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Zusammenfassung

Wir lösen das Skorokhod-Einbettungsproblem für eine Klasse von stochastischen Prozessen,
die eine inhomogene stochastische Differentialgleichung (SDE) der Form dAt “ µpt, Atq dt `
σpt, Atq dWt erfüllen. Wir leiten hinreichende Bedingungen her, die garantieren, dass für ein
gegebenes Wahrscheinlichkeitsmaß ν auf R eine Stoppzeit τ und eine reelle Zahl a existieren,
sodass die Lösung pAtq der SDE mit Startwert A0 “ a die Bedingung Aτ „ ν erfüllt. Dabei unter-
scheiden wir die Fälle, in denen pAtq die Lösung der SDE im schwachen oder im starken Sinn ist.
Unsere Konstruktion der einbettenden Stoppzeit basiert auf der Lösung einer voll gekoppelten
Vorwärts-Rückwärts-Differentialgleichung (FBSDE). Wir benutzen die sogenannte „Method of
Decoupling Fields”, um zu verifizieren, dass die FBSDE eine eindeutige Lösung hat. Schließlich
stellen wir einen Algorithmus vor, der unsere theoretischen Ergebnisse in die Praxis umsetzt und
illustrieren ihn mit einem numerischen Experiment.

Außerdem untersuchen wir eindimensionale, zeitlich inhomogene Positionskontrollprobleme,
deren Drift-Term kontrolliert wird. Wir stellen zwei hinreichende Mengen von Bedingungen be-
reit, sodass hier Lösungen existieren und geben jeweils eine optimale Kontrolle an. Im Spezialfall
der linear-quadratischen Kontrollprobleme leiten wir die optimale Feedback-Kontrolle und die
Wertfunktion für sowohl den endlichen Zeithorizont als auch für den ergodischen Fall her. Un-
sere Methode basiert auf Pontryagins Maximumsprinzip, das das Kontrollproblem in eine voll
gekoppelte FBSDE überführt, deren Existenz und Eindeutigkeit wir mit Hilfe der „Method of
Decoupling Fields” verifizieren.

Des Weiteren präsentieren wir zwei stochastische Euler-Schemata, ein explizites und ein impli-
zites, für die Simulation von stochastischen McKean-Vlasov Differentialgleichungen (MV-SDEs)
mit einer zufälligen Startbedingung und einem Drift, der stärker als linear wachsen kann. Wir
zeigen ein pfadweises Resultat für das sogenannte „Propagation of Chaos” und zeigen die star-
ke Konvergenz beider Schemata für die resultierenden Partikelsysteme. Das explizite Schema
konvergiert mit der Standardrate von 1{2 in der Schrittlänge. Für das implizite Schema verwen-
den wir erfolgreich Stoppzeitargumente zusammen mit einem Partikelsystem. In numerischen
Tests weisen wir die theoretischen Konvergenzraten nach und illustrieren den Rechenzeitvorteil
des expliziten Schemas gegenüber dem impliziten. Wir wenden unseren Algorithmus auf eine
nicht Lipschitz MV-SDE aus [GPV19] und auf das Modell eines neuronalen Netzes aus [BFFT12]
an und vergleichen unsere Resultate mit den dortigen. Wir weisen numerisch den Effekt der
„Particle Corruption” nach, bei dem ein einziger Partikel divergiert und so das gesamte System
korrumpiert.



Abstract

We solve the Skorokhod embedding problem for a class of stochastic processes satisfying an in-
homogeneous stochastic differential equation (SDE) of the form dAt “ µpt, Atq dt`σpt, Atq dWt.
We provide sufficient conditions guaranteeing that for a given probability measure ν on R there
exists a bounded stopping time τ and a real a such that the solution pAtq of the SDE with initial
value a satisfies Aτ „ ν. We hereby distinguish the cases where pAtq is a solution of the SDE in a
weak or strong sense. Our construction of embedding stopping times is based on the solution of
a fully coupled forward-backward stochastic differential equation (FBSDE). We use the so-called
method of decoupling fields to verify that the FBSDE has a unique solution. Finally, we sketch an
algorithm for putting our theoretical construction into practice and illustrate it with a numerical
experiment.

We also provide two sets of sufficient conditions for the existence of a solution to one-
dimensional, time inhomogeneous position targeting problems, where the drift of the state
process can be controlled and derive optimal controls. For the special case of linear-quadratic
control problems we derive the optimal linear feedback control and value function, for the fi-
nite time horizon and in the ergodic version. Our method is based on Pontryagin’s maximum
principle transforming the control problem into a fully coupled FBSDE, whose existence and
uniqueness we verify with the method of decoupling fields.

Furthermore, we present two fully probabilistic Euler schemes, one explicit and one implicit,
for the simulation of McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with drifts of
super-linear growth and random initial condition. We provide a pathwise propagation of chaos
result and show strong convergence for both schemes on the consequent particle system. The
explicit scheme attains the standard 1{2 rate in stepsize. For the implicit scheme we successfully
use stopping times in combination to the particle system. Numerical tests recover the theoretical
convergence rates and illustrate a computational complexity advantage of the explicit over the
implicit scheme. Comparative analysis is carried out on a stylized non Lipschitz MV-SDE from
[GPV19] and the neuron network model proposed in [BFFT12]. We provide numerical tests
illustrating a particle corruption effect where one single diverging particle can “corrupt” the
whole particle system. Moreover, the more particles in the system the more likely this divergence
is to occur.
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1 Introduction

The aim of the Skorokhod Embedding Problem (SEP) is to find, for a given random process and a
given probability distribution, a stopping time with nice properties such that the stopped process
is distributed in the desired way. A simple example is stopping a standard Browian motion such
that we obtain the standard normal distribution, for which the deterministic stopping time τ “ 1
is a solution. Although the first formulation of this problem by Skorokhod [Sko65] was already
provided in the 1960’s, most applications were only found quite recently. Besides the usage in
some theoretical numerical results, there are also applications in finance and control theory. For
example Hobson and Klimmek [HK12] derived model independent bounds on options and in
[AKTKK19] the constrained problem gets transformed into another unconstrained one, which is
easier to solve.

After the formulation by Skorokhod, there have been countless approaches to the SEP. A good
survey was done by Obłój [Obł04] in 2004. Since then there have been importent advances like
[AHS15], where the authors give a characterisation of all distributions which can be embed-
ded into processes solving time homogeneous stochastic differential equations (SDEs) in integ-
rable and in bounded time. This characterisation, for example, enabled the mentioned result in
[AKTKK19].

One approach used in many recent works goes back to Bass [Bas83] and is based on a time
change argument. We too use this approach. In Chapter 3 we consider a forward-backward
stochastic differential equation (FBSDE), show that it has a unique solution with the method of
decoupling fields from Chapter 2, and then prove that this solution can be transformed into a
solution for the SEP. Finally we propose a numerical scheme for the simulation of our solution.

To the best of our knowlege, the paper [AEFR18], on which Chapter 3 is based, is the first
one presenting a solution to the SEP for processes with inhomogeneous and non-deterministic
coefficents. For a more detailed comparison of our results to other works, see Section 3.6.

In optimal position control the aim is to steer a process which fulfills an SDE, such that the
generated costs of the process and steering are minimized. When solving such position tar-
geting problems, the commonly used approaches trace back to Bellman and Pontryagin. The
Dynamic Programming Principle, developed by Bellman, together with the Hamiltion-Jacobi-
Bellman equation make use of PDE theory. On the other hand, Pontryagin’s Maximum Principle
states the equivalence of the control problem to the solution of a backward stochastic differential
equation (BSDE) or respectively an FBSDE. Most works making use of Pontryagin’s Maximum
Principle either make assumptions that decouple the FBSDE making it a BSDE, or, in the linear-
quadratic case, exploite some dualities, which then allow to solve the control problem. In the
latter case the solution of the FBSDE is only a byproduct.

Our approach, presented in Chapter 4, is different in that we directly solve the coupled
FBSDE and thereby obtain a solution to the control problem. For this we apply the relatively
new method of decoupling fields (see Chapter 2). After deriving two sets of sufficient conditions
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Introduction

for an optimal control, we turn to the special case of linear-quadratic control problems. Here
we can derive some explicit formulas for the optimal control and the value function, which we
show to fulfill the Hamilton-Jacobi-Bellman equation. In a final section we then consider the
ergodic case of an infinite horizon.

In the last part of this thesis, which is based on [dRES18], we are concerned with the simu-
lation of McKean Vlasov Stochastic Differential Equations (MV-SDEs) with super linear growth.
MV-SDEs are SDEs in which the drift and diffusion coefficients are allowed to depend on the
distribution of the process. In our case super linear growth means that the drift coefficent is
not globally Lipschitz continuous. Such MV-SDEs with super linear growth appear for example
in the simulation of neuronal activity (see e.g. [BFFT12], [BCC11], [BFT15]) or in biology and
physics (see e.g. [DGG`11], [GGM`18]). For a more detailed motivation we refer to [BFFT12].

The problem for simulating MV-SDEs with super linear growth is threefold. Firstly, the super
linear growth has to be dealt with. Secondly, the distribution of the process has to be approxim-
ated. And thirdly, the combination has to converge.

The super linearity poses a problem because for standard SDEs it is known that the explicit
Euler scheme runs into difficulties, see [HJK11]. We confirm this for MV-SDEs with a numerical
experiment. The usage of an implicit scheme as in [HMS02] is impractical, since this would
require to solve a fixed point equation at every time-step, which is computationally expensive.
To circumvent this problem we apply a so-called Tamed Euler scheme, which was developed in
[HJK12] and has already been successfully used by several authors (see e.g. [CJM16], [Sab13],
[FG16]) to deal with coefficients that grow super-linearly.

Although there are other techniques (see [GP18]) to approximate the distribution of the pro-
cess, we use the most common one. A so-called interacting particle system consists of simulating
many paths simultaneously and using the averaged sum of Dirac measures at the points of the
paths as distribution. In the Lipschitz setting this system is known to converge pathwise to the
true solution of the MV-SDE (see [Szn91], [Mél96]).

We refer to the Chapters 3, 4 and 5 for more detailed introductions.
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2 The Method of Decoupling Fields

In this chapter we briefly summarize the key results of the abstract theory of decoupling fields,
we rely on later. We present the SLC theory (standing for Standard Lipschitz Conditions) of
Chapter 3 of [Fro15] and and the MLLC theory (standing for Markov Local Lipschitz Conditions),
which is derived from SLC (also see [Fro15]).

We consider families of measurable functions M,Σ, F, ξ, more precisely,

M : Ωˆ r0, T s ˆRn ˆRm ˆRmˆd ÝÑ Rn,

Σ : Ωˆ r0, T s ˆRn ˆRm ˆRmˆd ÝÑ Rnˆd,

F : Ωˆ r0, T s ˆRn ˆRm ˆRmˆd ÝÑ Rm,

ξ : ΩˆRn Ñ Rm,

where n,m, d P N and T ą 0. Let further pΩ,F ,Pq be a probability space with a d-dimensional
Brownian motion pWtqtPr0,T s and denote by pFtqtPr0,T s the augmented Brownian filtration.

For x P Rn we consider the FBSDE

Xt “ x`

ż t

0
Mps,Xs, Ys, Zsq ds`

ż t

0
Σps,Xs, Ys, Zsq dWs

Yt “ ξpXT q `

ż T

t
F ps,Xs, Ys, Zsq ds´

ż T

t
Zs dWs.

(2.1)

The aim is to study existence and uniqueness of solutions of the above FBSDE. It is a longstand-
ing challenge to find conditions guaranteeing that the fully coupled FBSDE (2.1) possesses a
solution. Sufficient conditions are provided e.g. in [MPY94], [PT99], [MY99], [PW99], [Del02],
[MWZZ15] (see also the references therein). The method of decoupling fields, developed in
[Fro15] (see also the precursor articles [MYZ12], [FI13] and [MWZZ15]), is convenient for de-
termining whether a solution exists. A decoupling field describes the functional dependence of
the backward part Y on the forward component X. Roughly speaking, a decoupling field is a
function u such that for every time s P r0, T s

ups,Xsq “ Ys.

Under some nice conditions on the parameters of the FBSDE, there exists a maximal non-empty
interval possessing a solution triple pX,Y, Zq and a decoupling field with nice regularity proper-
ties. The method of decoupling fields consists in analyzing the dynamics of the decoupling field’s
gradient in order to determine whether the FBSDE has a solution on the whole considered time
interval.

At first, we have to fix some notation, which we also use in the subsequent chapters. For a
stochastic process A : Ωˆ I Ñ RN , where I is an interval in r0,8q and N P N, we introduce for
J Ă I the norm

}A}8,J :“ ess sup
ps,ωqPJˆΩ

|Aspωq|

3



The Method of Decoupling Fields

with regard to the product measure λˆP. For a function f : Ωˆ I ˆRn Ñ Rm with n,m P N

we likewise define for a non-empty subinterval J Ă I

}f}8,J :“ ess sup
pω,s,xqPΩˆJˆRn

|fpω, s, xq|

with regard to the product of P and the Lebesgue measure. We simply write }A}8 and }f}8 if
J “ I.

For a measurable map g : ΩˆRn Ñ Rm, with n,m P N we define

Lg :“ inf
 

L ě 0 | |gpxq ´ gpx1q| ď L|x´ x1| for all x, x1 P Rn
(

,

where infH :“ 8. We also set Lg :“ 8 if g is not measurable. Lg ă 8 implies that g is
Lipschitz continuous. For a map u : Ω ˆ rt, T s ˆ Rn Ñ Rm, with rt, T s Ă r0,8q, we define
Lu,x :“ supsPrt,T s Lups,¨q.

We denote by LΣ,z the Lipschitz constant of Σ with respect to the dependence on the last
component z (and with respect to the Frobenius norms on Rmˆd and Rnˆd), by which we mean
the minimum of all Lipschitz constants or 8 in case that Σ is not Lipschitz continuous in z. If
LΣ,z ă 8, we denote by L´1

Σ,z “
1

LΣ,z
the value 1

LΣ,z
if LΣ,z ą 0 and 8 otherwise.

The following two assumptions form the basis for Chapter 3 and 4. In the assumptions in
those chapters we suppose that at least one of the two is fulfilled in order to apply the theory of
this chapter.

Assumption 2.1 (SLC)
The functions M,Σ, F, ξ satisfy Standard Lipschitz Conditions (SLC) if

1. M,Σ, F are Lipschitz continuous in px, y, zq with some Lipschitz constant L,

2. }p|M | ` |σ| ` |F |qp¨, ¨, 0, 0, 0q}8 ă 8,

3. ξ is measurable such that }ξp¨, 0q}8 ă 8 and Lξ,x ă L´1
Σ,z.

Assumption 2.2 (MLLC)
The functions M,Σ, F, ξ fulfill Modified Local Lipschitz Conditions (MLLC) if

1. the functions M,Σ, F are

(a) deterministic,

(b) Lipschitz continuous in x, y, z on sets of the form r0, T s ˆRn ˆRm ˆB, where B Ă Rmˆd

is an arbitrary bounded set,

(c) and fulfill }Mp¨, 0, 0, 0q}8, }F p¨, 0, 0, 0q}8, }Σp¨, ¨, ¨, 0q}8, LΣ,z ă 8,

2. ξ : Rn Ñ Rm is also deterministic and satisfies Lξ,x ă L´1
Σ,z.

In contrast to SLC, there are only deterministic mappings M,Σ, F, ξ allowed in the MLLC
theory. In this so-called Markovian case the Lipschitz continuity assumptions of Chapter 3 of
[Fro15] get relaxed a bit and we still obtain local existence together with uniqueness. In the
Markovian case the property

“Zs “ Bxups,Xsq ¨ Σps,Xs, Ys, Zsq”,

which comes from the fact that u will also be deterministic, gets exploited. This allows to bound
Z by a constant if Σ and Bxu are assumed to be bounded.

4



The Method of Decoupling Fields

Definition 2.3
Let M,Σ, F, ξ fulfill SLC and t P r0, T s. We call a function u : Ω ˆ rt, T s ˆ Rn Ñ Rm with
upω, T, ¨q “ ξpω, ¨q for a.a. ω P Ω a decoupling field for M,Σ, F, ξ on rt, T s if for all t1, t2 P rt, T s
with t1 ď t2 and any Ft1–measurable Xt1 : Ω Ñ Rn there exist progressively measurable pro-
cesses X,Y, Z on rt1, t2s such that

• Xs “ Xt1 `
şs
t1
Mpr,Xr, Yr, Zrq dr `

şs
t1

Σpr,Xr, Yr, Zrq dWr,

• Ys “ Yt2 `
şt2
s F pr,Xr, Yr, Zrq dr ´

şt2
s Zr dWr,

• Ys “ ups,Xsq,

a.s. for all s P rt1, t2s. In particular, we want all integrals to be well-defined and X,Y, Z to have
values in Rn, Rm and Rmˆd respectively.
Furthermore, we call a function u : Ω ˆ pt, T s ˆ Rn Ñ Rm a decoupling field for M,Σ, F, ξ on
pt, T s if u restricted to rt1, T s is a decoupling field for all t1 P pt, T s.

Definition 2.4
LetM,Σ, F, ξ fulfill MLLC and let t P r0, T s. We call a deterministic function u : rt, T sˆRn Ñ Rm

with upT, ¨q “ ξ a Markovian decoupling field for M,Σ, F, ξ on rt, T s if for all t1, t2 P rt, T s with
t1 ď t2 and any Ft1–measurable Xt1 : Ω Ñ Rn there exist progressively measurable processes
X,Y, Z on rt1, t2s such that

• Xs “ Xt1 `
şs
t1
Mpr,Xr, Yr, Zrq dr `

şs
t1

Σpr,Xr, Yr, Zrq dWr,

• Ys “ Yt2 ´
şt2
s fpr,Xr, Yr, Zrq dr ´

şt2
s Zr dWr,

• Ys “ ups,Xsq,

a.s. for all s P rt1, t2s and such that }Z}8,rt1,t2s ă 8 holds. In particular, we want all integrals to
be well-defined and X,Y, Z to have values in Rn, Rm and Rmˆd respectively.
In addition, we call a function u : pt, T s ˆ Rn Ñ Rm a Markovian decoupling field for
M,Σ, F, ξ on pt, T s if u restricted to rt1, T s is a Markovian decoupling field for all t1 P pt, T s.

We refer in both cases to the stated property, that Ys “ ups,Xsq a.s., as the decoupling condi-
tion.

In the following we work with weak derivatives. This allows us to obtain variational differ-
entiability (i.e. w.r.t. the initial value x P Rn) of the processes X,Y, Z for Lipschitz (or locally
Lipschitz) continuous M,Σ, F, ξ. We start by fixing notation and giving some definitions:

For x P Rmˆd or x P Rnˆd the expression |x| denotes the Frobenius norm of the linear operator
x, i.e. the square root of the sum of the squares of its matrix coefficients.
We denote by Sn´1 :“ tx P Rn | |x| “ 1u the pn´1q–dimensional sphere. If x P Rnˆn, x P Rmˆn,
x P Rmˆdˆn or x P Rnˆdˆn, we define |x|v :“ |x ¨ v| for all v P Sn´1, where ¨ is the application
of the linear operator x to the vector v such that x ¨ v is in Rn, Rm, Rmˆd or Rnˆd respectively.
We refer to supvPSn´1 |x|v as the operator norm of x.

Now, consider a mapping X : M ˆ Λ Ñ R, where pM,A, ρq is some measure space with
finite measure ρ and Λ Ď RN is open, N P N. We say that X is weakly differentiable w.r.t. the
parameter λ P Λ, if for almost all ω PM the mapping Xpω, ¨q : Λ Ñ R is weakly differentiable.
This means that there exists a mapping BλX : Mˆ Λ Ñ R1ˆN such that

ż

Λ
ϕpλqBλXpω, λq dλ “ ´

ż

Λ
Xpω, λqBλϕpλq dλ

5



The Method of Decoupling Fields

for any real valued test function ϕ P C8c pΛq, for almost all ω P M. In particular, Xpω, ¨q and
the weak derivative BλXpω, ¨q have to be locally integrable for a.a. ω. This of course includes
measurability w.r.t. λ for almost every fixed ω.

We remark that weak differentiability for vector valued mappings is defined component-wise.
We refer to Section 2.1.2 of [Fro15] for more details on weak derivatives.

Note that if Lu,x ă 8 and, therefore, u is Lipschitz continuous in x, then u is weakly dif-
ferentiable in x (see e.g. Lemma A.3.1. of [Fro15]) and even classically differentiable almost
everywhere. If not otherwise specified we refer to Bxu : rt, T s ˆ Rn Ñ Rmˆn as the particu-
lar version of the weak derivative which coincides with the classical derivative in all points for
which a classical derivative exists and is zero in all other points. See for instance the statement
and proof of Lemma A.3.1. in [Fro15] for details.

We write Et,8rXs for ess sup ErX|Fts in the following definition:

Definition 2.5
Let u be a decoupling field or Markovian decoupling field for M,Σ, F, ξ. We call u weakly regular
if Lu,x ă L´1

Σ,z and supsPrt,T s }ups, 0q}8 ă 8.
Furthermore, we call a weakly regular u strongly regular if for all fixed t1, t2 P rt, T s, t1 ď t2 ,

the processes X,Y, Z arising in the defining property of a decoupling field or a Markovian de-
coupling field, respectively, are a.e. unique for each constant initial value Xt1 “ x P Rn and
satisfy

sup
sPrt1,t2s

Et1,8r|Xs|
2s ` sup

sPrt1,t2s
Et1,8r|Ys|

2s ` Et1,8

„
ż t2

t1

|Zs|
2 ds



ă 8 @x P Rn.

In addition X,Y, Z must be measurable as functions of px, s, ωq such that for every s P rt1, t2s the
mappings Xs and Ys are measurable functions of px, ωq. Moreover, X,Y, Z have to be weakly
differentiable w.r.t. x P R such that

ess sup
xPRn

sup
vPSn´1

sup
sPrt1,t2s

Et1,8

«

ˇ

ˇ

ˇ

ˇ

B

Bx
Xs

ˇ

ˇ

ˇ

ˇ

2

v

ff

ă 8,

ess sup
xPRn

sup
vPSn´1

sup
sPrt1,t2s

Et1,8

«

ˇ

ˇ

ˇ

ˇ

B

Bx
Ys

ˇ

ˇ

ˇ

ˇ

2

v

ff

ă 8,

ess sup
xPRn

sup
vPSn´1

Et1,8

«

ż t2

t1

ˇ

ˇ

ˇ

ˇ

B

Bx
Zs

ˇ

ˇ

ˇ

ˇ

2

v

ds

ff

ă 8.

We say that a decoupling field or Markovian decoupling field u on rt, T s is strongly regular on a
subinterval rt1, t2s Ď rt, T s if u restricted to rt1, t2s is a strongly regular (Markovian) decoupling
field for M,Σ, F, upt2, ¨q.
Furthermore, we say that a decoupling field or Markovian decoupling field u is

• weakly regular if u restricted to rt1, T s is weakly regular for all t1 P pt, T s,

• strongly regular if u restricted to rt1, T s is strongly regular for all t1 P pt, T s.
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The Method of Decoupling Fields

The following natural concept introduces a type of Markovian decoupling field for non-
Lipschitz problems (non-Lipschitz in z), to which nevertheless standard Lipschitz results can
be applied.

Definition 2.6
Let u be a Markovian decoupling field for M,Σ, F, ξ. We call u controlled in z if there exists a
constant C ą 0 such that for all t1, t2 P rt, T s, t1 ď t2, and all initial values Xt1 , the correspond-
ing processes X,Y, Z from the definition of a Markovian decoupling field satisfy |Zspωq| ď C,
for almost all ps, ωq P rt, T s ˆ Ω. If for a fixed triple pt1, t2, Xt1q there are different choices for
X,Y, Z, then all of them are supposed to satisfy the above control.

We say that a Markovian decoupling field u on rt, T s is controlled in z on a subinterval rt1, t2s Ď
rt, T s if u restricted to rt1, t2s is a Markovian decoupling field forM,Σ, F, upt2, ¨q that is controlled
in z.

Furthermore, we call a Markovian decoupling field on an interval ps, T s controlled in z if it is
controlled in z on every compact subinterval rt, T s Ď ps, T s (with C possibly depending on t).

Definition 2.7
Let Imax Ď r0, T s be the union of all intervals rt, T s Ď r0, T s such that there exists a weakly
regular decoupling field or a Markovian decoupling field u on rt, T s for M,Σ, F, ξ.

Theorem 2.8 (Theorem 3.1.12 and Theorem 4.2.28 in [Fro15].)
Let M,Σ, F, ξ satisfy SLC or MLLC. Then there exists a unique weakly regular decoupling field resp.
a weakly regular Markovian decoupling field u on Imax. This u is also strongly regular, continuous
and, if MLLC is fulfilled, controlled in z.
Furthermore, either Imax “ r0, T s or Imax “ ptmin, T s, where 0 ď tmin ă T .

Theorem 2.8 is fundamental for the theory of decoupling fields. First of all, it gives the
existence of a decoupling field on a non-empty interval. And secondly, it narrows the possibilities
down to two cases. Either we have existence on the whole interval Imax “ r0, T s, meaning that
the FBSDE has a solution, or there is some tmin, where the Lipschitz constant of the decoupling
field “explodes” (for a precise statement see Lemma 2.10 below).

The next lemma states that existence of weakly regular decoupling fields implies existence
and uniqueness of classical solutions:

Lemma 2.9 (Corollary 3.1.9 and Theorem 4.2.25 in [Fro15].)
Let M,Σ, F, ξ satisfy SLC or MLLC and assume that there exists a weakly regular decoupling field
or resp. a weakly regular Markovian decoupling field u on some interval rt, T s.
Then for any initial condition Xt “ x P Rn there is a unique solution pX,Y, Zq of the FBSDE (2.1)
on rt, T s such that

sup
sPrt,T s

Er|Xs|
2s ` sup

sPrt,T s
Er|Ys|

2s ` E

„
ż T

t
|Zs|

2 ds



ă 8.

The following result basically states that for a singularity in tmin to occur Bxu has to “explode”
at tmin, as mentioned above. It is the key for showing well-posedness for particular problems via
contradiction.
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The Method of Decoupling Fields

Lemma 2.10 (Lemma 3.1.15 and Lemma 4.2.29 in [Fro15].)
Let M,Σ, F, ξ satisfy SLC or MLLC. If Imax “ ptmin, T s, then

lim
tŒtmin

Lupt,¨q “ L´1
Σ,z,

where u is the unique weakly regular decoupling field or resp. weakly regular Markovian decoupling
field from Theorem 2.8.

For all s P Imax we call

Us :“ Bxups,Xsq

the gradient process corresponding to FBSDE (2.1), where X is part of the solution pX,Y, Zq of
FBSDE (2.1) and u is the corresponding (Markovian) decoupling field. As the following theorem
states, we can use the gradient process U to show that FBSDE (2.1) has a solution.

Theorem 2.11
Let M,Σ, F, ξ fulfill SLC or MLLC. If for every initial value Xt “ x P Rn with t P Imax the gradient
process U fulfills |Ut| ď C ă L´1

Σ,z then Imax “ r0, T s; and for every initial value X0 “ x P Rn there
exists a unique solution pX,Y, Zq of FBSDE (2.1) such that

sup
sPr0,T s

Er|Xs|
2s ` sup

sPr0,T s
Er|Ys|

2s ` E

„
ż T

0
|Zs|

2 ds



ă 8.

Proof. By Theorem 2.8 we have that there is a non-empty interval Imax Ă r0, T s on which a
unique and strongly regular (Markovian) decoupling field exists and either Imax “ r0, T s or
Imax “ ptmin, T s for some tmin P r0, T q. Lemma 2.10 states that the case Imax “ ptmin, T s can
only happen if Lupt,¨q converges towards L´1

Σ,z for tŒ tmin, which we loosely call an “explosion”.
Thus, we want to bound Bxu away from L´1

Σ,z. If this is the case the “explosion” can not happen
and the only remaining case, Imax “ r0, T s, has to be true.

Since for every pair pt, xq P Imax ˆ Rn of initial values we have, by the assumptions made,
that Bxupt, xq “ Bxupt,Xtq “ Ut is bounded by C ă L´1

Σ,z, we get that the whole function Bxu is
bounded by }Bxu}8 ď C ă L´1

Σ,z. Hence, we obtain with Lemma 2.10 that Imax “ ptmin, T s can
not hold true. Thus, by Theorem 2.8, the only other possible case is Imax “ r0, T s. Finally, with
Lemma 2.9 we obtain existence and uniqueness of the solution pX,Y, Zq of FBSDE (2.1). �

By applying Theorem 2.8 and Lemma 2.10, Theorem 2.11 finally gives us sufficient conditions,
which are relatively easy to verify, for a solution of FBSDE (2.1) to exist.

In Chapter 3 and Chapter 4 we make use of Theorem 2.11 in the following way: First we
derive the dynamics of the gradient process U by differentiating Ys and ups,Xsq with respect to
the initial value x P Rn of the forward component X. This results in U being the solution of a
BSDE which is quadratic in U itself. Then we apply the standard BSDE theory to conclude that
the gradient process is bounded. Thus, we can apply Theorem 2.11 to obtain that the considered
FBSDE has a unique solution.
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3 The Skorokhod Embedding Problem
for general diffusions

Let ν be a probability measure on R, let µ, σ : r0,8qˆRÑ R be continuous in both arguments
and let pAtqtě0 be a stochastic process satisfying the inhomogeneous stochastic differential equa-
tion (SDE)

dAt “ µpt, Atq dt` σpt, Atq dWt, (3.1)

where W is a Brownian motion. In this chapter we consider the Skorokhod embedding problem
(SEP) for ν in pAtq. More precisely, we provide sufficient conditions on µ, σ and ν guaranteeing
the existence of a stopping time τ and a real number a such that the solution of the SDE (3.1),
in a weak or strong sense, with initial condition A0 “ a, satisfies Aτ „ ν.

We solve the embedding problem by reducing it to the forward-backward stochastic differen-
tial equation (FBSDE)

X
p1q
s “ xp1q `Ws

X
p2q
s “ xp2q `

şs
0

Z2
r

σ2pX
p2q
r ,Yr`X

p3q
r q

dr

X
p3q
s “ xp3q `

şs
0 µpX

p2q
r , Yr `X

p3q
r q

Z2
r

σ2pX
p2q
r ,Yr`X

p3q
r q

dr

Ys “ gpX
p1q
1 q ´X

p3q
1 ´

ş1
s Zr dWr

(3.2)

for s P r0, 1s and pxp1q, xp2q, xp3qq P R3, where g is a real function chosen such that gpW1q „ ν.
Notice that the FBSDE (3.2) is fully coupled, i.e. the second and third forward equation depend
on the solution components Y and Z of the backward equation; and, vice versa, the backward
equation depends on the forward components Xp1q and Xp3q.

We use the method of decoupling fields to prove that, under some suitable conditions on µ,
σ and g, the FBSDE (3.2) has a unique solution on r0, 1s for every initial value. By using the
particular solution with initial value pxp1q, xp2q, xp3qq “ 0, we then construct a weak solution of
the SDE (3.1) and a stopping time τ embedding ν. Indeed, the second component Xp2q of the
forward part in (3.2) can be interpreted as a random time change. One can show that the time
change is invertible, say with inverse clock γptq. Moreover, there exists a filtration pGtq and a
pGtq-Brownian motion B such that, first, Xp2q1 is a pGtq-stopping time and, second, under the
inverse clock the solution component Y together with B solve the SDE (3.1) in a weak sense.
In the following we refer to the tuple

`

pGtq, pBtq, τ, a
˘

as a weak solution of the SEP. By the

very construction the time changed process Yγp¨q at Xp2q1 is equal to gpW1q, and hence Xp2q1 is a
stopping time embedding ν into a weak solution of (3.1).

In a further step we characterize the embedding stopping time X
p2q
1 in terms of a four di-

mensional Lipschitz SDE driven by the constructed Brownian motion B. The SDE establishes a
mapping from the paths of B to Xp2q1 , and hence allows to find stopping times embedding ν into
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The SEP for general diffusions

strong solutions of the SDE (3.1), where we refer to the pair pτ, aq as a strong solution of the
SEP.

In Section 3.5 we show that solving the system

Ws “

ż s

0

σpX
p2q
r , Yr `X

p3q
r q

Zr
dB

X
p2q
r

Xp2qs “

ż s

0

Z2
r

σ2pX
p2q
r , Yr `X

p3q
r q

dr

Xp3qs “

ż s

0
µpXp2qr , Yr `X

p3q
r q

Z2
r

σ2pX
p2q
r , Yr `X

p3q
r q

dr

Ys “gpW1q ´X
p3q
1 ´

ż 1

s
Zr dWr (3.3)

for all s P r0, 1s and setting τ :“ X
p2q
1 also yields a strong solution. Furthermore, we propose a

scheme, based on the system (3.3), to numerically simulate a solution of the SEP.
A major idea of our approach for solving the SEP is to change the time of a stochastic pro-

cess that has the wanted distribution at the deterministic time 1. This idea goes back to Bass
[Bas83] who solves the SEP for Brownian motion. Indeed, our approach generalizes Bass’ solu-
tion method. If µ is zero and σ constant equal to one, then the component Xp3q of (3.2) vanishes
and the solution part Y of the backward equation coincides with the martingale of conditional
expectations of gpW1q, which is the process used by Bass. Moreover, the time change Xp2q

coincides with the quadratic variation of Y , the time change used in [Bas83].
The time change idea has been employed in several further articles. In [AHI08] the solution

of a quadratic BSDE is time changed in order to solve the SEP for the Brownian motion with
drift. The FBSDE (3.2) simplifies to the BSDE of [AHI08] if A is a Brownian motion with
drift. [AHS15] uses a time change argument to construct stopping times embedding a given
distribution into a stochastic process solving a homogeneous SDE. In [FIP15] a fully coupled
FBSDE is solved and then time changed to obtain a stopping time embedding a distribution into
a Gaussian process satisfying an SDE with deterministic coefficients. [FIP15] also relies on the
method for decoupling fields for proving existence of a solution of the FBSDE.

There are more recent articles that are inspired by or related to Bass’ time-change approach for
solving the SEP for the Brownian motion. E.g. the article [BCHK17] proves optimality of the Bass
solution, among all solutions of the SEP for Brownian motion, for some minimization problems
formulated in terms of associated measure-valued martingales. [DGPR17] solve the SEP for a
class of Levy processes via an analytic approach and by extending Bass’ time-change arguments.
The process of conditional expectations of gpXp1q1 q, used by Bass, is shown in [VBHK19] to
minimize a martingale transport problem.

To the best of our knowledge there do not exist any other articles than [AEFR18], on which
this whole chapter is based, that consider the SEP for general inhomogeneous diffusions of the
type (3.1). There are various contributions to the SEP for homogeneous diffusions. The article
[PP01] classifies the distributions that can be embedded into homogeneous diffusions. The
survey [Obł04] collects results on the SEP, including results for homogeneous diffusions. We
remark that in the homogeneous case in which the coefficients of the SDE (3.1) do not depend
on time, the FBSDE (3.2) can be decoupled. We explain this in Section 3.5 below.

This chapter is organized as follows: In Sections 3.1 and 3.2 we compute the dynamics of the
decoupling field gradient process and derive some estimates allowing to conclude with via the
method of decoupling fields on the existence and uniqueness of a solution to FBSDE (3.2) on
the whole interval. In Section 3.3 we present the weak solution, meaning that there exists a
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Gradient dynamics of the decoupling field

Brownian motion such that we can give a solution to the SEP, and in Section 3.4 we present the
strong solution, where for every Brownian motion we give a solution for the SEP. Illustrative
numerical results can be found in Section 3.5. Finally in Section 3.6 we revisite our main results
and compare our assumptions to other existing works.

3.1 Gradient dynamics of the decoupling field

In this section we investigate the dynamics of the spatial gradient of the decoupling field for
FBSDE (3.2), which we call its grandient process. Based on the findings of this section we
derive, in the subsequent section, a uniform bound for this gradient prosess, allowing us to
apply Theorem 2.11.

Let W be a Brownian motion on a probability space pΩ,F ,Pq and denote by pFtqtě0 the
associated augmented Brownian filtration. Also, denote by ν the probability measure on R,
which is to be embedded, and let Fν be the cumulative distribution function of ν. We set

g :“ gν :“ F´1
ν ˝ Φ,

where Φ is the cumulative distribution function of the standard normal distribution and F´1
ν

the right-continuous generalized inverse of Fν . In the following, for a differentiable function
f : Rn Ñ R we denote by Bxif its partial derivative with respect to the ith coordinate.

Furthermore, let g, µ and σ be differentiable, σ ě ε ą 0 and g1, µ
σ2 , Btµ

σ2 , Baµ
σ2 , Btσσ as well as

Baσ
σ be bounded. Under these conditions, which are assumed to hold true everywhere in this

chapter, it is straightforward to verify that the FBSDE (3.2), which is

X
p1q
s “ xp1q `Ws

X
p2q
s “ xp2q `

şs
0

Z2
r

σ2pX
p2q
r ,Yr`X

p3q
r q

dr

X
p3q
s “ xp3q `

şs
0 µpX

p2q
r , Yr `X

p3q
r q

Z2
r

σ2pX
p2q
r ,Yr`X

p3q
r q

dr

Ys “ gpX
p1q
1 q ´X

p3q
1 ´

ş1
s Zr dWr

for s P r0, 1s and pxp1q, xp2q, xp3qq P R3, satisfies MLLC. Hence the theory of Chapter 2 is applic-
able. By Theorem 2.8 the maximal interval Imax contains an interval rt, 1s with t ă 1. Let x P R3

and denote by X “ pXp1q, Xp2q, Xp3qqJ, Z, Y the solution of the FBSDE (3.2) on rt, 1s with initial
condition pXp1qt , X

p2q
t , X

p3q
t q “ x. Moreover, denote by u the decoupling field associated to the

FBSDE (3.2). From Theorem 2.8 we also know that the partial derivatives Bx1u, Bx2u, Bx3u and
the process Z are bounded on rt, 1s.

For shorter notation we define for all s P rt, 1s

σs :“ σpXp2qs , Ys `X
p3q
s q, µs :“ µpXp2qs , Ys `X

p3q
s q,

σt,s :“ BtσpX
p2q
s , Ys `X

p3q
s q, σa,s :“ BaσpX

p2q
s , Ys `X

p3q
s q,

µt,s :“ BtµpX
p2q
s , Ys `X

p3q
s q, µa,s :“ BaµpX

p2q
s , Ys `X

p3q
s q

and

up1qs :“ Bx1ups,X
p1q
s , Xp2qs , Xp3qs q,

up2qs :“ Bx2ups,X
p1q
s , Xp2qs , Xp3qs q,

up3qs :“ Bx3ups,X
p1q
s , Xp2qs , Xp3qs q.
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The SEP for general diffusions

In the following we refer to up1q, up2q, up3q as the gradient processes associated to the initial value
x at time t. The next result describes the dynamics of the gradient processes. For its derivation
we first argue that the processes are Itô processes and then match the coefficients appropriately.
In contrast to the approach of [FIP15], we do not explicitly compute the dynamics of the inverse
of the Jacobi matrix of X.

Lemma 3.1
Let g, µ and σ be differentiable, σ ě ε ą 0 and g1, µ

σ2 , Btµ
σ2 , Baµ

σ2 , Btσσ as well as Baσ
σ be bounded.

Then the gradient processes up1q, up2q and up3q have the dynamics

up1qs “ g1
´

X
p1q
1

¯

`

ż 1

s
up1qr

Z2
r

σ2
r

ˆ

up3qr

ˆ

µa,r ´ 2µr
σa,r
σr

˙

´ 2up2qr
σa,r
σr

˙

dr ´

ż 1

s
Z̃p1qr dĂWr

up2qs “

ż 1

s
up3qr

Z2
r

σ2
r

´

up2qr µa,r ` µt,r

¯

´ 2
Z2
r

σ2
r

ˆ

σt,r
σr

` up2qr
σa,r
σr

˙

´

up2qr ` up3qr µr

¯

dr ´

ż 1

s
Z̃p2qr dĂWr

up3qs “ ´1`

ż 1

s

´

up3qr ` 1
¯ Z2

r

σ2
r

ˆ

up3qr µa,s ´ 2
σa,r
σr

´

up2qr ` up3qr µr

¯

˙

dr ´

ż 1

s
Z̃p3qr dĂWr, (3.4)

for all s P rt, 1s, where Z̃p1q, Z̃p2q, Z̃p3q are locally square integrable processes. Moreover, the process

ĂWs :“Ws ´

ż s

t
2
Zr
σ2
r

´

up2qr ` up3qr µr

¯

dr

is a Brownian motion under an equivalent probability measure, and the Jacobi matrix

BxXs :“

¨

˚

˝

Bx1X
p1q
s Bx2X

p1q
s Bx3X

p1q
s

Bx1X
p2q
s Bx2X

p2q
s Bx3X

p2q
s

Bx1X
p3q
s Bx2X

p3q
s Bx3X

p3q
s

˛

‹

‚

is invertible for every s P rt, 1s almost surely.

Proof. For x1 “ px11, x
1
2, x

1
3q
J P R3, y, z P R we define

M
`

x1, y, z
˘

:“

¨

˚

˝

0
z2

σ2px12,y`x
1
3q

µ px12, y ` x
1
3q

z2

σ2px12,y`x
1
3q

˛

‹

‚

, Σ :“

¨

˝

1
0
0

˛

‚

and
ξ
`

x1
˘

:“ gpx11q ´ x
1
3.

Then, for a starting value x0 P R at time t, i.e. Xt “ x0, we can write FBSDE (3.2) as

Xs “ x0 `

ż s

t
M pXr, Yr, Zrq dr `

ż s

t
Σ dWr

Ys “ ξ pX1q ´

ż 1

s
Zr dWr.

Now, define a stopping time τ via

τ :“ infts P rt, 1s| det pBx0Xsq ď 0u ^ 1.
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Gradient dynamics of the decoupling field

Notice that τ ą t since detpBx0Xtq “ 1 and Bx0Xt is an Itô process and in particular continuous
in time (see Lemma A.2.5 and Lemma A.2.6 in [Fro15]). For all s P rt, τq we have that Bx0Xs is
invertible with pBx0Xsq

´1 being an Itô process , too. By setting

Us :“ Bxu ps,Xsq “ pBx1u, Bx2u, Bx3uq ps,Xsq

which is the gradient process we get

Bx0Ys “ Us ¨ Bx0Xs

for all s P rt, τq by applying the chain rule in Lemma A.3.1 in [Fro15] to the decoupling con-
dition. Hence, Us “ Bx0Ys ¨ pBx0Xsq

´1 is an Itô process and thus there exist pbsq and pZ̃sq such
that

Us “ U1 `

ż τ

s
br dr ´

ż τ

s
Z̃r dWr

for all s P rt, τq.
For the following we also introduce for an Itô process Is “ I0 `

şs
0 ir dr `

şs
0 jr dWr the two

operators Dt and Dw defined via pDt Iqs :“ is and pDw Iqs :“ js. Note that due to Lemma
A.2.5 and Lemma A.2.6 in [Fro15] the operators Dw and Dt can be interchanged with the weak
differentiation Bx0 . Using this notation we have

Bx0Zs “ Dw Bx0Ys

“ Dw pUs ¨ Bx0Xsq

“ Us ¨D
w Bx0Xs `Dw Us ¨ Bx0Xs.

Since Dw Bx0Xs “ 0, we further obtain Bx0Zs “ Z̃s ¨ Bx0Xs and thus we get

Z̃s “ Bx0Zs ¨ pBx0Xsq
´1

for all s P rt, τq. Also,

Bx0 rM pXs, Ys, Zsqs

“ BxM pXs, Ys, Zsq Bx0Xs ` ByM pXs, Ys, Zsq Bx0Ys ` BzM pXs, Ys, Zsq Bx0Zs

“ BxM pXs, Ys, Zsq Bx0Xs ` ByM pXs, Ys, ZsqUsBx0Xs ` BzM pXs, Ys, Zsq Z̃sBx0Xs

and
0 “ Dt Bx0Ys “ DtpUsBx0Xsq “ ´bs ¨ Bx0Xs ` Us ¨ Bx0 rM pXs, Ys, Zsqs

yielding

bs “ Us

”

BxM pXs, Ys, Zsq ` ByM pXs, Ys, ZsqUs ` BzM pXs, Ys, Zsq Z̃s

ı

for all s P rt, τq with

BxM px, y, zq “

¨

˚

˝

0 0 0

0 ´2z2 Btσpx2,y`x3q

σ3px2,y`x3q

Btµpx2,y`x3q¨z2

σ2px2,y`x3q
´ 2z2 Btσpx2,y`x3q

σpx2,y`x3q

µpx2,y`x3q

σ2px2,y`x3q

0 ´2z2 Baσpx2,y`x3q

σ3px2,y`x3q

Baµpx2,y`x3q¨z2

σ2px2,y`x3q
´ 2z2 Baσpx2,y`x3q

σpx2,y`x3q

µpx2,y`x3q

σ2px2,y`x3q

˛

‹

‚

T

,

ByM px, y, zq “

¨

˚

˝

0

´2z2 Baσpx2,y`x3q

σ3px2,y`x3q

Baµpx2,y`x3q¨z2

σ2px2,y`x3q
´ 2z2 Baσpx2,y`x3q

σpx2,y`x3q

µpx2,y`x3q

σ2px2,y`x3q

˛

‹

‚

,
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BzM px, y, zq “

¨

˚

˝

0
2z

σ2px2,y`x3q

2z µpx2,y`x3q

σ2px2,y`x3q

˛

‹

‚

being the derivatives of M .

Next we turn our attention to the question whether Bx0X is invertible. We use that on the
interval rt, 1s the processes U and Z as well as the functions 1

σ , µ
σ2 , Btµ

σ2 , Baµ
σ2 , Btσσ and Baσ

σ are
bounded, giving that BxM pXr, Yr, Zrq, ByM pXr, Yr, ZrqUr and BzM pXr, Yr, Zrq are bounded,
too. Thus, there exist some bounded processes α and β depending on U , X, Y and Z, such that
for every stopping time τ̃ ă τ , i “ 1, 2, 3 and s P rt, 1s the process upiq¨^τ̃ has dynamics

u
piq
s^τ̃ “ u

piq
t `

ż s

t

´

αpiqr ` βpiqr ¨ Z̃piqr

¯

1trăτ̃u dr `

ż s

t
Z̃piqr 1trăτ̃u dWr.

Standard results on linear BSDEs (see e.g. Theorem A.1.11 in [Fro15]) yield, for every stopping
time τ̃ ă τ and i “ 1, 2, 3, that Z̃piq has a bounded BMO(P)-norm which is independent of τ̃ .
Hence,

E

„
ż τ

t
|Z̃r|

2 dr



ă 8. (3.5)

Now observe that

Bx0Xs “ Id`

ż s

t
Bx0 rM pXr, Yr, Zrqs dr

“ Id`

ż s

t

”

BxM pXr, Yr, Zrq ` ByM pXr, Yr, ZrqUr ` BzM pXr, Yr, Zrq Z̃r

ı

Bx0Xr dr,

which yields with Theorem 1 and Conclusion 1 of [Vrk78] that

det
`

Bx0Xs

˘

“ exp

ˆ
ż s

t
tr
”

BxM pXr, Yr, Zrq ` ByM pXr, Yr, ZrqUr ` BzM pXr, Yr, Zrq Z̃r

ı

dr

˙

.

Together with Inequality (3.5) this implies that τ “ 1 and Bx0X is invertible on the whole
interval rt, 1s.
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Bounding the gradient of the decoupling field

What remains to do is to calculate the explicit dynamics of U . Observe that

bs

“ Us

”

BxM pXs, Ys, Zsq ` ByM pXs, Ys, ZsqUs ` BzM pXs, Ys, Zsq Z̃s

ı

“

´

up1qs , up2qs , up3qs

¯

»

—

–

¨

˚

˝

0 0 0

0 ´2Z
2
s
σ2
s

σt,s
σs

´2Z
2
s
σ2
s

σa,s
σs

0 µt,s
Z2
s
σ2
s
´ 2µs

Z2
s
σ2
s

σt,s
σs

µa,s
Z2
s
σ2
s
´ 2µs

Z2
s
σ2
s

σa,s
σs

˛

‹

‚

`

¨

˚

˝

0

´2Z
2
s
σ2
s

σa,s
σs

µa,s
Z2
s
σ2
s
´ 2µs

Z2
s
σ2
s

σa,s
σs

˛

‹

‚

´

up1qs , up2qs , up3qs

¯

`

¨

˚

˝

0
2Zs
σ2
s

2Zs
σ2
s
µs

˛

‹

‚

´

Z̃p1qs , Z̃p2qs , Z̃p3qs

¯

fi

ffi

fl

“

¨

˚

˚

˚

˝

´2u
p1q
s u

p2q
s

Z2
s
σ2
s

σa,s
σs
` u

p1q
s u

p3q
s

Z2
s
σ2
s

´

µa,s ´ 2µs
σa,s
σs

¯

´2u
p2q
s

Z2
s
σ2
s

σt,s
σs
` u

p3q
s

Z2
s
σ2
s

´

µt,s ´ 2µs
σt,s
σs

¯

´ 2
´

u
p2q
s

¯2
Z2
s
σ2
s

σa,s
σs
` u

p2q
s u

p3q
s

Z2
s
σ2
s

´

µa,s ´ 2µs
σa,s
σs

¯

´2u
p2q
s

Z2
s
σ2
s

σa,s
σs
` u

p3q
s

Z2
s
σ2
s

´

µa,s ´ 2µs
σa,s
σs

¯

´ 2u
p2q
s u

p3q
s

Z2
s
σ2
s

σa,s
σs
`

´

u
p3q
s

¯2
Z2
s
σ2
s

´

µa,s ´ 2µs
σa,s
σs

¯

˛

‹

‹

‹

‚

T

`

¨

˚

˚

˚

˝

2Zs
σ2
s

´

u
p2q
s ` u

p3q
s µs

¯

Z̃
p1q
s

2Zs
σ2
s

´

u
p2q
s ` u

p3q
s µs

¯

Z̃
p2q
s

2Zs
σ2
s

´

u
p2q
s ` u

p3q
s µs

¯

Z̃
p3q
s

˛

‹

‹

‹

‚

T

Using that Y1 “ ξpX1q and hence U1 “∇ξpX1qwe obtain for the gradient processes the dynamics

up1qs “ g1
´

X
p1q
1

¯

`

ż 1

s
up1qr

Z2
r

σ2
r

ˆ

up3qr

ˆ

µa,r ´ 2µr
σa,r
σr

˙

´ 2up2qr
σa,r
σr

˙

dr ´

ż 1

s
Z̃p1qr dĂWr

up2qs “

ż 1

s
up3qr

Z2
r

σ2
r

´

up2qr µa,r ` µt,r

¯

´ 2
Z2
r

σ2
r

ˆ

σt,r
σr

` up2qr
σa,r
σr

˙

´

up2qr ` up3qr µr

¯

dr ´

ż 1

s
Z̃p2qr dĂWr

up3qs “ ´1`

ż 1

s

´

up3qr ` 1
¯ Z2

r

σ2
r

ˆ

up3qr µa,s ´ 2
σa,r
σr

´

up2qr ` up3qr µr

¯

˙

dr ´

ż 1

s
Z̃p3qr dĂWr,

where ĂWs :“Ws´
şs
t

2Zr
σ2
r

´

u
p2q
r `u

p3q
r µr

¯

dr for all s P rt, 1s. Since 2Zs
σ2
r

´

u
p2q
s ` u

p3q
s µs

¯

is bounded

for all s P rt, 1s, where t P IMmax, we get by Girsanov’s theorem that ĂW is a Brownian motion for
an equivalent probability measure. �

3.2 Bounding the gradient of the decoupling field

In this section we use the notations and definitions of Section 3.1.
In the following we derive bounds for the gradient processes that do not depend on the starting

time t P Imax and initial value x P R3. In particular, we obtain global estimates for the space
derivatives Bxiu, i P t1, 2, 3u, of the decoupling field u. By applying Theorem 2.11 we can
conclude that FBSDE (3.2) has a solution on the whole interval r0, 1s.

Lemma 3.2
Assume that g, µ and σ are differentiable, σ ě ε ą 0 and g1, µ

σ2 , Btµ
σ2 , Baµ

σ2 , Btσσ , Baσσ are bounded.
Let u be the unique decoupling field to FBSDE (3.2) on Imax.
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The SEP for general diffusions

Furthermore, let t P Imax, x P R3 and pXp1q, Xp2q, Xp3q, Y, Zq be the solution of FBSDE (3.2)
with initial condition x at time t, and let up1q, up2q, up3q be the associated gradient processes. Then
for almost all pω, sq P Ωˆ rt, 1s

|Zs| ď sup
rPps,1s

sup
xPR3

|Bx1upr, xq|

and in particular }Z}8,t ď }Bx1u}8,t.
Furthermore, if the weak derivative Bx1u has a version whose restriction to the set rt, 1q ˆ R3 is

continuous in the first two components t and x1, and Bx1u is bounded, then

Zspωq “ Bx1u
´

s,Xp1qs pωq, Xp2qs pωq, Xp3qs pωq
¯

“ up1qs pωq

for almost all pω, sq P Ωˆ rt, 1s.

Proof. Observe that with Itô’s formula we get for a.a. pω, sq P rt, 1q and h ą 0 such that s ` h P
rt, 1s

1

h
E rYs`hpWs`h ´Wsq|Fss “

1

h
E

„
ż s`h

s
Yr dWr `

ż s`h

s
pWr ´WsqZr dWr `

ż s`h

s
Zr dr

ˇ

ˇ

ˇ

ˇ

Fs


“
1

h
E

„
ż s`h

s
Zr dr

ˇ

ˇ

ˇ

ˇ

Fs


Ñ Zs for hÑ 0.

On the other hand we get, using the decoupling condition Yr “ u
´

r,X
p1q
r , X

p2q
r , X

p3q
r

¯

, that

Ys`hpWs`h ´Wsq

“u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s`h

¯

pWs`h ´Wsq

“u
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯

pWs`h ´Wsq (3.6)

`

´

u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯

´ u
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯¯

pWs`h ´Wsq

`

´

u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s`h

¯

´ u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯¯

pWs`h ´Wsq.

At first let us take a look at the third summand on the right hand side of (3.6). Since u is Lipschitz
continuous in its fourth argument on rt, 1s with some constant Ltu,x3

that might depend on t and

since furthermore Xp3qs`h “ X
p3q
s `

şs`h
s µr

Z2
r

σ2pX
p2q
r ,Yr`X

p3q
r q

dr we can estimate the absolute value

of the third summand against

1

h

ˇ

ˇ

ˇ
E
”´

u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s`h

¯

´ u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ıˇ

ˇ

ˇ

ď
1

h
E
”
ˇ

ˇ

ˇ
u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s`h

¯

´ u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯ˇ

ˇ

ˇ
|Ws`h ´Ws|

ˇ

ˇ

ˇ
Fs

ı

ď
1

h
E

«

Ltu,x3

ˇ

ˇ

ˇ

ˇ

ˇ

ż s`h

s
µr

Z2
r

σ2pX
p2q
r , Yr `X

p3q
r q

dr

ˇ

ˇ

ˇ

ˇ

ˇ

|Ws`h ´Ws|

ˇ

ˇ

ˇ

ˇ

ˇ

Fs

ff

ď
1

h
Ltu,x3

h
›

›

›

µ

σ2

›

›

›

8
}Z}28,tE r |Ws`h ´Ws||Fss ,
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Bounding the gradient of the decoupling field

which clearly goes to 0 as hÑ 0 because } µ
σ2 }8 and }Z}8,t are finite on rt, 1s.

With analogous arguments we also get that

1

h

ˇ

ˇ

ˇ
E
”´

u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯

´ u
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı
ˇ

ˇ

ˇ

ď
1

h
E
”ˇ

ˇ

ˇ
u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯

´ u
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯ˇ

ˇ

ˇ
|Ws`h ´Ws|

ˇ

ˇ

ˇ
Fs

ı

ď
1

h
E

«

Ltu,x2

ˇ

ˇ

ˇ

ˇ

ˇ

ż s`h

s

Z2
r

σ2pX
p2q
r , Yr `X

p3q
r q

dr

ˇ

ˇ

ˇ

ˇ

ˇ

|Ws`h ´Ws|

ˇ

ˇ

ˇ

ˇ

ˇ

Fs

ff

ď
1

h
Ltu,x2

h}Z}28,tε
´2E r |Ws`h ´Ws||Fss

Ñ 0 a.s. for hÑ 0,

where Ltu,x2
is the Lipschitz constant of u in the third argument on the time interval rt, 1s.

Now consider the remaining first term on the right hand side of Equation (3.6). For this
remember

• X
p1q
s , Xp2qs , Xp3qs are Fs measurable,

• X
p1q
s`h “ X

p1q
s ` pWs`h ´Wsq,

• Ws`h ´Ws is independent of Fs,

• u is deterministic, i.e. is a function of ps, xp1q, xp2q, xp3qq P rt, 1s ˆRˆRˆR only.

Using integration by parts these properties imply

E
”

u
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

“

ż

R

u
´

s` h,Xp1qs ` z
?
h,Xp2qs , Xp3qs

¯

z
?
h

1
?

2π
e´

1
2
z2

dz

“

ż

R

Bx1u
´

s` h,Xp1qs ` z
?
h,Xp2qs , Xp3qs

¯

h
1
?

2π
e´

1
2
z2

dz.

Hence

ˇ

ˇ

ˇ

ˇ

1

h
E
”

u
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R

Bx1u
´

s` h,Xp1qs ` z
?
h,Xp2qs , Xp3qs

¯ 1
?

2π
e´

1
2
z2

dz

ˇ

ˇ

ˇ

ˇ

ď

ż

R

sup
xPR3

|Bx1ups` h, xq|
1
?

2π
e´

1
2
z2

dz

“ sup
xPR3

|Bx1ups` h, xq|.
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Putting everything together we get

|Zs| “ lim
hŒ0

ˇ

ˇ

ˇ

ˇ

1

h
E

„
ż s`h

s
Zr dr

ˇ

ˇ

ˇ

ˇ

Fs
ˇ

ˇ

ˇ

ˇ

“ lim
hŒ0

ˇ

ˇ

ˇ

ˇ

1

h
E rYs`hpWs`h ´Wsq|Fss

ˇ

ˇ

ˇ

ˇ

“ lim
hŒ0

ˇ

ˇ

ˇ

ˇ

1

h
E
”

u
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

`
1

h
E
”´

u
´

s`h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯

´ u
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

`
1

h
E
”´

u
´

s`h,X
p1q
s`h, X

p2q
s`h, X

p3q
s`h

¯

´ u
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

ˇ

ˇ

ˇ

ˇ

ď lim sup
hŒ0

sup
xPR3

|Bx1ups` h, xq| ` |0| ` |0|

ď sup
rPps,1s

sup
xPR3

|Bx1upr, xq|.

If we have that Bx1u is continuous in the first two arguments, we can derive, by using domin-
ated convergence since up1q is bounded on rt, 1s, the more precise result

Zs “ lim
hŒ0

1

h
E
”

u
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

“

ż

R

lim
hŒ0

Bx1u
´

s` h,Xp1qs ` z
?
h,Xp2qs , Xp3qs

¯ 1
?

2π
e´

1
2
z2

dz

“Bx1u
´

s,Xp1qs , Xp2qs , Xp3qs

¯

almost surely. �

To obtain estimates for the gradient processes we use the following result.

Lemma 3.3 (See [MPF12], pg. 362)
Let the function f be continuous and non-negative on J “ rα, βs, a, b ě 0, and n be a positive
integer pn ě 2q. If

fptq ď a` b

ż t

α
fnpsq ds, t P J,

then

fptq ď a

„

1´ pn´ 1q

ż t

α
an´1b ds



1
1´n

, α ď t ď βn,

where βn “ sup
!

t P J : pn´ 1q
şt
α a

n´1b ds ă 1
)

.

Lemma 3.4
Assume that g, µ and σ are differentiable, σ ě ε ą 0 and g1, µ

σ2 , Btµ
σ2 , Baµ

σ2 , Btσσ , Baσσ are bounded.
Let u be the unique decoupling field of the FBSDE (3.2). Then for any t P Imax and initial condition
pX

p1q
t , X

p2q
t , X

p3q
t q “ x P R3 the associated gradient process up3q satisfies for all s P rt, 1s

up3qs “ ´1.

18



Bounding the gradient of the decoupling field

If we additionally assume that σa,s ¨ u
p2q
s ě 0 a.s. for all s P rt, 1s and

inf
pθ,xqPR`ˆR

σ ¨ Baµ´ 2Baσ ¨ µ

σ3
pθ, xq ą ´

1

2}g1}28
,

then it also holds that

0 ď up1qs ď

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´ 1
2

ă 8

for all s P rt, 1s.

Proof. By interpreting (3.4) as a system of BSDEs we get for up3q the trivial solution up3qs “ ´1
for all s P rt, 1s as the unique bounded solution of this BSDE.

Also note that g1 ě 0 since g “ F´1
ν ˝ Φ and Fν as well as Φ are non-decreasing. Thus ǔs “ 0

is the trivial and unique solution to

ǔs “ 0`

ż 1

s
´ǔr

Z2
r

σ2
r

ˆ

´µa,r ` 2µr
σa,r
σr

´ 2up2qr
σa,r
σr

˙

dr ´

ż 1

s
Z̃p1qr dĂWr,

which implies by comparison (see e.g. Theorem 6.2.2 in [Pha09]) that 0 “ ǔs ď u
p1q
s for all

s P rt, 1s.
For the upper bound of up1q remember that up1qs “ Bx1ups,X

p1q
s , X

p2q
s , X

p3q
s q for all s P rt, 1s and

in particular for any fixed t P Imax and all starting conditions x “ pxp1q, xp2q, xp3qq P R3 we have

Bx1upt, xq “ u
p1q
t “ g1

´

X
p1q
1

¯

´

ż 1

t
up1qr

Z2
r

σ2
r

ˆ

µa,r ´ 2µr
σa,r
σr

` 2up2qr
σa,r
σr

˙

dr ´

ż 1

t
Z̃p1qr dĂWr.

Using this and that Z is bounded on every interval rt, 1s Ă Imax, we get

u
p1q
t “ E

”

u
p1q
t

ˇ

ˇ

ˇ
Ft
ı

“ E

„

g1
´

X
p1q
1

¯

´

ż 1

t
up1qr

Z2
r

σ2
r

ˆ

µa,r ´ 2µr
σa,r
σr

` 2up2qr
σa,r
σr

˙

dr

ˇ

ˇ

ˇ

ˇ

Ft


ď E

„

g1
´

X
p1q
1

¯

´

ż 1

t
up1qr

Z2
r

σ2
r

ˆ

µa,r ´ 2
σa,r
σr

µr

˙

dr

ˇ

ˇ

ˇ

ˇ

Ft


for all t P Imax and pxp1q, xp2q, xp3qq P R3, where we use that σa,r ¨ u
p2q
r ě 0. Next we use the

inequality

´
σsµa,s ´ 2σa,sµr

σ3
s

ď max

"

0,´ inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*

“: β

and the estimate from Lemma 3.2 for Z to obtain

u
p1q
t ď }g1}8 ` β

ż 1

t
sup
xPR3

Bx1upr, xq sup
θPrr,1s

sup
xPR3

pBx1uq
2
pθ, xq dr.

Thus we can derive the inequality

sup
ρPrt,1s

sup
xPR3

Bx1upρ, xq ď }g
1}8 ` β sup

ρPrt,1s

#

ż 1

ρ
sup
xPR3

Bx1upr, xq sup
θPrr,1s

sup
xPR3

pBx1uq
2
pθ, xq dr

+

ď }g1}8 ` β

ż 1

t
sup
θPrr,1s

sup
xPR3

pBx1uq
3
pθ, xq dr.
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Note that infpθ,xqPR`ˆR
σ¨Baµ´2Baσ¨µ

σ3 pθ, xq ą ´ 1
2}g1}28

implies β ă 1
2}g1}28

. Hence, we obtain by
setting fptq “ supρPrt,1s supxPR3 Bx1upρ, xq and applying Lemma 3.3 that

sup
ρPrt,1s

sup
xPR3

Bx1upρ, xq ď

ˆ

1

}g1}28
´ 2βp1´ tq

˙´ 1
2

and thus,

}up1q}8,t ď }Bx1u}8,t ď

ˆ

1

}g1}28
´ 2β

˙´ 1
2

ă 8.

�

Assumption 3.5
Let g, µ and σ be differentiable, σ ě ε ą 0 and g1, µ

σ2 , Btµ
σ2 , Baµ

σ2 , Btσσ as well as Baσ
σ be bounded.

Furthermore, let

inf
pθ,xqPR`ˆR

σ ¨ Baµ´ 2Baσ ¨ µ

σ3
pθ, xq ą ´

1

2}g1}28
(3.7)

and one of the following conditions be satisfied:

i) Baσ ” 0

ii) Baσ ě 0, 2Btσ ¨ µ´ σ ¨ Btµ ě 0 or

iii) Baσ ď 0, 2Btσ ¨ µ´ σ ¨ Btµ ď 0.

Theorem 3.6
Let g, µ and σ fulfill Assumption 3.5. Then, for FBSDE (3.2), we have Imax “ r0, 1s and there exists
a unique, strongly regular Markovian decoupling field u on the whole interval r0, 1s. This u is a
continuous function on r0, 1s ˆR3.

Furthermore let pXp1q, Xp2q, Xp3q, Y, Zq be the solution of FBSDE (3.2) with an arbitrary initial
condition x P R3 and up1q, up2q, up3q be the associated gradient processes on r0, 1s. Then we have
up3q ” ´1 and the finite estimates

0 ď up1q ď

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´ 1
2

, (3.8)

›

›

›
up2q

›

›

›

8
ď exp

„

}Z}28

ˆ›

›

›

›

Baµ

σ2

›

›

›

›

8

` 2

ˆ›

›

›

›

Baσ

σ

›

›

›

›

8

›

›

›

µ

σ2

›

›

›

8
`

1

ε2

›

›

›

›

Btσ

σ

›

›

›

›

8

˙˙

¨ }Z}28

ˆ

2

›

›

›

›

Btσ

σ

›

›

›

›

8

›

›

›

µ

σ2

›

›

›

8
`

›

›

›

›

Btµ

σ2

›

›

›

›

8

˙

(3.9)

and

}Z}8 ď
›

›

›
up1q

›

›

›

8
ď

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´ 1
2

. (3.10)

Proof. Using Lemma 2.10 we only need to show that the weak derivative of u with regard to
the initial value x P R3 is bounded by some constant which is independent of the time interval
rt, 1s Ă Imax on which it is defined. Then it follows that Imax “ r0, 1s and hence t can be chosen
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Bounding the gradient of the decoupling field

to equal 0 and the estimates (3.8), (3.9) and (3.10) hold true for corresponding processes on
the whole interval r0, 1s.

For now fix t P Imax and x P R3 and let up1q, up2q, up3q be the associated gradient processes.
Lemma 3.4 yields up3q ” ´1. In order to derive Estimate (3.8) we show that σa,s ¨ u

p2q
s ě 0 a.s.

for all s P rt, 1s which then allows us to apply Lemma 3.4 yielding the estimate. Consider the
three cases iq, iiq and iiiq of Assumption 3.5: With Baσ ” 0 of case iq this is obviously true. For
the remaining two cases observe that

up2qs “

ż 1

s

Z2
r

σ2
r

„

´

up2qr

¯2
ˆ

´2
σa,r
σr

˙

` up2qr

ˆ

´µa,r ` 2
σa,r
σr

µr ´ 2
σt,r
σr

˙

`

ˆ

2
σt,r
σr

µr ´ µt,r

˙

dr

´

ż 1

s
Z̃p2qr dĂWr.

Because up2qr is bounded on every interval rt, 1s Ă Imax, we can view up2q as fulfilling a Lipschitz
BSDE. This allows us to use the comparison theorem by changing 2

σt,r
σr
µr´µt,r to zero and hence

compare with the trivial solution which is constantly 0. Thus in the case iiq we have up2q ě 0
and in case iiiq up2q ď 0. Therefore, we have Baσ ¨ up2q ě 0 for the cases iiq and iiiq as well.
Hence we can apply Lemma 3.4 to obtain, for s P rt, 1s,

0 ď up1qs ď

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´ 1
2

.

In addition with Lemma 3.2 this yields

}Z}8,t ď }u
p1q}8,t ď

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´ 1
2

ă 8.

Since, as stated before, in case iiq we have up2q ě 0 and Baσ ě 0 and in case iiiq up2q ď 0 and
Baσ ď 0, we again can apply the comparison theorem to see that in case iiq we have 0 ď up2q ď ū
and in case iiiq ū ď up2q ď 0, where ū is the solution of the linear BSDE

ūs “

ż 1

s
ūr
Z2
r

σ2
r

ˆ

´µa,r ` 2
σa,r
σr

µr ´ 2
σt,r
σr

˙

`
Z2
r

σ2
r

ˆ

2
σt,r
σr

µr ´ µt,r

˙

dr ´

ż 1

s
Z̄r dĂWr.

In case iq we have that up2q “ ū giving that up2q is bounded by ū as well.
By estimating

|ūs| “

ˇ

ˇ

ˇ

ˇ

E

„
ż 1

s
exp

ˆ
ż r

s

Z2
r

σ2
r

ˆ

´µa,r ` 2
σa,r
σr

µr ´ 2
σt,r
σr

˙

dρ

˙

Z2
r

σ2
r

ˆ

2
σt,r
σr

µr ´ µt,r

˙

dr

ˇ

ˇ

ˇ

ˇ

Fs
ˇ

ˇ

ˇ

ˇ

ď exp

„

}Z}28

ˆ›

›

›

›

Baµ

σ2

›

›

›

›

8

` 2

ˆ›

›

›

›

Baσ

σ

›

›

›

›

8

›

›

›

µ

σ2

›

›

›

8
`

1

ε2

›

›

›

›

Btσ

σ

›

›

›

›

8

˙˙

¨ }Z}28

ˆ

2

›

›

›

›

Btσ

σ

›

›

›

›

8

›

›

›

µ

σ2

›

›

›

8
`

›

›

›

›

Btµ

σ2

›

›

›

›

8

˙

we have found a finite bound for up2q that is independent of t.
Thus up1q, up2q and up3q are bounded independently of t. Thus, Theorem 2.11 gives that

Imax “ r0, 1s, FBSDE (3.2) has a unique solution and we also have that all bounds are valid on
this interval. �
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3.3 Weak solution

In this section we show that a weak solution of the SEP can be obtained from the solution of the
FBSDE (3.2). This means that we construct the Brwonian motion driving the stopped process.
Recall that if Assumption 3.5 is fulfilled, then by Theorem 3.6 FBSDE (3.2) has a solution on the
whole interval r0, 1s and the gradient processes are bounded.

In the following we sometimes use the fact that for two Itô processes A and B and a time
change γ, in the sense of Definition 1.2 in Chapter V, [RY13], it holds that

ż γptq

0
Ar dBr “

ż t

0
Aγprq dBγprq

(see e.g. Proposition 1.4, Chapter V, [RY13]).
The next theorem is a version of Theorem 3.21 with an explicit weak solution of the SEP.

Theorem 3.7
Let g, µ and σ fulfill Assumption 3.5. Furthermore let pXp1q, Xp2q, Xp3q, Y, Zq be the solution of the
FBSDE (3.2) with initial value pXp1q0 , X

p2q
0 , X

p3q
0 q “ p0, 0, 0q. Define the random time

τ̃ :“ X
p2q
1 ,

the time change

γptq :“

#

inf
!

s ě 0|X
p2q
s ą t

)

if 0 ď t ă τ̃ ,

1 if t ě τ̃ ,

the filtration Gt :“ Fγptq and the process At :“ Yγptq `X
p3q
γptq on r0, τ̃ s.

Then τ̃ is a pGtq-stopping time satisfying

τ̃ ď ε´2

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´1

a.s.

Furthermore, on r0, τ̃ s, the process Bt :“
şt
0

1

σpX
p2q
γprq

,Yγprq`X
p3q
γprq

q
dYγprq is a pGtq-Brownian motion,

A fulfills the SDE

At “ Y0 `

ż t

0
µ pr,Arq dr `

ż t

0
σpr,Arq dBr

and we have
Aτ̃ „ ν.

Proof. By standard results it follows that τ̃ is a pGtq-stopping time (see e.g. Proposition 1.1,
Chapter V, [RY13]). With

γ´1psq :“ Xp2qs (3.11)

for all s P r0, 1s we have for all t P r0, τ̃ s that Xp2qγptq “ γ´1pγptqq “ t. Therefore, and because
dYr “ Zr dWr, we obtain

xB,Byt “

ż γptq

0

Z2
r

σ2pX
p2q
r , Yr `X

p3q
r q

dr “ γ´1pγptqq “ t.

By Levy’s characterisation of Brownian motion we get that pBtq is a pGtq-Brownian motion on
r0, τ̃ s.
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Note that for all ω P Ω the function γ is λ-a.e. differentiable on r0, τ̃ s with

γ1ptq “ ppγ´1q´1q1ptq “
1

pγ´1q1pγptqq
“
σ2pX

p2q
γptq, Yγptq `X

p3q
γptqq

Z2
γptq

(3.12)

and hence

At “ X
p3q
γptq ` Yγptq ´ Y0 ` Y0

“ Y0 `

ż γptq

0
µ
´

Xp2qr , Yr `X
p3q
r

¯ Z2
r

σ2pX
p2q
r , Yr `X

p3q
r q

dr `

ż γptq

0

σpX
p2q
r , Yr `X

p3q
r q

σpX
p2q
r , Yr `X

p3q
r q

dYr

“ Y0 `

ż t

0
µ
´

X
p2q
γprq, Yγprq `X

p3q
γprq

¯

dr `

ż t

0
σ
´

X
p2q
γprq, Yγprq `X

p3q
γprq

¯

dBr

“ Y0 `

ż t

0
µ pr,Arq dr `

ż t

0
σpr,Arq dBr

for all t P r0, τ̃ s. Also

Aτ̃ “ Yγpτ̃q `X
p3q
γpτ̃q “ Y1 `X

p3q
1 “ gpW1q „ ν.

The bound for τ̃ follows with the bound for }Z}8 stated in Theorem 3.6 and by σ ě ε. �

The next lemma characterizes the stopping time τ̃ “ γ´1p1q of Theorem 3.7 in terms of the
solution of an FBSDE driven by the Brownian motion B. We use the lemma later to show
existence of strong solutions of the SEP.

Lemma 3.8
Assume g, µ and σ to fulfill Assumption 3.5. Let the decoupling field u of the FBSDE (3.2) have
a continuous weak derivative Bx1u ą 0. Also let pXp1q, Xp2q, Xp3q, Y, Zq, γ and B be defined as in
Theorem 3.7. Moreover, let B̂ be any Brownian motion coinciding with B on r0, Xp2q1 s. Then γ, W ,
Xp3q and Y solve the system

γptq “

ż t

0

σ2
´

r, Yγprq `X
p3q
γprq

¯

pBx1uq
2
pγprq,Wγprq, r,X

p3q
γprqq

dr

Wγptq “

ż t

0

σ
´

r, Yγprq `X
p3q
γprq

¯

Bx1upγprq,Wγprq, r,X
p3q
γprqq

dB̂r (3.13)

X
p3q
γptq “

ż t

0
µ
´

r, Yγprq `X
p3q
γprq

¯

dr

Yγptq “ Y0 `

ż t

0
σ
´

r, Yγprq `X
p3q
γprq

¯

dB̂r

for all t ě 0 such that γptq ď 1. Additionally, for γ´1 defined as in (3.11) we have

γ´1p1q ď
}Bx1u}

2
8

ε2
ď ε´2

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´1

.

(3.14)
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Proof. Note that Theorem 3.6 implies the bound (3.14). Since Bx1u is continuous we get with
Lemma 3.2 that Zs “ Bx1ups,X

p1q
s , X

p2q
s , X

p3q
s q ą 0 for all s P r0, 1s and hence both γ and γ´1

are strict monotone increasing and continuous. Moreover, Lemma 3.2, Equation (3.12) and the
fact that Xp2qγptq “ t yield

γ1ptq “
σ2

´

X
p2q
γptq, Yγptq `X

p3q
γptq

¯

Z2
γptq

“

σ2
´

t, Yγptq `X
p3q
γptq

¯

pBx1uq
2
´

γptq, X
p1q
γptq, X

p2q
γptq, X

p3q
γptq

¯

for all 0 ď t ď γ´1p1q.
Furthermore, Xp1qs “Ws yields that

Wγptq “

ż t

0
1 dWγprq “

ż t

0

σ
´

X
p2q
γprq, Yγprq `X

p3q
γprq

¯

Zγprq
dB̂r

“

ż t

0

σ
´

r, Yγprq `X
p3q
γprq

¯

Bx1u
´

γprq, X
p1q
γprq, X

p2q
γprq, X

p3q
γprq

¯ dB̂r

“

ż t

0

σ
´

r, Yγprq `X
p3q
γprq

¯

Bx1u
´

γprq,Wγprq, r,X
p3q
γprq

¯ dB̂r.

Also

Yγptq “ Y0 `

ż γptq

0
Zr dWr “ Y0 `

ż t

0
Zγprq dWγprq

“ Y0 `

ż t

0
σ
´

r, Yγprq `X
p3q
γprq

¯

dB̂r,

X
p3q
γptq “

ż γptq

0
µ
´

Xp2qr , Yr `X
p3q
r

¯ Z2
r

σ2pX
p2q
r , Yr `X

p3q
r q

dr

“

ż t

0
µ
´

X
p2q
γprq, Yγprq `X

p3q
γprq

¯ Z2
γprq

σ2
´

X
p2q
γprq, Yγprq `X

p3q
γprq

¯

σ2
´

X
p2q
γprq, Yγprq `X

p3q
γprq

¯

Z2
γprq

dr

“

ż t

0
µ
´

r, Yγprq `X
p3q
γprq

¯

dr

and

γptq “

ż t

0
γ1prq dr “

ż t

0

σ2
´

r, Yγprq `X
p3q
γprq

¯

pBx1uq
2
´

γprq, X
p1q
γprq, X

p2q
γprq, X

p3q
γprq

¯ dr

“

ż t

0

σ2
´

r, Yγprq `X
p3q
γprq

¯

pBx1uq
2
´

γprq,Wγprq, r,X
p3q
γprq

¯ dr

for all t P r0, γ´1p1qs. �
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3.4 Strong solution

We use the definitions and constructions of the former sections. In particular let u be the unique
strongly regular decoupling field of the FBSDE (3.2) which exists on the whole interval r0, 1s if
Assumption 3.5 is fulfilled.

Theorem 3.9
Let g, µ and σ fulfill Assumption 3.5 and µ, σ and their derivatives be bounded. Denote by u the
decoupling field of FBSDE (3.2) and assume the partial derivative Bx1u with respect to the first space
variable to be Lipschitz continuous in every argument and Bx1u ě δ ą 0. Let B be an arbitrary
Brownian motion and denote by pFBq “ pFB

s qsPr0,8q the augmented filtration generated by B.
Then there exists a bounded stopping time τ with respect to the filtration FB such that for the
process A given by

At “ Y0 `

ż t

0
µ pr,Arq dr `

ż t

0
σpr,Arq dBr,

for all t P r0, τ s, we have that Aτ „ ν and the stopping time τ satisfies

τ ď ε´2

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´1

a.s.

By solving the Lipschitz SDE

γprq “

ż r

0

σ2ps,Θs `∆sq

pBx1upγpsq,Γs, s,∆sqq
2 ds

Γr “

ż r

0

σps,Θs `∆sq

Bx1upγpsq,Γs, s,∆sq
dBs (3.15)

∆r “

ż r

0
µps,Θs `∆sq ds

Θr “ Y0 `

ż r

0
σps,Θs `∆sq dBs

for all r ě 0 such that γprq ď 1 and where Y0 is the starting value of the process Y in the
FBSDE (3.2) and setting τ :“ inftr ě 0|γprq “ 1u we can obtain such a stopping time.

Proof. Since any solution of FBSDE (3.2) has a unique distribution independent of the driving
Brownian motion, we know that the constant Y0 is always the same and does not depend on the
driving Brownian motion.

Let us take a look at the system (3.15). Note that for all a, b P r0, 1s ˆR3

ˇ

ˇ

ˇ

ˇ

1

Bx1upaq
´

1

Bx1upbq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Bx1upbq ´ Bx1upaq

Bx1upaq ¨ Bx1upbq

ˇ

ˇ

ˇ

ˇ

ď
Lu,x1

δ2
|b´ a|,

yielding that pBx1uq
´1 is Lipschitz continuous. Since hence both pBx1uq

´1 and σ are Lipschitz
continuous and bounded we get that σ ¨ pBx1uq

´1 and σ2 ¨ pBx1uq
´2 are Lipschitz and bounded as

well. Thus, we have that all coefficients of the system (3.15) are Lipschitz continuous. Therefore
there exists a unique solution pγ,Γ,∆,Θq of (3.15) which is progressively measurable w.r.t.
pFB

t q. Hence τ :“ inftr ě 0|γprq “ 1u is a stopping time w.r.t. pFB
t q because γ is continuous.

Furthermore, the systems (3.13) and (3.15) just differ by notation and the driving Brownian
motion. By the principle of causality (see [KS91]) the distributions of pγ,Wγ , X

p3q
γ , Yγq from
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Lemma 3.8 and pγ,Γ,∆,Θq are the same. Hence, we immediately have the bound for τ as
stated in Lemma 3.8 and also for At :“ ∆t `Θt that

Aτ “ ∆τ `Θτ “ ∆γ´1p1q `Θγ´1p1q „ X
p3q
γpγ´1p1qq

` Yγpγ´1p1qq “ X
p3q
1 ` Y1 “ gpW1q „ ν

and

At “ ∆t `Θt “ Y0 `

ż t

0
µps,∆s `Θsq ds`

ż t

0
σps,∆s `Θsq dBs

“ Y0 `

ż t

0
µps,Asq ds`

ż t

0
σps,Asq dBs.

�

What remains to do is to find sufficient conditions for the assumptions of Theorem 3.9 to
hold true. For this we use that the decoupling field u of FBSDE (3.2) is three times weakly
differentiable. To show this we extend FBSDE (3.2) by the dynamics of the gradient processes
and view this system as a extended FBSDE, for which we can show the weak differentiability of
its decoupling field.

Let a :“ max
`

}Bx1u}8, }Bx2u}8, }Bx3u}8
˘

and define the truncation operator T : R Ñ R by
T pzq :“ minpmaxpz,´aq, aq. Note that the map T is uniformly Lipschitz. Assume that g, µ, σ
and their first derivatives are Lipschitz continuous and consider the FBSDE

Xp1qs “ xp1q `

ż s

t
1 dWr,

Xp2qs “ xp2q `

ż s

t

pZ
p0q
r q2

σ2
r

dr,

Xp3qs “ xp3q `

ż s

t
µr
pZ
p0q
r q2

σ2
r

dr,

Y p0qs “ gpX
p1q
1 q ´X

p3q
1 ´

ż 1

s
Zp0qr dWr,

Y p1qs “ g1pX
p1q
1 q `

ż 1

s
T
´

Y p1qr

¯

pZ
p0q
r q2

σ2
r

ˆ

T
´

Y p3qr

¯

ˆ

µa,r ´ 2µr
σa,r
σr

˙

´ 2T
´

Y p2qr

¯ σa,r
σr

˙

dr

`

ż 1

s
2
Z
p0q
r

σ2
r

T
´´

Y p2qr

¯

` T
´

Y p3qr

¯

µr

¯

Zp1qr dr ´

ż 1

s
Zp1qr dWr

Y p2qs “ 0`

ż 1

s
´2
pZ
p0q
r q2

σ2
r

ˆ

σt,r
σr

` T
´

Y p2qr

¯ σa,r
σr

˙

´

T
´

Y p2qr

¯

` T
´

Y p3qr

¯

µr

¯

dr

`

ż 1

s
T
´

Y p3qr

¯

pZ
p0q
r q2

σ2
r

´

T
´

Y p2qr

¯

µa,r ` µt,r

¯

dr

`

ż 1

s
2
Z
p0q
r

σ2
r

´

T
´

Y p2qr

¯

` T
´

Y p3qr

¯

µr

¯

Zp2qr dr ´

ż 1

s
Zp2qr dWr

Y p3qr “ ´1`

ż 1

s

´

T
´

Y p3qr

¯

` 1
¯

pZ
p0q
r q2

σ2
r

ˆ

T
´

Y p3qr

¯

µa,s ´ 2
σa,r
σr

´

T
´

Y p2qr

¯

` T
´

Y p3qr

¯

µr

¯

˙

dr

`

ż 1

s
2
Z
p0q
r

σ2
r

´

T
´

Y p2qr

¯

` T
´

Y p3qr

¯

µr

¯

Zp3qr dr ´

ż 1

s
Zp3qr dWr

(3.16)
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with the decoupling condition

Y p0qs “ up0qps,Xp1qs , Xp2qs , Xp3qs q,

Y p1qs “ up1qps,Xp1qs , Xp2qs , Xp3qs q,

Y p2qs “ up2qps,Xp1qs , Xp2qs , Xp3qs q,

Y p3qs “ up3qps,Xp1qs , Xp2qs , Xp3qs q,

where

µr :“ µ
´

Xp2qr , Y p0qr `Xp3qr

¯

, σr :“ σ
´

Xp2qr , Y p0qr `Xp3qr

¯

and

µt,r :“ Btµ
´

Xp2qr , Y p0qr `Xp3qr

¯

, µa,r :“ Baµ
´

Xp2qr , Y p0qr `Xp3qr

¯

,

σt,r :“ Btσ
´

Xp2qr , Y p0qr `Xp3qr

¯

, σa,r :“ Baσ
´

Xp2qr , Y p0qr `Xp3qr

¯

.

Lemma 3.10
Let g, µ and σ fulfill Assumption 3.5. In addition, suppose that g, µ and σ are twice differentiable
and that the second derivatives are bounded. Then, for the FBSDE (3.16), we have IMmax “ r0, 1s
and there exists a unique, strongly regular Markovian decoupling field pup0q, up1q, up2q, up3qq on the
whole interval r0, 1s. Furthermore,

up0q “ u, up1q “ Bx1u, up2q “ Bx2u and up3q “ Bx3u,

a.e., where u is the unique decoupling field to FBSDE (3.2). In particular, u is twice weakly differ-
entiable w.r.t. the initial value x with uniformly bounded derivatives.

Proof. It is straightforward to verify that FBSDE (3.16) satisfies (MLLC), and hence Theorem 2.8
is applicable. Let upiq, i “ 0, 1, 2, 3 be the corresponding unique weakly regular Markovian
decoupling field on Imax. upiq, i “ 0, 1, 2, 3, are continuous functions on Imax ˆ R3. In order to
show that Imax “ r0, 1swe again need to prove that every partial derivative of upiq for i “ 0, 1, 2, 3
is bounded independently with regard to the interval rt, 1s Ă Imax where we consider it.

Let t P Imax. For an arbitrary initial condition x̄ P R3 consider the corresponding processes

Xp1q, Xp2q, Xp3q, Y p0q, Y p1q, Y p2q, Y p3q, Zp0q, Zp1q, Zp2q, Zp3q

on rt, 1s. Note that Xp1q, Xp2q, Xp3q, Y p0q, Zp0q solve FBSDE (3.2), which implies that they co-
incide with the processes Xp1q, Xp2q, Xp3q, Y, Z from (3.2) since strong regularity of Markovian
decoupling fields guarantees uniqueness. Now Y p0q “ Y implies upt1, x1q “ up0qpt1, x1q for all
t1 P rt, 1s, x1 P R3.

Note that a truncation with T does not effect any gradient process of FBSDE (3.2). Thus,
pY
p1q
s q, pY p2qs q, pY p3qs q fulfill the same dynamics resp. BSDEs as the gradient processes pup1qs q,

pu
p2q
s q, pu

p3q
s q in (3.4). Therefore, we can apply the same arguments and conclude that they also

satisfy the estimates (3.8), (3.9) and (3.10) (see Theorem 3.6). In particular Y p3qs “ ´1 “ u
p3q
s
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for all s P rt, 1s and therefore also Zp3qs “ 0 “ Z̃
p3q
s . Hence,

Y p2qs ´ up2qs “

ż 1

s

ˆ

´

Y p2qr

¯2
´

´

up2qr

¯2
˙

pZ
p0q
r q2

σ2
r

ˆ

´2
σa,r
σr

˙

dr

`

ż 1

s

´

Y p2qr ´ up2qr

¯

pZ
p0q
r q2

σ2
r

ˆ

´µa,r ` 2
σa,r
σr

µr ´ 2
σt,r
σr

˙

dr

`

ż 1

s

2Z
p0q
r

σ2
r

´´

Y p2qr ´ µr

¯

Zp2qr ´

´

up2qr ´ µr

¯

Z̃p2qr

¯

dr ´

ż 1

s

´

Zp2qr ´ Z̃p2qr

¯

dWr

“

ż 1

s

ˆ

´

Y p2qr

¯2
´

´

up2qr

¯2
˙

pZ
p0q
r q2

σ2
r

ˆ

´2
σa,r
σr

˙

dr ´

ż 1

s

´

Zp2qr ´ Z̃p2qr

¯

dWr

`

ż 1

s

´

Y p2qr ´ up2qr

¯

pZ
p0q
r q2

σ2
r

ˆ

´µa,r ` 2
σa,r
σr

µr ´ 2
σt,r
σr

˙

dr

`

ż 1

s

2Z
p0q
r

σ2
r

´´

Y p2qr ´ up2qr

¯

Zp2qr `

´

up2qr ´ µr

¯´

Zp2qr ´ Z̃p2qr

¯¯

dr

Since 2Z
p0q
r
σ2
r

´

u
p2q
r ´ µr

¯

is bounded we have that ĂWs :“Ws´Wt´
şs
t

2Z
p0q
r
σ2
r

´

u
p2q
r ´ µr

¯

dr, s P rt, 1s,
is a Brownian motion under some probability measure equivalent to P. Under the new measure
the process pair pY p2qs ´u

p2q
s , Z

p2q
s ´ Z̃

p2q
s q is a solution of the following linear BSDE with bounded

coefficients

Ŷs “

ż 1

s
Ŷr

´

Y p2qr ` up2qr

¯

pZ
p0q
r q2

σ2
r

ˆ

´2
σa,r
σr

˙

dr

`

ż 1

s
Ŷr
pZ
p0q
r q2

σ2
r

ˆ

´µa,r ` 2
σa,r
σr

µr ´ 2
σt,r
σr

˙

dr

`

ż 1

s
Ŷr

2Z
p0q
r

σ2
r

Zp2qr dr ´

ż 1

s
Ẑr dĂWr.

Note that p0, 0q is the unique solution of the previous BSDE. Consequently, Y p2q and up2q are
indistinguishable and Zp2q “ Z̃p2q, λb P -almost everywhere on rt, 1s ˆ Ω.

Similarly we can show that Y p1q and up1q as well as Zp1q and Z̃p1q coincide. Thus we have

Bx1u
p0qps,Xp1qs , Xp2qs , Xp3qs q “ Bx1ups,X

p1q
s , Xp2qs , Xp3qs q “ up1qs “ Y p1qs ,

Bx2u
p0qps,Xp1qs , Xp2qs , Xp3qs q “ Bx2ups,X

p1q
s , Xp2qs , Xp3qs q “ up2qs “ Y p2qs ,

Bx3u
p0qps,Xp1qs , Xp2qs , Xp3qs q “ Bx3ups,X

p1q
s , Xp2qs , Xp3qs q “ up3qs “ Y p3qs

a.e. on rt, 1s.
It remains to show that IMmax“ r0, 1s. Define for x“px1, x2, x3q

T P R3, y“py0, y1, y2, y3q
T P R4,

z “ pz0, z1, z2, z3q
T P R4

X̄s :“

¨

˚

˝

X
p1q
s

X
p2q
s

X
p3q
s

˛

‹

‚

, Ȳs :“

¨

˚

˚

˚

˝

Y
p0q
s

Y
p1q
s

Y
p2q
s

Y
p3q
s

˛

‹

‹

‹

‚

, Z̄s :“

¨

˚

˚

˚

˝

Z
p0q
s

Z
p1q
s

Z
p2q
s

Z
p3q
s

˛

‹

‹

‹

‚

M̄ px, y, zq :“

¨

˚

˝

0
z2
0

σ2px2,y0`x3q

µ px2, y0 ` x3q
z2
0

σ2px2,y0`x3q

˛

‹

‚

, Σ̄ :“

¨

˝

1
0
0

˛

‚, ξ̄ pxq :“

¨

˚

˚

˝

g px1q ´ x3

g1 px1q

0
´1

˛

‹

‹

‚
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and

F̄ px, y, zq

:“

¨

˚

˚

˚

˚

˝

0

y1
pz0q2

σ2px2,y0`x3q

´

Baµ px2, y0 ` x3q ´ 2µ px2, y0 ` x3q
Baσpx2,y0`x3q

σpx2,y0`x3q
` 2y2

Baσpx2,y0`x3q

σpx2,y0`x3q

¯

2 pz0q2

σ2px2,y0`x3q

´

Btσpx2,y0`x3q

σpx2,y0`x3q
` y2

Baσpx2,y0`x3q

σpx2,y0`x3q

¯

py2 ´ µ px2, y0 ` x3qq

0

˛

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˝

0
0

pz0q2

σ2px2,y0`x3q
py2Baµ px2, y0 ` x3q ` Btµ px2, y0 ` x3qq

0

˛

‹

‹

‹

‚

`

¨

˚

˚

˚

˝

0

´ 2z0
σ2px2,y0`x3q

py2 ´ µ px2, y0 ` x3qq z1

´ 2z0
σ2px2,y0`x3q

py2 ´ µ px2, y0 ` x3qq z2

0

˛

‹

‹

‹

‚

.

Then
X̄s “ x̄`

ż s

t
M̄

`

X̄r, Ȳr, Z̄r
˘

dr `

ż s

t
Σ̄ dWr

and

Ȳs “ ξ̄
`

X̄1

˘

´

ż 1

s
F̄
`

X̄r, Ȳr, Z̄r
˘

dr ´

ż 1

s
Z̄r dWr.

By setting

Ūs :“ Bx

¨

˚

˚

˝

up0q

up1q

up2q

up3q

˛

‹

‹

‚

`

s, X̄s

˘

“

¨

˚

˚

˝

up1q up2q up3q

Bx1u
p1q Bx2u

p1q Bx3u
p1q

Bx1u
p2q Bx2u

p2q Bx3u
p2q

Bx1u
p3q Bx2u

p3q Bx3u
p3q

˛

‹

‹

‚

`

s, X̄s

˘

we get
BxȲs “ Ūs ¨ BxX̄s.

Since pBxX̄sq
´1 is a multidimensional Itô process on rt, 1s (see Lemma 3.1 and its proof) we get

that Ūs “ BxȲs ¨ pBxX̄sq
´1 is also an Itô process and hence there exist pbsq and pẐsq such that

Ūs “ Ū1 ´

ż 1

s
br dr ´

ż 1

s
Ẑr dWr.

For the following we also introduce for an Itô process Is “ I0 ´
şs
0 ir dr ´

şs
0 jr dWr the two

operators Dt and Dw via pDt Iqs :“ is and pDw Iqs :“ js. Using this notation we have

BxZ̄s “ Dw BxȲs

“ Dw
`

Ūs ¨ BxX̄s

˘

“ Ūs ¨D
w BxX̄s `Dw Ūs ¨ BxX̄s

“ Ẑs ¨ BxX̄s,

Bx
“

F̄
`

X̄s, Ȳs, Z̄s
˘‰

“ Dt BxȲs

“ Dt
`

Ūs ¨ BxX̄s

˘

“ Ūs ¨D
t BxX̄s `Dt Ūs ¨ BxX̄s `Dw Ūs ¨D

w BxX̄s

“ Ūs ¨ Bx
“

M̄
`

X̄s, Ȳs, Z̄s
˘‰

` bs ¨ BxX̄s,
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where we can further specify

Bx
“

M̄
`

X̄s, Ȳs, Z̄s
˘‰

“ BxM̄
`

X̄s, Ȳs, Z̄s
˘

BxX̄s ` ByM̄
`

X̄s, Ȳs, Z̄s
˘

BxȲs ` BzM̄
`

X̄s, Ȳs, Z̄s
˘

BxZ̄s

“ BxM̄
`

X̄s, Ȳs, Z̄s
˘

BxX̄s ` ByM̄
`

X̄s, Ȳs, Z̄s
˘

ŪsBxX̄s ` BzM̄
`

X̄s, Ȳs, Z̄s
˘

ẐsBxX̄s

and likewise

Bx
“

F̄
`

X̄s, Ȳs, Z̄s
˘‰

“ BxF̄
`

X̄s, Ȳs, Z̄s
˘

BxX̄s ` ByF̄
`

X̄s, Ȳs, Z̄s
˘

ŪsBxX̄s ` BzF̄
`

X̄s, Ȳs, Z̄s
˘

ẐsBxX̄s.

Thus we get
Ẑs “ BxZ̄s ¨

`

BxX̄s

˘´1

and

bs “ BxF̄
`

X̄s, Ȳs, Z̄s
˘

` ByF̄
`

X̄s, Ȳs, Z̄s
˘

Ūs ` BzF̄
`

X̄s, Ȳs, Z̄s
˘

Ẑs (3.17)

` Ūs

”

BxM̄
`

X̄s, Ȳs, Z̄s
˘

` ByM̄
`

X̄s, Ȳs, Z̄s
˘

Ūs ` BzM̄
`

X̄s, Ȳs, Z̄s
˘

Ẑs

ı

,

where the derivatives of M̄ and F̄ are bounded due to the assumptions made. Therefore, we see
that the dynamics of Ū are linear with exception to the quadratic terms ŪsByM̄pX̄s, Ȳs, Z̄sqŪs
and BzM̄

`

X̄s, Ȳs, Z̄s
˘

Ẑs. However, we claim that we can reduce the dynamics of Ū to a linear
BSDE.

It is straightforward to see that

ByM̄pX̄s, Ȳs, Z̄sq “

¨

˚

˚

˝

0 0 0 0

´2 pZ
p0q
s q2

σ2
s

σa,s
σs

0 0 0

pZ
p0q
s q2

σ2
s

µa,s ´ 2 pZ
p0q
s q2

σ2
s

σa,s
σs
µs 0 0 0

˛

‹

‹

‚

.

Note that α :“ ´2 pZ
p0q
s q2

σ2
s

σa,s
σs

and β :“ pZ
p0q
s q2

σ2
s

µa,s ´ 2 pZ
p0q
s q2

σ2
s

σa,s
σs
µs are both uniformly bounded,

and we have

ByM̄
`

X̄s, Ȳs, Z̄s
˘

Ūs “

¨

˚

˝

0 0 0

α ¨ u
p1q
s α ¨ u

p2q
s α ¨ u

p3q
s

β ¨ u
p1q
s β ¨ u

p2q
s β ¨ u

p3q
s

˛

‹

‚

,

which is bounded independently of rt, 1s (cf. in Theorem 3.6).
Moreover, note that

BzM̄
`

X̄s, Ȳs, Z̄s
˘

“

¨

˚

˚

˝

0 0 0 0
2Z
p0q
s
σ2
s

0 0 0

µs
2Z
p0q
s
σ2
s

0 0 0

˛

‹

‹

‚

only depends on the solution components pXp2q, Xp3q, Y p0q, Zp0qq. Hence, together with the
estimates of Theorem 3.6, we conclude that BxM̄pX̄s, Ȳs, Z̄sq is bounded. Since Ū is bounded on
rt, 1s, the term ŪsBzM̄

`

X̄s, Ȳs, Z̄s
˘

Ẑs in Equation (3.17) can be shifted, via a Girsanov measure
change, into the Brownian motion W . Similary, the term BzF̄

`

X̄s, Ȳs, Z̄s
˘

Ẑs in Equation (3.17)
can be shifted into W . To sum up, there exists a Brownian motion Ŵ under an equivalent
probability measure such that pŪ , Ẑq solves the BSDE on rt, 1s driven by Ŵ with linear driver

fps, y, zq “ BxF̄
`

X̄s, Ȳs, Z̄s
˘

` ByF̄
`

X̄s, Ȳs, Z̄s
˘

y ` y
“

BxM̄
`

X̄s, Ȳs, Z̄s
˘

` ByM̄
`

X̄s, Ȳs, Z̄s
˘

Ūs
‰
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and terminal condition ∇ξ̄pX̄1q. Observe that the terminal condition and all coefficients are
bounded by some constant independent of t and x. Therefore, also Ū is bounded independently
of t and x. By Lemma 2.9 this yields that Imax “ r0, 1s. �

Remark 3.11
The second and third derivatives do not have to be bounded. It would suffice if the second and
third derivatives of µ divided by σ2 and the second and third derivatives of σ divided by σ are
bounded.

Lemma 3.12
Let g, µ and σ fulfill Assumption 3.5 and their second and third derivatives be bounded. Then the
decoupling field u of FBSDE (3.2) is three times weakly differentiable w.r.t. to the initial condition
x P R3 with uniformly bounded derivatives.

Proof. This proof is completely analogous the proof of Lemma 3.10. Therefore, we only give a
sketch.

Extend the system (3.16) by the dynamics of Ȳ pijq :“ upijq :“ Bxju
piq for all i, j P t1, 2, 3u as

obtained in the proof of Lemma 3.10 and by the corresponding entries in the decoupling field.
Then argue analogously to the proof of Lemma 3.10 that for every i P t0, 1, 2, 3u the upiq of
FBSDE (3.16) coincides with the upiq of the extended system. Redefine, if necessary, the vectors
X̄, Ȳ ,Z̄ and the functions M̄ , Σ̄, ξ̄, F̄ such that for the extended system we have

X̄s “ x`

ż s

t
M̄

`

X̄r, Ȳr, Z̄r
˘

dr `

ż s

t
Σ̄ dWr

and

Ȳs “ ξ̄
`

X̄1

˘

´

ż 1

s
F̄
`

X̄r, Ȳr, Z̄r
˘

dr ´

ż 1

s
Z̄r dWr.

Also define Ūs as the partial derivatives of the decoupling field ups, X̄sq of the extended system
for all s P rt, 1s. Again there exist pbsq and pẐsq such that

Ūs “ Ū1 ´

ż 1

s
br dr ´

ż 1

s
Ẑr dWr.

By the same calculation as in the proof of Lemma 3.10 we obtain that

Ẑs “ BxZ̄s ¨
`

BxX̄s

˘´1

and

bs “ BxF̄
`

X̄s, Ȳs, Z̄s
˘

` ByF̄
`

X̄s, Ȳs, Z̄s
˘

Ūs ` BzF̄
`

X̄s, Ȳs, Z̄s
˘

Ẑs

` Ūs

”

BxM̄
`

X̄s, Ȳs, Z̄s
˘

` ByM̄
`

X̄s, Ȳs, Z̄s
˘

Ūs ` BzM̄
`

X̄s, Ȳs, Z̄s
˘

Ẑs

ı

.

Analogous to the proof above, BxF̄ , ByF̄ , BzF̄ , BxM̄ , ByM̄ and BzM̄ are bounded while addition-
ally ByM̄ only has entries in the first column which allows us to conclude that ByM̄pX̄s, Ȳs, Z̄sqŪs
is bounded. Furthermore every coefficient in front of Ẑ is bounded on every Interval rt, 1s Ă IMmax

and can therefore be transformed away with Girsanov’s Theorem. Hence we have linear dynam-
ics for Ū with bounded coefficients which yields that it is bounded independently of the interval
rt, 1s, giving IMmax “ r0, 1s. �
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Lemma 3.13
Let g, µ and σ fulfill Assumption 3.5, their first and second derivatives be bounded and g1 ě δ ą 0.
Then the weak derivative Bx1u of the decoupling field u from the FBSDE (3.2) fulfills

›

›

›

›

1

Bx1u

›

›

›

›

8

ď

›

›

›

›

1

g1

›

›

›

›

8

` }Bx1u}8

ˆ›

›

›

›

Baµ

σ2

›

›

›

›

8

` 2
›

›

›

µ

σ2

›

›

›

8

›

›

›

›

Baσ

σ

›

›

›

›

8

`
2

ε2
}Bx2u}8

›

›

›

›

Baσ

σ

›

›

›

›

8

˙

(3.18)

and in particular Bx1u is bounded away from 0.

Proof. By Lemma 3.10 the decoupling field of the FBSDE (3.2) exists on the whole interval r0, 1s
and is twice weakly differentiable. In particular Bx1u is continuous (see e.g. Theorem 4.2.17
in [Fro15]), and hence we can apply Lemma 3.2 yielding Zp0qr “ Bx1u

´

r,X
p1q
r , X

p2q
r , X

p3q
r

¯

for

all r P r0, 1s. Also using Lemma 3.4 we know that up1q is bounded by some constant for every
starting time t P IMmax “ r0, 1s and every initial value x P R3.

Now we set Vr :“ 1

Bx1u
´

r,X
p1q
r ,X

p2q
r ,X

p3q
r

¯ for all r P pt0, 1s where

t0 :“ inftt ě 0|Bx1upt, xq “ 0 for at least one x P R3u

with the convention that infH “ 0. We immediately get that 1
Vr
ď }Bx1u}8 ă 8 and the

dynamics

Vs “
1

g1pX
p1q
1 q

´

ż 1

s

˜

V 3
r

´

Zp1qr

¯2
´

1

Vr

µa,r ´ 2µr
σa,r
σr
` 2u

p2q
r

σa,r
σr

σ2
r

¸

dr ´

ż 1

s
´Zp1qr V 2

r dĂWr

“
1

g1pX
p1q
1 q

´

ż 1

s

1

Vr

˜

´

Ẑr

¯2
´
µa,r ´ 2µr

σa,r
σr
` 2u

p2q
r

σa,r
σr

σ2
r

¸

dr ´

ż 1

s
Ẑr dĂWr,

where u
p2q
r :“ Bx2u

´

r,X
p1q
r , X

p2q
r , X

p3q
r

¯

, Ẑr :“ ´
Z
p1q
r
V 2
r

and W̃ is defined as in the proof of
Lemma 3.10.

Using that 1
Vs
ď }Bx1u}8 we can apply Corollary 2.2 of [Kob00] to obtain

}V }8 ď

›

›

›

›

1

g1

›

›

›

›

8

` }Bx1u}8

ˆ›

›

›

›

Baµ

σ2

›

›

›

›

8

` 2
›

›

›

µ

σ2

›

›

›

8

›

›

›

›

Baσ

σ

›

›

›

›

8

`
2

ε2
}Bx2u}8

›

›

›

›

Baσ

σ

›

›

›

›

8

˙

ă 8

because Bx1u and Bx2u are bounded by Theorem 3.6. Since this bound is independent of s we
also get that

Bx1u
´

s,Xp1qs , Xp2qs , Xp3qs

¯

“
1

Vs
ě

1

}V }8
ą 0

for all s where V is defined. Because, as stated above, Bx1u is continuous, we get that t0 “ 0
and that hence Equation (3.18) holds true. �

Lemma 3.14
Let g, µ and σ fulfill Assumption 3.5 and their second derivatives be bounded. Then for the problem
(3.16) it holds for all s P r0, 1s almost surely that

|Zp1qs | ď }Bx1u
p1q}8 ă 8.

Proof. Note that this proof runs on similar lines as the proof of Lemma 3.2.
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Remember that Lemma 3.10 yields that for problem (3.16) there exists a unique solution on
the whole interval r0, 1s for every initial condition in R3. Observe that with Itô’s formula we get
for h ą 0 and s, s` h P r0, 1s

1

h
E
”

Y
p1q
s`hpWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

“
1

h
E

„
ż s`h

s
Y p1qr dWr `

ż s`h

s
pWr ´Wsq dY p1qr `

ż s`h

s
1 ¨ Zp1qr dr

ˇ

ˇ

ˇ

ˇ

Fs


“
1

h
E

„
ż s`h

s
Zp1qr dr `

ż s`h

s
Y p1qr dWr `

ż s`h

s
pWr ´WsqZ

p1q
r dWr

`

ż s`h

s
pWr ´Wsq

˜

´
pZ
p0q
r q2

σ2
r

Y p1qr

ˆ

Y p3qr

ˆ

µa,r ´ 2µr
σa,r
σr

˙

´ 2Y p2qr

σa,r
σr

˙

¸

dr

`

ż s`h

s
pWr ´Wsq

˜

´
2Z

p0q
r

σ2
r

´

Y p2qr ` Y p3qr µr

¯

Zp1qr

¸

dr

ˇ

ˇ

ˇ

ˇ

ˇ

Fs

ff

ÑZp1qs a.s. as hÑ 0.

On the other hand we get by using the decoupling condition that

Y
p1q
s`hpWs`h ´Wsq

“up1q
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s`h

¯

pWs`h ´Wsq

“up1q
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯

pWs`h ´Wsq (3.19)

`

´

up1q
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯

´ up1q
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯¯

pWs`h ´Wsq

`

´

up1q
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s`h

¯

´ up1q
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯¯

pWs`h ´Wsq.

At first let us take a look at the third summand at the right hand side of (3.19). Since up1q is
Lipschitz continuous in its fourth argument with some constant Lt

up1q,x3
and since furthermore

X
p3q
s`h “ Xp3qs `

ż s`h

s
µr
pZ
p0q
r q2

σ2
r

dr

we can estimate
1

h

ˇ

ˇ

ˇ
E
”´

up1q
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s`h

¯

´ up1q
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ıˇ

ˇ

ˇ

ď
1

h
E

«

Ltup1q,x3

ˇ

ˇ

ˇ

ˇ

ˇ

ż s`h

s
µr
pZ
p0q
r q2

σ2
r

dr

ˇ

ˇ

ˇ

ˇ

ˇ

|Ws`h ´Ws|

ˇ

ˇ

ˇ

ˇ

ˇ

Fs

ff

ď
1

h
Ltup1q,x3

h
›

›

›

µ

σ2

›

›

›

8
}Zp0q}28E r |Ws`h ´Ws||Fss ,

which clearly goes to 0 as hÑ 0 because µ
σ2 and Zp0q are bounded by Theorem 3.6. Analogously

we get, with Lt
up1q,x2

being the Lipschitz constant of up1q in the third argument, that

1

h

ˇ

ˇ

ˇ
E
”´

up1q
´

s` h,X
p1q
s`h, X

p2q
s`h, X

p3q
s

¯

´ up1q
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ıˇ

ˇ

ˇ

ď
1

h
Ltup1q,x2

h}Zp0q}28ε
´2E r |Ws`h ´Ws||Fss

Ñ 0 a.s. for hÑ 0.
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Now consider the remaining first term on the right hand side of Equation (3.19). Using
integration by parts we obtain

E
”

up1q
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

“

ż

R

up1q
´

s` h,Xp1qs ` z
?
h,Xp2qs , Xp3qs

¯

z
?
h

1
?

2π
e´

1
2
z2

dz

“

ż

R

Bx1u
p1q

´

s` h,Xp1qs ` z
?
h,Xp2qs , Xp3qs

¯

h
1
?

2π
e´

1
2
z2

dz.

Since Bx1u
p1q is bounded as proved in Lemma 3.10 we have

ˇ

ˇ

ˇ

ˇ

1

h
E
”

up1q
´

s` h,X
p1q
s`h, X

p2q
s , Xp3qs

¯

pWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R

Bx1u
p1q

´

s` h,Xp1qs ` z
?
h,Xp2qs , Xp3qs

¯ 1
?

2π
e´

1
2
z2

dz

ˇ

ˇ

ˇ

ˇ

ď }Bx1u
p1q}8.

Putting the derived estimates together we get
ˇ

ˇ

ˇ
Zp1qs

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

lim
hŒ0

1

h
E
”

Y
p1q
s`hpWs`h ´Wsq

ˇ

ˇ

ˇ
Fs

ı

ˇ

ˇ

ˇ

ˇ

ď

›

›

›
Bx1u

p1q
›

›

›

8
.

By Lemma 3.10, }Bx1u
p1q}8 ă 8, which further implies the result. �

Proposition 3.15
Let g, µ and σ fulfill Assumption 3.5, let their first, second and third derivatives as well as σ and 1

g1

be bounded. Then the requirements of Theorem 3.9 are fulfilled.

Proof. Remember that the derivative Bx1u of the decoupling field of FBSDE (3.2) equals up1q of
the decoupling field of FBSDE (3.16) by Lemma 3.10 and which, by Lemma 3.13, is bounded
from below by a δ ą 0. Hence, it only remains to show that Bx1u which equals up1q is Lipschitz
continuous. Since we already know that the derivatives w.r.t. the space variables are bounded
(by Lemma 3.10) we only need to prove that up1q is Lipschitz continuous in the time variable.

Consider FBSDE (3.16) for a starting time t P r0, 1q on the interval rt, 1s with initial condition
`

X
p1q
t , X

p2q
t , X

p3q
t

˘

“ pxp1q, xp2q, xp3qq “ x P R3. Let s P pt, 1s. Using the triangle inequality several
times gives
ˇ

ˇ

ˇ
up1qps, xq ´ up1qpt, xq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
up1qps, xq ´ E

”

up1q
´

s,Xp1qs , xp2q, xp3q
¯ıˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
E
”

up1q
´

s,Xp1qs , xp2q, xp3q
¯ı

´ E
”

up1q
´

s,Xp1qs , Xp2qs , xp3q
¯ıˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
E
”

up1q
´

s,Xp1qs , Xp2qs , xp3q
¯ı

´ E
”

up1q
´

s,Xp1qs , Xp2qs , Xp3qs

¯ıˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
E
”

up1q
´

s,Xp1qs , Xp2qs , Xp3qs

¯

´ up1q
´

t,X
p1q
t , X

p2q
t , X

p3q
t

¯ıˇ

ˇ

ˇ
.

We take a closer look at every summand on the right hand side starting with the first one. By
defining

ϕpzq :“ up1qps, xp1q, xp2q, xp3qq ´ up1qps, xp1q ` z, xp2q, xp3qq

we see that the first summand equals |ErϕpWs ´ Wtqs|. Furthermore, ϕp0q “ 0 and by
Lemma 3.12, ϕ is two times weakly differentiable with derivatives bounded by some constant
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LBxup1q ă 8. Hence, the inequality
ˇ

ˇ

ˇ

ş

R
ϕpa ¨ zq 1?

2π
e´

1
2
z2

dz
ˇ

ˇ

ˇ
ď 1

2a
2}ϕ2}8 holds true (see e.g.

Lemma 4.3.11 in [Fro15]). Therefore,

ˇ

ˇ

ˇ
up1qps, xq ´ E

”

up1q
´

s,Xp1qs , xp2q, xp3q
¯ıˇ

ˇ

ˇ
“ |E rϕpWs ´Wtqs| ď

ps´ tq

2
¨ LBxup1q .

For the second summand we use the Lipschitz constant of up1q denoted by Lup1q to get
ˇ

ˇ

ˇ
E
”

up1q
´

s,Xp1qs , xp2q, xp3q
¯

´ up1q
´

s,Xp1qs , Xp2qs , xp3q
¯ıˇ

ˇ

ˇ
ďLup1qE

ˇ

ˇ

ˇ
Xp2qs ´ xp2q

ˇ

ˇ

ˇ

“Lup1qE

ˇ

ˇ

ˇ

ˇ

ˇ

ż s

t

pZ
p0q
r q2

σ2
r

dr

ˇ

ˇ

ˇ

ˇ

ˇ

ďLup1q}u
p1q}28ε

´2ps´ tq

since |Zp0q| ď }up1q}8 ă 8 by Theorem 3.6.
The third summand can be estimated similarly by

ˇ

ˇ

ˇ
E
”

up1q
´

s,Xp1qs , Xp2qs , xp3q
¯

´ up1q
´

s,Xp1qs , Xp2qs , Xp3qs

¯ıˇ

ˇ

ˇ

ď Lup1qE

ˇ

ˇ

ˇ

ˇ

ˇ

ż s

t
µr
pZ
p0q
r q2

σ2
r

dr

ˇ

ˇ

ˇ

ˇ

ˇ

ď Lup1q
›

›

›

µ

σ2

›

›

›

8
}up1q}28ps´ tq.

For the last summand we use the decoupling condition and Y p3q¨ “ ´1 to obtain
ˇ

ˇ

ˇ
E
”

up1q
´

s,Xp1qs , Xp2qs , Xp3qs

¯

´ up1q
´

t,X
p1q
t , X

p2q
t , X

p3q
t

¯ı
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
E
”

Y p1qs ´ Y
p1q
t

ıˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

ż s

t
Y p1qr

pZ
p0q
r q2

σ2
r

ˆ

µa,r ´ 2µr
σa,r
σr

` 2Y p2qr

σa,r
σr

˙

´
2Z

p0q
r

σ2
r

´

Y p2qr ´ µr

¯

Zp1qr dr

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď

„

}up1q}38

ˆ›

›

›

›

Baµ

σ2

›

›

›

›

8

` 2
›

›

›

µ

σ2

›

›

›

8

›

›

›

›

Baσ

σ

›

›

›

›

8

`
2

ε2
}up2q}8

›

›

›

›

Baσ

σ

›

›

›

›

8

˙

`2}up1q}8

´

ε´2}up2q}8 `
›

›

›

µ

σ2
}8

¯

}Bx1u
p1q}8

ı

ps´ tq

where we applied Theorem 3.6 and Lemma 3.14. Thus, the last summand is Lipschitz continu-
ous by Theorem 3.6 and Lemma 3.10, too.

Putting all estimates together we arrive at |up1qps, xq ´ up1qpr, xq| ď Lps ´ tq for some finite
constant L which is independent of s and t. Hence up1q is Lipschitz continuous in the time
variable.

�

Observe that Proposition 3.15 and Theorem 3.9 imply Theorem 3.22.
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3.5 Numerics

We now illustrate numerically an example of an embedding using the methodology developed.
This is done by numerically approximating the solution of the FBSDE

Ws “

ż s

0

σpX
p2q
r , Yr `X

p3q
r q

Zr
dB

X
p2q
r

Xp2qs “

ż s

0

Z2
r

σ2pX
p2q
r , Yr `X

p3q
r q

dr (3.20)

Xp3qs “

ż s

0
µpXp2qr , Yr `X

p3q
r q

Z2
r

σ2pX
p2q
r , Yr `X

p3q
r q

dr

Ys “gpW1q ´X
p3q
1 ´

ż 1

s
Zr dWr.

To the best of our knowledge no literature exists able to deal directly with approximations of
(3.20) and hence, inspired by known literature, we propose a numerical scheme whose rigor-
ous study is left for future research. FBSDE (3.20) is a fully coupled quadratic growth FBSDE
which we deal with as follows: from [IDRZ10] we inject the theoretical a priori hard bounds in
the coefficients, reducing FBSDE (3.20) to a uniformly Lipschitz fully-coupled one, then apply a
decoupling technique based on Picard iterations [BZ08] to reduce the problem to the iterative
simulation of uniformly Lipschitz fully-decoupled FBSDE. The final approximation step is car-
ried out using a classic explicit Euler scheme discretization [BZ08] while the approximation of
the conditional expectations is done via projection over basis functions [GLW05]. The final out-
come is the approximation of the embedding stopping time and the verification that the stopped
process does embed the target distribution.

From a mathematical point of view, the only step of the described numerical approximation
that cannot be fully justified is the convergence of the Picard iteration step. The results of [BZ08]
do not apply if the diffusion coefficient σ depends on Z. We stress, however, that for some special
cases the algorithm outlined below can be shown to converge, e.g. in the homogeneous case (see
Remark 3.20 below).

The problem, its conditions and the hard bounds

At first we show that FBSDE (3.20) has a unique solution from which we can construct a strong
solution of the SEP.

Proposition 3.16
Let the assumptions of Theorem 3.9 or Proposition 3.15 be satisfied. Denote by u the decoupling
field of FBSDE (3.2). Let B be an arbitrary Brownian motion and denote by pFBq “ pFB

s qsPr0,8q
the augmented filtration generated by B. Then there exist unique square-integrable processes
pW,Xp2q, Xp3q, Y q solving the FBSDE (3.20). Moreover, τ :“ X

p2q
1 is an pFB

t q-stopping time
bounded as in (3.22), W is a Brownian motion on r0, 1s and the pair pτ, Y0q is a strong solution of
the SEP.

Proof. Remember that by Theorem 3.9 the SDE (3.15) has a unique solution pγ,Γ,∆,Θq. We
introduce the time change γ´1ptq “ inftr ě 0 : γprq ě tu for t P r0, 1s. Observe that γ´1 has the
dynamics

γ´1ptq “

ż t

0

`

Bx1ups,Γγ´1psq, γ
´1psq,∆γ´1psqq

˘2

σ2pγ´1psq,Θγ´1psq `∆γ´1psqq
ds.
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By setting Zs :“ Bx1ups,Γγ´1psq, γ
´1psq,∆γ´1psqq for s P r0, 1s, replacing the dynamics of γ by the

dynamics of γ´1 and applying the time change γ´1 to all other processes, we can rewrite the
system (3.15) as

γ´1ptq “

ż t

0

pZsq
2

σ2pγ´1psq,Θγ´1psq `∆γ´1psqq
ds

Γγ´1ptq “

ż t

0

σpγ´1psq,Θγ´1psq `∆γ´1psqq

Zs
dBγ´1psq

∆γ´1ptq “

ż t

0
µpγ´1psq,Θγ´1psq `∆γ´1psqq

pZsq
2

σ2pγ´1psq,Θγ´1psq `∆γ´1psqq
ds

Θγ´1ptq “ Y0 `

ż t

0
Zs dΓγ´1psq

for all t P r0, 1s. Here it is straightforward to see that with γ´1ptq “ X
p2q
t , Γγ´1ptq “ Wt,

∆γ´1ptq “ X
p3q
t and Θγ´1ptq “ Yt we exactly have the system (3.20). Thus the system (3.20) has

a solution pW,Xp2q, Xp3q, Y, Zq which fulfills that τ :“ X
p2q
1 “ γ´1p1q “ inftr ě 0|γprq “ 1u is a

stopping time with regard to pFB
t q bounded as in (3.22) and that Aτ „ ν.

It remains to show the uniqueness of this solution. Now take an arbitrary square integrable
solution pW,Xp2q, Xp3q, Y, Zq of (3.20). Define the time change

γ̄ptq :“

#

infts ě 0 : X
p2q
s ě tu, t ď X

p2q
1

1, t ą X
p2q
1

and observe that by

xW,W yt “

ż X
p2q
t

0

σ2
´

r, Yγ̄prq `X
p3q
γ̄prq

¯

Z2
γ̄prq

dr “

ż t

0

σ2
´

X
p2q
r , Yr `X

p3q
r

¯

Z2
r

dXp2qr “

ż t

0
1 dr “ t

W is a Brownian motion on r0, 1s. Thus the processes pW,Xp2q, Xp3q, Y, Zq solve FBSDE (3.2)
for the initial value 0. Due to Theorem 2.8 and Lemma 2.9 this solution of FBSDE (3.2) is
unique. �

Remark 3.17
If one is only interested in a weak solution, then only FBSDE (3.2) needs to be solved, where W
is given, and the Brownian motion B can be calculated afterwards, as described in Theorem 3.7.
Aside from simplifying the system that needs to be simulated, this also has the advantage of
being valid for more general coefficients µ and σ (compare the assumptions of Theorem 3.21
and Theorem 3.22).

By the combination of Lemma 3.13, Lemma 3.2 and Theorem 3.6 we have for Z the λ ˆ P
a.e. bounds 0 ă qZ ď Z ď pZ ă 8, which are

pZ “

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´ 1
2

and

qZ “

ˆ›

›

›

›

1

g1

›

›

›

›

8

` qZ

ˆ›

›

›

›

Baµ

σ2

›

›

›

›

8

` 2
›

›

›

µ

σ2

›

›

›

8

›

›

›

›

Baσ

σ

›

›

›

›

8

`
2

ε2
}Bx2u}8

›

›

›

›

Baσ

σ

›

›

›

›

8

˙˙´1
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with

}Bx2u}8 ď exp

„

pZ2

ˆ›

›

›

›

Baµ

σ2

›

›

›

›

8

` 2

ˆ›

›

›

›

Baσ

σ

›

›

›

›

8

›

›

›

µ

σ2

›

›

›

8
`

1

ε2

›

›

›

›

Btσ

σ

›

›

›

›

8

˙˙

¨ pZ2

ˆ

2

›

›

›

›

Btσ

σ

›

›

›

›

8

›

›

›

µ

σ2

›

›

›

8
`

›

›

›

›

Btµ

σ2

›

›

›

›

8

˙

.

Therefore, we have that
qZ2

}σ}28
ď

Z2
s

σ2pX
p2q
s , Ys `X

p3q
s q

ď
pZ2

ε2
, λˆP a.e.

and in particular
qZ2

}σ}28
ď τ “ X

p2q
1 ď

pZ2

ε2
a.s. (3.21)

Example 3.18 (Embedding a Normal distribution into a Brownian motion with drift)
For µ ” m P R, σ ” 1 and ν “ N p0, α2q for α ą 0 we know that τ “ α2 and A0 “ ´m ¨α

2 solves
the SEP. In this case we have that gpxq “ αx and the above bounds for Z become the explicit
values α ď Z ď α and the system (3.20) simplifies to

Ws “

ż s

0

1

α
dB

X
p2q
r
, Xp2qs “

ż s

0
α2dr, Xp3qs “

ż s

0
m ¨ α2dr,

Ys “αW1 ´X
p3q
1 ´

´

B
X
p2q
1
´B

X
p2q
s

¯

giving that τ “ X
p2q
1 “ α2 a.s. which equals the above mentioned stopping time. We immediately

find the correct value for A0 since

A0 “ Y0 “ E rY1|F0s “ E

„

αW1 ´

ż 1

0
mα2 dr ´B

X
p2q
1
`B

X
p2q
0

ˇ

ˇ

ˇ

ˇ

F0



“ ´mα2.

Example 3.19
Again let ν “ N p0, α2q for α ą 0. Furthermore, set

σpt, aq “ pσ1 `
pσ2

1` e´t
`

pσ3
1` e´a

and µpt, aq “ pµ1 `
pµ2

1` e´t
`

pµ3
1` e´a

for the vectors pσ, pµ P R3 containing parameters such that

ε :“ pσ1 `minp0, pσ2 q `minp0, pσ3 q ą 0,

2pσ2p
σ
3p

µ
1 ´ p

σ
1p

µ
2 `minp0, pσ2p

σ
3p

µ
2 q `minp0, 2pσ2p

σ
3p

µ
3 ´ pp

σ
3 q

2pµ2 q ą 0

and
1

α2
`
pσ1p

µ
3 ´ 2pσ3p

µ
1 `minp0, pσ2p

µ
3 ´ 2pσ3p

µ
2 q ´maxp0, pσ3p

µ
3 q

2ε3
ą 0.

Then observe that all conditions of Proposition 3.15 and therefore also of Proposition 3.16 are
fulfilled,

pZ ď

ˆ

1

α2
`
pσ1p

µ
3 ´ 2pσ3p

µ
1 `minp0, pσ2p

µ
3 ´ 2pσ3p

µ
2 q ´maxp0, pσ3p

µ
3 q

2ε3

˙´ 1
2

ă 8

and also qZ can be directly obtained since

}σ}8 “ pσ1 `maxp0, pσ2 q `maxp0, pσ3 q,

}µ}8 “ max ppµ1 `maxp0, pµ2 q `maxp0, pµ3 q,´p
µ
1 ´minp0, pµ2 q ´minp0, pµ3 qq ,

}Baσ}8 “ |p
σ
3 |, }Btσ}8 “ |p

σ
2 |, }Baµ}8 “ |p

µ
3 |, }Btµ}8 “ |p

µ
2 |.
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Iterative procedure

To numerically approximate (3.20) we first embed the hard bounds for Z, as found above, in the
system, then create a Picard-type approximative sequence converging to (3.20) and numerically
approximate the terms of said sequence. Since we have a coupled system of FBSDEs with a
truncated quadratic growth component, we combine [IDRZ10] and [BZ08].

Since Xp2q is increasing and

X
p2q
1 ď ε´2

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´1

a.s. as stated in Equation (3.21), we only need a trajectory of B untill this point.

Furthermore, choose any starting value for Z between the lower and upper bounds qZ, pZ
respectively. Here we set the starting value Zp0q “ }g1}8 since qZ ď } 1

g1 }
´1
8 ď }g1}8 ď pZ.

Moreover, we define a truncation operator to incorporate the hard bounds for Z, namely, let
T : RÑ R such that given qZ, pZ, we define T pzq :“ minpmaxpz, qZq, pZq. The map T is uniformly
Lipschitz.

For the other starting conditions we choose Y p0q “ Xp2q,p0q “ Xp3q,p0q “ 0. Then we do the
following iterations for k P N0:

Xp2q,pk`1q
s “

ż s

0

´

T
`

Z
pkq
r

˘

¯2

σ2
´

X
p2q,pk`1q
r , Y

pkq
r `X

p3q,pk`1q
r

¯ dr

Xp3q,pk`1q
s “

ż s

0
µ
´

Xp2q,pk`1q
r , Y pkqr `Xp3q,pk`1q

r

¯

´

T
`

Z
pkq
r

˘

¯2

σ2
´

X
p2q,pk`1q
r , Y

pkq
r `X

p3q,pk`1q
r

¯ dr

W pk`1q
s “

ż s

0

σ
´

X
p2q,pk`1q
r , Y

pkq
r `X

p3q,pk`1q
r

¯

T
`

Z
pkq
r

˘

dB
X
p2q,pk`1q
r

Y pk`1q
s “gpW

pk`1q
1 q ´X

p3q,pk`1q
1 ´

ż 1

s
σ
´

Xp2q,pk`1q
r , Y pkqr `Xp3q,pk`1q

r

¯

dB
X
p2q,pk`1q
r

.

Under the conditions imposed on µ, σ (Lipschitz and bounded) and T , all the coefficient maps of
the truncated FBSDE system are Lipschitz continuous. It is currently not clear how to show that
the iterative system converges to the solution of (3.20) where one could possibly use a result
similar to [BZ08, Theorem 2.1]; this difficulty stems from the fact that the [BZ08] methodology
does not allow for either random drift or diffusion coefficients or σ depending on Z. Note that
in the limit (k Ñ8) the truncation does not affect the system as qZ ď Z ď pZ .
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Numerical procedure (time discretization)

We introduce the time discretization π “ t0 “ t0, . . . , tn “ 1u for n P N and define
|π| :“ maxi“0,¨¨¨ ,n |ti`1 ´ ti| as the mesh’s modulus. The numerical approximation of the it-
erative system, for each k P N follows [BT04] (or [BZ08]). We apply an explicit Euler type
approximation to the integrals and let throughout ti P πztt0u. At first

X
p2q,pk`1q
t0

“0, X
p3q,pk`1q
t0

“ 0

X
p2q,pk`1q
ti`1

“X
p2q,pk`1q
ti

` pti`1 ´ tiq

˜

T
`

Z
pkq
ti

˘

σpX
p2q,pk`1q
ti

, Y
pkq
ti
`X

p3q,pk`1q
ti

q

¸2

X
p3q,pk`1q
ti`1

“X
p3q,pk`1q
ti

` pti`1 ´ tiq
µ
´

X
p2q,pk`1q
ti

, Y
pkq
ti
`X

p3q,pk`1q
ti

¯´

T
`

Z
pkq
ti

˘

¯2

σ2
´

X
p2q,pk`1q
ti

, Y
pkq
ti
`X

p3q,pk`1q
ti

¯ ,

then

W
pk`1q
t0

“ 0, W
pk`1q
ti`1

“W
pk`1q
ti

`
σpX

p2q,pk`1q
ti

, Y
pkq
ti
`X

p3q,pk`1q
ti

q

T
`

Z
pkq
ti

˘

ˆ

B
X
p2q,pk`1q
ti`1

´B
X
p2q,pk`1q
ti

˙

and

Y
pk`1q
tn “g

´

W
pk`1q
1

¯

´X
p3q,pk`1q
1

Y
pk`1q
ti´1

“E
”

Y
pk`1q
ti

ˇ

ˇ

ˇ
Fti´1

ı

Z
pk`1q
ti´1

“
1

ti ´ ti´1
E
”´

Y
pk`1q
ti

´ E
”

Y
pk`1q
ti

ˇ

ˇ

ˇ
Fti´1

ı¯

`

Wti ´Wti´1

˘

ˇ

ˇ

ˇ
Fti´1

ı

.

The time discretization expression for Zpk`1q
ti´1

is somewhat non-standard when compared with

the [BT04] scheme. The inner term with the conditional expectation of Y pk`1q
ti

is a variance
reduction trick which has been discussed in several places, e.g. [LdRS15, Section 5.4.2]; inde-
pendently, the scheme’s convergence (for fixed k as h Œ 0) follows via [BT04, Theorem 3.1]
yielding a convergence rate of order h1{2 (the formulation associated to [BZ08, Theorem 2.2]
would deliver the same convergence). In the calculation of Z we use that

ż 1

s
σpXp2qr , Yr `X

p3q
r q dB

X
p2q
r
“

ż 1

s
Zr dWr

for all s P r0, 1s and hence for small h ą 0

Zt «
1

h
E

„
ż t`h

t
Zr dr

ˇ

ˇ

ˇ

ˇ

Ft


“
1

h
E

„

pYt`h ´ Ytq pWt`h ´Wtq ´

ż t`h

t
pYr ´ Yt ` pWr ´WtqZrq dWr

ˇ

ˇ

ˇ

ˇ

Ft


“
1

h
E rYt`h pWt`h ´Wtq|Fts

“
1

h
E r pYt`h ´ E rYt`h|Ftsq pWt`h ´Wtq|Fts .

For the calculation of W we implicitly assume that the value of B is known for every Xp2q,pkqti
for

all k ě 0 and ti P π. This problem is more involved if the trajectory of B is to be calculated at
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the beginning of the simulation. However, it can be eliminated by calculating the trajectory of
B just in time for the points needed by the method of Brownian bridge and storing all thereby
obtained points. It is well known that the distribution of a Brownian bridge B at time t1 under
the condition of the values of B at the times t0 ă t1 and t2 ą t1 is

Bt1 |Bt0 , Bt2 „ N
ˆ

Bt0 ¨
t2 ´ t1
t2 ´ t0

`Bt2 ¨
t1 ´ t0
t2 ´ t0

,
pt2 ´ t1qpt1 ´ t0q

t2 ´ t0

˙

,

see e.g. [KS91]. Thus the simulation of B at the exact points of time is straightforward as
well. Lastly, the conditional expectations are computed via Least-Squares regression functions
as shown in [GLW05]; we project over 3-dimensional polynomials up to degree 2.

After finishing the simulation of the FBSDE we can use the simulated trajectory of B to simu-
late our process A and apply the stopping time τ to see if Aτ has the desired distribution.

Remark 3.20
For time homogeneous coefficients µ and σ the FBSDE (3.2) simplifies to the decoupled FBSDE

Xp2qs “

ż s

0

Z2
r

σ2pȲrq
dr, Ȳs “ gpW1q ´

ż 1

s
µpȲrq

Z2
r

σ2pȲrq
dr ´

ż 1

s
Zr dWr.

For this decoupled system one can use the same trick as above and inject in the BSDE the hard
bounds on Z. Once truncated and using the condition on µ, σ, the driver of the BSDE, say
fRpy, zq “ T 2pzqµpyq{σ2pyq using the notation from before, is a standard uniformly Lipschitz
driver in y, z for which it is known ([BT04], [BZ08], [GLW05]) that the Euler explicit scheme
converges to the true solution. For weak solutions (see Remark 3.17) of the SEP this explicit
scheme is equivalent to the scheme we propose here. Hence, we have a special case where the
convergence of our scheme is known.

Numerical testing for Example 3.19

For the parameters α “ 1, pσ “ p2, 0.5, 2q and pµ “ p1.5,´2.5, 0.5q such that ν “ N p0, 1q,

σpt, aq “ 2`
0.5

1` e´t
`

2

1` e´a
and µpt, aq “ 1.5`

´2.5

1` e´t
`

0.5

1` e´a

we get ε “ 2, }σ}8 “ 4.5, pZ ď
b

8
5 and qZ ě 0.111 giving 6ˆ 10´4 ď τ ď 0.4. A simulation with

105 paths, 20 time steps and 50 iterations yielded values for τ in the interval r0.061; 0.161s and
the starting value Y0 “ ´0.042.

We simulated Aτ with initial condition A0 “ Y0 “ ´0.042. In Figure 3.1 one finds the histo-
gram of the simulated values of the Aτ (left) and the stopping time τ (right). The histogram of
Aτ indicates that our algorithm generates the sought normal distribution (with the appropriate
characteristics). Also, D’Agostino and Pearson’s [D’A71,DP73] test for normality, applied to the
simulated data Aτ , yielded a p-value of 0.37. Given such a high p-value we do not reject the
hypothesis of normality at any reasonable significance level.
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Figure 3.1: On the left, Histogram of 105 samples of Aτ against the density of N p0, αq; on the
right, the Histogram of the corresponding samples of τ and at x “ 0.0055 and x “ 0.4
the a priori hard bounds for the stopping time.

3.6 Discussion of the results

Here, we shortly restate our main results and compare our assumptions to the assumptions in
other works. We start with our weak solution to the SEP.

Theorem 3.21 (Weak Solution (see Theorem 3.7))
Let Assumption 3.5 be satisfied. Then there exists a complete filtered probability space
pΩ,F , pGtqtě0,Pq, a pGtq-Brownian motion pBtq, a bounded pGtq-stopping time τ and a real num-
ber a such that for the strong solution A of the SDE (3.1) with driving Brownian motion B and
initial condition A0 “ a we have Aτ „ ν. Furthermore, τ can be chosen such that

τ ď ε´2

ˆ

1

}g1}28
` 2 min

"

0, inf
pθ,xqPR`ˆR

ˆ

σ ¨ Baµ´ 2Baσ ¨ µ

σ3

˙

pθ, xq

*˙´1

a.s. (3.22)

Theorem 3.21 basically states that if µ, σ, g fulfill Assumption 3.5, then we can give a filtration
together with a Brownian motion and a stopping time which solve the SEP. We call it a weak
solution since the filtration and Brownian motion are part of the solution instead of being given
up front. In contrast, Theorem 3.22 states existance of a strong solution. This means that for
given µ, σ, g and a Brownian motion we can construct a stopping time solving the SEP.

Theorem 3.22 (Strong Solution (see Theorem 3.9 and Proposition 3.15))
Let Assumption 3.5 be satisfied and assume furthermore that σ, 1

g1 the first, second and third
derivatives of g, µ and σ are bounded. Let B be a Brownian motion on a probability space pΩ,F , P q
and denote by pFtq the augmented Brownian filtration. Then there exists a P R and a bounded pFtq-
stopping time τ satisfying (3.22) such that for the strong solution A of the SDE (3.1) with driving
Brownian motion B and initial condition A0 “ a we have Aτ „ ν.

In the following we shed some light on what some of the assumptions mean and how they
compare to already existing works. For this, in the next lemma we give some necessary condi-
tions for g1 to be bounded and bounded away from zero.
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Lemma 3.23
For x P R define gpxq :“ F´1

ν pΦpxqq for Fν and Φ being the cumulative distribution functions of
ν and the standard normal distribution, and additionally define Φ0,σpxq “ Φpxσ q for any σ ą 0. If
}g1}8 ă 8, then there exist K ą 0 and σ ą 0 such that

• for all x ă ´K we have Fνpxq ď Φ0,σpxq “ Φpxσ q and

• for all x ą K we have Fνpxq ě Φ0,σpxq “ Φpxσ q.

If additionally there exists a constant c ą 0 such that 0 ă c ď g1 then there exist K ą 0 and
σ1, σ2 ą 0 such that

• for all x ą K we have Φ0,σ1pxq “ Φp xσ1
q ď Fνpxq ď Φ0,σ2pxq “ Φp xσ2

q and

• for all x ă ´K we have Φ0,σ2pxq “ Φp xσ2
q ď Fνpxq ď Φ0,σ1pxq “ Φp xσ1

q.

Proof. Select K,σ, ε ą 0 such that for all x ą K we have gpxσ q ď x and for all x ă ´K we have
gpxσ q ´ ε ě x, which is possible since 0 ď g1 ď C ă 8. Then

for x ą K : Fνpxq “ Fνp
σx
σ q ě Fνpgp

x
σ qq “ FνpF

´1
ν pΦpxσ qqq ě Φpxσ q “ Φ0,σpxq,

for x ă ´K : Fνpxq “ Fνp
σx
σ q ď Fνpgp

x
σ q ´ εq “ FνpF

´1
ν pΦpxσ qq ´ εq ď Φpxσ q “ Φ0,σpxq.

If additionally 0 ă c ď g1 then we can choose K2 ą 0 and some σ2 ą 0 such that for all x ą K2

we have gp xσ2
q ´ ε ě x and for all x ă ´K2 we have gp xσ2

q ď x. By an analogous argumentation
as above we then obtain the remaining estimates. Setting K as the maximum of K from above
and K2 and furthermore σ1 :“ σ we have proved the statement. �

Remark 3.24
We now comment on Assumption 3.5. In particular, we relate the assumption to some conditions
appearing in the literature that have been shown to be sufficient for a bounded solution of the
SEP to exist.

a) By Lemma 3.23 we get that the assumption of g1 being bounded entails that there exists a
compact set outside of which the tails of ν are dominated by the tails of a normal distribution.
If, as in Theorem 3.22, we additionally have that g1 is bounded from below by a positive
constant, then the tails of ν also dominates the tails of a normal distribution.

Furthermore, observe that the left hand side of Condition (3.7) is equal to Ba
`

µ
σ2

˘

and in the
cases iiq and iiiq the term 2Btσ ¨µ´σ ¨ Btµ equals ´σ3Bt

`

µ
σ2

˘

; hence Assumption 3.5 imposes
conditions on the growth of µ

σ2 .

b) Theorem 3.1 in [AS11] states that the boundedness of g1 is sufficient for the SEP for the
BM, possibly with a constant drift, to possess a bounded solution. Notice that for σ ” 1 and
constant µ Inequality (3.22) simplifies to

τ ď }g1}28,

and hence coincides with the estimate on the embedding stopping time provided in Theorem
3.1 in [AS11]. Moreover, observe that if σ and µ are constant, then all the other properties
of Assumption 3.5 are satisfied trivially.
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c) The ratio on the left-hand side of (3.7) is equal to Ba
`

µ
σ2

˘

. Thus, (3.7) is somewhat weaker
than requiring that µ

σ2 is non-decreasing in x. For some mean-reversion processes, e.g. the
Ornstein-Uhlenbeck process, Ba

`

µ
σ2

˘

is unbounded from below. A mean reversion effect can
imply that at any time the tails of the diffusion A are lighter than the tails of ν; in this case
ν can not be embedded into A in bounded time.

A condition related to (3.7) appears in Theorem 6 of the article [AHS15] studying the SEP
in the special case where µ and σ do only depend on x. The theorem states that if ´2µ

σ ` σ
1

is non-increasing and g1

σpgq is bounded, then there exists a bounded solution of the SEP. Note
that if, in addition, σ is constant, the assumption of Theorem 6, [AHS15], coincides with our
Assumption 3.5.

d) In [FIP15] the authors consider the special case when µ, σ do not depend on a, but on
time only. To obtain weak solutions for the SEP using the FBSDE approach the authors of
that work assume that σ is bounded away from zero as well as that g1 and δ1 are bounded,
where δ1prq “ µpH´1prqq

σ2pH´1prqq
and where H´1 is the inverse of the mapping t ÞÑ

şt
0 σ

2psqds. This
boundedness of δ1prq is equivalent to our assumption that µ

σ2 is bounded.
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4 A decoupling field approach to
position control problems

The aim in position control problems is to steer a process such that the generated costs of the
process and steering are minimized. There are many applications in economics, engineering and
management. However, we start with space flight as a graphic illustration of the aim of such an
optimal control.

Our first example is the steering of a rocket that is supposed to land on the moon. A deviation
from the desired path might cause unforeseeable problems. Hence, fuel has to be expended to
make corrections to the course while flying. In the end the rocket should land on a specified
place and the ground gets rougher proportionally with the distance to the center, increasing
the risk of a crash while landing. And everywhere on the way there are unknown influences
randomly diverting from the flight path. While designing the rocket, the engineers need to have
a good estimate of how much fuel it will need. And while in the air, it has to be steered with a
minimal expenditure of fuel. After the landing no more fuel is needed, which represents a time
horizon for the problem.

Another example is keeping a satellite on its orbit and knowing how long it can stay there.
The steering stays the same as with the rocket. However, using a finite time horizon is not well
suited for this problem. It is much more convenient to assume an infinite time horizon and an
unlimited amount of fuel. After obtaining the minimal amount of fuel to be used and averaging
over time, one gets an estimate of how long the satellite can be kept on its orbit. This infinite
horizon problem motivates the study of so called ergodic control problems.

As a current example for a control problem we want to highlight the outbreak of a contagious
disease. The number of newly infected people is stochastic and depends on time and the number
of already infected people. The governmental measures against spreading can be viewed as the
control and generate costs of a social and economic nature, while the costs of infected people
arise e.g. in health care. Beyond the point where all hospitals are at their limits, either the
spending has to be increased radically or more people will die. Thus, it is apparent purely
quadratic cost functions are sometimes insufficient for modeling.

The common approaches for solving position control problems trace back to Bellman and
Pontryagin. Bellman developed the Dynamic Programming Principle, which together with the
Hamilton-Jacobi-Bellman (HJB) equation makes use of PDE theory. On the other hand, Pontry-
agin’s Maximum Principle derives the equivalence of the control problem to an FBSDE. When
using Pontryagin’s Maximum Principle, most works either make assumptions such that the res-
ulting FBSDE decouples to a BSDE or, in the case of linear-quadratic control problems, exploit
further dualities, which then allow to solve the control problem (see e.g. [YZ99], [SXY18]).
In this latter case the solution to the FBSDE is obtained only as a byproduct. Our approach is
different in that we directly solve the coupled FBSDE by using the method of decoupling fields
(see Chapter 2). In essence, this means that we derive an adjoint BSDE with quadratic dynamics
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and show that it has a bounded solution. From there we then derive the optimal control and
value function. This approach has already been applied in [AFKP18] to which we draw a short
comparison in Remark 4.12.

We present two sets of sufficient conditions for the existence of an optimal control of the drift
coefficient. The first set (see Assumption 4.8) contains processes with stochastic linear dynamics
and convex cost functions that grow at most quadratically in the position of the process. This
first set contains the linear-quadratic setting. The second set (see Assumption 4.13) consists of a
Lipschitz drift and linear diffusion coefficient but has stronger restrictions on the growth of the
cost functions.

In Section 4.2 we concentrate on the linear-quadratic case, which is a special case of As-
sumtion 4.8. Our findings conform with the known results from [YZ99] and [SXY18] (see
Remark 4.23 for details).

Then, in Section 4.3, we derive some convergence results for deterministic functions with
quadratic dynamics, which are used in Section 4.4 about ergodic linear-quadratic control prob-
lems. To the best of our knowlege other works about ergodic control deal either only with
time homogeneous dynamics (see e.g. [BF92] and [Bor06]) or assume dissipativity of the pro-
cess to be controlled (see e.g. [CFP16] and [OTV19]). We, on the other hand, restrict to a 1-
dimensional linear-quadratic setting with bounded, deterministic, time inhomogeneous factors,
without any other restrictions to the controlled process.

4.1 The problem and general solutions

Let W be a standard 1-dimensional Brownian Motion on a probability space pΩ,F ,Pq and let
F “ pFtq0ďtă8 be the augmented natural filtration of W .

Assumption 4.1
Let T ą 0 be a time horizon and the functions µ, σ : Ωˆr0, T sˆRÑ R be progressively measurable
and in the last argument two times differentiable with bounded derivatives. Also, let g : ΩˆRÑ R

and f : Ω ˆ r0, T s ˆ R ˆ R Ñ R be two times differentiable and convex in all space components,
λ ˆ P a.e. and progressively measurable. Furthermore, assume f to be strictly convex in its last
argument λˆP a.e. Finally, let

}|µp¨, ¨, 0q| ` |σp¨, ¨, 0q| ` |fp¨, ¨, 0, 0q| ` |gp¨, 0q|}8 ă 8.

Let Assumption 4.1 be fulfilled and denote by A the set of progressively measurable controls
α : Ωˆ r0, T s Ñ R with E

şT
0 α

2
s ds ă 8. For x0 P R and α P A we define Xα as the solution of

the integral equation

Xα
t “ x0 `

ż t

0
pµps,Xα

s q ´ αsq ds`

ż t

0
σps,Xα

s q dWs.
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Remark 4.2
If Assumption 4.1 is fulfilled, µ and σ are Lipschitz-continuous in the space argument uniformly
in time. Since each admissible control is square integrable we obtain by the standard theory
(see e.g. Theorem 6.3 in [YZ99]) that X has a unique strong solution, which satisfies

E

«

sup
tPr0,T s

|Xt|
2

ff

ă 8.

This moreover implies that for any term, which grows at most linear in X, we can inter-
change the order of expectation and integration by Fubini’s Theorem. Since furthermore the
Z-component of a solution of a BSDE fulfills E

”

şT
0 Z

2
s ds

ı

ă 8 by definition, we likewise ob-
tain that every stochastic integral with respect to a Brownian motion of any Lipschitz continuous
function ofX and Z is a true martingale and has thereby an expected value of 0. In the following
we will use those facts without mentioning them.

Our aim is to solve the control problem that consists in minimizing the cost functional

JpT, x0, αq :“ E

„
ż T

0
fps,Xα

s , αsq ds` gpXα
T q



(4.1)

over all controls α P A. For now we treat T as a fixed constant, but in Section 4.4 we let T
go to infinity. The so-called Hamiltonian of the above control problem is, for t P r0, T s and
x, y, α, z P R, defined by

Hpt, x, α, y, zq :“ pµpt, xq ´ αqy ` σpt, xqz ` fpt, x, αq. (4.2)

Pontryagin’s Maximum Principle is one of the standard methods used to solve control prob-
lems. Basically it states that the control problem is equivalent to an FBSDE.

Theorem 4.3 (see e.g. Theorem 6.4.6 in [Pha09])
Suppose that Assumption 4.1 is fulfilled. Let x0 P R, α̂ P A and X̂ “ X α̂ the associated controlled
diffusion. Suppose that there exists a solution pŶ , Ẑq to the associated BSDE

´ dYt “ BxH
`

t, X̂t, α̂t, Ŷt, Ẑt
˘

dt´ Ẑt dWt, ŶT “ Bxg
`

X̂T

˘

such that
H
`

t, X̂t, α̂t, Ŷt, Ẑt
˘

“ min
αPR

H
`

t, X̂t, α, Ŷt, Ẑt
˘

, 0 ď t ď T, a.s.

and
px, αq ÞÑ H

`

t, x, α, Ŷt, Ẑt
˘

is a λˆP a.e. convex function for every t P r0, T s. Then α̂ is an optimal control, which means that

JpT, x0, α̂q “ inf
αPA

JpT, x0, αq.

Note that, since f is strictly convex in α whenever Assumption 4.1 is fulfilled, we get that
Bαf is strictly monotone increasing. Hence, there exists a (random) inverse function of Bαf
with respect to α, which we denote with f´1

α . Furthermore, we denote by Dpf´1
α q the domain

of f´1
α and for constants a, b P r´8,8s with a ă b we define the truncation operator T b

a as
T b
a pxq :“ maxpa,minpx, bqq for all x P R.
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Proposition 4.4
Let Assumption 4.1 be fulfilled and x0 P R. Moreover, let a, b, c, d P r´8,8s with a ă b, c ă d and
r0, T s ˆRˆ pra, bs XRq Ă Dpf´1

α q such that the FBSDE

Xt “ x0 `

ż t

0

”

µps,Xsq ´ f
´1
α

`

s,Xs, T b
a pYsq

˘

ı

ds`

ż t

0
σps,Xsq dWs

Yt “ BxgpXT q ´

ż T

t
Zs dWs (4.3)

`

ż T

t

”

Bxµps,XsqT b
a pYsq ` Bxσps,XsqT d

c pZsq ` Bxf
´

s,Xs, f
´1
α

´

s,Xs, T b
a pYsq

¯¯ ı

ds

fulfills SLC (see Assuption 2.1) or MLLC (see Assumption 2.2). If the gradient process U is bounded
independently of the interval rt, T s Ă Imax, λˆP a.e., then it has an a.e. unique solution pX,Y, Zq
on the whole interval r0, T s. If furthermore a ď Y ď b, c ď Z ď d, λˆP a.e.,

px, αq ÞÑ Hpt, x, α, Yt, Ztq (4.4)

is a λˆP a.e. convex function for t P r0, T s, then
`

α̂t :“ f´1
α pt,Xt, Ytq

˘

tPr0,T s

is an admissible, optimal control.

Proof. Since FBSDE (4.3) fulfills SLC or MLLC and the gradient process is bounded, we ob-
tain by Theorem 2.11 that FBSDE (4.3) has a unique solution on the whole interval r0, T s.
Next, remember that f´1

α , which is the inverse of Bαf with respect to α, is well defined
because f is strictly convex in α. Since furthermore H is also strictly convex in α and
BαHpt, x, α, y, zq “ ´y ` Bαfpt, x, αq we get for all y for which f´1

α is defined and all
pt, x, zq P r0, T s ˆRˆR that

min
αPR

Hpt, x, α, y, zq “
`

µpt, xq ´ f´1
α pt, x, yq

˘

y ` σpt, xqz ` f
`

t, x, f´1
α pt, x, yq

˘

. (4.5)

Hence, for specific processes X, Y such that pt,Xt, Ytq P r0, T s ˆ R ˆ pra, bs X Rq Ă Dpf´1
α q,

we have with α̂t “ f´1
α pt,Xt, Ytq a candidate for the optimal control. Since FBSDE (4.3) fulfills

SLC or MLLC, which implies that f´1
α is Lipschitz-continuous in x and y, we also get that α̂ is

admissible.
Now, note that if a ď Yt ď b for all t P r0, T s then T b

a pYtq “ Yt and likewise for Z. Thus, we
get that FBSDE (4.3) is equivalent to the FBSDE

Xt “ x0 `

ż t

0

”

µps,Xsq ´ f
´1
α ps,Xs, Ysq

ı

ds`

ż t

0
σps,Xsq dWs

Yt “ BxgpXT q `

ż T

t

”

Bxµps,XsqYs ` Bxσps,XsqZs ` Bxf
`

s,Xs, f
´1
α ps,Xs, Ysq

˘

ı

ds.

´

ż T

t
Zs dWs

This in turn yields, together with Equation (4.5), that α̂ :“ f´1
α p¨, X, Y q and pY,Zq fulfill the

requirements of Theorem 4.3. Hence α̂, as defined above, is an admissible, optimal control. �

In the remainder of this section we derive conditions such that the assumptions in Proposi-
tion 4.4 are fulfilled, which allows us to obtain a solution to the control problem.

For this section let pX,Y, Zq always be the solution of FBSDE (4.3) on rt, T s Ă Imax with initial
value x0 P R.
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Lemma 4.5
Assume that µ, σ, f, g fulfill Assumption 4.1 and that µ, σ, f, g, a, b, c, d are such that FBSDE (4.3)
fulfills SLC or MLLC. Then the gradient process U of FBSDE (4.3) solves for all s P rt, T s Ă Imax the
BSDE

Us “g
2pXT q `

ż T

s
h
`

r, Ur, Z̃r
˘

dr ´

ż T

s
Z̃r dWr, (4.6)

where

hpr, v, zq :“
”

´ v2Bypf
´1
α qpr,Xr, T b

a pYrqq1ra,bspYrq

` v
´

Bxµpr,Xrqp1` 1ra,bspYrqq ´ Bxpf
´1
α qpr,Xr, T b

a pYrqq ` pBxσq
2
pr,Xrq1rc,dspZrq

¯

` v
´

Bxαfpr,Xr, f
´1
α pr,Xr, T b

a pYrqqqBypf
´1
α qpr,Xr, T b

a pYrqq1ra,bspYrq
¯

` Bxxµpr,XrqT b
a pYrq ` Bxxσpr,XrqT d

c pZrq ` Bxxfpr,Xr, f
´1
α pr,Xr, T b

a pYrqqq

` Bxαfpr,Xr, f
´1
α pr,Xr, T b

a pYrqqqBxpf
´1
α qpr,Xr, T b

a pYrqq

` zBxσpr,Xrqp1` 1rc,dspZrqq
ı

for pr, v, zq P rt, T s ˆRˆR and with pX,Y, Zq from FBSDE (4.3).

Proof. For x, y, z P R, s P rt, T s Ă Imax define

Mps, x, yq :“ µps, xq ´ f´1
α

´

s, x, T b
a pyq

¯

,

and

F ps, x, y, zq :“ Bxµps, xqT b
a pyq ` Bxσps, xqT d

c pzq ` Bxf
´

s, x, f´1
α

´

s, x, T b
a pyq

¯¯

.

Then, for an initial value x0 P R at time t, i.e. Xt “ x0, FBSDE (4.3) can be written as

Xs “ x0 `

ż s

t
M pr,Xr, Yrq dr `

ż s

t
σ pr,Xrq dWr,

Ys “ Bxg pXT q `

ż T

s
F pr,Xr, Yr, Zrq dr ´

ż T

s
Zr dWr.

Let u be the decoupling field of FBSDE (4.3). With the decoupling condition and the chain rule
in Lemma A.3.1 of [Fro15] we get

Bx0Ys “ Bx0

“

ups,Xsq
‰

“ Bxups,Xsq ¨ Bx0Xs “ Us ¨ Bx0Xs.

Now, define a stopping time τ via

τ :“ infts P rt, T s|Bx0Xs ď 0u ^ T.

Notice that τ ą t since Bx0Xt “ 1 and Bx0Xt is an Itô process and in particular continuous in
time (see Lemma A.2.5 and Lemma A.2.6 in [Fro15]). For all s P rt, τq we have that Bx0Xs is
invertible with pBx0Xsq

´1 being an Itô process, too. Hence, Us “ Bx0Ys ¨ pBx0Xsq
´1 is an Itô

process and thus there exist pbsq and pZ̃sq such that

Us “ UT `

ż T

s
br dr ´

ż T

s
Z̃r dWr
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for all s P rt, τq.
We also introduce for an Itô process Is “ I0 ´

şs
0 ir dr ´

şs
0 jr dWr the two operators Dt and

Dw defined via pDt Iqs :“ is and pDw Iqs :“ js. Note that due to Lemma A.2.5 and Lemma A.2.6
in [Fro15] the integrals and hence also the operators Dw and Dt can be interchanged with the
weak differentiation Bx0 . Using this notation we have

Bx0Zs “ Dw Bx0Ys

“ Dw pUs ¨ Bx0Xsq

“ Us ¨D
w Bx0Xs `Dw Us ¨ Bx0Xs

“ Us ¨ Bxσ ps,Xsq Bx0Xs ` Z̃sBx0Xs.

Thus we get
Z̃s “ Bx0Zs pBx0Xsq

´1
´ Us Bxσ ps,Xsq

for all s P rt, τq. Also,

Bx0 rM ps,Xs, Ysqs “ BxM ps,Xs, Ysq Bx0Xs ` ByM ps,Xs, Ysq Bx0Ys

“ BxM ps,Xs, Ysq Bx0Xs ` ByM ps,Xs, YsqUsBx0Xs

and using the dynamics of Y yields

Dt Bx0Ys “ ´BxF ps,Xs, Ys, Zsq Bx0Xs ´ ByF ps,Xs, Ys, Zsq Bx0Ys ´ BzF ps,Xs, Ys, Zsq Bx0Zs

“ ´BxF ps,Xs, Ys, Zsq Bx0Xs ´ ByF ps,Xs, Ys, ZsqUsBx0Xs

´ BzF ps,Xs, Ys, Zsq
´

Us ¨ Bxσ ps,Xsq ` Z̃s

¯

Bx0Xs,

while we obtain with the decoupling condition that

Dt Bx0Ys “ DtpUsBx0Xsq

“ ´bs ¨ Bx0Xs ` Us ¨ pBxM ps,Xs, Ysq Bx0Xs ` ByM ps,Xs, YsqUsBx0Xsq

` Z̃sBxσps,XsqBx0Xs.

Equating the two representations of Dt Bx0Y and rearranging yields

bs “ Us rBxM ps,Xs, Ys, q ` ByM ps,Xs, Ys, qUss ` Z̃sBxσps,Xsq

` BxF ps,Xs, Ys, Zsq ` ByF ps,Xs, Ys, ZsqUs ` BzF ps,Xs, Ys, Zsq
´

Us ¨ Bxσ
´

s,Xs

¯

` Z̃s

¯

for all s P rt, τq with

BxMps, x, yq “ Bxµps, xq ´ Bxpf
´1
α q

´

s, x, T b
a pyq

¯

ByMps, x, yq “ ´Bypf
´1
α q

´

s, x, T b
a pyq

¯

1ra,bspyq

BxF ps, x, y, zq “ Bxxµps, xqT b
a pyq ` Bxxσps, xqT d

c pzq ` Bxxf
´

s, x, f´1
α

´

s, x, T b
a pyq

¯¯

` Bxαf
´

s, x, f´1
α

´

s, x, T b
a pyq

¯¯

Bxpf
´1
α q

´

s, x, T b
a pyq

¯

ByF ps, x, y, zq “ Bxµps, xq1ra,bspyq ` Bxαf
´

s, x, f´1
α

´

s, x, T b
a pyq

¯¯

Bypf
´1
α q

´

s, x, T b
a pyq

¯

1ra,bspyq

BzF ps, x, y, zq “ Bxσps, xq1rc,dspzq.
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Next we turn our attention to the question whether Bx0X is invertible on the whole interval
rt, T s. Observe that

Bx0Xs “ Id`

ż s

t
Bx0 rM pr,Xr, Yrqs dr `

ż s

t
Bx0 rσpr,Xrqs dWr

“ Id`

ż s

t

“

BxM pr,Xr, Yrq ` ByM pr,Xr, YrqUr
‰

Bx0Xr dr `

ż s

t
Bxσ pr,Xrq Bx0Xr dWr

implying that

Bx0Xs “ exp

ˆ
ż s

t

“

BxM pr,Xr, Yrq ` ByM pr,Xr, YrqUr ´
1

2
pBxσq

2
pr,Xrq

‰

dr

`

ż s

t
Bxσpr,Xrq dWr

˙

. (4.7)

Note that all coefficients in (4.7) are bounded on rt, T s giving that Bx0Xs ą 0 for all s P rt, T s.
Therefore, Bx0Xs is invertible on the whole interval rt, T s and τ “ T .

What remains to do is to calculate the explicit dynamics of U . Observe that

bs “ Us rBxM ps,Xs, Ysq ` ByM ps,Xs, YsqUss ` Z̃sBxσps,Xsq

` BxF ps,Xs, Ys, Zsq ` ByF ps,Xs, Ys, ZsqUs ` BzF ps,Xs, Ys, Zsq
´

Us ¨ Bxσ ps,Xsq ` Z̃s

¯

“ Us

”

Bxµps,Xsq ´ Bxpf
´1
α q

´

s,Xs, T b
a pYsq

¯ı

´ UsBypf
´1
α q

´

s,Xs, T b
a pYsq

¯

1ra,bspYsqUs

` Z̃sBxσps,Xsq ` Bxxµps,XsqT b
a pYsq ` Bxxσps,XsqT d

c pZsq ` Bxxf
`

s,Xs, f
´1
α

`

s,Xs, T b
a pYsq

˘˘

` Bxαf
´

s,Xs, f
´1
α

´

s,Xs, T b
a pYsq

¯¯

Bxpf
´1
α q

´

s,Xs, T b
a pYsq

¯

`

”

Bxµps,Xsq1ra,bspYsq`Bxαf
`

s,Xs, f
´1
α

`

s,Xs,T b
a pYsq

˘˘

Bypf
´1
α q

`

s,Xs,T b
a pYsq

˘

1ra,bspYsq
ı

Us

` Bxσps,XsqUsBxσps,Xsq1rc,dspZsq ` Bxσps,Xsq1rc,dspZsqZ̃s

“ ´U2
s Bypf

´1
α qps,Xs, T b

a pYsqq1ra,bspYsq

` Us

”

Bxµps,Xsqp1` 1ra,bspYsqq ´ Bxpf
´1
α q

`

s,Xs, T b
a pYsq

˘

` pBxσq
2
ps,Xsq1rc,dspZsq

ı

` Us

”

Bxαf
`

s,Xs, f
´1
α

`

s,Xs, T b
a pYsq

˘˘

Bypf
´1
α qps,Xs, T b

a pYsqq1ra,bspYsq
ı

` Bxxµps,XsqT b
a pYsq ` Bxxσps,XsqT d

c pZsq ` Bxxfps,Xs, f
´1
α ps,Xs, T b

a pYsqqq

` Bxαfps,Xs, f
´1
α ps,Xs, T b

a pYsqqqBxpf
´1
α qps,Xs, T b

a pYsqq ` p1` 1rc,dspZsqqBxσps,XsqZ̃s.

Finally note that

UT “ Bx0YT pBx0XT q
´1 “

“

Bx0g
1pXT q

‰

pBx0XT q
´1 “ g2pXT q.

�

Remark 4.6
Note that by Lemma 4.5 U solves some kind of stochastic Riccati equation. Under sufficent
conditions (see Remark 4.20) this Riccati equation coincides with the Equation (6.1) considered
in [SXY18].

For shorter notation we define the function ϕ : Dpf´1
α q Ñ r0, T s ˆRˆR as

ϕps, x, yq :“ ps, x, f´1
α ps, x, yqq.
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Lemma 4.7
Assume that µ, σ, f, g fulfill Assumption 4.1, µ, σ, f, g, a, b, c, d are such that FBSDE (4.3) fulfills
SLC or MLLC and rt, T s Ă Imax. If additionally Bααf

`

ϕ
`

s,Xs, T b
a pYsq

˘˘

ą 0 for all s P rt, T s, then
for all s P rt, T s the gradient process Us of FBSDE (4.3) solves the BSDE

Us “ g2pXT q `

ż T

s

«

´ U2
r

1ra,bspYrq

Bααf pϕ pr,Xr, T b
a pYrqqq

` Ur

´

pBxσq
2
pr,Xrq1rc,dspZsq

¯

` Ur

ˆ

p1` 1ra,bspYrqq

ˆ

Bxαf

Bααf

´

ϕ
´

r,Xr, T b
a pYrq

¯¯

` Bxµpr,Xrq

˙˙

` Bxxµpr,XrqT b
a pYrq ` Bxxσpr,XrqT d

c pZrq ` Bxxf
´

ϕ
´

r,Xr, T b
a pYrq

¯¯

´
pBxαfq

2

Bααf

´

ϕ
´

r,Xr, T b
a pYrq

¯¯

` p1` 1rc,dspZrqqBxσpr,XrqZ̃r

ff

dr

´

ż T

s
Z̃r dWr

and

Bxpf
´1
α qps,Xs, T b

a pYsqq “ ´
Bxαf

Bααf

´

ϕ
´

r,Xr, T b
a pYrq

¯¯

,

Bypf
´1
α qps,Xs, T b

a pYsqq “
1

Bααf

´

ϕ
´

r,Xr, T b
a pYrq

¯¯

.

Proof. Take a look at the derivatives of f´1
α . Observe that by definition y “ Bαfps, x, f´1

α ps, x, yqq
and hence

0 “ Bx
“

Bαfps, x, f
´1
α ps, x, yqq

‰

“ Bxαfps, x, f
´1
α ps, x, yqq ` Bααfps, x, f

´1
α ps, x, yqqBxpf

´1
α qps, x, yq

and

1 “ By
“

Bαfps, x, f
´1
α ps, x, yqq

‰

“ Bααfps, x, f
´1
α ps, x, yqqBypf

´1
α qps, x, yq

yielding with Bααf
`

ϕ
`

s,Xs, T b
a pYsq

˘˘

ą 0 that

Bxpf
´1
α qps,Xs, T b

a pYsqq “ ´
Bxαf

Bααf

´

ϕ
´

s,Xs, T b
a pYsq

¯¯

,

Bypf
´1
α q

´

s,Xs, T b
a pYsq

¯

“
1

Bααf

´

ϕ
´

s,Xs, T b
a pYsq

¯¯

.

Plugging these two identities into BSDE (4.6) (given by Lemma 4.5), yields the desired result.
�

By Hpfq we denote the Hessian of f but only with respect to the space arguments. I.e.

Hpfqps, x, aq “
ˆ

Bxxf Bxαf
Bxαf Bααf

˙

ps, x, aq

and
detpHpfqqps, x, aq “ Bxxfps, x, aqBααfps, x, aq ´ pBxαfq2 ps, x, aq

for ps, x, aq P r0, T s ˆRˆR.
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Assumption 4.8
Let T ą 0, µ and σ be of the form

µpt, xq “ bt `Btx, σpt, xq “ ct ` Ctx

for b, B, c, C : Ωˆ r0, T s Ñ R being progressively measurable and bounded processes. Also assume
that

1. g : Ω ˆ R Ñ R and f : Ω ˆ r0, T s ˆ R ˆ R are twice differentiable and convex in the space
arguments, λˆP a.e., and progressively measurable,

2.
›

›f´1
α p¨, ¨, 0, 0q

›

›

8
, }Bxfp¨, ¨, 0, f

´1
α p¨, ¨, 0, 0qq}8 ă 8,

3. Bααf ě ε ą 0, P a.s.,

4. detpHpfqq
Bααf

and Bxαf
Bααf

are bounded, P a.s.,

5. }gp¨, 0q}8, }Bxgp¨, 0q}8, }Bxxg}8 ă 8.

Note that Assumption 4.8 is a more specific case of Assumption 4.1, allowing us to apply the
results from e.g. Proposition 4.4 and Lemma 4.7.

Lemma 4.9
Let σ, µ, f and g fulfill Assumption 4.8. Then FBSDE (4.3) fulfills SLC for a “ c “ ´8, b “ d “ 8
and the gradient process U is bounded by

0 ď U ď

˜

}g2}8 `

›

›

›

›

›

Bxxf ´
pBxαfq

2

Bααf

›

›

›

›

›

8

¸

exp

ˆ

T

ˆ

}C2}8 ` 2}B}8 ` 2

›

›

›

›

Bxαf

Bααf

›

›

›

›

8

˙˙

ă 8,

λˆP a.e.

Proof. Observe that with Lemma 4.7, for all s P r0, T s, x1, y P R,

Bxpf
´1
α qps, x1, yq “´

Bxαf

Bααf

`

s, x1, f´1
α ps, x1, yq

˘

and Bypf
´1
α qps, x1, yq “

1

Bααf

`

s, x1, f´1
α ps, x1, yq

˘

giving

Bx1
“

Bxfps, x
1, f´1

α ps, x1, yqq
‰

“
detpHpfqq
Bααf

ps, x1, f´1
α ps, x1, yqq

and

By
“

Bxfps, x
1, f´1

α ps, x1, yqq
‰

“
Bxαf

Bααf
ps, x1, f´1

α ps, x1, yqq,

which are both bounded, by Assumption 4.8. Because for all x1 P R we have Bxµpt, x1q “ Bt and
Bxσpt, x

1q “ Ct, which are also bounded, FBSDE (4.3) reduces for a “ c “ ´8, b “ d “ 8 and
x0 P R to

Xt “ x0 `

ż t

0

“

bs `BsXs ´ f
´1
α ps,Xs, Ysq

‰

ds`

ż t

0
rcs ` CsXss dWs

Yt “ BxgpXT q `

ż T

t

“

BsYs ` CsZs ` Bxfps,Xs, f
´1
α ps,Xs, Ysqq

‰

ds´

ż T

t
Zs dWs,
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which is Lipschitz in X, Y , and Z. Since furthermore }b}8, }c}8, }Bxgp¨, 0q}8, }Bxxg}8,
›

›f´1
α p¨, ¨, 0, 0q

›

›

8
and }Bxfp¨, ¨, 0, f´1

α p¨, ¨, 0, 0qq}8 are all finite, we obtain that SLC is fulfilled.
Also the dynamics of the gradient process U given by Lemma 4.7 simplify to

Us “ g2pXT q `

ż T

s

«

´ U2
r

1

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

` Ur
`

C2
r ` 2Br

˘

` Ur

ˆ

2
Bxαfpr,Xr, f

´1
α pr,Xr, Yrqq

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

˙

`

ˆ

1

Bααf

´

BxxfBααf ´ pBxαfq
2
¯

˙

pr,Xr, f
´1
α pr,Xr, Yrqq

ff

dr ´

ż T

s
Z̃r dĂWr,

where ĂWs “Ws ´
şT
s 2Bxσpr,Xrq dr for all s P rt, T s. Since Bxσ is bounded we get by Girsanov’s

theorem that there exists an equivalent probability measure rP under which ĂW is a Brownian
motion. By rE we denote the corresponding expectation operator.

Observe that, since U is bounded on every closed subinterval of Imax because the correspond-
ing decoupling field u is weakly regular by Theorem 2.8, we can interpret the dynamics of U
as a Lipschitz BSDE allowing us to apply the Comparison Theorem (see e.g. Theorem 6.2.2 in
[Pha09]). Note that the Hessian of a convex function is positive-semidefinite and hence its de-
terminant is greater than or equal to zero. Thus and since in addition Bααf ě ε ą 0, we have
´

1
Bααf

´

BxxfBααf ´ pBxαfq
2
¯¯

ě 0. Because g2 ě 0, due to convexity, and

Ǔs “

ż T

s

„

´U2
r

1

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

`Ur

ˆ

C2
r ` 2Br ` 2

Bxαfpr,Xr, f
´1
α pr,Xr, Yrqq

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

˙

dr

´

ż T

s
Žr dĂWr

has the trivial solution pǓ , Žq “ p0, 0q, we get via the Comparison Theorem that U is bounded
from below by 0. Using the Comparison Theorem again on U and

Ûs “g
2pXT q `

ż T

s

«

Ur

ˆ

C2
r ` 2Br ` 2

Bxαfpr,Xr, f
´1
α pr,Xr, Yrqq

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

˙

`

ˆ

1

Bααf

´

BxxfBααf ´ pBxαfq
2
¯

˙

pr,Xr, f
´1
α pr,Xr, Yrqq

ff

dr ´

ż T

s
Ẑr dĂWr

yields that U is also bounded from above since

Ûs “ rE

„

g2pXT qΓps, T q `

ż T

s

ˆ

1

Bααf

`

BxxfBααf ´ Bxαf
2
˘

˙

pr,Xr, f
´1
α pr,Xr, YrqqΓps, rq dr

ˇ

ˇ

ˇ

ˇ

Fs


ď

ˆ

}g2}8 ` T

›

›

›

›

detpHpfqq
Bααf

›

›

›

›

8

˙

exp

ˆ

T

ˆ

}C2}8 ` 2}B}8 ` 2

›

›

›

›

Bxαf

Bααf

›

›

›

›

8

˙˙

,

where

Γpt, sq :“ exp

ˆ
ż s

t
C2
r ` 2Br ` 2

Bxαfpr,Xr, f
´1
α pr,Xr, Yrqq

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

dr ´
1

2

ż s

t
Z̃2
r dr

˙

.

To sum up, we have that

0 ď U ď

ˆ

}g2}8 `

›

›

›

›

detpHpfqq
Bααf

›

›

›

›

8

˙

exp

ˆ

T

ˆ

}C2}8 ` 2}B}8 ` 2

›

›

›

›

Bxαf

Bααf

›

›

›

›

8

˙˙

ă 8,

λˆP a.e. �
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Now we come to our first main result of this section.

Theorem 4.10
Let σ, µ, f and g fulfill Assumption 4.8. Then the control problem of minimizing (4.1) has the
optimal control

α̂t :“ f´1
α pt,Xt, Ytq,

where X, Y solve FBSDE (4.3), which has a unique solution on the whole interval r0, T s.

Proof. Since Assumption 4.8 is a more specific case of Assumption 4.1 and Lemma 4.9 shows
that for a “ c “ ´8 and b “ d “ 8 FBSDE (4.3) fulfills SLC and the gradient process U is λˆP
a.e. bounded, we only need to show the following two points in order to obtain the claimed
result by Proposition 4.4. Firstly that H is convex in px, aq, which is straightforward since its
only nonlinear part is the convex function f . And secondly that r0, T sˆRˆpra, bsXRq Ă Dpf´1

α q.
This follows since Bααf ě ε ą 0 and hence Bαf has range R. Thus, the domain of f´1

α , which is
the inverse of Bαf in a, has domain Dpf´1

α q “ r0, T s ˆRˆR “ r0, T s ˆRˆ pra, bs XRq. �

Example 4.11
Let b, B, c, C, r, F a, F x be bounded processes and G0, Gx bounded random variables, such that
F a ě ε ą 0, F x P r0.5, 1s Y t0u and G0, Gx ą 0. Define

µps, xq :“ bs `Bs ¨ x, σps, xq :“ cs ` Cs ¨ x,

fps, x, aq :“ e´rs¨s
´

`

1` x2
˘Fxs ` cosh pF as ¨ aq

¯

, gpxq :“
`

G0 `Gx ¨ x
2
˘2{3

for ps, xq P r0, T s ˆ R. Then Theorem 4.10 states that minimizing the cost fuctional J from
Equation (4.1) over all admissible controls has the optimal solution

α̂s “
sinh´1

´

Ys expprs¨sq
Fas

¯

F as
,

where Y is part of the unique solution of FBSDE (4.3).

Remark 4.12
Theorem 4.10 gives the same representation of the optimal control as found in [AFKP18], where
the autors also use the method of decoupling fields. However, they do not allow for a drift and
diffusion term (b “ B “ c “ C “ 0), set gpxq “ Lx2 and have further smaller differences in the
assumptions, which are sometimes more general on their side and sometimes on ours.

The argruments applied in Lemma 4.9 heavily rely on the linearity of µ and σ in Assump-
tion 4.8. This property however restricts the dynamics of the controlled processes. In the fol-
lowing we introduce another set of assumptions which does not need the linearity of µ but relies
on other properties.
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A decoupling field approach to position control problems

Assumption 4.13
Let µ, σ : Ωˆr0, T sˆRÑ R, f : Ωˆr0, T sˆRˆRÑ R and g : ΩˆRÑ R be twice differentiable
in the space arguments and progressively measurable. Furthermore, assume

1. Bxµ, Bxxµ are bounded,

2. there are bounded, progressively measurable processes c, C such that σps, xq “ c` Cx,

3. Bxf , detpHpfqq
Bααf

and Bxαf
Bααf

are bounded,

4. Bααfps, x, f´1
α ps, x, yqq ě ε ą 0 a.s., for all ps, x, yq P r0, T s ˆRˆ r´ŷ, ŷs,

where ŷ :“ p}g1}8 ` T }Bxf}8q exp pT }Bxµ}8q,

5. }µp¨, ¨, 0q}8, } pBxf ˝ ϕq p¨, ¨, 0, 0q}8, }f´1
α p¨, ¨, 0, 0q}8 and }gp¨, 0q}8 are finite,

6. g and f are convex in the space arguments, λˆP a.e.,

7. g is monotone in the space argument with a bounded first and second derivative,

8. at least one of the following two cases is fulfilled

i) g1 ě 0, µ is convex in x and Bxf ě 0,

ii) g1 ď 0, µ is concave in x and Bxf ď 0.

Lemma 4.14
Let σ, µ, f and g fulfill Assumption 4.13 and set a “ ´ŷ, b “ ŷ, c “ ´8, d “ 8. Then FBSDE (4.3)
fulfills SLC and the gradient process U is bounded by

0 ď U ď

„

}g2}8 ` T

ˆ

}Bxxµ}8 ŷ `

›

›

›

›

detpHpfqq

Bααf

›

›

›

›

8

˙

¨ exp

ˆ

T

ˆ

}Bxσ}
2
8 ` 2 }Bxµ}8 ` 2

›

›

›

›

Bxαf

Bααf

›

›

›

›

8

˙˙

,

λ ˆ P a.e. Moreover, ´ŷ ď Y ď ŷ and Bxxµ ¨ Y ě 0, λ ˆ P a.e., and 0 ď Y ď ŷ, λ ˆ P a.e., if
g1 ě 0 and ´ŷ ď Y ď 0, λˆP a.e., if g1 ď 0.

Proof. By the assumptions made and the identities in Lemma 4.7, FBSDE (4.3) fulfills SLC. The
first thing we have to prove is that Y does not exceed the truncation bounds. To this end observe
that we can rewrite the dynamics of Y as

Ys “ g1pXT q `

ż T

s

”

Bxµpr,XrqT b
a pYrq ` Bxf

´

r,Xr, f
´1
α

´

r,Xr, T b
a pYrq

¯¯ı

dr ´

ż T

s
Zr dĂWr,

where ĂWs :“Ws ´
şT
s Bxσpr,Xrq dr is a Brownian motion with respect to some measure rP, due

to Girsanov’s theorem since Bxσps,Xsq “ Cs is bounded. Consider, for now, the process Ȳ given
by the BSDE

Ŷs “ g1pXT q `

ż T

s

”

Bxµpr,XrqŶr ` Bxf
´

r,Xr, f
´1
α

´

r,Xr, T b
a pYrq

¯¯ı

dr ´

ż T

s
Zr dĂWr.
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The problem and general solutions

For any given process X and all s P r0, T s for which Y exists on rs, T s, the solution formula for
linear BSDEs (see e.g. Proposition 6.2.1 in [Pha09]) states that

Ŷs “ Ẽ

„

g1pXT qΓps, T q `

ż T

s
Bxf

´

r,Xr, f
´1
α

´

r,Xr, T b
a pYrq

¯¯

Γps, rq dr

ˇ

ˇ

ˇ

ˇ

rFs


,

where

Γpt, rq :“ exp

ˆ
ż r

t
Bxµpu,Xuq du´

1

2

ż r

t
Z2
u du

˙

for all s ď t ď r ď T . Therefore, and since Bxf is bounded, we conclude that Ŷ is bounded
by }Ŷ }8 ď p}g1}8 ` T }Bxf}8q exp pT }Bxµ}8q “ ŷ. Thus, Ŷ does not exceed bounds a “ ´ŷ,
b “ ŷ of the truncation and hence coincides with Y . This means that the truncation of Y can be
omitted.

Next, observe that the BSDE

Ȳt “ 0`

ż T

t
Bxµps,XsqȲs ds´

ż T

t
Z̄s dĂWs

has the trivial solution Ȳ ” 0, Z̄ ” 0. Thus, we can use the comparison theorem and obtain in
the case where g1 ě 0 and Bxf ě 0 that 0 ď Y ď ŷ and in the case where g1 ď 0 and Bxf ď 0
that ´ŷ ď Y ď 0. Hence, by the assumptions made, either Y ě 0 and Bxxµ ě 0 or Y ď 0 and
Bxxµ ď 0, yielding in any case that Bxxµps,XsqYs ě 0.

It remains to show that the bounds for U hold true. Have a look at the dynamics of U , they
are

Us “ g2pXT q `

ż T

s

«

´ U2
r

1

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

` Ur
`

Bxσ
2pr,Xrq ` 2Bxµpr,Xrq

˘

` Ur

ˆ

2
Bxαfpr,Xr, f

´1
α pr,Xr, Yrqq

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

˙

` Bxxµpr,XrqYr ` Bxxσpr,XrqZr ` Bxxfpr,Xr, f
´1
α pr,Xr, Yrqq

´

`

Bxαfpr,Xr, f
´1
α pr,Xr, Yrqq

˘2

Bααfpr,Xr, pf
´1
α qpr,Xr, Yrqq

ff

dr

´

ż T

s
Z̃r dĂWr,

where ĂWs “ Ws ´
şT
s 2Bxσpr,Xrq dr is a Brownian motion with respect to rP by Girsanov’s

theorem. Because U is bounded on every interval rt, T s Ă Imax, we can interpret its dynamics as
being Lipschitz allowing us to apply the Comparison Theorem. Note that g2 ě 0, Bxxµps,XsqYs ě

0, Bxxσ “ 0 and Bxxf´
pBxαfq

2

Bααf
“

detpHpfqq
Bααf

ě 0. Hence, we get for all s P rt, T s by the Comparison
Theorem that U ě Ǔ , where

Ǔs “ 0`

ż T

s

«

Ǔr

ˆ

pBxσq
2
pr,Xrq ` 2Bxµpr,Xrq ` 2

Bxαfpr,Xr, f
´1
α pr,Xr, Yrqq

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

˙

´ Ǔ2
r

1

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

ff

dr ´

ż T

s
Z̃r dĂWr,
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which has the trivial solution Ǔ ” 0, Z̃ ” 0. Thus U ě 0.
For the upper bound we apply the Comparison Theorem again. By dropping the quadratic

term, obtaining

Ûs “ g2pXT q `

ż T

s

«

Ûr

ˆ

Bxσ
2pr,Xrq ` 2Bxµpr,Xrq ` 2

Bxαfpr,Xr, f
´1
α pr,Xr, Yrqq

Bααfpr,Xr, f
´1
α pr,Xr, Yrqq

˙

` Bxxµpr,XrqYr ` Bxxfpr,Xr, f
´1
α pr,Xr, Yrqq

´

`

Bxαfpr,Xr, f
´1
α pr,Xr, Yrqq

˘2

Bααfpr,Xr, pf
´1
α qpr,Xr, Yrqq

ff

dr ´

ż T

s
Z̃r dĂWr,

we get that U is bounded from above by the solution Û of this linear BSDE, which again is
bounded by

Ûs ď

„

}g2}8 ` T

ˆ

}Bxxµ}8 ŷ `

›

›

›

›

detpHpfqq

Bααf

›

›

›

›

8

˙

¨ exp

ˆ

T

ˆ

}Bxσ}
2
8 ` 2 }Bxµ}8 ` 2

›

›

›

›

Bxαf

Bααf

›

›

›

›

8

˙˙

.

�

The following theorem is the second main result of this section, stating a solution to a control
problem with non-linear dynamics.

Theorem 4.15
Let σ, µ, f and g fulfill Assumption 4.13. Then the control problem of minimizing (4.1) has the
optimal control

α̂t :“ f´1
α pt,Xt, Ytq,

where X, Y solve FBSDE (4.3), which has an a.e. unique solution on the whole interval r0, T s.
Furthermore, 0 ď Y ď ŷ, λˆP a.e., if g1 ě 0 and ´ŷ ď Y ď 0, λˆP a.e., if g1 ď 0.

Proof. With the statement of Lemma 4.14 and since r0, T s ˆR ˆ r´ŷ, ŷs Ă Dpf´1
α q is implicitly

given by Assumption 4.13, for the assumptions of Proposition 4.4 it only remains to show that
px, aq ÞÑ Hpt, x, a, Yt, Ztq is convex for all t P r0, T s. To this end we define for t P r0, T s the
functions

Hµpt, x, aq :“ µpt, xq ¨ Yt, Hσpt, x, aq :“ σpt, xq ¨ Zt and Hf pt, x, aq :“ f pt, x, aq

such that Hpt, x, a, Yt, Ztq “
`

Hµ `Hσ `Hf
˘

pt, x, aq. Observe that by Lemma 4.14 we get that

BxxH
µpt, x, aq “ Bxxµpt, xq ¨ Yt ě 0

and furthermore, that
BxxH

σpt, x, aq “ Bxxσpt, xq ¨ Zt “ 0.

Since furthermore Hµ and Hσ are independent of the argument a, they are convex in px, aq.
Therefore and because Hf is convex by assumption, we obtain that H is the sum of convex
functions and hence convex in px, aq itself. Thus, Proposition 4.4 can be applied and we ob-
tain that α̂ is an admissible optimal control. The remaining statement about Y is given by
Lemma 4.14. �
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Unlike Theorem 4.10 the method for Theorem 4.15 relies on the boundedness of Y . This
however comes with the price of other restrictions like g and f having a bounded derivative
with respect to x.

Example 4.16
Let b, c, C, r be bounded progressively measurable processes and

µps, xq :“
a

1` bs ` x2, σps, xq :“ cs ` Cs ¨ x fps, x, aq :“ expp´rs ¨ sq ¨ cosh paq ,

gpxq :“

$

&

%

0, x ă 0,
x3

4

`

1´ x
4

˘

, 0 ď x ă 2,
x´ 1, x ě 2,

for ps, xq P r0, T s ˆ R. Then Theorem 4.15 states that the control problem consisting of min-
imizing the cost fuctional J from Equation (4.1) over all admissible controls has the optimal
solution

α̂s “ sinh´1 pYs ¨ exp prs ¨ sqq ,

where Y is part of the unique solution of FBSDE (4.3).

4.2 Linear-quadratic control problems

In this section we turn our attention to a special case of Assumption 4.8, the linear-quadratic
case. We make the following assumption.

Assumption 4.17
Let T ą 0 and µ, σ : Ωˆ r0, T s ˆRÑ R, f : Ωˆ r0, T s ˆRˆRÑ R, g : RÑ R be of the form

µpt, xq “ bt `Btx, σpt, xq “ ct ` Ctx, gpxq “ G0 `G1x`G2x
2,

fpt, x, aq “ βxxptqx
2 ` βxptqx` βxaptqax` βaaptqa

2 ` βaptqa` β0ptq

for b, B, c, C, βxx, βx, βxa, βaa, βa, β0 being essentially bounded processes on r0, T s, such that

• detpHpfqqpt, ¨, ¨q “ βaaptqβxxptq ´ β
2
axptq ě ε1 ą 0 for t P r0, T s and some constant ε1 ą 0

• βaaptq ě ε2 ą 0 for t P r0, T s and some constant ε2 ą 0

and G0, G1 P R, G2 ě 0.
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Note that hence f´1
α pt, x, yq “ y´βaptq´βxaptqx

2βaaptq
. Furthermore, for the processes in Assump-

tion 4.17 we denote by ˇ̈ the essential infimum over time and by ˆ̈ the essential supremum over
time, e.g. β̌aa :“ ess infsPr0,T s βaapsq and β̂aa :“ ess supsPr0,T s βaapsq.

Corollary 4.18
Let σ, µ, f and g fulfill Assumption 4.17. Then, for the truncation parameters a, c “ ´8, b, d “ 8,
FBSDE (4.3) has a solution on the whole time interval r0, T s and is equivalent to

Xt “ x0 `

ż t

0

“

µps,Xsq ´ f
´1
α ps,Xs, Ysq

‰

ds`

ż t

0
σps,Xsq dWs

Yt “ BxgpXT q ´

ż T

t
Zs dWs (4.8)

`

ż T

t

“

Bxµps,XsqYs ` Bxσps,XsqZs ` Bxf
`

s,Xs, f
´1
α ps,Xs, Ysq

˘‰

ds.

Proof. Observe that Assumption 4.17 is a special case of Assumption 4.8. Hence Lemma 4.9 is
applicable and yields that FBSDE (4.3) fulfills SLC for a, c “ ´8, b, d “ 8 and has a solution on
the whole time interval r0, T s. �

Corollary 4.19
Let σ, µ, f and g fulfill Assumption 4.17. Then the gradient process UT of FBSDE (4.8) is indistin-
guishable from the process that solves the quadratic BSDE

UTt “ 2G2 `

ż T

t

«

´

`

UTr
˘2

2βaaprq
` UTr

ˆ

C2
r ` 2Br `

βxaprq

βaaprq

˙

` 2βxxprq ´
β2
xaprq

2βaaprq
` 2CrZ

U
r

ff

dr

´

ż T

t
ZUr dWr

for t P r0, T s.

Proof. Remember that Corollary 4.18 states that there is a solution to (4.8) on the whole time
interval. Furthermore, by Lemma 4.7 we get that UT has the dynamics

UTt “ g2pXT q `

ż T

s

«

´
`

UTr
˘2 1

Bααf pϕ pr,Xr, Yrqq
` UTr

`

Bxσ
2pr,Xrq

˘

` UTr

ˆ

2

ˆ

Bxαf

Bααf
pϕ pr,Xr, Yrqq ` Bxµpr,Xrq

˙˙

` Bxxµpr,XrqYr ` Bxxσpr,XrqZr ` Bxxf pϕ pr,Xr, Yrqq

´
pBxαfq

2

Bααf
pϕ pr,Xr, Yrqq ` 2Bxσpr,XrqZ

U
r

ff

dr ´

ż T

s
ZUr dWr

“ 2G2 `

ż T

t

«

´

`

UTr
˘2

2βaaprq
` UTr

ˆ

C2
r ` 2Br `

βxaprq

βaaprq

˙

` 2βxxprq ´
β2
xaprq

2βaaprq
` 2CrZ

U
r

ff

dr

´

ż T

t
ZUr dWr.

�
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Remark 4.20
Note that the BSDE for UT in Corollary 4.19 is for βx “ βa “ b “ c “ 0 a special case of
Equation (6.1) in [SXY18]. Thus, in some sense, we have an alternative proof for the existence
of a solution. We obtain this as a special case of the BSDE in Lemma 4.7, for which we proved
the existence under the more general Assumption 4.8.

Using this representation of UT and in particular that it does not depend on X, we can derive
a representation of the decoupling field. This then allows us to give a formula for the optimal
control.

Proposition 4.21
Let σ, µ, f and g fulfill Assumption 4.17. Then the decoupling field u of FBSDE (4.8) is equal to

upt, xq “ ϕTt ` U
T
t ¨ x,

where UT is the gradient process given in Corollary 4.19 and ϕT is indistinguishable from the
solution of the BSDE

ϕTt “ G1 ´

ż T

t
Zϕs dWs `

ż T

t

`

CsZ
ϕ
s ` csZ

U
s

˘

ds

`

ż T

t

„

ϕTs

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

` CscsU
T
s ` bsU

T
s ` βxpsq ` βapsq

UTs ´ βxapsq

2βaapsq



ds,

where ZU is the diffusion part of UT (see Corollary 4.19). In particular, both UT and ϕT , and hence
also the decoupling field u, do not depend on the process X from FBSDE (4.8). The component Zϕ

is given by Zϕs “ Zs ´ XsZ
U
s ´ pcs ` CsXsqU

T
s for all s P r0, T s, where X and Z are from

FBSDE (4.8).

Proof. Note that Corollary 4.19 already states that for every t P r0, T s we have Bxupt,Xtq “ UTt ,
which is independent of Xt, since UT does not depend on the starting value of X. Hence, u has
to be of the form upt, xq “ ϕTt `U

T
t ¨x for some process ϕT , which does not depend on X neither.

Using Itô’s formula, the dynamics of Y , X, U and the decoupling condition, a straightforward
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calculation yields

ϕTt “ Yt ´ U
T
t Xt

“ G1 ` 2G2XT ´ 2G2XT

`

ż T

t

„

BsYs `CsZs ` 2βxxpsqXs ` βxpsq ` βxapsq
Ys ´ βapsq ´ βxapsqXs

2βaapsq



ds´

ż T

t
Zs dWs

´

ż T

t

«

´

`

UTs
˘2

2βaapsq
` UTs

ˆ

C2
s ` 2Bs `

βxapsq

βaapsq

˙

` 2βxxpsq ´
β2
xapsq

2βaapsq
` 2CsZ

U
s

ff

Xs ds

´

ż T

t
´ZUs Xs dWs ´

ż T

t
´ZUs pcs ` CsXsq ds

´

ż T

t
´UTs

„

bs `BsXs ´
Ys ´ βapsq ´ βxapsqXs

2βaapsq



ds´

ż T

t
´UTs pcs ` CsXsq dWs

“ G1 ´

ż T

t

“

Zs ´XsZ
U
s ´ pcs ` CsXsqU

T
s

‰

dWs

`

ż T

t

“

Zs ´XsZ
U
s ´ pcs ` CsXsqU

T
s

‰

Cs ds`

ż T

t
CsU

T
t pcs ` CsXsq ds

`

ż T

t

„

BsYs ` 2βxxpsqXs ` βxpsq ` βxapsq
ϕTs ` U

T
s Xs ´ βapsq ´ βxapsqXs

2βaapsq



ds

`

ż T

t

«

`

UTs
˘2

2βaapsq
´ UTs

ˆ

C2
s ` 2Bs `

βxapsq

βaapsq

˙

´ 2βxxpsq `
β2
xapsq

2βaapsq

ff

Xs ds

`

ż T

t
ZUs cs ds`

ż T

t
UTs

„

bs `BsXs ´
ϕTs ` U

T
s Xs ´ βapsq ´ βxapsqXs

2βaapsq



ds

and further that

ϕTt “ G1 ´

ż T

t

“

Zs ´XsZ
U
s ´ pcs ` CsXsqU

T
s

‰

dWs

`

ż T

t

“

Zs ´XsZ
U
s ´ pcs ` CsXsqU

T
s

‰

Cs ` csZ
U
s ds`

ż T

t
Xs ¨ 0 ds

`

ż T

t

„

ϕTs

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

` CscsU
T
s ` bsU

T
s ` βxpsq ` βapsq

UTs ´ βxapsq

2βaapsq



ds

“ G1 ´

ż T

t
Zϕs dWs `

ż T

t
CsZ

ϕ
s ` csZ

U
s ds

`

ż T

t

„

ϕTs

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

` CscsU
T
s ` bsU

T
s ` βxpsq ` βapsq

UTs ´ βxapsq

2βaapsq



ds,

where Zϕs :“ Zs ´XsZ
U
s ´ pcs ` CsXsqU

T
s for all s P r0, T s. �

Corollary 4.22
Let σ, µ, f and g fulfill Assumption 4.17. Then the optimal control is

αTt “
ϕTt ´ βaptq ` pU

T
t ´ βxaptqqXt

2βaaptq
“ αTt pXtq

for t P r0, T s, which is a linear feedback control with the random function αT : Ωˆr0, T sˆRÑ R

αTt pxq :“
ϕTt ´ βaptq ` pU

T
t ´ βxaptqqx

2βaaptq
. (4.9)
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Proof. Remember that FBSDE (4.8) has a solution on the whole interval r0, T s and its decoupling
field is explicitly given in Proposition 4.21. Thus, as a particular case of Theorem 4.10, the
optimal control fulfills

αTt “ f´1
α pt,Xt, Ytq “

Yt ´ βaptq ´ βxaptqXt

2βaaptq
“
ϕTt ´ βaptq ` pU

T
t ´ βxaptqqXt

2βaaptq
.

Since everything on the right hand side, aside from X itself, does not depend on X, as stated in
Proposition 4.21, we can view this as a linear random function of Xt. Hence, we can view the
optimal control as a linear feedback control. �

Remark 4.23
In the case of βxpsq “ βapsq “ bs “ cs “ 0 for all s P r0, T s the result in Corollary 4.22 follows by
Theorem 6.7 in [SXY18]. Likewise, for all coefficents being deterministic and βxpsq “ βapsq “ 0
for all s P r0, T s this result follows by Theorem 6.1 in [YZ99]. Furthermore, note that in this
latter case the process P in [YZ99] equals U

2 from our work, while their ϕ equals ϕ
2 here.

With those representations of the components of the decoupling field and the optimal control,
we derive a formula for the value function of the linear-quadratic control problem, which does
not depend on the solution of FBSDE (4.8). This is our main result of this section.

Theorem 4.24
Let Assumption 4.17 be fulfilled. Then for all t P r0, T s and x P R

V pt, T, xq :“E

«

1

2
UTt x

2 ` ϕTt x`G0 `

ż T

t

˜

ϕTs bs `U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq
` csZ

ϕ
s

¸

ds

ff

“E

„
ż T

t
f
`

s,Xt,x
s , αTs pX

t,x
s q

˘

ds` gpXt,x
T q



,

where Xt,x is the process X conditioned on Xt “ x and pαTs qsPr0,T s is the optimal feedback control
from Equation (4.9). In particular,

V p0, T, xq “ inf
αPA

JpT, x, αq.

Proof. Recall that the dynamics of UT and ϕT are given in Corollary 4.19 and Proposition 4.21.
Hence, by Itô’s formula,

1

2
UTt X

2
t

“
1

2
UTT X

2
T

´

ż T

t
UTs Xs

ˆ

bs `BsXs ´
ϕTs ´ βapsq

2βaapsq
´
UTs ´ βxapsq

2βaapsq
Xs

˙

ds´

ż T

t
UTs Xs pcs ` CsXsq dWs

`

ż T

t

X2
s

2

«

´

`

UTs
˘2

2βaapsq
` UTs

ˆ

C2
s ` 2Bs `

βxapsq

βaapsq

˙

` 2βxxpsq ´
β2
xapsq

2βaapsq
` 2CsZ

U
s

ff

ds

´

ż T

t

X2
s

2
ZUs dWs ´

ż T

t

1

2
UTs pcs ` CsXsq

2 ds´

ż T

t
XsZ

U
s pcs ` CsXsq ds
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and

ϕTt Xt

“ ϕTTXT

´

ż T

t
ϕTs

ˆ

bs `BsXs ´
ϕTs ´ βapsq

2βaapsq
´
UTs ´ βxapsq

2βaapsq
Xs

˙

ds´

ż T

t
ϕTs pcs ` CsXsq dWs

`

ż T

t
Xs

„

ϕTs

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

` CscsU
T
s ` bsU

T
s ` βxpsq ` βapsq

UTs ´ βxapsq

2βaapsq



ds

`

ż T

t
Xs

“

csZ
U
s ` CsZ

ϕ
s

‰

ds´

ż T

t
XsZ

ϕ
s dWs ´

ż T

t
Zϕs pcs ` CsXsq ds.

Therefore, it is straightforward to verify that

1

2
UTt X

2
t ` ϕ

T
t Xt `G0 `

ż T

t

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq
` csZ

ϕ
s

ff

ds

“ G2X
2
T `G1XT `G0

`

ż T

t

#

X2
s

«

1

2

˜

´

`

UTs
˘2

2βaapsq
` UTs

ˆ

2Bs `
βxapsq

βaapsq
` C2

s

˙

` 2βxxpsq ´
β2
xapsq

2βaapsq

¸

´UTs

ˆ

Bs ´
UTs ´ βxapsq

2βaapsq
`
C2
s

2

˙

`Xs

„ˆ

UTs

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq

˙

`

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

ϕTs

´ϕTs

ˆ

Bs ´
UTs ´ βxapsq

2βaapsq

˙

´ UTs

ˆ

bs ´
ϕTs ´ βapsq

2βaapsq
` csCs

˙

`

«

β0psq ` βapsq

ˆ

ϕTs ´ βapsq

2βaapsq

˙

` βaapsq

ˆ

ϕTs ´ βapsq

2βaapsq

˙2
ff+

ds

´

ż T

t

„

`

ϕTs ` U
T
s Xs

˘

pcs ` CsXsq `
1

2
X2
sZ

U
s `XsZ

ϕ
s



dWs

“ G2X
2
T `G1XT `G0

`

ż T

t

«

β0psq ` βxxpsqX
2
s ` βxpsqXs ` βxapsqXs

˜

ϕTs ´ βapsq `
`

UTs ´ βxapsq
˘

Xs

2βaapsq

¸

` βaapsq

¨

˝

ˆ

ϕTs ´ βapsq

2βaapsq

˙2

` 2

`

ϕTs ´ βapsq
˘ `

UTs ´ βxapsq
˘

Xs

p2βaapsqq
2 `

˜

`

UTs ´ βxapsq
˘

Xs

2βaapsq

¸2
˛

‚

` βapsq
ϕTs ´ βapsq `

`

UTs ´ βxapsq
˘

Xs

2βaapsq

ff

ds

´

ż T

t

„

`

ϕTs ` U
T
s Xs

˘

pcs ` CsXsq `
1

2
X2
sZ

U
s `XsZ

ϕ
s



dWs

“ gpXT q `

ż T

t
f
`

s,Xs, α
T
s pXsq

˘

ds´

ż T

t

„

`

ϕTs `U
T
s Xs

˘

pcs `CsXsq `
1

2
X2
sZ

U
s `XsZ

ϕ
s



dWs.

64



Some results on functions with quadratic dynamics

This yields that

V pt, T, xq “ E

„
ż T

t
f
`

s,Xt,x
s , αTs

`

Xt,x
s

˘˘

ds` gpXt,x
T q



.

Since αT is the optimal control we furthermore obtain

V p0, T, xq “ E

„
ż T

0
f
`

s,X0,x
s , αTs

`

X0,x
s

˘˘

ds` gpXt,0
T q



“ inf
αPA

JpT, x, αq.

�

Remark 4.25
Using the essential bounds for the parameter processes b, B, c, C, βxx, βx, βxa, βaa, βa, β0 and the
results from Section 4.3, we are able to derive bounds for U which do not depend on the time
horizon T , similar to the estimate in Proposition 4.42 (i).

However, corresponding bounds for ϕT would require estimates similar to the ones in Sec-
tion 4.3 for quadratic BSDEs of the type UT solves in Section 4.2. Obtaining such estimates and
thereby generalizing Section 4.4 to random parameter functions is left for future research.

4.3 Some results on functions with quadratic dynamics

In this section we investigate the properties of the solution of a deterministic quadratic ODE.
First, we derive them for piecewise constant parameter functions and then generalize to right-
continuous functions. The resulting estimates are used in Section 4.4 to show the convergence
of the decoupling field in an ergodic control problem.

Assumption 4.26
Let p, q, a : r0,8q Ñ R be deterministic right-continuous functions such that for all s P r0,8q

´8 ă p̌ ď ps ď p̂ ă 8, 0 ă q̌ ď qs ď q̂ ă 8, 0 ă ǎ ď as ď â ă 8

for constants p̌, p̂, q̌, q̂, ǎ, â P R.

We define the constants Y̌ :“ p̌`
a

p̌2 ` q̌ and Ŷ :“ p̂`
a

p̂2 ` q̂.

Lemma 4.27
Let Assumption 4.26 be fulfilled and t ě 0. Then the integral equation

Ys “ Yt `

ż s

t
´ar

`

Y 2
r ´ 2prYr ´ qr

˘

dr (4.10)

for s P rt,8q with starting value Yt P r0, Ŷ s has a unique solution. Also, the solution pYsqsět is
bounded by

min
 

Yt, Y̌
(

ď Ys ď Ŷ

for all s P rt,8q.

Proof. We define the auxiliary process Ỹ as the solution of the Lipschitz ODE

BtỸs “ ´as

ˆ

´

T Ŷ
0 pỸsq

¯2
´ 2psỸs ´ qs

˙

, Ỹt “ Yt,
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where T is the truncation operator defined in Section 4.1. Observe that for Ỹs P r0, Y̌ q we have
´as

``

T Ŷ
0 pỸsq

˘2
´ 2psỸs ´ qs

˘

ą 0 and for Ỹs P rŶ ,8q that ´as
``

T Ŷ
0 pỸsq

˘2
´ 2psỸs ´ qs

˘

ď 0.
Hence, for Ỹt ă Y̌ we have that Ỹs ě Ỹt for all s P rt,8q, since Y is continuous. By the same
argument we also obtain for Ỹt ě Y̌ that Ỹs cannot reach any value below Y̌ and likewise
because Ỹt ď Ŷ that Ỹs ď Ŷ . Thus, the truncation of the quadratic term has no consequence
and can be omitted without changing the solution. Hence, the bounds are also valid for Y and
the solution of (4.10) is also unique. �

In the following we denote by Y the solution of Equation (4.10).

Remark 4.28
In the proofs of this section we make use of the following hyperbolic identities without explicitely
mentioning it:

• tanh´1pxq “ 1
2 ln

´

1`x
1´x

¯

for x P p´1, 1q,

• coth´1pxq “ 1
2 ln

´

x`1
x´1

¯

for |x| ą 1,

• coshptanh´1pxqq “ p1´ x2q´1{2 for x P p´1, 1q,

• sinhpcoth´1pxqq “ p1´ x2q´1{2 for x ą 1.

Lemma 4.29
Let Assumption 4.26 be fulfilled and t ě 0. Furthermore, assume that Yt P r0, Ŷ s and for some
s P pt,8q that the functions p, q, a are constant on the interval rt, sq, i.e. there are p̄, q̄, ā P R such
that pr “ p̄, qr “ q̄ and ar “ ā for all r P rt, sq. Then

Yr “

$

’

’

’

’

&

’

’

’

’

%

p̄`
a

p̄2 ` q̄ tanh

ˆ

ā
a

p̄2 ` q̄pr ´ tq ` tanh´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

, Yt P
“

0, p̄`
a

p̄2 ` q̄
˘

p̄`
a

p̄2 ` q̄, Yt “ p̄`
a

p̄2 ` q̄

p̄`
a

p̄2 ` q̄ coth

ˆ

ā
a

p̄2 ` q̄pr ´ tq ` coth´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

, Yt P
`

p̄`
a

p̄2 ` q̄,8
˘

(4.11)
for all r P rt, ss. In particular, Y is monotone on the interval rt, ss.

Proof. Observe that the dynamics of Y state that it solves for r P rt, sq the separable ODE

Y 1r “ ´at

´

pYr ´ ptq
2
´ p2

t ´ qt

¯

.

The three cases follow by straightforward calculations. Also, Lemma 4.27 provides uniqueness.
The remaining monotonicity follows from the monotonicity of tanh and coth. �

Lemma 4.30
Let Assumption 4.26 be fulfilled and rt1, t2s Ă r0,8q with t1 ă t2. Furthermore, assume that
Yt1 P r0, Ŷ s and that the functions p, q, a are constant on the interval rt1, t2q, i.e. there are p̄, q̄, ā P R
such that pr “ p̄, qr “ q̄ and ar “ ā for all r P rt1, t2q. Then, for t1 ď t ď s ď t2,

ż s

t
´ar pYr ´ prq dr “

$

&

%

´ā
a

p̄2 ` q̄ps´ tq, Yt “ p̄`
a

p̄2 ` q̄

1
2 ln

´

Y 2
t ´2p̄Yt´q̄
Y 2
s ´2p̄Ys´q̄

¯

, Yt ‰ p̄`
a

p̄2 ` q̄
(4.12)
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and for Yt ‰ p̄`
a

p̄2 ` q̄ we moreover have

s´ t “
1

2ā
a

p̄2 ` q̄
ln

ˆ

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q2

˙

`
1

ā
a

p̄2 ` q̄
ln

˜

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸

.

Proof. Rearranging the formula in (4.11) we obtain for Yt ă p̄`
a

p̄2 ` q̄

s´ t “
1

ā
a

p̄2 ` q̄

˜

tanh´1

˜

Ys ´ p̄
a

p̄2 ` q̄

¸

´ tanh´1

˜

Yt ´ p̄
a

p̄2 ` q̄

¸¸

(4.13)

“
1

2ā
a

p̄2 ` q̄
ln

˜

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ´ pYs ´ p̄q

a

p̄2 ` q̄ ´ pYt ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸

“
1

2ā
a

p̄2 ` q̄
ln

¨

˚

˝

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q2

´

a

p̄2 ` q̄ ` pYs ´ p̄q
¯2

´

a

p̄2 ` q̄ ` pYt ´ p̄q
¯2

˛

‹

‚

“
1

2ā
a

p̄2 ` q̄
ln

ˆ

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q2

˙

`
1

ā
a

p̄2 ` q̄
ln

˜

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸

,

and for Yt ą p̄`
a

p̄2 ` q̄

s´ t “
1

ā
a

p̄2 ` q̄

˜

coth´1

˜

Ys ´ p̄
a

p̄2 ` q̄

¸

´ coth´1

˜

Yt ´ p̄
a

p̄2 ` q̄

¸¸

“
1

2ā
a

p̄2 ` q̄
ln

˜˜

´

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ´ pYs ´ p̄q

¸˜

´

a

p̄2 ` q̄ ´ pYt ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸¸

“
1

2ā
a

p̄2 ` q̄
ln

ˆ

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q2

˙

`
1

ā
a

p̄2 ` q̄
ln

˜

a

p̄2 ` q̄ ` pYs ´ p̄q
a

p̄2 ` q̄ ` pYt ´ p̄q

¸

.

Now we have a look at the integral in (4.12). For Yt ă p̄`
a

p̄2 ` q̄ we get

ż s

t
´ā pYr ´ p̄q dr “

ż s

t
´ā

a

p̄2 ` q̄ tanh

˜

ā
a

p̄2 ` q̄ pr ´ tq ` tanh´1

˜

Yt ´ p̄
a

p̄2 ` q̄

¸¸

dr

“ ´ ln

¨

˚

˚

˝

cosh

ˆ

tanh´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

cosh

ˆ

ā
a

p̄2 ` q̄ ps´ tq ` tanh´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

˛

‹

‹

‚

“ ´ ln

¨

˚

˚

˝

cosh

ˆ

tanh´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

cosh

ˆ

tanh´1

ˆ

Ys´p̄?
p̄2`q̄

˙˙

˛

‹

‹

‚

“
1

2
ln

˜

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q
2

¸

,

where we use Equation (4.13) in the second to last step. In the case of Yt ą p̄ `
a

p̄2 ` q̄ we

67



A decoupling field approach to position control problems

obtain similarly

ż s

t
´ā pYr ´ p̄q dr “

ż s

t
´ā

a

p̄2 ` q̄ coth

˜

ā
a

p̄2 ` q̄ pr ´ tq ` coth´1

˜

Yt ´ p̄
a

p̄2 ` q̄

¸¸

dr

“ ´ ln

¨

˚

˚

˝

sinh

ˆ

coth´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

sinh

ˆ

ā
a

p̄2 ` q̄ ps´ tq ` coth´1

ˆ

Yt´p̄?
p̄2`q̄

˙˙

˛

‹

‹

‚

“
1

2
ln

˜

p̄2 ` q̄ ´ pYt ´ p̄q
2

p̄2 ` q̄ ´ pYs ´ p̄q
2

¸

.

�

Lemma 4.30 gives us the value of the integral in (4.12) when the parameters are constant all
the way. Next, we want to find the value of that integral when the process Y goes up and down
ending at the value where it started, which we later call an excursion.

Lemma 4.31
Let Assumption 4.26 be fulfilled. Furthermore, let rt1, t2s, rt3, t4s Ă r0,8q, Yt1 “ Yt4 P r0, Ŷ s,
Yt2 “ Yt3 P r0, Ŷ s and p, q, a be constant on rt1, t2q and also on rt3, t4q. Then

ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psq ds ď ´min

"

ǎ
a

q̌,
âpY̌ 2 ` q̌q

2Ŷ

*

ppt2 ´ t1q ` pt4 ´ t3qq.

Proof. First we define p1 :“ pt1 , q1 :“ qt1 , a1 :“ at1 and p2 :“ pt3 , q2 :“ qt3 , a2 :“ at3 since p, q
and a are constant on the intervals rt1, t2q, rt3, t4q. Now note that, due to the monotonicity of Y
stated in Lemma 4.29, we have one of the three cases

(i) Yt1 “ Yt2 “ Yt3 “ Yt4 “ p1 `
a

p2
1 ` q1 “ p2 `

a

p2
2 ` q2,

(ii) p1 `
a

p2
1 ` q1 ă Yt1 “ Yt4 ă Yt2 “ Yt3 ă p2 `

a

p2
2 ` q2 or

(iii) p2 `
a

p2
2 ` q2 ă Yt2 “ Yt3 ă Yt1 “ Yt4 ă p1 `

a

p2
1 ` q1.

In Case (i) it is straighforward that

ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psq ds “ ´a1

b

p2
1 ` q1pt2 ´ t1q ´ a2

b

p2
2 ` q2pt4 ´ t3q

ď ´ǎ
a

q̌pt2 ´ t1 ` t4 ´ t3q.
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Now observe for Cases (ii) and (iii) that by Lemma 4.30 and since Yt1 “ Yt4 , Yt2 “ Yt3 we get
ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psq ds

“
1

2
ln

ˆ

Y 2
t1 ´ 2p1Yt1 ´ q1

Y 2
t2
´ 2p1Yt2 ´ q1

˙

`
1

2
ln

ˆ

Y 2
t3 ´ 2p2Yt3 ´ q2

Y 2
t4
´ 2p2Yt4 ´ q2

˙

“

ż Yt2

Yt1

´
x´ p1

x2 ´ 2p1x´ q1
`

x´ p2

x2 ´ 2p2x´ q2
dx

“

ż Yt2

Yt1

1

2x

ˆ

´
x2 ´ 2p1x´ q1

x2 ´ 2p1x´ q1
`
x2 ´ 2p2x´ q2

x2 ´ 2p2x´ q2
´

x2 ` q1

x2 ´ 2p1x´ q1
`

x2 ` q2

x2 ´ 2p2x´ q2

˙

dx

“

ż Yt2

Yt1

1

2x

ˆ

´
x2 ` q1

x2 ´ 2p1x´ q1
`

x2 ` q2

x2 ´ 2p2x´ q2

˙

dx.

Furthermore, note that Case (ii) implies that 0 ă x2 ´ 2p1x ´ q1 and x2 ´ 2p2x ´ q2 ă 0, while
Case (iii) implies 0 ą x2 ´ 2p1x ´ q1 and x2 ´ 2p2x ´ q2 ą 0 for x between Yt1 and Yt2 . Hence
we obtain
ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psq ds “

ż Yt2

Yt1

1

2x

ˆ

´
x2 ` q1

x2 ´ 2p1x´ q1
`

x2 ` q2

x2 ´ 2p2x´ q2

˙

dx

ď ´ |Yt2 ´ Yt1 |
1

2Ŷ

ˆ

Y̌ 2 ` q̌

Ŷ 2 ´ 2p̌Ŷ ´ q̌
`

Y̌ 2 ` q̌

q̂ ` 2p̂Y̌ ´ Y̌ 2

˙

ď ´ |Yt2 ´ Yt1 |
1

Ŷ

Y̌ 2 ` q̌

Ŷ 2 ´ 2p̌Ŷ ´ q̌
(4.14)

in Case (ii) and (iii).
It remains to estimate the term |Yt2 ´ Yt1 | with an expression of time difference. To this end,

remember the second result from Lemma 4.30 which gives

t2 ´ t1 “
1

2a1

a

p2
1 ` q1

˜

ln

ˆ

p2
1 ` q1 ´ pYt1 ´ p1q

2

p2
1 ` q1 ´ pYt2 ´ p1q

2

˙

` 2 ln

˜

a

p2
1 ` q1 ` pYt2 ´ p1q

a

p2
1 ` q1 ` pYt1 ´ p1q

¸¸

“
1

a1

a

p2
1 ` q1

ż Yt2

Yt1

´
x´ p1

p2
1 ` q1 ´ px´ p1q

2
´

1
a

p2
1 ` q1 ´ p1 ` x

dx

“
1

a1

a

p2
1 ` q1

ż Yt2

Yt1

´
x´ p1

p2
1 ` q1 ´ px´ p1q

2
´

a

p2
1 ` q1 ´ px´ p1q

p2
1 ` q1 ´ px´ p1q

2
dx

“
1

a1

ż Yt2

Yt1

1

px´ p1q
2 ´ p2

1 ´ q1
dx

and analogously

t4 ´ t3 “
1

a2

ż Yt4

Yt3

1

px´ p2q
2 ´ p2

2 ´ q2
dx “ ´

1

a2

ż Yt2

Yt1

1

px´ p2q
2 ´ p2

2 ´ q2
dx.

Hence, by simular arguments as above, we get

t2 ´ t1 ` t4 ´ t3 “

ż Yt2

Yt1

1

a1ppx´ p1q
2 ´ p2

1 ´ q1q
´

1

a2ppx´ p2q
2 ´ p2

2 ´ q2q
dx

ě |Yt2 ´ Yt1 |
2

âpŶ 2 ´ 2p̌Ŷ ´ q̌q
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and therefore

|Yt2 ´ Yt1 | ď pt4 ´ t3 ` t2 ´ t1q
âpŶ 2 ´ 2p̌Ŷ ´ q̌q

2
.

Pluging this into Estimate (4.14) we finally obtain in Case piiq and piiiq
ż t2

t1

´aspYs ´ psq ds`

ż t4

t3

´aspYs ´ psq ds

ď ´
1

Ŷ

Y̌ 2 ` q̌

Ŷ 2 ´ 2p̌Ŷ ´ q̌
pt4 ´ t3 ` t2 ´ t1q

âpŶ 2 ´ 2p̌Ŷ ´ q̌q

2

“ ´â
Y̌ 2 ` q̌

2Ŷ

`

t4 ´ t3 ` t2 ´ t1
˘

.

�

Lemma 4.32
Let Assumption 4.26 be fulfilled and assume that on the interval rt0, t1q with 0 ď t0 ă t1 ă 8 the
functions p, q, a are constant and Yt0 P r0, Ŷ s. Then

ż t1

t0

´aspYs ´ psq ds ď ´ǎ

?
q̌

?
2
pt1 ´ t0q `

2Ŷ

q̌
pYt1 ´ Yt0q 1tYt1´Yt0ą0u. (4.15)

Proof. To shorten notation we write p̄, q̄, ā for the constants ps, qs, as with s P rt0, t1q. Also, we

set δ :“
b

q̄
2 . We derive estimates for the integrand of the integral in (4.15) and for the duration

of the ”bad” time, where those estimates do not hold true.
First, note that, since Y is monotone and getting nearer to p̄`

a

p̄2 ` q̄ (see Lemma 4.29), we
get for any s P rt0, t1s with ´pYs ´ p̄q ď ´δ that for all r P rs, t1s we have

i) for Ys ´
´

p̄`
a

p̄2 ` q̄
¯

ă 0

´pYr ´ p̄q “ ´
´

Yr ´ p̄´
a

p̄2 ` q̄
¯

´
a

p̄2 ` q̄ ď 0´
a

p̄2 ` q̄ ď ´

c

q̄

2
,

ii) for Ys ´
´

p̄`
a

p̄2 ` q̄
¯

“ 0

´pYr ´ p̄q “ ´
´

Yr ´ p̄´
a

p̄2 ` q̄
¯

´
a

p̄2 ` q̄ “ 0´
a

p̄2 ` q̄ ď ´

c

q̄

2
,

iii) for Ys ´
´

p̄`
a

p̄2 ` q̄
¯

ą 0

´pYr ´ p̄q ď ´ pYs ´ p̄q ď ´

c

q̄

2

and hence in every case ´pYr ´ p̄q ď ´δ. Thus, we then obtain
ż t1

s
´āpYr ´ p̄q dr ď

ż t1

s
´āδ dr ď ´āδpt1 ´ sq.

Now we have a closer look at the case where ´pYt0 ´ p̄q ą ´δ. For this, remember the
dynamics of Y which are

Ys “ Yt `

ż s

t
´ā

`

pYr ´ p̄q
2 ´ p̄2 ´ q̄

˘

dr
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for s, t P rt0, t1s. There are two cases we have to consider. Firstly, ´δ ă ´pYs ´ p̄q ă δ, which
implies

´ā
´

pYs ´ p̄q
2
´ p̄2 ´ q̄

¯

ą ´ā

¨

˝

˜

c

q̄

2

¸2

´ p̄2 ´ q̄

˛

‚“ ā

ˆ

p̄2 `
1

2
q̄

˙

ě
āq̄

2
.

And secondly the case of ´pYs ´ p̄q ě δ. Note that then |Ys ´ p̄| “ ´Ys ` p̄ ď p̄ since Y ě 0 by
Lemma 4.27. This gives us

´ā
´

pYs ´ p̄q
2
´ p̄2 ´ q̄

¯

ě ´ā
´

p´p̄q2 ´ p̄2 ´ q̄
¯

“ āq̄.

Hence, for all s P rt0, t1s with ´pYs ´ pq ě δ we have Y 1s ě
āq̄
2 ą 0. Let

τ :“ inftt P rt0, t1s| ´ pYt ´ p̄q ď ´δu ^ t1

be the first time in rt0, t1s, where ´pY¨ ´ pq ď ´δ or t1 if there is no such time. Then we obtain

Yτ ´ Yt0 “

ż τ

t0

Y 1t dt ě

ż τ

t0

āq̄

2
dt “

āq̄

2
pτ ´ t0q

and thus

τ ´ t0 ď
2

āq̄
pYτ ´ Yt0q “

2

āq̄
pYτ ´ Yt0q 1tYt1´Yt0ą0u ď

2

āq̄
pYt1 ´ Yt0q 1tYt1´Yt0ą0u, (4.16)

where we use that if Yt1 ´Yt0 ď 0 we know that Yt0 ě p̄`
a

p̄2 ` q̄ ą p̄` δ and therefore τ “ t0.
Hence, we have the following estimates.

• For the times where ´āpY ´ p̄q ď ´āδ we directly estimate the integrand of the left hand
side of (4.15) by ´āδ.

• For the times where ´āpY ´ p̄q ą ´āδ we can estimate the integrand of the left hand side
of (4.15) by ´āpYt0 ´ p̄q and the length of this time interval by Estimate (4.16).

To sum up, using that 0 ď p̂`
a

p̂2 ` q̂ ě p̄`
b

q̄
2 ´ Yt0 , we derive

ż t1

t0

´āpYr ´ p̄q dr ď ´āδpt1 ´ τq ´ āpYt0 ´ p̄qpτ ´ t0q

“ ´āδpt1 ´ t0q ` pāδ ´ āpYt0 ´ p̄qq pτ ´ t0q

ď ´ǎ

?
q̌

?
2
pt1 ´ t0q `

2

q̌

´

p̂`
a

p̂2 ` q̂
¯

pYt1 ´ Yt0q 1tYt1´Yt0ą0u.

�

Proposition 4.33
Let Assumption 4.26 be fulfilled, 0 ď t0 ď t1 ă 8 and Yt0 P r0, Ŷ s. Then there exist constants
δ1, δ2 ą 0 independent of t0 and t1 such that

ż t1

t0

´aspYs ´ psq ds ď ´δ1pt1 ´ t0q ` δ2.
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Proof. First, we have a look at functions that are piecewise constant to p, q, a. We split the path
of Y into many excursions (as described in Lemma 4.31) and left over time intervals which can
not be put together to excursions. Those left over time intervals have to be such that either Y is
monotone decreasing or Y is monotone increasing on all of them. Since 0 ď Y ď Ŷ (see Lemma
4.27) we get from Lemma 4.32 that the contributions of the left over monotone intervals in the
estimate are bounded by 2 Ŷq̌ Ŷ “: δ2. Now we set

δ1 :“ min

ˆ

â
Y̌ 2 ` q̌

2Ŷ
,
ǎ
?
q̌

?
2

˙

,

which is the minimum of the factors that get multiplied with the time increments, given in
Lemma 4.31 and Lemma 4.32. Hence, the result holds for all piecewise constant functions
p, q, a uniformly.

Since Y depends continuously on a, p and q, for every ε1 ą 0 we can choose piecewise constant
approximations ã, p̃, q̃ fulfilling Assumption 4.26 for the same bounds as a, p, q and generating a
Ỹ such that max

`

}a´ ã}8,rt0,t1s, }p´ p̃}8,rt0,t1s, }q´ q̃}8,rt0,t1s}Y ´ Ỹ }8,rt0,t1s
˘

ă ε1. Now observe
that

ˇ

ˇ

ˇ

ˇ

ż t1

t0

´aspYs ´ psq ds´

ż t1

t0

´ãspỸs ´ p̃sq ds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż t1

t0

´pas ´ ãsqpỸs ´ p̃sq ´ aspYs ´ Ỹs ´ pps ´ p̃sqq ds

ˇ

ˇ

ˇ

ˇ

ď }a´ ã}8

ˇ

ˇ

ˇ

ˇ

ż t1

t0

Ỹs ´ p̃s ds

ˇ

ˇ

ˇ

ˇ

` p}Y ´ Ỹ }8 ` }p´ p̃}8q

ż t1

t0

as ds

ď }a´ ã}8T pŶ `maxt|p̂|, |p̌|uq ` p}Y ´ Ỹ }8 ` }p´ p̃}8qT â.

Hence, we can choose for every ε2 ą 0 our ε1 as ε1 “
ε2
3T

1
Ŷ`maxt|p̂|,|p̌|u`â

and obtain

ˇ

ˇ

ˇ

ˇ

ż t1

t0

´aspYs ´ psq ds´

ż t1

t0

´ãspỸs ´ p̃sq ds

ˇ

ˇ

ˇ

ˇ

ď ε1T pŶ `maxt|p̂|, |p̌|uq ` 2ε1T â ă ε2.

Thus, the result for piecewise constant functions holds also true for all allowed functions a, p
and q. �

Theorem 4.34
Let Assumption 4.26 be fulfilled. Denote with Y t,x the solution of the ODE

Y t,x
s “ x`

ż s

t
´ar

´

`

Y t,x
r

˘2
´ 2prY

t,x
r ´ qr

¯

dr

for 0 ď t ď s ă 8. Then there are constants K1,K2 ą 0 such that for all x1, x2 P r0, Ŷ s we have
that

ˇ

ˇY t,x1
s ´ Y t,x2

s

ˇ

ˇ ď |x1 ´ x2|K1e
´K2ps´tq

for all 0 ď t ď s ă 8.

Proof. First, note that for x0 P R the dynamics of Y t,x0 are the same as of Y above. Furthermore,
by introducing the function hpr, xq :“ ´ar

`

x2 ´ 2prx´ qr
˘

for pr, xq P r0,8q ˆ R and using
differentiation in its weak sense, we can write the dynamics as

BsY
t,x0
s “ hps, Y t,x0

s q, Y t,x0
t “ x0.
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By standard theory (see e.g. Theorem 1 in Chapter 2.5 of [Per91]) it is known that Y t,x0 is also
differentiable with respect to its initial value x0 and that Bx0Y

t,x0
s solves the differential equation

y1psq “ Bxhps, Y
t,x0
s qypsq, yt “ 1,

which has the solution

Bx0Y
t,x0
s “ ypsq “ exp

ˆ
ż s

t
Bxhpr, Y

t,x0
s q dr

˙

“ exp

ˆ
ż s

t
´2ar

`

Y t,x0
r ´ pr

˘

dr

˙

.

Therefore,

Bx0Y
t,x0
s ď exp p´2δ1ps´ tq ` 2δ2q

for some constants δ1, δ2 ą 0 by Proposition 4.33. Hence,

ˇ

ˇY t,x1
s ´ Y t,x2

s

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż x1

x2

BxY
t,x
s dx

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż x1

x2

exp p´2δ1ps´ tq ` 2δ2q dx

ˇ

ˇ

ˇ

ˇ

“ |x1 ´ x2| exp p´2δ1ps´ tq ` 2δ2q .

Thus, defining K1 :“ e2δ2 and K2 :“ 2δ1 we obtain the claimed result. �

Remark 4.35
It should be possible to generalize the results of Proposition 4.33 and Theorem 4.34 to the much
more general setting, where the derivative of Y is a strictly concave function having a strictly
negative and a strictly positive zero. Also the starting value of Y can be generalized to be greater
than any negative zero. However, a proof for this claim, using abstract arguments instead of the
tedious calculations as presented here, is left for future reasearch.

4.4 Ergodic linear-quadratic control problems

In this section we consider the ergodic linear-quadratic case. This means that we are interested
in

inf
αPA

lim sup
TÑ8

1

T
JpT, x, αq, (4.17)

which we call the optimal ergodic cost, where x P R is the starting value of the controlled
process. It is appearent that for this aim we need to have µ, σ, f and the space of admissable
controls to be defined on the whole positive timeline r0,8q and not just on r0, T s for some finite
T ą 0 as before. More specifically we define

A :“

"

α : Ωˆ r0,8q Ñ R

ˇ

ˇ

ˇ
E

ż T

0
α2
s ds ă 8 for all T ą 0

*

and make the following assumption.
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Assumption 4.36
Let µ, σ : r0,8q ˆRÑ R and f : r0,8q ˆRˆRÑ R be of the form

µpt, xq “ bt `Btx, σpt, xq “ ct ` Ctx,

fpt, x, aq “ βxxptqx
2 ` βxptqx` βxaptqax` βaaptqa

2 ` βaptqa` β0ptq

for b, B, c, C, βxx, βx, βxa, βaa, βa, β0 : r0,8q Ñ R being deterministic, right-continuous, bounded
processes, such that

• detpHpfqqpt, ¨, ¨q “ 4βaaptqβxxptq´β
2
axptq ě ε1 ą 0 for t P r0,8q and some constant ε1 ą 0,

• βaaptq ě ε2 ą 0 for t P r0,8q and some constant ε2 ą 0,

• lim suptÑ8
1
t

şt
0 |β0psq| ds ă 8.

Also let g ” 0.

Note that on a finite horizon r0, T s, T ą 0, Assumption 4.36 is a special case of Assump-
tion 4.17. Hence, we can use the results from Section 4.2. Moreover, we restrict ourselves
to deterministic parameter functions in order to be able to apply the results from Section 4.3.
Choosing g ” 0 is just a matter of convenience, which does not effect the results of the ergodic
case.

Lemma 4.37
Let σ, µ, f and g fulfill Assumption 4.36. Then, for the time horizon T ą 0, the gradient process
UT of FBSDE (4.8) is indistinguishable from the deterministic function that fulfills the Riccati-type
integral equation

UTt “

ż T

t

«

´

`

UTr
˘2

2βaaprq
` UTr

ˆ

C2
r ` 2Br `

βxaprq

βaaprq

˙

` 2βxxprq ´
β2
xaprq

2βaaprq

ff

dr,

for t P r0, T s.

Proof. Note that g ” 0. Corollary 4.19 gives that FBSDE (4.8) has a solution on the whole time
interval r0, T s and that the gradient process UT solves the BSDE

UTt “

ż T

t

«

´

`

UTr
˘2

2βaaprq
` UTr

ˆ

C2
r ` 2Br `

βxaprq

βaaprq

˙

` 2βxxprq ´
β2
xaprq

2βaaprq
` 2CrZ

U
r

ff

dr

´

ż T

s
ZUr dWr.

Since the drift and final condition are completely deterministic except for the ZU , we get by
standard BSDE theory that ZU ” 0 and hence, UT is deterministic as well. Thus, we obtain that
UT solves the Riccati-type integral equation

UTt “

ż T

t

«

´

`

UTr
˘2

2βaaprq
` UTr

ˆ

C2
r ` 2Br `

βxaprq

βaaprq

˙

` 2βxxprq ´
β2
xaprq

2βaaprq

ff

dr.

�
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Lemma 4.38
Let p, q : r0,8q Ñ R be measurable and bounded. The integral equation

hptq “ hp0q `

ż t

0
rppsq ¨ hpsq ` qpsqs ds,

for hp0q P R and t ě 0, has the unique, explicit solution

hptq “ e
şt
0 ppsq ds

ˆ

hp0q `

ż t

0
qpsqe´

şs
0 pprq dr ds

˙

“ hp0qe
şt
0 ppsq ds `

ż t

0
qpsqe

şt
s pprq dr ds.

Proof. That h solves the integral equation is straightforward by weak differentiation. The
uniqueness follows since the integral equation is linear in h with bounded coefficents, which
makes it a Lipschitz ODE. �

Proposition 4.39
Let σ, µ, f and g fulfill Assumption 4.36 and T ą 0. Then, the decoupling field u of FBSDE (4.8) is
equal to

upt, xq “ ϕTt ` U
T
t ¨ x,

where UT is the deterministic gradient process given in Lemma 4.37 and ϕT is indistinguishable
from the deterministic process

ϕTt :“

ż T

t

„

UTs pbs ` csCsq ` βapsq
UTs ´ βxapsq

2βaapsq
` βxpsq



exp

ˆ
ż s

t
Br `

βxaprq ´ U
T
r

2βaaprq
dr

˙

ds,

which solves the integral equation

ϕTt “

ż T

t

„

ϕTs

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

` UTs pbs ` csCsq ` βapsq
UTs ´ βxapsq

2βaapsq
` βxpsq



ds.

Proof. Proposition 4.21 gives that ϕT solves the BSDE

ϕTt “

ż T

t

„

ϕTs

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

` CscsU
T
s ` bsU

T
s ` βxpsq ` βapsq

UTs ´ βxapsq

2βaapsq



ds

`

ż T

t
CsZ

ϕ
s ` csZ

U
s ds´

ż T

t
Zϕs dWs.

Lemma 4.37 gives that ZU ” 0. Since therefore Zϕ is the only stochastic component, we get by
standard BSDE theory that ϕT is the unique solution of the deterministic linear integral equation

ϕTt “

ż T

t

„

ϕTs

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

` UTs pbs ` csCsq ` βapsq
UTs ´ βxapsq

2βaapsq
` βxpsq



ds.

Solving this linear integral equation (see Lemma 4.38) yields

ϕTt “

ż T

t

„

UTs pbs ` csCsq ` βapsq
UTs ´ βxapsq

2βaapsq
` βxpsq



exp

ˆ
ż s

t
Br `

βxaprq ´ U
T
r

2βaaprq
dr

˙

ds.

�
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Corollary 4.40
Let Assumption 4.36 be fulfilled and T ą 0. Then, for the gradient process UT and Z of FBSDE (4.8)
we have for every t P r0, T s

Zt “ UTt σpt,Xtq a.s.

Proof. By Proposition 4.39 and Proposition 4.21 we know that

0 “ Zϕt “ Zt ´X
α
t Z

U
t ´ σ pt,X

α
t qU

T
t

for all t P r0, T s. On the other hand, Lemma 4.37 gives ZU ” 0. Hence, Zt “ UTt σpt,Xtq a.s. for
all t P r0, T s. �

Corollary 4.41
Let σ, µ, f and g fulfill Assumption 4.36 and T ą 0. Then, for t P r0, T s the optimal control is

αTt “
ϕTt ´ βaptq ` pU

T
t ´ βxaptqqXt

2βaaptq
“ αTt pXtq,

which is a feedback control with the function αT : r0, T s ˆRÑ R

αTt pxq :“
ϕTt ´ βaptq ` pU

T
t ´ βxaptqqx

2βaaptq
.

Proof. Since Assumption 4.36 is a special case of Assumption 4.17, this is just a special case of
Corollary 4.22. �

Since it is more convenient, we make use of the feedback notation in the following.

Proposition 4.42
Let Assumption 4.36 be fulfilled and UT be the gradient process with time horizon T ą 0. Then the
following holds true.

(i) UT is bounded independently of T by 0 ď UT ď Û :“ P `
a

P 2 `Q, where

P :“ sup
sPr0,8q

`

2Bsβaapsq ` βxapsq ` C
2
sβaapsq

˘

and Q :“ sup
sPr0,8q

`

4βxxpsqβaapsq ´ β
2
xapsq

˘

.

(ii) UT converges pointwise for T Ñ8 to a process U8, with the same bounds, which fulfills

U8t “ U8T `

ż T

t
´

˜

pU8r q
2

2βaaprq
´ U8r

ˆ

2Br `
βxaprq

βaaprq
` C2

r

˙

` 2βxxprq ´
β2
xaprq

2βaaprq

¸

dr

for all 0 ď t ď T ă 8. Furthermore, there are constants K1,K2 ą 0 such that

ˇ

ˇU8t ´ U
T
t

ˇ

ˇ ď K1e
´K2pT´tq

for all 0 ď t ď T ă 8.
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(iii) There are constants δ1, δ2 ą 0 such that
ż t

s

ˆ

Br `
βxaprq ´ U

T
r

2βaaprq

˙

dr ď

ż t

s

ˆ

Br `
βxaprq ´ U

T
r

2βaaprq
`
C2
r

2

˙

dr ď ´δ1pt´ sq ` δ2

and
ż t

s

ˆ

Br `
βxaprq ´ U

8
r

2βaaprq

˙

dr ď

ż t

s

ˆ

Br `
βxaprq ´ U

8
r

2βaaprq
`
C2
r

2

˙

dr ď ´δ1pt´ sq ` δ2

for all 0 ď s ď t ď T ă 8,

Proof. First, we define for s P r0, T s

p̃s :“ 2Bsβaapsq ` βxapsq ` C
2
sβaapsq, q̃s :“ 4βxxpsqβaapsq ´ β

2
xapsq, ãs :“

1

2βaapsq
.

Furthermore, pTs :“ p̃T´s, qTs :“ q̃T´s and aTs :“ ãT´s. Observe that the dynamics of UT , as
given in Lemma 4.37, can be written as

UTt “

ż T

t
´ãr

´

`

UTr
˘2
´ 2p̃rU

T
r ´ q̃r

¯

dr.

Now we define for 0 ď s ď t ď T and x P r0, Û s the process Y T,s,x as the solution of the ODE

y1ptq “ ´aTt
`

pyptqq2 ´ 2pTt yptq ´ q
T
t

˘

, ypsq “ x,

which exists and is unique by Lemma 4.27 and Assumption 4.36. Note that due to the construc-
tion of Y we have for 0 ď r ď t ď T that

Y T,0,0
t “ Y T,r,Y T,0,0r

t “ Y T´r,0,Y T,0,0r
t´r

and hence for 0 ď t ď T ď τ also

Y τ,0,0
τ´t “ Y

τ,τ´T,Y τ,0,0τ´T

τ´t “ Y
T,0,Y τ,0,0τ´T

T´t . (4.18)

Furthermore, a straightforward calculation yields that pY T,0,0
t qtPr0,T s has exactly the same dy-

namics as pUTT´tqtPr0,T s and hence, by uniqueness, they are equal. Thus, we can apply all results
from Section 4.3. Using this, Lemma 4.27 yields that UT is bounded independently of T by

0 ď UT ď Û “ sup
sPr0,T s

p̃s `

d

`

sup
sPr0,T s

p̃s
˘2
` sup
sPr0,T s

q̃s.

Also, for any 0 ď t0 ď t1 ď T we obtain
ż t1

t0

´ãr
`

UTr ´ p̃r
˘

dr “

ż t1

t0

´aTT´r

´

Y T,0,0
T´r ´ p

T
T´r

¯

dr “

ż T´t0

T´t1

´aTr
`

Y T,0,0
r ´ pTr

˘

dr

ď ´δ1pt1 ´ t0q ` δ2

by applying Proposition 4.33. Replacing ã and p̃ by their long forms gives the right hand estimate
in piiiq and noting that C2

2 ě 0 the left hand one.

Next, observe that due to Equation (4.18) U τt “ Y τ,0,0
τ´t “ Y

T,0,UτT
T´t for all 0 ď t ď T ď τ and

hence, by Theorem 4.34,there are constants K1,K2 ą 0 such that
ˇ

ˇU τt ´ U
T
t

ˇ

ˇ “

ˇ

ˇ

ˇ
Y
T,0,UτT
T´t ´ Y T,0,0

T´t

ˇ

ˇ

ˇ
ď |U τT ´ 0|K1e

´K2pT´tq ď ÛK1e
´K2pT´tq.

Thus, for all s ě 0 the sequence
`

UTs
˘

Těs
is a Cauchy sequence, which implies that UT converges

pointwise exponentially fast to a function that we call U8. Because U is bounded independently
of the time horizon we get that U8 is bounded by the same constants.
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Next, we want to show that U8 fulfills the claimed dynamics, which can be rewritten as

U8t “ U8T `

ż T

t
´ãr

´

pU8r q
2
´ 2p̃rU

8
r ´ q̃r

¯

dr

for all 0 ď t ď T ă 8. To this end, define rUT,8 as the solution of

yptq “ U8T `

ż T

t
´ãr

´

pyptqq2 ´ 2p̃ryptq ´ q̃r

¯

dr.

Since the solutions of ODEs depend continuously on their starting value (see e.g. Theorem 1 in
Chapter 2.5 of [Per91]) we can, using Equation (4.18), for all 0 ď t ď T ă 8 derive

U8t “ lim
τÑ8

U τt “ lim
τÑ8

Y τ,0,0
τ´t “ lim

τąT,τÑ8
Y
T,0,UτT
T´t “ Y

T,0,U8T
T´t “ rUT,8t ,

which proves this result. Since therefore U8t “ Y
T,0,U8T
T´t for all 0 ď t ď T , we can furthermore

estimate with Proposition 4.33

ż t1

t0

´ãr pU
8
r ´ p̃rq dr “

ż T´t0

T´t1

´aTr

´

Y
T,0,U8T
r ´ pTr

¯

dr ď ´δ1pt1 ´ t0q ` δ2.

�

Remark 4.43

(i) It might seem a little strange that we describe the dynamics of U8 via a backward equation
although there is no real final value. On the other hand, the value of U80 is unknown and
a small error would increase over time, due to the dynamics. Furthermore, the backward
notation is similar to the notation of UT and in a computation the influence of an error in
the final value would decrease over time (see Theorem 4.34).

(ii) In the proof of Proposition 4.42 it becomes clear why we choose the parameter functions
to be deterministic in contrast to Section 4.2, where they are stochastic. In order to obtain
the convergence of UT to U8 we need to apply the results from Section 4.3, which are
only available for deterministic parameter functions.

(iii) After extending our parameter functions to negative time e.g. by mirroring them, we can
view

`

Y
T,0,U8T
t

˘

from the proof of Proposition 4.42 as a single point pullback attractor as
in Definition 2.3 from [Sch00]. Since the theory for pullback attractors also extends to
random processes (see e.g. [Sch99]), we hope that this theory will enable future research
to overcome the restrictions described in Point (ii).

Although Proposition 4.42 states that the gradient process UT converges to a process U8

and gives estimates we use later on, we are not able to give explicit solutions due to the time
inhomogenous parameters. In the following corollary we have a look at the time homogenous
case, where the formulas become explicit.
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Corollary 4.44
Let Assumption 4.36 be fulfilled and additionally all parameter functions be constant. Then, for
this time-homogeneous problem, the gradient process UT is explicitly given for all every T ą 0 and
t P r0, T s by

UTt “ p`
a

p2 ` q tanh

˜

a
a

p2 ` qpT ´ tq ` tanh´1

˜

´
p

a

p2 ` q

¸¸

,

where p :“ 2B0βaap0q`βxap0q`C
2
0βaap0q, q :“ 4βxxp0qβaap0q´β

2
xap0q, a :“ 1

2βaap0q
. Furthermore,

U8t “ p`
a

p2 ` q

for all t P r0,8q, which means that it is constant.

Proof. The first statement can be verified by using the construction of Y in the proof of Propos-
ition 4.42 together with Lemma 4.29. The second statement follows directly by considering the
limit limTÑ8 U

T
t . �

The next lemma shows that not just UT but also ϕT converges, which means that the decoup-
ling field and the optimal feedback control converge.

Lemma 4.45
Let Assumption 4.36 be fulfilled. Then ϕT is bounded by some constant ϕ̂ ą 0, independently of
T ą 0, and converges for T Ñ8 pointwise to the bounded function ϕ8 which is defined by

ϕ8t :“

ż 8

t

„

U8s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



¨ exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙

ds.

Moreover, ϕ8 solves for all 0 ď t ď T ă 8 the integral equation

ϕ8t “ϕ
8
T ´

ż T

t

„

ϕ8s

ˆ

Bs `
βxapsq ´ U

8
s

2βaapsq

˙

`U8s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



ds.

Also, there are constants k1, k2 ą 0 such that
ˇ

ˇϕ8t ´ ϕ
T
t

ˇ

ˇ ď k1e
´k2pT´tq,

which further yields
ż T

0

ˇ

ˇϕ8t ´ ϕ
T
t

ˇ

ˇ dt ď
k1

k2

for all 0 ď t ď T ă 8.

Proof. Proposition 4.39 gives us ϕT as

ϕTt “

ż T

t

„

UTs

ˆ

bs` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



exp

ˆ
ż s

t
Br `

βxaprq ´U
T
r

2βaaprq
dr

˙

ds.
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By Proposition 4.42 there are δ1, δ2 ą 0 such that for all s ě t ě 0

exp

ˆ
ż s

t
Br `

βxaprq ´ U
T
r

2βaaprq
dr

˙

ď exp
`

´ δ1ps´ tq ` δ2

˘

.

Since furthermore UT is bounded by Proposition 4.42 and the processes

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

sPr0,8q

,

ˆ

´
βapsqβxapsq

2βaapsq
` βxpsq

˙

sPr0,8q

are bounded by Assumption 4.36, we get that ϕT is bounded independently of T .
Also by Proposition 4.42 we obtain

ż 8

t

ˇ

ˇ

ˇ

ˇ

„

U8s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙ˇ

ˇ

ˇ

ˇ

ds

ď sup
sPr0,8q

„

Û

ˇ

ˇ

ˇ

ˇ

bs ` csCs `
βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

´
βapsqβxapsq

2βaapsq
` βxpsq

ˇ

ˇ

ˇ

ˇ


ż 8

t
e´δ1ps´tq`δ2 ds

“ sup
sPr0,8q

„

Û

ˇ

ˇ

ˇ

ˇ

bs ` csCs `
βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

´
βapsqβxapsq

2βaapsq
` βxpsq

ˇ

ˇ

ˇ

ˇ



eδ2

δ1

ă 8,

which means that ϕ8 is well defined and bounded. Furthermore, we get for T ě t ě 0

ˇ

ˇϕ8t ´ ϕ
T
t

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż T

t

„

U8s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



„

exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙

´ exp

ˆ
ż s

t
Br `

βxaprq ´ U
T
r

2βaaprq
dr

˙

ds

`

ż T

t

`

U8s ´ U
T
s

˘

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

e
şs
t Br`

βxaprq´U
T
r

2βaaprq
dr

ds

`

ż 8

T

„

U8s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



e
şs
t Br`

βxaprq´U
8
r

2βaaprq
dr

ds

ˇ

ˇ

ˇ

ˇ

ď

«

Û sup
sPr0,8q

ˇ

ˇ

ˇ

ˇ

bs ` csCs `
βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

` sup
sPr0,8q

ˇ

ˇ

ˇ

ˇ

´
βapsqβxapsq

2βaapsq
` βxpsq

ˇ

ˇ

ˇ

ˇ

ff

ż T

t

ˇ

ˇ

ˇ

ˇ

exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙

´ exp

ˆ
ż s

t
Br `

βxaprq ´ U
T
r

2βaaprq
dr

˙ˇ

ˇ

ˇ

ˇ

ds

` sup
sPr0,8q

ˇ

ˇ

ˇ

ˇ

bs ` csCs `
βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

ż T

t
K1e

´K2pT´sqe´δ1ps´tq`δ2 ds

`

«

Û sup
sPr0,8q

ˇ

ˇ

ˇ

ˇ

bs ` csCs `
βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

` sup
sPr0,8q

ˇ

ˇ

ˇ

ˇ

βapsqβxapsq

2βaapsq
´ βxpsq

ˇ

ˇ

ˇ

ˇ

ff

ż 8

T
e´δ1ps´tq`δ2 ds

by Proposition 4.42 with some constants δ1, δ2,K1,K2 ą 0. Next we estimate the three integrals
on the right hand side separately. In order to estimate the first summand, we obtain by again
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using Proposition 4.42

ż T

t

ˇ

ˇ

ˇ

ˇ

exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙

´ exp

ˆ
ż s

t
Br `

βxaprq ´ U
T
r

2βaaprq
dr

˙ˇ

ˇ

ˇ

ˇ

ds

ď

ż T`t
2

t
exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙
ˇ

ˇ

ˇ

ˇ

1´ exp

ˆ
ż s

t

|UTr ´ U
8
r |

2βaaprq
dr

˙
ˇ

ˇ

ˇ

ˇ

ds

`

ż T

T`t
2

exp

ˆ
ż s

t
Br `

βxaprq ´ U
8
r

2βaaprq
dr

˙

` exp

ˆ
ż s

t
Br `

βxaprq ´ U
T
r

2βaaprq
dr

˙

ds

ď

ż T`t
2

t
e´δ1ps´tq`δ2

ˆ

exp

ˆ

1

2β̌aa

ż s

t
K1e

´K2pT´rq dr

˙

´ 1

˙

ds`

ż T

T`t
2

2e´δ1ps´tq`δ2 ds

ď

ż T`t
2

t
e´δ1ps´tq`δ2

ˆ

exp

ˆ

K1

2β̌aa
e´K2pT´T`t

2 qps´ tq

˙

´ 1

˙

ds`

ż T

T`t
2

2e´δ1ps´tq`δ2 ds

“ eδ2

K1

2β̌aa
e´K2

T´t
2

”

1´ e´δ1
T´t

2

ı

` δ1e
´δ1

T´t
2

„

1´ e
K1

2β̌aa
e´K2

T´t
2 T´t

2



δ1pδ1 ´
K1

2β̌aa
e´K2

T´t
2 q

`
2eδ2

δ1

”

e´δ1
T´t

2 ´ e´δ1pT´tq
ı

ď
eδ2e´

mintδ1,K2u
2

pT´tq

δ1pδ1 ´
K1

2β̌aa
e´

K2
2
pT´tqq

„

K1

2β̌aa

´

1´ e´
δ1
2
pT´tq

¯

` δ1

ˆ

1´ exp

ˆ

K1

4β̌aa
pT ´ tqe´

K2
2
pT´tq

˙˙

.

For the second summand we get

ż T

t
K1e

´K2pT´sqe´δ1ps´tq`δ2 ds ď

ż T

t
K1e

δ2e´mintK2,δ1upT´s`s´tq ds

“ K1e
δ2pT ´ tqe´mintK2,δ1upT´tq

and for the third one
ż 8

T
e´δ1ps´tq`δ2 ds “

eδ2

δ1
e´δ1pT´tq.

Remember that pT ´ tqe´kpT´tq goes to 0 for T Ñ 8 and is furthermore bounded for all k ą 0.
Thus, by putting the three integrals back together, we can find constants k1, k2 ą 0 depending
only on the bounds in Assumption 4.36 such that

ˇ

ˇϕ8t ´ ϕ
T
t

ˇ

ˇ ď k1e
´k2pT´tq,

which means that ϕT converges to ϕ8 exponentially fast.
Now we take a look at

şT
0

ˇ

ˇϕ8t ´ ϕ
T
t

ˇ

ˇ dt. Integrating the above estimate yields

ż T

0

ˇ

ˇϕ8t ´ ϕ
T
t

ˇ

ˇ dt ď
k1

k2

´

1´ e´k2T
¯

ď
k1

k2

independently of T .
Finally, we turn to proving the integral equation. Note that Proposition 4.39 states the

ϕT solves a similar integral equation. Using this and dominated convergence, we obtain for
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0 ď t ď T ă 8

ϕ8t “ lim
T̂Ñ8
TďT̂

«

ϕT̂T `

ż T

t

˜

ϕT̂s

˜

Bs `
βxapsq ´ U

T̂
s

2βaapsq

¸

`U T̂s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq

˙

ds



“ ϕ8T `

ż T

t

«

lim
T̂Ñ8
TďT̂

ϕT̂s

˜

Bs ` lim
T̂Ñ8
TďT̂

βxapsq ´ U
T̂
s

2βaapsq

¸

` lim
T̂Ñ8
TďT̂

U T̂s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq

ff

ds

“ ϕ8T `

ż T

t

„

ϕ8s

ˆ

Bs `
βxapsq ´ U

8
s

2βaapsq

˙

`U8s

ˆ

bs ` csCs `
βapsq

2βaapsq

˙

´
βapsqβxapsq

2βaapsq
` βxpsq



ds.

�

Corollary 4.46
Let Assumption 4.36 be fulfilled and additionally all parameter functions be constant. Then, using
the definition of p, q, a from Corollary 4.44, for all t ě 0

ϕ8t “

´

p`
a

p2 ` q
¯

pb0 ` c0C0 ` aβap0qq ´ aβap0qβxap0q ` βxp0q

a
a

p2 ` q `
C2

0
2

,

which in particular means that ϕ8 is constant.

Proof. Using the definition of ϕ8 in Lemma 4.45 and the result from Corollary 4.44 we obtain

ϕ8t “

ż 8

t

”´

p`
a

p2 ` q
¯

`

b0 ` c0C0 ` aβap0q
˘

´ aβap0qβxap0q ` βxp0q
ı

e

şs
t

ˆ

´a
?
p2`q´

C2
0

2

˙

dr
ds

“

»

–

´

p`
a

p2 ` q
¯

`

b0 ` c0C0 ` aβap0q
˘

´ aβap0qβxap0q ` βxp0q

´a
a

p2 ` q ´
C2

0
2

exp

ˆ

ps´ tq

ˆ

´a
a

p2 ` q ´
C2

0

2

˙˙8

s“t

“

´

p`
a

p2 ` q
¯

`

b0 ` c0C0 ` aβap0q
˘

´ aβap0qβxap0q ` βxp0q

a
a

p2 ` q `
C2

0
2

.

�

Corollary 4.47
Let Assumption 4.36 be fulfilled. Then the optimal feedback controls αT converge for T Ñ 8

pointwise to the feedback control

α8t pxq “
ϕ8t ´ βaptq ` pU

8
t ´ βxaptqqx

2βaaptq
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Proof. Since ϕT and UT converge for T Ñ 8 and all other components do not depend on T ,
this is straightforward. �

We have to distinguish between the process controlled by the control αT , which is optimal
for horizon T , and the ones controlled by the ergodic control α8. Therefore, recall the notation
from the beginning of Section 4.1: ByXα we denote the state process controlled by the feedback
control α. This means that Xα solves the SDE

Xα
t “ x0 `

ż t

0
pµps,Xα

s q ´ αspX
α
s qq ds`

ż t

0
σps,Xα

s q dWs.

In order to show that α8 solves the ergodic control problem (4.17), we have do derive some
estimates for the first moments of the controlled process.

Remark 4.48
Since XαT and Xα8 both have Lipschitz continuous dynamics, we know by standard theory (see
e.g. [Kun97]) that E

“

|XαT
¨ |2m

‰

and E
“

|Xα8
¨ |2m

‰

for all m P N are finite and integrable. This
in particular implies that terms like

ş¨

0

`

XαT
s

˘2
dWs or

ş¨

0

`

Xα8
s

˘2
dWs are true martingales and

hence have an expectation of 0. We use this fact in the following lemmas without mentoning it.

Lemma 4.49
Let Assumption 4.36 be fulfilled. Then

E
”

XαT

t

ı

“ x0e
şt
0 Bs`

βxapsq´U
T
s

2βaapsq
ds
`

ż t

0

ˆ

bs `
´ϕTs ` βapsq

2βaapsq

˙

e
şt
sBr`

βxaprq´U
T
r

2βaaprq
dr

ds,

E

„

´

XαT

t

¯2


“ x2
0e

şt
0 Bs`

βxapsq´U
T
s

2βaapsq
`
C2
s

2
ds

`

ż t

0

„

c2
s ` 2E

”

XαT

s

ı

ˆ

bs `
´ϕTs ` βapsq

2βaapsq
` 2csCs

˙

e
şt
sBr`

βxaprq´U
T
r

2βaaprq
`
C2
s

2
dr

ds

“ x2
0e

şt
0 Bs`

βxapsq´U
T
s

2βaapsq
`
C2
s

2
ds
`

ż t

0
c2
se

şt
sBr`

βxaprq´U
T
r

2βaaprq
`
C2
s

2
dr

ds

`

ż t

0
2

„

x0e
şs
0 Bs`

βxaprq´U
T
r

2βaaprq
dr
`

ż s

0

ˆ

br `
´ϕTr ` βaprq

2βaaprq

˙

e
şs
r Bv`

βxapvq´U
T
v

2βaapvq
dv

dr



¨

„

bs `
´ϕTs ` βapsq

2βaapsq
` 2csCs



e
şt
sBr`

βxaprq´U
T
r

2βaaprq
`
C2
s

2
dr

ds

and the moments E
”

XαT
t

ı

, E
”

Xα8
t

ı

, E
”

`

XαT
t

˘2
ı

and E
”

`

Xα8
t

˘2
ı

are bounded independently of
0 ď t ď T ă 8 for every initial value x0 P R.

Proof. Observe that by Corollary 4.22

E
”

XαT

t

ı

“ x0 ` E

«

ż t

0

˜

bs `BsX
αT

s ´
ϕTs ´ βapsq ` pU

T
s ´ βxapsqqX

αT
s

2βaapsq

¸

ds

ff

“ x0 `

ż t

0

ˆ

bs `
´ϕTs ` βapsq

2βaapsq

˙

ds`

ż t

0

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

E
”

XαT

s

ı

ds.
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A decoupling field approach to position control problems

By Lemma 4.38 we get

E
”

XαT

t

ı

“ x0e
şt
0 Bs`

βxapsq´U
T
s

2βaapsq
ds
`

ż t

0

ˆ

bs `
´ϕTs ` βapsq

2βaapsq

˙

e
şt
sBr`

βxaprq´U
T
r

2βaaprq
dr

ds

and hence, using Proposition 4.42 and that

ˇ

ˇ

ˇ

ˇ

bs `
´ϕTs ` βapsq

2βaapsq

ˇ

ˇ

ˇ

ˇ

ď sup
rPr0,8q

|br| `
ϕ̂` suprPr0,8q |βaprq|

2β̌aa
ă 8,

we obtain

ˇ

ˇ

ˇ
E
”

XαT

t

ı
ˇ

ˇ

ˇ
ď |x0|e

´δ1pt´0q`δ2 ` sup
rPr0,8q

ˇ

ˇ

ˇ

ˇ

br `
´ϕTr ` βaprq

2βaaprq

ˇ

ˇ

ˇ

ˇ

ż t

0
e´δ1pt´rq`δ2 ds

“ |x0|e
δ2e´δ1t `

´

1´ e´δ1t
¯ eδ2

δ1
sup

rPr0,8q

ˇ

ˇ

ˇ

ˇ

br `
´ϕTr ` βaprq

2βaaprq

ˇ

ˇ

ˇ

ˇ

ď max

˜

|x0|e
δ2 ,

eδ2

δ1

˜

sup
rPr0,8q

|br| `
ϕ̂` suprPr0,8q |βaprq|

2β̌aa

¸¸

.

Completely analogous we also have that

ˇ

ˇ

ˇ
E
”

Xα8

t

ı
ˇ

ˇ

ˇ
ď max

˜

|x0|e
δ2 ,

eδ2

δ1

˜

sup
rPr0,8q

|br| `
ϕ̂` suprPr0,8q |βaprq|

2β̌aa

¸¸

.

Furthermore, using Itô’s Formula

E

„

´

XαT

t

¯2


“ x2
0 ` E

«

ż t

0
2XαT

s

˜

bs `BsX
αT

s ´
ϕTs ´ βapsq ` pU

T
s ´ βxapsqqX

αT
s

2βaapsq

¸

`

´

cs ` CsX
αT

s

¯2
ds

ff

“ x2
0 `

ż t

0

ˆ

c2
s ` 2E

”

XαT

s

ı

ˆ

bs `
´ϕTs ` βapsq

2βaapsq
` 2csCs

˙˙

ds

`

ż t

0
2

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq
`
C2
s

2

˙

E

„

´

XαT

s

¯2


ds

“ x2
0 exp

ˆ
ż t

0
Bs `

βxapsq ´ U
T
s

2βaapsq
`
C2
s

2
ds

˙

`

ż t

0

„

c2
s ` 2E

”

XαT

s

ı

ˆ

bs `
´ϕTs ` βapsq

2βaapsq
` 2csCs

˙

exp

ˆ
ż t

s
Br `

βxaprq ´ U
T
r

2βaaprq
`
C2
s

2
dr

˙

ds

due to Lemma 4.38. Plugging in the formula for E
”

XαT
s

ı

we get the second claimed equation
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for E
„

´

XαT
t

¯2


. By Proposition 4.42 and the above result we can moreover estimate

ˇ

ˇ

ˇ

ˇ

E

„

´

XαT

t

¯2
ˇ

ˇ

ˇ

ˇ

ď x2
0e
´δ1pt´0q`δ2

`

˜

sup
sPr0,8q

ˇ

ˇc2
s

ˇ

ˇ` 2 sup
sPr0,8q

ˇ

ˇ

ˇ
E
”

XαT

s

ıˇ

ˇ

ˇ
sup

sPr0,8q

ˇ

ˇ

ˇ

ˇ

bs `
´ϕTs ` βapsq

2βaapsq
` 2csCs

ˇ

ˇ

ˇ

ˇ

¸

ż t

0
e´δ1pt´rq`δ2 ds

“ x2
0e
δ2e´δ1t

`

´

1´ e´δ1t
¯ eδ2

δ1

˜

sup
rPr0,8q

ˇ

ˇc2
s

ˇ

ˇ` 2 sup
rPr0,8q

ˇ

ˇ

ˇ
E
”

XαT

s

ıˇ

ˇ

ˇ
sup

rPr0,8q

ˇ

ˇ

ˇ

ˇ

bs `
´ϕTs ` βapsq

2βaapsq
` 2csCs

ˇ

ˇ

ˇ

ˇ

¸

ă 8.

Again, we completely analogously obtain
ˇ

ˇ

ˇ
E
”

`

Xα8
t

˘2
ı
ˇ

ˇ

ˇ
ă 8. �

We have shown that the first moments of X are bounded. The next lemma states that the first
and second moment of XαT converge with exponential speed towards the ones of Xα8 .

Lemma 4.50
Let Assumption 4.36 be fulfilled. Then there are constants K1, . . . ,K6 ą 0 independent of
0 ď t ď T ă 8 and x0 P R such that

ˇ

ˇ

ˇ
E
”

Xα8

t ´XαT

t

ıˇ

ˇ

ˇ
ď K1e

´K2pT´tq

E

„

´

Xα8

t ´XαT

t

¯2


ď K3e
´K4pT´tq and

ˇ

ˇ

ˇ

ˇ

E

„

´

Xα8

t

¯2
´

´

XαT

t

¯2
ˇ

ˇ

ˇ

ˇ

ď K5e
´K6pT´tq.

Proof. Using Corollary 4.22 and Corollary 4.47 we can calculate

E
”

Xα8

t ´XαT

t

ı

“ E

»

–

ż t

0
Bs

´

Xα8

s ´XαT

s

¯

´

ϕ8s ´ ϕ
T
s ` U

8
s X

α8
s ´ UTs X

αT
s ´ βxapsq

´

Xα8
s ´XαT

s

¯

2βaapsq
ds

fi

fl

“

ż t

0
´
ϕ8s ´ ϕ

T
s `

`

U8s ´ U
T
s

˘

E
“

Xα8
s

‰

2βaapsq
`

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq

˙

E
”

Xα8

s ´XαT

s

ı

ds.

Lemma 4.38 furthermore yields

E
”

Xα8

t ´XαT

t

ı

“

ż t

0

˜

´
ϕ8s ´ ϕ

T
s `

`

U8s ´ U
T
s

˘

E
“

Xα8
s

‰

2βaapsq

¸

e

şt
s

ˆ

Br`
βxaprq´U

T
r

2βaaprq

˙

dr
ds.

Using Proposition 4.42, Lemma 4.45, Lemma 4.49 and Assumption 4.36 we get that there are
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constants K1,K2 ą 0 such that

ˇ

ˇ

ˇ
E
”

Xα8

t ´XαT

t

ıˇ

ˇ

ˇ
ď

ż t

0
K1K2e

´K2pT´sqe´K2pt´sq ds

“ K1

´

e´K2pT´tq ´ e´K2pT`tq
¯

ď K1e
´K2pT´tq. (4.19)

Again using the representation of αT and α8, we obtain

E

„

´

Xα8

t ´XαT

t

¯2


“ E

„
ż t

0

!

2
´

Xα8

s ´XαT

s

¯´

µ
´

s,Xα8

s

¯

´ α8s

´

Xα8

s

¯

´ µ
´

s,XαT

s

¯

` αTs

´

XαT

s

¯¯

`

´

σ
´

s,Xα8

s

¯

´ σ
´

s,XαT

s

¯¯2
*

ds



“ E

„
ż t

0

"

´

Xα8

s ´XαT

s

¯

ˆ

ϕTs ´ ϕ
8
s

βaapsq
` 2XαT

s

`

UTs ´ U
8
s

˘

˙

`

´

Xα8

s ´XαT

s

¯2
ˆ

2Bs `
βxapsq

βaapsq
´ U8s ` C

2
s

˙*

ds



ď

ż t

0

"

ˇ

ˇ

ˇ
E
”

Xα8

s ´XαT

s

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϕT ´ ϕ8s
βaapsq

ˇ

ˇ

ˇ

ˇ

`

ˆ

E

„

´

Xα8

s ´XαT

s

¯2


`E

„

´

XαT

s

¯2
˙

`

UTs ´ U
8
s

˘

`E

„

´

Xα8

s ´XαT

s

¯2
ˆ

2Bs `
βxapsq

βaapsq
´ U8s ` C

2
s

˙*

ds.

With Gronwall’s inequality and the estimates in Inequality (4.19), Proposition 4.42, Lemma 4.45
and Lemma 4.49 we derive that there are constants k1, . . . , k8 ą 0 such that

E

„

´

Xα8

t ´XαT

t

¯2


ď

ż t

0

„

ˇ

ˇ

ˇ
E
”

Xα8

s ´XαT

s

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϕ8s ´ ϕ
T

βaapsq

ˇ

ˇ

ˇ

ˇ

` E

„

´

XαT

s

¯2


`

U8s ´ U
T
s

˘



ds

¨ exp

ˆ
ż t

0

"

`

U8s ´ U
T
s

˘

` 2Bs `
βxapsq

βaapsq
´ U8s ` C

2
s

*

ds

˙

ď

ż t

0

”

k1e
´k2pT´sq ` k3e

´k4pT´sq
ı

ds exp

ˆ
ż t

0
k5e

´k6pT´sq ds´ k7t` k8

˙

ď
maxtk1, k3u

mintk2, k4u
exp

´

´mintk2, k4upT ´ tq
¯

exp

ˆ

´k7t`
k5

k6
` k8

˙

.

Hence, there are constants K3,K4 ą 0 such that

E

„

´

Xα8

t ´XαT

t

¯2


ď K3e
´K4pT´tq.
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Once more using Corollary 4.41, Corollary 4.47 and Lemma 4.38

E

„

´

Xα8

t

¯2
´

´

XαT

t

¯2


“

ż t

0

˜

´

`

ϕ8s ´ ϕ
T
s

˘

E
“

Xα8
s

‰

`
`

U8s ´ U
T
s

˘

E
”

`

Xα8
s

˘2
ı

2βaapsq

` 2

ˆ

bs `
βapsq ´ ϕ

T
s

2βaapsq
` csCs

˙

E
”

Xα8

s ´XαT

s

ı

` 2

ˆ

Bs `
βxapsq ´ U

T
s

2βaapsq
`
C2
s

2

˙

E

„

´

Xα8

s

¯2
´

´

XαT

s

¯2


¸

ds

“

ż t

0

˜

´

`

ϕ8s ´ ϕ
T
s

˘

E
“

Xα8
s

‰

`
`

U8s ´ U
T
s

˘

E
”

`

Xα8
s

˘2
ı

2βaapsq

` 2

ˆ

bs `
βapsq ´ ϕ

T
s

2βaapsq
` csCs

˙

E
”

Xα8

s ´XαT

s

ı

¸

¨ e

şt
s 2

ˆ

Br`
βxaprq´U

T
r

2βaaprq
`
C2
r

2

˙

dr
ds.

Thus, by Lemma 4.49, the bound on the parameter functions and Proposition 4.42, there are
constants K5,K6 ą 0 such that

ˇ

ˇ

ˇ

ˇ

E

„

´

Xα8

t

¯2
´

´

XαT

t

¯2
ˇ

ˇ

ˇ

ˇ

ď

ż t

0
K5K6e

´K6pT´sqe´K6pt´sq ds ď K5e
´K6pT´tq

analogously to Inequality (4.19). �

Remark 4.51
Lemma 4.50 implies that XαT converges for T Ñ 8 pointwise in probability to Xα8 . Since
moreover the decoupling field u of FBSDE (4.8) converges pointwise (see Proposition 4.39,
Proposition 4.42 point piiq and Lemma 4.45), we get that the backward process Yt “ upt,XαT

t q

converges pointwise with exponential speed, too. Furthermore, Corollary 4.40 states that Zt “
UTt σpt,X

αT
t q. Since again all components converge, we get that Z converges pointwise as well.

Summing up, we obtain that the solution pXαT , Y, Zq of FBSDE (4.8) converges for T Ñ 8

pointwise to some tuple pXα8 , Y 8, Z8q which solves for every τ ě 0 and all t P r0, τ s the FBSDE

Xα8

t “ x0 `

ż t

0

”

µps,Xα8

s q ´ f´1
α

´

s,Xα8

s , Y 8s

¯ı

ds`

ż t

0
σps,Xα8

s q dWs

Y 8t “ Y 8τ ´

ż τ

t
Z8s dWs

`

ż T

t

”

Bxµps,X
α8

s qY 8s ` Bxσps,X
α8

s qZ8s ` Bxf
´

s,Xα8

s , f´1
α

´

s,Xα8

s , Y 8s

¯¯ı

ds.
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After knowing that the first and second moments are bounded and converge for a fixed starting
value, we now turn to an estimate of the difference of the first and second moment for optimally
controlled processes with different starting values.

Lemma 4.52
Let Assumption 4.36 be fulfilled and x1, x2 P R. Then, for the processes Xα8,x1 , Xα8,x2 fulfilling

Xα8,x1
t “ x1 `

ż t

0

”

µ
´

s,Xα8,x1
s

¯

´ α8s

´

Xα8,x1
s

¯ı

ds`

ż t

0
σ
´

s,Xα8,x1
s

¯

dWs

resp.

Xα8,x2
t “ x2 `

ż t

0

”

µ
´

s,Xα8,x2
s

¯

´ α8s

´

Xα8,x2
s

¯ı

ds`

ż t

0
σ
´

s,Xα8,x2
s

¯

dWs,

there exist constants δ1, δ2, δ3, δ4 ą 0 such that

ˇ

ˇ

ˇ
E
”

Xα8,x1
t ´Xα8,x2

t

ıˇ

ˇ

ˇ
ď |x1 ´ x2| δ1e

´δ2t

and

ˇ

ˇ

ˇ

ˇ

E

„

´

Xα8,x1
t

¯2
´

´

Xα8,x2
t

¯2
ˇ

ˇ

ˇ

ˇ

ď
`ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ` |x1 ´ x2|
˘

δ3e
´δ4t.

Proof. We define Ξx1,x2
t :“ Xα8,x1

t ´ Xα8,x2
t and P x1,x2

t :“
´

Xα8,x1
t

¯2
´

´

Xα8,x2
t

¯2
for t ě 0.

By Corollary 4.47 we obtain

Ξx1,x2
t “ x1 ´ x2 `

ż t

0

ˆ

Bs ´
U8s ´ βxapsq

2βaapsq

˙

Ξx1,x2
s ds`

ż t

0
CsΞ

x1,x2
s dWs,

P x1,x2
t “ x2

1 ´ x
2
2 `

ż t

0
2

ˆ

bs `
ϕ8s ´ βapsq

2βaapsq
` csCs

˙

Ξx1,x2
s ds

`

ż t

0
2

ˆ

Bs ´
U8s ´ βxapsq

2βaapsq
`
C2
s

2

˙

P x1,x2
s ds`

ż t

0

“

csΞ
x1,x2
s ` CsP

x1,x2
s

‰

dWs,

and hence, by Lemma 4.38,

E rΞx1,x2
t s “ x1 ´ x2 `

ż t

0

ˆ

Bs ´
U8s ´ βxapsq

2βaapsq

˙

E rΞx1,x2
s s ds “ px1 ´ x2q e

şt
0 Bs´

U8s ´βxapsq

2βaapsq
ds
,
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E rP x1,x2
t s “ x2

1 ´ x
2
2 `

ż t

0
2

ˆ

bs `
ϕ8s ´ βapsq

2βaapsq
` csCs

˙

E rΞx1,x2
s s ds

`

ż t

0
2

ˆ

Bs ´
U8s ´ βxapsq

2βaapsq
`
C2
s

2

˙

E rP x1,x2
s s ds

“
`

x2
1 ´ x

2
2

˘

e

şt
0 2

ˆ

Bs´
U8s ´βxapsq

2βaapsq
`
C2
s

2

˙

ds

`

ż t

0
2

ˆ

bs `
ϕ8s ´ βapsq

2βaapsq
` csCs

˙

E rΞx1,x2
s s e

şt
s 2

ˆ

Br´
U8r ´βxaprq

2βaaprq
`
C2
r

2

˙

dr
ds.

Using Proposition 4.42 we obtain that there are constants δ1, δ2 ą 0 such that

|E rΞx1,x2
t s| ď |x1 ´ x2| δ1e

´δ2t.

Therefore and by Lemma 4.45 and Assumption 4.36 we also get that there exist other constants
δ3, δ4, δ5 ą 0 such that

|E rP x1,x2
t s| ď

ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ δ2
1e
´2δ2t `

ż t

0
2δ5 |x1 ´ x2| δ1e

´δ2sδ2
1e
´2δ2pt´sq ds

ď
ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ δ2
1e
´2δ2t `

ż t

0
2δ5 |x1 ´ x2| δ

3
1e
´δ2t ds

“ δ2
1e
´δ2t

´

ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ e´δ2t ` |x1 ´ x2| 2δ5δ
2
1t
¯

ď
`
ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ` |x1 ´ x2|
˘

δ3e
´δ4t.

�

Now we have all necessary tools to show that α8 is indeed an optimal ergodic control.

Theorem 4.53
Let Assumption 4.36 be fulfilled. Then the optimal ergodic costs are

inf
αPA

lim sup
TÑ8

1

T
JpT, x0, αq “ lim sup

TÑ8

1

T
JpT, x0, α

8q “ lim sup
TÑ8

1

T
JpT, x0, α

T q “: η P R

for all x0 P R. In particular η is a constant and does not depend on the starting value x0 P R of the
controlled process. Likewise, the minimal ergodic costs are

inf
αPA

lim inf
TÑ8

1

T
JpT, x0, αq “ lim inf

TÑ8

1

T
JpT, x0, α

8q “ lim inf
TÑ8

1

T
JpT, x0, α

T q “: η̌ P R

for all x0 P R.
Furthermore, there is a constant K ą 0 such that for all x1, x2 P R and T ą 0

ˇ

ˇ

ˇ

ˇ

1

T
JpT, x1, α

8q ´
1

T
JpT, x1, α

T q

ˇ

ˇ

ˇ

ˇ

ď
K

T
and

ˇ

ˇ

ˇ

ˇ

1

T
JpT, x1, α

8q ´
1

T
JpT, x2, α

8q

ˇ

ˇ

ˇ

ˇ

ď
`ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ` |x1 ´ x2|
˘ K

T
.
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Proof. Since for each time horizon T ą 0 and x0 P R the control αT is optimal, we know that
for the optimal ergodic cost holds

inf
αPA

lim sup
TÑ8

1

T
JpT, x, αq ě lim sup

TÑ8
inf
αPA

1

T
JpT, x, αq “ lim sup

TÑ8

1

T
JpT, x, αT q.

Thus, lim supTÑ8
1
T JpT, x0, α

T q is a lower bound for the optimal ergodic cost. Our aim is to
show that this lower bound is reached by the ergodic costs of the control α8. To this end,
remember Corollary 4.22 and Corollary 4.47 and observe that

lim sup
TÑ8

ˇ

ˇ

ˇ

ˇ

1

T
JpT, x0, α

8q ´
1

T
JpT, x0, α

T q

ˇ

ˇ

ˇ

ˇ

“ lim sup
TÑ8

ˇ

ˇ

ˇ

ˇ

1

T
E

ż T

0

”

f
´

s,Xα8

s , α8s

´

Xα8

s

¯¯

´ f
´

s,XαT

s , αTs

´

XαT

s

¯¯ı

ds

ˇ

ˇ

ˇ

ˇ

“ lim sup
TÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

1

T
E

ż T

0

«

βxxpsq

ˆ

´

Xα8

s

¯2
´

´

XαT

s

¯2
˙

` βxpsq
´

Xα8

s ´XαT

s

¯

`βxapsq

ˆ

Xα8

s

ˆ

ϕ8s ´ βapsq ` pU
8
s ´ βxapsqqX

α8
s

2βaapsq

˙

´

ˆ

XαT

s

ϕTs ´ βapsq `
`

UTs ´ βxapsq
˘

XαT
s

2βaapsq

˙

¸

`βapsq

ˆ

ϕ8s ´ βapsq ` pU
8
s ´ βxapsqqX

α8
s

2βaapsq

´
ϕTs ´ βapsq `

`

UTs ´ βxapsq
˘

XαT
s

2βaapsq

¸

`βaapsq

˜

ˆ

ϕ8s ´ βapsq ` pU
8
s ´ βxapsqqX

α8
s

2βaapsq

˙2

´

ˆ

ϕTs ´ βapsq `
`

UTs ´ βxapsq
˘

XαT
s

2βaapsq

˙2
¸ff

ds

ˇ

ˇ

ˇ

ˇ

ˇ

“ lim sup
TÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

ż T

0

˜

E
”

Xα8

s ´XαT

s

ı

D1
s ` E

„

´

Xα8

s

¯2
´

´

XαT

s

¯2


D2
s

`E
”

ϕ8s X
α8

s ´ ϕTsX
αT

s

ı

D3
s ` E

”

U8s X
α8

s ´ UTs X
αT

s

ı

D4
s

`E
”

ϕ8s U
8
s X

α8

s ´ ϕTs U
T
s X

αT

s

ı

D5
s ` E

„

U8s

´

Xα8

s

¯2
´ UTs

´

XαT

s

¯2


D6
s

`E

„

´

U8s X
α8

s

¯2
´

´

UTs X
αT

s

¯2


D7
s ` E

“

ϕ8s ´ ϕ
T
s

‰

D8
s

`E
”

pϕ8s q
2
´
`

ϕTs
˘2
ı

D9
s

¸

ds

ˇ

ˇ

ˇ

ˇ

ˇ

for some bounded and deterministic processes Di for i “ 1, . . . , 9 which are independent of T .
Using that ab´ cd “ pa´ cqd`apb´dq and likewise abc´def “ pa´dqef `apb´eqf `abpc´fq
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we can rewrite this as

lim sup
TÑ8

ˇ

ˇ

ˇ

ˇ

1

T
JpT, x0, α

8q ´
1

T
JpT, x0, α

T q

ˇ

ˇ

ˇ

ˇ

“ lim sup
TÑ8

ˇ

ˇ

ˇ

ˇ

1

T

ż T

0

ˆ

E
”

Xα8

s ´XαT

s

ı

`

D1
s ` ϕ

8
s D

3
s ` U

8
s D

4
s ` ϕ

8
s U

8
s D

5
s

˘

`E

„

´

Xα8

s

¯2
´

´

XαT

s

¯2


´

D2
s ` U

8
s D

6
s ` pU

8
s q

2D7
s

¯

`
`

ϕ8s ´ ϕ
T
s

˘

´

E
”

XαT

s

ı

D3
s ` U

T
s E

”

XαT

s

ı

D5
s `D

8
s `

`

ϕ8s ` ϕ
T
s

˘

D9
s

¯

`
`

U8s ´ U
T
s

˘

´

E
”

XαT

s

ı

D4
s ` ϕ

8
s E

”

XαT

s

ı

D5
s

`E

„

´

XαT

s

¯2


D6
s `

`

UTs ` U
8
s

˘

E

„

´

XαT

s

¯2


D7
s

˙˙

ds

ˇ

ˇ

ˇ

ˇ

.

(4.20)

By Lemma 4.50 we have for some constants K1,K2,K3,K4 ą 0 and every T ą 0

1

T

ż T

0

ˇ

ˇ

ˇ
E
”

Xα8

t ´XαT

t

ıˇ

ˇ

ˇ
dt ď

1

T

ż T

0
K1e

´K2pT´tq dt “
1

T

K1

K2

`

1´ e´K2T
˘

ď
1

T

K1

K2
(4.21)

and

1

T

ż T

0

ˇ

ˇ

ˇ

ˇ

E

„

´

Xα8

t

¯2
´

´

XαT

t

¯2
ˇ

ˇ

ˇ

ˇ

dt ď
1

T

ż T

0
K3e

´K4pT´tq dt ď
1

T

K3

K4
. (4.22)

Likewise, Proposition 4.42 and Lemma 4.45 imply that there are constants K5,K6,K7,K8 ą 0
such that for all T ą 0

1

T

ż T

0

ˇ

ˇU8t ´ U
T
t

ˇ

ˇ dt ď
1

T

ż T

0
K5e

´K6pT´tq dt ď
1

T

K5

K6
(4.23)

and

1

T

ż T

0

ˇ

ˇϕ8t ´ ϕ
T
t

ˇ

ˇ dt ď
1

T

ż T

0
K7e

´K8pT´tq dt ď
1

T

K7

K8
. (4.24)

Note that Di for i “ 1, . . . , 9 are bounded and by Proposition 4.42, Lemma 4.45 and
Lemma 4.49 the processes UT , U8, ϕT , ϕ8, E

”

XαT
¨

ı

and E
”

`

XαT
¨

˘2
ı

are bounded, too. Hence,
applying the estimates of the integrals in the equations (4.21), (4.22), (4.23), (4.24) to Equa-
tion (4.20) we obtain

ˇ

ˇ

ˇ

ˇ

1

T
JpT, x0, α

8q ´
1

T
JpT, x0, α

T q

ˇ

ˇ

ˇ

ˇ

ď
K

T

for some constant K ą 0. Thus,

lim sup
TÑ8

ˇ

ˇ

ˇ

ˇ

1

T
JpT, x0, α

8q ´
1

T
JpT, x0, α

T q

ˇ

ˇ

ˇ

ˇ

“ 0

and the ergodic control α8 yields ergodic costs equal to the lower bound

lim sup
TÑ8

inf
αPA

1

T
JpT, x0, αq “ lim sup

TÑ8

1

T
JpT, x0, α

8q
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implying that the costs of α8 are optimal. Using the same arguments we also obtain the minimal
ergodic costs.

Now let x1, x2 P R be two starting values. For the corresponding processes Xα8,x1 and Xα8,x2

we obtain by Lemma 4.52 that there exist constants δ1, δ2, δ3, δ4 ą 0 such that
ˇ

ˇ

ˇ
E
”

Xα8,x1
t ´Xα8,x2

t

ı
ˇ

ˇ

ˇ
ď |x1 ´ x2| e

´δ1t`δ2

and
ˇ

ˇ

ˇ

ˇ

E

„

´

Xα8,x1
t

¯2
´

´

Xα8,x2
t

¯2
ˇ

ˇ

ˇ

ˇ

ď
`
ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ` |x1 ´ x2|
˘

δ3e
´δ4t.

Due to the structure of f and α8 (see Assumption 4.17 and Corollary 4.47), we know that there
are constants K1,K2 ą 0 such that we obtain for any T ě 0

|J pT, x1, α
8q ´ J pT, x2, α

8q|

ď

ż T

0
K1

ˇ

ˇ

ˇ

ˇ

E

„

´

Xα8,x1
s

¯2
´

´

Xα8,x2
s

¯2
ˇ

ˇ

ˇ

ˇ

`K2

ˇ

ˇ

ˇ
E
”

Xα8,x1
s ´Xα8,x2

s

ıˇ

ˇ

ˇ
ds

ď K1
δ3

δ4

`ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ` |x1 ´ x2|
˘

´

1´ e´δ4T
¯

`K2
eδ2

δ1
|x1 ´ x2|

´

1´ e´δ2T
¯

ď K1
δ3

δ4

ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ`

ˆ

K1
δ3

δ4
`K2

eδ2

δ1

˙

|x1 ´ x2| .

Hence, the difference of ergodic costs for those two starting values can be estimated by

lim sup
TÑ8

ˇ

ˇ

ˇ

ˇ

1

T
J pT, x1, α

8q ´
1

T
J pT, x2, α

8q

ˇ

ˇ

ˇ

ˇ

ď lim sup
TÑ8

1

T

ˆ

K1
δ3

δ4

ˇ

ˇx2
1 ´ x

2
2

ˇ

ˇ`

ˆ

K1
δ3

δ4
`K2

eδ2

δ1

˙

|x1 ´ x2|

˙

“ 0,

giving us that for all starting values the optimal ergodic costs are equal, making them a constant.
�

Remark 4.54
Note that in general the optimal ergodic costs η and the minimal ergodic costs η̌ are not neces-
sarily equal. It only holds true that

η̌ “ inf
αPA

lim inf
TÑ8

1

T
JpT, x0, αq ď inf

αPA
lim sup
TÑ8

1

T
JpT, x0, αq “ η.

In the following we examine the properties of the optimal control more closely and draw some
connections to the Hamilton-Jacobi-Bellman approach.

Lemma 4.55
Let Assumption 4.36 be fulfilled. Define for T P p0,8q Y t8u the function

ΘT pt, xq :“
1

2
UTt ¨ x

2 ` ϕTt ¨ x´

ż t

0
ϕTs bs ` U

T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq
ds

for all t P r0, T s X r0,8q and x P R. Then for T P p0,8s and x P R

´ f
`

t, x, αTt pxq
˘

“ BtΘ
T pt, xq `

`

µpt, xq ´ αTt pxq
˘

BxΘT pt, xq `
1

2
σ2pt, xqBxxΘT pt, xq.

92
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Proof. Remember that by Proposition 4.39 and Lemma 4.45

Btϕ
T
t “ ´

„

UTt

ˆ

bt ` ctCt `
βaptq

2βaaptq

˙

´
βaptqβxaptq

2βaaptq
` βxptq



´

„

Bt `
βxaptq ´ U

T
t

2βaaptq



ϕTt

and by Lemma 4.37 and Proposition 4.42

BtU
T
t “

`

UTt
˘2

2βaaptq
´ UTt

ˆ

2Bt `
βxaptq

βaaptq
` C2

t

˙

´ 2βxxptq `
β2
xaptq

2βaaptq
.

Hence, with Corollary 4.22 and Corollary 4.47

BtΘ
T pt, xq `

`

µpt, xq ´ αTt pxq
˘

BxΘT pt, xq `
1

2
σ2pt, xqBxxΘT pt, xq

“
1

2
x2

˜

`

UTt
˘2

2βaaptq
´ UTt

ˆ

2Bt `
βxaptq

βaaptq
` C2

t

˙

´ 2βxxptq `
β2
xaptq

2βaaptq

¸

´ x

ˆ„

UTt

ˆ

bt ` ctCt `
βaptq

2βaaptq

˙

´
βaptqβxaptq

2βaaptq
` βxptq



`

„

Bt `
βxaptq ´ U

T
t

2βaaptq



ϕTt

˙

´ ϕTt bt ´ U
T
t

c2
t

2
´ β0ptq `

`

ϕTt ´ βaptq
˘

ˆ

ϕTt ´ βaptq

2βaaptq

˙

´ βaaptq

ˆ

ϕTt ´ βaptq

2βaaptq

˙2

`

ˆ

bt `Btx´
ϕTt ´ βaptq

2βaaptq
´
UTt ´ βxaptq

2βaaptq
x

˙

`

ϕTt ` U
T
t x

˘

`
1

2
pct ` Ctxq

2 UTt

“ x2

«

´

`

UTt
˘2

4βaaptq
´ βxxptq `

β2
xaptq

4βaaptq

ff

` x

„

´

ˆ

UTt
βaptq

2βaaptq
´
βaptqβxaptq

2βaaptq
` βxptq

˙

` UTt

ˆ

´
ϕTt ´ βaptq

2βaaptq

˙

`

«

´β0ptq ´ βaptq

ˆ

ϕTt ´ βaptq

2βaaptq

˙

´ βaaptq

ˆ

ϕTt ´ βaptq

2βaaptq

˙2
ff

On the other hand

´ f
`

t, x, αTt pxq
˘

“ ´

#

β0ptq ` βxxptqx
2 ` βxptqx` βxaptqx

˜

ϕTt ´ βaptq `
`

UTt ´ βxaptq
˘

x

2βaaptq

¸

` βaaptq

¨

˝

ˆ

ϕTt ´ βaptq

2βaaptq

˙2

` 2

`

ϕTt ´ βaptq
˘ `

UTt ´ βxaptq
˘

x

p2βaaptqq
2 `

˜

`

UTt ´ βxaptq
˘

x

2βaaptq

¸2
˛

‚

` βaptq
ϕTt ´ βaptq `

`

UTt ´ βxaptq
˘

x

2βaaptq

+

“ x2

«

´

`

UTt
˘2

4βaaptq
´ βxxptq `

β2
xaptq

4βaaptq

ff

` x

„

´

ˆ

UTt
βaptq

2βaaptq
´
βaptqβxaptq

2βaaptq
` βxptq

˙

` UTt

ˆ

´
ϕTt ´ βaptq

2βaaptq

˙

`

«

´β0ptq ´ βaptq

ˆ

ϕTt ´ βaptq

2βaaptq

˙

´ βaaptq

ˆ

ϕTt ´ βaptq

2βaaptq

˙2
ff

.
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Thus, we obtain that

BtΘ
T pt, xq `

`

µpt, xq ´ αTt pxq
˘

BxΘT pt, xq `
1

2
σ2pt, xqBxxΘT pt, xq “ ´f

`

t, x, αTt pxq
˘

.

�

Proposition 4.56
Let Assumption 4.36 be fulfilled and T P p0,8qY t8u. Then ΘT , as defined in Lemma 4.55, solves
the HJB-equation

0 “ inf
aPR

"

BtΘ
T pt, xq ` pµpt, xq ´ aqBxΘT pt, xq `

1

2
σ2pt, xqBxxΘT pt, xq ` fpt, x, aq

*

for all t P r0, T s X r0,8q and x P R.

Proof. Note that f is strictly convex in a and hence the whole function inside the infimum
is strictly convex in a. To find the global minimum it suffices to determine for which a the
derivative equals 0. To this end observe that

Ba

„

BtΘ
T pt, xq ` pµpt, xq ´ aqBxΘT pt, xq `

1

2
σ2pt, xqBxxΘT pt, xq ` fpt, x, aq



ˇ

ˇ

ˇ

ˇ

ˇ

a“αTt pxq

“
“

´BxΘT pt, xq ` βaptq ` βxaptqx` 2βaaptqa
‰

ˇ

ˇ

ˇ

a“αTt pxq

“ ´UTt x´ ϕ
T
t ` βaptq ` βxaptqx` 2βaaptqα

T
t pxq

“ 0

by Corollary 4.41 if T P p0, T q or by Corollary 4.47 if T “ 8. Since furthermore Lemma 4.55
yields that

0 “

„

BtΘ
T pt, xq ` pµpt, xq ´ aqBxΘT pt, xq `

1

2
σ2pt, xqBxxΘT pt, xq ` fpt, x, aq



ˇ

ˇ

ˇ

ˇ

ˇ

a“αTt pxq

,

we know that αT is a minimizer and hence ΘT solves the HJB-equation. �

Now we have a function that solves the HJB-equation. The standard HJB-theory suggests
that the value function also solves HJB-equation. Hence, we already have a guess for the value
function. In the next theorem we give for a finite time horizon an explicit representation of the
value function and show that the value function differs from ΘT only by a constant.
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Theorem 4.57
Let Assumption 4.36 be fulfilled and T P p0,8q. Then, for 0 ď t ď T and x P R, the value function
is given by

V pt, T, xq :“ inf
αPAT

E

ż T

t
f
`

s,Xα,t,x
s , αs

˘

ds

“
1

2
UTt ¨ x

2 ` ϕTt ¨ x`

ż T

t

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds,

where Xα,t,x is the process controlled by α and Xα,t,x
t “ x. In particular

V p0, T, xq “ inf
αPAT

JpT, x, αq.

Furthermore, for all pt, xq P r0, T s ˆR the value function V solves the HJB-equation

0 “ inf
aPR

"

BtV pt, T, xq ` pµpt, xq ´ aqBxV pt, T, xq `
1

2
σ2pt, xqBxxV pt, T, xq ` fpt, x, aq

*

.

Proof. First, note that ϕTt and UTt are deterministic and depend only on the parameter functions
from time t until T . Hence, it is straightforward to see that shifting time together with the
parameter functions does not change ϕT or UT . Thus, we can also conclude that the optimal
control αT does not change by a timeshift of the problem neither. Therefore, Corollary 4.22 still
yields the optimal control regardless whether we start at time 0 or at time t. Using this, we have
by Corollary 4.41, Lemma 4.55, Itô’s formula and the fact UTT “ ϕTT “ 0 that

V pt, T, xq “ E

„
ż T

t
f
´

s,XαT ,t,x
s , αTs

´

XαT ,t,x
s

¯¯

ds



“ E

„

´

ż T

t

ˆ

BtΘ
T
´

s,XαT ,t,x
s

¯

`

´

µ
´

s,XαT ,t,x
s

¯

´ αTs

´

XαT ,t,x
s

¯¯

BxΘ
´

s,XαT ,t,x
s

¯

`
1

2
σ2
´

s,XαT ,t,x
s

¯

BxxΘ
´

s,XαT ,t,x
s

¯

˙

ds



“ E
”

ΘT
´

t,XαT ,t,x
t

¯

´ΘT
´

T,XαT ,t,x
T

¯ı

“
1

2
UTt ¨ x

2 ` ϕTt ¨ x`

ż T

t

˜

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

¸

ds,

which proves the first result. Now, we turn to the HJB-equation. Note that

V pt, T, xq ´ΘT pt, xq “

ż T

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds,

which does not depend on t or x. Therefore, the derivatives with respect to t and x of the
functions V and ΘT are the same. Since only those derivatives appear in the HJB-equation we
get that V solves it, exactly as ΘT does by Propositon 4.56. �

Theorem 4.57 allows us to give a more explicit formula for the optimal ergodic cost.
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Corollary 4.58
Let Assumption 4.36 be fulfilled. Then, for any x0 P R, the optimal ergodic cost η equals

η “ lim sup
TÑ8

1

T
V p0, T, 0q

“ lim sup
TÑ8

1

T

ż T

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds

“ lim sup
TÑ8

1

T

ż T

0

«

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

ff

ds

and the minimal ergodic cost η̌ likewise equals

η̌ “ lim inf
TÑ8

1

T
V p0, T, 0q

“ lim inf
TÑ8

1

T

ż T

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds

“ lim inf
TÑ8

1

T

ż T

0

«

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

ff

ds.

Proof. By Theorem 4.53 we know that each starting value gives the same ergodic cost. Hence,
we can choose without loss of generality 0 as starting value. Again, Theorem 4.53 yields that

η “ lim sup
TÑ8

1

T
JpT, 0, αT q

and therefore, by Theorem 4.57 we obtain

η “ lim sup
TÑ8

1

T
V p0, T, 0q

“ lim sup
TÑ8

1

T

ż T

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds.

Also, UT , U8, ϕT , ϕ8 and all parameter functions are bounded and by Proposition 4.42 and
Lemma 4.45 there are positive constants K1,K2 such that |U8t ´ U

T
t | ď K1 expp´K2pT ´ tqq

and |ϕ8t ´ ϕ
T
t | ď K1 expp´K2pT ´ tqq for all 0 ď t ď T ă 8. Hence, we obtain that

lim
TÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

ż T

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds

´
1

T

ż T

0

«

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

ff

ds

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

and therefore,

lim sup
TÑ8

1

T

ż T

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds

“ lim sup
TÑ8

1

T

ż T

0

«

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

ff

ds.

The result for the minimal ergodic cost η̌ follows completely analogously. �
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In the next proposition we state a result for the ergodic version of the value function, which
actually does not represent the value (or in our case rather the costs) but can be used to derive
the optimal control, as we show in the following corollary.

Proposition 4.59
Let Assumption 4.36 be fulfilled. Define for η̃ P R and pt, xq P r0,8q ˆR

V 8η̃ pt, xq :“
1

2
U8t ¨ x

2 ` ϕ8t ¨ x`

ż t

0
η̃ ´

ˆ

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

˙

ds.

Then, for all η̃ P R and pt, xq P r0,8q ˆR, the function V 8η̃ fulfills

0 “ inf
aPR

"

BtV
8
η̃ pt, xq ` pµpt, xq ´ aqBxV

8
η̃ pt, xq `

1

2
σ2pt, xqBxxV

8
η̃ pt, xq ` fpt, x, aq ´ η̃

*

,

which we call the ergodic Hamilton-Jacobi-Bellmann equation (eHJB). Moreover, η is the only real
number with

lim inf
tÑ8

1

t
V 8η pt, xq “ 0 and

V 8η pt, xq “ lim
TÑ8

´

V pt, T, xq ´ V p0, T, 0q
¯

` lim sup
TÑ8

t

T
V p0, T, 0q

and η̌ is the only real number with

lim sup
tÑ8

1

t
V 8η̌ pt, xq “ 0 and

V 8η̌ pt, xq “ lim
TÑ8

´

V pt, T, xq ´ V p0, T, 0q
¯

` lim inf
TÑ8

t

T
V p0, T, 0q.

Proof. Observe that V 8η̃ pt, xq “ Θ8pt, xq ` t ¨ η̃. Since Θ8 solves the HJB and the eHJB and HJB
differ only by the term ´η̃, we obtain

inf
aPR

"

BtV
8
η̃ pt, xq ` pµpt, xq ´ aqBxV

8
η̃ pt, xq `

1

2
σ2pt, xqBxxV

8
η̃ pt, xq ` fpt, x, aq ´ η̃

*

“ inf
aPR

"

BtΘ
8pt, xq ` pµpt, xq ´ aqBxΘ8pt, xq `

1

2
σ2pt, xqBxxΘ8pt, xq ` fpt, x, aq

`Btpt ¨ η̃q ` pµpt, xq ´ aqBxpt ¨ η̃q `
1

2
σ2pt, xqBxxpt ¨ η̃q ´ η̃

*

“ inf
aPR

"

BtΘ
8pt, xq ` pµpt, xq ´ aqBxΘ8pt, xq `

1

2
σ2pt, xqBxxΘ8pt, xq ` fpt, x, aq

*

“ 0.
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Next,

lim
TÑ8

´

V pt, T, xq ´ V p0, T, 0q
¯

` lim sup
TÑ8

t

T
V p0, T, 0q

“ lim
TÑ8

˜

1

2
UTt ¨ x

2 ` ϕTt ¨ x`

ż T

t

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds

´ 0´ 0 ´

ż T

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds

` t ¨ lim sup
TÑ8

1

T
V p0, T, 0q

¸

“ lim
TÑ8

ˆ

1

2
UTt ¨ x

2 ` ϕTt ¨ x

˙

` t ¨ η ´ lim
TÑ8

ż t

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds

“
1

2
U8t ¨ x` ϕ

8
t ¨ x`

ż t

0
η ds´

ż t

0

«

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

ff

ds

“ V 8η pt, xq

since everything inside the integral is bounded, in particular with respect to T , and hence domin-
ated convergence can be applied together with Proposition 4.42 and Lemma 4.45. Analogously
we obtain

lim
TÑ8

´

V pt, T, xq ´ V p0, T, 0q
¯

` lim inf
TÑ8

t

T
V p0, T, 0q “ V 8η̌ pt, xq.

Finally, observe that

lim inf
tÑ8

1

t
V 8η̃ pt, xq

“ lim inf
tÑ8

1

t

«

1

2
U8t ¨ x` ϕ

8
t ¨ x`

ż t

0
η̃ ´

˜

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

¸

ds

ff

“ 0` η̃ ´ lim sup
tÑ8

1

t

ż t

0

«

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

ff

ds

“ η̃ ´ η

and likewise

lim sup
tÑ8

1

t
V 8η̃ pt, xq “ η̃ ´ η̌.

�

Corollary 4.60
Let Assumption 4.36 be fulfilled. Then, for all T ą 0 and pt, xq P r0, T s ˆR, we have

αTt pxq “
BxV pt, T, xq ´ βaptq ´ βxaptqx

2βaaptq

and for all pt, xq P r0,8q ˆR, η̃ P R

α8t pxq “
BxV

8
η̃ pt, xq ´ βaptq ´ βxaptqx

2βaaptq
.
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Proof. Using the explicit formulas of V and V 8 as given in Theorem 4.57 and Proposition 4.59
and the explicit formulas for αT and α8 given in Corollary 4.41 and Corollary 4.47 this is
straightforward. �

In the next corollary we take a look at time-homogeneous parameter functions as a special
case.

Corollary 4.61
Let Assumption 4.36 be fulfilled and additionally the parameter functions be constant. Then

V 8η̃ pt, xq “
1

2
U80 ¨ x2 ` ϕ80 ¨ x` t ¨ pη̃ ´ ηq

for every t ě 0, x, η̃ P R and the optimal ergodic cost is given by

η “ η̌ “ ϕ80 b0 ` U
8
0

c2
0

2
` β0p0q ´

pϕ80 ´ βap0qq
2

4βaap0q
,

where for p :“ 2B0βaap0q ` βxap0q ` C
2
0βaap0q and q :“ 4βxxp0qβaap0q ´ β

2
xap0q

U80 “ p`
a

p2 ` q and ϕ80 “
2βaap0q

”

U80

”

b0 ` c0C0 `
βap0q

2βaap0q

ı

´
βap0qβxap0q

2βaap0q
` βxp0q

ı

a

p2 ` q ` C2
0βaap0q

.

In particular, only for the parameter η does V 8η not depend on time and is equal to

V 8η pt, xq “
1

2
U80 ¨ x2 ` ϕ80 ¨ x “ lim

TÑ8
V p0, T, xq ´ V p0, T, 0q.

Proof. First, observe that ϕ8¨ b` U
8
¨
c2

2 ´ β0 ´
pϕ8¨ q

2
´β2

a
2βaa

´
pϕ8¨ ´βaq

2

4βaa
is constant by Corollary 4.44

and Corollary 4.46. Hence, for every T ą 0

1

T

ż T

0

«

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

ff

ds “ ϕ80 b0 ` U
8
0

c2
0

2
` β0p0q ´

pϕ80 ´ βap0qq
2

4βaap0q

and thus, by Corollary 4.58,

ϕ80 b0 ` U
8
0

c2
0

2
` β0p0q ´

pϕ80 ´ βap0qq
2

4βaap0q

“ lim
TÑ8

1

T

ż T

0

«

ϕ8s bs ` U
8
s

c2
s

2
` β0psq ´

pϕ8s ´ βapsqq
2

4βaapsq

ff

ds “ η “ η̌.

Using this together with the definition of V 8η̃ , we already have

V 8η̃ pt, xq “
1

2
U80 ¨ x2 ` ϕ80 ¨ x` t ¨ pη̃ ´ ηq .
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Finally, observe that

lim
TÑ8

V p0, T, xq ´ V p0, T, 0q

“ lim
TÑ8

1

2
UTt ¨ x

2 ` ϕTt ¨ x`

ż T

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds

´

ż T

0

«

ϕTs bs ` U
T
s

c2
s

2
` β0psq ´

`

ϕTs ´ βapsq
˘2

4βaapsq

ff

ds

“ lim
TÑ8

1

2
UTt ¨ x

2 ` ϕTt ¨ x

“ V 8η pt, xq.

�

Remark 4.62
Restricting to time-homogeneous parameter functions and βxa “ β0 “ 0 and furthermore plug-

ging the optimal control α8t pxq “
BxV 8η̃ pt,xq´βaptq´βxaptqx

2βaaptq
into the eHJB we obtain that the pair

pV 8η p0, ¨q, ηq is the unique solution of

0 “

ˆ

b0 `B0x´
BxV

8
η p0, xq ´ βap0q

2βaap0q

˙

BxV
8
η p0, xq `

1

2
pc0 ` C0xq

2
BxxV

8
η p0, xq

` βaap0qx
2 ` βxp0qx` βaap0q

ˆ

BxV
8
η p0, xq ´ βap0q

2βaap0q

˙2

` βap0q
BxV

8
η p0, xq ´ βap0q

2βaap0q
´ η

“ pb0 `B0xq BxV
8
η p0, xq `

1

2
pc0 ` C0xq

2
BxxV

8
η p0, xq

` βaap0qx
2 ` βxp0qx´

`

BxV
8
η p0, xq ´ βap0q

˘2

4βaap0q
´ η. (4.25)

Note that Equation (4.25) replicates the 1-dimensional version of the result in [BF92].

Remark 4.63
It is possible to weaken Assumption 4.36 a little bit. If the parameter functions are bounded by
a slowly growing function, then they would still be bounded on every interval r0, T s Ă r0,8q,
enabling us to still apply the results from Theorem 4.10 and Section 4.3. However, then the
constants given in Proposition 4.33 and Theorem 4.34 depend on time since the growth of the
parameter functions is involved. Choosing the growth small enough still yields some exponential
decay allowing a polynomial growth for all parameters not yet restricted.
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5 Simulation of McKean Vlasov SDEs
with super linear growth

The aim of this chapter, which is based on [dRES18], is to develop a numerical scheme for sim-
ulating McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with drifts of super-linear
growth and Lipschitz diffusion coefficients (with linear growth). MV-SDEs differ from standard
SDEs by means of the presence of the law of the solution process in the coefficients:

dXt “ bpt,Xt, µ
X
t q dt` σpt,Xt, µ

X
t q dWt, X0 P L

m
0 pR

dq,

where µXt denotes the law of the process X at time t. Similar to standard SDEs, MV-SDEs have
been shown to have a unique strong solution in the super-linear growth in spatial parameter set-
ting, see [dRST19]. Of course, many mean-field models exhibit non-global Lipschitz growth, for
example mean-field models for neuronal activity (e.g. stochastic mean-field FitzHugh-Nagumo
models or the network of Hodgkin-Huxley neurons) [BFFT12], [BCC11], [BFT15] appearing
in biology or physics [DGG`11], [GGM`18]. We refer to the review in [BFFT12] for further
motivation of the problem.

In general, closed form solutions for such equations are rare. Hence, to fully utilize MV-SDEs
as a modelling tool, one needs a reliable way in which to simulate them. It is well known
that for SDEs the explicit Euler scheme runs into difficulties in the super-linear growth setting,
see [HJK11], even though the SDE is known to have a unique strong solution. The original
solution to this problem was to consider an implicit (or backward) Euler scheme developed in
[HMS02]. Although implicit schemes allowed one to tackle more general SDEs they are slower
especially in higher dimensions. The reason for this boils down to the fact that one is required
to solve a fixed point equation at every time-step, which can be computationally expensive. To
solve this problem an explicit scheme was then developed in [HJK12], a so-called Tamed Euler
scheme. Since then several authors have built on this result and developed algorithms to deal
with coefficients that grow super-linearly, see [CJM16], [Sab13], [FG16] for example. There
has been some work on improved Monte Carlo methods for MV-SDEs with super-linear drift, see
e.g. [dRST18].

An extra complication MV-SDEs offer over standard SDEs is the requirement to approximate
the law µ at each time step. Although there are other techniques (see [GP18]), the most common
is the so-called interacting particle system

dXi,N
t “ b

`

t,X i,N
t , µX,Nt

˘

dt` σ
`

t,X i,N
t , µX,Nt

˘

dW i
t ,

where µX,Nt pdxq :“ 1
N

řN
j“1 δXj,N

t
pdxq and δ

Xj,N
t

is the Dirac measure at point Xj,N
t , and

W i, i “ 1, . . . , N are independent Brownian motions. Under Lipschitz type conditions this
particle system is known to converge pathwise to the true solution of the MV-SDE (see [Szn91],
[Mél96]). However, this convergence (with corresponding rate) in a super-linear growth setting
has thus far not been considered in full generality.
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In this chapter we show that the above particle scheme converges (propagation of chaos) in
the super-linear growth case without coercivity/dissipativity. This result is crucial in showing
convergence of the numerical scheme to the particle system rather than to the original MV-SDE,
with corresponding rate.

Furthermore, we develop an explicit scheme and prove strong convergence to the MV-SDE,
inspired by the explicit scheme originally developed in [HJK12], [Sab13]. We also obtain the
classical 1{2 rate of convergence in the stepsize. Combining this with the propagation of chaos
result gives an overall convergence rate for the explicit scheme.

The final contribution is to show strong convergence of an implicit scheme. This turns out to be
a challenging problem since results involving implicit schemes rely on stopping time arguments.
This causes several issues when generalizing results to the MV-SDE setting and we have to make
stronger assumptions on the coefficients in this setting in order for the arguments to continue to
hold. On the other hand, we allow for random initial conditions and time dependent coefficients
that, to the best of our knowledge, have not been fully treated in the standard SDE setting. We
discuss these issues in Remark 5.7. We only focus on strong convergence of this scheme and not
the rate, mainly because the explicit scheme is shown to work under more general assumptions,
scales better (as our numerical testing shows) and such proof would lead to lengthy statements
without substantially enhancing the scope of applications. The question is left for future research
with a tentative methodology discussed in Remark 5.11 below.

Other works, which are close to ours, are the following: [BF17] develop an explicit Euler
scheme to deal with a specific MV-SDE type equation from a chemotaxis model; convergence
is given but under Lipschitz conditions and constant diffusion coefficient. [Mal03] studies an
implicit Euler scheme in order to approximate a specific equation and requires a constant diffu-
sion coefficient, symmetry and uniform convexity of the interaction potential. Lastly, in [GPV19]
Section 3.5 the authors are only able to justify their simulation for the Lipschitz case and the
results we propose would allow for more general potentials.

This chapter is structured in the following way: In Section 5.1 we introduce the notation and
our tamed particle scheme. In Section 5.2, we state our main result, namely, propagation of
chaos and convergence results for the two schemes. Following that, in Section 5.3 we provide
several numerical examples and highlight the particle corruption phenomena. This analysis im-
plies one cannot hope to build a reliable scheme based on a standard Euler scheme. We further
show the increased computational complexity associated with a MV-SDE makes the implicit
scheme a less viable option than the explicit (tamed) scheme. Finally, the proofs are given in
Section 5.4.

This chapter is based on [dRES18] in which most of my contribution is to the proof of the
convergence of explicit Euler scheme and the implementation.

5.1 Preliminaries

Throughout the chapter we work on a filtered probability space pΩ,F , pFtqtě0,Pq satisfying the
usual conditions, where Ft is the augmented filtration of a standard multidimensional Brownian
motion W . We work with Rd, the d-dimensional Euclidean space of real numbers, and for
a “ pa1, ¨ ¨ ¨ , adq P R

d and b “ pb1, ¨ ¨ ¨ , bdq P Rd we denote by |a|2 “
řd
i“1 a

2
i the usual Euclidean

distance on Rd and by xa, by “
řd
i“1 aibi the usual scalar product. For matrices V P Rkˆ` we

define |V | “ supuPR`, |u|ď1 |V u|.
We consider some finite terminal time T ă 8 and use the following notation for spaces,

which are standard in the McKean-Vlasov literature (see [Car16]): We define Sp for p ě 1,
as the space of Rd-valued, F¨-adapted processes Z, that satisfy Ersup0ďtďT |Zptq|

ps1{p ă 8.
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Similarly, Lpt pR
dq, defines the space of Rd-valued, Ft-measurable random variables X, that

satisfy Er|X|ps1{p ă 8.
Given the measurable space pRd,BpRdqq, we denote by PpRdq the set of probability measures

on this space, and for p ě 1 write µ P PppRdq if µ P PpRdq and for some x P Rd,
ş

Rd
|x ´

y|pµpdyq ă 8. We then have the following metric on the space PppRdq (Wasserstein metric) for
µ, ν P PppRdq (see [Vil08], [dRST19] among others),

W ppqpµ, νq “ inf
π

!´

ż

RdˆRd
|x´ y|pπpdx, dyq

¯
1
p

: π P PpRd ˆRdq with marginals µ and ν
)

.

The most common choice in the McKean-Vlasov setting is, p “ 2, and is what we shall use
throughout most of this paper. As W p2q is a metric (see [Vil08] Chapter 6), we have for
µ1, µ2, µ3 P P2pRdq

W p2qpµ1, µ3q ďW p2qpµ1, µ2q `W
p2qpµ2, µ3q.

As in [Car16], we introduce the empirical measure constructed from i.i.d. samples of some
process X by µX,Ns :“ 1

N

řN
j“1 δXj

s
. Another standard result for the Wasserstein metric for two

such empirical measures µX,Ns , µY,Ns is that

W p2qpµX,Ns , µY,Ns q ď

´ 1

N

N
ÿ

j“1

|Xj
s ´ Y

j
s |

2
¯1{2

.

5.1.1 McKean-Vlasov stochastic differential equations

Let W be an l-dimensional Brownian motion and take the progressively measurable maps b :
r0, T s ˆRdˆP2pR

dq Ñ Rd and σ : r0, T s ˆRdˆP2pR
dq Ñ Rdˆl. MV-SDEs are typically written

in the form,
dXt “ bpt,Xt, µ

X
t q dt` σpt,Xt, µ

X
t q dWt, X0 P L

p
0pR

dq, (5.1)

where µXt denotes the law of the process X at time t, i.e. µXt “ P˝X´1
t . We make the following

assumption on the coefficients throughout.

Assumption 5.1
Assume that σ is Lipschitz in the sense that there exists Lσ ą 0 such that for all t P r0, T s and all
x, x1 P Rd and @µ, µ1 P P2pR

dq we have that

|σpt, x, µq ´ σpt, x1, µ1q| ď Lσp|x´ x
1| `W p2qpµ, µ1qq,

and let b satisfy

1. One-sided Lipschitz in x and Lipschitz in law: there exist Lb, L ą 0 such that for all t P r0, T s,
all x, x1 P Rd and all µ, µ1 P P2pR

dq we have that

xx´ x1, bpt, x, µq ´ bpt, x1, µqy ď Lb|x´ x
1|2

and |bpt, x, µq ´ bpt, x, µ1q| ď LW p2qpµ, µ1q.

2. Locally Lipschitz with polynomial growth in x: there exist L ą 0 and q P N with q ą 1 such
that for all t P r0, T s, @µ P P2pR

dq and all x, x1 P Rd

|bpt, x, µq ´ bpt, x1, µq| ď Lp1` |x|q ` |x1|qq|x´ x1|.
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Assumption 5.2
Assume that b and σ are 1{2-Hölder continuous in time, uniformly in x and µ.

Using the one-sided Lipschitz drift, a particularized version of Theorem 3.3 in [dRST19] pro-
vides a result for existence and uniqueness. Assumption 5.2 is not needed here.

Theorem 5.3 ([dRST19])
Suppose that b and σ satisfy Assumption 5.1 and 5.2. Further, assume for some m ě 2,
X0 P L

m
0 pR

dq . Then there exists a unique solution X P Smpr0, T sq to the MV-SDE (5.1). For
some positive constant C we have

E
“

sup
tPr0,T s

|Xt|
m
‰

ď C pEr|X0|
ms ` 1q eCT .

If the law µX is known beforehand, then the MV-SDE reduces to a “standard” SDE with added
time-dependency. Typically this is not the case and usually the MV-SDE is approximated by a
particle system.

The interacting particle system approximation. We approximate (5.1) (driven by the
Brownian motion W ), using an N -dimensional system of interacting particles. Let i “ 1, . . . , N
and consider N particles Xi,N satisfying the SDE with i.i.d. Xi,N

0 “ Xi
0 (the initial condition is

random, but independent of other particles)

dXi,N
t “ b

´

t,X i,N
t , µX,Nt

¯

dt` σ
´

t,X i,N
t , µX,Nt

¯

dW i
t , (5.2)

where µX,Nt pdxq :“ 1
N

řN
j“1 δXj,N

t
pdxq and δ

Xj,N
t

is the Dirac measure at point Xj,N
t , and the

independent Brownian motions W i, i “ 1, . . . , N (also independent of the BM W appearing in
(5.1); with a slight abuse of notation to avoid re-defining the probability space’s Filtration).

Propagation of chaos. In order to show that the particle approximation is of use, one shows
a pathwise propagation of chaos result. Although different types exist we are interested in the
strong error. Hence a pathwise convergence result is needed and we consider the system of non
interacting particles

dXi
t “ bpt,X i

t , µ
Xi

t q dt` σpt,X i
t , µ

Xi

t q dW i
t , X i

0 “ Xi
0 , t P r0, T s, (5.3)

which are of course just MV-SDEs and since the Xis are independent, µX
i

t “ µXt for all i. Under
global Lipschitz conditions, one can then prove the following convergence result (see Theorem
1.10 in [Car16] for example)

lim
NÑ8

sup
1ďiďN

E
“

sup
0ďtďT

|Xi,N
t ´Xi

t |
2
‰

“ 0.

Several propagation of chaos results have been shown over the years under varying conditions,
see [Szn91], [Mél96] and [Lac18] among others. All SDEs appearing below have initial condi-
tion Xi

0 and we work on the interval r0, T s.
Standard Euler scheme particle system. In general one cannot simulate (5.2) directly and

therefore turns to a numerical scheme such as Euler. We partition the time interval r0, T s into
M steps of size h :“ T {M , we then define tk :“ kh and recursively define the particle system
for k P t0, . . . ,M ´ 1u as,

X̄i,N,M
tk`1

“ X̄i,N,M
tk

` b
´

tk, X̄
i,N,M
tk

, µ̄X,Ntk

¯

h` σ
´

tk, X̄
i,N,M
tk

, µ̄X,Ntk

¯

∆W i
tk
,
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where µ̄X,Ntk
pdxq :“ 1

N

řN
j“1 δX̄j,N,M

tk

pdxq, ∆W i
tk

:“ W i
tk`1

´ W i
tk

and X̄i,N,M
0 :“ Xi

0. Under

Lipschitz regularity it is well known that this scheme converges, see [BT97] or [KHO97] (here
a weak rate of convergence is shown under an additional regularity assumption).

Euler particle system for the super-linear case: Explicit and Implicit. However, as dis-
cussed in works such as [HJK11], [HJK12], [Sab13] one does not have convergence of the
Euler scheme when we move away from the global Lipschitz setting. The goal of this chapter
is to therefore construct a suitable numerical scheme which converges. Inspired by the above
works we consider a so-called tamed Euler scheme. With the notation above we consider the
following scheme

X̄i,N,M
tk`1

“ X̄i,N,M
tk

`

b
´

tk, X̄
i,N,M
tk

, µ̄X,Ntk

¯

1`M´α
ˇ

ˇ

ˇ
b
´

tk, X̄
i,N,M
tk

, µ̄X,Ntk

¯ˇ

ˇ

ˇ

h` σ
´

tk, X̄
i,N,M
tk

, µ̄X,Ntk

¯

∆W i
tk
, (5.4)

where µ̄X,Ntk
pdxq “ 1

N

řN
j“1 δX̄j,N,M

tk

pdxq and α P p0, 1{2s with X̄i,N,M
0 “ Xi

0.

Of course, explicit schemes are not the only method one can deploy to solve this problem, we
also consider the following implicit scheme

X̃i,N,M
tk`1

“ X̃i,N,M
tk

` b
´

tk, X̃
i,N,M
tk`1

, µ̃X,N,Mtk

¯

h` σ
´

tk, X̃
i,N,M
tk

, µ̃X,N,Mtk

¯

∆W i
tk
, (5.5)

where µ̃X,N,Mtk
pdxq :“ 1

N

řN
j“1 δX̃j,N,M

tk

pdxq and X̃i,N,M
0 “ Xi

0.

5.2 Main Results

We state our main results and assumption here, the proofs are postponed to Section 5.4. Recall
that we want to associate a particle system to the MV-SDE and show its convergence, so-called
propagation of chaos. We have the following result that holds under weaker assumptions than
those in Theorem 5.6.

Proposition 5.4 (Propagation of chaos)
Let the assumption in Theorem 5.3 hold for m ą 4. Let Xi be the solution to (5.3), and Xi,N be
the solution to (5.2).

Then we have the following convergence result.

sup
1ďiďN

Er sup
0ďtďT

|Xi
t ´X

i,N
t |2s ď C

$

’

&

’

%

N´1{2 if d ă 4,

N´1{2 logpNq if d “ 4,

N´2{d if d ą 4.

This result shows the particle scheme will converge to the MV-SDE with a given rate. There-
fore, to show convergence between our numerical scheme and the MV-SDE, we only need to
show that the “true” particle scheme and numerical version of the particle scheme converge.
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Explicit scheme

We first introduce the continuous time version of the explicit scheme (5.4). Denote by
κptq :“ supts P t0, h, 2h, . . . ,Mhu : s ď tu for all t P r0, T s, bM pt, x, νq :“ bpt,x,νq

1`M´α|bpt,x,νq|
with

α P p0, 1{2s for all t P r0, T s, x P Rd, ν P P2pR
dq

Xi,N,M
t “ Xi

0 `

ż t

0
bM

´

κpsq, X i,N,M
κpsq , µX,N,Mκpsq

¯

ds

`

ż t

0
σ
´

κpsq, X i,N,M
κpsq , µX,N,Mκpsq

¯

dW i
s , µX,N,Mt pdxq “

1

N

N
ÿ

j“1

δ
Xj,N,M
t

pdxq. (5.6)

Note that |bM pt, x, νq| ď min pMα, |bpt, x, νq|q and that X̄i,N,M
tk

“ Xi,N,M
tk

for all k P t0, 1, . . . ,Mu
and hence Xi,N,M is a continuous version of X̄i,N,M from (5.4). We then obtain the following
convergence result.

Proposition 5.5
Let the assumptions in Theorem 5.6 (see below) hold. Then it holds that

sup
1ďiďN

Er sup
0ďtďT

|Xi,N
t ´Xi,N,M

t |2s ď Ch.

This then leads to our main explicit scheme convergence result.

Theorem 5.6 (Strong Convergence of Explicit)
Let Assumption 5.1 and 5.2 hold, further let X0 P L

mpRdq for m ě 4p1 ` qq (note q ą 1) and set
α “ 1{2. Let Xi be the solution to (5.3), and Xi,N,M be that for (5.6).

Then we obtain the following convergence result

sup
1ďiďN

E
“

sup
0ďtďT

|Xi
t ´X

i,N,M
t |2

‰

ď C

$

’

&

’

%

N´1{2 ` h if d ă 4,

N´1{2 logpNq ` h if d “ 4,

N´2{d ` h if d ą 4.

Proof of Theorem 5.6. Theorem 5.6 is a consequence of Propositions 5.4 and 5.5. �

Remark 5.7 (Issues using stopping times)
The technique of using the stopping time τ iR :“ inftt ě 0 : |Xi,N,M

t | ě Ru to control the particles
is suboptimal here and several problems appear by introducing them. Namely, one can only
consider stopping times that stop one particle since otherwise the convergence speed would
decrease with a higher number of particles. However, applying a stopping time to a single
particle does not allow us to fully bound the coefficients and moreover destroys the result of all
particles being identically distributed.

The stopping time arguments used for the implicit scheme below require stronger assumptions
in order to make the theory hold.

Implicit scheme

As alternative to the explicit scheme we now discuss the implicit or backward Euler scheme.
That being said, the implicit scheme has some well documented disadvantages, namely it is
expensive compared to its explicit counterpart, we discuss this issue further in Section 5.3. One
can consult, [MS13] for example on the implicit scheme (and extensions) for standard SDEs.

106



Main Results

Standard implicit scheme convergence results rely on the so called monotone growth condi-
tion, we therefore proceed with the following assumption.

Assumption 5.8
(H1). There exists a constant C such that, for all µ P P2pR

dq,

|bp0, 0, µq| ` |σp0, 0, µq| ď C.

(H2). The drift and diffusion coefficient satisfy the stronger bound in measure condition, for all
t P r0, T s, all x P Rd and all µ, µ1 P P2pR

dq

|bpt, x, µq ´ bpt, x, µ1q| ` |σpt, x, µq ´ σpt, x, µ1q| ď LW p1qpµ, µ1q ,

where W p1qp¨, ¨q is the Wasserstein-1 distance.

Although the main convergence theorem requires both H1 and H2, we only use H2 at the end
of the proof of convergence. We present our auxiliary results requiring only H1 as we believe
them to be of general independent interest.

We now state the strong convergence of the implicit scheme (5.5) to (5.2).

Proposition 5.9
Let Assumption 5.1, 5.2 and 5.8 hold. Fix a timestep h˚ ă 1{maxpLb, 2βq and assume that
X0 P L

4pq`1qpRdq. Let Xi,N be the solution to (5.2), and X̃i,N,M be that for (5.5). Then, for any h
and M with T “ hM and s P r1, 2q

sup
1ďiďN

lim
hÑ0

Er|Xi,N
T ´ X̃i,N,M

T |ss “ 0.

Theorem 5.10 (Strong Convergence of Implicit Scheme)
Let the assumption in Proposition 5.9 hold and let Xi be the solution to (5.3), and X̃i,N,M be that
for (5.5). Then, for any h and M with T “ hM and s P r1, 2q one has

lim
NÑ8

sup
1ďiďN

lim
hÑ0

Er|Xi
T ´ X̃

i,N,M
T |ss “ 0.

Proof. The proof of this result follows by combing Proposition 5.4 and 5.9 and noting that the
assertion in Proposition 5.9 is independent of N . �

Remark 5.11 (On the convergence rate of the implicit scheme)
Theorem 5.10 shows the convergence of the implicit scheme but without establishing a rate.
Methodologically speaking, the approach proposed in [HMS02] seems applicable here, where
the convergence rate of the implicit scheme would be shown by defining an intermediate process
and considering the convergence of the implicit scheme to the intermediate process and then
that of the intermediate process to the original equation, see [HMS02]. We suspect that such
proof is not straightforward with several extra constraints appearing due to the presence of
the law. As it stands, the convergence of our implicit scheme requires stronger assumptions
(see Assumption 5.8) than the explicit one so we leave establishing the rate for future. Our
numerical experiments hint that the convergence rate should be the same as the explicit, which
is consistent with the case of standard SDEs.
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5.3 Numerical testing and Examples

We illustrate our results with numerical examples. We highlight the issues of using the standard
Euler scheme in this setting and also compare the computational time and complexity of the
explicit and implicit scheme. We juxtapose our findings to those in [BFFT12].

5.3.1 Particle Corruption

It is well known that the Euler scheme fails (diverges) when one moves outside the realm of
linear growing coefficients, see [HJK11]. We claim that this divergence is worse in the setting
of MV-SDEs and associated particle system due to an effect we refer to as particle corruption.

The basic idea is that one particle becomes influential on all other particles, thus we are no
longer in the setting of “weakly interacting”. This is of course not a problem for standard SDE
simulation. We show two aspects of particle corruption in a simple example. Firstly, one particle
can cause the whole system to crash. Secondly and perhaps more profoundly, the more particles
one has the more likely this occurs. This is of course a devastating issue when simulating
a MV-SDE since accurately approximating the measure depends on having a large number of
interacting particles.

To show this example we take a classical non-globally Lipschitz SDE, the stochastic Ginzburg
Landau equation (see [Tie13]) and add a simple mean field term to it,

dXt “

´σ2

2
Xt ´X

3
t ` cErXts

¯

dt` σXt dWt, X0 “ x.

This MV-SDE clearly satisfies the assumption to have a unique strong solution in Sp for all p ą 1,
hence in theory one could calculate ϕptq :“ ErXts and have a standard SDE with one-sided
Lipschitz drift. The analysis carried out in [HJK11] then implies that the Euler scheme diverges
here.

Showing particle corruption exists. For our example we simulate N “ 5000 particles with a
time step h “ 0.05, T “ 2 and X0 “ 1, we also take σ “ 3{2 and c “ 1{2. We rerun this example
until we observed a blow up and plotted the particle paths in Figure 5.1.
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Realisations in the particle system

Other Particles

Corrupt Particle

Figure 5.1: Showing the realizations of the particles in the system. We note that the particle
given by the dashed line is starting to oscillate and is taking larger values than its
surrounding particles.

Figure 5.1 shows the first part of the divergence, namely all particles are reasonably well
behaved until one starts to oscillate rapidly. We have stopped plotting before the time boundary
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since this particle diverges shortly after this. We refer to this particle as the corrupt particle and it
is fairly straightforward to see it will diverge. However, due to the interaction this single particle
influences all the remaining particles and the whole system diverges shortly after.

Remark 5.12 (Why is particle corruption so pronounced?)
The reason this effect is so dramatic is a simple consequence of the mean-field interaction.
Typically, one observes divergence of the Euler scheme via a handful of Monte Carlo simulations
that return extremely large (or infinite) values. When one then looks to calculate the expected
value of the SDEs at the terminal time for example, these few events completely dominate the
other results. This is summed up in a statement of [HJK11], where an exponentially small
probability event has a double exponential impact.

The difference in the MV-SDE (weakly interacting particle) case is that the expectation ap-
pears inside the simulation, hence a divergence of a single particle influences multiple particles
simultaneously during the simulation and not just at the final time.

Convergence of Euler and propagation of chaos is impossible. The above shows that
one particle diverging can cause the whole system to diverge. One may argue that using more
particles would reduce the dependency between them and hence influence the system less. In
fact as we shall see the opposite is true, the more particles the more likely a divergence is. To
test this we use the same example as above but use N “ r1000, 5000, 10000, 20000s particles
and rerun each case 1000 times and record the total number of times we observe a divergence
over the ensemble.

Number of particles 1000 5000 10000 20000
Number of blow ups 3 32 43 108

Table 5.1: Number of divergences recorded at each particle level out of 1000 simulations.

The results in Table 5.1 show conclusively that the more particles the more likely a divergence
is to occur. This is a real problem in this setting since in order to minimize the propagation
of chaos error one should take N as large as possible, but doing so makes the Euler scheme
approximation (likelier to) diverge.

Remark 5.13 (Euler cannot work)
We have shown that naively applying the standard Euler scheme in the MV-SDE setting with
non globally Lipschitz coefficient has issues. However, for standard SDEs there are some simple
fixes one can apply and still obtain convergence e.g. removing paths that leave some ball as
considered in [MT05]. Methods like this cannot work here since, we either take the ball “small”
and therefore our approximation to the law is poor. Or we take a large ball, but then as the
particles head towards the boundary they can “drag” other particles with them which again
makes the system unstable.

The dependence on the measure (other particles) implies that the cruder approximation tech-
niques cannot yield the strong convergence results we obtain with the more sophisticated tech-
niques presented in this chapter. In [BFFT12] the authors have a non-globally Lipschitz MV-SDE
and simulate using standard Euler scheme. Since no divergence was observed in their simula-
tions they conjectured that the Euler scheme works in their setting. However, they used a “small”
diffusion coefficient (σ P r0, 0.5s) and small particle number (in the order of hundreds), which
makes divergence unlikely to be observed (but not impossible) and yields poorer approximation
results. Again, our methods provide certainty in terms of convergence (and convergence rate).
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Phase transition and particle systems within a bistable potential. We have applied our
algorithms to the problem highlighted in [GPV19] (see their equation (2.1) and the setup of
their Section 3.5) and shortly report that we recover the same findings as above to their problem
when dealing with the bistable potential Vηpηq “ η4{4 ´ η2{2. Divergence of the explicit Euler
scheme in [GPV19, Section 3.5] when using V 1ηpηq while both schemes we propose behave as
we have described. We do not provide the numerical experiments as it would be a repetition of
the results above.

5.3.2 Timing of Implicit vs Explicit: Size of cloud and spatial dimension

It is well documented that implicit schemes are slower than explicit ones, mainly because one
must solve a fixed point equation at each step. This operation is not “cheap” and moreover
scales d2 in dimension, see [HJK12]. Of course this analysis is carried out for standard SDEs.
What we wish to consider is how the particle system affects the timing of both methods.

We consider the same example as previous (but take T “ 1), we then consider a set of dimen-
sions from 1 to 200 and number of particles from 100 to 20000. Plotting the time taken for both
methods is given in Figure 5.2.

Firstly, we observe that the explicit scheme is two to three orders of magnitude faster than the
implicit scheme. At the highest dimensional and particle number this difference is very apparent
with the tamed scheme taking approximately 1 minute and the implicit 10 hours. Another note
to make is the scaling of each method: both methods scale similarly with particle number, but
the tamed scheme scales linearly with dimension; this is superior to the d2 scaling of the implicit
scheme.
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(b) Implicit Scheme
Figure 5.2: Showing how the time (in seconds) of the explicit scheme (left; timescale « 60

seconds) and implicit scheme (right; timescale« 104 seconds) changes with particles
and dimension.

Even for the case d “ 1, N “ 20000 the tamed scheme takes approximately 7 seconds while
the implicit scheme takes approximately 23 minutes. For many practical applications N “ 20000
is not enough for an acceptable level of accuracy, with this in mind and the dimension scaling,
this makes the implicit scheme a very expensive method in this setting.
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5.3.3 Explicit Vs Implicit Convergence: the Neuron Network Model

We compare the convergence of the explicit and the implicit scheme. To this end we use the
system in [BFFT12] where the authors develop a non globally Lipschitz MV-SDE to model
neuron activity. In our notation their system with b : r0, T s ˆ R3 ˆ P2pR

3q Ñ R3,
σ : r0, T s ˆR3 ˆ P2pR

3q Ñ R3ˆ3 reads for x “ px1, x2, x3q, z “ pz1, z2, z3q P R
3 as

b pt, x, µq :“

¨

˚

˝

x1 ´ px1q
3{3´ x2 ` I ´

ş

R3 J px1 ´ Vrevq z3 dµpzq
c px1 ` a´ bx2q

ar
Tmaxp1´x3q

1`expp´λpx1´VT qq
´ adx3

˛

‹

‚

σ pt, x, µq :“

¨

˝

σext 0 ´
ş

R3 σJ px1 ´ Vrevq z3 dµpzq
0 0 0
0 σ32pxq 0

˛

‚

with

σ32pxq :“ 1tx3Pp0,1qu

d

ar
Tmaxp1´ x3q

1` expp´λpx1 ´ VT qq
` adx3 Γ expp´Λ{p1´ p2x3 ´ 1q2qq,

T “ 2 is chosen as the final time and

X0 „ N

¨

˝

¨

˝

V0

w0

y0

˛

‚,

¨

˝

σV0 0 0
0 σw0 0
0 0 σy0

˛

‚

˛

‚,

where the parameters have the values

V0 “ 0 σV0 “ 0.4 a “ 0.7 b “ 0.8 c “ 0.08 I “ 0.5 σext “ 0.5
w0 “ 0.5 σw0 “ 0.4 Vrev “ 1 ar “ 1 ad “ 1 Tmax “ 1 λ “ 0.2
y0 “ 0.3 σy0 “ 0.05 J “ 1 σJ “ 0.2 VT “ 2 Γ “ 0.1 Λ “ 0.5.

As the true solution is unknown to compare the convergence rates, we use as proxy the output
of the explicit scheme with 223 steps. Since the explicit scheme has convergence rate

?
h we

know that 216 steps and below yields one order of magnitude larger errors. The simulation for
1000 particles and average root mean square error of each particle is given in Figure 5.3.

One can observe that although initially the implicit scheme has a better rate of convergence, it
levels off to yield the expected 1{2 rate1. Making the explicit scheme the more computationally
efficient. Of course our “true” was calculated from the explicit scheme, hence we additionally
carried out a similar test with a “true” from the implicit, and the results were almost identical.

Remark 5.14 (Small Diffusion Setting)
Above, we have taken σext “ 0.5, this goes against the example in [BFFT12] where σext “ 0. As
it turns out, in the case σext “ 0, the implicit scheme has a convergence rate close to 1 (up to an
error of around 10´4), while the explicit scheme maintains the standard 1{2 rate. It is our belief
that this is due to the fact that when σext “ 0 the diffusion coefficient makes little difference,
hence both scheme revert close to their deterministic convergence rate. The explicit scheme of
course still rate of order 1{2, while the implicit is order 1. It may therefore be that in the setting
of small diffusion terms the implicit can yield superior results, of course though this is a special
case and is not true in general.

1One can note that the x-axis is written in terms of runtime rather than number of time-steps. As there is a one to
one correspondence between the time-steps and the time taken we can still determine the rate. However, this scale
allows one to compare both the rate and the time-taken to achieve a given error.
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Figure 5.3: Root mean square error of the explicit and implicit (see Footnote 1). The number
of steps of the explicit scheme are M P t22, 23, . . . , 216u and of the implicit scheme
are M P t22, 23, . . . , 211u. We used 1000 particles and the true is calculated from the
explicit with 223 steps. Both schemes converge with rate 1{2.

Obtaining the Density

Figure 5.4: Approximate density of the first and second component of the MV-SDE at time
T “ 1.2. We used 10000 particles, 220 steps and a bandwidth of 0.15 in the ker-
nel smoothing.

In some applications as well as the value of the MV-SDE at the terminal time, one may also be
interested in the density (law). In [BFFT12, Section 4] the authors compare density estimation
using both the Fokker-Plank equation and the histogram from the particle system. The approach
using PDEs becomes computationally expensive here if one considers multiple populations of
MV-SDE and hence the authors take a simple case (see [BFFT12, Section 4.3]). There are of
course other drawbacks such as dimension scaling which often make stochastic techniques more
favorable in this setting. Moreover, using the PDE one will only obtain the density. If one is
further interested in calculating a “payoff” i.e. ErGpXT qs for some function G, then we would
require an additional integral approximation or Metropolis Hastings style sampling scheme to
calculate this expectation. While [BFFT12] apply a basic histogram approach when using MV-
SDEs, this does not yield particularly nice results, namely, the resultant density is not a smooth
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surface. There are however, many statistical techniques one can use to improve this, see [Kee11,
Chapter 18.4] for further results and discussion. Taking the example in [BFFT12] (with σext “ 0)
and applying MATLAB’s ksdensity function we obtain Figure 5.4.

One can observe the similarity between our result using SDEs and the one obtained in
[BFFT12, pg 31] using the (expensive) PDE approach.

Conclusions and future work

We have shown how one can apply the techniques from SDEs to the MV-SDE setting and some
of its pitfalls and challenges that arise. The numerical testing carried out shows that the explicit
scheme yields superior results (over the implicit scheme) in general.

Although we have been able to obtain convergence for the implicit scheme it is under stronger
assumptions than the explicit scheme (the implicit scheme works very well in Section 5.3.3).
The reason for these assumptions is that the implicit scheme is more challenging to bound than
the explicit. The standard approach around this problem is to use stopping time arguments.
However, as described in Remark 5.7, stopping times are harder to handle in the MV-SDE frame-
work. Caution is needed to account for the extra technicalities that arise.

It is our belief that Assumption 5.8, although sufficient, is not necessary to guarantee the
implicit scheme converges. As research is carried out into stopping times and MV-SDEs, future
theoretical developments in this direction may allow this assumption to be weakened. We also
leave open a proof for the convergence rate of the implicit scheme. Showing such a convergence
rate in our framework is clearly possible but adds little in scope given the gains of the explicit
over the implicit scheme. We leave the question open until a time a more resourceful implicit
scheme can be designed.

Another interesting area which we have not discussed is sign preservation and the impact it
has on the law. For example a MV-SDE may be known to be positive. However, if the numerical
scheme takes the solution into the negative region how does the law dependence influence the
remaining particles? One can consider the special case of Lb ă 0 in Assumption 5.1, even
though the MV-SDE could have a nonnegative solution, the numerical scheme may not preserve
this feature.

5.4 Proof of Main Results

We shall use C to denote a constant that can changes from line to line, but only depends on
known quantities, T , d, the one-sided Lipschitz coefficients etc.

5.4.1 Propagation of Chaos

Let us show the propagation of chaos result.

Proposition 5.4. Let us fix 1 ď i ď N , we then approach the proof in the usual way for dealing
with one-sided Lipschitz coefficients, namely we apply Itô’s formula to the difference (note the
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Xi
0 cancel out),

|Xi
t ´X

i,N
t |2 “

ż t

0
2xXi

s ´X
i,N
s , bps,X i

s, µsq ´ bps,X
i,N
s , µX,Ns qy ds

`

ż t

0
2xXi

s ´X
i,N
s , pσps,X i

s, µsq ´ σps,X
i,N
s , µX,Ns qq dW i

sy

`

l
ÿ

a“1

ż t

0
|σaps,X

i
s, µsq ´ σaps,X

i,N
s , µX,Ns q|2 ds, (5.7)

where σa is the ath column of matrix σ, hence σa is a d-dimensional vector. Considering the first
integral in (5.7),

xXi
s ´X

i,N
s , bps,X i

s, µsq ´ bps,X
i,N
s , µX,Ns qy

“ xXi
s ´X

i,N
s , bps,X i

s, µsq ´ bps,X
i,N
s , µsqy ` xX

i
s ´X

i,N
s , bps,X i,N

s , µsq ´ bps,X
i,N
s , µX,Ns qy.

Applying the one-sided Lipschitz property in space and W p2q in measure along with Cauchy-
Schwarz we obtain,

xXi
s ´X

i,N
s , bps,X i

s, µsq ´ bps,X
i,N
s , µX,Ns qy ď C|Xi

s ´X
i,N
s |2 ` C|Xi

s ´X
i,N
s |W p2qpµs, µ

X,N
s q.

As in [Car16], we introduce the empirical measure constructed from i.i.d. samples of the true
solution µNs :“ 1

N

řN
j“1 δXj

s
. As W p2q is a metric (see [Vil08, Chapter 6]), we have

W p2qpµs, µ
X,N
s q ďW p2qpµs, µ

N
s q `W

p2qpµNs , µ
X,N
s q.

Since µNs , µX,Ns are empirical measures a standard result for the Wasserstein metric is

W p2qpµNs , µ
X,N
s q ď

´ 1

N

N
ÿ

j“1

|Xj
s ´X

j,N
s |2

¯1{2
.

We leave the other W p2q term for the moment and consider the diffusion coefficient in the time
integral. Since σ is globally Lipschitz and W p2q for each a (by definition σa “ σea, with ea the
basis vector, global Lipschitz follows from our norm), we get

|σaps,X
i
s, µsq ´ σaps,X

i,N
s , µX,Ns q|2

ď C
`

|σaps,X
i
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˘
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ÿ
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N
s q

2
˘

.

One can note this is independent of a. The final term to bound is the stochastic integral term.
To do this we apply the supremum and expectation opterator to (5.7)

E
”

sup
tPr0,T s

|Xi
t ´X

i,N
t |2

ı

ď CE
”
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0
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` ClE
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ÿ
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ı

. (5.8)
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For the stochastic integral,

E
”
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ˇ

ˇ
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ˇ
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ÿ
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,

where we have applied Burkholder-Davis-Gundy to remove the stochastic integral. Using
Young’s inequality ab ď a2{2` b2{2 we can bound this term by

E
”1

2
sup
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.

Substituting into (5.8) yields,
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Taking the 1
2 suptPr0,T s |X

i
t ´Xi,N

t |2 to the other side, noting that the supremum value over the
integrals is t “ T and using the bound for the difference in σ we obtain,

E

«

sup
tPr0,T s

|Xi
t ´X

i,N
t |2

ff

ď CE

„
ż T

0
|Xi

s ´X
i,N
s |2 ` |Xi

s ´X
i,N
s |W p2qpµs, µ

X,N
s q ds



` CE

«

ż T

0
|Xi

s ´X
i,N
s |2 `

1

N

N
ÿ

j“1

|Xj
s ´X

j,N
s |2 `W p2qpµs, µ

N
s q

2 ds

ff

.

To deal with the summation term, observe that since all j are identically distributed,

E
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ÿ
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Therefore, applying Young’s inequality to |Xi
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where the final step follows from Gronwall’s inequality. At this point, one could conclude a
pathwise propagation of chaos result, see [Car16, Lemma 1.9], however, here we are interested
in the rate of convergence. We use the improved version [CD17, Theorem 5.8] of the classical
convergence result [RR98, Chapter 10.2]. Provided Xi

¨ P L
p
¨ pR

dq for any p ą 4, which follows
from [dRST19, Theorem 3.3] then for any s,

E
”

W p2qpµs, µ
N
s q

2
ı

ď C

$

’

&

’

%

N´1{2 if d ă 4,

N´1{2 logpNq if d “ 4,

N´2{d if d ą 4.

Using the result in Theorem 5.3 with our assumption then completes the proof. �

5.4.2 Proof of Explicit Convergence

We prove Proposition 5.5 by establishing first a few auxiliary results. To keep expressions com-
pact we introduce

∆X i,N,M
s :“ Xi,N

s ´Xi,N,M
s for s P r0, T s.

Further, we will use throughout and without mentioning the following result

E
” 1
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ı
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2
ı
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E
”
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s

ˇ

ˇ

2
ı

,

which holds because for every i the RVs are identically distributed.

Lemma 5.15
Suppose Assumption 5.1 and 5.2 are fulfilled, then there exists a constant C which is independent
of N and M such that

xXi,N,M
t , bM
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t,X i,N,M
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ÿ
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¸
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ˇ

ˇ
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.

Proof. First, observe for x, x1 P Rd and µ P PpRdq that

xx´ x1, bM pt, x, µq ´ bM pt, x
1, µqy

“
xx´ x1, bpt, x, µq ´ bpt, x1, µqy

1`M´α|bpt, x, µq|
` xx´ x1,

bpt, x1, µqp|bpt, x, µq| ´ |bpt, x1, µqq|

pMα ` |bpt, x, µq|qpMα ` |bpt, x1, µq|q
y

ď
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ˇ

ˇ
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ˇ

2

.

Assuming without loss of generality (otherwise just switch x and x1) that |bpt, x, µq| ě |bpt, x1, µq|
we get by Assumption 5.1

xx´ x1, bM pt, x, µq ´ bM pt, x
1, µqy ď pLb ` 1q|x´ x1|2 ` 1.
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Similarily we obtain for all x P Rd and µ, µ1 P PpRdq

|bM pt, x, µq ´ bM pt, x, µ
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Lemma 5.16
Suppose Assumption 5.1 and 5.2 are fulfilled and X0 P L

2pRdq, then there exists a constant C
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We start with the expectations of the last term (using |s´ κpsq| ď T {M and α P p0, 1{2s)
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Putting this together and using Lemma 5.15 we obtain
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which furthermore yields
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and hence by Gronwall’s lemma
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where C is a constant which is independent of N and M . �

Lemma 5.17
If Assumption 5.1 and 5.2 are fulfilled and X0 P L

2pRdq, then for all p P p0, 2s we have
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then the estimates (5.9) and (5.10) hold for those p as well.
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Proof. We obtain for any p ě 2
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and due to Itô’s isometry , Lemma 5.15 and Lemma 5.16 for C independent of M and i
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ˇ
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ˇ
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ˇ
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ď CM´1,

which gives, combined with (5.11), that
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0ďtďT

E
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ă 8 for some p ą 2, then
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ˇ
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by the estimate (5.11) and the Burkholder-Davis-Gundy inequality. Since furthermore,
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we get the desired result here as well.
Finally, using the above results and that α ď 1{2, we obtain for any p ě 0 for which

Er|Xi,N,M
t ´Xi,N,M

κptq |ps ď CM´p{2, that

E
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ˇ

ˇ
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Mpα ď C,

holds for any t P r0, T s and 1 ď i ď N , which completes the proof. �

Lemma 5.18
Suppose that Assumption 5.1 and 5.2 are fulfilled, then for every p ě 2 with X0 P L

ppRdq there
exists a constant C such that

sup
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sup
1ďiďN

E
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0ďtďT

ˇ
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Xi,N,M
t

ˇ

ˇ
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p


ă C.

Proof. Define p̂ ě 2 such that Er|X0|
p̂s ă 8 and note that for p ă 2 Lemma 5.17 yields immedi-

ately the result.
We use an inductive argument and start with p “ 2. In every step we set q “ 2p ^ p̂. By Itô’s

formula and Lemma 5.15 we have
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ˇ
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ˇ

ˇ
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ˇ

ˇ
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ˇ
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ˇ

ˇ
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ˇ

.

With the inequality |a` b|q{2 ď Cp|a|q{2 ` |b|q{2q and Jensen’s inequality we therefore obtain

E
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0ďsďt
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The application of the Burkholder-Davis-Gundy inequality and Lemma 5.17 with2 q{2 yields

E

„
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2
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ff¸

,

where C denotes in each case a constant that is independent of M . With Young’s inequality in

2Observe that Lemma 5.17 holds for the current value of p and since q “ 2p^ p̂ it implies that it holds for q{2.
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the form ab ď 1
2C a

2 ` C
2 b

2, Hölder’s inequality and the estimate for σ we have
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ds

˙

.

Taking the 1
2Ersup0ďsďt |X

i,N,M
s |qs term to the LHS taking the sup over i on both sides we obtain

sup
1ďiďN

E
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”

ˇ

ˇXi,N,M
0

ˇ

ˇ

q
ı

`

ż t

0
sup

1ďiďN
E

„

sup
0ďuďs

ˇ

ˇXi,N,M
u

ˇ

ˇ

q


ds

˙
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and thus the application of Gronwall’s lemma yields that

sup
1ďiďN

E
”

sup
0ďtďT

ˇ

ˇXi,N,M
t

ˇ

ˇ

q
ı

ă C, (5.12)

for some positive constant C which depends on Er|Xi
0|
qs but is independent of N and M .

Since (5.12) is proven for q we can set p “ q and use this result in the next step of the iteration.
Since the new q is at most twice as much as p, Lemma 5.17 can again be applied for q{2. This
iteration gets repeated until q “ p̂. �

Now we can complete the proof of Proposition 5.5.

Proof of Proposition 5.5. Using Itô’s formula we observe,
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where we estimate every term on the right hand side as follows. Due to Assumption 5.1 we have
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and the definition of bM together with |a´ a
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where q is again the polynomial growth rate of b. Also the Burkholder-Davis-Gundy inequality
yields

E

«

sup
uPr0,ts

ż u

0
2x∆X i,N,M

s ,
´

σ
`

s,X i,N
s , µX,Ns

˘

´ σ
`

κpsq, X i,N,M
κpsq , µX,N,Mκpsq

˘

¯

dW i
sy

ff

ď E

«

´

C

ż t

0

´

l
ÿ

a“1

|σaps,X
i,N
s , µX,Ns q ´ σaps,X

i,N,M
κpsq , µX,N,Mκpsq q|2

¯

|∆X i,N,M
s |2 ds

¯
1
2

ff

ď E
”1

2
sup
uPr0,ts

|∆X i,N,M
u |2 ` C

ż t

0

l
ÿ

a“1

ˇ

ˇ

ˇ
σaps,X

i,N
s , µX,Ns q ´ σapκpsq, X

i,N,M
κpsq , µX,N,Mκpsq q

ˇ

ˇ

ˇ

2
ds

ı

.

and
ˇ

ˇ

ˇ
σa

`

s,X i,N
s , µX,Ns

˘

´ σa

´

κpsq, X i,N,M
κpsq , µX,N,Mκpsq

¯ˇ

ˇ

ˇ

2

ď C |s´ κpsq| ` C
ˇ

ˇ

ˇ
Xi,N
s ´Xi,N,M

κpsq

ˇ

ˇ

ˇ

2
` CW p2q

´

µX,Ns , µX,N,Mκpsq

¯2

ď CM´1 ` C
ˇ

ˇ

ˇ
Xi,N
s ´Xi,N,M

κpsq

ˇ

ˇ

ˇ

2
`
C

N

N
ÿ

j“1

ˇ

ˇ

ˇ
Xj,N
s ´Xj,N,M

κpsq

ˇ

ˇ

ˇ

2

ď CM´1 ` C
ˇ

ˇ

ˇ
Xi,N
s ´Xi,N,M

κpsq

ˇ

ˇ

ˇ

2
`
C

N

N
ÿ

j“1

ˆ

ˇ

ˇ∆Xj,N,M
s

ˇ

ˇ

2
`

ˇ

ˇ

ˇ
Xj,N,M
s ´Xj,N,M

κpsq

ˇ

ˇ

ˇ

2
˙

.

By putting those estimates together we obtain

E

„

sup
0ďuďt

ˇ

ˇ∆X i,N,M
u

ˇ

ˇ

2


ď CE

«

M´1 `

ż t

0

ˇ

ˇ∆X i,N,M
s

ˇ

ˇ

2
`

1

N

N
ÿ

j“1

ˇ

ˇ

ˇ
Xj,N,M
s ´Xj,N,M

κpsq

ˇ

ˇ

ˇ

2
`M´1 `

1

N

N
ÿ

j“1

ˇ

ˇ∆Xj,N,M
s

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
Xi,N,M
s ´Xi,N,M

κpsq

ˇ

ˇ

ˇ

2
`M´2α

´

1`
ˇ

ˇ

ˇ
Xi,N,M
κpsq

ˇ

ˇ

ˇ

4p1`qq ¯

`M´2α
´ 1

N

N
ÿ

j“1

ˇ

ˇ

ˇ
Xj,N,M
κpsq

ˇ

ˇ

ˇ

2 ¯2
ds

ff

` E
”1

2
sup
uPr0,ts

|∆X i,N,M
u |2

ı

and therefore

E

„

sup
0ďuďt

ˇ

ˇ∆X i,N,M
u

ˇ

ˇ

2


ď C
´

ż t

0
E
”

sup
0ďuďs

ˇ

ˇ∆X i,N,M
u

ˇ

ˇ

2
ı

ds`M´2α `M´1
¯

,
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by Lemma 5.18 and since Xi,N are identically distributed and Xi,N,M are identically distributed
for all i P t1, . . . , Nu. This estimate holds for every i hence we can insert sup1ďiďN on both sides
giving

sup
1ďiďN

E

„

sup
0ďuďt

ˇ

ˇ∆X i,N,M
u

ˇ

ˇ

2


ď C
´

ż t

0
sup

1ďiďN
E
”

sup
0ďuďs

ˇ

ˇ∆X i,N,M
u

ˇ

ˇ

2
ı

ds`M´2α `M´1
¯

ă 8,

and finally by Gronwall’s lemma (using that α “ 1{2),

sup
1ďiďN

E

„

sup
0ďuďt

ˇ

ˇXi,N
u ´Xi,N,M

u

ˇ

ˇ

2


ď CM´1.

�

5.4.3 Proof of Implicit Convergence

The main goal here is to prove Proposition 5.9. We loosely follow [MS13], however, due to the
extra dependencies on time and measure and further allowing for random initial conditions we
require more refined arguments. We take N as some fixed positive integer. Before considering
the implicit scheme, let us make a remark and show a result on the particle system (5.2).

Remark 5.19 (Monotone Growth)
The combination of Assumption 5.1, 5.2 and H1, imply the monotone growth condition. Namely,
there exist constants α, β P R such that @t P r0, T s, µ P P2pR

dq with l being the dimension of the
Brownian motion,

xx, bpt, x, µqy `
1

2

l
ÿ

a“1

|σapt, x, µq|
2 ď α` β|x|2 @x P Rd.

Proposition 5.20
Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold, further, let X0 P L

2pRdq. Then the
following bounds hold,

sup
1ďiďN

Er|Xi,N
T |2s ď

`

Er|X0|
2s ` 2αT

˘

expp2βT q,

and for τ im “ inftt ě 0 : |Xi,N
t | ą mu we have

sup
1ďiďN

Ppτ im ď T q ď
1

m2

`

Er|X0|
2s ` 2αT

˘

expp2βT q.

Proof. Firstly, let us consider the stopped process Xi,N
T^τ im

. Applying Itô to the square of this
process and taking expectations yields

Er|Xi,N
T^τ im

|2s “ Er|Xi
0|

2s ` E
”

ż T^τ im

0
2xXi,N

s , bps,X i,N
s , µX,Ns qy `

l
ÿ

a“1

|σaps,X
i,N
s , µX,Ns q|2 ds

ı

ď Er|Xi
0|

2s ` 2αT `

ż T

0
2βEr|Xi,N

s^τ im
|2s ds ď

`

Er|Xi
0|

2s ` 2αT
˘

e2βT ,

where we have used the growth and stopping condition to remove the martingale term, then
Remark 5.19, uniform boundedness of b in the measure component and Gronwall’s inequality
to obtain the result.
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Noting that the following lower bound also holds,

Er|Xi,N
T^τ im

|2s ě m2Ppτ im ď T q, we obtain Ppτ im ď T q ď
1

m2

`

Er|Xi
0|

2s ` 2αT
˘

expp2βT q.

Further, since limmÑ8 |X
i,N
T^τ im

| “ |Xi,N
T |, we obtain by Fatou’s lemma,

Er|Xi,N
T |2s ď lim inf

mÑ8
Er|Xi,N

T^τ im
|2s ď

`

Er|Xi
0|

2s ` 2αT
˘

expp2βT q.

The result then follows by noting that Er|Xi
0|

2s “ Er|X0|
2s and hence the bounds are independ-

ent of i, so we obtain the result for the supremum over i. �

Let us now return to the implicit scheme. At each time step ti and for each particle i one needs
to solve the fixed point equation

X̃i,N,M
tk`1

´ b
´

tk, X̃
i,N,M
tk`1

, µ̃X,N,Mtk

¯

h “ X̃i,N,M
tk

` σ
´

tk, X̃
i,N,M
tk

, µ̃X,N,Mtk

¯

∆W i
tk
.

This leads us to consider a function F

F pt, x, µq :“ x´ bpt, x, µqh. (5.13)

For the implicit scheme to have a solution the function F must have a unique inverse. The
following lemma is crucial in proving convergence of the implicit scheme.

Lemma 5.21
Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold and fix h˚ ă 1{maxpLb, 2βq. Further,
let 0 ă h ď h˚ and take any t P r0, T s and µ P P2pR

dq fixed. Then for all y P Rd, there exists a
unique x such that F pt, x, µq “ y. Hence the fixed point problem in (5.5) is well defined.

Moreover, for all t P r0, T s and µ P P2pR
dq the following bound holds,

|x|2 ď p1´ 2hβq´1p|F pt, x, µq|2 ` 2hαq, (5.14)

and for any k ě 1 the following recursive bound holds,

|F ptk, X̃
i,N,M
tk`1

, µ̃X,N,Mtk
q|2

ď |F ptk´1, X̃
i,N,M
tk

, µ̃X,N,Mtk´1
q|2 `

´

l
ÿ

a“1

|σaptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q||
`

∆W i
tk

˘

a
|

¯2

` 2hα` 2hβ|X̃i,N,M
tk

|2 ` 2xX̃i,N,M
tk

, σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
y, (5.15)

where
`

∆W i
tk

˘

a
is the ath entry of the vector.

Proof. Let us first prove there exists a unique solution to (5.13), in the sense that for all t P r0, T s
and µ P P2pR

dq fixed, then there exists a unique x P Rd such that F pt, x, µq “ y for a given
y P Rd, provided 0 ă h ă h˚. This is a classical problem considered in [Zei90, p.557] or
see [LdRS15, p.2596], which requires F to be continuous, monotone and coercive (in x). The
continuity of b yields that of F . For the monotonicity of F , we have

xx´ x1, F pt, x, µq ´ F pt, x1, µqy “ |x´ x1|2 ´ xx´ x1, bpt, x, µqh´ bpt, x1, µqhy

ě |x´ x1|2p1´ Lbhq,
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and provided h ă 1{Lb, the final constant is strictly positive. Coercivity follows similarly by the
monotone growth condition in b,

xx, F pt, x, µqy ě |x|2 ´ hpα` β|x|2q,

therefore,

lim
|x|Ñ8

xx, F pt, x, µqy

|x|
“ 8, for h ă 1{β.

Hence F pt, x, µq “ y has a unique solution for F defined in (5.13) and therefore the numerical
scheme (5.5) is well defined.

To show x is bounded by F p¨, x, ¨q, again fix some t P r0, T s and µ P P2pR
dq. Then,

|F pt, x, µq|2 “ |x|2 ´ 2xx, bpt, x, µqyh` |bpt, x, µq|2h2

ě |x|2 ´ 2xx, bpt, x, µqyh ě p1´ 2hβq|x|2 ´ 2hα,

by Remark 5.19. Since h ă 1{p2βq, we obtain

|x|2 ď p1´ 2hβq´1p|F pt, x, µq|2 ` 2hαq.

This result is useful since it holds for all t P r0, T s and µ P P2pR
dq. For the recursive bound it is

useful to note

F ptk, X̃
i,N,M
tk`1

, µ̃X,N,Mtk
q “ X̃i,N,M

tk`1
´ bptk, X̃

i,N,M
tk`1

, µ̃X,N,Mtk
qh

“ X̃i,N,M
tk

` σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk

“ F ptk´1, X̃
i,N,M
tk

, µ̃X,N,Mtk´1
q ` bptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
qh (5.16)

` σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
.

This recursion is only valid for k ě 1 due to the appearance of tk´1. Using this relation observe
the following,

|F ptk, X̃
i,N,M
tk`1

, µ̃X,N,Mtk
q|2 “ |F ptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q|2 ` |bptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q|2h2

` |σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
|2

` 2xF ptk´1, X̃
i,N,M
tk

, µ̃X,N,Mtk´1
q, bptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
qyh

` 2xF ptk´1, X̃
i,N,M
tk

, µ̃X,N,Mtk´1
q

` bptk´1, X̃
i,N,M
tk

, µ̃X,N,Mtk´1
qh, σptk, X̃

i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
y.

We now look to bound these various terms. By definition of F ,

2xF ptk´1, X̃
i,N,M
tk

, µ̃X,N,Mtk´1
q, bptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
qy h` |bptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q|2h2

ď 2xX̃i,N,M
tk

, bptk´1, X̃
i,N,M
tk

, µ̃X,N,Mtk´1
qy h ď 2hα` 2hβ|X̃i,N,M

tk
|2.

Similarly,

2xF ptk´1, X̃
i,N,M
tk

, µ̃X,N,Mtk´1
q ` bptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
qh, σptk, X̃

i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
y

“ 2xX̃i,N,M
tk

, σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
y.
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In order to obtain the desired form we note

σpt, x, µq∆Wt “

l
ÿ

a“1

σapt, x, µqp∆Wtqa .

Crucially p∆Wtqa is a scalar and standard properties of norms yield,

|σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
| ď

l
ÿ

a“1

|σaptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q||
`

∆W i
tk

˘

a
|.

The bound on F then follows immediately from these results. �

Let us now show the first moment bound result. As is standard with implicit schemes we firstly
do this up to a stopping time, hence we define

λim “ inftk : |X̃i,N,M
tk

| ą mu. (5.17)

One should note that this stopping time does not actually bound X̃ at that point i, the best one
can do is bound the previous point i.e. for λim ą 0, we have |X̃i,N,M

λim´1
| ď m.

Lemma 5.22
Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold and fix h˚ ă 1{maxpLb, 2βq. Then for
any p ě 2 such that Er|X0|

ps “ Cppq ă 8, we also have,

sup
1ďiďN

E
“

|X̃i,N,M
tk

|p1tkďλimu
‰

ď Cpp,mq @k ďM and 0 ă h ď h˚.

Using standard notation, Cpaq denotes a constant that can depend on variable a.

Proof. As it turns out the function F in (5.13) gives us a useful bound. From (5.16) we obtain,

|F ptk, X̃
i,N,M
tk`1

, µ̃X,N,Mtk
q|p ď 2p´1

`

|X̃i,N,M
tk

|p ` |σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
|p
˘

.

Hence, multiplying with the indicator and taking expected values yields,

Er|F ptk, X̃
i,N,M
tk`1

, µ̃X,N,Mtk
q|p1tk`1ďλimu

s

ď Cppq
´

mp ` E
“

|σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
|p1tk`1ďλimu

‰

¯

.

Then we estimate

E
“

|σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
|p1tk`1ďλimu

‰

ď

l
ÿ

a“1

Er|σaptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q|2p1tk`1ďλimu

s ` Er|p∆W i
tk
qa|

2ps.

Using the bounds on each coefficient of σ, it is straightforward to observe,

|σaptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q|2p ď Cppq

`

1` |X̃i,N,M
tk

|2p
˘

.

Using this bound we obtain,

Er|F ptk, X̃
i,N,M
tk`1

, µ̃X,N,Mtk
q|p1tk`1ďλimu

s ď Cpp,mq.
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Rewriting the quantity we wish to bound as

E
“

|X̃i,N,M
tk

|p1tkďλimu
‰

“ E
“

|X̃i,N,M
tk

|p1tkďλim,ką0u

‰

` E
“

|X̃i,N,M
t0

|p1tk“0, λim“0u

‰

ď Cpp,mq,

where the inequality follows from Estimate (5.14), our bound on F , and the assumption that
X0 P L

ppRdq. Again, the corresponding bound is independent of the choice of i and hence the
result holds for the supremum over i. �

Although the previous bound is useful, the presence of the stopping time is inconvenient. We
therefore remove it and show the second moment is bounded.

Proposition 5.23
Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold and fix h˚ ă 1{maxpLb, 2βq. Further
assume that X0 P L

4pRdq. Then,

sup
1ďiďN

sup
hďh˚

sup
0ďkďM

Er|X̃i,N,M
tk

|2s ď C.

Proof. Firstly let us take a nonnegative integer K, such that Kh ď T . Now let us consider
(5.15). One can note that this bound still holds where the F terms are multiplied by 1tλimą0u

(since both sides are nonnegative and the indicator is bounded above by one). Summing both
sides from k “ 1 to K ^ λim, noting that the F terms cancel, we obtain,

|F ptK^λim , X̃
i,N,M
t
pK^λimq`1

, µ̃X,N,Mt
K^λim

q|21tλimą0u

ď |F pt0, X̃
i,N,M
t1

, µ̃X,N,Mt0
q|21tλimą0u `

K^λim
ÿ

k“1

`

2hα` 2hβ|X̃i,N,M
tk

|21tλimą0u

˘

`

K^λim
ÿ

k“1

´

l
ÿ

a“1

|σaptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q||
`

∆W i
tk

˘

a
|

¯2
1tλimą0u

`

K^λim
ÿ

k“1

2xX̃i,N,M
tk

, σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
y1tλimą0u ,

where we use the convention
ř0
k“1 ¨ “ 0. Although the stopping time is useful it is not ideal that

it appears on the sum. However, for nonnegative terms it is straightforward to take the stopping
time into the coefficients and the stochastic term can be rewritten as

K^λim
ÿ

k“1

2xX̃i,N,M
tk

, σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
y1tλimą0u

“

K
ÿ

k“1

2xX̃i,N,M
tk

, σptk, X̃
i,N,M
tk

, µ̃X,N,Mtk
q∆W i

tk
y1tkďλimu.

Taking expectations and noting, by Lemma 5.22, that X̃i,N,M
tk

1tkďλimu P L
4
tk
pRdq we conclude

this term to be a martingale. We therefore obtain the following bound,

Er|F ptK^λim , X̃
i,N,M
t
pK^λimq`1

, µ̃X,N,Mt
K^λim

q|21tλimą0us

ď E
“

|F pt0, X̃
i,N,M
t1

, µ̃X,N,Mt0
q|2

‰

` 2αT `
K
ÿ

k“1

2hβE
“

|X̃i,N,M
t
k^λim

|21tλimą0u

‰

`

K
ÿ

k“1

E
”´

l
ÿ

a“1

|σaptk^λim , X̃
i,N,M
t
k^λim

, µ̃X,N,Mt
k^λim

q||
`

∆W i
t
k^λim

˘

a
|

¯2
1tλimą0u

ı

.
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The idea is to apply the discrete version of Gronwall’s inequality to this (see for example
[MPF12, pg. 436] or [MS13, Lemma 3.4]), which requires our bound to be in terms of F .
Using arguments similar to previous ones

E
”´

l
ÿ

a“1

|σaptk^λim , X̃
i,N,M
t
k^λim

, µ̃X,N,Mt
k^λim

q||
`

∆W i
t
k^λim

˘

a
|

¯2
1tλimą0u

ı

ď C
l
ÿ

a“1

E
”

|σaptk^λim , X̃
i,N,M
t
k^λim

, µ̃X,N,Mt
k^λim

q|2|
`

∆W i
t
k^λim

˘

a
|21tλimą0u

ı

ď C
l
ÿ

a“1

h
`

1` E
“

|X̃i,N,M
t
k^λim

|21tλimą0u

‰˘

,

where we have used independence of σp¨q1tλimą0u and ∆W along with the growth bounds on σ
to obtain the final inequality. Combining this with our previous bounds and appealing again to
Lemma 5.21 (to bound X̃ by F ) we obtain,

Er|F ptK^λim , X̃
i,N,M
t
pK^λimq`1

, µ̃X,N,Mt
K^λim

q|21tλimą0us

ď E
“

|F pt0, X̃
i,N,M
t1

, µ̃X,N,Mt0
q|2

‰

` C `
K
ÿ

k“1

ChE
“

|X̃i,N,M
t
k^λim

|21tλimą0u

‰

ď E
“

|F pt0, X̃
i,N,M
t1

, µ̃X,N,Mt0
q|2

‰

` Cp1`
h

1´ 2hβ
q

`

K
ÿ

k“1

C
h

1´ 2hβ
E
“

|F ptpk^λimq´1, X̃
i,N,M
t
k^λim

, µ̃X,N,Mt
pk^λimq´1

q|21tλimą0u

‰

.

Applying a discrete version of the Gronwall inequality and noting
řK
k“1 1 ď T {h yields

Er|F ptK^λim , X̃
i,N,M
t
pK^λimq`1

, µ̃X,N,Mt
K^λim

q|21tλimą0us

ď

´

E
“

|F pt0, X̃
i,N,M
t1

, µ̃X,N,Mt0
q|2

‰

` C
`

1`
h

1´ 2hβ

˘

¯

exp
´ C

1´ 2hβ

¯

.

Recalling (5.16), we can apply the same arguments as before to obtain the bound

E
“

|F pt0, X̃
i,N,M
t1

, µ̃X,N,Mt0
q|2

‰

ď Cp1` p1` hqEr|X̃i,N,M
t0

|2sq.

Noting that our bound for F is now independent of m, we can use Fatou’s lemma to take the
limit and obtain (for K ě 1),

Er|F ptK , X̃
i,N,M
tK`1

, µ̃X,N,MtK
q|2s ď C

´

1` p1` hqEr|X̃i,N,M
t0

|2s `
h

1´ 2hβ

¯

exp
´ C

1´ 2hβ

¯

.

Again by Lemma 5.21, the LHS of the latter inequality bounds X̃i,N,M
tK`1

(with some constant),

hence we obtain a bound for X̃i,N,M
tk

for k ě 2. By assumption X̃i,N,M
t0

has second moment
therefore we need to obtain a bound for X̃i,N,M

t1
. This is not difficult to obtain using again that

we can bound X̃ as follows,

E
“

|X̃i,N,M
t1

|2
‰

ď
`

1´ 2hβ
˘´1

´

2hα` E
“

|F pt0, X̃
i,N,M
t1

, µ̃X,N,Mt0
q|2

‰

¯

,

then we can apply the same bound on F as above.
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In order to complete the proof, we also need to show that this bound exists for all i and
0 ă h ď h˚. One can see immediately that all bounds decrease as h decreases, hence the
supremum value is to set h “ h˚, which is also finite since h˚ ă 1{p2βq. The supremum over i
follows from the fact that all bounds are independent of i. �

Now that we have established a bound on the second moment, we look to show convergence of
this scheme to the true particle system solution. As always with discrete schemes it is beneficial
to introduce their continuous counterpart. As it turns out doing it naively for implicit schemes
leads to measurability problems, hence one introduces the so-called forward backward scheme

X̂i,N,M
tk`1

“ X̂i,N,M
tk

` b
´

tk´1_0, X̃
i,N,M
tk

, µ̃X,N,Mtk´1_0

¯

h` σ
´

tk, X̃
i,N,M
tk

, µ̃i,N,Mtk

¯

∆W i
tk
,

where X̂i,N,M
0 “ Xi

0 and _ denotes the maximum. The scheme’s continuous time version is

X̂i,N,M
t “ Xi

0 `

ż t

0
b
´

pκpsq ´ hq _ 0, X̃i,N,M
κpsq , µ̃X,N,M

pκpsq´hq_0

¯

ds`

ż t

0
σ
´

κpsq, X̃i,N,M
κpsq , µ̃i,N,Mκpsq

¯

dW i
s .

(5.18)

The first result we present is that the discrete and continuous versions stay close to one another,
up to the stopping time (5.17).

Lemma 5.24
Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold and fix h˚ ă 1{maxpLb, 2βq. Further
assume X0 P L

4pq`1qpRdq. Then for 1 ď p ď 4 the following holds for 0 ă h ď h˚,

sup
1ďiďN

sup
0ďkďM

E
“

|X̂i,N,M
tk

´ X̃i,N,M
tk

|p1tkďλimu
‰

ď Cpm, pqhp .

Moreover, we also have the following relation between X̂ and F for all 1 ď k ďM ,

|X̂i,N,M
tk

|2 ě
1

2
|F ptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q|2 ´ |bpt0, X̃

i,N,M
t0

, µ̃X,N,Mt0
qh|2 . (5.19)

Proof. To show the first part we start by noting the following useful relation between (5.5) and
(5.18), namely for 1 ď k ďM ,

X̂i,N,M
tk

´ X̃i,N,M
tk

“
`

bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
q ´ bptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q
˘

h.

Noting that one can bound

|bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
q ´ bptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q| ď C

`

1` |tk|
1{2 ` |X̃i,N,M

t0
|q`1 ` |X̃i,N,M

tk
|q`1

˘

,

where we have used the polynomial growth, Hölder-continuity on the coefficient b and in par-
ticular Assumption H1. Hence,

E
“

|X̂i,N,M
tk

´ X̃i,N,M
tk

|p1tkďλimu
‰

ď Cppqhp
`

1` |tk|
p{2 ` E

“

|X̃i,N,M
t0

|ppq`1q1tkďλimu
‰

` E
“

|X̃i,N,M
tk

|ppq`1q1tkďλimu
‰˘

.

One observes that the terms on the RHS are bounded byCpp,mq for p ď 4 sinceX0 P L
4pq`1qpRdq

and Lemma 5.22. This completes the first part of the proof.
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For the second part, recall from the relation between (5.5) and (5.18), one has,

X̂i,N,M
tk

“ bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
qh` X̃i,N,M

tk
´ bptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
qh

“ bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
qh` F ptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q.

Using the reverse triangle inequality we obtain,

|X̂i,N,M
tk

|2 ě ´|bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
qh| ` |F ptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q|.

The result follows from squaring both sides and applying the generalisation of Young’s inequality,
namely,

|bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
qh||F ptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q|

ď |bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
qh|2 `

1

4
|F ptk´1, X̃

i,N,M
tk

, µ̃X,N,Mtk´1
q|2 .

�

The next result we wish to present is that both schemes do not blow up in finite time, for this
we define a new stopping time,

ηim :“ inf
 

t ě 0 : |X̂i,N,M
t | ě m, or |X̃i,N,M

κptq | ą m
(

.

Note in particular that ηim is smaller than or equal to λim in (5.17).

Lemma 5.25
Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold, fix h˚ ă 1{maxpLb, 2βq and assume
X0 P L

4pq`1qpRdq. Then, for any ε ą 0, there exists a m˚ such that, for any m ě m˚ we can find a
h˚0pmq (note the dependence on m) so that,

sup
1ďiďN

Ppηim ă T q ď ε, for any 0 ă h ď h˚0pmq.

Proof. Note due to the initial condition being random we must be careful with how we set m,
we shall come back to this later. Let us start by applying Itô to the stopped version of (5.18),

|X̂i,N,M
T^ηim

|2

“|Xi
0|

2 `

ż T^ηim

0
2xX̂i,N,M

s , b
´

pκpsq ´ hq _ 0, X̃i,N,M
κpsq , µ̃X,N,M

pκpsq´hq_0

¯

y

`

l
ÿ

a“1

|σa

´

κpsq, X̃i,N,M
κpsq , µ̃i,N,Mκpsq

¯

|2 ds`

ż T^ηim

0
2xX̂i,N,M

s , σ
´

κpsq, X̃i,N,M
κpsq , µ̃i,N,Mκpsq

¯

dW i
sy.

We now look to bound the various integrands. Firstly one can observe

xX̂i,N,M
t , b

`

pκpsq ´ hq _ 0, X̃i,N,M
κpsq , µ̃X,N,M

pκpsq´hq_0

˘

y `

l
ÿ

a“1

|σa
`

κpsq, X̃i,N,M
κpsq , µ̃i,N,Mκpsq

˘

|2

“ xX̂i,N,M
t ´ X̃i,N,M

κpsq , b
`

pκpsq ´ hq _ 0, X̃i,N,M
κpsq , µ̃X,N,M

pκpsq´hq_0

˘

y

` xX̃i,N,M
κpsq , b

`

pκpsq ´ hq _ 0, X̃i,N,M
κpsq , µ̃X,N,M

pκpsq´hq_0

˘

y `

l
ÿ

a“1

|σa
`

κpsq, X̃i,N,M
κpsq , µ̃i,N,Mκpsq

˘

|2

ď C|X̂i,N,M
t ´ X̃i,N,M

κpsq |p1` |X̃i,N,M
κpsq |q`1q ` 2α` β|X̃i,N,M

κpsq |2 ,

131



Simulation of MV-SDEs with super linear growth

where we used Cauchy-Schwarz, polynomial growth bound, Hölder-continuity and monotone
growth to obtain the final inequality.

Taking expectations and noting that due to the stopping time the stochastic integral is square
integrable and hence a martingale, we obtain,

Er|X̂i,N,M
T^ηim

|2s

ď Er|Xi
0|

2s ` E
”

ż T^ηim

0
C|X̂i,N,M

s ´ X̃i,N,M
κpsq |p1` |X̃i,N,M

κpsq |q`1q ` 2α` β|X̃i,N,M
κpsq |2 ds

ı

.

To proceed we note the following, |X̃i,N,M
κpsq |2 ď 2p|X̃i,N,M

κpsq ´ X̂i,N,M
s |2 ` |X̂i,N,M

s |2q and also that

ż T^ηim

0
|X̂i,N,M

s ´ X̃i,N,M
κpsq |2 ds ď Cpmq

ż T^ηim

0
|X̂i,N,M

s ´ X̃i,N,M
κpsq | ds,

where we used the fact that the stopping time ensures X̃ and X̂ are ď m for s ă ηim and s “ ηim
has measure zero. The same reasoning also implies,

ż T^ηim

0
C|X̂i,N,M

s ´ X̃i,N,M
κpsq |p1` |X̃i,N,M

κpsq |q`1q ds ď Cpmq

ż T^ηim

0
|X̂i,N,M

s ´ X̃i,N,M
κpsq | ds.

Hence the following result holds,

Er|X̂i,N,M
T^ηim

|2s ď Er|Xi
0|

2s ` CE
”

ż T^ηim

0
Cpmq|X̂i,N,M

s ´ X̃i,N,M
κpsq | ` 1` β|X̂i,N,M

s |2 ds
ı

.

The next step is of course to take the expectation inside the integral. Let us start by noting the
difference term can be bounded as

E
”

ż T^ηim

0
|X̂i,N,M

s ´ X̃i,N,M
κpsq | ds

ı

ď E
”

ż T^ηim

0
|X̂i,N,M

s ´ X̂i,N,M
κpsq | ds`

ż T^ηim

0
|X̂i,N,M

κpsq ´ X̃i,N,M
κpsq | ds

ı

ď E
”

h

ż T^ηim

0
|b
´

pκpsq ´ hq _ 0, X̃i,N,M
κpsq , µ̃X,N,M

pκpsq´hq_0

¯

| ds
ı

` E
”

ż T^ηim

0
|σ
´

κpsq, X̃i,N,M
κpsq , µ̃i,N,Mκpsq

¯

pW i
s ´W

i
κpsqq| ds

ı

` Cpmqh,

where we have used Lemma 5.24 for the final inequality. For the other terms, one can note due
to the growth assumptions on b and Lemma 5.22, that

E
”

h

ż T^ηim

0
|b
´

pκpsq ´ hq _ 0, X̃i,N,M
κpsq , µ̃X,N,M

pκpsq´hq_0

¯

| ds
ı

ď Cpmqh.

The term involving σ is more complex. However, we can bound it as follows:

E
”

ż T^ηim

0
|σ
´

κpsq, X̃i,N,M
κpsq , µ̃i,N,Mκpsq

¯

pW i
s ´W

i
κpsqq| ds

ı

ď C

ż T

0

l
ÿ

a“1

E
”

|σa

´

κpsq, X̃i,N,M
κpsq , µ̃i,N,Mκpsq

¯

||pW i
s ´W

i
κpsqqa|1tκpsqďtλimu

ı

ds

ď C

ż T

0

l
ÿ

a“1

h1{2p1` Er|X̃κpsq^t
λim
|2sq ds ď Cpmqh1{2.
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Further, since |X̂i,N,M
s | ě 0, we obtain,

E
”

ż T^ηim

0
|X̂i,N,M

s |2 ds
ı

ď

ż T

0
E
“

|X̂i,N,M
s^ηim

|2
‰

ds.

Hence,

Er|X̂i,N,M
T^ηim

|2s ď Er|Xi
0|

2s ` Cpmqh1{2 ` C

ż T

0
1` βE

“

|X̂i,N,M
s^ηim

|2
‰

ds

ď
`

Er|Xi
0|

2s ` C ` Cpmqh1{2
˘

exppCβT q, (5.20)

where the final inequality follows from Gronwall.
In order to obtain an upper bound on the probability of the stopping time occurring we look

to obtain a lower bound for (5.18) at the stopping time. For the moment let us take |Xi
0| ă m,

hence ηim ą 0. There are now two possible ways the stopping time can be reached: if X̂
hits the boundary first, then we have |X̂i,N,M

ηim
| “ m and if X̃ hits the boundary first we have

|X̃i,N,M
ηim

| ą m.

In the case that X̂ hits the boundary first, the lower bound is obvious, namely |X̂i,N,M
ηim

| “ m.
For the second case it is less obvious. Recalling (5.19) and (5.14) we obtain lower bound

|X̂i,N,M
tk

|2 ě
1

2

`

p1´ 2hβq|X̃i,N,M
tk

|2 ´ 2hα
˘

´ |bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
qh|2 ,

where again we are taking k ě 1 here, but this is not a problem since we are assuming for
the moment |Xi

0| ă m. Observing that this lower bound holds independently of which process
triggers the stopping condition we have on

 

|X̃i,N,M
ηim

| ą m
(

that

m2 ě |X̂i,N,M
ηim

|21t|Xi
0|ămu

ě
1

2

`

p1´ 2hβqm2 ´ 2hα
˘

1t|Xi
0|ămu

´ |bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
qh|21t|Xi

0|ămu
.

Thus, for constants C1, C2 ą 0,

|X̂i,N,M
ηim

|21t|Xi
0|ămu

ě pC1m
2 ´ C2hq1t|Xi

0|ămu
´ Cpmqh21t|Xi

0|ămu
,

where |bpt0, X̃
i,N,M
t0

, µ̃X,N,Mt0
q|1t|Xi

0|ămu
ď Cpmq1t|Xi

0|ămu
via the growth condition on b. Let us

now combine these results to obtain an upper bound for the probability of the stopping time.
Notice that

Er|X̂i,N,M
T^ηim

|2s ě Er|Xi
0|

21t|Xi
0|ěmu

s ` Er|X̂i,N,M
ηim

|21t|Xi
0|ămu

1t0ăηimăT us

ě Ppηim “ 0q `
`

pC1m
2 ´ C2hq ´ Cpmqh

2
˘

Ppt|Xi
0| ă mu X t0 ă ηim ă T uq.

Leaving the second term for the moment, and noting that Xi
0 is uniformly integrable, then for

any ε ą 0 there exists an m˚ ą 0 such that for all m ě m˚

Ppηim “ 0q ď mPp|Xi
0| ě mq ď Er|Xi

0|1t|Xi
0|ěmu

s ď
ε

3
.

It is also useful to note that

Ppt|Xi
0| ă mu X t0 ă ηim ă T uq “ Ppt0 ă ηim ă T uq.
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From our previous analysis it is clear that for m large enough and some contant Cpmq, by using
(5.20), the probability can be bounded by

Pp0 ă ηim ă T q ď
Er|X̂i,N,M

T^ηim
|2s

pC1m2 ´ C2h´ Cpmqh2q
ď

`

Er|Xi
0|

2s ` C ` Cpmqh1{2
˘

exppCβT q

C1m2 ´ C2h´ Cpmqh2
.

Now the goal is to bound this by 2ε{3. We already have taken m sufficiently large
to obtain the last inequality. Now consider for any given m a factor h˚01pmq such that
C2h

˚
01pmq ` Cpmqh˚01pmq

2 ď 1. It is clear for 0 ă h ă h˚01pmq the same bound holds. Then
for the same ε as before choose m large enough such that,

`

Er|Xi
0|

2s ` C
˘

exppCβT q

C1m2 ´ 1
ď
ε

3
.

Redefine m˚ as the corresponding maximum of this m and m˚. Now for any m ě m˚, define
h˚02pmq such that,

Cpmqph˚02q
1{2 exppCβT q

C1m2 ´ 1
ď
ε

3
.

Again for 0 ă h ă h˚02pmq the above inequality holds. Hence for any m ě m˚ and any
0 ă h ă minph˚01pmq, h

˚
02pmqq , we have, Ppηim ă T q ď Ppηim “ 0q `Pp0 ă ηim ă T q ď ε. �

We now look towards showing our strong convergence result, firstly by showing convergence
between (5.18) and (5.2) and then (5.5) and (5.2). From this point onwards we require H2 (in
Assumption 5.8).

Recalling the stopping time in Proposition 5.20, we now define θim :“ τ im ^ ηim and have the
following convergence result.

Lemma 5.26
Let Assumption 5.1, 5.2, the full Assumption 5.8 hold, fix h˚ ă 1{maxpLb, 2βq and assume
X0 P L

4pq`1qpRdq. Then, for all h P p0, h˚q,

sup
1ďiďN

Er sup
0ďtďT

|X̂i,N,M
t^θim

´Xi,N
t^θim

|2s ď Cpmqh` CE
“

1tTąθimu
‰1{2

.

Proof. For ease of presentation we denote by κpsq :“ pκpsq ´ hq _ 0. As is standard we start by
applying Itô to the difference to obtain

|Xi,N
t^θim

´ X̂i,N,M
t^θim

|2

“

ż t^θim

0
2xXi,N

s ´ X̂i,N,M
s , bps,X i,N

s , µX,Ns q ´ bpκpsq, X̃i,N,M
κpsq , µ̃X,N,Mκpsq qy

`

l
ÿ

a“1

|σaps,X
i,N
s , µX,Ns q ´ σapκpsq, X̃

i,N,M
κpsq , µ̃X,N,Mκpsq q|2 ds

`

ż t^θim

0
2xXi,N

s ´ X̂i,N,M
s ,

`

σps,X i,N
s , µX,Ns q ´ σpκpsq, X̃i,N,M

κpsq , µ̃X,N,Mκpsq q
˘

dW i
sy.
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By writing out the drift term we have that

xXi,N
s ´ X̂i,N,M

s , bps,X i,N
s , µX,Ns q ´ bpκpsq, X̃i,N,M

κpsq , µ̃X,N,Mκpsq qy

“ xXi,N
s ´ X̂i,N,M

s , bps,X i,N
s , µX,Ns q ´ bps, X̂i,N,M

s , µX,Ns qy

` xXi,N
s ´ X̂i,N,M

s , bps, X̂i,N,M
s , µX,Ns q ´ bpκpsq, X̂i,N,M

s , µX,Ns qy

` xXi,N
s ´ X̂i,N,M

s , bpκpsq, X̂i,N,M
s , µX,Ns q ´ bpκpsq, X̂i,N,M

κpsq , µX,Ns qy

` xXi,N
s ´ X̂i,N,M

s , bpκpsq, X̂i,N,M
κpsq , µX,Ns q ´ bpκpsq, X̃i,N,M

κpsq , µX,Ns qy

` xXi,N
s ´ X̂i,N,M

s , bpκpsq, X̃i,N,M
κpsq , µX,Ns q ´ bpκpsq, X̃i,N,M

κpsq , µ̃X,N,Mκpsq qy

ď C
´

|Xi,N
s ´ X̂i,N,M

s |2 ` h`
`

C ^ CW p1qpµX,Ns , µ̃X,N,Mκpsq q
˘2

` p1` |X̂i,N,M
s |2q ` |X̂i,N,M

κpsq |2qq|X̂i,N,M
s ´ X̂i,N,M

κpsq |2

` p1` |X̂i,N,M
κpsq |2q ` |X̃i,N,M

κpsq |2qq|X̂i,N,M
κpsq ´ X̃i,N,M

κpsq |2
¯

,

where we have used the growth bounds on b along with several applications of Cauchy-Schwarz
and Young’s inequality. In particular we have used the fact that b is both globally and W p1q

bounded in measure to obtain the C ^ CW p1qpµX,Ns , µ̃X,N,Mκpsq q bound. Using similar arguments
to earlier proofs and to the drift term above, we get the following bound for the diffusion

|σaps,X
i,N
s , µX,Ns q ´ σapκpsq, X̃

i,N,M
κpsq , µ̃X,N,Mκpsq q|

ď C
`

h1{2 ` |Xi,N
s ´ X̂i,N,M

s | ` |X̂i,N,M
s ´ X̂i,N,M

κpsq |

` |X̂i,N,M
κpsq ´ X̃i,N,M

κpsq | ` 1^W p1qpµX,Ns , µ̃X,N,Mκpsq q
˘

.

Ultimately we need to take supremum and expected values. Hence, we wish to bound

E
”

sup
0ďrďt^θim

ż r

0
2xXi,N

s ´ X̂i,N,M
s ,

`

σps,X i,N
s , µX,Ns q ´ σpκpsq, X̃i,N,M

κpsq , µ̃X,N,Mκpsq q
˘

dW i
sy

ı

.

We use the Burkholder Davis Gundy inequality, however care is needed since the terminal time
is a stopping time. It turns out the usual upper bound still holds (see for example [Pro05, pg.
226]), hence we obtain, by using Young’s inequality,

E
”

sup
0ďrďt^θim

ż r

0
2xXi,N

s ´ X̂i,N,M
s ,

`

σps,X i,N
s , µX,Ns q ´ σpκpsq, X̃i,N,M

κpsq , µ̃X,N,Mκpsq q
˘

dW i
sy

ı

ď CE
”´

ż t^θim

0
|Xi,N

s ´ X̂i,N,M
s |2

l
ÿ

a“1

|σaps,X
i,N
s , µX,Ns q ´ σapκpsq, X̃

i,N,M
κpsq , µ̃X,N,Mκpsq q|2 ds

¯1{2ı

ď
1

2
E
”

sup
0ďsďt^θim

|Xi,N
s ´ X̂i,N,M

s |2
ı

` CE
”

ż t^θim

0

l
ÿ

a“1

|σaps,X
i,N
s , µX,Ns q ´ σapκpsq, X̃

i,N,M
κpsq , µ̃X,N,Mκpsq q|2 ds

ı

.

Taking the supremum over time and expectations of our original difference and using these
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bounds we obtain the inequality

1

2
E

„

sup
0ďtďT

|Xi,N
t^θim

´ X̂i,N,M
t^θim

|2


ď E

„
ż T^θim

0
C
´

|Xi,N
s ´ X̂i,N,M

s |2 `
`

1^W p1qpµX,Ns , µ̃X,N,Mκpsq q
˘2

` p1` |X̂i,N,M
s |2q ` |X̂i,N,M

κpsq |2qq|X̂i,N,M
s ´ X̂i,N,M

κpsq |2

` h` p1` |X̂i,N,M
κpsq |2q ` |X̃i,N,M

κpsq |2qq|X̂i,N,M
κpsq ´ X̃i,N,M

κpsq |2
¯

` C
l
ÿ

a“1

´

h` |Xi,N
s ´ X̂i,N,M

s |2 ` |X̂i,N,M
s ´ X̂i,N,M

κpsq |2

` |X̂i,N,M
κpsq ´ X̃i,N,M

κpsq |2 `
`

1^W p1qpµX,Ns , µ̃X,N,Mκpsq q
˘2
¯

ds



.

Let us now concentrate on the measure terms 1 ^ W p1qpµX,Ns , µ̃X,N,Mκpsq q and 1 ^

W p1qpµX,Ns , µ̃X,N,Mκpsq q. The goal in the end is to use a Grönwall type inequality. Hence, we want to
obtain terms of a similar form. The standard argument in this case is to remove the average sum
of other particles using the fact that they are identically distributed, unfortunately the presence
of the stopping time breaks this argument and forces us to argue a different way. We start by
noting the following bound

W p1qpµX,Ns , µ̃X,N,Mκpsq q ď
1

N

N
ÿ

j“1

|Xj,N
s ´ X̃j,N,M

κpsq |1
tsďθjmu

`
1

N

N
ÿ

j“1

|Xj,N
s ´ X̃j,N,M

κpsq |1
tsąθjmu

.

By using the fact that for a, b, c ą 0, minpa, b` cq ď minpa, bq `minpb, cq and minpa, bq ď
?
a
?
b

alongside Hölder inequality for sums, we obtain

1^W p1qpµX,Ns , µ̃X,N,Mκpsq q ď

g

f

f

e

1

N

N
ÿ

j“1

|Xj,N
s ´ X̃j,N,M

κpsq |21
tsďθjmu

`

g

f

f

e

1

N

N
ÿ

j“1

|Xj,N
s ´ X̃j,N,M

κpsq |1
tsąθjmu

.

Let us further define µ̂X,N,Ms :“ 1
N

řN
j“1 δX̂j,N,M

s
. Then using the triangle inequality we get

1

N

N
ÿ

j“1

|Xj,N
s ´ X̃j,N,M

κpsq |21
tsďθjmu

ď
C

N

N
ÿ

j“1

|Xj,N
s ´ X̂j,N,M

s |21
tsďθjmu

`
C

N

N
ÿ

j“1

|X̂j,N,M
s ´ X̂j,N,M

κpsq |21
tsďθjmu

`
C

N

N
ÿ

j“1

|X̂j,N,M
κpsq ´ X̂j,N,M

κpsq |21
tsďθjmu

`
C

N

N
ÿ

j“1

|X̂j,N,M
κpsq ´ X̃j,N,M

κpsq |21
tsďθjmu

.
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Hence, we can bound the measure terms by

E

„
ż T^θim

0

`

1^W p1qpµX,Ns , µ̃X,N,Mκpsq q
˘2

ds



ď E

„
ż T

0

`

1^W p1qpµX,Ns , µ̃X,N,Mκpsq q
˘2

ds



ď E

„
ż T

0

C

N

ˆ N
ÿ

j“1

|Xj,N
s ´ X̂j,N,M

s |21
tsďθjmu

`

N
ÿ

j“1

|X̂j,N,M
s ´ X̂j,N,M

κpsq |21
tsďθjmu

`

N
ÿ

j“1

|X̂j,N,M
κpsq ´ X̂j,N,M

κpsq |21
tsďθjmu

`

N
ÿ

j“1

|X̂j,N,M
κpsq ´ X̃j,N,M

κpsq |21
tsďθjmu

`

N
ÿ

j“1

|Xj,N
s ´ X̃j,N,M

κpsq |1
tsąθjmu

ds

˙

and likewise also

E

„
ż T^θim

0

`

1^W p1qpµX,Ns , µ̃X,N,Mκpsq q
˘2

ds



ď E

„
ż T

0

C

N

ˆ N
ÿ

j“1

|Xj,N
s ´ X̂j,N,M

s |21
tsďθjmu

`

N
ÿ

j“1

|X̂j,N,M
s ´ X̂j,N,M

κpsq |21
tsďθjmu

`

N
ÿ

j“1

|X̂j,N,M
κpsq ´ X̃j,N,M

κpsq |21
tsďθjmu

`

N
ÿ

j“1

|Xj,N
s ´ X̃j,N,M

κpsq |1
tsąθjmu

ds

˙

.

Therefore, taking the expectation inside the integral and supremum over the particle index;
noting particles are identically distributed, we obtain

sup
1ďiďN

E

«

sup
0ďtďT^θim

|Xi,N
t^θim

´ X̂i,N,M
t^θim

|2

ff

ď C

ˆ

hT `

ż T

0
sup

1ďiďN
E
”

sup
0ďrďs

|Xi,N
r^θim

´ X̂i,N,M
r^θim

|2
ı

` sup
1ďiďN

E
”

|X̂i,N,M
κpsq ´ X̂i,N,M

κpsq |21tsďθimu
ı

` sup
1ďiďN

E
”

|X̂i,N,M
κpsq ´ X̃i,N,M

κpsq |21tsďθimu
ı

` sup
1ďiďN

E
”

|Xi,N
s ´ X̃i,N,M

κpsq |1tsąθimu
ı

` sup
1ďiďN

E
”

|Xi,N
s ´ X̃i,N,M

κpsq |1tsąθimu
ı

` sup
1ďiďN

E
”

p1` |X̂i,N,M
s |2q ` |X̂i,N,M

κpsq |2qq|X̂i,N,M
s ´ X̂i,N,M

κpsq |21tsďθimu
ı

` sup
1ďiďN

E
”

p1` |X̂i,N,M
κpsq |2q ` |X̃i,N,M

κpsq |2qq|X̂i,N,M
κpsq ´ X̃i,N,M

κpsq |21tsďθimu
ı

ds

˙

.

where we have further used that if Y¨ ě 0, then Y¨1t¨ďtu ď Yt¨^tu. Noting 1t¨u “ 12
t¨u

, we obtain
via Cauchy-Schwarz inequality

E
”

p1` |X̂i,N,M
s |2q ` |X̂i,N,M

κpsq |2qq|X̂i,N,M
s ´ X̂i,N,M

κpsq |21tsďθimu
ı

ď CpmqE
”

|X̂i,N,M
s ´ X̂i,N,M

κpsq |41tsďθimu
ı1{2

.
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Noting that

|X̂i,N,M
s ´ X̂i,N,M

κpsq |ď |b
´

κpsq, X̃i,N,M
κpsq , µ̃X,N,M

pκpsq´hq_0

¯

|h` |σ
´

κpsq, X̃i,N,M
κpsq , µ̃X,N,Mκpsq q

¯

pW i
s ´W

i
κpsqq|,

which implies

E
”

|X̂i,N,M
s ´ X̂i,N,M

κpsq |41tsďθimu
ı

ď Ch4E
”

p1` |X̃i,N,M
κpsq |4pq`1qq1tsďθimu

ı

` CE
”

p1` |X̃i,N,M
κpsq |4q1tsďθimu

ı

E
”

pW i
s ´W

i
κpsqq

4
ı

ď Cpmqh2 ,

where we used Lemma 5.22 to obtain the final inequality (note that by assumption
X0 P L

4pq`1qpRdq). Arguing in the exact same fashion along with Lemma 5.24 also yields

E
”

p1` |X̂i,N,M
κpsq |2q ` |X̃i,N,M

κpsq |2qq|X̂i,N,M
κpsq ´ X̃i,N,M

κpsq |21tsďθimu
ı

ď Cpmqh.

The remaining terms can be bounded using the same arguments as above. Substituting these
bounds then implies

sup
1ďiďN

E
”

sup
0ďtďT

|Xi,N
t^θim

´ X̂i,N,M
t^θim

|2
ı

ď Cpmqh` C

ż T

0
sup

1ďiďN
E
”

|Xi,N
s ´ X̃i,N,M

κpsq |1tsąθimu
ı

ds

` C

ż T

0
sup

1ďiďN
E
”

|Xi,N
s ´ X̃i,N,M

κpsq |1tsąθimu
ı

ds` C

ż T

0
sup

1ďiďN
E
”

sup
0ďrďs

|Xi,N
r^θim

´ X̂i,N,M
r^θim

|2
ı

ds.

Hence, by Gronwall’s inequality we obtain,

sup
1ďiďN

E
”

sup
0ďtďT

|Xi,N
t^θim

´ X̂i,N,M
t^θim

|2
ı

ď Cpmqh` C

ż T

0
sup

1ďiďN
E
”

|Xi,N
s ´ X̃i,N,M

κpsq |1tsąθimu
ı

` sup
1ďiďN

E
”

|Xi,N
s ´ X̃i,N,M

κpsq |1tsąθimu
ı

ds.

We then complete the proof by applying Cauchy-Schwarz to the expectations in the integrand
along with Propositions 5.20 and 5.23. �

We now can prove our main implicit scheme result.

Proof of Proposition 5.9. Recall that s P r1, 2q. Define the error term as ErpT qi “ Xi,N
T ´ X̃i,N,M

T

and also let us note a more general version of Young’s inequality

xsy ď
δs

2
x2 `

2´ s

2δs{p2´sq
y2{p2´sq , @ x, y, δ ą 0.

Hence,

Er|Xi,N
T ´ X̃i,N,M

T |ss ď 2s´1
`

Er|Xi,N
T ´ X̂i,N,M

T |s1tτ imąT, ηimąT us

` Er|X̂i,N,M
T ´ X̃i,N,M

T |s1tτ imąT, ηimąT us
˘

`
δs

2
Er|ErpT q

i|2s `
2´ s

2δs{p2´sq
Er1tτ imďT or ηimďT us.
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From Lemma 5.24 we obtain,

Er|X̂i,N,M
T ´ X̃i,N,M

T |s1tτ imąT, ηimąT us ď Cpm, sqhs .

Also let us note,

Er|ErpT q
i|2s ď 2Er|Xi,N

T |2 ` |X̃i,N,M
T |2s ď 2C,

where we have used Propositions 5.20 and 5.23. Hence for any ε ą 0, we can choose δ such
that,

δs

2
Er|ErpT q

i|2s ď
ε

3
.

By subadditivity of measures, Er1tτ imďT or ηimďT us ď Ppτ im ď T q ` Ppηim ď T q. By Proposi-
tion 5.20, there exists m˚ (dependent on δ), such that for m ě m˚,

2´ s

2δs{p2´sq
Ppτ im ď T q ď

ε

3
.

Then, noting by Lemma 5.26,

Er|X̂i,N,M
T ´Xi,N

T |s1tτ imąT, ηimąT us ď E
”

sup
0ďtďT

|X̂i,N,M
t^θim

´Xi,N
t^θim

|2
ıs{2

ď Cpmqhs{2 ` CE
“

1tTąθimu
‰s{4

.

Again by subadditivity of measures we can bound

E
“

1tTąθimu
‰s{4

ď Ppτ im ď T qs{4 `Ppηim ď T qs{4 .

By the same argument as before we can define a new m˚, greater than or equal to the previous
such that CPpτ im ď T qs{4 is sufficiently small. By Lemma 5.25, by taking h small enough
for any ε̃ ą 0, Ppηim ă T q ď ε̃, and by extension, there exists an h small enough such that
Ppηim ă T qs{4 ď ε̃. Hence, for any m, we can take h small enough such that

2s´1
`

Er|Xi,N
T ´ X̂i,N,M

T |s1tτ imąT, ηimąT us

` Er|X̂i,N,M
T ´ X̃i,N,M

T |s1tτ imąT, ηimąT us
˘

`
2´ s

2δs{p2´sq
Ppηim ď T q ď

ε

3

and hence Er|Xi,N
T ´ X̃i,N,M

T |ss ď ε. Since ε ą 0 was arbitrary, we have the result. �
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