necessary to understand and characterize 

mechanisms and genes contributing to the pathogenicity of this fungus. 

The molecular Koch´s postulates define criteria that must be satisfied to show that a 

certain gene has a role during pathogenesis (Falkow, 1988). One of these criteria 

states that gene reintegration into a mutated organism (complementation) should 

restore the pathogenic potential of the organism. Thus, complementation is an 

important step in elucidating gene functions and to exclude potential pleiotropic effects 

that originated from genetic manipulation. However, to date gene complementation 

strategies in C. glabrata are less well developed than e.g. in C. albicans, less 

frequently used, and each have certain disadvantages. The first strategy used for 

C. glabrata is based on extrachromosomal episomal replicative vectors (Kitada et al., 

1996, Frieman et al., 2002, Zordan et al., 2013), which contain the autonomously 

replicating sequence (ARS) and a centromere (CEN) together with the gene of interest 

(GOI). An example is the centromere-based plasmid pCgACT which contains the 

nutritional marker TRP1 to restore prototrophy of a trp1∆ deletion mutant (Miyazaki et 

al., 2011, Hosogaya et al., 2013, Noble et al., 2013). A strong disadvantage of 

episomal vectors is, however, the unforeseeable multimerizations or recombinations 

with the genome, causing unwanted genetic alterations (Pla et al., 1996). Additionally, 

plasmid loss (for example in environments where tryptophan is readily available) or 

copy number variations could increase population heterogeneity.  

A second strategy for the generation of C. glabrata complementation strains relies on 

genomic integration, either by reintroducing the original GOI together with specific 
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selection markers at its native locus (Yánez-Carrillo et al., 2015) or by replacing the 

URA3 gene by the GOI and the dominant NAT1 marker (Nevitt & Thiele, 2011). Both 

these strategies have the potential to restore the gene of interest to a wild type-like 

state. The NAT1 selection marker is, however, widely used for gene deletions in 

C. glabrata (Schwarzmüller et al., 2014) and therefore often not available anymore for 

later gene complementation, and changes in URA3 expression levels might influence 

virulence phenotypes (Brand et al., 2004). 

Gene complementation in the diploid C. albicans often uses the CIp10 strategy (Murad 

et al., 2000), whereby the selection marker URA3 is ectopically expressed at one of 

alleles of the neutral RPS1 locus. In contrast to C. albicans, the haploid genome of 

C. glabrata makes it more difficult to find suitable loci, since single-allele knock-outs 

and dosage effects of ectopic expression of nutritional selection markers cannot be 

compensated by an alternative allele, with unknown influences on the phenotype. 

In this study we describe a novel gene complementation strategy for C. glabrata based 

on transformation with and stable genomic integration of a complementation cassette 

into the TRP1 locus. We show that reintegration of TRP1 at this native chromosomal 

location can restore tryptophan auxotrophy to wild type-like levels. This strategy can 

not only be used for gene complementation but also for reporter gene expression, gene 

overexpression, heterologous expression, or expression of genetically modified gene 

variants in the haploid yeast C. glabrata.  

We validate the functionality of our complementation system by heterologous 

expression of fluorescence reporter genes or ovalbumin (OVA), by inducing point 

mutations in the urea amidolyase gene Dur1,2, and by overexpressing the biotin 

acquisition gene VHT1 in C. glabrata. Artificial OVA expression by pathogens is 

frequently used as a tool to investigate the cross-reactivity between effector and 

memory T cells in response to the microbe (Ishizuka et al., 2009, Krummey et al., 

2014, Harms et al., 2018). Vitamins are involved in a broad range of cellular processes 

(Dakshinamurti, 2005, Combs, 2017). Biotin (vitamin H or B7) is covalently linked to 
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several proteins, including enzymes involved in carboxylation reactions (Zempleni et 

al., 2008). All target proteins possess a conserved lysine residue (Lane et al., 1964), 

which is biotinylated by the biotin ligase Bpl1 via an amide bond (Sternicki et al., 2017). 

Yeasts belonging to the Candida and Saccharomyces genus are biotin auxotrophs 

(McVeigh, 1951, Littman & Miwatani, 1963) due to intrinsic loss of biosynthetic genes 

(Fitzpatrick et al., 2010, Madsen et al., 2015) and have to take up biotin from the 

environment. C. glabrata and C. albicans strictly rely on the putative biotin importer 

Vht1 for biotin acquisition (Sprenger et al., 2020). 

 

Materials and methods 

 

Ethics statement 

Human blood was taken from healthy volunteers with written, informed consent. The 

blood donation protocol and use of blood for this study were approved by the 

institutional ethics committee of the university hospital Jena (Ethik-Kommission des 

Universitätsklinikums Jena, Permission No. 2207–01/08).  

 

Strains and growth conditions 

All strains used in this study are listed in Table S1. Escherichia coli was cultured in 

liquid lysogeny broth (LB) at 37°C with shaking at 180 rpm and with 50 µg/mL ampicillin 

for plasmid propagation. Candida strains were cultured in liquid Yeast Peptone 

Dextrose (YPD) broth (2% glucose, 2% peptone, 1% yeast extract) at 30°C 

(C. albicans) or 37°C (C. glabrata), with shaking at 180 rpm for 14-16 h. For growth on 

solid medium, 2% agar was added. Routinely, stationary phase yeast cells from pre-

cultures were washed three times in PBS, and the cell number was adjusted in PBS or 

culture medium. 

For growth analyses in liquid media, twenty microliters of a yeast cell suspension 

(5×106 cells/mL) were added to 180 µL media in a 96-well plate (Tissue Culture Test 
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Plate, TPP Techno Plastic Products AG). In some experiments minimal medium 

(0.19% yeast nitrogen base (YNB) without biotin, amino acids, ammonium sulfate 

[Formedium]; 2% glucose)  with varying biotin concentrations and different nitrogen 

sources (0.5% ammonium sulfate, 0.5% urea) was used. The growth was monitored by 

measuring the absorbance at 600 nm every 30 min for 100 cycles at 30°C or 37°C 

using a microplate reader (Plate Reader infinite M200 PRO, Tecan Group GmbH) with 

orbital shaking (30 sec, amplitude: 6 mm, wait: 10 sec) before each measurement and 

multiple reads per well. All experiments were done in technical duplicates and, at least, 

biological triplicates. Growth of Candida on solid agar was tested by spotting serial 

dilutions (1×106 to 1×101) of yeast cells on YNB plates (0.19 % YNB without amino 

acids and biotin; 2% glucose and either 0.5% ammonium sulfate or 0.5% urea; 2% 

oxoid agar). 

 

Construction of VHT1 overexpression, OVA overexpression and fluorescently 

labelled strains 

The prototrophic trp1∆ + TRP1 strain was generated by reintroducing TRP1 into the 

native TRP1 locus, amplified from pTRP1 and replacing the FRT sequence in the trp1∆ 

strain. The C. glabrata vhr1∆ mutant was generated, as previously described (Sprenger 

et al., 2020), in a trp1∆ strain background, with reintroduction of TRP1 into the native 

TRP1 locus. The overexpression constructs of the biotin transporter gene VHT1, the 

fluorescence markers yeGFP and mCherry, or ovalbumin (OVA) were integrated into 

the TRP1 locus by selecting for tryptophan prototrophy. Briefly, plasmids pTRP1-

TEF1prom-yEGFP, pTRP1-PDC1prom-yEGFP, pTRP1-LYS21 prom-yEGFP, pTRP1-

TEF1prom-mCherry, and pTRP1-TEF1prom-OVA listed in Table S2, were generated 

by PCR, via amplification of the coding sequences of yEGFP (from pCN-PDC1-GFP 

(Zordan et al., 2013)), mCherry (from pYC56 (Yánez-Carrillo et al., 2015)) and OVA 

(codon-optimized) together with the specific promotor and terminator sequences (HIS3 

terminator for yEGFP and CTA1 terminator for mCherry) with primers, listed in Table 



 Manuscript V 
 

147 
 

S3, with 15 bp overlap to the pTRP1 sequence. The generation of pTRP1 has been 

previously described in detail (Sprenger et al., 2020). The plasmids pTRP1-TEF1prom-

VHT1, pTRP1-PDC1prom-VHT1, and pTRP1-LYS21prom-VHT1 were generated by 

PCR, amplifying the coding sequences of VHT1 together with the native terminator 

sequence with primers overlapping 15 bp to the pTRP1 sequence.  

All constructs were cloned by In-Fusion HD cloning system into XbaI-digested pTRP1, 

and the resulting plasmids were confirmed by PCR and sequencing. The cassettes 

were amplified by PCR, purified and used to transform a trp1∆ strain background to 

generate tryptophan prototrophic strains using the modified heat-shock method 

((Sanglard et al., 1996) with heat shock: 15 min at 45 °C). Resulting clones were 

selected on solid minimal medium. The correct integration into the TRP1 locus was 

verified by PCR, and positive clones were analyzed for yEGFP and mCherry 

fluorescence by microscopy and FACS (only yEGFP). 

 

Construction of DUR1,2 deletion mutants 

The C. glabrata dur1,2∆ mutant (CAGL0M05533g∆) was generated in the trp1∆ 

parental strain using the deletion cassette amplified from an existing deletion mutant 

(Schwarzmüller et al., 2014). Deletion constructs were amplified using P1 and P4 

primers (Table S2) and purified with QIAquick® PCR purification kit (Qiagen). The 

transformation was done as described above. 

For interspecies comparison, a C. albicans dur1,2∆/∆ (C1_04660W∆/∆) mutant was 

generated by a standard gene disruption method (Wilson et al., 1999) using lithium 

acetate transformation (Walther & Wendland, 2003). Briefly, the Arg-, His-, and Ura-

auxotrophic parental strain BWP17 was sequentially transformed with 10 µg of PCR-

amplified and purified HIS1 and ARG4 deletion cassettes, which were flanked by 

100 bp of the target homology region, resulting in disruption of the open reading frames 

of both alleles of C1_04660W. The correct deletion of DUR1,2 in C. glabrata and C. 

albicans was confirmed by PCR and Southern blot. 
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Construction of DUR1,2 complementation strains 

Plasmids pTRP1-DUR1,2 and pTRP1-DUR1,2K1798R were generated by In-Fusion HD 

cloning of PCR-amplified DUR1,2 wild-type allele (one fragment) together with the up- 

and downstream intergenic regions with primers with 15 bp overlap to the pTRP1 

sequence. The mutated version was created by In-Fusion HD cloning using primers 

with the codon for arginine instead of lysine (two fragments). Constructs were cloned 

into XbaI-digested pTRP1 and resulting plasmids were confirmed by sequencing. 

Cassettes containing only TRP1 or TRP1-DUR1,2Wt and TRP1-DUR1,2KR were 

amplified by PCR, purified, and used to transform a trp1∆dur1,2∆ mutant background 

strain to generate tryptophan prototrophic mutants and complemented strains, 

respectively. Resulting clones were selected for on solid minimal medium.  

For the generation of CIp10-DUR1,2WT or CIp10-DUR1,2K1779R, the coding sequences 

of DUR1,2 with either the wild-type allele together with the native up- and downstream 

intergenic regions were amplified. The mutated version was created by In-Fusion HD 

cloning using primers with the codon for arginine instead of lysine (two fragments). The 

wild-type allele (one fragment) and the mutated allele (two fragments) were cloned into 

CIp10 using XhoI. Constructed plasmids were verified by sequencing. Homozygous 

uridine-auxotrophic deletion mutants were transformed with the StuI-linearized empty 

CIp10 plasmid (Murad et al., 2000) to generate prototrophic mutants or with StuI-

linearized CIp10-DUR1,2WT or CIp10-DUR1,2K1779R plasmids to generate 

complemented strains with the native or mutated biotinylation motif. The correct 

integration of C. glabrata and C. albicans complementation cassettes was confirmed by 

PCR and Southern blot. 

 

Genomic DNA isolation and Southern blot 

Yeast cells were harvested, resuspended in 1 mL lysis buffer (1 M sorbitol; 100 mM 

sodium citrate, pH 5.8; 50 mM EDTA, pH 8.0; 0.6 mg/mL lyticase and 2.5% β-
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mercaptoethanol) and incubated at 37°C for 45 min. Afterwards the cells pellet was 

resuspended in 800 µL proteinase buffer (10 mM Tris-HCl, pH 7.5; 50 mM EDTA, pH 

7.5; 0.5% SDS; 1 mg/mL proteinase K) and incubated at 60°C for 30 min. The cell 

debris was precipitated by adding 800 µL phenol/chloroform/isoamylalcohol (25:24:1), 

mixed with vortex device for 4 min and centrifuged (20,000g, 5 min, RT). The 

hydrophilic phase was transferred into a new microcentrifuge tube containing 750 µL 

isopropanol. The precipitated DNA was centrifuged (20,000g, 5 min, RT), washed with 

600 µL 70% ethanol and air-dried. The transparent DNA pellet was reconstituted in 200 

µL ddH2O containing 10 mg/mL RNase A. The DNA quantity was evaluated using a 

NanoDrop Spectrophotometer (ND-100, Peqlab). The DNA was stored at 4 °C (short 

term) or -20 °C (long term). Dilutions of DNA were made freshly. 

Thirty µg DNA were digested with HindIII (NEB) according to the manufacturer's 

recommendations. The digested DNA and the DNA Molecular Weight Marker III, DIG-

labeled (50 pg per lane, Roche) was separated in a 1% agarose gel. The DNA was 

pretreated in acid to ensure efficient transfer. The agarose gel was rinsed 10 min in 

depurination solution (0.25 M HCl) and shortly in water. The gel was denatured two 

times for 15 min in denaturing solution (0.5 M NaOH, 1.5 M NaCl) and washed briefly in 

water. Finally, the gel was rinsed in neutralization buffer (1 M Tris-HCl pH 7.5; 1.5 M 

NaCl) two times for 15 min and equilibrated for at least 10 min in 20× SSC (3 M NaCl, 

0.3 M sodium citrate; pH 7.0).  

The nylon membrane (positively charged, Roche) was rinsed 2 min in water and 15 min 

in 20× SSC to activate the membrane, before the DNA was vacuum blotted 1.5 h at 50-

100 mbar (Biometra). Before DNA crosslinking, the membrane was rinsed 30 sec in 0.4 

M NaOH, 30 sec in 0.2 M Tris-HCl pH 7.5 and dried 10-15 min on a piece of 

Whatman™ filter paper. The DNA was crosslinked to the membrane by UV light (120 

mJ/cm2) for at least 60 sec and the membrane was rinsed with 2× SSC. Further steps 

were performed according the DIG nonradioactive nucleic acid labeling and detection 
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system (Roche), using the  PCR DIG Probe Synthesis Kit, DIG Easy Hyb™, Anti-

Digoxigenin-AP, Fab fragments, and CDP-Star.  

  

Fungal RNA isolation and reverse transcription-quantitative PCR (qRT-PCR) 

For preparation of RNA from in vitro cultures of Candida, stationary phase yeast cells 

were washed three times in PBS, and 2×107 Candida cells per mL were inoculated into 

minimal medium with different biotin concentrations. At indicated time points, cells were 

harvested and centrifuged (4,000g, 10 min and 4°C). The cell pellet was washed with 

ice cold water, centrifuged again, and immediately frozen in liquid nitrogen. The 

isolation of the fungal RNA was performed as previously described (Lüttich et al., 

2012). The quantity of the RNA was determined using the NanoDrop 

Spectrophotometer ND-1000 (NRW International GmbH). DNase-treated RNA (600 ng) 

was transcribed into cDNA using 0.5 µg oligo-dT12-18, 100 U Superscript™ III Reverse 

Transcriptase and 20 U RNaseOUT™ Recombinant RNase Inhibitor (all: Thermo 

Fischer Scientific) in a total volume of 35 µL for 2 h at 42 °C, followed by heat-

inactivation for 15 min at 70°C. The cDNA was diluted 1:20 in DEPC-treated water and 

used for quantitative PCR with EvaGreen® QPCR Mix II (Bio&SELL) performed in a 

CFX96 thermocycler (Bio-Rad). Primers (Table S3) were used at a final concentration 

of 500 nM. Target gene expression was calculated using the ∆∆Ct method (Pfaffl, 

2001), with normalization to the housekeeping genes ACT1 and EFB1. 

 

Protein isolation and Western blot 

For preparation of whole protein extracts, stationary phase cells were washed three 

times in PBS, diluted to OD600 0.2 into minimal medium and incubated at 37°C at 

180 rpm overnight. The cells were harvested and mechanically lysed in PBS-KMT 

(PBS + 3 mM KCl, 2.5 mM MgCl2, 0.1% Triton-X-100) + protease inhibitor cocktail 

(Roche) with acid-washed glass beads by bead beating in a Precellys 24 homogenizer 

(Peqlab; 6.500 rpm, 2 cycles, each 30 sec, 15 sec pause). The lysate was centrifuged 
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(14,000 rpm, 4°C for 5 min) and the protein concentration of the supernatant was 

determined by Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific). Two aliquots 

of twenty µg protein of each sample were denatured in one-fourth volume of 4× Lämmli 

buffer (125 mM Tris-HCl pH 6.8, 50% glycerol, 4% SDS, 0.02% bromophenol blue, 

1:10 β-mercaptoethanol) at 95°C for 5 min and separated by denaturizing SDS-PAGE 

with Rotiphorese® Gel 30 (final 12% acrylamide mix (Roth)). Proteins were electro-

transferred to nitrocellulose membranes (Whatman) in blotting buffer (25 mM Tris, 

192 mM glycine, 10% methanol and 0.1% SDS) and free binding sites were blocked 

with 5% milk powder in TBS (0.5 M Tris, 1.5 M NaCl, pH 7.6) + 0.05% Tween®-20 

(TBS-T) for 3 hr at room temperature. One membrane was incubated with monoclonal 

mouse anti-chicken egg albumin antibody (Sigma), diluted 1:2000 in TBS-T containing 

2% milk powder. The other membrane was incubated with rat anti-α-tubulin antibody 

(AbD Serotec), diluted 1:1000 in TBS-T containing 2% BSA. Both were incubated at 

4°C overnight and gentle shaking. The membranes were rinsed three times in TBS-T, 

incubated with goat anti-mouse IgG-HRP (1:1000 in 2% milk powder) or goat anti-rat 

IgG-HRP (1:2000 in 2% BSA) (both Santa Cruz Biotech) to detect ovalbumin and α-

tubulin, respectively. Finally, the membranes were rinsed three times in TBS-T and two 

times in TBS, followed by chemiluminescence detection using Pierce™ ECL Plus 

Western Blotting Substrate (Thermo Fisher Scientific) according to the manufactures’ 

instructions.  

 

Experiments with human monocyte-derived macrophages (hMDMs) 

Primary macrophages were differentiated from CD14-positive monocytes as previously 

described (Sprenger et al., 2020), seeded in 24-well plates (2×105 hMDMs/well) in 

RPMI with 50 ng/mL M-CSF, and incubated overnight. Prior to macrophage infection, 

the medium was exchanged to serum- and biotin-free RPMI with L-glutamine (Thermo 

Fisher Scientific) to exclude biotin uptake by Candida prior to phagocytosis. The fungal 

survival within macrophages was evaluated after 3 h of coincubation with C. glabrata at 
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a multiplicity of infection (MOI) of 1, by plating of appropriate dilutions on YPD agar as 

previously described (Sprenger et al., 2020). Macrophages (1.5×105 hMDMs/well) were 

allowed to adhere onto coverslips in a 24-well plate overnight in RPMI containing 

50 ng/mL M-CSF and 10 % FBS, and then infected with C. glabrata at an MOI of 2 for 

the indicated time points. Phagocytosis was synchronized on ice for 30 min followed by 

two washing steps with pre-warmed medium to remove unbound Candida cells.  

 

Fluorescence analysis by flow cytometry and microscopy 

Stationary phase cells were diluted 1:20 into fresh YPD medium and incubated at 

37 °C for 2 h and 180 rpm. Then, cells were harvested and washed once with PBS, 

fixed with 500 µL Roti®-Histofix 4% for 20 min and washed again with PBS. The 

median fluorescence intensity (MFI) of C. glabrata yeast cells was evaluated with BD 

FACS Verse® (BD Biosciences, Franklin Lakes (USA)) counting 50,000 events. Data 

analysis was performed using the FlowJO™ 10.2 software (FlowJO LLC, Ashland 

(USA)). The gating strategy was based on blotting forward (FSC) and side scatter 

(SSC) to exclude cellular debris.  

The staining of phagocytosed yeast cells was adapted from (Kasper et al., 2018). 

Infected macrophages were fixed with Roti®-Histofix 4% and stained with 50 µg/mL 

Concanavalin A conjugated with Alexa Fluor™ 647 (ConA-AF647; Thermo Fisher 

Scientific) at 37°C for 30 min to visualize external Candida cells. Coverslips were 

mounted with ProLong™ Gold Antifade Mountant with DAPI and fluorescence images 

were recorded using the Zeiss AXIO Observer.Z1 (Carl Zeiss Microscopy).  

 

In silico analysis and statistics 

Information about gene orthologs was obtained from the Candida Genome Database 

(CGD) (Skrzypek et al., 2017) and the Saccharomyces Genome Database 

(SGD) (Cherry et al., 2012). Data are reported as scatterplot with mean ± SD, line 

charts with mean ± SD, or bar charts showing mean + SD. Data were analyzed using 
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GraphPad Prism 5 (GraphPad Software, San Diego, USA). For statistical analysis of 

matched observations in macrophage experiments, a repeated measures ANOVA with 

Bonferroni’s multiple comparison test was performed. Statistically significant results are 

marked with a single asterisk meaning p ≤ 0.05, double asterisks meaning p ≤ 0.01. 
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Results and discussion 

 

Complementation of tryptophan auxotrophy in C. glabrata by genomic 

reintegration  

Gene complementation in the best-studied diploid Candida species, C. albicans, is 

often achieved by genomic integration targeting specific promotor regions (HIS1 (Davis 

et al., 2002) and ENO1 (Staab et al., 2003)) or neutral ORFs (ADH1 (Hünniger et al., 

2014), RPS1, (Murad et al., 2000), and ACT1 (Morschhäuser et al., 1998, Xu et al., 

2014). However, similar approaches in the haploid genome of C. glabrata would lead to 

an additional knock-out of the targeted gene. To define a suitable locus for gene 

integration, we therefore first carefully reviewed the literature to exclude unwanted 

side-effects upon genetic modification, especially during infection experiments. We 

chose the tryptophan biosynthesis gene TRP1 as a target locus for integration, as 

previous data has shown that genetic manipulation in this locus has no influence on 

fungal fitness in a systemic C. glabrata infection model (Jacobsen et al., 2010) and on 

the interaction with macrophages (Schwarzmüller et al., 2014, Seider et al., 2014). In 

addition, the TRP1 gene is, besides HIS3, LEU2, and URA3 widely used as selection 

marker in different plasmid vectors in S. cerevisiae and C. glabrata. 

As a basis for complementation constructs, we created a pTRP1 plasmid vector based 

on the plasmid pUC19, which harbors the TRP1 gene as the selection marker together 

with its up- and downstream regions for homologous recombination at the native TRP1 

locus. The remaining part of the multiple cloning site of the pUC19 backbone 

downstream of the TRP1 terminator allows easy insertion of any GOI (Figure 1A). A 

trp1∆ mutant, which can be used as the parental strain for integration of pTRP1, has 

been previously created with the SAT1 flipper protocol (Jacobsen et al., 2010), where 

only one recombination site (FRT) of the flip-recombinase (FLP) remains at the TRP1 

locus (Figure 1B). To generate a TRP1 complementation strain in a strain background 

that harbors no additional gene deletions, the TRP1 construct was PCR-amplified from 
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pTRP1 and transformed into trp1∆. We used this PCR-amplified complementation 

cassette instead of the whole plasmid to rule out the unspecific genomic integration of 

additional vector DNA. Correct integration into the TRP1 locus was then verified by 

Southern blotting (Figure 1C). Phenotypically, the growth of the complemented strain 

(trp1∆ + TRP1) was restored in minimal medium lacking tryptophan (Figure 1D). We 

can therefore conclude that the TRP1 locus is suitable for expression of target genes, 

which is similar to the CIp10 strategy in C. albicans (Murad et al., 2000), but uses the 

native chromosomal location of the TRP1 locus.  

To apply our approach for the analysis of gene functions of a C. glabrata GOI, a mutant 

strain lacking the GOI has to be generated in trp1∆ strain background. This mutant will 

then be transformed with the above-described TRP1 cassette for restoring TRP1 

prototrophy, or with the TRP1 cassette containing the GOI together with promotor and 

terminator region, to restore TRP1 prototrophy and function of the GOI. This method 

then allows the direct comparison of three prototrophic strains – the trp1∆ + TRP1 wild 

type strain (Figure 1), the trp1∆GOI∆ + TRP1 mutant strain and the trp1∆GOI∆ + 

TRP1+GOI complemented strain. This strategy has successfully been applied for 

complementation of C. glabrata with the biotin-metabolic genes VHR1 and VHT1, for 

which recovery of wild type phenotypes after complementation was proven (Sprenger 

et al., 2020).  

Of note, our strategy of restoring the tryptophan prototrophy of a trp1-auxotrophic 

parental strain can be used to complement genes in a published triple auxotrophic 

his3∆ leu2∆ trp1∆ C. glabrata mutant library remaining leucine and histidine auxotrophy 

(Schwarzmüller et al., 2014). A good alternative strategy might be the integration of 

complementation cassettes into intergenic regions, which is already established in 

C. albicans (Gerami-Nejad et al., 2013) and in C. glabrata (Ueno et al., 2011). 

However, genomic integration in these regions can raise the problem of inefficient 

transcriptional activity due to a silenced chromatin structure (Rando & Winston, 2012, 

Gartenberg & Smith, 2016). 
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Heterologous expression of yEGFP, mCherry, and ovalbumin in C. glabrata 

In order to determine whether the TRP1 locus is suitable for heterologous expression 

of fluorescent markers and ovalbumin, an antigen used for immunological studies, we 

used the In-Fusion HD cloning system to fuse different promotors with these GOIs and 

into the XbaI-digested pTRP1 vector (Figure 2A). This technique allows the 

combination of promotor, protein-encoding, and terminator sequences by one cloning 

step. Several well-investigated promotors (Zordan et al., 2013) were fused with yEGFP 

(yeast-enhanced green fluorescent protein (Cormack et al., 1997)) to achieve 

constitutive expression under in vitro conditions (TEF1prom and PDC1prom), but also 

induced expression upon phagocytosis by macrophages (LYS21prom). The correct 

integration into the TRP1 locus into the trp1∆ strain was verified by PCR and positive 

clones were analyzed for yEGFP fluorescence by microscopy and FACS.  

The expression of yEGFP under control of the TEF1 promotor led to the highest 

median fluorescence intensity among all tested promotors in culture medium (Figure 

2B-C). This construct was expressed by C. glabrata cells internalized by macrophages, 

but also non-internalized cells (Figure 2D). The PDC1-controlled yEGFP expression 

showed fluorescence levels similar to TEF1 in culture medium, which were also similar 

between phagocytosed and non-phagocytosed yeast cells (Figure 2D). Comparing 

logarithmically growing to stationary cells, yEGFP fluorescence with TEF1 and PDC1 

promotors was higher in logarithmic cells (Figure 2B). When the expression was 

controlled by the LYS21 promotor, the fluorescence signal was higher in phagocytosed 

vs extracellular C. glabrata cells (Figure 2D, as expected from a previous study 

(Zordan et al., 2013)). In contrast to the other promotors, the expression of yEGFP 

remained low in the logarithmic growth phase when controlled by the LYS21 promotor 

(Figure 2B).  

In addition to yEGFP, the TEF1 promotor was fused with mCherry (red fluorescent 

protein), cloned into the XbaI-digested pTRP1 and transformed into the trp1∆ strain 

background. The expression of mCherry controlled by the strong constitutive promotor 
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TEF1 again led to a strong fluorescence signal of logarithmically growing cells (Figure 

2E). 

The expression of fluorescent markers under control of constitutive or inducible 

promotors is not only useful for generating fluorescently labeled fungal wild type or 

mutant strains that can be traced during infection, it also generates reporter strains that 

can be used to identify promotor-inducing conditions during infection (Miramón et al., 

2012). Similarly, the efficiency of transcription and translation based on promotors of 

interest can be quantified, even by measuring the fluorescence intensity on a single cell 

level. The method presented here can be expanded by using more than one 

fluorophores which can be integrated into other genomic regions, like the HIS3 or LEU2 

locus of his3∆ or leu2∆ single mutants or the triple auxotrophic his3∆ leu2∆ trp1∆ 

mutant (Jacobsen et al., 2010, Schwarzmüller et al., 2014).  

The heterologous expression of ovalbumin (OVA) in pathogens can be used to induce 

OVA-specific immune responses for investigation of the immune recognition of and 

T cell activation by the pathogen (Ishizuka et al., 2009, Krummey et al., 2014, Harms et 

al., 2018). To generate an OVA-expressing C. glabrata strain, we fused a codon-

optimized OVA gene with the TEF1 promotor and cloned it into the XbaI-digested 

pTRP1. The expression of OVA in C. glabrata was verified by Western blot (Figure 

2F). The heterologously expressed OVA in C. glabrata was smaller in size than native 

ovalbumin from egg white (42.8 kDa) and was detected as two bands. A previous study 

in Pichia pastoris demonstrated that mono- and diglycosylation of OVA correspond to 

these two bands. The smaller size is therefore likely due to missing N-acetylation and 

phosphorylation in this yeast expression system (Ito & Matsudomi, 2005).  

In summary, we have constructed a set of plasmids for fluorescence reporter-based 

analysis using TRP1 integration in C. glabrata. We have shown that the fluorescence 

levels depend on the strength of the promotor and promotor-specific induction 

conditions. Moreover, we used this system for heterologous expression of the well-

characterized model antigen OVA as a basis for measuring the specific immune 
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response of T cells against C. glabrata. Additionally, this system can be used for 

epitope-tagging of proteins or for competitive infection or interspecies competition 

models, by combining different fluorescently labeled C. glabrata strains in one 

experiment.  

 

Overexpression of the biotin transporter gene VHT1 modulates intracellular 

survival within macrophages 

To evaluate the suitability of our TEF1, LYS21 and PDC1 promotor constructs for 

overexpression of C. glabrata’s own genes, we used the system with the biotin 

transporter gene VHT1 of C. glabrata. The expression of the biotin transporter gene 

VHT1 is normally induced when availability of biotin in the environment is low, and its 

expression is dependent on the transcriptional regulator Vhr1 (Sprenger et al., 2020). 

Similar constructs as described for yEGFP were created, and transformed into a trp1∆ 

strain (wild type) and a trp1∆ vhr1∆ strain (mutant). Resulting strains were analyzed for 

the transcriptional abundance of VHT1 after inoculation into nutrient-rich medium. The 

transcript abundance of VHT1 was strongly increased compared to the wild type when 

the gene was controlled by TEF1prom or PDC1prom, both constitutively active 

promotors, whereas the LYS21-controlled VHT1 expression was only marginally 

increased (Figure 3A). The overexpression of VHT1 was independent of its native 

regulator, Vhr1, as the additional deletion of VHR1 had no impact on the transcript 

abundance of VHT1. 

VHR1 is needed for survival of C. glabrata in macrophages. This gene contributes to 

upregulation of VHT1 under biotin limitation, it may also have regulatory targets in 

addition to VHT1 regulation (Sprenger et al., 2020). To elucidate whether VHR1-

depentent VHT1 induction is important during C. glabrata-macrophage interaction, we 

tested whether overexpression of VHT1 by our system can diminish the survival defect 

of the vhr1∆ mutant. We confronted hMDMs with VHT1 overexpression strains and 

evaluated survival of phagocytosed fungal cells. The vhr1∆ strain showed an 
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attenuated intracellular survival within hMDMs as previously described (Sprenger et al., 

2020), while both VHT1-overexpressing strains showed survival rates comparable to 

the wild type (Figure 3B). These data imply that the overexpression of VHT1 can 

indeed compensate the deletion of VHR1, whereas the wild type with its functional 

Vhr1 does not benefit from higher VHT1 expression (Figure 3B). 

 

Mutations in the biotinylation motif of Dur1,2 prevent the utilization of urea  

Biotinylation is a covalent posttranslational modification of lysine residues in target 

proteins (Lane et al., 1964). Most of these lysine residues lie in highly conserved 

AMKM sequence motifs of biotin-dependent enyzmes (Samols et al., 1988, Chapman-

Smith & Cronan, 1999). The enzyme urea amidolyase Dur1,2  is important for utilizing 

urea as a nitrogen source, and its expression is highly induced by urea (Navarathna et 

al., 2011). It possesses a conserved biotinylation motif in its carboxylase-acting C-

terminal domain in both, C. glabrata and C. albicans (Figure 4A, (Samols et al., 1988, 

Chapman-Smith & Cronan, 1999)). DUR1,2 is important for the pathogenicity of 

C. albicans (Ghosh et al., 2009, Navarathna et al., 2012) and C. glabrata (Brunke et al., 

2015). To study whether biotinylation is important for Dur1,2 functionality, we mutated 

the lysine codon AAA into the arginine-coding AGA (amino acid position 1798 in 

C. glabrata and 1779 in C. albicans (Figure 4B)), using our newly developed 

complementation strategy in C. glabrata and the established CIp10 strategy in 

C. albicans (Murad et al., 2000). Growth of the mutant strains in liquid (Figure 4C, E) 

and solid (Figure 4D, F) medium showed a growth defect in media with urea as the 

sole nitrogen source. The KR mutation strains exhibited similar phenotypes as the 

dur1,2 deletion mutants of both species (Figure 4C-F). Interestingly, the Cadur1,2∆/∆ 

mutant and the KR mutation strain not only showed reduced growth on agar plates 

containing urea, but also failed to induce colony wrinkling at 37°C (Figure 4F). These 

data suggest that biotinylation of Dur1,2 is indeed essential for urea utilization in 

C. glabrata and C. albicans. 
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In summary, we conclude that the TRP1 locus is a suitable locus to reintegrate genes 

of interest, either with their native DNA sequence, with specific sequence variations or 

with alternative promotors, to investigate the role and function of these genes for fungal 

(patho)biology. 
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Figures and legends  

 

FIGURE 1: Construction and verification of TRP1 complemented strains. 

(A) Overview of the plasmid used for gene complementation in C. glabrata. The 

insertion site allows cloning of GOI sequences with their promotor and terminator 

(B) Depiction of the TRP1 gene locus in the C. glabrata ATCC2001 reference genome, 

the trp1 deletion mutant (trp1∆) and our complementation strain (trp1∆ + TRP1). A 
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DNA probe was designed for the terminator region to detect gene-specific fragments by 

Southern blotting. (C) Southern blot of HindIII-digested genomic DNA of ATCC2001, 

trp1∆, and trp1∆ + TRP1 (Cg wt). The expected sizes from (B) correspond to the visible 

bands. (D) Growth analysis of C. glabrata ATCC2001, trp1∆, and trp1∆ + TRP1 in 

nutrient-rich medium (YPD) and minimal medium (SD) at 37°C for 24 h. Values are 

absorption at 600 nm and shown as mean ± SD of at least three replicates. 
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FIGURE 2: Heterologous expression of yEGFP, mCherry, and ovalbumin in 

C. glabrata. (A) Overview of constructed plasmids for yEGFP, mCherry, and 

ovalbumin (OVA) expression in C. glabrata. Three different promotors were fused with 

yEGFP, and the constitutive CgTEF1 promotor was fused either with mCherry or OVA. 

The constructs were subsequently cloned into the XbaI-linearized pTRP1 plasmid. (B-
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E) The fluorescence of the different strains was evaluated by (B) flow cytometry of cells 

grown in culture medium and (C-E) by fluorescence microscopy, during (D) infection of 

macrophages and (C and E) in vitro growth in minimal medium of stationary phase 

yeast cells (scale bar: 10 µm). (B) All strains, grown in YPD at 37°C and 180 rpm 

(stationary phase), were diluted 1:20 in fresh YPD and incubated 2 h under the same 

growth conditions (exponential phase). Yeast cells of both growth phases were 

analyzed for green fluorescence (FITC channel) using BD FACS Verse. (D) Primary 

human macrophages (hMDMs) were infected with yeast cells at an MOI of 5 and 

incubated for 3 h at 37°C and 5% CO2. Non-phagocytosed yeast cells were 

counterstained with Alexa Fluor 647-coupled concanavalin A (representative examples 

shown by arrows). (F) Equal amounts of protein extracts were of the OVA-expressing 

C. glabrata (Cg-OVA), the parental strain (Cg wt) and isolated egg white ovalbumin 

(OVA) were blotted and probed for OVA. A separate gel with the same amounts was 

probed for α-tubulin (loading control). The protein sizes were estimates by using 

PageRuler Plus prestained (Fisher Scientific).   
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FIGURE 3: The overexpression of VHT1 increases intracellular fitness of vhr1∆. 

(A) C. glabrata wt (black letters), mutant (vhr1∆, red letters), and corresponding 

overexpression strains (+LYS21prom-VHT1, +TEF1prom-VHT1, +PDC1prom-VHT1) 

were cultivated in YPD for 90 min at 37 °C and 180 rpm. Target gene expression was 

analyzed by qRT-PCR and normalized to ACT1 and EFB1. Expression is shown 

relative to the parental strain. Data are shown as mean ± SD of two independent 

experiments. (B) C. glabrata wt (black letters), mutant (vhr1∆, red letters), and 

corresponding overexpression strains (+pLYS21-VHT1, +pTEF1-VHT1) were pre-

cultured in YPD + 2 mg/L biotin before confrontation with hMDMs. Survival of 

C. glabrata strains after 3 h co-incubation with hMDMs at an MOI of 1, shown as % of 

survival (mean ± SD). Each single dot represents one technical replicate/blood donor 

(at least eight donors in two independent experiments). For statistical analysis, a 

repeated measures ANOVA with Bonferroni's multiple comparison test was performed 

comparing all strains (* p ≤ 0.05, ** p ≤ 0.01).   
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FIGURE 4:  Biotinylation of Dur1,2 is essential for urea utilization. (A) Dur1,2 

possess a highly conserved biotinylation motif (AMKT) in C. glabrata and C. albicans. 

(B) Upper part: DNA sequence which is transcribed into the lysine (K) residue essential 

for biotinylation and biotin structure coupled to lysine. Lower part: The adenine of the 

triplet codon was mutated to guanine to induce an amino acid exchange to arginine. 
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(C-F) Growth analysis of (C-D) C. glabrata wt, Cgdur1,2∆, + CgDUR1,2WT, and 

CgDUR1,2K1798R and (E-F) C. albicans wt, Cadur1,2∆/∆, + CaDUR1,2WT, and 

CaDUR1,2K1779R in (C, E) liquid and on (D, F) solid minimal medium at 30°C (E) or 

37°C (C, D, and F) containing either 0.5% ammonium sulfate or 0.5% urea as sole 

nitrogen source. Values are represented as mean ± SD of at least three replicates and 

representative picture are shown.  
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3 Additional results on manuscript II 

The following results are related to manuscript II. 

 

3.1 The conservation of the biotin biosynthesis gene cluster and the 

regulated biotin transport among pathogenic Candida species 

A common ancestor of Candida and Saccharomyces species has lost the biotin 

biosynthetic pathway, and parts of the biosynthetic pathway were rebuilt through 

horizontal gene transfer from different proteobacteria and neofunctionalization [317]. 

Some S. cerevisiae strains possess the biosynthesis genes BIO1 and BIO6 enabling 

the de novo synthesis of biotin ([318], Figure 3A). Most strikingly is the comparison to, 

mainly in the environment found, fungal pathogens, like Aspergillus and Histoplasma, 

which possesses a complete biosynthetic pathway to produce biotin de novo [299]. 

Interestingly, different Candida species contain a different set of genes in the pathway 

of biotin synthesis as indicated in manuscript II, Figure S1. The biosynthesis starting 

from KAPA is present in C. albicans and C. tropicalis, whereas C. dubliniensis and 

C. auris progressively minimized the pathway and only the BIO2 remains in the 

genome. Interestingly, the closest relative of C. albicans, C. dubliniensis possesses no 

orthologues of BIO3-5 and was only able to use DTB (manuscript II, Figure S1). 

C. glabrata and C. parapsilosis have lost the whole biosynthetic pathway and probably 

rely only on biotin uptake from the environment (Figure 3B). Manuscript II showed 

that orthologs of the biotin transporter CaVht1 and the biotin regulator CaVhr1 are 

present in C. glabrata and C. albicans. In silico analyses revealed that orthologs of 

these genes can be found in as well in other medically important Candida species 

(Table 3). 
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Figure 3. The biotin biosynthetic gene cluster in medically important Candida species 
and S. cerevisiae. (A) Biotin biosynthetic pathway. (B) [317] showed and in vitro growth 
analyses suggested that C. albicans, C. tropicalis, and S. cerevisiae are equipped with BIO2-5, 
whereas C. dubliniensis and C. auris can exclusively use DTB and C. glabrata and 
C. parapsilosis are not able to use biotin precursors. // BIO2 in S. cerevisiae is not located in the 
cluster with BIO3-5.  
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Table 3: Putative orthologs of CaVht1 and CaVhr1 in other medically important Candida 
species. The percentage of identical amino acids between Candida species and S. cerevisiae 
was analyzed with CDG [31] or CloneManager 9 (with asterisks). 

  

3.2 The transcriptional regulation of CgVHT1 and CgBPL1 depends on 

nutrient sources, but not CgVHR2 

The availability of different nutrients affects the transcription of C. albicans metabolic 

genes to improve metabolization of these nutrients, or to shut down other, unneeded 

metabolic pathways [281, 319]. To analyze how the expression of biotin-related genes 

is affected by different nutrient conditions, the transcription of the biotin transporter 

gene CgVHT1 and the biotin protein ligase CgBPL1 in response to different carbon- 

and nitrogen sources in combination with variations in biotin levels was analyzed.  

The expression of CgVHT1 and CgBPL1 was strongly induced during logarithmic 

growth under biotin limitation in the presence of glucose (manuscript II and [320]). 

When comparing the expression of both genes between logarithmic and stationary 

C. glabrata cultures in nutrient-rich YPD medium, transcript levels were reduced during 

logarithmic compared to stationary growth. This suggests that progressive biotin 

depletion or accumulated metabolites caused increasing expression of biotin-

responsive genes upon prolonged (stationary) growth (Figure 4A). Overall, the level of 

regulation was similar between CgVHT1 and CgBPL1, suggesting similar regulation 

mechanisms of these genes (Figure 4B). While the expression of CgVHT1 and 

CgBPL1 was strongly induced in media lacking biotin and containing glucose as carbon 

source and ammonium sulfate as nitrogen source, media with non-fermentable carbon 

sources like glycerol and amino acids only marginally induced CgVHT1 and CgBPL1 

expression (Figure 4B). Furthermore, the addition of amino acids to glucose-containing 

media reduced the transcript abundance of CgVHT1 and CgBPL1 by app. 50% (Figure 

4B). This indicates that amino acid-dependent processes can overcome the need for 

VHT1 under biotin limitation (see also manuscript II) and that potentially other 

regulators in addition to CgVhr1 are involved in the regulation of these genes.  

C. albicans 
CaVht1 

orf19.2397 
Identities 

CaVhr1 

orf19.7468 
Identities 

C. dubliniensis Cd36_28410 91.2% Cd36_25730 89.6% 

C. parapsilosis CPAR2_802240 78.4% CPAR2_804070 49.7% 

C. tropicalis CTRG_00773 76.4% CTRG_01006 64.2% 

C. auris B9J08_002974 70.3% B9J08_000684 38.4% 

C. glabrata CAGL0K04609g 25.9%* CAGL0M12496g 26%* 

S. cerevisiae YGR065C 19%* YIL056W 21.7% 
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Upregulation of CgVHT1 and CgBPL1 under biotin limitation was strongly dependent 

on CgVhr1 at early time points (90 min) (manuscript II). CgVHT1 expression, 

however, gets induced to wild type (wt)-like levels at later time points (180 min) in the 

absence of VHR1 (Figure 4C), suggesting a role of CgVhr1 for an initial upregulation of 

CgVHT1. However, this also suggests that additional regulators exits, which are 

involved in CgVHT1 regulation at later time points. 

 

 

Figure 4: Growth phase and nutrient sources dependent expression of CgVHT1 and 
CgBPL1. Stationary C. glabrata cells were incubated in (A) fresh YPD, (B) minimal medium 
containing 2% glucose and 0.5% ammonium sulfate (AS), 1% casamino acids (AA) or 3% 
glycerol, or (C) minimal medium containing 2% glucose and 0.5% ammonium sulfate (AS) for 
(A-B) 90 min or (C) 180 min at 37°C and 180 rpm with or without biotin. Target gene expression 
was analyzed by qRT-PCR and normalized to CgACT1, CgEFB1 and CgEFT2. Values are 
represented as mean + SD of three independent experiments, whereby n-fold expression for 
each gene is shown relative to (A) stationary phase culture or (B-C) culture with glucose and 
ammonium sulfate and 2 µg/L biotin. For statistical analysis, a Two-way ANOVA with Bonferroni 
post-tests was used (**p ≤ 0.01, *** p ≤ 0.001; comparing different nutrient sources). (D) 
Stationary C. glabrata cells were incubated in minimal medium containing 2% glucose and 0.5% 
ammonium sulfate for 90 min at 37°C and 180 rpm with indicated biotin concentrations. Target 
gene expression was analyzed by qRT-PCR and normalized to CgACT1, CgEFB1 and 
CgEFT2. Values are represented as mean + SD of three independent experiments, whereby n-
fold expression for each gene is shown relative to glucose and ammonium sulfate with 2 µg/L 
biotin. (E) C. glabrata wild type (wt), mutant (Cgvhr2∆), or complemented strain 
(Cgvhr2∆ + CgVHR2) were confronted with human blood monocyte-derived macrophages 
(hMDMs). Survival of C. glabrata strains after 3 h, (% survival of inoculum) is shown. Values are 
represented as scatterplots with mean ± SD and each single dot corresponds to one blood 
donor (total of eleven different donors in at least three independent experiments). For statistical 
analysis, a Repeated Measures ANOVA with Bonferroni's multiple comparison test was 
performed (** p ≤ 0.01 comparing wt and deletion mutant; ## p ≤ 0.01 comparing deletion 
mutant to the complemented strain). 
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S. cerevisiae possesses the putative transcription factor Vhr2 (YER064C) with high 

similarities to Vhr1 in terms of the protein sequence as well as DNA binding specificity 

[321]. The VHR2 gene arose from whole genome duplication in the ancestor of 

S. cerevisiae, belongs to the basic leucine zipper domain (bZIP) transcription factor 

family and is also present in C. glabrata (CAGL0J03014g), but not in C. albicans [31, 

322]. To analyze whether CgVhr2 is an additional CgVHT1 regulator, a deletion strain 

of CAGL0J03014g (Cgvhr2∆) and a complemented strain (Cgvhr2∆ + CgVHR2) with its 

native promotor were constructed. These strains were analyzed for transcriptional 

inducibility of CgVHT1 and CgBPL1 under biotin limitation and for survival within 

primary human monocyte-derived macrophages (hMDMs). CgVHR2 was not involved 

in the transcriptional control of CgVHT1 and CgBPL1 (Figure 4D), but was necessary 

for survival of C. glabrata inside macrophages (Figure 4E). These data suggest that 

CgVHR2 has yet unknown regulatory functions in C. glabrata that are independent of 

biotin transport (Figure 4E).  

In summary, these data show that the regulation of biotin-related genes in C. glabrata 

is influenced by nutritional conditions. It also suggests that additional transcriptional 

regulators, in addition to Vhr1, affect VHT1 and BPL1 expression in order to fine-tune 

the biotin levels of C. glabrata in response to environmental stimuli. 

 

3.3 Major biotin-dependent carboxylases possess a biotinylation motif, 

and pyruvate-carboxylase genes are regulated by biotin   

The depletion of biotin increases the expression of the biotin transporter gene VHT1 

and biotin protein ligase gene BPL1 to sustain sufficient biotin import and attach biotin 

to biotin dependent proteins to ensure functioning of biotin-dependent processes 

(manuscript II). These are essential for key metabolic pathways, like fatty acid 

metabolism, gluconeogenesis and amino acid metabolism, requiring most highly 

biotinylated pyruvate carboxylase Pyc1/2 and acetyl carboxylase Acc1 

(Figure 5B)[323, 324]. Corrspondingly, several studies in S. cerevisiae show that 

Pyc1/2- and Acc1-deficient strains are severely attenuated in general growth [325-328]. 

Biotinylation is a covalent posttranslational modification of lysine residues in proteins 

being essential for carboxylation reactions [329]. The specific biotinylated lysine 

residue in pyruvate carboxylases Pyc1/2, acetyl-CoA carboxylase Acc1 and urea 

amidolyase Dur1,2 of S. cerevisiae is located in a highly conserved AMKM motif [330, 

331]. Previous studies showed that site-directed mutagenesis of this lysine residue 

affects biotinylation [330] and the first methionine residue is critical for carboxylase 

activity [332]. 
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By using in silico analyses biotin-dependent carboxylases were found in C. albicans 

and C. glabrata possessing this motif with slight sequence modifications (Figure 5A). 

Alanine in the biotinylation motif of Acc1 was substituted by valine (AMKM  VMKM), 

and the last methionine in the biotinylation motif of Dur1,2 was replaced by threonine 

(AMKM  AMKT) in both Candida spp. and by alanine in S. cerevisiae. The impact of 

these amino acid substitutions on biotinylation efficiency and enzymatic activity of the 

respective carboxylase is unknown. Still, the first methionine, required for enzymatic 

activity, is present in all of these biotinylation motifs. The necessity of the lysine residue 

in the biotinylation motif of Dur1,2 is demonstrated in manuscript V. 

 

 

Figure 5: Protein biotinylation in C. albicans and C. glabrata. (A) Biotin-dependent 
carboxylases possess a highly conserved biotinylation motif (AMKM, with single amino acid 
divergence) in C. glabrata, C. albicans and S. cerevisiae. (B) Western blot of biotinylated 
proteins of C. albicans (SC5314; left) and C. glabrata (ATCC2001; right). Both strains were 
cultivated in biotin-free SD medium at 180 rpm and 30°C or 37°C, respectively. The yeast cell 
suspension was harvested after 4 and 24 h by centrifugation. The 0 h time point (stationary 
phase culture, YPD) was used as control. 
 

Biotinylated proteins are recognized by high affinity biotin-binding proteins like avidin 

and streptavidin [333], and are detectable in Western blots with avidin/streptavidin 

conjugated to horseradish peroxidase (HRP). To analyze the biotinylated protein 

pattern during biotin depletion, Western blots of whole cell extracts of C. glabrata and 

C. albicans after 4 and 24 h were performed. The most prominent and stable 

biotinylated protein had a size of approximately 130 kDa, which, according to size 

prediction ((Figure 5A) and [31]), correlates to a pyruvate carboxylase (Figure 5B). As 

predicted by the in silico analyses (Figure 5A), C. glabrata extracts showed two protein 

bands, corresponding to two pyruvate carboxylase isoforms (Pyc1 and Pyc2), similar to 

S. cerevisiae [325]. The larger band, likely corresponding to CgPyc1 (129.9 kDa), 
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remained more biotinylated after 24 h of biotin depletion. Comparing both Candida 

species, in silico analyses suggest that C. albicans reduced the number of 

carboxylases and relies on one pyruvate carboxylase, encoded by CaPYC2 

(Figure 5A). A biotinylated protein with a molecular size of approximately 250 kDa, 

correlating to the predicted size of the acetyl-CoA carboxylase Acc1, was present in the 

stationary phase culture of both species, but it diminished during cultivation under 

biotin limitation (Figure 5B). 

 

 

Figure 6: Expression of biotin-dependent carboxylase genes ACC1 and PYC1/2 in 
C. albicans and C. glabrata. (A) C. glabrata wt, mutant (Cgvhr1∆), and complemented strain 
(Cgvhr1∆+CgVHR1) and (B) C. albicans wt, mutant (Cavhr1∆/∆), and complemented strain 
(Cavhr1∆/∆+CaVHR1) were pre-cultivated in YPD and then incubated in minimal medium for 
180 min at 37°C and 180 rpm. Target gene expression was analyzed by qRT-PCR and 
normalized to CgACT1, CgEFT2, CgEFB1, or CaTDH3 and CaEFB1. Values are represented 
as mean + SD of three independent experiments, whereby n-fold expression for each gene is 
shown relative to the wt in 2 µg/L biotin. For statistical analysis, a Two-way ANOVA with 
Bonferroni post-tests was used (*p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001; comparing 2 µg/L biotin and 
w/o biotin). 

 

Studies in S. cerevisiae hinted at the pyruvate carboxylases of importance in, both, 

biotin sensing and inducing a biotin-starvation response (upregulation of Vhr1-

dependent genes) [334], but it remained unknown how biotin availability affects the 
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expression of biotin acceptor genes in Candida species. Therefore, the transcript levels 

of the corresponding PYC and ACC genes in C. glabrata and C. albicans were 

analyzed. The expression of the both ACC1 genes, in C. glabrata and C. albicans, was 

only marginally regulated by biotin, whereas the transcript abundance of CgPYC1 and 

CaPYC2 increased upon biotin limitation (Figure 6A-B). Taken together, the 

upregulation of CgPYC1 and CaPYC2 together with the mostly stable biotinylation 

upon biotin limitation indicate the importance of these enzymes for cellular metabolism. 

 

3.4 The usage of alternative biotin-sources is Vht1-dependent 

In association with the mammalian host, free biotin could be restricted to invading 

microbes as mammalian cells are also auxotrophic for biotin and need to recycle biotin 

by proteolytic digestion of biotinylated proteins, releasing biocytin [335]. This 

intermediate is degraded to lysine and biotin by biotinidase activity (Figure 7A)[335]. 

During host invasion and damage of various cell types, alternative host-derived biotin 

sources like biotinylated proteins or biocytin could be available. Therefore, growth 

analyses with these potential host-derived biotin sources were performed. Analogous 

to the experiments in manuscript II, biotin-starved Candida cells were used. 

C. albicans and C. glabrata wild type cells were able to use these alternative biotin 

sources for robust growth suggesting that both fungi are enzymatically equipped to 

further process these sources as shown in manuscript II (Figure S1). VHT1 but not 

VHR1 deletion mutants of both species, however, were defective in growth with 

biotinylated BSA and biocytin (Figure 7B-C), suggesting that Vht1 may import these 

host biotin sources. Previous studies, however, showed that uptake of labeled biotin 

cannot be inhibited by biocytin, indicating that Vht1 is high selective for biotin [336]. 

These data suggest that extracellular enzymatic processing of biotinylated substrates 

and biocytin to biotin might be required, followed by biotin uptake depending on the 

biotin transporter Vht1 (manuscript II, Figure 3). 
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Figure 7. The usage of alternative biotin sources is Vht1-dependent. 
(A) Biotin is cycled within the cell during an uncoupled (free) and coupled state mediated by 
enzymatic reactions. The biotin-protein ligase 1 (Bpl1) covalently links biotin to acceptor 
proteins like apocarboxylases, generating functional active holocarboxylases. Protein turnover 
by proteases releases biocytin (biotinyl-L-lysine), which is further metabolized to lysine and 
biotin by biotinidase activity. (B-C) Yeast growth of biotin pre-starved wt, mutants (vhr1∆, 
vht1∆), or complemented strains (vhr1∆ + VHR1, vht1∆ + VHT1) of (B) C. glabrata (37°C) or (C) 
C. albicans (30°C) in minimal medium containing 2 µg/L biotinylated BSA, 2 µg/L or 2 mg/L 
biocytin.  Values are represented as mean ± SD of at least three replicates. 

 

3.5 Biotin promotes amino acid-induced growth by increasing 

environmental pH and ammonia release 

Certain conditions can bypass the need for biotin. C. glabrata is able to grow in media 

with casamino acids (CAA) as a sole carbon- and nitrogen source in the absence of 

biotin dependent on CgVHR1 (manuscript II, Figure S3). Still, growth is significantly 

enhanced under such conditions, when biotin is present (Figure 8A), suggesting that 

amino acids can only partially bypass the requirement for biotin. In medium with CAA 
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as a sole carbon- and nitrogen source, C. albicans is known to induce filamentation 

associated with an increase in environmental pH [283]. This C. albicans-driven 

alkalinization is caused by ammonia release due to the catabolism of amino acids 

[283]. As biotin promotes filamentation in C. albicans [337, 338], we analyzed the 

impact of biotin on filamentation under alkalinization-inducing conditions. 

In medium with an initial pH of 4.5, colony wrinkling, indicating filamentation of the 

C. albicans wild type, was only visible when sufficient amounts of biotin (2 µg/L) were 

added (Figure 8B). Noteworthy, the initial increase to a neutral pH (pH 6.5) abolished 

this phenotype and the C. albicans wild type showed a fuzzy-wrinkled colony 

morphology independent of biotin addition, suggesting that a neutral pH bypasses the 

requirement of biotin-promoted alkalinization for filamentation (Figure 8B). 

C. glabrata requires CgVHR1 for growth under conditions that combine low biotin with 

limitations of optimal C- and N-sources, like the growth with amino acids [338]. To find 

out whether CaVHR1 and other C. albicans biotin-metabolic genes have an impact on 

the above-described colony wrinkling, we investigated the colony morphology of biotin-

metabolic mutants when growing on agar containing CAA adjusted to an initial pH of 

4.5. The degree of colony wrinkling was reduced in the CaVHR1 deletion mutant and 

remained unaffected by addition of either higher amounts of biotin or biotin precursors 

(Figure 8C). The deletion of the partial biotin biosynthesis pathway genes BIO2-5 

demolished the ability of C. albicans to grow with the biotin precursors KAPA and DTB 

[338]. This result was further supported by the fact that the Cabio2-5∆/∆ mutant did not 

show colony wrinkling on agar with KAPA or DTB as biotin precursors. The Cavht1∆/∆ 

mutant showed only growth and colony wrinkling with KAPA and high amounts of biotin 

(Figure 8C). This is in line with the fact that high external biotin was needed to support 

growth in liquid medium in the absence of VHT1 (manuscript II). Similar to this 

observation, the growth defect of Cavht1∆/∆ was also rescued by addition of KAPA, but 

not DTB (Figure 8D). This indicates that CaVHT1, similar to its S. cerevisiae ortholog, 

is also required for DTB uptake [339], whereas KAPA usage does not require VHT1. 

Environmental alkalinization by C. albicans is associated with ammonia release and a 

rise in environmental pH [283]. Therefore, the impact on ammonia release and 

environmental pH changes during C. albicans and C. glabrata growth was visualized 

with phenol red and measured spectrometrically, respectively. In all experiments, the 

initial pH was adjusted to 4.5 (yellow color). In the presence of biotin, C. albicans and 

C. glabrata wild type growth caused increased pH values, as indicated by an orange to 

red color (Figure 9A) and ammonia release (Figure 9B). Of note, C. glabrata 

increased the environmental pH much slower and released ammonia to a lower extent 

than C. albicans (Figure 9A-B). 
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Figure 8: Growth and colony morphology is dependent on biotin availability. (A) Growth of 
C. glabrata wt, Cgvhr1∆ and Cgvhr1∆ + CgVHR1 in liquid YNB-CAA medium without or with 
2 µg/L biotin at 37°C and 180 rpm measured every 8 h. (B) The initial pH and the presence of 
2 µg/L biotin impaired the colony morphology of 1x105 C. albicans wt cells grown on YNB-CAA 
at 37°C for 48 h. (C) C. albicans wt, mutants (Cavhr1∆/∆, Cavht1∆/∆, Cabio2-5∆/∆), and 
complemented strains (Cavhr1∆/∆ + CaVHR1 or Cavht1∆/∆ + CaVHT1) were spotted on YNB-
CAA (initial pH 4.5) in separate wells of a 12-well plate and incubated at 37 °C for 48 h. The 
colony morphology was documented with binocular microscope (Zeiss), scale bar: 1 mm. (D) 
Yeast growth of biotin pre-starved C. albicans wt, Cavhr1∆/∆, Cavhr1∆/∆ + CaVHR1, Cavht1∆/∆ 
or Cavht1∆/∆ + CaVHT1  at 30°C in minimal medium containing 2 µg/L KAPA or DTB. Values 
(in A and D) are represented as mean ± SD of at least three replicates. 

 

As expected from our growth and filamentation analyses (Figure 8A-C), alkalinization, 

as seen by the rise in medium pH, and the release of ammonia was enhanced in the 

presence of biotin. The deletion of CaVHR1, but not CgVHR1, caused a reduced 



Additional results  
 

 

medium pH change and ammonia release (Figure 9B-C). As expected from previous 

data (manuscript II), the biotin transporter mutants (vht1∆) of both species were 

unable to grow with intermediate biotin concentrations. This deficiency correlated with 

the reduced ammonia secretion (Figure 9C-D). Collectively, these data suggest that 

VHR1 plays a role in the utilization of amino acids in both Candida species, and 

influences the induction of proper C. albicans filaments under this specific condition. 

 

 
Figure 9: Candida-driven alkalinization and ammonia release is enhanced by biotin and 
VHR1. (A) Alkalinization of YNB-CAA-Allantoin agar by wt, mutants (vhr1∆, vht1∆), or 
complemented strains (vhr1∆ + VHR1, vht1∆ + VHT1) of C. albicans (above) and C. glabrata 
(below) after 72 h incubation at 37°C. HK indicated heat-killed Candida cells (70°C, 30 min). 
The pH was visualized by 20 mg/L phenolred. A pH-increase causes a color change from yellow 
(initial pH 4.5) over orange to red. Volatile ammonia released by (B) wt cells of C. albicans and 
C. glabrata grown 72 h on YNB-CAA-allantoin agar and (C-D) wt, mutants (vhr1∆, vht1∆), or 
complemented strains (vhr1∆ + VHR1, vht1∆ + VHT1) of (C) C. albicans and (D) C. glabrata 
grown 48 h on YNB-CAA-allantoin agar. Values (in B-D) are represented as mean ± SD of at 
least three replicates. For statistical analysis, a Two-way ANOVA with Bonferroni post-tests was 
used (*p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001; comparing wt and mutant strains). 
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3.6 Biotin availability during infection has no influence on the interaction 

between C. glabrata and C. albicans and macrophages 

Biotin uptake is essential to maintain cellular homeostasis of Candida spp. but also of 

the mammalian host. The host can experience biotin limitation due to specific diets and 

also during infection by biotin-consuming pathogens. This can have an influence of 

activities of immune cells. For example, it was shown that human dendritic cells and 

CD4+ T lymphocytes react to biotin limitation with an enhanced pro-inflammatory 

response [340, 341], whereas monocytic myeloid cells react vice versa [342]. 

The impact of biotin on the ability of macrophages to phagocytose and kill ingested 

Candida cells as well as the Candida-induced cytolysis and pro-inflammatory response 

was so far unknown. To test different macrophage polarization states, primary M-CSF-

treated macrophages (hMDMs) were stimulated for 24 h with the Th1 cytokine IFN-γ or 

the Th2 cytokine IL-4 to favor a pro- or anti-inflammatory macrophage polarization 

phenotype [343]. Macrophages were then infected with C. albicans or C. glabrata wild 

type cells and co-incubated for 1 and 3 h in biotin-depleted or biotin-rich medium to 

determine phagocytosis and survival rates, respectively. Phagocytosis was nearly 

unaffected by biotin (Figure 10A). Exclusively, the phagocytosis of C. albicans by anti-

inflammatory macrophages was marginally reduced (Figure 10A). While fungal biotin 

conditions before macrophage confrontation had an impact on C. glabrata and 

C. albicans survival (manuscript II), the survival of both Candida spp. was not affected 

by the availability of biotin during the infection. Interestingly, the stimulation with IFN-γ 

increased phagocytosis-mediated killing of C. glabrata, whereas C. albicans killing 

efficiency was unaffected by macrophage stimulation (Figure 10B). 

In order to determine the impact of biotin on fungus-driven cytolysis and release of pro-

inflammatory mediators (IL-1β, TNFα, IL-6 and IL-8), unstimulated macrophages (M-

CSF-treated) were infected with C. albicans and C. glabrata wild type cells and co-

incubated for 24 h in presence or absence of biotin. In accordance with previous 

studies [178, 211, 344], C. albicans induced a strong cytokine release by and damage 

of macrophages (app. 70% cytotoxicity), whereas C. glabrata induced no visible 

macrophage damage and low IL-1β secretion (Figure 10C-D). However, the release of 

IL-6 and TNF-α was comparable between both fungal species, and only the secretion 

of IL-1β and the chemokine IL-8 were attenuated in C. glabrata infected macrophages 

(Figure 10D). Biotin had no effect on the secretion of the tested pro-inflammatory 

cytokines and there were only marginal survival differences for C. glabrata between the 

two macrophage polarization states.  
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Figure 10: Interaction of C. albicans and C. glabrata with macrophages depending on 
biotin availability. C. glabrata or C. albicans wt cells were confronted with human blood 
monocyte-derived macrophages (hMDMs) pre-cultivated either IFN-γ and M-CSF or IL-4 and M-
CSF without (-) or with (++) 200 µg/L biotin. (A) Uptake of yeast cells (% phagocytosis) was 
quantified by differential staining after 1 h of co-incubation (MOI 2). (B) Fungal survival after 3 h, 
(% survival of inoculum). (C) Cytolysis (% cytotoxicity; 100% refers to full lysis) of and (D) 
release of pro-inflammatory cytokines and chemokines by unstimulated macrophages after 
infection with C. albicans and C. glabrata after 24 h of co-incubation (MOI 5). Positive (LPS; 
1 µg/mL) and negative control (MC, medium control) were included. Values are represented as 
scatterplots (mean ± SD). Each single dot represents one technical replicate/blood donor (at 
least three donors in two independent experiments).    
 

These data suggest that external biotin levels during interaction of Candida cells with 

macrophages have no influence on host activities like phagocytosis, fungal killing, 

susceptibility to fungus-driven cell lysis and release of pro-inflammatory mediators. This 

is in contrast to the fungal internal biotin pool, which is essential for survival and 

proliferation within macrophages (manuscript II).  

 

3.7 Biotin impacts on CaVHT1-dependent macrophage lysis and pro-

inflammatory cytokine secretion  

The uptake of biotin by the putative biotin transporter Vht1 is essential for C. albicans 

and C. glabrata to proliferate in environments with limited biotin, likely encountered in 

host niches like the macrophage phagosome. Deletion of VHT1 attenuated fungal 
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proliferation within macrophages (both species), survival and macrophage lysis 

(C. albicans) (manuscript II). 

To see whether biotin availability during C. albicans-macrophage interaction influences 

the infection outcome of a strain that strongly depends on biotin, we monitored 

inflammasome activation, macrophage cytotoxicity and cytokine release after infection 

with the CaVHT1 deletion strain. To exclude variations in the fungal biotin pool, all 

strains were biotin pre-starved. This pre-starvation significantly lowered the intracellular 

survival of Cavht1∆/∆ (manuscript II). 

C. albicans is, unlike C. glabrata, a potent activator of the NLRP3 inflammasome in 

macrophages [345]. To study the influence of CaVHT1 on inflammasome activation, IL-

1β secretion by LPS-primed primary hMDMs after infection with biotin-starved 

C. albicans wt, deletion and complemented strains was measured 5 h p.i. The 

Caece1∆/∆ mutant, known to trigger less IL-1β secretion in hMDMs, was included as 

control [218, 346]. The Cavht1∆/∆ mutant was completely unable to induce secretion of 

IL-1β when interacting with macrophages in biotin-free culture medium (Figure 11A), 

while the addition of 2 mg/L biotin restored a wt-like IL-1β secretion. This biotin 

concentration was sufficient to promote wt-like growth of Cavht1∆/∆ (manuscript II).  

In order to determine whether the reduced intracellular survival and inflammasome 

activation of the biotin transporter mutant Cavht1∆/∆ is associated with an altered late 

cytolysis and progressive pro-inflammatory host response, the release of LDH and the 

secretion of IL-1β, IL-6, IL-8 and TNF-α was quantified after 24 h of co-incubation. As 

described in manuscript II, the VHT1 deletion mutant was severely attenuated in 

damage. The addition of biotin (2 mg/L) partly rescued the damage potential of this 

mutant (Figure 11B). In accordance to that, the secretion of the cytokines IL-1β, IL-6 

and TNF-α and chemokine IL-8 was strongly reduced in Cavht1∆/∆-infected 

macrophages in a biotin-limited environment and reached wt level in biotin-enriched 

medium (Figure 11D-F). 
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Figure 11: Impact of VHT1 on interaction of C. albicans with macrophages dependent on 
biotin availability. Biotin-prestarved C. albicans wt, mutants (Cavht1∆/∆, Caece1∆/∆), or 
complemented strains (Cavht1∆/∆ + CaVHT1) were confronted with human blood monocyte-
derived macrophages (hMDMs) in the absence (w/o) or presence of 2 mg/L biotin (w/). (A) The 
early IL-1β release was quantified 5 h p.i. with C. albicans (MOI 5) of LPS-primed hMDMs (2 h 
pre-incubation with 50 ng/mL LPS. (B) Cytolysis (% cytotoxicity; 100% refers to full lysis) of and 
(D-F) release of pro-inflammatory cytokines and chemokines by hMDMs after infection with 
C. albicans 24 h p.i. (MOI 5). Positive (LPS; 1 µg/mL and negative control (MC, medium control) 
were included. Values are represented as scatterplots (mean ± SD). Each single dot represents 
one technical replicate/blood donor (at least five donors in two independent experiments). For 
statistical analysis, a repeated measures ANOVA with Bonferroni's multiple comparison test 
was performed (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 comparing wt and deletion mutant). 

 

These data imply that Vht1-dependent proliferation of C. albicans in biotin-scarce 

environments mediates cytolysis of macrophages and activation of a pro-inflammatory 

response. This requirement for VHT1 can only be overcome when high amounts of 

biotin are available continuously. 
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4 Discussion 

 

Pathogenic Candida species have evolved sophisticated immune evasion strategies to 

thrive within macrophages, by surviving antimicrobial activities, adapting to nutrient 

scarceness, and persisting within or escaping from these cells. The adaptation to the 

nutritional environment within the phagosome of macrophages needs rapid 

transcriptional responses. Such responses are common among facultative intracellular 

pathogens, but need to be fine-tuned dependent on cellular localization of the 

pathogen, extrinsic nutrient availability, and intrinsic nutrient requirements. In 

manuscript I, these adaptation mechanisms were summarized and discussed, 

comparing Candida species with bacterial and other fungal pathogens. Fungal 

pathogens often show common responses leading to repression of energy-consuming 

processes and activation of alternative carbon- and nitrogen assimilation pathways, 

whereas pathogenic bacteria rely on species-specific responses dependent on intrinsic 

nutritional requirements and their intracellular localization.  

The ability of pathogenic Candida species to acquire and metabolize macro- and 

micronutrients is essential for survival in the hostile phagosomal environment [251, 

253-255, 258, 314]. In general, Candida species have a remarkable metabolic flexibility 

that allows them to switch between metabolization of different nutrients, depending on 

their availability in different host niches [319]. However, this metabolic flexibility mainly 

accounts for macronutrients. The requirement of essential micronutrients such as 

vitamins or trace metals, that are often co-factors of important metabolic enzymes, 

cannot be bypassed. The strong impact of the essential vitamin biotin (vitamin H) on 

survival inside macrophages and virulence of C. glabrata and C. albicans was 

demonstrated in manuscript II. Furthermore, the importance of copper and redox 

homeostasis for C. parapsilosis during contact with macrophages and predatory 

amoebae was stressed in manuscript IV. To extend the genetic toolbox for research 

on C. glabrata and C. parapsilosis, to get further insights into gene functions and to 

identify new virulence genes as well as targets of antifungal substances, RNA-

interference for C. glabrata (manuscript III), and gene complementation strategies for 

C. glabrata (manuscript V) and C. parapsilosis (manuscript IV) were developed.  
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4.1 Establishment of new genetic manipulation tools to study biology 

and virulence of C. glabrata and C. parapsilosis  

Gene deletion is a broadly employed and long used approach to study the function of 

potential virulence-associated genes in the major Candida species C. albicans [99]. 

However, due to the increasing prevalence of other Candida spp., the understanding of 

pathogenicity mechanisms of these NAC species like C. glabrata or C. parapsilosis has 

recently come into focus.   

The approaches used so far for the creation of deletion mutants in these two NAC 

species resemble the strategies used in C. albicans, relying on selective markers like 

NAT1, HIS3 or URA3 [347, 348]. To describe molecular mechanisms of pathogenesis 

and gene functions, the molecular Koch´s postulates [108] should be fulfilled, which 

comprise the reintroduction of the deleted gene to regain wild type phenotypes and 

thus exclude pleiotropic effects associated with the gene deletion process. In 

C. albicans, genomic integration is a commonly used tool for reintroducing a certain 

gene into a knock-out strain. However, in C. glabrata and C. parapsilosis this 

approaches are less commonly used. We established a genomic reintegration strategy 

in C. glabrata that can be used to complement deletion mutants with their original gene, 

either expressed by the native or any conditional promotor (manuscript V). In addition, 

this strategy can be used to reintroduce modified versions of a gene, to investigate not 

only the gene function itself, but also specific nucleotide exchanges (respectively amino 

acid exchanges in the corresponding protein) and changes in gene expression pattern. 

Moreover, the new complementation strategy was applied for labeling of C. glabrata 

with two well-known fluorophores yEGFP and mCherry as well as the antigen 

ovalbumin (manuscript V, Figure 2). Fluorescent markers can be useful to tag 

different mutant strains and perform fluorescence-based experiments and intraspecies 

or interspecies competition assays, a strategy broadly used for C. albicans [349, 350]. 

By using additional selection markers, like HIS3, LEU2 or HygB [351], our new protocol 

could also be extended to generate double fluorescently labeled strains for monitoring 

protein-protein interactions in vivo.  

The newly developed C. glabrata complementation strategy relies on integration into 

the TRP1 locus, a gene coding for an enzyme involved in the tryptophan biosynthesis 

[352]. Complementation with TRP1 in a non-native locus could raises the problem of 

inefficient transcription and growth defects in tryptophan-poor niches. This possibility 

was excluded by choosing the native gene locus of the selection marker (manuscript 

V). In addition, deletion of TRP1 had no influence on the systemic C. glabrata infection 

[68] and this locus was shown to be suitable for a sufficiently high expression level of 

other genes (manuscript V). Nevertheless, a minor risk remains that a certain gene in 
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the TRP1 locus is transcribed differently due to the local chromatin structure. 

Alternatively, gene complementation may be also done in neutral loci, like NEUT5L in 

C. albicans [353]. The NEUT5L was also suitable to generate complemented strains in 

C. parapsilosis (manuscript IV and [354]). Such a neutral locus has also been used in 

C. glabrata on chromosome F [276].  

The creation of gene deletions can fail in case of essential genes. Studying such genes 

is of high importance as these might encode virulence factors and/or potential targets 

for novel antifungals [103, 355]. For that reason alternative techniques are required, 

which use knock-down approaches such as targeted transcriptional repression (or 

induction) of tetracycline promotor-regulated genes (GRACE; gene replacement and 

conditional expression) or RNA-mediated downregulation [103]. Both methods are also 

suitable to perform large-scale identification of essential and virulence-associated 

genes [103] and (manuscript III). The established RNA interference (RNAi) strategy 

for C. glabrata has the advantage that no external substances like tetracyclin have to 

be added to achieve transcriptional gene repression. As members of the 

Saccharomyces complex, including C. glabrata, do not possess the mechanism of 

RNA-based gene silencing, Dicer (DCR1) and Argonaute (AGO1) were heterologously 

expressed in C. glabrata. In contrast, some pathogenic Candida species including 

C. albicans intrinsically possess the RNAi pathway [356]. A disadvantage (or desired 

advantage in the case of essential genes) of the RNAi technology in the investigation of 

gene function is that complete gene repression is often not possible and compensation 

of translation efficiency could overlay differences in transcription [357]. Certainly, the 

quantitative downregulation efficiency could be affected by the type of RNAi 

(manuscript III, Figure 1) or by using either antisense or hairpin constructs. Thus, 

different strategies may have to be compared for each gene.       

Together, the techniques established in this work add important new genetic tools to 

investigate the function of novel genes and their role in pathobiology of the second and 

third-to-fourth most prevalent Candida species C. glabrata and C. parapsilosis. 

 

4.2 Metal and redox homeostasis are essential for intraphagosomal 

survival  

Besides macronutrients, micronutrients like trace metals and vitamins are essential in 

fine-tuning and maintaining metabolic fluxes – as cofactors of important metabolic 

enzymes. Concerning the acquisition of trace metals, one important group of 

micronutrients, two sides of a coin have to be considered. When low amounts of 

essential trace metals are present, microbes need high-affinity transport systems for 

the uptake of these metals from the environment. On the other hand, high metal 
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concentrations are toxic mainly due to the Fenton reaction and ROS production [358]. 

Metal intoxication by zinc and copper is also one mechanism used by phagocytic cells 

to kill ingested microbes [233, 359]. It has already been demonstrated that not only the 

uptake of metals, but also the homeostasis, either the acquisition or detoxification, of 

trace metals, and their complex regulatory processes, are indispensable for bacterial 

and fungal pathogens [270, 360].  

In manuscript IV, it was demonstrated that predation by fungivorous amoebae 

increases the expression of genes necessary to cope with high copper concentrations 

in C. parapsilosis. The deletion of the copper exporter Crp1, involved in fungal copper 

resistance, made phagocytosed C. parapsilosis cells more susceptible to the 

antimicrobial activity of predatory amoebae and, to a lower extend, of macrophages 

(manuscript IV, Figure 8). This indicated that C. parapsilosis is exposed to copper 

poisoning in amoebae, whereas the phenotype in macrophages is more ambiguous. In 

fact, the stable expression of CpCRP1 within macrophages, compared to the increased 

expression of the copper transporter CpCTR1 may indicate that C. parapsilosis is 

rather exposed to copper limitation in macrophages (manuscript IV, Figure 4). This 

reveals differences in the two different phagocyte infection models used in that study. 

Further survival assays with a CpCTR1 deletion mutant may address the question of 

copper restriction or intoxication by amoebae or macrophages.   

Copper poisoning in macrophages has been described for other fungal species. In 

C. albicans, CaSur7 mediates high copper resistance and promotes intraphagosomal 

growth in vitro [236, 237], indicating toxic copper concentrations during C. albicans´ 

intraphagosomal stay. Further studies focused on C. albicans or A. fumigatus infections 

showed that copper poisoning plays a role during systemic infections [361, 362].  

While the pathogen can directly react towards an antimicrobial response, the immune 

system can also modulate this response. Cytokines like IFN-γ can not only influence 

the macrophage activation status [363] but also the content and pH of the phagosome 

[137], and even the degree of copper restriction and possibly also intoxication [364]. 

The copper transporter gene HcCTR3, for example, is necessary for replication of 

H. capsulatum in IFN-γ-activated but not non-activated macrophages [364]. Recently, 

similar results were observed for C. glabrata, as CgCTR2 is needed for survival in IFN-

γ stimulated macrophages [365]. These data open up the interesting perspective that 

the phagosome content is a consequence of macrophage stimulation. The modulation 

of macrophage polarization by fungal pathogens [198, 366] may thus be a strategy of 

these pathogens to alter intraphagosomal nutrition and the toxicity status in favor of the 

fungus. Alternatively, fungal pathogens may actively modulate the phagosome content, 
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similar to many bacterial intracellular pathogens, which create a distinct and 

degradation-permissive pathogen-containing vacuole [367].  

Phagocytes can bombard microbes with high phagosomal metal concentrations, but 

also ROS are produced in high amounts [368]. Therefore, successful intracellular 

pathogens require efficient oxidative stress detoxification mechanisms [369]. 

Peroxiredoxins (Prxs) are thiol-specific antioxidant proteins [370]. Deletion of PRX1, 

encoding a Prx, caused attenuated survival of C. parapsilosis in amoebae and 

macrophages (manuscript IV, Figure 8), and the increased expression of a 

homologous gene in C. albicans during confrontation with macrophages [175] suggests 

a similar response pattern. However, the impact on the highly conserved PRX1 gene in 

C. albicans and C. glabrata macrophage interaction remains to be elucidated.   

 

4.3 Fungal factors involved in biotin homeostasis  

The intrinsic biotin auxotrophy of Candida species has long been known [310, 311], but 

recent studies highlighted infection-relevant roles of biotin by showing that C. albicans 

requires biotin in parenteral nutrition solutions or filament-inducing media to promote 

proliferation [337, 371, 372].  

 

4.3.1 Biotin uptake and biosynthesis 

The necessity of biotin for growth of C. albicans and C. glabrata was confirmed, and 

the biotin transporter VHT1 and the regulator of biotin-metabolic genes VHR1 were 

identified as important players of biotin acquisition (manuscript II). This acquisition 

system likely extends to other medically relevant Candida species (C. tropicalis, 

C. parapsilosis, C. auris and C. dubliniensis) as these species contain orthologs of 

VHR1 and VHT1 (Table 3). A difference between Candida species is the presence or 

absence of the genes BIO2-5, which enable the partial synthesis of biotin from 

precursors (manuscript II, Figure S1; Figure 3; [317]). To date, it is unknown whether 

and how the presence of BIO2-5 impacts on C. albicans colonization or virulence. The 

partial biosynthetic pathway does not largely affect pathogenicity of Candida species, 

as C. glabrata and C. parapsilosis (which both lack BIO2-5) are still the second and 

third frequent Candida species isolated from patients, while infections with C. tropicalis 

(possessing BIO2-5) are less frequent [64]. Also, a loss of BIO2-5 was dispensable for 

C. albicans´ survival and proliferation within macrophages (manuscript II, Figure S4). 

While most S. cerevisiae strains contain parts of the biotin biosynthesis cluster (BIO2-5 

genes), prototrophic S. cerevisiae strains exist, which additionally possess the genes 

BIO1 and BIO6 and are fully able to synthesize biotin [318]. It is tempting to speculate 

that there are also clinical Candida isolates that are capable of biotin synthesis.  
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The existence of the incomplete biotin biosynthesis gene cluster (BIO2-5) may be a 

benefit for C. albicans or C. tropicalis during commensalism on mucosal surfaces, 

promoting acquisition of biotin precursors from microbes living in close proximity. Also 

20% of biotin-auxotrophic bacteria of the human microbiome possess similar 

incomplete biotin biosynthetic gene clusters [373], indicating that this phenomenon is 

also found in other kingdoms. As mammalian hosts are biotin auxotroph [335] other 

microbes are likely the only potential source of such precursors for Candida species in 

the host. Conceivably, the BIO2-5 cluster could also benefit the competition of 

Candida species with other microbes, which have completely lost the ability to 

synthesize biotin, like bacteria of the Actinobacteria and Firmicutes phylum or other 

Candida species [374]. Ohsugi et al. described that members of the 

Enterobacteriaceae excrete biotin and biotin precursors, which further stresses a role 

of biotin and biotin intermediates in cross-feeding within microbial communities [373, 

375]. 

To date, the influence of biotin or biotin precursor acquisition on C. albicans 

colonization of the gut, the main reservoir of C. albicans [50, 51] has not been 

elucidated. While many studies about C. albicans gut colonization are published, most 

of these studies used antibiotic-treated mice to accomplish stable gut colonization with 

C. albicans [376]. This could be problematic to interpret the impact of biotin on 

colonization in a healthy situation as the intact microbiota is essential to producing B-

vitamins, especially biotin or biotin precursors, for the host and very likely for Candida 

[374]. Probably, the stable gut colonization with C. albicans in antibiotic-treated mice 

may be depending on biotin of the daily diet. The amount of biotin in the 

gastrointestinal tract, exemplary documented for chicken in the cecal content, is in the 

range of nanograms [377], while amounts of its precursors are not investigated. Of 

note, Candida species require only 0.2-2 ng biotin per mL for robust growth in vitro 

(manuscript II, Figure S3), suggesting enough biotin for Candida cells in the 

gastrointestinal tract containing a functional microbiota. Moreover, dietary fluctuation, 

the mode of nutrition (dietary source) and the microbiota composition of the large 

intestine (bacterial source) potentially impair the biotin content [378]. 

CgVHT1 (CAGL0K04609g) and CaVHT1 (CR_03270W) were identified as the main 

factors responsible for biotin uptake in C. glabrata and C. albicans (manuscript II, 

Figure 3). Both genes show high similarity to the S. cerevisiae high affinity biotin 

transporter gene VHT1 [379], coding for Vht1, which functions as a biotin-proton 

symporter with twelve putative transmembrane helices [379]. According to in silico 

analyses, Vht1 in C. albicans belongs to the anion: cation symporter (ACS) family as 

part of the major facilitator superfamily (MFS) [380]. BLASTp analyses revealed that 
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orthologs of VHT1 were also found in other Candida spp., Aspergillus spp. and other 

fungal species suggesting that biotin uptake is facilitated in a similar way in distantly 

related fungi [381]. Even mammals use a similar transport system consisting of a 

sodium-driven symporter (SMVT) or proton-driven symporter (MCT1) with twelve 

membrane-spanning domains [336]. In contrast, bacteria use an ATP-mediated 

transport system BioY [336], and some species additionally employ a secondary 

transporter, YigM [336]. 

Although our data strongly indicate that Vht1 is the main biotin transporter in 

C. glabrata and C. albicans, growth of vht1∆ mutants was still possible in presence of 

high external biotin. This may be due to passive diffusion of highly concentrated biotin 

into the cells. However, it cannot be excluded that a low affinity biotin transporter or 

other transporters of the MFS family, which are structurally similar to Vht1, contribute to 

biotin import [380]. Besides, C. glabrata and C. albicans genomes contain other genes 

with sequence similarities to ScVHT1 (manuscript II, Figure 2). These genes did not 

show any biotin- or VHR1-dependent transcriptional regulation, but could still mediate 

low affinity biotin uptake (manuscript II, Figure S2). Creating additional, possibly 

conditional, knock-outs in a vht1∆ mutant background strain might help to understand 

how this mutant can acquire biotin when present in high amounts.  

C. albicans and C. glabrata can use biotinylated proteins and biocytin as biotin source 

dependent on VHT1 (Figure 7). Consequently, these Candida species must possess a 

biotin salvage pathway that releases biotin from proteins or amino acids [382]. It 

remains to be elucidated which protease is required for the cleavage of biotinylated 

proteins and where this process takes place. Interestingly, the abundance of the GPI-

anchored protease Mkc7 is increased in S. cerevisiae upon biotin limitation [383]. The 

involvement of this protease in the usage of biotinylated proteins could be further 

tested, as orthologous genes are also present in C. albicans (CaSAP99) and 

C. glabrata (CgYPS2). It is also conceivable to assume that small biotinylated peptides, 

which are released by extracellular fungal proteases like yapsins [72] or Saps [44], are 

transported into fungal cells, followed by further intracellular processing. Independent 

on where biotinylated proteins are processed, a result will be the release of biocytin 

(biotinyl-L-lysine). In mammalian cells, a hydrolytic enzyme, called biotinidase [335], 

can hydrolyze biotin from biocytin to make this freely available, e.g. for later coupling to 

other acceptor proteins, or for transfer of biotin to histones [384]. The eukaryotic 

biotinidase belongs to the nitrilase superfamily, with an amidase activity on non-peptide 

bonds [384, 385]. Whether Candida species or related yeasts possess a biotinidase 

gene is unknown, but the ability to use biocytin and biotinylated proteins suggests the 

presence of such enzymatic activity.  
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4.3.2 Regulation of biotin uptake and biosynthesis 

The transcriptional regulation of biotin-related genes by Vhr1 revealed species-specific 

differences (manuscript II, Figure 4). C. glabrata showed a Vhr1-dependent 

transcriptional activation of CgVHT1, similar to S. cerevisiae [386]. In contrast, CaVhr1 

activated the expression of the incomplete biosynthetic pathway (CaBIO3-5), but not 

CaVHT1. The impact of ScVhr1 on BIO gene expression is described in baker´s yeast 

[386, 387]. In line with this, the deletion of CaVHR1 led to impaired growth with the 

biotin precursors KAPA and DTB (Figure 8D). This Vhr1-mediated activation of partial 

biotin biosynthesis could become important for acquisition of bacteria-produced biotin 

precursors (see above) during colonization of C. albicans of the mammalian 

gastrointestinal tract, where CaVHR1 was shown to be upregulated [388]. BLASTp 

analyses of the Vhr1 protein sequence exhibited that this putative transcription factor 

was exclusively found in members of the order Saccharomycetales ([381]; unpublished 

own observations), which have an enriched repertoire of genes associated with 

transcription compared to other phyla [389]. This indicates that Saccharomycetales 

may use a different regulation mechanism probably due to the biotin auxotrophy, which 

is not present in other environmental fungi. 

The CaVHR1-independent transcriptional activation CaVHT1 (manuscript II, Figure 4) 

and the delayed CgVHR1-independent upregulation of CgVHT1 (Figure 4C) upon 

biotin limitation suggested the presence of other, yet unknown, VHT1 regulators in both 

species. This was underlined by transcriptional analyses of CgVHT1 in response to 

nutrient availability and growth phase (manuscript II, Figure 3). 

The genome of S. cerevisiae possesses a VHR1 paralog, VHR2, which is present in 

the genome of C. glabrata, but not C. albicans. Both genes encode factors which share 

similarities in their DNA-binding motif and are predicted to be involved in amino acid 

metabolism [321]. Vhr2 was not involved in the transcriptional control of CgVHT1 and 

CgBPL1 (Figure 4). However, CgVHR2 was, similar to CgVHR1, necessary for survival 

after phagocytosis by macrophages. It might be possible that a Vhr1-Vhr2 core 

response improves fungal survival within macrophages. Future transcriptional profiling 

of vhr1∆ and vhr2∆ mutants may verify how and which genes are regulated by both or 

only one factor. Using a vhr1∆vhr2∆ deletion strain may improve the interpretation of 

transcriptional profiles and survival experiments. 

The chromatin-remodeling protein SNF2 or the iron regulators AFT1/2 modulate the 

expression of VHT1 in baker´s yeast [390, 391]. Orthologs of SNF2 or AFT1/2 are 

therefore candidates for additional regulators in C. glabrata or C. albicans. In 

S. cerevisiae, VHT1 and most BIO genes showed Gcn4-dependent induction in 

response to amino acid limitation [392]. DNA-binding motifs of Vhr1 and Gcn4 binding 
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are similar. BLAST analyses exhibited potential binding sites for both regulators in the 

promotor region of CgVHT1 (done in this study, not shown). In addition to that, the 

expression of CgVHT1 was not upregulated in biotin-poor medium with amino acids as 

a sole carbon- and nitrogen source - conditions at which Gcn4 is degraded [393]. 

Together, these data suggest that Gcn4 may be an additional regulator of CgVHT1. 

Therefore, it was intended to delete CgGCN4 in order to analyze the effect on CgVHT1 

expression. Unfortunately, this approach failed several times, possibly due to essential 

gene functions of CgGCN4. 

In order to identify more regulators involved in the response to biotin limitation, 

screening of transcription factor knock-out libraries in C. glabrata [347] and C. albicans 

[245] for failed VHT1 induction upon biotin limitation could be realized in future. 

 

4.3.3 Influence of biotin and VHR1 on cellular processes 

C. glabrata and C. albicans are able to grow with amino acids despite biotin limitation, 

while growth in media with glucose and ammonium was not possible without biotin. 

Interestingly, deletion of CgVHR1 showed a growth defect in biotin-limited media with 

amino acids, which did not occur when only biotin limitation or only amino acids as sole 

carbon- and nitrogen-source were present. These data may indicate a putative function 

of CgVHR1 in amino acid usage, while biotin is limited, suggesting Vhr1 as regulating 

screw between macronutrient availability and biotin acquisition. Data from S. cerevisiae 

suggest that, Vhr1 might indeed regulate Gcn4-related processes like the utilization of 

amino acids as sole carbon- and nitrogen source [321]. 

This and a previous study found that biotin promotes filamentous growth of C. albicans 

([337]; manuscript II, Figure 1). This effect is more pronounced when amino acids are 

the sole carbon- and nitrogen source (Figure 8B). Our data suggest that this is due to 

an enhanced alkalinization and ammonia release in presence of biotin – a process that 

promotes hypha formation [283]. This process seems to depend on CaVHR1, since 

mutants lacking CaVHR1 showed less ammonia release and alkalinization (Figure 8C, 

9A,C), which may be due to a disturbed usage of amino acids, similar to effects seen 

when CgVHR1 was deleted. Future studies with amino acids drop out media or 

transcriptional profiling would be helpful to get insights, which amino acid pathway is 

affected.  

The availability of biotin increases the nutritional flexibility for C. albicans and 

C. glabrata, as biotin-dependent enzymes like pyruvate carboxylase (Pyc), acetyl-CoA 

carboxylase (Acc) and urea amidolyase (Dur1,2) can promote gluconeogenesis, fatty 

acid synthesis and metabolization of urea. On the other hand, the present work shows 

that biotin limitation makes the cell more dependent on the presence of certain 
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metabolites that overcome the missing function of biotin-dependent enzymes. The 

deficiency in acetyl-CoA carboxylase or pyruvate carboxylase activities under biotin 

deprivation may be bypassed by feeding with the fatty acids or aspartate, respectively 

[394, 395]. In line with this, casamino acids (mixture of all amino acids except 

tryptophan; see also above) and aspartate bypassed the need for biotin in C. glabrata 

and C. albicans (manuscript II, Figure S1C, S3B,G). These data suggest that biotin-

auxotrophic C. albicans and C. glabrata can grow albeit solely in certain biotin-poor 

niches containing amino acids. 

The focus of this thesis was the elucidation of biotin uptake by pathogenic Candida 

species. Further studies may investigate which function of biotin within the fungal cell is 

essential to withstand macrophage killing and initiate proliferation. An important player 

may be the biotin-protein ligase 1 (Bpl1), coupling biotin to biotin-dependent enzymes. 

This factor is essential in S. cerevisiae [395] and shows Vhr1- and biotin-dependent 

regulation in C. glabrata and C. albicans (manuscript II, Figure 4). A conditional 

knock-down, probably by the established RNAi in C. glabrata, could be used to 

investigate its role during interaction with macrophages. The last parts of the biotin 

cycle in the cell are biotinylated enzymes as mentioned above. Protein biotinylation in 

C. glabrata and C. albicans decreased upon biotin limitation, but less in the pyruvate 

carboxylase, confirming the importance of pyruvate carboxylation for the cell 

(Figure 5B). 

Besides the role of biotin in carboxylase reactions, recent studies found that non-

carboxylase proteins and histones are targets of biotinylation. This posttranslational 

modification was already observed in C. albicans [396] and studies in mammalian cells 

revealed the impact of biotinylated histones in cell proliferation, gene silencing and 

cellular response to DNA damage [397]. The impact of biotinylated non-carboxylase 

proteins and histones on fungal biology and virulence needs to be determined. Likely 

the biotinylation of histones could be detrimental after engulfment by phagocytes.  

 

4.4 Biotin homeostasis in fungal virulence  

The shift from commensalism to pathogenicity requires the adaptation to new host 

environments with altering nutrient compositions [319, 398]. The necessity of biotin 

differs quite a lot for different pathogens; many pathogenic bacteria possess the 

advantageous ability to synthesize this vitamin de novo, being independent of the 

external supply during infection [293, 299, 399], whereas Candida species have to 

struggle for sufficient biotin uptake to grow properly. Phagocytic cells use direct (active 

sequestration of nutrients) or indirect (no influx of nutrients) nutrient limitation 

mechanisms to starve ingested microbes and potentially kill them [400]. Hence, 
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enduring nutrient limitations within phagocytic cells is essential for pathogenic microbes 

to survive and proliferate. At the beginning of this thesis it was unknown, whether biotin 

limitation is one stressor C. albicans and C. glabrata encounter within the phagosome 

or other host niches. 

 

4.4.1 Fungal biotin homeostasis is required for adaptation to 

macrophages 

The two unlike Candida species, C. albicans and C. glabrata, evolved different 

strategies to evade immune cell-mediated killing [401]. C. albicans favors an 

aggressive route by rapidly forming hyphae, inducing an inflammatory response and 

escape, while C. glabrata keeps the inflammatory response low, replicates as yeast 

and persists inside macrophages for days [178]. However, the phagocytosis of 

C. albicans and C. glabrata yeast cells induces a similar initial transcriptional response, 

enabling fungal survival and proliferation within the harmful phagosome [72, 175]. This 

indicates that both species have similar metabolic adaptation strategies. 

While biotin limitation prior to infection reduced survival and proliferation of C. glabrata 

and C. albicans wild type cells in macrophages (manuscript II, Figure 5), external 

biotin levels during the interaction had no impact on the interaction of the two Candida 

species with macrophages or the secretion of pro-inflammatory cytokines by these 

immune cells (Figure 9). This indicates that external biotin levels had no detectable or 

visible impact on macrophage activities in the experimental setting used. This is in 

contrast to other immune cells which showed an altered pro-inflammatory response 

depending on biotin availability [340-342]. 

While VHT1 was necessary for biotin-dependent growth in vitro and proliferation within 

macrophages, Vhr1, as transcriptional regulator of biotin-related genes, was essential 

for survival and the initial proliferation of both Candida species (manuscript II). The 

importance of VHR1 for the interaction with macrophages is supported by the strong 

upregulation of this gene upon phagocytosis (manuscript II, Figure 5G-H). When the 

intracellular biotin pool of C. albicans and C. glabrata was lowered by cultivation in 

biotin-free medium prior to infection, the intracellular survival of wild type cells and 

VHR1 deletion mutant cells was similar (manuscript II, Figure S5). This implies that 

Vhr1 functions for survival are only important when the fungus has access to a 

sufficiently high internal biotin pool. Possibly, Vhr1 functions in the reorganization of 

stored biotin. Alternatively, potential Vhr1-dependent amino acid-related processes 

may affect initial survival and proliferation (manuscript II, Figure S3B; Figure 8A,C; 

see above 4.3.3). The upregulation of amino acid permease genes upon phagocytosis 
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implies that amino acids are indeed available to internalized Candida cells [72, 175] 

and the impact of efficient amino acid metabolism on survival and proliferation of 

described for C. albicans has been extensively studied [253, 256, 285]. Nevertheless, 

the reduced survival and initially delayed proliferation of VHR1 deletion mutant cells in 

C. albicans did not cause a reduced cytolysis or cytokine response (manuscript II, 

Figure 6F and data not shown). This could be due to the delayed transcriptional 

regulation of Vhr1 targets by other factors (see CgVHT1 expression) or compensation 

by other factors. To get further insights into the potential targets of Vhr1, comparative 

transcriptional profiling during growth with amino acids as sole carbon- and nitrogen 

sources and during phagocytosis could be performed in future. 

One critical question for all studies on facultative intracellular pathogens is related to 

the access of nutrients after phagocytosis: Which nutrients are available within the 

phagosome, and which of these are used by the pathogen? Inherent or acquired 

auxotrophies in pathogens might be a useful tool to define metabolite availabilities in 

different host niches [263], and to study how pathogens acquire and exploit essential 

micronutrients during infection. This has been described nicely for 

Pseudomonas aeruginosa [402]. Previous work with biotin-auxotrophic M. tuberculosis 

and F. tulariensis mutants [403-406], and this thesis suggest that the intracellular 

compartment of those pathogens is biotin-depleted. This was mainly concluded from 

the transcriptional increase in biotin-related genes in both Candida species upon 

phagocytosis, which is underlined by previous large-scale transcriptional profiling of 

C. albicans (e.g. upregulation of BIO2, VHR1, BIO5, and BPL1) [175] and C. glabrata 

(e.g. upregulation of BPL1 and VHT1) [72]. Taken together, a rich biotin storage and a 

functional biotin acquisition pathway (Vhr1-Vht1) increased fungal fitness inside 

macrophages (manuscript II, Figure 5-6), suggesting that a functional biotin 

homeostasis is even more beneficial for the fungus within a biotin-depleted 

phagosome. Similarly, other vitamins may be limited in the phagosome. The fungus 

H. capsulatum, for example, needs riboflavin biosynthesis for proliferation within 

macrophages and virulence in vivo [305]. All in all, the depletion of essential vitamins 

can be assumed as new form of nutritional immunity [265]. It is so far unknown, 

however, whether this process is active or passive. 

As discussed above, the scarcity of biotin in host niches like the phagosome may be 

bypassed by amino acids (manuscript II, Figure S3; Figure 8). In addition, 

proliferation of C. albicans (as hypha) and C. glabrata (as yeast) followed by bursting 

of, possibly, first the phagosomal and second the cytosolic membrane could allow 

fungal access to host-derived biotin or other alternative biotin sources (biotinylated 

proteins or biocytin), which can be used in a Vht1-dependent manner (manuscript II, 
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Figure S1; Figure 7). Such host-derived biotin sources may explain why a CaVHR1 

deletion mutant had initial survival and proliferation defects, but caused wild type-like-

like late macrophage damage, while a CaVHT1 deletion mutant was attenuated in both, 

proliferation and host cell damage. To further elucidate whether Candida can indeed 

use host-derived biotin sources during infection, feeding macrophages with 

radiolabeled biotin could be performed. This method is commonly used for other 

nutrient sources like amino acids (stable isotope labeling with amino acids; SILAC 

[407]). In case Candida cells can use host-derived biotin, radiolabeled biotin should 

appear inside of Candida cells. 

Besides the effects of Vht1 on fungal proliferation and macrophage damage, the 

C. albicans-induced inflammatory response was also diminished. The inflammasome, 

an important inflammatory pathway, lead to secretion by IL-1β secretion [408] and is 

activated by C. albicans and not by C. glabrata [345]. Early secretion of IL-1β by 

macrophages was highly attenuated after challenge with a biotin-starved Cavht1∆/∆ 

mutant (Figure 11A). Of note, this phenomenon was only observed in biotin-free 

infection medium, whereas the presence of 2 mg/L biotin during infection, which is 

sufficient to support growth of this mutant in culture medium (manuscript II, Figure 3), 

led to wild type-like IL-1β release (Figure 11A). Similarly, the biotin-starved Cavht1∆/∆ 

mutant caused reduced macrophage damage and release of pro-inflammatory 

cytokines at later time points (Figure 11B-F). This indicates that CaVHT1-dependent 

proliferation within macrophages is essential for the early and late inflammatory 

response, linked to macrophage lysis. The activation of the inflammasome in 

macrophages finally leads to a programmed cell death, caused by pyroptosis [408], 

which increases fungal survival [409]. Thus, the reduced survival of the biotin-starved 

Cavht1∆/∆ mutant (manuscript II, Figure S5B) may be linked to reduced 

inflammasome activation (Figure 11A). Either the pre-feeding or the presence of high 

amounts biotin during infection can increase survival and inflammasome activation 

(manuscript II, Figure 6C; Figure 11A). Probably biotin can be taken up with one 

yeast cell during phagocytosis and promoting intraphagosomal growth of the 

Cavht1∆/∆ mutant and progressive cytolysis. A large scale screening of macrophage 

inflammasome activation upon challenge with different C. albicans strains suggests 

that CaVHT1 is involved inflammasome activation by C. albicans [409]. Several studies 

showed that C. albicans filamentation and cell wall remodeling activated the 

inflammasome in macrophages [345, 410, 411], which, both, might be lacking in the 

biotin-starved Cavht1∆/∆ mutant. The lack of filamentation of the Cavht1∆/∆ mutant in 

biotin-limited environments supports this view and may explain the attenuated induction 

of IL-1β caused by this mutant. 
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4.4.2 VHT1-mediated biotin acquisition promotes fungal fitness in the 

murine host and virulence 

C. glabrata and C. albicans are able to disseminate to almost all organs during 

systemic infection but cause different infection outcomes in commonly used mouse 

models. C. albicans induces a fast and progressive immune reaction and mice die from 

dysregulated inflammatory response, immunopathology and sepsis [412]. In contrast, 

C. glabrata persists over weeks in various mouse tissues [68, 413-415], induces only a 

transient pro-inflammatory cytokine response within colonized host tissues and causes 

a minor influx of immune cells [66, 68, 413, 415, 416].  

In stark contrast to these differences in vivo, C. albicans, like C. glabrata, requires an 

external biotin supply for robust growth facilitated by the putative high affinity biotin 

transporter Vht1 (manuscript II). The attenuated virulence of a C. albicans vht1∆/∆ 

mutant during systemic challenge therefore strongly suggests that biotin acquisition is 

necessary for C. albicans virulence. Importantly, the reduced burdens in C. glabrata 

vht1∆ mutant-infected brains and C. albicans vht1∆/∆ mutant-infected kidneys and 

brains implied a biotin-dependent proliferation in those organs (manuscript II, 

Figure 7). Importantly, kidney and temporarily the brain are target organs in which 

C. albicans filaments, but not in liver and spleen [66, 143, 147, 417-420]. The 

morphological plasticity of C. albicans is necessary for virulence and mutants that 

cannot change between yeast and hyphal morphology are often attenuated [33]. As 

known from the in vitro and macrophage studies, VHT1 deletion leads to a reduction in 

hyphal growth when biotin is limiting (manuscript II, Figure 3, 6). The lack of hyphae, 

thus, may be one reason for reduced virulence of the Cavht1∆/∆ mutant. Histological 

analyses would be required to elucidate the fungal morphology of the Cavht1∆/∆ 

mutant in these organs. Moreover, previous observations showed also that C. glabrata 

is able to temporarily proliferate in the brain (manuscript II, Figure 7; [66, 68, 421]), 

the organ with a VHT1-dependent colonization effect.  

The bioavailability and the accessibility of biotin during infection of mouse organs with 

C. albicans and C. glabrata remain unclear. However, several studies showed that the 

blood is richest in biotin, followed by the liver and kidney tissues, and lowest biotin 

amounts are found in brain and spleen (Table 4). 

Another explanation for the reduced cfus of a VHT1 deletion mutant in the brain may, 

however, also be a differential organ tropism of this mutant. So far, the exact location of 

brain-colonizing C. glabrata and how it crosses the blood brain barrier (BBB) is 

unknown. C. albicans and Cryptococcus neoformans are able to cross the BBB in vivo 

and in vitro [422-424]. C. glabrata may use pathways for BBB passage similar to those 
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described for Cr. neoformans - transcytosis across endothelial cells [425], or 

paracellular passage [423, 426]. Alternatively, the use of migrating macrophages as 

“Trojan horse” has been reported for Cr. neoformans [427]. Interestingly, fungal inositol 

transporters are required for the transmigration of Cr. neoformans across the BBB, 

suggesting alterations of the fungal metabolism during passages [428]. However, in 

contrast to biotin (Table 4), inositol is highly abundant in brain tissue [429, 430], which 

could be an attractant for disseminating cryptococcal cells. To distinguish between 

Vht1-dependent organ trafficking and subsequent proliferation, quantification of initial 

brain and kidney colonization by the vht1∆ mutants at early section time points (6 and 

12 h) may be necessary. Sensing the vitamin status in certain niches may influence not 

only organ tropism but also virulence traits, as e.g. nicotinic acid can modulate 

adhesion of C. glabrata [309], differentiation of Legionella pneumophila [431], and 

virulence gene expression in Bordetella pertussis [432]. It would be highly interesting to 

elucidate whether biotin availability can directly modulate the expression of virulence-

associated genes. In the case of C. albicans it seems clear that the presence of biotin 

promotes filamentation in C. albicans, an important virulence trait and associated with 

the expression of several further virulence factors [32]. 

 

Table 4: Documented amounts of biotin in various host tissues. 

organ host Concentration reference 

brain rat 
0.046 

0.073 

µg/g 

µg/g 

[434] 

[435] 

blood rat 13.34 µg/L [434] 

cerebrospinal 

fluid (CSF) 
rabbit 

1.95 µg/L [435] 

liver 

Rat 0.44 µg/g [434] 

Pig 0.51* – 0.83# µg/g [436] 

chicken 2.02* – 5.59#  µg/g [436] 

kidney Rat 0.3 µg/g [434] 

spleen Rat 0.012 µg/g [434] 

* biotin-depleted, # biotin-supplemented, 4.09316 nmol/g ≙ 1 µg/g. Candida species require only 

0.2-2 µg/L (app. 0.0002-0.002 µg/g) biotin for robust growth in vitro. 

 

The importance of biotin for C. albicans and C. glabrata shown in this thesis resembles 

the results of studies with the bacterial pathogens M. tuberculosis and F. tulariensis, 

which provided evidence that biotin is required for intraphagosomal fitness and 

virulence [403, 404, 406]. Nevertheless, inhibition of biotin synthesis in other fungal and 

bacterial pathogens was not accompanied with attenuated virulence [305, 433], due to 
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the presence of biotin transporter genes and high plasma biotin level in mice [433]. 

This could also explain why the CaVHT1 deletion mutant was not completely avirulent 

during systemic candidiasis, depicted by a delayed infection progression in at least 

some mice (manuscript II, Figure 7B). 

It was surprising that, despite a strict requirement for high external biotin, vht1∆ 

mutants of both Candida species colonized liver and spleen similarly to the wild type 

(manuscript II, Figure S6). Possibly, both species have access to excessive biotin in 

these organs, or fungal proliferation per se is restricted in these tissues, making Vht1-

dependent biotin acquisition dispensable. Of note, C. albicans´ filamentation, as 

indicator of proliferation, is actively inhibited by specialized phagocytes in the liver 

[174], which likely support the growth inhibition in this organ. Histological sections from 

different C. glabrata-infected mouse organs showed accumulated yeast cells (each > 5 

yeast cells) [68], which can be explained by either proliferation of few yeast cells in the 

tissue or by bursting of a group of initially administrated yeast cells from the blood 

stream into the tissue. Further approaches are required to distinguish between injected 

mother cells and daughter cells, and to learn about the level of organ-specific 

proliferation in the host. For such experiments, fluorescently labeled yeast cells, 

similarly to those used in manuscript II, or fluorometric cell cycle assays would be 

useful to track cell division [437, 438]. 

Similar to the organ cfu kinetics during persistence of in vivo, the viability and resulting 

cfu count of C. glabrata under nutrient-limited conditions (staying in PBS) lowered 

continuously. Also, a macrophage persistence model showed only weak intracellular 

proliferation of C. glabrata over the duration of one week, and a continuous decline in 

fungal burden due to fungal killing [Fischer et al., unpublished data]. Consequently, 

weak or no fungal proliferation together with fungal clearance by decreased viability or 

host-mediated mechanisms lead to the diminished fungal burden over time. Indeed, 

growth is not always required in the lifestyle of pathogens. Cellular quiescence 

represents a strategy to slow down or arrest microbial growth favoring persistence for 

days or months up to years [439], leading to chronic infections [440]. Those microbial 

populations are better tolerated by the immune system and resist antimicrobial 

therapies [440], which could be a characteristic for the chronic phase of C. glabrata 

infections [68]. 

In conclusion, C. glabrata and C. albicans, different in their infection strategies, employ 

a similar biotin uptake system, which is essential for the interaction with macrophages 

and during systemic infections. The usage of the biotin transporter mutant allows 

investigating in which niches biotin may be limited and where biotin is important for 
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fungal proliferation. Thus, the uptake of biotin by pathogenic Candida species 

represents a metabolic adaptation strategy during infection. 

 

4.5 Outlook  

It needs to be clarified whether the role of biotin on the interaction of Candida cells with 

macrophages is indeed linked to the phenotypes observed in vivo. During systemic 

infection with C. albicans, inflammatory monocytes and macrophages expand, 

especially in spleen and liver and promote fungal clearance [147]. Apart from the 

histological association of C. glabrata with and the attraction of monocytic cells ex vivo 

[68, 194], the role of monocytic cells for the dissemination and the persistence or 

clearance of C. glabrata during systemic infection is unknown. However, the 

importance of macrophages for protection from fungal infection seems to hold true for 

different pathogens besides C. albicans. Macrophage depletion curtailed 

Blastomyces dermatitidis infection [441], and monocytes are used as “Trojan horse” for 

dissemination and BBB translocation by Cr. neoformans [427, 442]. Macrophage 

depletion experiments [443] together with immunohistochemical analyses could be 

used to further characterize the interaction of C. glabrata with monocytic cells in vivo. 

Furthermore, the mechanism of brain colonization by C. glabrata, probably by crossing 

the BBB, could be further investigated using a microfluidic chip model to mimic the 

blood circulation, the endothelial barrier and the barrier supporting brain parenchyma, 

mainly astrocytes and microglial cells. 

The C. glabrata mouse model used does not lead to killing of the host, while human 

patients can die from systemic C. glabrata infections. Consequently, we do not know 

whether VHT1 and biotin acquisition are required for C. glabrata´ virulence, similar to 

C. albicans. The prevalence of C. glabrata infections is increased in elderly people, 

which is often associated with a senescent immune system and metabolic disorders 

[64, 65]. Therefore, a novel systemic candidiasis infection model with aged mice could 

be developed, which mimics more the human situation. 

This thesis revealed many aspects of the biotin metabolism in two highly prevalent 

Candida species, but the exact role of the biotin biosynthesis cluster in the viability and 

pathogenicity or commensalism of C. albicans (and also C. tropicalis) remains unclear. 

The reintegrating of the biotin prototrophy in C. albicans, by using BIO1 and BIO6 from 

prototrophic S. cerevisiae strains [318], could be a useful tool to study the effect on 

colonization and virulence to answer another key question: whether a biotin auxotrophy 

is a fitness cost, which makes Candida cells dependent on the microbiota and the 

host? 
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6 Appendix 

6.1 Additional experimental procedures  

The following sections contain a more detailed description of the mutagenesis in 
C. albicans and C. glabrata and methods referring to the additional data. 
 

6.1.1 Additional in silico tools 
 
To design primer sequences and develop cloning strategies the software 
CloneManager 9 was used. Chemical structures and formulas were constructed with 
ChemBioDraw Ultra13.0. All figures were created with Adobe Illustrator CS5.1, 
Microsoft PowerPoint or GraphPad 5. The expression data were analyzed with Bio-Rad 
CFX Manager.   
 

6.1.2 Additional strains, plasmids and oligonucleotides  
 

Additional strains (Table 5), oligonucleotides (Table 6), and plasmids (Table 7) are not 
mentioned in manuscript II and V and referred to the additional data. 
 

Table 5. Strains. 

name internal ID designation/ genotype reference 

C. glabrata strains 

Cgtrp1∆ Cgvhr2∆ G318 trp1::FRT; CAGL0J03014g::NAT1 this work 

Cgvhr2∆ G320 trp1::TRP1; CAGL0J03014g::NAT1 this work 

Cgvhr2∆ + 

CgVHR2 
G319 

CAGL0J03014g::NAT1;  

trp1::(TRP1- CAGL0J03014g) 
this work 

 

Table 6. Oligonucleotides. 

oligonucleotide 
name 

sequence (5´ 3´) used for reference 

CgVHR2 cloning 

pUC19-VHR2-
up-fwd 

CCGGGGATCCTCTAGAATTTCGA
GCTCTCGTTTATC 

cloning of VHR2 
deletion construct 

this study 

VHR2-up-U1-rev 
CGCGCCTAGCAGCGGTGTGTATC
TCTGCTGTTGTGGC 

this study 

VHR2-down-D1-
fwd 

CGGCCGCATCCCTGCTTCTCCTA
GGGACAATTTGGATC 

this study 

pUC19-VHR2-
down-rev 

CAGGTCGACTCTAGAACCTAACG
AACTTTTGTGTTTAATAC 

this study 

VHR2del-amp-
fwd 

TCTCGTTTATCTTATATATTC amplification of 
VHR2 deletion 
construct from 
plasmid 

this study 

VHR2del-amp-
rev 

ACGAACTTTTGTGTTTAATAC this study 

VHR2-up-fwd TGGGCCAACTGGGCTACATC 
verification 

this study 

VHR2-down-rev AGCCAGCGGAAGCTAGTGAG this study 
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pTRP1-VHR2 
fwd 

GCAGGTCGACTCTAGATTTCGAG
CTCTCGTTTATC cloning of VHR2 

complementation 
construct 

this study 

pTRP1-VHR2 
rev 

CCGGGGATCCTCTAGAACGATGA
CAAGGCCAAGGAG 

this study 

CgVHR2 RT fwd CAGCATAACAGCCAGATGAC 

verification 

this study 

CgVHR2 RT rev AAAGCGCTGACGGACCTTGG this study 

VHR2 ctrl rev AATTGCTCGCGGATCTTGTG this study 

VHR2 seq-fwd GATACGGTACCACCCACAAG verification this study 

probe synthesis 

VHR2 prom 
Sonde fwd 

TTTCGAGTGATGGCCCAATG this study 

VHR2 prom 
Sonde rev 

GCGCATGATCCATTGTGCAG this study 

CgDUR1,2prom 
Probe fwd 

TCAGCCGATAAGAGTTACCC this study 

CgDUR1,2prom 
Probe rev 

GCAATTTCCAGCCAAAATAC this study 

CaDUR1,2prom 
Probe fwd 

CCACATCTCATCCTCATTATC this study 

CaDUR1,2prom 
Probe rev 

GGGACCATCAAATGCCATAG this study 

quantitative RT-PCR oligonucleotides 

C. glabrata genes 

CgACC1 RT fwd GAGTGAGAAGGGTCTATCTG this study 

CgACC1 RT rev CCTCGTTCAAACGGCGTCTC  this study 

CgPYC1-RT fwd GAGAAAGATTCGCGTACCTG this study 

CgPYC1-RT rev TTTACCTGGCCATCTGCTTG  this study 

CgPYC2-RT fwd TTGGCACCATTCGACTTAGC this study 

CgPYC2-RT rev CTCTGATACCGGTTTCTTCG this study 

C. albicans genes 

CaPYC2 RT fwd TGGCTGTTGGTGATGTTTCG this study 

CaPYC2 RT rev CGGCAATTGGATCACCTTTAGC this study 

CaACC1 RT fwd GCAGGTCAAGTGTGGTATCC this study 

CaACC1 RT rev GAGCCACCTCTCAATTCTCC this study 

green:  homolog to XbaI-linearized vector pUC19 
blue:  homolog to XbaI- linearized vector pTRP1 
 

Table 7. Plasmids. 

plasmid features/Use reference 

pCgNAT1-
VHR2 

Amplification of CgNAT1 cassette with up- and downstream 

flanking sequences of CAGL0J03014g 
this study 

pCgTRP1-
VHR2 

Amplification of CgTRP1 and CAGL0J03014g, complementation 

of tryptophan auxotrophy and CgVHR1 deletion 
this study 
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6.1.3 Isolation of genomic DNA 

Dependent on the follow-up experiments, genomic DNA was either isolated with a 
quick isolation protocol for standard PCR or the lyticase protocol for high-molecular 
DNA preparation used for Southern blotting. For both protocols, a liquid culture of 
Candida cells was grown overnight at 30°C (C. albicans) or 37°C (C. glabrata) in YPD 
or SD medium. Cells were harvested by centrifugation (4,000g; 2 min, RT). 
 
Quick DNA isolation 
The cells were disrupted by two freeze and thaw steps (2 min at -80°C and 1 min at 
95°C) in 250 µL Harju buffer (2% Triton™ X-100, 1% SDS, 100 mM NaCl, 10 mM Tris-
HCl pH 8.0, 1 mM EDTA) followed by vortexing. The cell debris was precipitated by 
adding 250 µL chloroform and centrifugation (20,000g; 5 min, RT). Following, the 
hydrophilic phase was transferred into a new microcentrifuge tube containing 500 µL 
ice-cold 100% ethanol. The DNA was precipitated by centrifugation (20,000g; 5 min, 
RT), washed once with 70% ethanol and air-dried. The transparent DNA pellet was 
reconstituted in 100-200 µL ddH2O. 
 
Isolation of high-molecular DNA 
The cells were washed with 1 mL ddH2O, transferred in 2 mL screw tubes and 
centrifuged (20,000g; 1 min, RT). The cells were resuspended in 1 mL lysis buffer (1 M 
sorbitol; 100 mM sodium citrate, pH 5.8; 50 mM EDTA, pH 8.0; 0.6 mg/mL lyticase and 
2.5% β-mercaptoethanol) and incubated at 37°C for 45 min. Afterwards the cells were 
centrifuged, resuspended in 800 µL proteinase buffer (10 mM Tris-HCl, pH 7.5; 50 mM 
EDTA, pH 7.5; 0.5% SDS; 1 mg/mL proteinase K) and incubated at 60°C for 30 min. 
The cell debris was precipitated by adding 800 µL phenol/chloroform/isoamylalcohol 
(25:24:1), mixed with vortex device for 4 min and centrifuged (20,000g; 5 min, RT). The 
hydrophilic phase was transferred into a new microcentrifuge tube containing 750 µL 
isopropanol. The precipitated DNA was centrifuged (20,000g; 5 min, RT), washed with 
600 µL 70% ethanol and air-dried. The transparent DNA pellet was reconstituted in 
200 µL ddH2O containing 10 mg/mL RNase A. 
The DNA quantity was evaluated using a NanoDrop Spectrophotometer (ND-100, 
Peqlab). The DNA was stored at 4°C (short term) or -20°C (long term). Dilutions of 
DNA were made freshly. 
 

6.1.4 Polymerase Chain Reaction (PCR) and gel electrophoresis 

Taq-PCR 
This PCR was used for all standard reactions (genotyping of mutants), which do not 
require proof-reading activity (Table 8). 
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Table 8: Components and conditions of Taq-PCR. 

Component per reaction 
PCR program: 

nuclease-free water 14.3 µL 

10× ThermoPol® Puffer 2 µL Initial denaturation 95°C 30 sec  

10 mM dNTPs 0.5 µL Denaturation 95°C 30 sec 

30×  10 µM forward Primer 0.5 µL Annealing xx°C1 30 sec 

10 µM reverse Primer 0.5 µL Extension 68°C xx sec2 

Taq DNA Polymerase 0.2 µL Final extension 68°C 10 min  

template DNA 100 ng (1 µL) hold 4°C ∞  

1 The annealing temperature was calculated with Tm calculator v 1.12.0 from NEB. 
2 The extension time was dependent on fragment length; 1,000 bp = 60 sec. 

 
Colony PCR 
The colony PCR was performed to directly check E. coli transformants for correct 
plasmid constructs. Instead of 1 µL of DNA, a small amount of colony material was 
inoculated into one 20 µL reaction. The initial denaturation step was extended to 5 min.  
 
High fidelity PCR 
This PCR was used for the synthesis of all cloning and transformation constructs 
(Table 9). 
 

Table 9: Components and conditions of High fidelity PCR. 

Component per reaction 
PCR program: 

nuclease-free water 32.5 µL 

5× Phusion HF  10 µL 
Initial 

denaturation 
98°C 30 sec 

 

10 mM dNTPs 1 µL Denaturation 98°C 10 sec 

35×  10 µM forward Primer 2.5 µL Annealing xx°C1 20 sec 

10 µM reverse Primer 2.5 µL Extension 72°C xx sec2 

Phusion® DNA Polymerase 0.5 µL 
Final 

extension 
72°C 10 min 

 

template DNA 100 ng (1 µL) hold 4°C ∞  

1 The annealing temperature was calculated with Tm calculator v 1.12.0 from NEB. 
2 The extension time was dependent on fragment length; 1,000 bp = 30 sec. 

 
 
 
Probe PCR 
The synthesis of Southern blot probes required the incorporation of digoxigenin (DIG)-
labeled dNTPs into the PCR product to detect gene-specific fragments in the Southern 
blot. All components are part of the PCR DIG Probe Synthesis Kit (Roche, Table 10). 
The high fidelity PCR program (Table 9) was used. 
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Table 10: Components of the PCR synthesizing Southern blot probes. 

Component labeling reaction control reaction 

nuclease-free water 34.25 µL 34.25 µL 

PCR Buffer with MgCl2 (3)  5 µL 5 µL 

PCR DIG mix labeled (2) 2.5 µL - 

PCR DIG mix unlabeled (4) 2.5 µL 5 µL 

10 µM forward Primer 2.5 µL 2.5 µL 

10 µM reverse Primer 2.5 µL 2.5 µL 

Expand High Fidelity  
DNA Polymerase (1) 

0.75 µL 0.75 µL 

template DNA 100 ng (1 µL) 100 ng (1 µL) 

 
The synthesized fragments were mixed with 1× loading dye, separated by size in 1% 
agarose gels in 1× TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) for 40-
60 min at 90-130 V and for size comparison 0.6 µg GeneRuler™ 1 kb DNA Ladder, 
ready-to-use (Thermo Fisher) was carried along. DNA fragments were stained in an 
ethidium bromide bath (0.15% staining solution, Fisher BioReagents) and visualized 
under UV light using an INFINITY3026 Imager with a camera and InfinityCapt V14.2 
software. 
 

6.1.5 Transformation of E. coli and isolation of plasmid DNA 

One aliquot (app. 50 µL) of chemically competent E. coli cells (Stellar™ cells or DH5α) 
was thawed on ice. One hundred ng pure plasmid DNA or 5 to 10 µL ligation mixture 
was added to the cells and chilled on ice for additional 15 min. The uptake of DNA was 
facilitated by the heat shock method (42°C, 90 sec) and incubation in ice-cold water for 
1 min. To express the antibiotic resistance gene, 450 µL LB or SOC medium was 
added and the cell suspension was incubated for 1 h at 37°C and 180 rpm. Different 
dilutions (1:10 and 1:100) were platted on LB agar (with 50 µg/mL ampicillin; LB-Amp) 
and incubated over night at 37°C. Grown colonies were checked for positive 
constructed plasmids via colony-PCR, streaked on fresh LB-Amp agar and grown o/n 
37°C. For plasmid isolation, positive clones were incubated in LB-Amp medium at 37°C 
and 180 rpm, dependent on the required amount of plasmid DNA, 5 or 25 mL cultures 
were used. The cultures were harvested by centrifugation, washed with water and the 
cell pellet was resuspended in 350 µL P1 buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA 
and freshly added 100 µg/mL RNase A). The bacterial lysis was executed by adding 
350 µL P2 buffer (200 mM NaOH, 1% SDS) and inverting the cell suspension. After 
5 minutes, the lysis was neutralized by adding 350 µL P3 buffer (3 M potassium 
acetate pH 5.5). The precipitated cell debris and chromosomal DNA was removed by 
centrifugation (20,000g; 5 min, RT). One milliliter supernatant was transferred in a new 
tube containing 500 µL isopropanol and mixed by vortexing followed by centrifugation 
(full spin, 10 min, RT). The precipitated plasmid DNA was washed once with 500 µL 
70% ethanol, air-dried and reconstituted in 30-100 µL ddH2O. 
 



Additional experimental procedures  
 

 

6.1.6 Southern blot 

High-molecular genomic DNA was digested with the appropriate restriction enzyme for 
2 h to 16 h in the thermo-cycler. The reaction buffer and time, as well as inactivation 
procedure were selected according to the manufacturer's recommendations. The 
digested DNA was separated in a 1% agarose gel for 16 h with a current potential of 
27 V. For size comparison, the DNA Molecular Weight Marker III, DIG-labeled (50 pg 
per lane, Roche) was carried along. A small gel was loaded and stained with ethidium 
bromide (0.15% staining solution, Fisher BioReagents) to check for successful 
digestion. The DNA was pretreated in acid to ensure efficient transfer. The agarose gel 
was rinsed 10 min in Depurination solution (0.25 M HCl) and shortly in water. The gel 
was denatured two times for 15 min in Denaturing solution (0.5 M NaOH, 1.5 M NaCl) 
and washed briefly in water. Finally, the gel was rinsed in Neutralization buffer (1 M 
Tris-HCl pH 7.5; 1.5 M NaCl) two times for 15 min and equilibrated for at least 10 min 
in 20× SSC (3.0 M NaCl, 0.3 M Sodium Citrate, adjust pH to 7.0).  
 

 
Figure 12: Setup of vacuum blotting to transfer DNA from agarose gel to positively-
charged nylon membrane.   

The nylon membrane (positively charged, Roche) was rinsed 2 min in water and 15 min 
in 20× SSC to activate the membrane, before the DNA was blotted 1.5 h at 50-
100 mbar (Figure 12). In between fresh 20× SSC was added to the agarose gel 
preventing dehydration. Before DNA crosslinking, the membrane was rinsed 30 sec in 
0.4 M NaOH, 30 sec in 0.2 M Tris-HCl pH 7.5 and dried 10-15 min on a piece of 
Whatman™ filter paper. The DNA was crosslinked to the membrane by UV light 
(120 mJ/cm2) for at least 60 sec and the membrane was rinsed with 2× SSC. The 
membrane was incubated for at least 45 min at 40-44°C in 20 mL pre-warmed DIG 
Easy Hyb™ under rotation in hybridization flasks (Biometra). The optimal hybridization 
temperature is dependent on GC content and length of the probe. The probe was 
denaturized at 99°C for 5 min, cooled on ice and 5-20 µL, depending on strength of 
PCR product, were added to the pre-hybridization solution. The probe was hybridized 
overnight at 40-44°C under rotation. 
The membrane was washed two times in low stringency buffer (2× SSC, 0.1% SDS) for 
5 min and two times in pre-warmed high stringency buffer (0.1× SSC, 0.1% SDS, 68°C 
or 0.5× SSC, 0.1% SDS, 65°C) for 15 min. Afterwards, the membrane was rinsed twice 
with maleic acid buffer (0.1 M maleic acid, 0.15 M NaCl, pH 7.5 with 0.3% Tween®20) 
and once with maleic acid buffer without Tween®20 for 5 min each. Unspecific binding 
sites on the membrane were blocked with 1% blocking solution (Roche) in 1× maleic 
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acid buffer for 30 min at RT. Then, anti-Digoxiginin-AP, Fab fragments (Roche, 
1:10,000 diluted) were added and incubated for 1 h at RT under rotation. Afterwards, 
the membrane was rinsed twice with maleic acid buffer (0.1 M maleic acid, 0.15 M 
NaCl, pH 7.5 with 0.3% Tween®20) and twice with maleic acid buffer without Tween®20 
for 15 min each. The membrane was equilibrated for 5 min in alkaline phosphatase 
buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5) under shaking in a plastic shell. The 
chemiluminescence reaction was started by adding CDP-Star® (Roche, 1:100 diluted in 
alkaline phosphatase buffer) onto the membrane in the plastic foil and incubated 5 min 
at RT in the dark. The membrane was shortly dried on Whatman™ filter paper and the 
chemiluminescence was detected in the Chemoimager with an exposure time of 1 h. 
 

6.1.7 Protein isolation and Western blot of biotinylated proteins 

For preparation of whole protein extracts, stationary phase cells were washed three 
times in PBS, diluted to OD600 0.2 into minimal medium without biotin and incubated 
at 30°C (C. albicans) or 37°C (C. glabrata) at 180 rpm for 4 and 24 h. The cells were 
harvested and mechanically lysed in PBS-KMT (PBS + 3 mM KCl, 2.5 mM MgCl2, 0.1% 
Triton-X-100) + protease inhibitor cocktail (Roche) with acid-washed glass beads by 
bead beating in a Precellys 24 homogenizer (Peqlab; 6.500 rpm, 2 cycles, each 30 sec, 
30 sec pause). The lysate was centrifuged (14,000 rpm, 4°C for 5 min) and the protein 
concentration of the supernatant was determined by Pierce™ BCA Protein Assay Kit 
(Thermo Fisher Scientific). Fifteen µg protein per condition and strain were denatured 
in one-fourth volume of 4× Lämmli buffer (125 mM Tris-HCl pH 6.8, 50% glycerol, 4% 
SDS, 0.02% bromophenol blue, 1:10 β-mercaptoethanol) at 95°C for 5 min and 
separated by denaturizing SDS-PAGE with Rotiphorese® Gel 30 (final 8% acrylamide 
mix (Roth)). Proteins were electro-transferred to nitrocellulose membranes (Whatman) 
in blotting buffer (25 mM Tris, 192 mM glycine, 10% methanol and 0.1% SDS) and free 
binding sites were blocked with 5% milk powder in TBS (0.5 M Tris, 1.5 M NaCl, pH 
7.6) + 0.05% Tween®20 (TBS-T) overnight. The membrane was incubated with 
Streptavidin-HRP (CST), which was diluted 1:4000 in TBS-T containing 2% BSA 
(Serva), and incubated for 2 h at room temperature and gentle shaking. The membrane 
was rinsed three times in TBS-T and two times in TBS, followed by chemiluminescence 
detection using Pierce™ ECL Plus Western Blotting Substrate (Thermo Fisher 
Scientific) according to the manufacturer´s instructions. 
 

6.1.8 Construction of Candida mutant strains 
   

6.1.8.1 Mutagenesis strategy in C. albicans  

All C. albicans mutants were generated in the Arg-, His-, and Ura--auxotrophic parental 
strain background BWP17 using a PCR-based gene disruption strategy [444]. The 
detailed description of the construction of the CaVHR1 and CaBIO2-5 deletion mutants 
in C. albicans is enclosed in the Master thesis of Teresa Sofie Hartung [445]. The 
construction of the CaVHT1 (CR_03270W∆/∆) and CaDUR1,2 (C1_04660W∆/∆) 
deletion mutants is exemplarily depicted for CaVHT1 (Figure 13) and described in 
manuscript II and manuscript V, respectively. 
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Figure 13: Gene mutagenesis and complementation in C. albicans, exemplary shown for 
CaVHT1. (A) Left: Separate amplification of HIS1 and ARG4 deletion cassettes with long 
oligonucleotides from pFA-HIS1 and pFA-ARG4 [444], respectively. The gray overlapping 
sequences of the primers are homologous to the up- and downstream regions of the GOI. 
Middle: Structure of the GOI (VHT1) locus in the diploid parental strain BWP17. (B) Sequential 
deletion of both gene alleles by two subsequent transformations with HIS1 and ARG4 
constructs and homologous recombination. (C) After correct gene deletion, the strain was either 
complemented with URA3 by using the CIp10 plasmid [110] (non-auxotrophic mutant) or 
reconstituted with URA3 and the GOI by cloning the GOI into CIp10. The black arrows indicate 
the location of primers used to verify the correct insertion in the transformed yeast cell.    

 
The transformation protocol was adapted from [446]. Briefly, C. albicans cells from a 
stationary culture were adjusted to OD600 0.2 in 24 mL YPD medium and grown to 
exponential phase (until OD600 0.8 was reached) for 3-4 h at 180 rpm and 30°C The cell 
suspension was harvested by centrifugation (5 min; 3,000g) and washed with 10 mL 
water resuspended in 500 µL TELiAc. In a new microcentrifuge tube, 10 µL of carrier 
DNA (UltraPure™ Salomon Sperm DNA Solution, Life Technology GmbH, boiled 
10 min at 98°C prior to use and stored on ice), 1-10 µg of linearized DNA (plasmid 
DNA or PCR product) and 100 µL of Candida cells in TELiAc (1× TE, pH 7.4; 
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0.1 M lithium acetate) were mixed. Next, 600 µL PEG/LiAc solution (40% PEG3350, 
0.1 M lithium acetate, 1x TE) was added and mixed by pipetting gently up and down. 
The transformation mixture was incubated o/n at 30°C. On the next day, the DNA 
uptake was facilitated by the heat shock at 44°C for 15 min in the water bath followed 
by cooling on ice for 1 min. The cells were centrifuged (5 min; 6,000 rpm) and washed 
once with YPD medium. Finally, the cells were washed and resuspended in 450 µL 
PBS and spread on three SD plates in equal proportions. The agar plates were 
incubated at 30°C for 2-4 days. Grown colonies were streaked on fresh plates and 
used for genomic DNA isolation. The correct integration of deletion and 
complementation cassettes was confirmed by PCR and Southern blot (Figure 14-15). 
 

 
Figure 14: Verification of CaVHT1 deletion and complementation by Southern blot. A 
CaVHT1-specific probe, generated by PCR using primers Ca19.2397term Sonde fwd (4/74) and 
Ca19.2397term Sonde rev (4/75) (product size: 199 bp). The high molecular genomic DNA was 
digested with PsiI, giving different bands in strains with the native gene (Ca wt [BWP17]), 
heterozygous deletion mutant (vht1∆), homozygous deletion mutant (vht1∆/∆ CIp10) and 
complemented strains (vht1∆/∆+VHT1). 
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Figure 15: Verification of CaDUR1,2 deletion and complementation by Southern blot. A 
CaDUR1,2-specific probe, generated by PCR using primers CaDUR1,2prom Probe fwd (5/28) 
and CaDUR1,2prom Probe rev (5/29) (product size: 236 bp). The high molecular genomic DNA 
was digested with PsiI, giving different bands in strains with the native gene (Ca wt [BWP17]), 
heterozygous deletion mutant (dur1,2∆), homozygous deletion mutant (dur1,2∆/∆ CIp10) and 
complemented strains (dur1,2∆/∆+DUR1,2; dur1,2∆/∆+DUR1,2KR). 

 
 

6.1.8.2 Mutagenesis strategy in C. glabrata 

All C. glabrata mutants were generated in the parental strain background ATCC2001. 
Flanking homologous regions were cloned into pTS50 to construct a gene-specific 
CgNAT1 deletion cassette [347]. The detailed description of the construction of the 
CgVHR1 and CgVHT1 deletion mutants is enclosed in the Master thesis of Stefanie 
Allert [320]. For gene complementation studies, the additional auxotrophic marker 
CgTRP1 was chosen and requires a CgTRP1 deletion background (manuscript II and 
V). Therefore, the deletion cassettes were amplified from existing CgVHR1 and 
CgVHT1 deletion mutants and transformed into Cgtrp1∆, complemented either with 
CgTRP1 or with CgTRP1 together with the gene of interest at the native CgTRP1 
locus. The construction of the complementation plasmids is described in manuscript II. 
The Cgdur1,2∆ mutant (CAGL0M05533g∆) was generated in the same way (described 
in manuscript V), as the Cgdur1,2∆ exists an triple-auxotrophic strain background 
[347].  
The transformation protocol was adapted from [446]. Briefly, C. glabrata cells from a 
stationary culture were adjusted to OD600 0.2 in 50 mL YPD medium and grown to 
exponential phase (until OD600 0.8 was reached) for 3-4 h at 180 rpm and 37°C. The 
cell suspension was harvested by centrifugation (5 min; 3,000g). The cell pellet was 
first washed with 5 mL 1× TE and then with 5 mL TELiAc and finally resuspended in 
500 µL TELiAc. Fifty microliter aliquots were either used directly or frozen at -80°C if 
needed and 5 µL of carrier DNA (UltraPure™ Salomon Sperm DNA Solution, Life 
Technology GmbH, boiled 10 min at 98°C prior to use and stored on ice) and 4 µg of 
PCR product were added. The transformation mixture was completed with 300 µL 
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Plate-Puffer (40% PEG3350 in TELiAc), mixed and incubated at 30°C for 30 min. The 
DNA uptake was facilitated by heat shock at 45°C for 15 min in the water bath followed 
by cooling on ice for 1 min. The cells were centrifuged (5 min; 6,000 rpm) and washed 
once with YPD medium. Dependent on the selection marker, the cells were additionally 
incubated for 3-4 h at 30°C and 180 rpm in 1 mL YPD to express the NAT1 resistance 
gene. Finally, the cells were washed and resuspended in 450 µL PBS and spread on 
three YPD-NTC (250 µg/mL nourseothricin) or three SD plates dependent on the 
selection marker. The agar plates were incubated at 37°C for 1-3 days. The growth 
time is dependent on nutrient-rich (YPD) and nutrient-defined media (SD). Grown 
colonies were streaked on fresh plates and used for genomic DNA isolation. 
 

 
Figure 16: Gene mutagenesis and complementation in C. glabrata, exemplary shown for 
CgVHR2. (A) Structure of the GOI (VHR2) and TRP1 loci in the parental strain trp1∆. (B) 
Deletion cassette construction by infusion cloning of up- and downstream homologous regions 
referring to the GOI into the 5’ and 3’ region of the NAT1 cassette of pTS50 [347]. Red regions 
of the primer overlap with the pUC19 backbone and gene regions (green) overlap with the 
NAT1 cassette. (C) Mutagenesis in C. glabrata is done by homologous recombination. After 
gene deletion, the strain was either complemented with TRP1 alone (non-auxotrophic mutant) 
or reconstituted with TRP1 and the GOI. The black arrows indicate the location of primers used 
to verify the correct insertion in the transformed yeast cell. 
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The CgVHR2 (CAGL0J03014g) deletion mutant was generated by flanking the 
barcoded NAT1 cassette of Cgfre8∆ [314, 347] with CgVHR2-specific 5′- and 3′-flanks 
(701 bp upstream and 807 bp downstream) and integrating into an XbaI-linearized 
pUC19 vector using the Infusion HD Cloning Kit (Clontech). The plasmid was verified 
by control digest and sequencing. The deletion construct was amplified by PCR, 
purified with QIAquick PCR Purification Kit (Qiagen) and used for transformation of the 
Cgtrp1∆ parental strain. The Cgvhr2∆ Cgtrp1∆ mutant was verified by PCR.  
For gene complementation, the coding sequence of CgVHR2 together with the up- and 
downstream intergenic regions was inserted into pCgTRP1 using the In-Fusion® HD 
Cloning Kit (Clontech) to generate pCgTRP1-CgVHR2 and the correct plasmid was 
confirmed by sequencing. The tryptophan auxotrophy in the Cgvhr2∆ Cgtrp1∆ mutant 
was restored by transformation of PCR-amplified CgTRP1 or CgTRP1 + CgVHR2 
cassettes to generate a non-auxotrophic mutant or gene complemented strain, 
respectively. All strains were verified by PCR and further analyzed by Southern blot 
(Figure 17-20). 
 
 

 
Figure 17: Verification of CgVHR1 deletion and complementation by Southern blot. A 
CgVHR1-specific probe, generated by PCR using primers CgVHR1-term Sonde new fwd (3/51) 
and CgVHR1-term Sonde new rev (3/52) (product size: 428 bp). The high molecular genomic 
DNA was digested with AleI, giving different bands in strains with the native gene (Cg wt 
[ATCC2001]; trp1∆; trp1∆+TRP1), deletion mutant (vhr1∆) and complemented strains 
(vhr1∆+VHR1).    
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Figure 18: Verification of CgVHT1 deletion and complementation by Southern blot. A 
CgVHT1-specific probe, generated by PCR using primers CgVHT1-prom Sonde fwd (2/15) and 
CgVHT1-prom Sonde rev (2/16) (product size: 398 bp). The high molecular genomic DNA was 
digested with PciI, giving different bands in strains with the native gene (Cg wt [ATCC2001]; 
trp1∆; trp1∆+TRP1), deletion mutant (vht1∆; trp1∆ vht1∆) and complemented strains 
(vht1∆+VHT1). 
 

 

 
Figure 19: Verification of CgVHR2 deletion and complementation by Southern blot. A 
CgVHR2-specific probe, generated by PCR using primers CgVHR2 prom Sonde fwd (4/31) and 
CgVHR2 prom Sonde rev (4/32) (product size: 413 bp). The high molecular genomic DNA was 
digested with HindIII, giving different bands in strains with the native gene (Cg wt 
[trp1∆+TRP1]), deletion mutant (vhr2∆; trp1∆ vhr2∆) and complemented strains (vhr2∆+VHR2).     
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Figure 20: Verification of CgDUR1,2 deletion and complementation by Southern blot. A 
CgDUR1,2-specific probe, generated by PCR using primers CgDUR1,2prom Probe fwd (5/48) 
and CgDUR1,2prom Probe rev (5/49) (product size: 276 bp). The high molecular genomic DNA 
was digested with KpnI, giving different bands in strains with the native gene (Cg wt 
[trp1∆+TRP1]), deletion mutant (dur1,2∆; trp1∆ dur1,2∆) and complemented strains 
(dur1,2∆+DUR1,2; dur1,2∆+DUR1,2KR). 

 
 

6.1.9 Alkalinization assay and ammonia quantification  

The alkalinization assay on solid agar was adapted from [283]. Briefly, 1×105 Candida 
cells were spotted onto agar (0.69% YNB without amino acids, ammonium sulfate and 
biotin (Formedium); 20 mg/L phenol red; 1% casamino acids; 0.5% allantoin; 2% oxoid 
agar; initially adjusted to pH 4.5 with HCl) in a 12-well plate and incubated at 37°C for 
48-72 h. The quantification of volatile ammonia released from Candida cells was 
adapted from [283, 447]. Briefly, an acidic trap consisting of 100 µL of 10% citric acid 
was placed underneath the colonies in the lid of an inverted 12-well plate. After 24 to 
72 h incubation, the acidic trap was removed and the ammonia was quantified by 
adding 160 µL of Nessler´s reagent to 40 µL diluted sample. Ammonia was calculated 
with the help of a standard curve of eight dilutions of an ammonium chloride solution 
(500 µg/mL). Heat killed Candida cells (70°C, 30 min) were included as negative 
control. 
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6.1.10 Macrophage experiments 

For all macrophages, primary human monocyte-derived macrophages were used and 
isolated and differentiated like previously described. 
 

6.1.10.1 Phagocytosis assay 

Macrophages (1.5×105 MΦ) were allowed to adhere onto coverslips in a 24-well plate 
overnight at 37°C and 5% CO2 in RPMI + 10% FBS and 50 ng/mL rh M-CSF. On the 
next day, macrophages were washed twice with RPMI and finally 250 µL RPMI were 
added. Stationary phase yeast cells were washed, stained with 0.2 mg/mL FITC for 
30 min in carbonate buffer (0.15 M NaCl, 0.1 M Na2CO3, pH 9.0) and adjusted to 
1.2×106 Candida/mL in cold RPMI and the macrophages were infected with 250 µL 
yeast suspension to get an MOI of 2. Phagocytosis was synchronized for 30 min on 
ice. Afterwards, unbound Candida cells were removed by two washing steps with pre-
warmed RPMI and finally 500 µL RPMI were added and the infected macrophages 
were incubated at 37°C and 5% CO2 for 1 h. Phagocytosis was stopped by two 
washing steps with PBS, adding 300 µL Roti®-Histofix 4%, and infected macrophages 
were stained with 50 µg/mL Concanavalin A conjugated with Alexa Fluor™ 647 (ConA-
AF647; Thermo Fisher Scientific) at 37°C for 30 min to visualize external Candida cells. 
Coverslips were mounted with Mowiol mounting medium and fluorescence images 
were recorded using the Zeiss AXIO Observer.Z1 (Carl Zeiss Microscopy).   
 

6.1.10.2 Cytokine and chemokine measurements 

Macrophages (2×105 MΦ) were allowed to adhere in a 24-well plate overnight at 37°C 
and 5% CO2 in RPMI + 10% FBS and 50 ng/mL rh M-CSF. On the next day, 
macrophages were washed twice with RPMI and finally 400 µL RPMI were added. 
Stationary phase yeast cells were washed and adjusted to 4×106 and 1×107 
Candida/mL in cold RPMI and the macrophages were infected with 100 µL yeast 
suspension to get an MOI of 2 or 5, respectively. For comparison, macrophages were 
stimulated with 1 µg/mL LPS (positive control; from E. coli O55:B5, Sigma) or only 
RPMI (medium control). After 24 h incubation at 37°C and 5% CO2, infected 
macrophages were centrifuged (300g, 10 min), the supernatant was collected in micro-
centrifuge tubes and stored at -80°C until measurement. The release of IL-1β, IL-6, IL-
8, and TNF-α was quantified using commercial eBioscience™ ELISA Ready-SET-Go!™ 
kits according to the manufacturer's instructions. The supernatants defrosted on ice, 
were diluted appropriate in 1× assay diluent. 
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6.2 Abbreviations  

AA   amino acids – not specified 
Amp   ampicillin  
AS   ammonium sulfate  
ATP   adenosine triphosphate  
BBB   blood brain barrier 
BLAST   basic local alignment search tool 
bp   base pair  
BSA   bovine serum albumin  
bZIP    basic leucine zipper  
C-   carbon- 
CAA   casamino acids 
cfu   colony forming units 
CGD   Candida genome database 
CIp10    Candida Integration plasmid 10 
CLRs   C-type lectin receptors 
ConA   Concanavalin A 
CUG   stands for the nucleobases: cytosine, uracil, guanine 
DAPA   7,8-diaminopelargonic acid 
DCs    dendritic cells 
DNA   deoxyribonucleic acid 
ddH2O   double distilled water 
DIG    digoxigenin 
dNTPs    desoxynucleotide triphosphate  
DTB   desthiobiotin 
EDTA   ethylenediaminetetraacetic acid 
e.g.   latin: exempli gratia, for example 
ELISA    enzyme-linked immunosorbent assay 
FBS    fetal bovine serum  
FITC   fluorescein isothiocyanate  
GPI    glycosylphosphatidylinositol 
GOI   gene of interest 
HK   heat-killed 
HIV    human immunodeficiency virus 
HRP   horse radish peroxidase 
IFN-γ    interferon gamma 
IL-1β    interleukin 1 beta 
IL-4    interleukin 4 
IL-6   interleukin 6 
IL-8   interleukin 8 
KAPA   8-Amino-7-oxononanoic acid   
LB    lysogeny broth 
LDH   lactate dehydrogenase  
LPS    lipopolysaccharide  
MΦ   macrophages 
MCT1   monocarboxylate transporter 1 

M-CSF    macrophage colony-stimulating factor 
MDMs   monocyte-derived macrophages 
MPO   myeloperoxidase 
MOI   multiplicity of infection 
N-   nitrogen- 
NAC   non-albicans Candida 
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NADPH   Nicotinamide adenine dinucleotide phosphate hydrogen 
NTC   nourseothricin  
NOD   Nucleotide-binding oligomerization domain 
OD   optical density  
ORF   open reading frame 
o/n   overnight 
PAMPs   pathogen associated molecular patterns 
PBS    phosphate buffered saline 
PCR    polymerase chain reaction 
PEG   polyethylene glycol  
pH   latin: potentia hydrogenii 
p.i.    post infection 
PMNs   polymorphonuclear 
PRRs   pattern recognition receptors 
rh    recombinant human 
RIGI   retinoic-acid-inducible gene I 
RLRs   RIGI-like receptors 
RNA   ribonucleic acid 
RNS   reactive nitrogen species 
ROS   reactive oxygen species 
rpm   rotations per minute 
RPMI    Roswell Park Memorial Institute 
RT   room temperature 
Saps   secretory aspartic proteases 
SD   synthetic defined 
SDS    sodium dodecyl sulfate 
SILAC   stable isotope labeling with amino acids 
SMVT   sodium dependent multivitamin transporter 
spp.   species 
SSC   sodium chloride sodium citrate 
Taq   Thermus aquaticus 
TBS(-T)  Tris-buffered saline (with 0.05% Tween®20) 
TE   Tris-EDTA 
TELiAc    Tris-EDTA lithium acetate 
Th1    T helper cells, type 1  
Th17    T helper cells, type 17 
Th2    T helper cells, type 2 
TLRs   toll-like receptors 
Tm   melting temperature 
TNF-α   tumor necrosis factor alpha 
Tris   tris(hydroxymethyl)aminomethane 
WBC    whole blood count 
WGD   whole genome duplication 
Wt   wild type 
w/   with 
w/o   without 
YNB   yeast nitrogen base 
YPD   yeast peptone dextrose
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