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Zusammenfassung

Wir 16sen das Skorokhod-Einbettungsproblem fiir eine Klasse von stochastischen Prozessen,
die eine inhomogene stochastische Differentialgleichung (SDE) der Form dA; = u(t, A¢)dt +
o(t, Ay) dW, erfiillen. Wir leiten hinreichende Bedingungen her, die garantieren, dass fiir ein
gegebenes Wahrscheinlichkeitsmalf v auf R eine Stoppzeit 7 und eine reelle Zahl a existieren,
sodass die Losung (A;) der SDE mit Startwert Ay = a die Bedingung A, ~ v erfiillt. Dabei unter-
scheiden wir die Félle, in denen (A4;) die Losung der SDE im schwachen oder im starken Sinn ist.
Unsere Konstruktion der einbettenden Stoppzeit basiert auf der Losung einer voll gekoppelten
Vorwarts-Riickwaérts-Differentialgleichung (FBSDE). Wir benutzen die sogenannte ,Method of
Decoupling Fields”, um zu verifizieren, dass die FBSDE eine eindeutige Losung hat. SchlieRlich
stellen wir einen Algorithmus vor, der unsere theoretischen Ergebnisse in die Praxis umsetzt und
illustrieren ihn mit einem numerischen Experiment.

Auflerdem untersuchen wir eindimensionale, zeitlich inhomogene Positionskontrollprobleme,
deren Drift-Term kontrolliert wird. Wir stellen zwei hinreichende Mengen von Bedingungen be-
reit, sodass hier Losungen existieren und geben jeweils eine optimale Kontrolle an. Im Spezialfall
der linear-quadratischen Kontrollprobleme leiten wir die optimale Feedback-Kontrolle und die
Wertfunktion fiir sowohl den endlichen Zeithorizont als auch fiir den ergodischen Fall her. Un-
sere Methode basiert auf Pontryagins Maximumsprinzip, das das Kontrollproblem in eine voll
gekoppelte FBSDE f{iberfiihrt, deren Existenz und Eindeutigkeit wir mit Hilfe der ,Method of
Decoupling Fields” verifizieren.

Des Weiteren prasentieren wir zwei stochastische Euler-Schemata, ein explizites und ein impli-
zites, fiir die Simulation von stochastischen McKean-Vlasov Differentialgleichungen (MV-SDEs)
mit einer zufilligen Startbedingung und einem Drift, der starker als linear wachsen kann. Wir
zeigen ein pfadweises Resultat fiir das sogenannte ,Propagation of Chaos” und zeigen die star-
ke Konvergenz beider Schemata fiir die resultierenden Partikelsysteme. Das explizite Schema
konvergiert mit der Standardrate von 1/2 in der Schrittldnge. Fiir das implizite Schema verwen-
den wir erfolgreich Stoppzeitargumente zusammen mit einem Partikelsystem. In numerischen
Tests weisen wir die theoretischen Konvergenzraten nach und illustrieren den Rechenzeitvorteil
des expliziten Schemas gegeniiber dem impliziten. Wir wenden unseren Algorithmus auf eine
nicht Lipschitz MV-SDE aus [GPV19] und auf das Modell eines neuronalen Netzes aus [BFFT12]
an und vergleichen unsere Resultate mit den dortigen. Wir weisen numerisch den Effekt der
,Particle Corruption” nach, bei dem ein einziger Partikel divergiert und so das gesamte System
korrumpiert.



Abstract

We solve the Skorokhod embedding problem for a class of stochastic processes satisfying an in-
homogeneous stochastic differential equation (SDE) of the form d A; = u(t, A) dt+o(t, Ay) dW;.
We provide sufficient conditions guaranteeing that for a given probability measure v on R there
exists a bounded stopping time 7 and a real a such that the solution (A;) of the SDE with initial
value a satisfies A; ~ v. We hereby distinguish the cases where (A;) is a solution of the SDE in a
weak or strong sense. Our construction of embedding stopping times is based on the solution of
a fully coupled forward-backward stochastic differential equation (FBSDE). We use the so-called
method of decoupling fields to verify that the FBSDE has a unique solution. Finally, we sketch an
algorithm for putting our theoretical construction into practice and illustrate it with a numerical
experiment.

We also provide two sets of sufficient conditions for the existence of a solution to one-
dimensional, time inhomogeneous position targeting problems, where the drift of the state
process can be controlled and derive optimal controls. For the special case of linear-quadratic
control problems we derive the optimal linear feedback control and value function, for the fi-
nite time horizon and in the ergodic version. Our method is based on Pontryagin’s maximum
principle transforming the control problem into a fully coupled FBSDE, whose existence and
uniqueness we verify with the method of decoupling fields.

Furthermore, we present two fully probabilistic Euler schemes, one explicit and one implicit,
for the simulation of McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with drifts of
super-linear growth and random initial condition. We provide a pathwise propagation of chaos
result and show strong convergence for both schemes on the consequent particle system. The
explicit scheme attains the standard 1/2 rate in stepsize. For the implicit scheme we successfully
use stopping times in combination to the particle system. Numerical tests recover the theoretical
convergence rates and illustrate a computational complexity advantage of the explicit over the
implicit scheme. Comparative analysis is carried out on a stylized non Lipschitz MV-SDE from
[GPV19] and the neuron network model proposed in [BFFT12]. We provide numerical tests
illustrating a particle corruption effect where one single diverging particle can “corrupt” the
whole particle system. Moreover, the more particles in the system the more likely this divergence
is to occur.
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1 Introduction

The aim of the Skorokhod Embedding Problem (SEP) is to find, for a given random process and a
given probability distribution, a stopping time with nice properties such that the stopped process
is distributed in the desired way. A simple example is stopping a standard Browian motion such
that we obtain the standard normal distribution, for which the deterministic stopping time 7 = 1
is a solution. Although the first formulation of this problem by Skorokhod [Sko65] was already
provided in the 1960’s, most applications were only found quite recently. Besides the usage in
some theoretical numerical results, there are also applications in finance and control theory. For
example Hobson and Klimmek [HK12] derived model independent bounds on options and in
[AKTKK19] the constrained problem gets transformed into another unconstrained one, which is
easier to solve.

After the formulation by Skorokhod, there have been countless approaches to the SEP. A good
survey was done by Obt6j [Obt04] in 2004. Since then there have been importent advances like
[AHS15], where the authors give a characterisation of all distributions which can be embed-
ded into processes solving time homogeneous stochastic differential equations (SDEs) in integ-
rable and in bounded time. This characterisation, for example, enabled the mentioned result in
[AKTKK19].

One approach used in many recent works goes back to Bass [Bas83] and is based on a time
change argument. We too use this approach. In Chapter 3 we consider a forward-backward
stochastic differential equation (FBSDE), show that it has a unique solution with the method of
decoupling fields from Chapter 2, and then prove that this solution can be transformed into a
solution for the SEP. Finally we propose a numerical scheme for the simulation of our solution.

To the best of our knowlege, the paper [AEFR18], on which Chapter 3 is based, is the first
one presenting a solution to the SEP for processes with inhomogeneous and non-deterministic
coefficents. For a more detailed comparison of our results to other works, see Section 3.6.

In optimal position control the aim is to steer a process which fulfills an SDE, such that the
generated costs of the process and steering are minimized. When solving such position tar-
geting problems, the commonly used approaches trace back to Bellman and Pontryagin. The
Dynamic Programming Principle, developed by Bellman, together with the Hamiltion-Jacobi-
Bellman equation make use of PDE theory. On the other hand, Pontryagin’s Maximum Principle
states the equivalence of the control problem to the solution of a backward stochastic differential
equation (BSDE) or respectively an FBSDE. Most works making use of Pontryagin’s Maximum
Principle either make assumptions that decouple the FBSDE making it a BSDE, or, in the linear-
quadratic case, exploite some dualities, which then allow to solve the control problem. In the
latter case the solution of the FBSDE is only a byproduct.

Our approach, presented in Chapter 4, is different in that we directly solve the coupled
FBSDE and thereby obtain a solution to the control problem. For this we apply the relatively
new method of decoupling fields (see Chapter 2). After deriving two sets of sufficient conditions



Introduction

for an optimal control, we turn to the special case of linear-quadratic control problems. Here
we can derive some explicit formulas for the optimal control and the value function, which we
show to fulfill the Hamilton-Jacobi-Bellman equation. In a final section we then consider the
ergodic case of an infinite horizon.

In the last part of this thesis, which is based on [dRES18], we are concerned with the simu-
lation of McKean Vlasov Stochastic Differential Equations (MV-SDEs) with super linear growth.
MV-SDEs are SDEs in which the drift and diffusion coefficients are allowed to depend on the
distribution of the process. In our case super linear growth means that the drift coefficent is
not globally Lipschitz continuous. Such MV-SDEs with super linear growth appear for example
in the simulation of neuronal activity (see e.g. [BFFT12], [BCC11], [BFT15]) or in biology and
physics (see e.g. [DGGT11], [GGM*18]). For a more detailed motivation we refer to [BFFT12].

The problem for simulating MV-SDEs with super linear growth is threefold. Firstly, the super
linear growth has to be dealt with. Secondly, the distribution of the process has to be approxim-
ated. And thirdly, the combination has to converge.

The super linearity poses a problem because for standard SDEs it is known that the explicit
Euler scheme runs into difficulties, see [HJK11]. We confirm this for MV-SDEs with a numerical
experiment. The usage of an implicit scheme as in [HMS02] is impractical, since this would
require to solve a fixed point equation at every time-step, which is computationally expensive.
To circumvent this problem we apply a so-called Tamed Euler scheme, which was developed in
[HJK12] and has already been successfully used by several authors (see e.g. [CJM16], [Sab13],
[FG16]) to deal with coefficients that grow super-linearly.

Although there are other techniques (see [GP18]) to approximate the distribution of the pro-
cess, we use the most common one. A so-called interacting particle system consists of simulating
many paths simultaneously and using the averaged sum of Dirac measures at the points of the
paths as distribution. In the Lipschitz setting this system is known to converge pathwise to the
true solution of the MV-SDE (see [Szn91], [Mél96]).

We refer to the Chapters 3, 4 and 5 for more detailed introductions.



2 The Method of Decoupling Fields

In this chapter we briefly summarize the key results of the abstract theory of decoupling fields,
we rely on later. We present the SLC theory (standing for Standard Lipschitz Conditions) of
Chapter 3 of [Fro15] and and the MLLC theory (standing for Markov Local Lipschitz Conditions),
which is derived from SLC (also see [Frol5]).

We consider families of measurable functions M, X, F, £, more precisely,

M :Qx[0,T] x R"® x R™ x R™*¢ — R",
Y:Qx[0,T] x R" x R™ x R™*4 — R4,
F:Qx[0,T] x R" x R™ x R™*% — R™,
E:QxR" > R™,
where n,m,d € IN and T' > 0. Let further (2, 7, P) be a probability space with a d-dimensional

Brownian motion (W;)e[o,7] and denote by (F3)e[o,r] the augmented Brownian filtration.
For x € R™ we consider the FBSDE

¢ ¢
X, = ac+f M(S,XS,YS,ZS)d8~I—j Y(s, X5, Ys, Zs) AW
0

° (2.1)

T
Y}—f(XT)—i—J F(S,XS,YS,ZS)dS—J ZsdWs.
t t

The aim is to study existence and uniqueness of solutions of the above FBSDE. It is a longstand-
ing challenge to find conditions guaranteeing that the fully coupled FBSDE (2.1) possesses a
solution. Sufficient conditions are provided e.g. in [MPY94], [PT99], [MY99], [PW99], [Del02],
[MWZZ15] (see also the references therein). The method of decoupling fields, developed in
[Fro15] (see also the precursor articles [MYZ12], [FI13] and [MWZZ15]), is convenient for de-
termining whether a solution exists. A decoupling field describes the functional dependence of
the backward part Y on the forward component X. Roughly speaking, a decoupling field is a
function u such that for every time s € [0, 7]

U(S, XS) =Y.

Under some nice conditions on the parameters of the FBSDE, there exists a maximal non-empty
interval possessing a solution triple (X, Y, Z) and a decoupling field with nice regularity proper-
ties. The method of decoupling fields consists in analyzing the dynamics of the decoupling field’s
gradient in order to determine whether the FBSDE has a solution on the whole considered time
interval.

At first, we have to fix some notation, which we also use in the subsequent chapters. For a
stochastic process A : Q x I — RY, where I is an interval in [0, 0) and N € IN, we introduce for
J < I the norm

| Allco,s := esssup [As(w)]
(8,w)ETXQ

3
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with regard to the product measure A x P. For a function f : Q x I x R" — R™ with n,m € IN
we likewise define for a non-empty subinterval J I

| flleo,:=" esssup [f(w,s,z)]
(w,s,2)eQ2x JxR"

with regard to the product of P and the Lebesgue measure. We simply write |A|« and | f] if
J =1
For a measurable map ¢ : Q2 x R™ — R™, with n, m € IN we define

=inf {L >0]|g(z) — g(2')| < L|z — a'| for all z,2" € R"},

where inf @ := . We also set L, := o0 if g is not measurable. L, < oo implies that g is
Lipschitz continuous. For a map u : Q x [¢,T] x R" — R™, with [t,T] < [0,), we define
Luyg := supgefs,r) Lugs,)-

We denote by Ly . the Lipschitz constant of ¥ with respect to the dependence on the last
component z (and with respect to the Frobenius norms on R™*? and R"*¢), by which we mean
the minimum of all Lipschitz constants or « in case that ¥ is not Lipschitz continuous in z. If
Ly, , < 0, we denote by L_ L the value L— if Ly, . > 0 and oo otherwise.

The following two assumptlons form the basis for Chapter 3 and 4. In the assumptions in
those chapters we suppose that at least one of the two is fulfilled in order to apply the theory of
this chapter.

Assumption 2.1 (SLC)
The functions M, XS, F, £ satisfy Standard Lipschitz Conditions (SLC) if

1. M,%, F are Lipschitz continuous in (z,y, z) with some Lipschitz constant L,
2. H(|M‘ + ’0-| + |F|)(7 '707070)HOO < 0,

3. ¢ is measurable such that ||£(-,0)] s, < o0 and Lg¢ , < Lilz.

Assumption 2.2 (MLLC)
The functions M, XS, F, £ fulfill Modified Local Lipschitz Conditions (MLLC) if

1. the functions M,X, I are

(a) deterministic,

(b) Lipschitz continuous in x,vy, z on sets of the form [0, T] x R® x R™ x B, where B < R™*¢
is an arbitrary bounded set,

(C) andﬁllﬁll HM(v 07 0? 0) ”OO: HF(’ 07 O’ O)HOO’ HE(" R 0)”00) LZ,Z < 00,
2. ¢ :R™ — R™ is also deterministic and satisfies L¢ , < Ly".
In contrast to SLC, there are only deterministic mappings M, X, F, ¢ allowed in the MLLC
theory. In this so-called Markovian case the Lipschitz continuity assumptions of Chapter 3 of

[Frol5] get relaxed a bit and we still obtain local existence together with uniqueness. In the
Markovian case the property

“ZS = axu(stS) : 2(S7X87Y97 ZS)”a

which comes from the fact that v will also be deterministic, gets exploited. This allows to bound
Z by a constant if ¥ and J,u are assumed to be bounded.

4



The Method of Decoupling Fields

Definition 2.3

Let M,X, F,¢ fulfill SLC and ¢t € [0,7]. We call a function u : Q x [¢,7] x R” — R™ with
u(w,T,-) = &(w,-) for a.a. w e Q a decoupling field for M, %, F,¢ on [¢,T] if for all ¢;,ty € [¢,T]
with ¢; < ¢t and any F;,—measurable X;, :  — R" there exist progressively measurable pro-
cesses X,Y, Z on [t1, 2] such that

© Xo= X + 5 M(r,X,, Y, Z2)dr + § S(r, X, Ve, Z0) AW,

* Yy =Yy, + 2 F(r, X, Yy, Z,) dr — §2 Z, AW,
® sz = U(S7XS)J

a.s. for all s € [t1,t2]. In particular, we want all integrals to be well-defined and X, Y, Z to have
values in R™, R™ and R"™*¢ respectively.

Furthermore, we call a function u : Q x (¢,7] x R™ — R™ a decoupling field for M, X%, F, £ on
(t,T] if u restricted to [¢',T] is a decoupling field for all ¢’ € (¢, T7.

Definition 2.4

Let M, %, F, ¢ fulfill MLLC and let ¢ € [0, T']. We call a deterministic function « : [¢, T]xR™ — R™
with u(T,-) = £ a Markovian decoupling field for M,%, F, ¢ on [t, T if for all ¢1,te € [t,T] with
t; < ty and any F;,—measurable X;, :  — R" there exist progressively measurable processes
X,Y, Z on [t1, 3] such that

© Xo=Xo, + 5 M(r, X, Yy, Z0) dr + §; S(r, X, Yy, Zp) AW,
© Y, =Yy, — §2f(r, X0, Yy, Z,) dr — §22 Z, AW,
° }/S = U(S7X$)J

a.s. for all s € [t1, 2] and such that | Z| 4, +,) < o0 holds. In particular, we want all integrals to
be well-defined and X, Y, Z to have values in R", R™ and R"™*¢ respectively.

In addition, we call a function w: (¢,7] x R® — R™ a Markovian decoupling field for
M,X, F,¢ on (t,T] if u restricted to ¢/, T'] is a Markovian decoupling field for all ¢’ € (¢, 7.

We refer in both cases to the stated property, that Y, = u(s, X;) a.s., as the decoupling condi-
tion.

In the following we work with weak derivatives. This allows us to obtain variational differ-
entiability (i.e. w.r.t. the initial value x € R™) of the processes X,Y, Z for Lipschitz (or locally
Lipschitz) continuous M, ¥, F, £&. We start by fixing notation and giving some definitions:

For z € R™*4 or 2 € R™*? the expression |z| denotes the Frobenius norm of the linear operator

x, i.e. the square root of the sum of the squares of its matrix coefficients.
We denote by S"! := {x € R"||z| = 1} the (n—1)-dimensional sphere. If z € R"*", z € R™*",
x € R™*4x" or x € R"*4*" we define |z|, := |z - v| for all v € S"~!, where - is the application
of the linear operator x to the vector v such that z - v is in R?, R™, R™*< or R"*¢ respectively.
We refer to sup,cgn-1 |z|, as the operator norm of z.

Now, consider a mapping X : M x A — R, where (M, A, p) is some measure space with
finite measure p and A < R" is open, N € IN. We say that X is weakly differentiable w.r.t. the
parameter \ € A, if for almost all w € M the mapping X (w, ) : A — R is weakly differentiable.
This means that there exists a mapping 0, X : M x A — R'*¥ such that

f e(A)AX (w,\)dA = —J X(w, \)oxe(A) dA
A A

5



The Method of Decoupling Fields

for any real valued test function ¢ € C(A), for almost all w € M. In particular, X (w,-) and
the weak derivative 0, X (w,-) have to be locally integrable for a.a. w. This of course includes
measurability w.r.t. A for almost every fixed w.

We remark that weak differentiability for vector valued mappings is defined component-wise.
We refer to Section 2.1.2 of [Frol5] for more details on weak derivatives.

Note that if L, , < oo and, therefore, u is Lipschitz continuous in z, then u is weakly dif-
ferentiable in = (see e.g. Lemma A.3.1. of [Frol5]) and even classically differentiable almost
everywhere. If not otherwise specified we refer to d,u : [t,T] x R" — R™*" as the particu-
lar version of the weak derivative which coincides with the classical derivative in all points for
which a classical derivative exists and is zero in all other points. See for instance the statement
and proof of Lemma A.3.1. in [Fro15] for details.

We write IE; [ X ] for esssup E[X|F;] in the following definition:

Definition 2.5
Let u be a decoupling field or Markovian decoupling field for M, ¥, F, £. We call u weakly regular
if Ly, < Lilz and SUPeft, 7] Ju(s,0)]en < co.

Furthermore, we call a weakly regular u strongly regular if for all fixed t1,t5 € [¢,T], t1 < t2,
the processes X, Y, Z arising in the defining property of a decoupling field or a Markovian de-
coupling field, respectively, are a.e. unique for each constant initial value X;, = x € R™ and
satisfy

to
sup Etl,oo[\XSF] + sup Etl,oo[|Y;|2] + Et) o0 {J |Zs|2ds] <w VYzeR™
SE[tl,tQ] SE[tl,tQ] t1

In addition X, Y, Z must be measurable as functions of (x, s, w) such that for every s € [t1, t2] the
mappings X, and Y, are measurable functions of (z,w). Moreover, X, Y, Z have to be weakly
differentiable w.r.t. € R such that
2
] < oo,
v

0
esssup sup sup I o [lYS
x

zeR™ opeSn—1se [tl ,tg]

0
esssup sup sup [ o ‘Xs
zeR™ veSn—1 se(ty,t2] oz

2

0
pel

to
esssup sup IE, o [J
t

zeR™ pelSn—1 1

ds] < 0.

(2

We say that a decoupling field or Markovian decoupling field v on [t,T'] is strongly regular on a
subinterval [¢;,t2] < [t, T'] if u restricted to [¢1, t2] is a strongly regular (Markovian) decoupling
field for M, %, F,u(ta, -).

Furthermore, we say that a decoupling field or Markovian decoupling field w is

* weakly regular if u restricted to [¢', T'] is weakly regular for all ¢’ € (¢, 77,

* strongly regular if u restricted to [t/, T'] is strongly regular for all ¢’ € (¢, T].
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The following natural concept introduces a type of Markovian decoupling field for non-
Lipschitz problems (non-Lipschitz in z), to which nevertheless standard Lipschitz results can
be applied.

Definition 2.6

Let u be a Markovian decoupling field for M, X, F, . We call u controlled in z if there exists a
constant C' > 0 such that for all ¢1,t5 € [t,T], t1 < to, and all initial values X}, , the correspond-
ing processes X, Y, Z from the definition of a Markovian decoupling field satisfy |Z(w)| < C,
for almost all (s,w) € [t,T] x Q. If for a fixed triple (¢;,t2, Xy,) there are different choices for
X, Y, Z, then all of them are supposed to satisfy the above control.

We say that a Markovian decoupling field v on [¢, T'] is controlled in z on a subinterval [¢1, t2] <
[t, T'] if u restricted to [¢1, t2] is @ Markovian decoupling field for M, 3, F', u(ts, -) that is controlled
in z.

Furthermore, we call a Markovian decoupling field on an interval (s, T'] controlled in z if it is
controlled in z on every compact subinterval [¢,T'] < (s,T] (with C possibly depending on ¢).

Definition 2.7
Let Imax < [0,7] be the union of all intervals [¢,7'] < [0,T] such that there exists a weakly
regular decoupling field or a Markovian decoupling field v on [¢, T'] for M, %, F,&.

Theorem 2.8 (Theorem 3.1.12 and Theorem 4.2.28 in [Frol5].)

Let M, %, F, ¢ satisfy SLC or MLLC. Then there exists a unique weakly regular decoupling field resp.
a weakly regular Markovian decoupling field u on I.x. This u is also strongly regular, continuous
and, if MLLC is fulfilled, controlled in .

Furthermore, either Iy = [0, T] or Inax = (tmin, T'], where 0 < tyin < T.

Theorem 2.8 is fundamental for the theory of decoupling fields. First of all, it gives the
existence of a decoupling field on a non-empty interval. And secondly, it narrows the possibilities
down to two cases. Either we have existence on the whole interval I, = [0, 7], meaning that
the FBSDE has a solution, or there is some t,,;,, where the Lipschitz constant of the decoupling
field “explodes” (for a precise statement see Lemma 2.10 below).

The next lemma states that existence of weakly regular decoupling fields implies existence
and uniqueness of classical solutions:

Lemma 2.9 (Corollary 3.1.9 and Theorem 4.2.25 in [Frol5].)

Let M, %, F, £ satisfy SLC or MLLC and assume that there exists a weakly regular decoupling field
or resp. a weakly regular Markovian decoupling field u on some interval [t,T].

Then for any initial condition X, = x € R™ there is a unique solution (X,Y, Z) of the FBSDE (2.1)
on [t,T] such that

T
sup E[|X.[*] + sup E[|Y:]*] +E [I Z52d8:| < o0.
s€[t, T selt, T t

The following result basically states that for a singularity in ¢,,;, to occur d,u has to “explode”
at tmin, as mentioned above. It is the key for showing well-posedness for particular problems via
contradiction.
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Lemma 2.10 (Lemma 3.1.15 and Lemma 4.2.29 in [Frol5].)
Let M, %, F, ¢ satisfy SLC or MLLC. If I'nax = (tmin, T, then

lim L4y = Lyt
t\jtr;lin u(t) 2!
where u is the unique weakly regular decoupling field or resp. weakly regular Markovian decoupling
field from Theorem 2.8.

For all s € I, We call
Us := dru(s, Xs)

the gradient process corresponding to FBSDE (2.1), where X is part of the solution (X,Y, Z) of
FBSDE (2.1) and w is the corresponding (Markovian) decoupling field. As the following theorem
states, we can use the gradient process U to show that FBSDE (2.1) has a solution.

Theorem 2.11

Let M, %, F, & fulfill SLC or MLLC. If for every initial value X; = x € R™ with t € I, the gradient
process U fulfills |Uy| < C' < Lglz then I nax = [0, T]; and for every initial value Xy = = € R" there
exists a unique solution (XY, A ) of FBSDE (2.1) such that

T
sup E[|Xs*] + sup E[|Y:]*]+E {J |ZS|2ds} < 0.
s€[0,T] s€[0,T] 0

Proof. By Theorem 2.8 we have that there is a non-empty interval I,,,x < [0,7"] on which a
unique and strongly regular (Markovian) decoupling field exists and either I,,,x = [0,T] or
Inax = (tmin, T'] for some t,;, € [0,7). Lemma 2.10 states that the case Iyax = (tmin, I'] can
only happen if L, ., converges towards Lilz for ¢ \{ tmin, Which we loosely call an “explosion”.

Thus, we want to bound d,u away from L' . If this is the case the “explosion” can not happen
and the only remaining case, I na.x = [0,7], has to be true.

Since for every pair (t,z) € Inmax x R™ of initial values we have, by the assumptions made,
that d,u(t,z) = d,u(t, X¢) = Uy is bounded by C < Lg}z, we get that the whole function J,u is
bounded by |0, ulle < C < Lilz. Hence, we obtain with Lemma 2.10 that Iyyax = (¢min, T'] can
not hold true. Thus, by Theorem 2.8, the only other possible case is I;,.x = [0,7"]. Finally, with
Lemma 2.9 we obtain existence and uniqueness of the solution (X,Y, Z) of FBSDE (2.1). |

By applying Theorem 2.8 and Lemma 2.10, Theorem 2.11 finally gives us sufficient conditions,
which are relatively easy to verify, for a solution of FBSDE (2.1) to exist.

In Chapter 3 and Chapter 4 we make use of Theorem 2.11 in the following way: First we
derive the dynamics of the gradient process U by differentiating Y and u(s, X,) with respect to
the initial value x € R"™ of the forward component X. This results in U being the solution of a
BSDE which is quadratic in U itself. Then we apply the standard BSDE theory to conclude that
the gradient process is bounded. Thus, we can apply Theorem 2.11 to obtain that the considered
FBSDE has a unique solution.



3 The Skorokhod Embedding Problem
for general diffusions

Let v be a probability measure on R, let 4,0 : [0,00) x R — R be continuous in both arguments
and let (A;)¢>0 be a stochastic process satisfying the inhomogeneous stochastic differential equa-
tion (SDE)

dA; = ﬂ(t,At) dt + O'(t,At) dWs, (3.1)

where W is a Brownian motion. In this chapter we consider the Skorokhod embedding problem
(SEP) for v in (A;). More precisely, we provide sufficient conditions on y, o and v guaranteeing
the existence of a stopping time 7 and a real number «a such that the solution of the SDE (3.1),
in a weak or strong sense, with initial condition Ay = a, satisfies A, ~ v.

We solve the embedding problem by reducing it to the forward-backward stochastic differen-
tial equation (FBSDE)

X§1) = (M 4 W

@ _ @2, ¢ zz
XéE | T\ + SO 02(X1(E2;7}/7‘+X7(A3))(d: , (3.2)
3 s 2 3 Zi .
X7 = a2l p(G7 Y+ X0 Sy A

Vo= g(x") - x® 'z, aw,

for s € [0,1] and (z(M), 2(®) 2()) e R3, where g is a real function chosen such that g(W;) ~ v.
Notice that the FBSDE (3.2) is fully coupled, i.e. the second and third forward equation depend
on the solution components Y and Z of the backward equation; and, vice versa, the backward
equation depends on the forward components X*) and X®,

We use the method of decoupling fields to prove that, under some suitable conditions on g,
o and g, the FBSDE (3.2) has a unique solution on [0, 1] for every initial value. By using the
particular solution with initial value (z(M),2(?),2()) = 0, we then construct a weak solution of
the SDE (3.1) and a stopping time 7 embedding v. Indeed, the second component X (?) of the
forward part in (3.2) can be interpreted as a random time change. One can show that the time
change is invertible, say with inverse clock ~(¢). Moreover, there exists a filtration (G;) and a
(G¢)-Brownian motion B such that, first, X£2) is a (G;)-stopping time and, second, under the
inverse clock the solution component Y together with B solve the SDE (3.1) in a weak sense.

In the following we refer to the tuple ((G;), (B¢),7,a) as a weak solution of the SEP. By the

very construction the time changed process Y., at X £2) is equal to g(W7), and hence X 1(2) isa

stopping time embedding v into a weak solution of (3.1).
In a further step we characterize the embedding stopping time sz) in terms of a four di-
mensional Lipschitz SDE driven by the constructed Brownian motion B. The SDE establishes a

mapping from the paths of B to X £2), and hence allows to find stopping times embedding v into

9
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strong solutions of the SDE (3.1), where we refer to the pair (7,a) as a strong solution of the
SEP.
In Section 3.5 we show that solving the system

f o(XP Y, + xP)

Ws = dB (2)
0 Zy X!
S 2
X = f Zr dr
0 o2(X7 v, + x1Y)
@ _ [ v@ 3) i
X :J /‘L(XT Yr + X5 ) . dr
0 o2(X\), Y, + X))
1
Y, =g(W1) — Xf?’) - f Zy AW, (3.3)
S

for all s € [0,1] and setting 7 := X 1(2) also yields a strong solution. Furthermore, we propose a
scheme, based on the system (3.3), to numerically simulate a solution of the SEP.

A major idea of our approach for solving the SEP is to change the time of a stochastic pro-
cess that has the wanted distribution at the deterministic time 1. This idea goes back to Bass
[Bas83] who solves the SEP for Brownian motion. Indeed, our approach generalizes Bass’ solu-
tion method. If 11 is zero and o constant equal to one, then the component X (3) of (3.2) vanishes
and the solution part Y of the backward equation coincides with the martingale of conditional
expectations of g(W;), which is the process used by Bass. Moreover, the time change X ()
coincides with the quadratic variation of Y, the time change used in [Bas83].

The time change idea has been employed in several further articles. In [AHIO8] the solution
of a quadratic BSDE is time changed in order to solve the SEP for the Brownian motion with
drift. The FBSDE (3.2) simplifies to the BSDE of [AHIO8] if A is a Brownian motion with
drift. [AHS15] uses a time change argument to construct stopping times embedding a given
distribution into a stochastic process solving a homogeneous SDE. In [FIP15] a fully coupled
FBSDE is solved and then time changed to obtain a stopping time embedding a distribution into
a Gaussian process satisfying an SDE with deterministic coefficients. [FIP15] also relies on the
method for decoupling fields for proving existence of a solution of the FBSDE.

There are more recent articles that are inspired by or related to Bass’ time-change approach for
solving the SEP for the Brownian motion. E.g. the article [BCHK17] proves optimality of the Bass
solution, among all solutions of the SEP for Brownian motion, for some minimization problems
formulated in terms of associated measure-valued martingales. [DGPR17] solve the SEP for a
class of Levy processes via an analytic approach and by extending Bass’ time-change arguments.
The process of conditional expectations of g(Xfl)), used by Bass, is shown in [VBHK19] to
minimize a martingale transport problem.

To the best of our knowledge there do not exist any other articles than [AEFR18], on which
this whole chapter is based, that consider the SEP for general inhomogeneous diffusions of the
type (3.1). There are various contributions to the SEP for homogeneous diffusions. The article
[PPO1] classifies the distributions that can be embedded into homogeneous diffusions. The
survey [Obt04] collects results on the SEP, including results for homogeneous diffusions. We
remark that in the homogeneous case in which the coefficients of the SDE (3.1) do not depend
on time, the FBSDE (3.2) can be decoupled. We explain this in Section 3.5 below.

This chapter is organized as follows: In Sections 3.1 and 3.2 we compute the dynamics of the
decoupling field gradient process and derive some estimates allowing to conclude with via the
method of decoupling fields on the existence and uniqueness of a solution to FBSDE (3.2) on
the whole interval. In Section 3.3 we present the weak solution, meaning that there exists a

10
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Brownian motion such that we can give a solution to the SEP, and in Section 3.4 we present the
strong solution, where for every Brownian motion we give a solution for the SEP. Illustrative
numerical results can be found in Section 3.5. Finally in Section 3.6 we revisite our main results
and compare our assumptions to other existing works.

3.1 Gradient dynamics of the decoupling field

In this section we investigate the dynamics of the spatial gradient of the decoupling field for
FBSDE (3.2), which we call its grandient process. Based on the findings of this section we
derive, in the subsequent section, a uniform bound for this gradient prosess, allowing us to
apply Theorem 2.11.

Let W be a Brownian motion on a probability space ({2, F,P) and denote by (F;)¢>o the
associated augmented Brownian filtration. Also, denote by v the probability measure on R,
which is to be embedded, and let F, be the cumulative distribution function of v. We set

g:=g,:=F, ' 0d,

where @ is the cumulative distribution function of the standard normal distribution and F, !
the right-continuous generalized inverse of F,.. In the following, for a differentiable function
f:R™ — R we denote by 0,, f its partial derivative with respect to the ith coordinate.
Furthermore, let g, 1 and o be differentiable, o > ¢ > 0 and ¢/, %, ‘Zt—é‘, a;{‘ , 0?70 as well as
a‘jT" be bounded. Under these conditions, which are assumed to hold true everywhere in this

chapter, it is straightforward to verify that the FBSDE (3.2), which is

Xs(l) = M 4 W

2 _ 2 s z;
XS — :L‘( ) —|— SO 0—2(X7(,2>7YT+X,£3))dT

X = 2 4 G Y+ XY S dr

Vo= g(x")—x® 'z, aw,

for s € [0,1] and (z("),2®) 2(3)) € R?, satisfies MLLC. Hence the theory of Chapter 2 is applic-
able. By Theorem 2.8 the maximal interval I,,., contains an interval [¢,1] with ¢ < 1. Let z € R?
and denote by X = (X1, X XGN)T 7y the solution of the FBSDE (3.2) on [t, 1] with initial
condition (Xt(l)7Xt(2), Xt(?’)) = x. Moreover, denote by u the decoupling field associated to the
FBSDE (3.2). From Theorem 2.8 we also know that the partial derivatives 0., u, 0z,u, 0z,u and
the process Z are bounded on [¢, 1].

For shorter notation we define for all s € [¢,1]

0= o(XP Yo+ X)), o= w(XP, Vs + XP),
ors = 00(XP Y, + XO), 04 = 0,0(XP, Y, + X)),
Ht,s 1= atN(X§2)a Ys + X§3))7 Ha,s = 6a:UJ(X§2)7}/S + Xs(3))

and



The SEP for general diffusions

In the following we refer to u"), u(?), 4(3) as the gradient processes associated to the initial value
x at time t. The next result describes the dynamics of the gradient processes. For its derivation
we first argue that the processes are It6 processes and then match the coefficients appropriately.
In contrast to the approach of [FIP15], we do not explicitly compute the dynamics of the inverse
of the Jacobi matrix of X.

Lemma 3.1
o dap D 0a
Let g, 1 and o be differentiable, o > ¢ > 0 and ¢/, 5, %, 2!, <2 as well as “«% be bounded.

022 g22 g2

Then the gradient processes u(), u(2 ) and u® have the dynamics

1 2 ~
ugl) = g/ (X§1)> +J ug’l)Zig <’LL£3) (Ma,r - 2;“'7“0 > - 2’LL )Uar> Wr
s UT Or
! Z? v a,r . ~
ug2>:fug>g <(2)um+utr)—zag<; +u®2er >(<)+ (3) )dr—fZ,@dWr
1 2 L ~
u® = 1 +f (uff”) +1) % < () 115 — 2707 . ( @ 4 ugf”)ur)) dr —J Z®aw,, (3.4

forall s € [t,1], where Z(1), Z(3), Z®) are locally square integrable processes. Moreover, the process

A
= — Zr (42 (3)
W L 203 (ur + uy ,ur) dr

is a Brownian motion under an equivalent probability measure, and the Jacobi matrix

0, X 0, x o, x
0oXs = | 0, XP 0,xPP 0, xP
0 x® 4 x® 5 x®
x1<4)s [ DRAN] xr3<\s

is invertible for every s € [t, 1] almost surely.

Proof. For x' = (af,xh,2%)" € R3, y, 2z € R we define

0 1
2

M (a'y,2) = P A

p (Y + %) Car ’

and
£ (') = g(x) — 5.

Then, for a starting value z( € R at time ¢, i.e. X; = xz(, we can write FBSDE (3.2) as
S S
X, = 19 +j M (X, Y, Z,)dr —I—J Y dw,
t t
1
Y=g - [ Zeaw,
S

Now, define a stopping time 7 via

= inf{s € [¢, 1]| det (0z, Xs) < 0} A L.

12
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Notice that 7 > ¢ since det(d,,X:) = 1 and J,,X; is an Itd process and in particular continuous
in time (see Lemma A.2.5 and Lemma A.2.6 in [Frol5]). For all s € [t, 7) we have that 0., X is
invertible with (0,,X;)~! being an It6 process , too. By setting

Us := 0zu (5, Xs) = (Og 0, Oy, Ogau) (5, Xs)
which is the gradient process we get
azo}/s = Us . amoXs

for all s € [t,7) by applying the chain rule in Lemma A.3.1 in [Fro15] to the decoupling con-
dition. Hence, Us = 0,,Ys - (02, Xs) ™! is an Itd process and thus there exist (bs) and (Z;) such
that

US=U1+J brdr—f Z. dW,

S S
forall s e [t, 7).

For the following we also introduce for an Ito6 process I, = Iy + Sg i dr + SS jr dW, the two
operators D! and D* defined via (D'I), := i, and (D¥I)s := js. Note that due to Lemma
A.2.5 and Lemma A.2.6 in [Frol5] the operators D* and D! can be interchanged with the weak
differentiation 0,,. Using this notation we have

Oy Zs = DY 0 Y5
= DY (Us - 0zy X5)
=Us - DY 0py X5 + DY Us - 030 Xs.
Since D% 0., X = 0, we further obtain 0,,7Z; = Zs - 0z, Xs and thus we get
Zs = a:B()Zs : (amoXS)_l
for all s € [¢, 7). Also,
az0 [M (XS') 1/87 ZS)]
= 0:M (X, Ys, Zs) 0o Xs + Oy M (X, Yy, Zs) 02y Ys + 0. M (X, Y, Zs) Oy Zs
= aa:M (X57 Y57 Zs) a900)(5 + ay]\4 (X87 YS) Zs) Usaons + a2'1\4 (X57 Ys; Zs) Zsaons
and
0 =D"0,,Ys = D (UsOpy Xs) = —bs - 0y Xs + Us - 0o [M (X, Ys, Zs)]
yielding

bs = Us [azM (XS7}/;7Z3) + ay]\4 (Xs,Y;aZS) Us + az]\4 (X87Y:97 Zs) Zs]

for all s € [t, 7) with

T
0 0 0
o, 20t0(zo,y+w3)  Opp(mayt+as)-2® o 2010 (w2,y+m3) p(wa,y+Ts)
02 M (,y,2) = 0 - o3 (x2,y+3) 02 (x2,y+x3) 22 o(zo,y+a3) o2(w2,y+x3) )
0 —252 Ga0(T2,y+3)  dap(@2,y+x3)-2% 9,2 %a0(22,y+a3) p(@2ytes)
o3 (x2,y+x3) o2 (x2,y+x3) o(z2,y+r3) o?(x2,y+x3)
0
_ 6.20a0(z2,y+3)
ayM (x,y,z) = 2z o3 (x2,y+w3) s
Oapp(w2,y+w3)-22 9,2 0a0(w2,y+x3) p(z2,y+73)
o?(z2,y+x3) o(z2,y+x3) o?(z2,y+x3)

13
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0
2z
o.M (.’E,y, Z) = o2(z2,y+x3)
2% p(x2,y+x3)
o2 (x2,y+w3)

being the derivatives of M.

Next we turn our attention to the question whether 0,,X is invertible. We use that on the
interval [t, 1] the processes U and Z as well as the functions L, £ 2t Jalt 0o apq e are

o’ g2 g2 o2 o
bounded, giving that 0,M (X,,Y;, Z,), o,M (X,,Y;, Z,) U, and 0,M (X,,Y,, Z,) are bounded,
too. Thus, there exist some bounded processes o and  depending onU, X,Y and Z, such that

for every stopping time 7 < 7, ¢ = 1,2,3 and s € [t, 1] the process u(ZA)T has dynamics
uS/\‘F = ugl) + J <a1(}) + /Br(‘l) ’ Z§Z)> ]l{r<%} dr + J Zy)]l{r<7~'} dWr
t t

Standard results on linear BSDEs (see e.g. Theorem A.1.11 in [Fro15]) yield, for every stopping
time 7 < 7 and ¢ = 1,2,3, that Z (4) has a bounded BMO(P)-norm which is independent of 7.
Hence,

E UT |ZT|2dr} < . (3.5)
t

Now observe that

S

Opy X5 = Id+f Ono [M (XY, Z,)]dr
t

— 1 +J [axM (X0, Yy, Z0) + 0, M (X, Yy, Z:) Uy + 0.M (X, Yy, Zy) Zr] B X, dr,
t

which yields with Theorem 1 and Conclusion 1 of [Vrk78] that

S

det (QEOXS) = exp (J
t

tr [@M (X, Y, Z,) + 0,M (X, Y, Z,) Uy + 0-M (X,, Yy, Zy) ZT] dr) .

Together with Inequality (3.5) this implies that 7 = 1 and 0,,X is invertible on the whole
interval [¢, 1].

14
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What remains to do is to calculate the explicit dynamics of U. Observe that

bs
= US [a’BM (st YVS? ZS) + ayM (Xsa sz’ Zs) Us + az]\4 (X&YY& Zs) Zs]
0 0 0
Ot,s Z Oa,s
- (ug)’ug),ug)) 0 —202 L ;202 o
0 pes 02 — 2 52 g; = fas fé - 2#5% go.a:
0 0
- —2%; o (w0 @ @)+ | | (20,20, 289)
Z2 72 045 274
Ha,s 05 — 2 0.2 o o2 Hs
2 T
—2ulMuP L oze 4 NV % (Mas 2”50;j>
2 3) 72 °2
= —2u§2)%ﬁj + ug )% (,uts 2 J;:) -2 (u@) %%S +u (2 )UES) Zg (,uw — 2 U;j)
2 2 2 2
_21&(92)%% + Ugg)% (Ma s 2N8 U::) - 2U22)U23)%% + <Ug3)> % (/J/a,s - 2/"5 U;j)
- - T
2 (o ) 249
o % (s 22
2 (o + i) 269

Using that Y7 = £(X1) and hence U; = V{(X) we obtain for the gradient processes the dynamics

1 2 T ~
) = g (x{V) +f w2 (qu’” (u — 2 ") - 2u5?>”“”") dr — J ZM i,
o oy oy s

s T
1

1 2 2 ~ ~
qu) = J uv("g)Zig (ugz)ﬂa,r + ,ut,r) - 2272 <Ut,r + u£2)%) (u7(~2) + u$3)NT) dr — J Z,(Q) dWw,
S O-T JT

UT Jr S
1 22 ar 1 —
ug?’) =—-1+ J (uf’) + 1) J—; (us’),ua,s — 200’ (ug) + u£3)ur)> dr — f Zﬁ?’) dW,.,
where W, := W, — — {7 24

= (u(2) + uq(ns),ur> dr for all s € [t, 1]. Since 2Z¢ < @ ol )Ms) is bounded

for all s € [t, 1], where t € I}, we get by Girsanov’s theorem that W is a Brownian motion for
an equivalent probability measure. |

<

3.2 Bounding the gradient of the decoupling field

In this section we use the notations and definitions of Section 3.1.

In the following we derive bounds for the gradient processes that do not depend on the starting
time ¢ € I,,., and initial value 2 € R3. In particular, we obtain global estimates for the space
derivatives 0,,u, ¢ € {1,2,3}, of the decoupling field u. By applying Theorem 2.11 we can
conclude that FBSDE (3.2) has a solution on the whole interval [0, 1].

Lemma 3.2

Assume that g, . and o are differentiable, c > ¢ > 0 and ¢/, 5, ok, ;—2, @2, a2 are bounded.
Let u be the unique decoupling field to FBSDE (3.2) on Iyax.

15
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Furthermore, let t € Inay, = € R? and (XM, X2 X©G) Y, Z) be the solution of FBSDE (3.2)
with initial condition z at time t, and let u™), u(?), u(® be the associated gradient processes. Then
for almost all (w, s) € Q x [t,1]

|Zs| < sup sup |0z, u(r,z)|

re(s,1] zeR3

and in particular < |0, ul| oo t-
Furthermore, if the weak derivative 0,,u has a version whose restriction to the set [t,1) x R? is
continuous in the first two components t and x1, and 0, u is bounded, then

Zo(w) = dayu (5, XV (), XP (@), XP(w)) = u) (w)

for almost all (w, s) € Q x [t,1].
Proof. Observe that with It6’s formula we get for a.a. (w,s) € [t,1) and h > 0 such that s + h €

1]
7|

s+h s+h
U YdW+f (WT—WS)ZTdWH—J 7, dr

s+h
f Zdr .7:5]

— 7, for h—O0.

1
EE [Y:H—h(Ws+h - Ws)| ]:S]

On the other hand we get, using the decoupling condition Y, = u (r, Xr(l), XP),X (3)) that

Ys+h(Ws+h - Ws)
=u (3 + h>XSr)ths(i)ths(i)h) (Wein — W)
—u (s +h, XD, x® x6 >) (Wasn — We) (3.6)

s+h? S

n ( <s +h,xY, x? §5>) (s +h, ngh,XS),X(f‘))) (Wopn — W)
3

(u (s X0 X8 XD = u (s 4+ b XD, XD XO)) (W - w).

At first let us take a look at the third summand on the right hand side of (3.6). Since  is Lipschitz
continuous in its fourth argument on [¢, 1] with some constant L}, .. that might depend on ¢ and

u,T3
2
since furthermore Xéi)h - x® 4 S§+h 2y

— 2+ dr we can estimate the absolute value
o2(X2 Y, +x %)

of the third summand against

% ‘E [ ( (S +h Xéﬁh’Xé?h7X§?h> (5 -y X XD X )) Wesin —

s]

1 D +@ 06 1 x@ X
< EE H (S +h Xs+h7Xs+h7Xs+h> (5 + X X X )‘ (Wetn — ]
1 . s+h Z2 | ’
<Iip|rt, f hr r dr||Wop — Wl | 7.
R Tezx @y, 4 x @) !
1 H 2
< Lo h| S| 1ZI1 BlIWern — Wil ]
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which clearly goes to 0 as i — 0 because | 43|« and | Z|«, are finite on [¢, 1].
With analogous arguments we also get that

% ‘E [ (u (s +h, XD, x® XS(?’)) —u (s +h, XD, x®), X§3>)) (Wein — W) ]-'s]
< %]E Hu (s +h,xD, x® X§3>) —u <s +h, XD, x@), X§3>)] \Win — Wil }"s]
s+h 2
< %E Lz,zg L (72(X,§2),f;; N X;g)) dr ‘Ws-&-h - Ws’ ]:s]
1

L hHZ”é,tEiQE [[(Wein — Wil| Fs]

= E U,x2

—0 a.s. for h—0,

where L! . is the Lipschitz constant of v in the third argument on the time interval [¢, 1].

U, T2
Now consider the remaining first term on the right hand side of Equation (3.6). For this

remember

XS’, XS(Q), X§3) are F, measurable,

1 1
X£+)h = Xé ) + (Ws-i-h - Ws):

Weyp — Wy is independent of F,
s u is deterministic, i.e. is a function of (s, z(), 2®) ) e [t,1] x R x R x R only.
Using integration by parts these properties imply

E [u (s +h, XD, X§2>,X§3>) (Wasn — We)

7|

1 1.2
= u(s+nXD+2vh X XP) 2vh e 2% dz
JR ( ) v

27
= [ w5+ b XD VR X XO) h e
R ! s s S m
Hence
1 O @ v
‘hE [u <S + h’ Xs-i—h’ Xé )va( )> (Ws+h - Ws) -7"5]
1 1.2
= 1 2) y(3) 1,
U}Ramu (s+h,Xs +2vVh, X, X! )me 3% dz
1 1_2
< 63: + h, 277 d
Jo s ot o b
= sup |0z, u(s + h,z)|.
zeR3
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Putting everything together we get

1 s+h
|Zs| = lim |- {J Z,.dr .7:5}
RN\O | h s
|1
= }lll\i% EE [Ysrn(Wesn — Wi)| Fi]
1 M) 5@ x®) _
= lim B | u s+ XD XP, X)) (Woin —W4)| 7]
1 (1 2 1
+7E [(w (s 2 X5 X0 X)) = (s 2, XD, XOL X)) (W = W4)| ]

7|

1
+E [(w (s 0 XG5 X0 X3, ) = (s 0 XD, X5, X)) Wi = W)
< limsup sup |0z, u(s + h,z)| + |0| + |0
ANO  zeR3
< sup sup |dg, u(r, z).

re(s,1] zeR3

If we have that d,, v is continuous in the first two arguments, we can derive, by using domin-
ated convergence since u(!) is bounded on [t, 1], the more precise result

i & 1) @ x©® _
Z,=lim hIE[ <3 +h,x x® x| ) (Wasn — We) J-"s]
1 1.
= limo, +h, XV 4+ 2vVh, X X)) —e277d
J;R 1111 U (S z ) me z
:am1u <S7Xé1)va( )¢X£3)>
almost surely. |

To obtain estimates for the gradient processes we use the following result.

Lemma 3.3 (See [MPF12], pg. 362)
Let the function f be continuous and non-negative on J = [«a, 3], a,b = 0, and n be a positive

integer (n = 2). If
t
t) < a—f-bf f"(s)ds, teJ,

then

1

t i-n
f(t)éa[l—(n—l)f a"_lbds} , a<t< By,

«

where (3, = sup {t eJ:(n—-1) Sfl a"tbds < 1}.

Lemma 3.4
Assume that g, p and o are differentiable, c > ¢ > 0 and ¢/, %, %‘,‘, ‘9(;”—2“, ajT", %2 gre bounded.
Let u be the unique decoupling field of the FBSDE (3.2). Then for any t € Iy and initial condition

(Xt(l), Xt(Q),Xt(?’)) = x € R? the associated gradient process u(®) satisfies for all s € [t,1]

ugg) =-1

18



Bounding the gradient of the decoupling field

If we additionally assume that o, s - u? =0 as. forall s € [t,1] and
inf ZCal 200y oy L
(6,7)eR 1 xR o3 2g'|2,

then it also holds that

_1
0<ugl)<< ! +2min{0, inf <J-0a,u—2(9aa-,u>(9’x)}> T cw

”g/”%o (0,7)eR4+ xR o3

forall s e [t,1].

Proof. By interpreting (3.4) as a system of BSDEs we get for «(3) the trivial solution ug?’) = -1
for all s € [t, 1] as the unique bounded solution of this BSDE.

Also note that ¢’ > 0 since g = F;! o ® and F,, as well as ® are non-decreasing. Thus s = 0
is the trivial and unique solution to

1 2 1
Z . ~
g = 0+ f —aro_—; <—ua,r + 24y Tar 2u£2) Ua,r> dr — J Zr(l) dW,.,
S S

Z oy loz

which implies by comparison (see e.g. Theorem 6.2.2 in [Pha09]) that 0 = a5 < ugl) for all
s € [t 1].

For the upper bound of 1) remember that ugl) = Oy, u(s, Xgl), X§2),XS(3)) for all s € [t,1] and
in particular for any fixed ¢ € I, and all starting conditions z = (z(1), 2, z(3)) € R? we have

! Z2 a,r a,r ! ad =
Onultw) = uf? = g (x1V) - f ulh = (ua,r—zur"v + 209 7% )dr— f ZM W,
t o t

= oy oy

Using this and that Z is bounded on every interval [¢, 1] © Ijyax, We get

ugl) =E _ugl)’}}]

7 ' Z2 a,r a,r
o (50) « [0 (g 2% g %) ] 7

r Or

2
<E g/ (Xl(l)) - L ugl)é (/J/a,r - 20-;77‘ MT) dr th:|

T
for all t € Iyax and (2,2 2()) e R3, where we use that o, - w? > 0. Next we use the

inequality

_ Osta,s — 204,spir < maX{O,—(g )inf <0' * Oaft — 2aa0'ﬂ> (97‘7;)} —: 8

o3 eR4 xR o3

and the estimate from Lemma 3.2 for Z to obtain
1
1
ug ) < g0 + B | sup dpyu(r,x) sup sup (c?j;lu)2 (0, x)dr.
t zeR3 0c[r,1] zeR3

Thus we can derive the inequality

1
Sup sup aa:lu(pam) < Hg/HOO + B sup {f sup aa:l“(ﬁ :C) Sup sup (axlu)z (0,1‘) d?“}
pE[t,1] zeR3 pE[t,1] p zeR3 0[r,1] zeR3

1
< gl + B sup sup (é’mlu)3 (0, z)dr.
t Oe[r,1] zeR3
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The SEP for general diffusions

Note that inf g ,)er, xR 9-0apt=20a0 () 1) > —m implies § < m. Hence, we obtain by

o3

setting f(t) = Sup,e[¢,1] SUPzers O, u(p, ¥) and applying Lemma 3.3 that

N

sup sup al‘lu<p7 ) <’ /12 _26(1_t)>_

pE[t,1] zeR3

and thus,

N|=

1 i
O] < [yuloe < (”g| - 25) <o
o0

Assumption 3.5
Let g, j1 and o be differentiable, ¢ > ¢ > 0 and ¢, 4, ‘zté‘, %—#, %2 gs well as “(’ be bounded.

Furthermore, let

O+ Ogft — 2040 * |4 1
o0

inf 3
(97I)€]R+ xR g

and one of the following conditions be satisfied:
1) Cuo=0
i) 0p0 20,200 -p—o0 -0 =0 or

iii) 0u0 < 0,200 -u—0- -0t <0

Theorem 3.6
Let g, p and o fulfill Assumption 3.5. Then, for FBSDE (3.2), we have Iy, = [0, 1] and there exists
a unique, strongly regular Markovian decoupling field u on the whole interval [0,1]. This u is a
continuous function on [0,1] x R3.

Furthermore let (XU, X(2) X®) Y, Z) be the solution of FBSDE (3.2) with an arbitrary initial
condition z € R? and u,u?,u®) be the associated gradient processes on [0,1]. Then we have
u® = —1 and the finite estimates

0<u® < <9’1§o + 2min {o, (Gﬁz)g}{ixR <J'a"“ 032%0.#) (9,33)}>%7 (3.8)
], <121 (1221 +2 (|2 14, 5[] )]
-|Z||§o< ‘atg H H at“ OO) (3.9)

and

_1
121, < [u] < <,1 + 2min {0, inf (" Ouft =~ 20,7 “) (H,x)}) L (3.10)

lg Hgo (0,2)eR4 xR o3

Proof. Using Lemma 2.10 we only need to show that the weak derivative of u with regard to
the initial value 2 € R? is bounded by some constant which is independent of the time interval
[t, 1] © I;max on which it is defined. Then it follows that I,,,x = [0, 1] and hence ¢ can be chosen
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Bounding the gradient of the decoupling field

to equal 0 and the estimates (3.8), (3.9) and (3.10) hold true for corresponding processes on
the whole interval [0, 1].

For now fix ¢t € .y and z € R? and let (M), 4?43 be the associated gradient processes.
Lemma 3.4 yields u® = —1. In order to derive Estimate (3.8) we show that Oas - uf) > 0 a.s.
for all s € [t, 1] which then allows us to apply Lemma 3.4 yielding the estimate. Consider the
three cases i), i) and i) of Assumption 3.5: With 0,0 = 0 of case 7) this is obviously true. For

the remaining two cases observe that

1 2
A 2
u® = f = [(uy(?)) <_20'ar> +u® <_:“a,r L oTer, 20t,7~> N <2O't,rﬂr _ Mt,r)] dr
s 02 o or o o

Because u$2) is bounded on every interval [¢, 1] C Iax, We can view u? as fulfilling a Lipschitz

BSDE. This allows us to use the comparison theorem by changing 2‘7;*: fr — fut - to zero and hence

compare with the trivial solution which is constantly 0. Thus in the case ii) we have u(?) > 0
and in case iii) u® < 0. Therefore, we have 0,0 - u(?) > 0 for the cases ii) and iii) as well.
Hence we can apply Lemma 3.4 to obtain, for s € [¢, 1],

1 Ot — 2040 - -
0< ugl) < + 2min < 0, inf 0 Oapt 0a0 - 4 (6, )
lg'I1%, (0,2)eR4 xR o3

In addition with Lemma 3.2 this yields

1
1 . . 0 Ogh — 20,0 - 2
1 a a
1Z) o0 < [uD]ops < (”9’”%0 + 2min {0, (Q,m)lell%{erx]R( 3 > (9,95)}) < 0.

M=

Since, as stated before, in case ii) we have u(?) > 0 and 0,0 > 0 and in case iii) «?) < 0 and
2)

0,0 < 0, we again can apply the comparison theorem to see that in case 1) we have 0 < u® < @
and in case iii) @ < u(?) < 0, where 4 is the solution of the linear BSDE

1 2 2 1
Ve Otr Z2 [ oty o~
ﬂS:f Up —— ( Mar+2 M —92 t, ) +7 (2 i M'r_utﬂ") dr—f Zr dW,.
s 02 or o o? or s

In case i) we have that «(2) = @ giving that «(?) is bounded by @ as well.
By estimating

1 T Z2 , ZQ ,
|@5| = ‘E [J exXp <J < Ka,r - 2Ut > dp) g (20t7 Hr — Mt,r) dr
s s Ur Or (o)~ (oF3
<o 122 (| 2] +2 (H@ H H L2 )]
)

g
atO'

fs]
212 (2 i

)
we have found a finite bound for «(? that is independent of .
Thus ©™), 4 and u(® are bounded independently of . Thus, Theorem 2.11 gives that
Imax = [0, 1], FBSDE (3.2) has a unique solution and we also have that all bounds are valid on
this interval. |

Ot

o2

B

21



The SEP for general diffusions

3.3 Weak solution

In this section we show that a weak solution of the SEP can be obtained from the solution of the
FBSDE (3.2). This means that we construct the Brwonian motion driving the stopped process.
Recall that if Assumption 3.5 is fulfilled, then by Theorem 3.6 FBSDE (3.2) has a solution on the
whole interval [0, 1] and the gradient processes are bounded.

In the following we sometimes use the fact that for two It6 processes A and B and a time
change ~, in the sense of Definition 1.2 in Chapter V, [RY13], it holds that

(1) t
fo ArdBy = fo Ayr) 4By ()

(see e.g. Proposition 1.4, Chapter V, [RY13]).
The next theorem is a version of Theorem 3.21 with an explicit weak solution of the SEP.

Theorem 3.7
Let g, u and o fulfill Assumption 3.5. Furthermore let (X1, X, X () Y, Z) be the solution of the

FBSDE (3.2) with initial value (Xél), Xé2),Xé?’)) = (0,0,0). Define the random time
7= X

the time change
“ inf{s>0\X§2) >t} ifo<t<7,
v(t) =
1 ift>7,

the filtration Gy := F. ;) and the process A; := Y,y + Xfyzz’z) on [0, T].
Then T is a (G;)-stopping time satisfying

~1
F<e? 1 +2min{0, inf 0 Capt = 2020 - 1 (6, 7) a.s.
Hg/”go (0,x)eR4+ xR o3

Furthermore, on [0, 7], the process By := Sg

A fulfills the SDE

L dY,, is a (G;)-Brownian motion
@ @) y(r t >
(X0 Yam+X50) (r)

t t

w(r,Ay)dr + J o(r,Ay)dB,

A=Yor |
0

0
and we have
Az ~ v

Proof. By standard results it follows that 7 is a (G;)-stopping time (see e.g. Proposition 1.1,
Chapter V, [RY13]). With
77 Hs) = X2 (3.11)

for all s € [0, 1] we have for all ¢ € [0, 7] that Xﬁz) = v~ 1(y(t)) = t. Therefore, and because

dY, = Z,.dW,, we obtain

v(t) 2
(B,B) = J Zr dr = v 1(y(t)) = t.

o o2(XxPv, + x¥)

By Levy’s characterisation of Brownian motion we get that (B;) is a (G;)-Brownian motion on
[0,7].
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Weak solution

Note that for all w €  the function ~y is A-a.e. differentiable on [0, 7| with

(2) (3)
0 = (60 =t T ho ) (3.12)
(v (@) Z%
and hence
_ v®
A = Xw(t) + Y’y(t) -Yo+ Yo
v (1) 2 v(t) (2) (3)
“ht J p (X2 ¥4 X0) - & @, dr T f U(XT@’YT - X1E3)) dY;
0 2(xP v, + xB) o o(x? v, +xP)

t t
(2) 3) (2 3)
=Y+ L 7 (XW),YW) + XW)) dr + L o (XW), Y + XW)) dB,

t

¢
=Y, + J w(r, Ay)dr + J o(r,A,)dB,
0 0

for all ¢ € [0, 7]. Also

Ar =Yy + X0 =Y+ X1 = g(W7) ~ v,

The bound for 7 follows with the bound for |Z|, stated in Theorem 3.6 and by ¢ > «. [ |

The next lemma characterizes the stopping time 7 = 7 ~1(1) of Theorem 3.7 in terms of the
solution of an FBSDE driven by the Brownian motion B. We use the lemma later to show
existence of strong solutions of the SEP.

Lemma 3.8

Assume g, p and o to fulfill Assumption 3.5. Let the decoupling field u of the FBSDE (3.2) have
a continuous weak derivative 0,,u > 0. Also let (X)), X2 X©) Y, Z), v and B be defined as in
Theorem 3.7. Moreover, let B be any Brownian motion coinciding with B on [0, X 1(2)]. Then ~, W,
X®) and Y solve the system

(3)
,y(t) B Jt o2 (7‘, Y,y(r) + Xﬁy(r)) "
o 3
0 (&l’lu)Q (’Y(T)a W'y(r)vra X’i(i))
(3)
- t o (r, Y,r + XW(T)) A
W) = @) dB, (3.13)
0 0&01“(7(7’)7 W’y(r)a Ty Xw(r))
¢
3 _ (3)
x® = L o (r Y + X0, ) ar
t
3) s
Yo = Yo+ L o (r Yy + X\7))) aB,

for all t = 0 such that ~(t) < 1. Additionally, for y~' defined as in (3.11) we have

_ Oy u|? _ 1 . , 0 - Ogpt — 2040 - |4 -1
) e? RN 7 RO o’ 6. 2)
(3.14)
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The SEP for general diffusions

Proof. Note that Theorem 3.6 implies the bound (3.14). Since J,,u is continuous we get with
Lemma 3.2 that Z, = 8x1u(s,Xs(1),X§2),Xs(3)) > 0 for all s € [0,1] and hence both v and y~!
are strict monotone increasing and continuous. Moreover, Lemma 3.2, Equation (3.12) and the

(2) :
fact that XW( B = t yield
2 (2 (3) (3)
/(t) B o (X'y(t) Y. y(t) + X (t)) (t,Y (t) + X’y(t))
! : (@ u)2< ), x3, x? X<3))
g0 R AU ERSTORRRY()
forall0 <t <~y71(1).
Furthermore, Xs(l) = W, yields that
() 3)
' to (X2 v+ X9
W :J 1AW, :J ( y(r) T () ¥ )) 4B,
Z
0 0 ¥(r)
(3)
t o (T, Y'y(r) + X’y(r)) .
- 00 ( (r) xO x@ xG ) dB;
A (IR OMMET

) (Yot X0)

0 Oy, u (’y(r),Wv(,) r, x® )

y(r)
Also
(1) t
Y,y(t)IYT()-i-J;) ZpdW, = Yo-i—J;)Z()dW,Y(T)
t
— Yo+ f o (r Yy + X)) B,
0
@ _ [’ ) 3) Z?
x®), L i (X274 x{ )J R
2 (2) (3)
:JtM(X(?) Yy + X)) o (X oo + X5i) dr
y(r)? = W) o (v (2) 3) 7?2
0 g (X"/( ) Y( ) + X,Y(,’,,)) '7(7')
t
_ 3)
Jo 7 (r,YV(T) + X ( )> dr
and
t t o (r, Y +X( )
(t) = f Y(r)dr - ( i ()1) (7;)> s
° 0 (2y0)? (7(r), X Xv(r) x0)
t o? (r, Ny T X )
= 2 (3) dr
0 (Op,u) (fy (7")>
for all t € [0,y 1(1)]. [ |
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Strong solution

3.4 Strong solution

We use the definitions and constructions of the former sections. In particular let « be the unique
strongly regular decoupling field of the FBSDE (3.2) which exists on the whole interval [0, 1] if
Assumption 3.5 is fulfilled.

Theorem 3.9

Let g, i and o fulfill Assumption 3.5 and u, o and their derivatives be bounded. Denote by u the
decoupling field of FBSDE (3.2) and assume the partial derivative 0, u with respect to the first space
variable to be Lipschitz continuous in every argument and 0,,u > 6 > 0. Let B be an arbitrary
Brownian motion and denote by (FP) = (FB )sel0,00) the augmented filtration generated by B.

Then there exists a bounded stopping time T with respect to the filtration FZ such that for the
pping Y

process A given by

t t

w(r, Ap)dr + f o(r,A;)dB,

heve |
0

0
forall t € [0, 7], we have that A, ~ v and the stopping time T satisfies

~1
g2 L +2min<0, inf 0 Caft = 2040 - 1 (0, x) a.s.
Hg/ch (0,2)eR4+ xR o3

By solving the Lipschitz SDE

r 2
_ (5,05 + Ay)
W)_J amu< (5),Ts, 5, A,))?
_ G) +A)
I, f &Elu Fs,s A >dB (3.15)
Ar—f (,@5+As)ds
0

0,=Y, +J o(s,0s + Ag)dBg
0

for all r = 0 such that ~(r ) < 1 and where Yy is the starting value of the process Y in the
FBSDE (3.2) and setting T := inf{r > 0|y(r) = 1} we can obtain such a stopping time.

Proof. Since any solution of FBSDE (3.2) has a unique distribution independent of the driving
Brownian motion, we know that the constant Y} is always the same and does not depend on the
driving Brownian motion.

Let us take a look at the system (3.15). Note that for all a,b € [0,1] x R?

— Oz, u(a) Lu ac1 b
' aﬂmu(b) <

1 1 ’
_ —al,

Opula)  Ogu(d)|

yielding that (d,,u)~! is Lipschitz continuous. Since hence both (8,,u)~! and ¢ are Lipschitz
continuous and bounded we get that o - (0,,u) ! and o2 - (0,,u) 2 are Lipschitz and bounded as
well. Thus, we have that all coefficients of the system (3.15) are Lipschitz continuous. Therefore
there exists a unique solution (v,I",A,0) of (3.15) which is progressively measurable w.r.t.
(FP). Hence 7 := inf{r > 0|y(r) = 1} is a stopping time w.r.t. (F) because  is continuous.
Furthermore, the systems (3.13) and (3.15) just differ by notation and the driving Brownian
motion. By the principle of causality (see [KS91]) the distributions of (v, W,Y,X§3),Y7) from
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The SEP for general diffusions

Lemma 3.8 and (v,T", A, ©) are the same. Hence, we immediately have the bound for 7 as
stated in Lemma 3.8 and also for A; := A; + ©; that

AT = AT + (")7- == A’yfl(l) + @771(1) ~ X(3)

3
vy T Yem1) = XP 1y =g) ~v

and

t t

w(s, As + O4)ds + f o(s,As + Oy)dBg

At:At"‘@t:Yb‘l'j
0

0
t

t
=Yy + j (s, Ag)ds + f o(s,As) dBs.
0 0

What remains to do is to find sufficient conditions for the assumptions of Theorem 3.9 to
hold true. For this we use that the decoupling field v of FBSDE (3.2) is three times weakly
differentiable. To show this we extend FBSDE (3.2) by the dynamics of the gradient processes
and view this system as a extended FBSDE, for which we can show the weak differentiability of
its decoupling field.

Let a := max (|| 0z, oo, [Ozstul|oo, |0y | o) and define the truncation operator 7 : R — R by
T(z) := min(max(z, —a),a). Note that the map 7 is uniformly Lipschitz. Assume that g, u, o
and their first derivatives are Lipschitz continuous and consider the FBSDE

XM =M 4 f 1dW,,
t

s (0)y2
XO @ J (L0

t O
s (0)y2
x® :$(3)+J PR apn
’ t o7 7

L (T (Y;"(z)) fhar + Mt,r) dr

[ (r () e (1) ) 20— [ 2,

(o) s

v =t (1 (70 1) E (1 () s 27 (1 (59) 7 (50) ) )

g

+ jl 227(,0) (T <YT(2)> T (Y7~(3)> Mr) 7O dr f 20 aw,

S

(3.16)
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with the decoupling condition

YO =u®s, XV, XP, x[Y),
Y:S(l) = u(l) (37 Xgl) ; Xs(2)> Xé?))),
VL2 = ol (s, X0, X2, X0),
Y =u® (s, XV, XP, x[Y),
where
Ly 1= L <X7§2)’YT(0) + Xr(3)> ’ oy =0 <X(2)7Y;’(0) + X7(‘3))
and
Mt 1= (3,5/1, (X,Q), Yr(o) + X£3)> ) Ha,r ‘= aaﬂ (Xr(Q)v Yr(o) + Xﬁg)) )
iy = 040 (Xf?), YO 4 XT(3)) , Gay i= 0a0r (Xﬁ”, YO 4 Xﬁ?’)) .

Lemma 3.10

Let g, u and o fulfill Assumption 3.5. In addition, suppose that g, u and o are twice differentiable
and that the second derivatives are bounded. Then, for the FBSDE (3.16), we have IM = [0,1]
and there exists a unique, strongly regular Markovian decoupling field (u(9), u™ 43 u(3)) on the
whole interval [0, 1]. Furthermore,

—u, uM=0,u, u®=0,u and u® =0,,u,

a.e., where u is the unique decoupling field to FBSDE (3.2). In particular, u is twice weakly differ-
entiable w.r.t. the initial value x with uniformly bounded derivatives.

Proof. Itis straightforward to verify that FBSDE (3.16) satisfies (MLLC), and hence Theorem 2.8
is applicable. Let u(), i = 0,1,2,3 be the corresponding unique weakly regular Markovian
decoupling field on I,x. uD, i =0,1,2,3, are continuous functions on I, x R3. In order to
show that I, = [0, 1] we again need to prove that every partial derivative of u(*) fori = 0,1, 2, 3
is bounded independently with regard to the interval [¢, 1] < I;y.x Where we consider it.

Let t € I,,.y. For an arbitrary initial condition Z € R? consider the corresponding processes
XMW x@ x6 yO yO) y@ y@) zO) z0) 72 73

on [t,1]. Note that X1, Xx(2) x®) y(0) 7(0) solve FBSDE (3.2), which implies that they co-
incide with the processes X(V). X2 x®) 'y, Z from (3.2) since strong regularity of Markovian
decoupling fields guarantees uniqueness. Now Y(©) = Y implies u(t,z') = u(O(#' ') for all
t'e[t, 1], 2’ € R3.

Note that a truncation with 7" does not effect any gradient process of FBSDE (3.2). Thus,
(Ys(l)), (3@(2)), (Y;(g)) fulfill the same dynamics resp. BSDEs as the gradient processes (ugl)),
(u§2>), (uf’)) in (3.4). Therefore, we can apply the same arguments and conclude that they also
satisfy the estimates (3.8), (3.9) and (3.10) (see Theorem 3.6). In particular Ys(?’) =-1= uf)
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for all s € [t, 1] and therefore also Z§3) =0= 25(3). Hence,

Y@ @ = Ll ((Yr=(2)>2 B <u$2)>2> (Zi;))Q <_205:) dr

! ngO) 2 Oa,r Ot,r
+L (v — o) Z) <ua,r+2 ary, — 2% >dr

r Oy

+ Jl 2?50) <(Yr(2) - ur) ASE (w@ - Ur) Zﬁ”) dr — J

s

— Ll ((YT(Q))Q _ (%(2))2) (Zi(;))Q <—200a:) dr — Ll (Z,@ _ 27@)) dW,

r

1 (0)y2
+ J (}/7“(2) - u$’2)) (ZT ) <_Ma,r + 2Ua,r My — 20t,r> dr

2
Oy Oy Oy

N Ll 22720) (2 —u®) 22 + (u® =) (282 = 22) ) ar

oy

1

(0) ~ 0)
Since % (USF) — Mr) is bounded we have that W, := W,—W, — f 22y (uq(?) — ,ur) dr, s € [t, 1],

is a Brownian motion under some probability measure equivalent to P. Under the new measure
the process pair (YS(Q) — u?) , Z§2) — Zﬁz)) is a solution of the following linear BSDE with bounded
coefficients

) (25
1 (0)\2
~ (Z,
+ YT( TQ) —,uar+20a’r,ur—20t’r dr
S O',,, ’ Op Op
1 (0) 1
27 ~
+JYT 5 Z@dr—f Z, dW,
S T S

Note that (0,0) is the unique solution of the previous BSDE. Consequently, Y and u® are
indistinguishable and Z(?) = Z(), A ® P-almost everywhere on [t, 1] x €.
Similarly we can show that Y(!) and u(!) as well as Z(') and Z(") coincide. Thus we have

02, @ (5, XM, X XO)) = 0, u(s, XV, XxP xB)) = o) = y ),

20, (5, X{, X, XO) = dpyu(s, X, X, X0) = ) = ¥,
20y (5, X0, X2 X) = (s, X0, XD, X) = ) = v

a.e.on [t,1].
It remains to show that I} =0, 1]. Define for x = (21, 72, 23)" € R3, y = (vo,y1, y2,y3)" € R4,
z = (20, 21, 22, 23)T € R*

" ) 70
7 Xs@) _ Y _ 7
Xs = X?S) ’ }/S = Y(Q) ’ Zs = Z(2)
X y® Z®)
0 1 g(x1) — w3
M — N s.—1 o Elm) - — g (z1)
(x,y, Z) -= o2(z2,y0+x3) ) ) = ) 5 ({L‘) = 0
M(«T27y0+9€3)m 0 -1
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and
F(z,y,2)
0
20)2 Oao(x2, T Oao(x2, x
_ y1% (iau (z2,y0 + x3) — 201 (22, Yo + T3) WW + 2@%)
2 oto(x2, : Oqo(x2, s
e (St + R TR (o — w2, + 23)
0
0
0
% (y20apt (w2, 90 + x3) + Oept (22, Y0 + T3))
0
0
n —W (Y2 — p (72,90 + 23)) 21
—m (y2 — p (22,90 + 23)) 22
0
Then s s
X, = mf N (X,.Y,.Z,) dr+f Sdw,
t t
and ) )
Vo= §(0) - | P02 dr- | Zaw,
By setting
N0 WD @ O
i} M i ou® o w® o u i
u U oUW 3 U
Usimto| o 5% = | 3000 @ au@ |(55)
e ou® u® 0y u®
we get

0uYs = Us - 0, X.
Since (0, Xs) ! is a multidimensional Itd process on [t, 1] (see Lemma 3.1 and its proof) we get
that U, = 0, Y - (0.X,) ™! is also an It6 process and hence there exist (bs) and (Z,) such that

1 1
Us = U J brdrf Zy dW,..
S S
For the following we also introduce for an It6 process I, = Iy — §; i, dr — §; j. dW, the two
operators D! and D via (D' I), := i and (D¥ I), := j,. Using this notation we have
0,7, = D" 0,7,
= D" (Us - 0, X5)
=U,-DY 0, X+ DV Us - 0, X,
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where we can further specify

0y [M (Xs, Y, Z,
=0, M
=0, M
and likewise

Oz [F (X5, Ys, Zs) |

= 0. F (X5, Y5, Zs) 00X + Oy F (X5, Yy, Zs) Us0u X5 + 0.F (X5, Y5, Zs) 250, X

Thus we get

and
bs = 0o F (X5, Ys, Zs) + 0y F (X5, Ys, Zs) Us + 0. F (X, Ys, Zs) Zs (3.17)
+ U | 0N (K, Vo, Zo) 4 0y M (X, Yo, Z5) Uy + 020 (X, Vi, Z0) 24
where the derivatives of M and F are bounded due to the assumptions made. Therefore, we see
that theﬁ dyl}arrlicsiof U are linear with exception to the quadratic terms Us0, M ({(s, Ys, Zs)Us
and 0.M (X,,Ys, Z,) Z,. However, we claim that we can reduce the dynamics of U to a linear

BSDE.
It is straightforward to see that

0 000
(X Y. 7 (0)y2
oM (X, ¥ Za) = —plfs, ) Zes 000
(0)y2 s
%u 2(Z Pows 00 0
) © o
Note that o := _2%%3 and 3 := (Z§72)2Ma,s - 2(222) Tas ** 1 are both uniformly bounded,
and we have
0 0 0
ayM (X Z ) U Q- Ugl) (0% qu) (O u(g) )
3.0 g.u® .y

which is bounded independently of [¢, 1] (cf. in Theorem 3.6).
Moreover, note that
0 0 0 O

- - = 270

aZM (Xsul/tSuZS) = O'Sg 0 0 0
~7(0)

= 0 0 0

only depends on the solution components (X2, X(®) v 7)) Hence, together with the
estimates of Theorem 3.6, we conclude that 0, M (X, Ys, Z,) is bounded. Since U is bounded on
[¢,1], the term U,0. M (X, Y5, Z) Z, in Equation (3.17) can be shifted, via a Girsanov measure
change, into the Brownian motion W. Similary, the term 0, F (X, Y, Z;) Z, in Equation (3.17)
can be shifted into W. To sum up, there exists a Brownian motion W under an equivalent
probability measure such that (U, Z) solves the BSDE on [t, 1] driven by W with linear driver

f(svyv Z) = azF (X87 }787 ZS) + 6yF (XS7 1787 ZS) y + y [a:EM (X87 }787 Zs) + ay]\Z’ (XS7}7S7 ZS) US]
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and terminal condition V&(X;). Observe that the terminal condition and all coefficients are
bounded by some constant independent of ¢ and x. Therefore, also U is bounded independently
of t and z. By Lemma 2.9 this yields that I,,.x = [0, 1]. [ |

Remark 3.11
The second and third derivatives do not have to be bounded. It would suffice if the second and

third derivatives of . divided by o2 and the second and third derivatives of o divided by o are
bounded.

Lemma 3.12

Let g, p and o fulfill Assumption 3.5 and their second and third derivatives be bounded. Then the
decoupling field u of FBSDE (3.2) is three times weakly differentiable w.r.t. to the initial condition
x € R? with uniformly bounded derivatives.

Proof. This proof is completely analogous the proof of Lemma 3.10. Therefore, we only give a
sketch.

Extend the system (3.16) by the dynamics of ¥(¥) := 4(%) := 9, «( for all ¢, j € {1,2,3} as
obtained in the proof of Lemma 3.10 and by the corresponding entries in the decoupling field.
Then argue analogously to the proof of Lemma 3.10 that for every i € {0,1,2,3} the u() of
FBSDE (3.16) coincides with the u() of the extended system. Redefine, if necessary, the vectors
X, Y,Z and the functions M, %, £, F such that for the extended system we have

X;:Hf M(Xr,ﬁ,Zr)errJ S AW,
t t

and 1
¥, = £(X) _f F (X, Y. 2,) dr—f Z, AW,

Also define Uy as the partial derivatives of the decoupling field u(s, X;) of the extended system

for all s € [t, 1]. Again there exist (bs) and (Z;) such that
— —_— 1 1 A
Us=U; —j brdr—f ZpdW,.

By the same calculation as in the proof of Lemma 3.10 we obtain that

and

iy

bs = axF (X& 8723) + ayF (XS7}/SﬂZS) st 0. (X& &Zs) Zs
Uy | 0N (X, Vo, Zo) 4 0y M (X, Vi, Z5) Uy + 00 (X, Vi, 20) 24|

Analogous to the proof above, 0, F, o, F, 0,F, d,M, 0,M and 0, M are bounded while addition-
ally 0, M only has entries in the first column which allows us to conclude that 0, M (X, Vs, Z,)Us
is bounded. Furthermore every coefficient in front of Z is bounded on every Interval [¢,1] < IM
and can therefore be transformed away with Girsanov’s Theorem. Hence we have linear dynam-
ics for U with bounded coefficients which yields that it is bounded independently of the interval
[t,1], giving 12 = [0, 1]. [ |

max
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Lemma 3.13
Let g, pn and o fulfill Assumption 3.5, their first and second derivatives be bounded and g’ > § > 0.
Then the weak derivative 0., u of the decoupling field u from the FBSDE (3.2) fulfills

! w22, ) e

Oz, U

1

g/

04,0 04,0

+ lal

2oyl (

0 ‘ 0

and in particular 0., u is bounded away from 0.

Proof. By Lemma 3.10 the decoupling field of the FBSDE (3.2) exists on the whole interval [0, 1]
and is twice weakly differentiable. In particular d,, is continuous (see e.g. Theorem 4.2.17

in [Frol5]), and hence we can apply Lemma 3.2 yielding ZT(O) = Oy U (r, Xr(l),X,(,z), X,@) for
all 7 € [0,1]. Also using Lemma 3.4 we know that «(!) is bounded by some constant for every
starting time ¢ € I = [0, 1] and every initial value x € R3.

max
Now we set V. := 1 for all r € (g, 1] where
= e X0 X XY (fo. 1]

= inf{t > 0|0,,u(t, z) = 0 for at least one x € R}

with the convention that inf ¢ = 0. We immediately get that Vi < |0z,ulw < oo and the
dynamics

1 1
%=,u>—J(W%
9'(X17) §
(2) ga,r

1 1 N2 — 2y ZET 4 Qu, ) Ter 1~
:_J = (%) B P e dr—J Z, dWW,,
r(x @M V, o2
g'(Xy7) Js Vr s

_ Oa,r (2) Oa,r 1
Zr(l))2 B iﬂa,r 24y o + 2uy o ) dr _f —Zﬁl)‘/;? dWT

Vi o}

r

T

A (1) -
where u(z) = OpU <r, Xﬁl),Xr(Q),Xﬁ?’)), Ly = —ZVT; and W is defined as in the proof of
Lemma 3.10.

Using that Vi < |0z, ullc we can apply Corollary 2.2 of [Kob00] to obtain

1

/

Oa b
o2

V] < \ 2|4
e g

T 10 ulo (

2 00
# S0l |

><OO
0

because d,,u and 0,,u are bounded by Theorem 3.6. Since this bound is independent of s we
also get that

0] 0

1 1
Oz, U (s,Xs(l),Xg),Xs(?’)) =—=>-—2>0
' Ve o V]
for all s where V' is defined. Because, as stated above, 0,,u is continuous, we get that ¢y = 0
and that hence Equation (3.18) holds true. [ |

Lemma 3.14
Let g, pu and o fulfill Assumption 3.5 and their second derivatives be bounded. Then for the problem
(3.16) it holds for all s € [0, 1] almost surely that

1Z] < [0, uM o0 < c0.
Proof. Note that this proof runs on similar lines as the proof of Lemma 3.2.
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Remember that Lemma 3.10 yields that for problem (3.16) there exists a unique solution on
the whole interval [0, 1] for every initial condition in R3. Observe that with It6’s formula we get
for h > 0and s,s + h e [0,1]

s+h s+h s+h
f Y, aw, + J (W, — W,)dy,M) + J 1-zWdr

S S

7|

s+h ZTEO) 2 ar
_’_J (WT‘ o Ws) (_( 0-2) }/T(l) (}/7(3) <Ma,r . 2Mro-o_ > - 2Y( )00_ > dr

s+h (0)
+ f Wy = W) (—222 (Y2 + Y, ) Z£”> dr fs]

S s

s+h s+h s+h
E j ZM dr + f vy, aw, + J (W, — W) ZD dw,

—ZWM as. as h—0.
On the other hand we get by using the decoupling condition that
1
Y(+)}L(Ws+h - Ws)
—ull) (5 +h XLEJr)ngh?Xgh) (Wern — Ws)
—u® (s + 1, X0 X, X)) (W, = W) (3.19)

+ (u(l) (s +h,x0, x® X(3>) — @ (s +h, XD, x®@ X§3>)) (Wasn — W)

+ (“(1) (5 +h Xs(i)me(i)h?Xs(j-)h) ul) (3 +h Xé—ll-)h7X§—2i-)h7X(3)>> (Wesn — Ws).

At first let us take a look at the third summand at the right hand side of (3.19). Since u() is
Lipschitz continuous in its fourth argument with some constant LZ(U s and since furthermore

s+h (0)y2
x® X<3>+f w2 gy

s+h — “%s 2
s Oy

we can estimate

’]E [ (u® (s X0 X2 x0,) = u (54 0, X X3 X)) (Woin = W5)| 7
1 s+h Zﬁo) 2
<TE| Ly, L Mr( 0—3) dr| [Wsin — Ws|| Fs
1 p (0))2

< 3L | 55| 1ZOIZEWasn - Wil R,

which clearly goes to 0 as h — 0 because %; and Z () are bounded by Theorem 3.6. Analogously
we get, with L’;(l) 2 being the Lipschitz constant of u(!) in the third argument, that

% ‘IE [( D (s +h,xD, x@ X§3>) — W (s + h,Xs(fh,Xf),Xg?’))) (Wasn — We)

7|

hLzm w120 2B [ Wi — Wil 7]

—0 a.s. for h—O0.

33



The SEP for general diffusions

Now consider the remaining first term on the right hand side of Equation (3.19). Using
integration by parts we obtain

E[u( ) (s+ hxD, x@ x6 >> (Wasn — We) }'S]
1 1.2
— | u (s+h XY+ 2vVh, XD X)) 2v/h——e 27" d
J]R <5 z )z 71_e z
1 1
— | opu™ (s +h, XW 4 2vVh, XD XO) h——e72% d2.
J;R U (3 P z P P ) 271'6 z

Since é’xlu(l) is bounded as proved in Lemma 3.10 we have
1
.h]E [ (1) (s +h, X0 x@ x©® >) (Wein — W)

7|

:‘ f ooyt (5 b, X 4+ 2B, X, X)) —Lemd a
R

< 02, uM .

Putting the derived estimates together we get

Dl = (1) )
\zg >’ Jim h]E [YSM(WM —W,) ]—‘s] < [as, ut )HOO
By Lemma 3.10, |d,,u") | < oo, which further implies the result. -

Proposition 3.15
Let g, ;1 and o fulfill Assumption 3.5, let their first, second and third derivatives as well as o and %
be bounded. Then the requirements of Theorem 3.9 are fulfilled.

Proof. Remember that the derivative d,,u of the decoupling field of FBSDE (3.2) equals u(") of
the decoupling field of FBSDE (3.16) by Lemma 3.10 and which, by Lemma 3.13, is bounded
from below by a § > 0. Hence, it only remains to show that ¢, v which equals «(!) is Lipschitz
continuous. Since we already know that the derivatives w.r.t. the space variables are bounded
(by Lemma 3.10) we only need to prove that u(!) is Lipschitz continuous in the time variable.

Consider FBSDE (3.16) for a starting time ¢ € [0, 1) on the interval [¢, 1] with initial condition
(Xt(l), x?, Xt(?’)) — (M, 2®, 2)) = z € R3. Let s € (¢, 1]. Using the triangle inequality several
times gives

’u(l)(s,m) —uV(e, x)‘ < ‘u(l)(s,x) -E [u(l) <3, XM 23 x(g))”
+‘E[u(1> (S X,z )] [ (1)( <>’X§2>7x<3>>”
+ \E [uw ( X, x ] [ (s Xt ),XS(2),X§3)>”

i ‘]E [uu) (S X0, x@ x (3)) ey ( x® Xt(z),XfB))H ‘
We take a closer look at every summand on the right hand side starting with the first one. By

defining
o(2) 1= uD (5,20, 2@ 20y — (s, 2M 4+ 2 2 23)

we see that the first summand equals |[E[p(W; — W})]|. Furthermore, ¢(0) = 0 and by
Lemma 3.12, ¢ is two times weakly differentiable with derivatives bounded by some constant
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L .0 < co. Hence, the inequality ‘SR o(a- z:)\/%jreféz2 dz| < 3a?|¢"| holds true (see e.g.

Lemma 4.3.11 in [Frol5]). Therefore,

W (,2) ~ B [u (5. X0,2@,20) | = [BLow, - will < C-D o p, 0

For the second summand we use the Lipschitz constant of u(!) denoted by L, ) to get

‘E [u(l) (s,Xgl),x(Q),w(:g)) —uV <3,X§1),X§2),x(3)>” <L,k ‘Xg) — x(z)‘

S (0)\2
f (ZTQ) dr
t a,

T

~L,nE

<Ly e e (s — 1)

since | Z(9| < |u™|, < o by Theorem 3.6.
The third summand can be estimated similarly by

B [u® (5, X0, X,2®) —ut) (5, X0, 2, x0))]|

s (0)\2
JMT(ZT S ar
t

2
oy

<L,nE

< Ly [utV % (s —1).

o2

.
For the last summand we use the decoupling condition and v® = _1 to obtain
B [u® (5, X0, X3, XxH) —u® (¢, x{V, x2, x|

<[efr -]

s (0)\2 (0)
f yn ) <Na,r —op, 2oy 216«(2)0“”> 2 (Y(Q) - ,Ur) AL dr]
t

o2 oy oy 02 "
W2, ( )
L o0

2
+2JuDo (2o + | Ll ) 1050V | (5 = 1)
where we applied Theorem 3.6 and Lemma 3.14. Thus, the last summand is Lipschitz continu-
ous by Theorem 3.6 and Lemma 3.10, too.
Putting all estimates together we arrive at |u(!) (s, z) — u)(r, )| < L(s — t) for some finite
constant L which is independent of s and ¢. Hence u(!) is Lipschitz continuous in the time
variable.

04,0

Oa b
o2

N

0a0 2
- + ﬁ“u(Q)‘|w
g &

Hoo .

+2H%
0 g

Observe that Proposition 3.15 and Theorem 3.9 imply Theorem 3.22.
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3.5 Numerics

We now illustrate numerically an example of an embedding using the methodology developed.
This is done by numerically approximating the solution of the FBSDE

(3)
Y + x!
W, J )dBX@
2
X =f Zr o dr (3.20)
0 02XV, + X))
S Z2
X = | XY+ X0t ar
0 o2(X:7 Y, + X))

1
Y, =g(Wy) — X9 — J Z, dW,.

To the best of our knowledge no literature exists able to deal directly with approximations of
(3.20) and hence, inspired by known literature, we propose a numerical scheme whose rigor-
ous study is left for future research. FBSDE (3.20) is a fully coupled quadratic growth FBSDE
which we deal with as follows: from [IDRZ10] we inject the theoretical a priori hard bounds in
the coefficients, reducing FBSDE (3.20) to a uniformly Lipschitz fully-coupled one, then apply a
decoupling technique based on Picard iterations [BZ08] to reduce the problem to the iterative
simulation of uniformly Lipschitz fully-decoupled FBSDE. The final approximation step is car-
ried out using a classic explicit Euler scheme discretization [BZ08] while the approximation of
the conditional expectations is done via projection over basis functions [GLWO05]. The final out-
come is the approximation of the embedding stopping time and the verification that the stopped
process does embed the target distribution.

From a mathematical point of view, the only step of the described numerical approximation
that cannot be fully justified is the convergence of the Picard iteration step. The results of [BZ08]
do not apply if the diffusion coefficient o depends on Z. We stress, however, that for some special
cases the algorithm outlined below can be shown to converge, e.g. in the homogeneous case (see
Remark 3.20 below).

The problem, its conditions and the hard bounds

At first we show that FBSDE (3.20) has a unique solution from which we can construct a strong
solution of the SEP.

Proposition 3.16

Let the assumptions of Theorem 3.9 or Proposition 3.15 be satisfied. Denote by u the decoupling
field of FBSDE (3.2). Let B be an arbitrary Brownian motion and denote by (F?) = (FB )se[0,00)
the augmented filtration generated by B. Then there exist unique square-integrable processes
(W, X®, X® V) solving the FBSDE (3.20). Moreover, 7 := X\? is an (FP)-stopping time
bounded as in (3.22), W is a Brownian motion on [0, 1] and the pair (7, Yp) is a strong solution of
the SEP.

Proof. Remember that by Theorem 3.9 the SDE (3.15) has a unique solution (v,I', A, ©). We
introduce the time change v~!(t) = inf{r > 0: y(r) > t} for t € [0, 1]. Observe that y~! has the
dynamics

P R ()7_1(8)7%—1()))2 )
0= | o RN
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By setting Z := 0z, u(s,['-1(4), v 1(s), A,-1(4) for s € [0, 1], replacing the dynamics of v by the
dynamics of y~! and applying the time change v~ ! to all other processes, we can rewrite the
system (3.15) as

t 2
1 (Zs)
() = J — ds
( ) 0 0-2(’7 1(8)797_1(3) + A'y_l(s))

Fo(171(5), Oy-15) + Ayagy)
Ly = f 7 dBy-1(s)
0 S
t Z,)?
A iy = “1(s), 0, -109) + Ay1(s (Zs ds
y=1(t) LM(’Y (5), ©5-1( ) 7 ))02(7—1(5)’@T1(5) +A7_1(8))

t
@7—1(,5) =Yy + JO L dF,y—l(s)

for all t € [0,1]. Here it is straightforward to see that with y~1(t) = Xt(2), Loy = Wi

A = Xt(?’) and 0,14 = Yy we exactly have the system (3.20). Thus the system (3.20) has

a solution (W, X, XY, Z) which fulfills that 7 := X\? = y=1(1) = inf{r > 0|y(r) = 1} isa

stopping time with regard to () bounded as in (3.22) and that A, ~ v.

It remains to show the uniqueness of this solution. Now take an arbitrary square integrable
solution (W, X?), X®) Y, Z) of (3.20). Define the time change

) inf{s >0: X% =1, t<x®?
v(t):{ { } t

1

)

and observe that by

X 02 (1, Y0 + X)) to? (X2, + X)) ;
<W,W>t:f 5 drzf - dXP:f 1dr =t

0 Zr) 0 Z; 0
W is a Brownian motion on [0, 1]. Thus the processes (W, X(?), X®) Y, Z) solve FBSDE (3.2)
for the initial value 0. Due to Theorem 2.8 and Lemma 2.9 this solution of FBSDE (3.2) is

unique. |

Remark 3.17

If one is only interested in a weak solution, then only FBSDE (3.2) needs to be solved, where W
is given, and the Brownian motion B can be calculated afterwards, as described in Theorem 3.7.
Aside from simplifying the system that needs to be simulated, this also has the advantage of
being valid for more general coefficients ;. and o (compare the assumptions of Theorem 3.21
and Theorem 3.22).

By the combination of Lemma 3.13, Lemma 3.2 and Theorem 3.6 we have for Z the A x P
a.e. bounds 0 < Z < Z < Z < o, which are

1
A~ 1 c Oq — 2 . . —3
Z =|—5 +2min<0, inf O Capt = 2040 - (0,x) and
lg'1I% (0,2)eR4 xR o3

- 1 -1
z(| +2|4] )
) 07l )

aaﬂ aao_ @LJ

+§(
o0 0—2

g/

2
+ Ozl
w €

g
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with
0 0 1o
forsils <o |22 (| %) +2(1%7) |4, + %)% )]
g © g 0 o~ lloo 3 g 0
0o 5tﬂ
2 (2% |5, + -
Therefore, we have that
72 72 72
o2 <@ . 3 <€—2, AxPae
0 o?( X7, Ys + Xs7)
and in particular
72 72
[o]2 ST:XF) < = a.s. (3.21)
g o0

Example 3.18 (Embedding a Normal distribution into a Brownian motion with drift)
Forpy=meR,o=1and v = N(0,a?) for « > 0 we know that 7 = a? and Ay = —m - o solves
the SEP. In this case we have that g(z) = ax and the above bounds for Z become the explicit
values @ < Z < « and the system (3.20) simplifies to

S 1 S S
W, =f —dB, @, X :j oddr, X = J m - a’dr
0 & r 0 0
Y=W—X(3)—(B _B )
s =aly 1 X X®

giving that 7 = X fQ) = o? a.s. which equals the above mentioned stopping time. We immediately
find the correct value for Ay since

1
A=Yy =E[V1| F]=E [am f ma®dr — By o) + By fo] — —ma?.
0 1 0
Example 3.19
Again let v = N(0,a?) for a > 0. Furthermore, set
v3 P rh ]

o(t,a) =p7 + and  p(t,a) =pi +

l4+et 14+e@ l4+et 14+e@

for the vectors p°, p* € R? containing parameters such that

e := p{ + min(0, p9) + min(0,p3) > 0,

o, o, U

2p3p3pY — pTph + min(0, pSpgph) + min(0, 2pSpsps — (p§)°ph) > 0
and
L pfpy — 208pF + min(0, pph — 2pgph) — max(0, pgph)
a? 2¢3
Then observe that all conditions of Proposition 3.15 and therefore also of Proposition 3.16 are
fulfilled,

> 0.

1
2

7 < < 0

(1 | PIPs = 2p3pi + min(0, pips — 2p5ph) — max(0, pgpy ))
o? 2e3

and also Z can be directly obtained since
lollo = pT + max(0,p3) + max(0, p3),
[0 = max (pf + max(0, py) + max(0, pf), —p) — min(0, py) — min(0, p)),
[0ac o = [P5];  0t0lleo = [Pl Qattlleo = P51, [0t = [PE]-
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Iterative procedure

To numerically approximate (3.20) we first embed the hard bounds for Z, as found above, in the
system, then create a Picard-type approximative sequence converging to (3.20) and numerically
approximate the terms of said sequence. Since we have a coupled system of FBSDEs with a
truncated quadratic growth component, we combine [IDRZ10] and [BZ08].

Since X (@) is increasing and

—1
(2) -2 1 . . 0 Ogh — 20,0 -
X7 < 2 0, f 0,
b (ng'n%@ " ”““{ (e,x>é%+m< 3 (0, 2)

a.s. as stated in Equation (3.21), we only need a trajectory of B untill this point.

Furthermore, choose any starting value for Z between the lower and upper bounds Z, Z
respectively. Here we set the starting value Z(© = |¢/|, since Z < Iyl < g'le < Z.
Moreover, we define a truncation operator to incorporate the hard bounds for Z, namely, let
T : R — R such that given Z, Z, we define T(z) := min(max(z, Z ) 7). The map T is uniformly
Lipschitz.

For the other starting conditions we choose Y(©) = X2:(0) — x®).(0) — 0. Then we do the
following iterations for k € INy:

. 7(z)
XD :f 5 <X1£2),(kE1)7Yr(k) 2X1g3)7(k+1)) @
(1))

dr
o2 (qu2),(k+1)’y;(k) + X7€3),(k+1))

X B)(+) :J i <X7(2),(k+1)7yr(k) + Xk
0

5o <X£2),(k+1)’n(k) 4 Xr(g)’(kﬂ)
W (k+1) _J dBX1(2>,(k+1)

o 7 (Z)

1
}/s(k’-i-l) :g(Wl(k‘-l-l)) _ X§3)v(k’+1) _f o (X'I(‘Q),(k-ﬁ-l)’)/;(k’) + XT(-3),(1€+1)) dBX(Z),(k+1)-

Under the conditions imposed on u, o (Lipschitz and bounded) and 7', all the coefficient maps of
the truncated FBSDE system are Lipschitz continuous. It is currently not clear how to show that
the iterative system converges to the solution of (3.20) where one could possibly use a result
similar to [BZ08, Theorem 2.1]; this difficulty stems from the fact that the [BZ08] methodology
does not allow for either random drift or diffusion coefficients or o depending on Z. Note that
in the limit (k — o) the truncation does not affect the system as 7<7<Z7.
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Numerical procedure (time discretization)

We introduce the time discretization = = {0 = tp,...,t, = 1} for n € IN and define
|| 1= max;—g,... n |ti+1 — t;| as the mesh’s modulus. The numerical approximation of the it-
erative system, for each £ € IN follows [BT04] (or [BZ08]). We apply an explicit Euler type
approximation to the integrals and let throughout ¢; € w\{¢o}. At first

XD g Xt(f),(k:—&—l) _0

to
2
T(29)
(2),(k+1) (2),(k+1) ti
Xi, =X, + (tit1 — ;)
Lit1 t; + (a(Xt(f)’(kH),YtEk) _‘_Xt(f),(kﬂ))

(2),(k+1) 1-(k) (3),(k+1) (k)y )2
wl( X Y, A+ X T(Z.")
x (3):(k+1) =X§f’)’(’““)+(ti+1—ti) ( t ¢ t )( ¢ )

tit1 o2 <Xt(l2),(k+1)7yvtgk) + Xt(;‘ﬂ),(k+1)> )

then

9. (k+1) < (k 3),(k+1
k1) U(Xt()(Jr)vY}E)JFXé)(JF))(

k+1 k+1
Wi =0 WY Wi T(z5) By en = By )
t;

to tit1 o
‘1

and
k k (K
Y;S(n +1) —g <W1( +1)> —Xf?’)( +1)
k+1 k+1
thj : =k [Y;tg " )‘ftiﬂ]

Zt(ik—tl) :ti_ltil]E [(Yt(ka) E [YtEkH)' ftifljl) (Wi, — Wa,_,)

(3

}"tH] .

The time discretization expression for Zt(fjl) is somewhat non-standard when compared with

the [BT04] scheme. The inner term with the conditional expectation of YékH) is a variance
reduction trick which has been discussed in several places, e.g. [LdRS15, Section 5.4.2]; inde-
pendently, the scheme’s convergence (for fixed & as h N\, 0) follows via [BT04, Theorem 3.1]
yielding a convergence rate of order h1/2 (the formulation associated to [BZ08, Theorem 2.2]
would deliver the same convergence). In the calculation of Z we use that

1 1
J (XY, + X¥)dB, ¢ = f Z, AW,

for all s € [0, 1] and hence for small » > 0

1 t+h
Zt %E[J Zrd’l" ]:t:|
h LU

1 t+h
g [(YHh —Y3) (Wign — W) — f (Y, = Yi + (W, — W) Z,) dW,
t

g

h
1
*EE [Yt+h (Wt+h - Wt)‘ -Ft]

1
= E [(Yean — E[Yien| Ft]) Win — Wi)| Fi] -

For the calculation of W we implicitly assume that the value of B is known for every Xt(?)’(k) for

7

all £ > 0 and ¢; € w. This problem is more involved if the trajectory of B is to be calculated at
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the beginning of the simulation. However, it can be eliminated by calculating the trajectory of
B just in time for the points needed by the method of Brownian bridge and storing all thereby
obtained points. It is well known that the distribution of a Brownian bridge B at time ¢; under
the condition of the values of B at the times tg < t; and ¢ > ¢; is

to —1 t, —t to —t1)(t1 — t
Bt1|BtoaBt2"’N(Bto- 2 1 1 0 (2 1)(1 O))7

+ By, - ,
to — to to — 1o ta — 1o

see e.g. [KS91]. Thus the simulation of B at the exact points of time is straightforward as
well. Lastly, the conditional expectations are computed via Least-Squares regression functions
as shown in [GLWO05]; we project over 3-dimensional polynomials up to degree 2.

After finishing the simulation of the FBSDE we can use the simulated trajectory of B to simu-
late our process A and apply the stopping time 7 to see if A has the desired distribution.

Remark 3.20
For time homogeneous coefficients i and o the FBSDE (3.2) simplifies to the decoupled FBSDE

x® J Z d Y, = g(Wh) fl () Z d fz aw,
= = r s = - r = r— r re
S NPT 7 R SR R ET 7 .

For this decoupled system one can use the same trick as above and inject in the BSDE the hard
bounds on Z. Once truncated and using the condition on p, o, the driver of the BSDE, say
fr(y,2) = T?*(2)u(y)/o?(y) using the notation from before, is a standard uniformly Lipschitz
driver in y, z for which it is known ([BT04], [BZ08], [GLWO05]) that the Euler explicit scheme
converges to the true solution. For weak solutions (see Remark 3.17) of the SEP this explicit
scheme is equivalent to the scheme we propose here. Hence, we have a special case where the
convergence of our scheme is known.

Numerical testing for Example 3.19

For the parameters a = 1, p? = (2,0.5,2) and p* = (1.5, —2.5,0.5) such that v = N(0, 1),

0.5 2 —2.5 0.5

t,a) =2+ + and t,a) =15+ +
o(t,a) l+et 14e@ ult; a) l1+et 1+4+e0@

we gete =2, |0 = 4.5, Z < \/g and Z > 0.111 giving 6 x 10~4 < 7 < 0.4. A simulation with

10° paths, 20 time steps and 50 iterations yielded values for 7 in the interval [0.061;0.161] and
the starting value Y = —0.042.

We simulated A, with initial condition Ay = Yy = —0.042. In Figure 3.1 one finds the histo-
gram of the simulated values of the A, (left) and the stopping time 7 (right). The histogram of
A, indicates that our algorithm generates the sought normal distribution (with the appropriate
characteristics). Also, D’Agostino and Pearson’s [D’A71,DP73] test for normality, applied to the
simulated data A;, yielded a p-value of 0.37. Given such a high p-value we do not reject the
hypothesis of normality at any reasonable significance level.
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Figure 3.1: On the left, Histogram of 10° samples of A, against the density of (0, a); on the
right, the Histogram of the corresponding samples of 7 and at x = 0.0055 and z = 0.4
the a priori hard bounds for the stopping time.

3.6 Discussion of the results

Here, we shortly restate our main results and compare our assumptions to the assumptions in
other works. We start with our weak solution to the SEP.

Theorem 3.21 (Weak Solution (see Theorem 3.7))

Let Assumption 3.5 be satisfied.  Then there exists a complete filtered probability space
(Q, F, (Gt)i=0, P), a (G;)-Brownian motion (By), a bounded (G;)-stopping time T and a real num-
ber a such that for the strong solution A of the SDE (3.1) with driving Brownian motion B and
initial condition Ao = a we have A, ~ v. Furthermore, T can be chosen such that

—2 1 . . 0 Oat — 20,0 - -1
€ e + 2min < 0, o )lelllRf R 3 (0,x) a.s. (3.22)
0 z)eR 4

Theorem 3.21 basically states that if 1, o, g fulfill Assumption 3.5, then we can give a filtration
together with a Brownian motion and a stopping time which solve the SEP. We call it a weak
solution since the filtration and Brownian motion are part of the solution instead of being given
up front. In contrast, Theorem 3.22 states existance of a strong solution. This means that for
given u, o, g and a Brownian motion we can construct a stopping time solving the SEP.

Theorem 3.22 (Strong Solution (see Theorem 3.9 and Proposition 3.15))

Let Assumption 3.5 be satisfied and assume furthermore that o, % the first, second and third
derivatives of g, p and o are bounded. Let B be a Brownian motion on a probability space (2, F, P)
and denote by (F;) the augmented Brownian filtration. Then there exists a € R and a bounded (F3)-
stopping time T satisfying (3.22) such that for the strong solution A of the SDE (3.1) with driving
Brownian motion B and initial condition A9 = a we have A, ~ v.

In the following we shed some light on what some of the assumptions mean and how they
compare to already existing works. For this, in the next lemma we give some necessary condi-
tions for ¢’ to be bounded and bounded away from zero.
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Lemma 3.23

For x € R define g(x) := F,1(®(x)) for F, and ® being the cumulative distribution functions of
v and the standard normal distribution, and additionally define ® ,(z) = ®(%) for any o > 0. If
|¢'llec < o0, then there exist K > 0 and o > 0 such that

* forall v < —K we have F,,(z) < ®g,(x) = ®(%£) and
e forall x > K we have F,,(z) = @, (z) = ®(Z).

)

If additionally there exists a constant ¢ > 0 such that 0 < ¢ < ¢’ then there exist K > 0 and
01,09 > 0 such that

e forallz > K we have &g, (x) = ®(E) < F(x) < @, (z) = P(E) and

e forall z < —K we have ®q,,(z) = ®(£) < Fy(z) < $o 0, (z) = O(E).

Proof. Select K, 0,e > 0 such that for all z > K we have g() < x and for all z < —K we have

g(%) — e = z, which is possible since 0 < ¢’ < C < o0. Then

forz > K : F, :L') = Fy(%z) > Fu(g(ﬁ)) — F,,(F_l((I)(%))) > @(% _ CDO,U(Z'),
forz < —K: Fr) = F(%) £ Fg(2)—2) = R(E(@(3) ~ 2) <a(2)

If additionally 0 < ¢ < ¢’ then we can choose K5 > 0 and some o5 > 0 such that for all z > K>
we have g(;>) —e > z and for all z < — K, we have ¢g(;>) < z. By an analogous argumentation

Z
g2

as above we then obtain the remaining estimates. Setting K as the maximum of K from above
and K, and furthermore o1 := o we have proved the statement. |
Remark 3.24

We now comment on Assumption 3.5. In particular, we relate the assumption to some conditions
appearing in the literature that have been shown to be sufficient for a bounded solution of the
SEP to exist.

a) By Lemma 3.23 we get that the assumption of ¢’ being bounded entails that there exists a
compact set outside of which the tails of v are dominated by the tails of a normal distribution.
If, as in Theorem 3.22, we additionally have that ¢’ is bounded from below by a positive
constant, then the tails of v also dominates the tails of a normal distribution.

Furthermore, observe that the left hand side of Condition (3.7) is equal to 0, (%) and in the
cases ii) and 4ii) the term 20,0 - 1 — o - Oy equals —o30; (45 ); hence Assumption 3.5 imposes

conditions on the growth of £;.

b) Theorem 3.1 in [AS11] states that the boundedness of ¢’ is sufficient for the SEP for the
BM, possibly with a constant drift, to possess a bounded solution. Notice that for o = 1 and
constant i Inequality (3.22) simplifies to

2
7 < g%
and hence coincides with the estimate on the embedding stopping time provided in Theorem

3.1 in [AS11]. Moreover, observe that if o and p are constant, then all the other properties
of Assumption 3.5 are satisfied trivially.
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)

d)

The ratio on the left-hand side of (3.7) is equal to ¢, (). Thus, (3.7) is somewhat weaker
than requiring that %; is non-decreasing in 2. For some mean-reversion processes, e.g. the
Ornstein-Uhlenbeck process, d, (%) is unbounded from below. A mean reversion effect can
imply that at any time the tails of the diffusion A are lighter than the tails of v; in this case
v can not be embedded into A in bounded time.

A condition related to (3.7) appears in Theorem 6 of the article [AHS15] studying the SEP
in the special case where ;1 and o do only depend on z. The theorem states that if —%“ + o’

is non-increasing and %g) is bounded, then there exists a bounded solution of the SEP. Note
that if, in addition, ¢ is constant, the assumption of Theorem 6, [AHS15], coincides with our

Assumption 3.5.

In [FIP15] the authors consider the special case when u,o do not depend on a, but on
time only. To obtain weak solutions for the SEP using the FBSDE approach the authors of
that work assume that o is bounded away from zero as well as that ¢’ and ¢’ are bounded,
where 0'(r) = % and where H~! is the inverse of the mapping t Sé o2(s)ds. This
boundedness of §'(r) is equivalent to our assumption that %; is bounded.
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4 A decoupling field approach to
position control problems

The aim in position control problems is to steer a process such that the generated costs of the
process and steering are minimized. There are many applications in economics, engineering and
management. However, we start with space flight as a graphic illustration of the aim of such an
optimal control.

Our first example is the steering of a rocket that is supposed to land on the moon. A deviation
from the desired path might cause unforeseeable problems. Hence, fuel has to be expended to
make corrections to the course while flying. In the end the rocket should land on a specified
place and the ground gets rougher proportionally with the distance to the center, increasing
the risk of a crash while landing. And everywhere on the way there are unknown influences
randomly diverting from the flight path. While designing the rocket, the engineers need to have
a good estimate of how much fuel it will need. And while in the air, it has to be steered with a
minimal expenditure of fuel. After the landing no more fuel is needed, which represents a time
horizon for the problem.

Another example is keeping a satellite on its orbit and knowing how long it can stay there.
The steering stays the same as with the rocket. However, using a finite time horizon is not well
suited for this problem. It is much more convenient to assume an infinite time horizon and an
unlimited amount of fuel. After obtaining the minimal amount of fuel to be used and averaging
over time, one gets an estimate of how long the satellite can be kept on its orbit. This infinite
horizon problem motivates the study of so called ergodic control problems.

As a current example for a control problem we want to highlight the outbreak of a contagious
disease. The number of newly infected people is stochastic and depends on time and the number
of already infected people. The governmental measures against spreading can be viewed as the
control and generate costs of a social and economic nature, while the costs of infected people
arise e.g. in health care. Beyond the point where all hospitals are at their limits, either the
spending has to be increased radically or more people will die. Thus, it is apparent purely
quadratic cost functions are sometimes insufficient for modeling.

The common approaches for solving position control problems trace back to Bellman and
Pontryagin. Bellman developed the Dynamic Programming Principle, which together with the
Hamilton-Jacobi-Bellman (HJB) equation makes use of PDE theory. On the other hand, Pontry-
agin’s Maximum Principle derives the equivalence of the control problem to an FBSDE. When
using Pontryagin’s Maximum Principle, most works either make assumptions such that the res-
ulting FBSDE decouples to a BSDE or, in the case of linear-quadratic control problems, exploit
further dualities, which then allow to solve the control problem (see e.g. [YZ99], [SXY18]).
In this latter case the solution to the FBSDE is obtained only as a byproduct. Our approach is
different in that we directly solve the coupled FBSDE by using the method of decoupling fields
(see Chapter 2). In essence, this means that we derive an adjoint BSDE with quadratic dynamics
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and show that it has a bounded solution. From there we then derive the optimal control and
value function. This approach has already been applied in [AFKP18] to which we draw a short
comparison in Remark 4.12.

We present two sets of sufficient conditions for the existence of an optimal control of the drift
coefficient. The first set (see Assumption 4.8) contains processes with stochastic linear dynamics
and convex cost functions that grow at most quadratically in the position of the process. This
first set contains the linear-quadratic setting. The second set (see Assumption 4.13) consists of a
Lipschitz drift and linear diffusion coefficient but has stronger restrictions on the growth of the
cost functions.

In Section 4.2 we concentrate on the linear-quadratic case, which is a special case of As-
sumtion 4.8. Our findings conform with the known results from [YZ99] and [SXY18] (see
Remark 4.23 for details).

Then, in Section 4.3, we derive some convergence results for deterministic functions with
quadratic dynamics, which are used in Section 4.4 about ergodic linear-quadratic control prob-
lems. To the best of our knowlege other works about ergodic control deal either only with
time homogeneous dynamics (see e.g. [BF92] and [Bor06]) or assume dissipativity of the pro-
cess to be controlled (see e.g. [CFP16] and [OTV19]). We, on the other hand, restrict to a 1-
dimensional linear-quadratic setting with bounded, deterministic, time inhomogeneous factors,
without any other restrictions to the controlled process.

4.1 The problem and general solutions

Let W be a standard 1-dimensional Brownian Motion on a probability space ({2, 7, P) and let
F = (Ft)o<i<o De the augmented natural filtration of W.

Assumption 4.1

Let T > 0 be a time horizon and the functions p, o : Qx [0,T] x R — R be progressively measurable
and in the last argument two times differentiable with bounded derivatives. Also, let g : 2 x R — R
and f: Q x [0,T] x R x R — R be two times differentiable and convex in all space components,
A x P a.e. and progressively measurable. Furthermore, assume f to be strictly convex in its last
argument A x P a.e. Finally, let

H|:U’(""0)| + |O-(" ’0)| + |f(7 ‘7070)| + |g(70)|Hoo < .

Let Assumption 4.1 be fulfilled and denote by A the set of progressively measurable controls
a:Qx[0,T] - R with Egg a?ds < 0. For zg € R and o € A we define X as the solution of
the integral equation

t t

(u(s, X&) —ag)ds + f o(s, X&) dWs.

X?ZZL”()—FJ
0

0
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Remark 4.2

If Assumption 4.1 is fulfilled, ¢ and o are Lipschitz-continuous in the space argument uniformly
in time. Since each admissible control is square integrable we obtain by the standard theory
(see e.g. Theorem 6.3 in [YZ99]) that X has a unique strong solution, which satisfies

E

sup | Xy)? | < 0.
te[0,T]

This moreover implies that for any term, which grows at most linear in X, we can inter-
change the order of expectation and integration by Fubini’s Theorem. Since furthermore the

Z-component of a solution of a BSDE fulfills IE [S;‘JF 72 ds] < oo by definition, we likewise ob-

tain that every stochastic integral with respect to a Brownian motion of any Lipschitz continuous
function of X and Z is a true martingale and has thereby an expected value of 0. In the following
we will use those facts without mentioning them.

Our aim is to solve the control problem that consists in minimizing the cost functional

T
J(T.20,0) = B U (s, X2, ) ds + g(X%)] 4.1)
0

over all controls o € A. For now we treat T as a fixed constant, but in Section 4.4 we let T'
go to infinity. The so-called Hamiltonian of the above control problem is, for ¢ € [0,7"] and
x,y,a, z € R, defined by

H(t,z,a,y,z) == (pu(t,z) —a)y + o(t,x)z + f(t,z,a). (4.2)

Pontryagin’s Maximum Principle is one of the standard methods used to solve control prob-
lems. Basically it states that the control problem is equivalent to an FBSDE.

Theorem 4.3 (see e.g. Theorem 6.4.6 in [Pha09]) R
Suppose that Assumption 4.1 is fulfilled. Let zg € R, & € Aand X = X & the associated controlled
diffusion. Suppose that there exists a solution (Y, Z) to the associated BSDE

—dY; = 0, H (t, Xy, 64, Yy, Zy) dt — Z, AWy, Y7 = 0,9(X7)

such that

H(t,Xt, OAét,f/t, Zt) = Ic?ellIRl H(t,Xt, Oé,f/t, Zt), 0<t< T7 a.s.

and o
(z,0) — H(t,z,a,Y:, Z;)

is a A x P a.e. convex function for every t € [0, T]. Then & is an optimal control, which means that

J(T, zg, &) = inf J(T, zg, @).
acA

Note that, since f is strictly convex in « whenever Assumption 4.1 is fulfilled, we get that
Oof is strictly monotone increasing. Hence, there exists a (random) inverse function of 0, f
with respect to «, which we denote with f,!. Furthermore, we denote by D(f,!) the domain
of 7! and for constants a,b € [0, 0] with a < b we define the truncation operator 7 as
T (z) := max(a, min(z,b)) for all z € R.
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Proposition 4.4
Let Assumption 4.1 be fulfilled and xy € R. Moreover, let a,b, c,d € [—o0, 0] with a < b, ¢ < d and
[0,T] x R x ([a,b] n R) = D(f;!) such that the FBSDE

Xy =x9 + Lt [M(S,Xs) — f;l(s,Xs, 7;b(YS))] ds + fot o(s, Xs)dWs

T

Y, = 0,9(X7) — J Z, dW, (4.3)
t

+ " [oanlo XD THY) + 2005, XTHZ) + 00 f (5. XKoo £ (5 X T2Y) ) | s
t

fulfills SLC (see Assuption 2.1) or MLLC (see Assumption 2.2). If the gradient process U is bounded
independently of the interval [t,T] € Inax, A X P a.e., then it has an a.e. unique solution (X,Y, Z)
on the whole interval [0, T]. If furthermore a <Y < b, c< Z <d, A x P ae,

(x,a) » H(t,x,a,Ys, Zy) (4.4)
isa A x P a.e. convex function for t € [0, T], then
(dt = fa?l(tv Xt7 Yt))te[O,T]

is an admissible, optimal control.

Proof. Since FBSDE (4.3) fulfills SLC or MLLC and the gradient process is bounded, we ob-
tain by Theorem 2.11 that FBSDE (4.3) has a unique solution on the whole interval [0, 7.
Next, remember that f;!, which is the inverse of d,f with respect to «, is well defined
because f is strictly convex in «. Since furthermore H is also strictly convex in « and

OuH(t,x,00,y,2) = —y + Ouf(t,r,a) we get for all y for which f;! is defined and all
(t,x,2) € [0,T] x R x R that
min (¢, 2, 0,,2) = (u(t,2) = [ (La,y) y+ ot o)z + [ (La, 7 (o). (45)
oae

Hence, for specific processes X, Y such that (¢, X;,Y;) € [0,7] x R x ([a,b] n R) = D(f; 1),
we have with &; = f; (¢, X;,Y;) a candidate for the optimal control. Since FBSDE (4.3) fulfills
SLC or MLLC, which implies that f;! is Lipschitz-continuous in x and y, we also get that & is
admissible.

Now, note that if a < Y; < b for all t € [0, 7] then T2(Y;) = Y; and likewise for Z. Thus, we
get that FBSDE (4.3) is equivalent to the FBSDE

t t

[,u(s,Xs) — f;l (s,Xs,Ys)] ds + f o(s, Xs)dWy

Xt=$0+J
0

0
T

Yy = 0pg(Xr) + J [azu(s, Xo)Ye + 020(5, Xo) Zo + 0 f (5, Xa, f (5, X, Y2)) ] ds.

t

T
—f ZsdWsy
t

This in turn yields, together with Equation (4.5), that & := f, (-, X,Y) and (Y, Z) fulfill the
requirements of Theorem 4.3. Hence &, as defined above, is an admissible, optimal control. W

In the remainder of this section we derive conditions such that the assumptions in Proposi-
tion 4.4 are fulfilled, which allows us to obtain a solution to the control problem.

For this section let (X, Y, Z) always be the solution of FBSDE (4.3) on [t,T'] < Iiax with initial
value zg € R.
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Lemma 4.5

Assume that p, o, f, g fulfill Assumption 4.1 and that u, o, f, g,a,b, c,d are such that FBSDE (4.3)
fulfills SLC or MLLC. Then the gradient process U of FBSDE (4.3) solves for all s € [t,T] < Iymax the
BSDE

T T
Us =g"(XT) +f h(r,Ur, Z;) dr —J Z,. AW, (4.6)

S S

where
h(r,v,2) i= | =020, (£ ) (r, X, T V) A (¥r)
0 (2onlr, X)L+ L (1) = £ ), X0, THY)) + (2:0)° (1, X)L (21)
0 (Gua f(r X £ (X TN, () X TV L (Y1)
+ Qaapt(r, Xp) T3 (V) + Oaar (r, Xe) T Zy) + O f(r, X, 3 (, X, T3 (V1))
+ Oraf (r, X Jo (1 Xy T3 (Vo) 0 (f3 ) (0 X, T3 (V7))
+ 20,0(r, X, )(1 + 1[C7d](zr))]

for (r,v,z) € [t,T] x R x R and with (X,Y, Z) from FBSDE (4.3).

Proof. For z,y,z € R, s € [t,T] € Iax define

M(s,z,y) = p(s,2) = f3" (5,2, T2 W))
and
F(s,2,y,2) = Oupi(5,2)TL(y) + 00 (s, 2)T(2) + Ouf (s x, f (s,x,ﬁ%y))).

Then, for an initial value xo € R at time ¢, i.e. X; = xg, FBSDE (4.3) can be written as

X, =z —l—f M (r, X,,Y,)dr +J o (r, X,)dW,,
t t
T

T
Ys =09 (X7)+ | F(r,X,,Ys, Z,)dr —f Zp dW,.

s

Let u be the decoupling field of FBSDE (4.3). With the decoupling condition and the chain rule
in Lemma A.3.1 of [Frol5] we get

Oz Ys = 0o [u(s, Xs)| = Opu(s, Xs) - OpgXs = Us - 03y Xs.
Now, define a stopping time 7 via
= inf{s € [t,T]|0z, Xs < 0} A T.

Notice that 7 > ¢ since 0,,X; = 1 and 0,,X; is an Itd process and in particular continuous in
time (see Lemma A.2.5 and Lemma A.2.6 in [Frol5]). For all s € [¢,7) we have that 0,,X; is
invertible with (d,,Xs)~! being an It6 process, too. Hence, Us = 0,,Ys - (02, Xs) ! is an Itd
process and thus there exist (b;) and (Z;) such that

T T _
US=UT+J brdr—f Z, AW,

S S
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forall s e [t, 7).

We also introduce for an Ité process Iy = Iy — i, dr — § j. dW, the two operators D* and
DY defined via (D' I); := is and (D% I), := js. Note that due to Lemma A.2.5 and Lemma A.2.6
in [Fro15] the integrals and hence also the operators D and D' can be interchanged with the
weak differentiation 0,,. Using this notation we have

0o Zs = D" 0, Ys
= D" (Us - 0o Xs)
= Uy - DY 0y X5 + DY Uy - 03y X
= U, - 030 (5, Xs) Opy Xs + Z502y X5

Thus we get
Zg = 0pg Zs (00 Xs) F — Uy 0g0 (5, X)

for all s € [t, 7). Also,

Ony [M (5, X4, Y2)] = 02 M (5, X5, Ys) Oug Xs + 0y M (8, X5, Ys) Oy Y
— 0. M (5, X4, Ys) 0uy X5 + 0y M (5, X5, Ys) UgOy X

and using the dynamics of Y yields

Dt axoys = _axF (Sa Xs’}/s’ Zs) ax())(s - aij (S’X&Y:sv Zs) aa:()}/s - az}? (S)st }/57 Zs) a:L‘OZS
= _axF (Sa X87Y97 Zs) aons - ayF1 (S)X&)/& Zs) Usa:coXs

- azF (37X57 Y57 Zs) <Us : (93;0' (Sst) + Zs) aa:oX&
while we obtain with the decoupling condition that

D! 05, Yy = D (Ug0py X
= —by - Ouy Xs + Us - (0. M (5, X, Vs) 0y Xs + 0y M (5, Xy, Ys) UsOuy X s)
+ Z4050(8, X )0y Xs.

Equating the two representations of D’ 6,,Y and rearranging yields
bs = Uy [0:M (5, X5, Ys,) + 0y M (s, X5, Ys, ) Us] + Zs0,0(s, Xs)

+ 0o (5, Xs, Yo, Z5) + Oy F (5, Xs, Ya, Zs) Us + 0.F (5, X, Ys, Zs) (US : 6xa(s,XS> + ZS)

for all s € [t, 7) with

0M (5, ,y) = Sopi(s,) = 0u(f3) (5.2, THW))
oM (s 2,9) = =0y(f) (5.2, THY)) Aoy (v)
0P (5.2.9,2) = Oualt(s,2)TH(Y) + P00 (5.0)T2) + Cuaf (5,2, £ (5,2, T2 ) ) )
+Onaf (50 05 (5,2, TW)) ) 2uF2) (02, TEW))

%F(sw,y,z) = amlu(37x)]1[a,b](y) + axaf <57'T7f071 (S,.Z,%b(y))) ay(fccl) (57x77;b(y)) ﬂ-[a,b](?/)
0.F(s,2,y,2) = 0z0(s, 7)1 q(2).
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Next we turn our attention to the question whether 0., X is invertible on the whole interval
[t, T]. Observe that

0o Xs = Id + L Oz [M (1, X, Y;)] dr + ft ) o [o(r, X,)] AW,
=1Id+ L [0:M (v, X,,Y;) + 0y M (v, X, Yy) Uy |05 X dr + Jt 000 (1, X)) Oy Xy AW,
implying that
Oro Xs = €xp (L [0:M (r, X, Yy) + 0y M (1, X;,Yy) Uy (a 0)* (r, X,)] dr

n f Couo(r. X,) dWr> . .7)
t

Note that all coefficients in (4.7) are bounded on [¢, T] giving that 0,,Xs > 0 for all s € [¢,T].
Therefore, 0, X is invertible on the whole interval [¢,7] and 7 = T'.
What remains to do is to calculate the explicit dynamics of U. Observe that

bs = Us [0:M (s, X5, Ys) + 0, M (5, X, Ys) Us| + Zs0,0(s, Xs)

+ 0o F (5, Xs, Yo, Zs) + Oy F (5, Xy, Ya, Zs) Us + 0.F (5, X, Ys, Zy) (Us 0,0 (5, Xs) + Zs)

= Uy [ ani(s, X0) = 0(f2) (5, X0 TR ) | = Uy (£ (5 X THY)) Ly (YU
+ 25020 (5, Xs) + Onaptl(5, X) TL(Ys) + 0200 (5, X)TH(Zs) + Ona f (5, X, o (5, Xsy T(Y2)))
+0naf (5 X £ (5, X TE)) ) a1 (5 X, THYS))
[ Oarals, X)) (V) + Oaaf (5, X fi (5, Xy T (Y6))) 0y () (5 X, TE (V) Uy (V)] U
+ 020 (5, Xo)Us020 (58, X Lie,a)(Zs) + 000 (s, Xs) e, (Zs) Zs

= —U20,(f")(5, Xs, T2(Ys)) L0, (Ys)
U |Gty Xo) (U Ty () = ) (5 Xy TER)) + (020)° (5, Xo) e (Z)]
U |G (5 X F (5 Xos TRV)) 2y (fi ) (5 Xy T (V) Ly ()]
+ O pt(8, X) T3 (Ye) + uw0 (8, X)TH(Zs) + O f (5, X, [ (8, X, T (V)
+ Onaf (5, X, £ (8, X, TR (V)0 (f2 ) (5, X, TR (V2)) + (1 + e,y (Z6)) 200 (5, Xs) Zs.

Finally note that
Ur = 02y Y1 (0o X1) ™" = [0009' (X1)]| (0 X1) " = ¢"(X7).
|

Remark 4.6
Note that by Lemma 4.5 U solves some kind of stochastic Riccati equation. Under sufficent
conditions (see Remark 4.20) this Riccati equation coincides with the Equation (6.1) considered
in [SXY18].
For shorter notation we define the function ¢ : D(f;!) — [0,T] x R x R as
p(s,,y) == (5,2, fo (5, 2,9)).
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Lemma 4.7

Assume that u, o, f, g fulfill Assumption 4.1, u,o, f,g,a,b,c,d are such that FBSDE (4.3) fulfills
SLC or MLLC and [t, T] © Imax. If additionally Oaof (¢ (s, Xs, T2(Ys))) > 0 for all s € [t,T], then
for all s € [t, T] the gradient process U of FBSDE (4.3) solves the BSDE

Lo (¥r)
lﬁ?aaaf( (r, X r’7gw}?>))4—[@»((ﬁxg)2(rrx;)ﬂ[gﬂ(2g))

+U, ((1 + 1) (V) (2“‘; (¢ (r. Xn T2V ) + ol X) ))

+ Quapt(r, X,V TL(YV) + Paor(r, X TN Z) + 0 f (0 (X THY) ) )

T
U, = o' (X1) +J

S

_ (@raf)” (o (n X T200) ) + A+ Lpea(Z0)dao (r, X»Zr] dr

Cac
T ~
f Z, dW,
and
0 (1) s, X TV, g:;;i (¢ (r. X T21))
8y (£ (s, X, T2V, 1 <go (r. 2 T2, ))

Proof. Take alook at the derivatives of f, . Observe that by definition y = 0, f(s, =, f; (s, 2,7))
and hence

0= az [aaf(57x7 f;l(s,x,y))] = maf(sa$a f(;l(s,:n,y)) + é’aaf(s,x,f;l(s,x,y))&m(fojl)(s,:n,y)

and
1= ay [aaf(s?x7fojl<87xﬂy))] = (7aaf(s,x,f;l(s,x,y))ﬁy(fojl)(s,x,y)
yielding with dua f (¢ (s, X5, T2(Ys))) > 0 that

2 )5, X TV = =220 (o (5, %, T20)) )

Oaa f
1
~1 b _ b
(N (5 X TR)) = 5 (o (5 X0 TH0R))) -
Plugging these two identities into BSDE (4.6) (given by Lemma 4.5), yields the desired result.

By H(f) we denote the Hessian of f but only with respect to the space arguments. L.e.

s = (2 o8 )

and

det(H(f))(s,z,a) = Opaf(5,2,0) 000 f(s,x,a) — ((?mf)2 (s,z,a)
for (s,z,a) € [0,T] x R x R.
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Assumption 4.8
Let T > 0, p and o be of the form

p(t,z) = by + Bz, o(t,z) = ct + Cz

forb,B,c,C : Q x [0,T] — R being progressively measurable and bounded processes. Also assume
that

1. g: QxR —->Rand f: Q2 x[0,T] x R x R are twice differentiable and convex in the space
arguments, A x P a.e., and progressively measurable,

2. Hf(;l(_7 '7O?O>Hoo ’ Hal’f(a ’707f071('7 7070))H00 < &G,
3. Caaf=e>0Pas,

4. de%(i(ff ) and Sfiiff are bounded, P a.s.,

5. [g(, 0w, [02g(-, 0) 0, [ Oazglloo < 0.

Note that Assumption 4.8 is a more specific case of Assumption 4.1, allowing us to apply the
results from e.g. Proposition 4.4 and Lemma 4.7.

Lemma 4.9
Let o, pu, f and g fulfill Assumption 4.8. Then FBSDE (4.3) fulfills SLC fora = ¢ = —00, b=d = 0
and the gradient process U is bounded by
wil.))
< 0,
aaozf o0

(Oraf)?
o

0<UK< <|g”|oo + ax:)cf -

) exp (T <|C’2|oc +2||Bo + 2
w

A x Pa.e.

Proof. Observe that with Lemma 4.7, for all s € [0,T], 2/, y € R,

— ama _ _ 1 _
ax(fa 1)(5a :E/’ y) = 75 ; (S’ :L‘/, fcx 1(5’ lj? y)) and ay(fa 1)(5> l‘/, y) = Ooa f (S’ ‘Tl’ fa 1(57 l‘/, y))
giving
_ det(H _
ax’ [axf(sa xlu fa 1(5’ l’,, y))] = a(;f))(sv xlv fa 1(35 Jj/a y))
and 2
Oy [0uf (5,2, o (s, )] = axaj;(s,w’,f;l(s,m’,y)),

which are both bounded, by Assumption 4.8. Because for all 2’ € R we have 0, u(t,2') = B; and
0z0(t,z") = Cy, which are also bounded, FBSDE (4.3) reduces for a = ¢ = —00, b = d = o and

zo € R to

t
[bs + Bs X — [ (s, X5, Ys) | ds + J [cs + Cs Xs] AW
0

t
thl'o-i‘f
0

T T

[BsYs + CsZs + 02 (5, X, £ ' (5, X, Y5)) | ds — J Zs AW,

Y;f = axg(XT)_'_j
t

t
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A decoupling field approach to position control problems

which is Lipschitz in X, Y, and Z. Since furthermore |b|w, [clloo, [|029(-,0)]c0s [Oz29lloos
| fat(-,-,0,0)|, and [0.f (-, 0, f3*(:,+,0,0))| are all finite, we obtain that SLC is fulfilled.
Also the dynamics of the gradient process U given by Lemma 4.7 simplify to

T 1
U, = ¢"(X +f —U? +U, (C? + 2B,
XD+ ) U ey U (G 2B

azaf(ra XT? f&l(r, X"'? th‘)))
Oacf (1 X, o (r, Xr, Yr))

+ L(a Foaaf — (@ f)2> (r, X, £1(r, X, Yy)) dr—fTZ aw,
aaaf xrx ax ro bl T Jo bl Ty T T Ty

S

et

where Ws =W, — S;F 20,0(r, X,) dr for all s € [t,T]. Since d,0 is bounded we get by Girsanov’s
theorem that there exists an equivalent probability measure P under which W is a Brownian
motion. By IE we denote the corresponding expectation operator.

Observe that, since U is bounded on every closed subinterval of I,,,,; because the correspond-
ing decoupling field u is weakly regular by Theorem 2.8, we can interpret the dynamics of U
as a Lipschitz BSDE allowing us to apply the Comparison Theorem (see e.g. Theorem 6.2.2 in
[Pha09]). Note that the Hessian of a convex function is positive-semidefinite and hence its de-
terminant is greater than or equal to zero. Thus and since in addition 0, f = ¢ > 0, we have

(ﬁ <amf8aaf — (8mf)2>) > 0. Because ¢” > 0, due to convexity, and

T 1 v (7 Xy f1(r, X, Yo
Us=f [—Uf — +UT<CE+2BT+2a S, ’fa_l(r’ : )>>]dr
S 0aaf(7”,Xr,fa (TaXTvyr‘)> 5aaf(r7X7"7fOé (T7XT7Y;‘))

T
—f Z. dW,

S

has the trivial solution (U, Z) = (0,0), we get via the Comparison Theorem that U is bounded
from below by 0. Using the Comparison Theorem again on U and

axaf(n X’I‘? fo?l(rv XT‘7K">)>
aozocf(rv er ijl(TJ XT? YT’))

N T
U;=gNXf>+J“

s

U, (c,? + 2B, +2

T A ~
+ <&Oif (axmfaaaf - (axaf)2)> (7“7 X, fojl(r, X, Y;«))] dr — f Z, dW,

yields that U is also bounded from above since
7]

T
U, =T [g”(XT)F(s,T) + J <(91f (OwzfOaaf — (3mf2)> (r, X, £ 1 (r, X0, Vo)) D (s, ) drr
AR Yo (7 (120 + 2081 +2) 22E ).
L ° araf(Ta X,-,f(;l(?”, Xra)/r» I
I'(t,s) := exp <L C? + 2B, + 25aaf(7’, X, [N X ) dr — 2L Z? dr) .
Ozaf
i) <

Oac f
P ol (e
Ax P a.e. ]

<<¢w+T

where

To sum up, we have that

o<v<(¢M+\

aOéOé

54



The problem and general solutions

Now we come to our first main result of this section.

Theorem 4.10
Let o, u, f and g fulfill Assumption 4.8. Then the control problem of minimizing (4.1) has the
optimal control

OAét = fa_l(ta Xt7 Y;f)a
where X, Y solve FBSDE (4.3), which has a unique solution on the whole interval [0, T'].

Proof. Since Assumption 4.8 is a more specific case of Assumption 4.1 and Lemma 4.9 shows
that for a = ¢ = —oo and b = d = o0 FBSDE (4.3) fulfills SLC and the gradient process U is A x P
a.e. bounded, we only need to show the following two points in order to obtain the claimed
result by Proposition 4.4. Firstly that H is convex in (z,a), which is straightforward since its
only nonlinear part is the convex function f. And secondly that [0, T]x R x ([a,b] nR) = D(f;1).
This follows since dnof = ¢ > 0 and hence 0, f has range R. Thus, the domain of f; !, which is
the inverse of 0, f in a, has domain D(f;!) = [0,7] x R x R = [0,T] x R x ([a,b] n R). [ |

Example 4.11
Let b, B,c,C,r, F*, F* be bounded processes and Gy, G, bounded random variables, such that
F*>¢>0, F*€[0.5,1] u {0} and Gy, G, > 0. Define

u(s,z) :=bs + Bs - x, o(s,z):=cs+ Cs -z,
f(s,z,a) =" <(1 + :I:Q)F‘g + cosh (FY - a)) , g(z) :== (Go + Gy - x2)2/3

for (s,z) € [0,T] x R. Then Theorem 4.10 states that minimizing the cost fuctional J from
Equation (4.1) over all admissible controls has the optimal solution

: — Ys EN
sinh™! (76)(]?((17‘ 8)>

Fa ’

S

Qg =

where Y is part of the unique solution of FBSDE (4.3).

Remark 4.12

Theorem 4.10 gives the same representation of the optimal control as found in [AFKP18], where
the autors also use the method of decoupling fields. However, they do not allow for a drift and
diffusion term (b = B = ¢ = C = 0), set g(z) = Lz? and have further smaller differences in the
assumptions, which are sometimes more general on their side and sometimes on ours.

The argruments applied in Lemma 4.9 heavily rely on the linearity of 1 and o in Assump-
tion 4.8. This property however restricts the dynamics of the controlled processes. In the fol-
lowing we introduce another set of assumptions which does not need the linearity of ;. but relies
on other properties.

55



A decoupling field approach to position control problems

Assumption 4.13
Let i, 0 : Qx [0, T xR >R, f: Ox[0,T]xRxR — Rand g : 2 xR — R be twice differentiable
in the space arguments and progressively measurable. Furthermore, assume

1. Opp, Opzpe are bounded,

2. there are bounded, progressively measurable processes c, C' such that o(s,x) = ¢ + Cx,

3. 0.f, deta(z(ff D and SZ‘:; are bounded,

4. Gaaf(s, 2, f5 1 (5,2,y)) = € > 0as, fordll (s,2,y) € [0,T] x R x [~5,7],
where § := (||¢'[0 + T 02 f0) exp (T 0zpt]|o0),

5. 11, 0)loos [ (92f 09) (-,+0,0)eo, |£5 (-, 0,0)]c0 and |lg(-, 0)[[oo are finite,
6. g and f are convex in the space arguments, A x P a.e.,

7. g is monotone in the space argument with a bounded first and second derivative,
8. at least one of the following two cases is fulfilled

) ¢ =0, uisconvexinx and 0, f = 0,

/

ii) ¢’ <0, pisconcave in x and 0, f < 0.

Lemma 4.14
Let o, u, f and g fulfill Assumption 4.13 and set a = —3, b = ¢, ¢ = —o0, d = 00. Then FBSDE (4.3)
fulfills SLC and the gradient process U is bounded by

0<UK<L [Hg”|oo +T (]@wMHOOZ) + ‘

)

exp (T (|axa|§o 210l +2

Ozaf
wdl))

A x P ae Moreover, —j <Y <gand Oyt Y =20, A\x Pae,and 0 <Y <9, A x P ae, if
g =>0and - <Y <0, \xPae,ifg <0.

Proof. By the assumptions made and the identities in Lemma 4.7, FBSDE (4.3) fulfills SLC. The
first thing we have to prove is that Y does not exceed the truncation bounds. To this end observe
that we can rewrite the dynamics of Y as

T T

[ountr XTI 4 0f (5 X0 120 (r X, T2)) ) | dr | 2,

S

Vs =g'(Xr) + J

s

where Ws =Wy — SST 0zo(r, X,) dr is a Brownian motion with respect to some measure f’, due
to Girsanov’s theorem since 0,0(s, Xs) = Cs is bounded. Consider, for now, the process Y given
by the BSDE

T T

[Ountr X )T, 28 (1 X0 £ (X, T20) ) | ar = | 2,

s

Y, = ¢'(Xr) + J

S
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For any given process X and all s € [0, 7] for which Y exists on [s, 7], the solution formula for
linear BSDEs (see e.g. Proposition 6.2.1 in [Pha09]) states that
7.

V=T {g%XT)r(s,T) 3 D0t (X £ (X T2 ) Do)

where

I(t,r) := exp <J Oxp(u, Xyy) du — ;J Zg du>
t t

for all s < t < r < T. Therefore, and since J, f is bounded, we conclude that Y is bounded
by [Yw < (I¢'lo + T 102 fl.) exp (T @xptll) = 9. Thus, ¥ does not exceed bounds a = —g,
b = ¢ of the truncation and hence coincides with Y. This means that the truncation of Y can be
omitted.

Next, observe that the BSDE

T T
Vi=0+ | 0upls,Xs)Ysds — J Zy AW,
¢ ¢

has the trivial solution Y = 0, Z = 0. Thus, we can use the comparison theorem and obtain in
the case where ¢ =>0and 0,f > 0that 0 <Y < ¢ and in the case where ¢’ < 0 and 0, f <
that —y < 0. Hence, by the assumptions made, either Y > 0 and 0., > 0 orY <0 and
Opzlt < 0 y1e1d1ng in any case that 0, (s, Xs)Ys = 0.

It remains to show that the bounds for U hold true. Have a look at the dynamics of U, they
are

T
1
Usz ”X +J _UE +U7“ axQ 7X7= +26I ’XT

e S[ Oacf (r; Xp, fo ' (r, X0, V7)) (020”(r, X2 p(r, X))

Oza f (7, X, 071 r, X, Y,
U (2 aaaffir, X,. ffglér, X.. Y;D
+ Oaat(r, Xp) Yy + 000 (1, X0) Zy + Oau f (r, X, fo M (r, X, V7))
(Ooaf(r, Xy, £271(r, X, V1))
 Gaaf (X, (Fa ) (r, X, V)

dr

where 17/5 = Wy — SZ 20,0(r, X,)dr is a Brownian motion with respect to P by Girsanov’s
theorem. Because U is bounded on every interval [¢,T] < Ihax, We can interpret its dynamics as
being Lipschitz allowing us to apply the Comparison Theorem. Note that ¢” > 0, 0, uu(s, X5)Ys =
0, Opeo = 0and 0y, f — °a””aaaf 7 det(z(ff )) > 0. Hence, we get for all s € [t, T] by the Comparison
Theorem that U > U, where

. T
oo |

e

. 1 T, ~
_ UE — dr — j Z dW,,
aaaf(ra Xr,fa (Ta XWY;“)) s
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which has the trivial solution U = 0, Z = 0. Thus U > 0.
For the upper bound we apply the Comparison Theorem again. By dropping the quadratic
term, obtaining

T

0, — g"(Xr) + J

S

—1
[Ur <é’x02(r, X,) + 20,u(r, X)) + o Oraf (1 Ko, fo (r Xr, Y’“”)

Oaaf (r, X, fa ' (r, X, V7))
+ Oaatt(r, Xp) Yy + 0o f (1, Xy, [ (r, X0, Y3))
(Coaf (ry X, f (1, X0 V7))
Oacf (s Xo, (f& 1) (r, X0, V7))

T ~ ~
dr — f Z,dW,,

s

we get that U is bounded from above by the solution U of this linear BSDE, which again is
det(H(f))

bounded by
aaoé f oc> :|

ew<TQ@ﬂi+mamw+2

&<UMM+TO%MM@+

Ozaf
)

The following theorem is the second main result of this section, stating a solution to a control
problem with non-linear dynamics.

Theorem 4.15
Let o, u, f and g fulfill Assumption 4.13. Then the control problem of minimizing (4.1) has the
optimal control

éét = fa_l(taXt7Y;f)7

where X, Y solve FBSDE (4.3), which has an a.e. unique solution on the whole interval [0, T].
Furthermore, 0 <Y < g, AxPae.,ifg >20and -y <Y <0, A xPae,ifg <O0.

Proof. With the statement of Lemma 4.14 and since [0,7] x R x [~9,9] = D(f;!) is implicitly
given by Assumption 4.13, for the assumptions of Proposition 4.4 it only remains to show that
(x,a) — H(t,x,a,Y:, Z;) is convex for all ¢ € [0,7]. To this end we define for ¢ € [0,7] the
functions

HM(t,x,a) := pu(t,x) - Y, H(t,z,a):=o0(t,z)-Z; and Hf(t,a:,a) = f(t,z,a)
such that H(t,z,a,Y;, Z;) = (H* + H° + H7) (t,z,a). Observe that by Lemma 4.14 we get that
Opa HY (t,x,0) = Ogui(t,x) - Yy =0

and furthermore, that
Oz HO (t,2,0) = Opgo(t,x) - Zy = 0.

Since furthermore H* and H? are independent of the argument a, they are convex in (z,a).
Therefore and because H/ is convex by assumption, we obtain that H is the sum of convex
functions and hence convex in (z,a) itself. Thus, Proposition 4.4 can be applied and we ob-
tain that & is an admissible optimal control. The remaining statement about Y is given by
Lemma 4.14. |
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Unlike Theorem 4.10 the method for Theorem 4.15 relies on the boundedness of Y. This
however comes with the price of other restrictions like ¢ and f having a bounded derivative
with respect to x.

Example 4.16
Let b, ¢, C, r be bounded progressively measurable processes and

p(s,z) :=4/1+ bs + a2, o(s,z):=cs+Cs-x f(s,z,a) :=exp(—rs - s) - cosh (a),

0, x <0,
g@) =1 £ (1-%), 0<w<
x—1, T =2,

for (s,x) € [0,T] x R. Then Theorem 4.15 states that the control problem consisting of min-
imizing the cost fuctional J from Equation (4.1) over all admissible controls has the optimal
solution

by = sinh ™ (Y - exp (15 - 5)),
where Y is part of the unique solution of FBSDE (4.3).

4.2 Linear-quadratic control problems

In this section we turn our attention to a special case of Assumption 4.8, the linear-quadratic
case. We make the following assumption.

Assumption 4.17
Let T >0and p,0 : Q2 x [0,T] xR >R, f: Ax[0,T] x RxR - R, g: R — R be of the form

wu(t, z) = b + Bz, o(t,z) = ¢ + Cyz, g(x) = Go + Gz + Gox?,
flt,z,a) = Bm(t)azz + Bx(t)x + Bra(t)ax + ,Baa(t)a2 + Ba(t)a + Bo(t)

for b, B,c¢,C, Brx, Br, Bras Baas Ba, Bo being essentially bounded processes on [0, T, such that
o det(H(f))(t, ") = Baa(t)Bez(t) — B2,(t) = €1 > 0 for t € [0,T] and some constant g1 > 0

* Baa(t) =2 >0 forte[0,T] and some constant €3 > 0

and Gy,G1 € R, G2 = 0.
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Note that hence f;!(t,z,y) = W Furthermore, for the processes in Assump-

tion 4.17 we denote by * the essential infimum over time and by * the essential supremum over
time, e.8. Buq 1= essinfe[o.1) Baa(s) and Bug 1= esssupyepo 17 Baa(s)-

Corollary 4.18
Let o, u, [ and g fulfill Assumption 4.17. Then, for the truncation parameters a,c = —o0, b, d = o0,
FBSDE (4.3) has a solution on the whole time interval [0,T] and is equivalent to

t t

[1(s, Xs) — it (s, Xs,Ys)]ds + f o(s, Xs)dWy

Xt:$0+f
0

0
T

Y;t = a:g(XT> _J Zs dWs (48)
t

T
+ J [axﬂ(sa Xs)}/s + 01,0'(8, Xs)Zs + 0z f (37 Xs, fojl (87X87 Yis))] ds.
t

Proof. Observe that Assumption 4.17 is a special case of Assumption 4.8. Hence Lemma 4.9 is
applicable and yields that FBSDE (4.3) fulfills SLC for a, ¢ = —o0, b,d = oo and has a solution on
the whole time interval [0, T']. [

Corollary 4.19
Let 0, j1, f and g fulfill Assumption 4.17. Then the gradient process U” of FBSDE (4.8) is indistin-
guishable from the process that solves the quadratic BSDE

dr

UtT=2G2+J

T 72
[ )", Ul <03 +2B, + Bmm) + 2B4a(r) — Boall) 2C, 2,
t

- 2ﬁaa(r) Baa (T) 2Baa (T)

T
— f zYaw,
t
forte[0,T].

Proof. Remember that Corollary 4.18 states that there is a solution to (4.8) on the whole time
interval. Furthermore, by Lemma 4.7 we get that U’ has the dynamics

)2 1
Oacf (¢ (1, X, Y5))

+ 07 (2 (22 (o v + e ) )

+ Opapt(1, X0 )Yy + Opa0 (1, Xp) Zy + O f (0 (7, X, Vo))

(axaf)2 U g U
—— (o (r, X;,Y})) +20,0(r, X,)Z, |dr — z, AW,

T
Ul = ¢"(Xp) +f - (uFf + U} (0:0%(r, X))

s

Oaa f s

_ T (U?)Q T 2 6ma(r) %a(T) U
=2t [ gpt (C’“ £ Bam) F2a(r) =gy T A AT
— f ' zY aw,.
t
|
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Remark 4.20

Note that the BSDE for U” in Corollary 4.19 is for 8, = 3, = b = ¢ = 0 a special case of
Equation (6.1) in [SXY18]. Thus, in some sense, we have an alternative proof for the existence
of a solution. We obtain this as a special case of the BSDE in Lemma 4.7, for which we proved
the existence under the more general Assumption 4.8.

Using this representation of U7 and in particular that it does not depend on X, we can derive
a representation of the decoupling field. This then allows us to give a formula for the optimal
control.

Proposition 4.21
Let o, u, f and g fulfill Assumption 4.17. Then the decoupling field u of FBSDE (4.8) is equal to

where U" is the gradient process given in Corollary 4.19 and " is indistinguishable from the
solution of the BSDE

T T

Z? AW, +f (CsZ? + ¢s2Y) ds
t

@tT=G1—f

t

T T Bra(s) — Ug T T UsT — Bra(s)
+ L [cps (BS + 72&&(5) > + CscsU; + bUy + Br(s) + Ba(s)72ﬁaa(s) ] ds,

where ZY is the diffusion part of U (see Corollary 4.19). In particular, both U and *, and hence
also the decoupling field u, do not depend on the process X from FBSDE (4.8). The component Z%¥
is given by Z¢ = Zy — X ZV — (cs + CsX,) UL for all s € [0,T], where X and Z are from
FBSDE (4.8).

Proof. Note that Corollary 4.19 already states that for every ¢ € [0, 7] we have d,u(t, X;) = UZ,
which is independent of X;, since U does not depend on the starting value of X. Hence, « has
to be of the form u(t, ) = o + U} -z for some process ¢*, which does not depend on X neither.
Using It&’s formula, the dynamics of Y, X, U and the decoupling condition, a straightforward

61



A decoupling field approach to position control problems

calculation yields

vl =Y - U/ X,
=G+ 2Go X1 — 2Go9 X T

T T
n J {BSYS 4 CsZy + 2Bua(5) X5 + Buls) + ﬁm(s)Ys — Pals) - Bz“(s)Xs} ds — f Z, AW,
t t

26%(3)
) Bra(s) 2 (s) v
J [*Qﬁaa(s)+Us (2 w2me+ G5 )+ 28ate) — e+ 20,2 | Xetts

T T
- J —ZV X, AW, — J —ZY (cs + CsX,) ds
t t

T Ys — Ba(s) — ﬁm(s)Xs} T
_ _Ur _ _ T
L U, [bs + B, X, 2Bon(s) ds L U, (cs + Cs Xs) dW

T
=Gy — f [Zs — X ZY — (cs + Cs X)) U] AW,
t
T T
+ J [Zs — X2V — (cs + Cs X ) UT| Oy ds + f O UL (cs + CsXs) ds
t t
UTX — Ba(8) — Bra(s) S] d

T
+ Jt |:BSY9 + QBxx(S)Xs + ﬁx(s) + ﬁxa( )

2Baa(5)
T T2
+ J [2(;]3 ()s) —-ur <C82 + 2B + gm53> — 2B4a(8) + 25“(('2)] X,ds
t aa aa aa
T T T T
U T P + Us Xs— /Ba(s) - Bxa(S)Xs]
+ Jt Zg csds + L U, [bs + B X Baals) ds

and further that

T
o1 =G1— f [Zs — X 20 — (cs + CX,) UL AW,
t
T T
+J [Zs — X ZU — (cs + CsXs) UL Oy + ¢,2Y ds +J X, -0ds
t t

T /Bxa( ) UT) UT - ﬂxa(s)]
T T T S
+£ [gos <Bs + 725(“( ) + CsesUy +bsUy + B(s) + Ba(8)72ﬁaa<3) ds
T T
=G — f Z? AW, + f CsZ¢ + csZY ds
t t

+£T {%T (Bs + W) + Cycs UL + b,UT + Bu(s )+6a(s)m} ds,

where Z¢ := Zs — X, ZY — (cs + Cs X)) UT for all s € [0, T]. [

Corollary 4.22
Let o, u, f and g fulfill Assumption 4.17. Then the optimal control is

T _ 90? - ﬂa(t) + (UtT — 5;m<t>)Xt _ a?(Xt)

a
' 2Baa(t)
for t € [0, T], which is a linear feedback control with the random function o’ : Q x [0,T7] x R — R
£ = Ba(t) + (U] — Baa(t))z
ol (z) .= 2 fa L =2 . (4.9
t ( ) 2Baa(t)
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Linear-quadratic control problems

Proof. Remember that FBSDE (4.8) has a solution on the whole interval [0, 7] and its decoupling
field is explicitly given in Proposition 4.21. Thus, as a particular case of Theorem 4.10, the
optimal control fulfills

atT _ f&l(t,Xt,Y},) _ Y;t - ﬁa(ﬂ — B:m(t)Xt _ @tT — Ba(t) + (UtT - Bma(t))Xt

2844 (1) 2B4a(t)

Since everything on the right hand side, aside from X itself, does not depend on X, as stated in
Proposition 4.21, we can view this as a linear random function of X;. Hence, we can view the
optimal control as a linear feedback control. |

Remark 4.23

In the case of 3, (s) = Ba(s) = bs = ¢s = 0 for all s € [0, T’] the result in Corollary 4.22 follows by
Theorem 6.7 in [SXY18]. Likewise, for all coefficents being deterministic and 5, (s) = £4(s) =0
for all s € [0, 7] this result follows by Theorem 6.1 in [YZ99]. Furthermore, note that in this
latter case the process P in [YZ99] equals % from our work, while their ¢ equals % here.

With those representations of the components of the decoupling field and the optimal control,
we derive a formula for the value function of the linear-quadratic control problem, which does
not depend on the solution of FBSDE (4.8). This is our main result of this section.

Theorem 4.24
Let Assumption 4.17 be fulfilled. Then for all t € [0,T] and x € R

2
T( b+ UTS 4 (o) - Lo Bl +cszf>dS]

T
E [ j £ (5, X5, ol (X5%)) ds + g(X! x)] ,

V(t,T,x) :=E

1
2UtT:U2—|—g0%Fm+Go+J
t

where X%* is the process X conditioned on X; = x and (« )se[o 7] is the optimal feedback control
from Equation (4.9). In particular,

V(0,T,z) = inf J(T,z, ).
acA

Proof. Recall that the dynamics of U” and (" are given in Corollary 4.19 and Proposition 4.21.
Hence, by It0’s formula,

1
§UtTXt2

1

T T UT o ,8 (3) T
—| vTx, (bs L B.x, — ¥ = Pals) Uy = B XS> ds — f UT X, (cs + CoX4) AW,
J; 25(1(1(3) 2ﬁaa(3) t ( )

x| WD (e Bra(s) 7a(s) v
*f ) [ ey U7 (G228 G0 )+ 28ate) - 5y 4207,

Xs U i 2 T U
—= 7 dWs — §US (cs + CsXs)"ds — XsZg (cs + CsXs)ds
t ¢

ds
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and

or Xy
= opXr

T T T T
- T b . Ps — Ba(s) o Us - ﬁxa(s) ) ds — T d
ft o < s + B X Bonls) Faals) X, |ds L s (cs + CsXs) dW

T T 53:11(3) - UsT T T UsT - /Bma(3>
+L X, [cps <Bs + 726aa(3> > + CsesUy +bU; + Bar(s) + B“(s)izﬁm(s) ] ds

T T T
+ f X, [es 2V + Cs2#] ds — J X, 2% dW, — J Z% (s + Cs X) ds.
t t t

Therefore, it is straightforward to verify that

(T — Bals))”

Lo 72 T fT T Tcg s
~U; X X bs — —
2Ut t +S0t t+GO+ . (Ps +Us 2 +BO(3) 45aa s)

+ cSZf] ds

= GQX% + G1 X7 + Gy

T T2 5 ) \
) {Xg [; (‘2%;()5) +UT (28,4 540 4 C2) 4 20u) - M)

ot (- S5
o (o (e g ) P v 0) ¢ (5

_SOZ (Bs _ Ul — 596@(5)) _ Us,T (bs _ pa — Bals) T CsCs>]

Bra(s) — U;F T
2B4a(5) > &

2Baa(s) 2Baa )
r_ S T _ s 2

o
1
— f (¢ + UTX,) (cs + Cs X)) + §X§ZSU + stgo] dW,
t L

= GQX% + G1 X1 + Gy

Qﬁaa(s)
2 2
t Baa(s) ((M> o (B8 = Bals)) (U = Bral9)) X ((UST — Boals)) XS> )

T T s T (s .
+£ Bo(5) + Bua($)X2 + u(5)Xs + Boa(s) X (sos Bals) + (UT — B ())X>

2faa(s) (2Baa(5))2 2faa(s)
SOZ - /Ba(s) + (UST - /Bza(s)) X
"o e ) ] a

T 1
— f {(%T + UL X,) (e + CsX) + 5X§Z§f + stgo] dW,
t

T T 1
f (s, Xs,al (X,)) ds — f [(%T +ULX,) (e + CsXs) + ixfzg + stg’} dw.
t

= g(X7) + j

t
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This yields that

T

Vi) = B[ [ (50T (x07)) s g0 |
t

Since o is the optimal control we furthermore obtain

T
V(0,T,z) =E U f (s, X2% ol (X07)) ds + g(XélO)} = inﬁlJ(T,x,a).
0 QE.

Remark 4.25
Using the essential bounds for the parameter processes b, B, ¢, C, B, Bz, Bra, Baas Ba, Bo and the
results from Section 4.3, we are able to derive bounds for U which do not depend on the time
horizon T, similar to the estimate in Proposition 4.42 (i).

However, corresponding bounds for ¢! would require estimates similar to the ones in Sec-
tion 4.3 for quadratic BSDEs of the type U7 solves in Section 4.2. Obtaining such estimates and
thereby generalizing Section 4.4 to random parameter functions is left for future research.

4.3 Some results on functions with quadratic dynamics

In this section we investigate the properties of the solution of a deterministic quadratic ODE.
First, we derive them for piecewise constant parameter functions and then generalize to right-
continuous functions. The resulting estimates are used in Section 4.4 to show the convergence
of the decoupling field in an ergodic control problem.

Assumption 4.26
Let p,q,a : [0,00) — R be deterministic right-continuous functions such that for all s € [0, o)

— 0 <P ps <P <0, 0<qdg<qgs<g< oo, O<a<as<a<w

We define the constants Y := j ++/p%2 + Gand Y := p + /2 + ¢.

Lemma 4.27
Let Assumption 4.26 be fulfilled and t > 0. Then the integral equation

S
VoYt [ o (V2= 2% - a) dr 4.10)
t

for s € [t,0) with starting value Y; € [0,Y] has a unique solution. Also, the solution (Ys)ss; is
bounded by K
min{Y},Y} <Y, <Y

forall s € [t,0).

Proof. We define the auxiliary process Y as the solution of the Lipschitz ODE

- o 2 ~ ~
atY;; = —dsg ((%Y(sz)) - QPSY; - QS> y Y, = }/ta
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where 7 is the truncation operator defined in Section 4.1. Observe that for Y, € [0,Y") we have
—a, (T (Y- (NS))2 2psYs — gs) > 0 and for Y; € [V, 0) that —as((76Y()73))2 — 2pYs — g5) < 0.

Hence, for Y; < Y we have that Y, > Y; for all s € [t,00), since Y is continuous. By the same
argument we also obtain for Y, > Y that Y, cannot reach any value below Y and likewise
because ¥; < Y that Y, < Y. Thus, the truncation of the quadratic term has no consequence
and can be omitted without changing the solution. Hence, the bounds are also valid for Y and
the solution of (4.10) is also unique. [ |

In the following we denote by Y the solution of Equation (4.10).

Remark 4.28
In the proofs of this section we make use of the following hyperbolic identities without explicitely
mentioning it:

* tanh™'(z) = 11n (%) forz e (—1,1),
« coth™'(z) = LIn (Hl) for |z| > 1,

e cosh(tanh™!(z)) = (1 — 22)"2 for z € (—1,1),
e sinh(coth™(z)) = (1 — 22)~1/2 for z > 1.
Lemma 4.29 X
Let Assumption 4.26 be fulfilled and t > 0. Furthermore, assume that Y; € [0,Y] and for some

s € (t,00) that the functions p, q,a are constant on the interval [t, s), i.e. there are p,q,a € R such
that p, = p, ¢, = gand a, = a for all r € [t, s). Then

P+ /P + qtanh (ﬁ\/m(r—t)+tanh_l< Yip )) Yie [0,5+ /P2 +0)
Y=y P+VP+G Yi=p+/P2+q

p Vi qeoth (av/i + a0 4o (52 )L vie (p Vi)

for all r € [t, s]. In particular, Y is monotone on the interval [t, s].

Proof. Observe that the dynamics of Y state that it solves for r € [t, s) the separable ODE

Yr/ =~ ((Y} —pt)2 —P? - Qt) .

The three cases follow by straightforward calculations. Also, Lemma 4.27 provides uniqueness.
The remaining monotonicity follows from the monotonicity of tanh and coth. [

Lemma 4.30

Let Assumption 4.26 be fulfilled and [t1,t3] < [0,00) with t; < to. Furthermore, assume that
Yi, €0, Y] and that the functions p, q, a are constant on the interval [t;,t2), i.e. thereare p,g,a € R
such that p, = p, ¢, = Gand a, = a for all r € [t1,t2). Then, for t; <t < s < to,

f ( ) —a\/pE+q(s—t), Vi=p++/p2+q
—a, (Y, —p.)dr = o 4.12)
¢ %ln (72272@%7?> , Yi#Fp+A/PP+q

Y2-2pYs—q
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and for Y; # p + A/p? + ¢ we moreover have

P2+ q— (Y —p)?

s_po 1 ln< >+ L (VPP +a+(Vs—D)
2a\/p2 +q \P*+q—(Ys—p)? a\/p? + q 2 +q+ (Yi—p)

Proof. Rearranging the formula in (4.11) we obtain for Y; < p + +/p? + ¢

1 a( Ys—p af Yi-p
s—t=——— [tanh ™' [ ——L ) —tanh ' | L= (4.13)
a p2+q< (M) (m))

(PR
2a+/p? + § (\/p +q-Ys—p) VPP +q+ (Yi—D)

2
1 | 132+q*_(yt_13)2( P?+q+ (Ys—p)
n
N 2. (V. _ 52 2

Y, — p)\P? - (Yt—ﬁ>>
)
)

_ 1 ln<p2+q_(yt_p)>+ L (VP +a+(Y—D)
i \Pri--p2) LaEeg \VErar(i-p)’
and forY; > p+ /P> + @

1 Y. —» _ Y,—p
s—t=——|coth™* e =P — coth™! 2P
a\/p* +q P2+ q P2+ q
(
(

1 m((_ P i+ Ys—p)> (_\/p2+q_(yt_p)>>
N My B ) A WYy T

1 ln(p2+q—(1@—p)2>+ ! ln( p2+q+(Ys—p)>.
2a/P?+q  \P*+4 YoaVPrta \WP+a+ (Yi-p)

Now we have a look at the integral in (4.12). For Y; < p + +/p? + ¢ we get
S Y .
J —a (Y, — p dT = J —a\/ﬁtanh a\/ﬁ (7“ — t) +tanh~! =P dr
' P +q

cosh (tamh_1 (\}j%))

=—In
cosh (cm/p2 + q (s —t) + tanh™ <\227fq>)
cosh <tanh1 < Yt;”))

o m P2+q

where we use Equation (4.13) in the second to last step. In the case of Y; > p + +/p% + ¢ we
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obtain similarly

S s Y -
[~ -par= [ -avi + oot (m (1) + coth™! (P)) ar
! t P +q
sinh (COth_1 (%))
sinh <a\/P2Tq (s —t) + coth™! <\>/;72;fq>>
1 =2 5 Y A 2
:2ln<p +q— (Y% p)>.

P+q—(Ys—p)

=—In

Lemma 4.30 gives us the value of the integral in (4.12) when the parameters are constant all
the way. Next, we want to find the value of that integral when the process Y goes up and down
ending at the value where it started, which we later call an excursion.

Lemma 4.31
Let Assumption 4.26 be fulfilled. Furthermore, let [t1,t2], [ts3,t4] < [0,0), Y, = Y, € [0,Y],
Yi, =Y, €[0,Y] and p, g, a be constant on [t1,t2) and also on [t3,t4). Then

to ta a ) .
L —as(Ys — ps) ds + Jt —as(Ys — ps) ds < —min {d\/&, G/ﬂ;q)} ((ta —t1) + (ta — t3)).

Proof. First we define p; := py,, q1 := @t,, a1 := a, and pa 1= Pry, @2 1= G4, A2 1= Gz, SINCE P, q
and «a are constant on the intervals [¢1,t2), [t3,t4). Now note that, due to the monotonicity of YV’
stated in Lemma 4.29, we have one of the three cases

D Y, =Yy, =Yy, =Y, =p + VPt @ =p2+ /03 + @2,
(i) p1+\/m<ytlzyt4<yt2=yt?)<p2+\/m or
(i) p2 +/P3+ @2 < Vi, = Vi, <Yy, =Yy, <p1+/PF + a1

In Case (i) it is straighforward that
to ta
J —as(Ys —ps)d3+f —as(Ys —ps)ds = —am/p% + qi(t2 — t1) —a2\/p% + q2(ts — t3)
t1 t3
< —an/q(ta — t1 + tg —t3).
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Now observe for Cases (ii) and (iii) that by Lemma 4.30 and since Y;, = Y;,, ¥, = Y}, we get

to tq
f _as(Yts _ps) dS + f _aS(YS _ps) dS
t

1 t3

_1 (Yﬁ —2p1Yy, —Q1> N I (Yt§ — 2poYy, — qz)
2 Y2 -2p1Yy, — a1 2 Y2 —2mYy, — o
Yoy T —Pp1 T — P2
= — + dz
fyt 22 =2p1x—q1 22 —2pr — o

22 =2pix—q1 22 —2px—q 2?2 -2pix—q1 2% —2px — @2

JYW 1 < 2+ q N 22+ qo >d

_ i z.

vi, 2 22 —2p1x —q1 2% — 2pox — o

Furthermore, note that Case (ii) implies that 0 < 22 — 2p1z — ¢; and 22 — 2pax — g2 < 0, while
Case (iii) implies 0 > 22 — 2p1z — ¢; and 2 — 2psx — g2 > 0 for = between Y;, and Y;,. Hence

:Jle<_x2—2p1a:—q1+w2—2p2x—q2 ?ra Pt >d1:

we obtain
t2 ta Yip 1 22+ q 2%+ qo
—as(Ys—ps)ds+ | —as(Yo—ps)ds=| — (- + d
J;l as( s pS) S J;f3 as( s ps) § JYQ 2x< .’1,'2—21)1(17—(]1 $2—2p21’—QQ> *
<Y, Y\1< LSh L B
SR \ Ve gy — g g+ 2pY — V2

1 Y243

<—|Yt2—3ftl‘§m

4.149)
in Case (ii) and (iii).

It remains to estimate the term |Y;, — Y3, | with an expression of time difference. To this end,
remember the second result from Lemma 4.30 which gives

1 2 — (Y, —m)? 7 Vi, —
ty—t) = : In <p§+q1 (Y, p1)2> ol p;+Q1+( 1 — P1)
2a14/p] + @1 pi+q — (Y, — 1) pi+ a1+ Yy, —p1)

1 Vi

T —p1 1

arPI v, Pita—(—-p)? PP tg-pta
1 fYtZ_ z—pi VRta-(@-p)

a/pi+a v, pPita—(z—p)? pi+a—(z-p)?

dz

1 (Yo 1
T 2 _ .2 da
a1 Jy, (@—p1)*—pi—a
and analogously
1 (Y 1 1 (Yo 1
t4—t3:J 3 5 de = —— 5 5 dzx.
ag Jy,, (z —p2)* —p; — @ az Jy,, (v —p2)? —p3—a

Hence, by simular arguments as above, we get

to—t1 41ty —t fYtQ . . d
2t tlg—1l3= - x
ve, ai((x—=p1)2=pi—aq1) ao((z —p2)? —p3 — q2)

2
a(Y2 —2pY — §)

= |1/t2 _th1|
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and therefore

A~

a(Y? — 2pY — )
5 .
Pluging this into Estimate (4.14) we finally obtain in Case (i7) and (7i)

Vi, — Y| < (ta —t3 +t2 —t1)

to tq
f _as(Ys_ps)ds""f _as(Ys_ps)dS
t1 t3
R (Y2 - 2pY — g
g_T%(tzl—tg—th—tl)a( p q)
YY2-2pY — g 2
Y244
= —qQ QYq(t4—t3+t2—t1).

Lemma 4.32

Let Assumption 4.26 be fulfilled and assume that on the interval [to,t1) with 0 < ty < t; < oo the
functions p, q, a are constant and Y;, € [0, Y]. Then

t Vi 2y
LO —au(Yo = pi)ds < —a V(0 — t0) + 2 (5, = Vi) L, v oo (4.15)

Proof. To shorten notation we write p, g, a for the constants ps, g5, as with s € [to,t1). Also, we

setd := \/g . We derive estimates for the integrand of the integral in (4.15) and for the duration
of the ”bad” time, where those estimates do not hold true.

First, note that, since Y is monotone and getting nearer to p + 1/p2? + ¢ (see Lemma 4.29), we
get for any s € [to, t1] with —(Y; — p) < —9 that for all r € [s, ¢1] we have

i) forYs—(ﬁ-i‘\/m> <0
~-p) =~ (V-5 p2+q)—m@—ms—\/§,
ii) forifs—(m\/m) -0
~ (e -p) == (Y —p- ﬁ2+q)—mzo_m<_\/g,
iii) forY;—(ﬁJFM) >0
Mp s ip <L

and hence in every case —(Y; — p) < —9d. Thus, we then obtain

t1 t1
f (Y, - p)dr < f _asdr < —ad(ts — s).

S S

Now we have a closer look at the case where —(Y;, — p) > —dJ. For this, remember the
dynamics of Y which are

S

Y5=Yt+j —a ((Y; —p)*—p" —q)dr
t
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for s,t € [to,t1]. There are two cases we have to consider. Firstly, —d < —(Y; — p) < 4, which
implies

LS

2
i N _ a2\ 5 \ (., 1)\_a
—a((Y's—p)z—p2—q)>—a ( 2> -7 =a<p2+2q>>2.

And secondly the case of —(Y; — p) > 0. Note that then |Y; —p| = —Y; + p < psince Y > 0 by
Lemma 4.27. This gives us

~a((-pP -0 —a) = -a((-p-p*—q) —aq
Hence, for all s € [to, 1] with —(Y; — p) > 6 we have Y/ > % > 0. Let
=inf{t € [to,t1]| — (Y1 —Dp) < =0} A 11

be the first time in [¢g, ¢1], where —(Y. — p) < —0 or ¢; if there is no such time. Then we obtain

T T =
YT—Y;O:J YZdt}J Tat = —to)
to t

0

l

and thus
2 2 2
T—1 < C_Tq (Yr — Y;fo) - ag — Yz — Yto) 1{Ytl Yt0>0} ag (Ytl Yto) ]l{Ytl —Y4,>0}> (4.16)

where we use that if ¥}, — Y, < 0 we know that Y, > p++/p?> + ¢ > p+ 9 and therefore 7 = ¢,.
Hence, we have the following estimates.

* For the times where —a(Y — p) < —ad we directly estimate the integrand of the left hand
side of (4.15) by —ad.

* For the times where —a(Y — p) > —ad we can estimate the integrand of the left hand side
of (4.15) by —a(Y;, — p) and the length of this time interval by Estimate (4.16).

To sum up, using that 0 < p+/p2 + ¢ = p + \/g —Y;,, we derive

0

= —@5@1 — to) (CL(5 — a(Y}O — )) (7' — to)
ﬁ(tl — o) + <p+ VP2 + ) (Ye, = Yao) Liy;, v, >0}

I
'y

Proposition 4.33
Let Assumption 4.26 be fulfilled, 0 < ty < t; < w and Y;, € [0,Y]. Then there exist constants
01,09 > 0 independent of ty and t1 such that

t1
f sV — po)ds < —81(tr — to) + 6.
t

0
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Proof. First, we have a look at functions that are piecewise constant to p, ¢, a. We split the path
of Y into many excursions (as described in Lemma 4.31) and left over time intervals which can
not be put together to excursions. Those left over time intervals have to be such that either Y is
monotone decreasing or Y is monotone increasing on all of them. Since 0 < Y < Y (see Lemma
4.27) we get from Lemma 4.32 that the contributions of the left over monotone intervals in the

estimate are bounded by 2%}7 =: d9. Now we set

o
01 := min (&Y j— q, M) ,
2V T V2
which is the minimum of the factors that get multiplied with the time increments, given in
Lemma 4.31 and Lemma 4.32. Hence, the result holds for all piecewise constant functions
P, ¢, a uniformly.

Since Y depends continuously on «a, p and ¢, for every ¢; > 0 we can choose piecewise constant
approximations a, p, ¢ fulfilling Assumption 4.26 for the same bounds as a, p, ¢ and generating a
};SUCh that max ([|a—alw 1,015 [P = Ploo.fto.a1: 14— @l ft0,0]1Y =Y oo t0,]) < €1- Now observe
that

t1 t1 _
J _as(Y;; _ps) ds — J _&S(Y; _ﬁs) ds
t

0 to

t1 ~ -

f (g — ) (Vs — ) — as(Ys — Vs — (ps — fs)) ds
t

0 -

<|a—mwk[xg—mds

to

t1

+<Y—ﬁ@+p—mmf 0 ds

to

< lla =@l T (Y + max{[p], |]}) + (Y = Yoo + |p — 5lc) T
Hence, we can choose for every e, > 0 our ¢y as e = %m and obtain

< aT(Y + max{|p|, |p|}) + 261Ta < 5.

t1 t1 -
J _as(Y;; _ps> dS - f _ds(Yé _ﬁs) dS
t

0 to

Thus, the result for piecewise constant functions holds also true for all allowed functions a, p
and gq. |

Theorem 4.34
Let Assumption 4.26 be fulfilled. Denote with Y the solution of the ODE

s
Y'st’x =T+ J —Qp ((}/rt’x)2 - 2er;~t7I - qr) dr
t

for 0 <t < s < oo. Then there are constants K, Ko > 0 such that for all xy,z2 € [0, Y] we have
that

’Y;,m _ Yst,xg‘ < |1 — o Kle*KQ(S*t)

forall0 <t < s < .

Proof. First, note that for 2 € R the dynamics of Y%0 are the same as of Y above. Furthermore,
by introducing the function h(r,z) := —a, (2* — 2p,x — ¢,) for (r,z) € [0,0) x R and using
differentiation in its weak sense, we can write the dynamics as

aSYst,xo _ h(s,YSt’xO), thtvzo = 0.

72



Ergodic linear-quadratic control problems

By standard theory (see e.g. Theorem 1 in Chapter 2.5 of [Per91]) it is known that Y*%° is also

differentiable with respect to its initial value z, and that d,,Y+™ solves the differential equation

y'(s) = 0zh(s, YI™)y(s), =1,

which has the solution

S

Oy Y™ = y(s) = exp <J Oph(r, Yr0) dr> = exp (j —2a, (Y,5™ — p,) dr) .
¢ t

Therefore,
O Y0 < exp (=201 (5 — t) + 262)

for some constants d1, d, > 0 by Proposition 4.33. Hence,

a1
0. Y* dx

2

Tl
J exp (—201(s —t) + 202) dz

2

|}/St,l‘1 - }/St,$2| _

<

X

= |1 — wo| exp (=201 (s — t) + 202) .

Thus, defining K := €22 and K> := 26; we obtain the claimed result. [ |

Remark 4.35

It should be possible to generalize the results of Proposition 4.33 and Theorem 4.34 to the much
more general setting, where the derivative of Y is a strictly concave function having a strictly
negative and a strictly positive zero. Also the starting value of Y can be generalized to be greater
than any negative zero. However, a proof for this claim, using abstract arguments instead of the
tedious calculations as presented here, is left for future reasearch.

4.4 Ergodic linear-quadratic control problems

In this section we consider the ergodic linear-quadratic case. This means that we are interested
in

1
inf lim sup TJ(T’ x, ), 4.17)

acA T o0

which we call the optimal ergodic cost, where = € R is the starting value of the controlled
process. It is appearent that for this aim we need to have p, o, f and the space of admissable
controls to be defined on the whole positive timeline [0, «0) and not just on [0, T'] for some finite
T > 0 as before. More specifically we define

T
A= {a:Qx[(),oo)—»IR’]Ef agds<ooforallT>()}
0

and make the following assumption.
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Assumption 4.36
Let p,0: [0,00) x R > Rand f : [0,0) x R x R — R be of the form

wu(t,x) = by + By, o(t,x) = ¢t + Cy,
flt,z,a) = /Bxx(t)xz + Bx(t)x + Bra(t)ax + Baa(t)a2 + Ba(t)a + Po(t)

for b, B, c,C, Bra, By Bray Baas Bas Po : [0,00) — R being deterministic, right-continuous, bounded
processes, such that

o det(H(f))(t, ") = 4Baa(t) Brx(t) — B2, (t) = €1 > 0 fort € [0,0) and some constant g1 > 0,
* Baa(t) =e2 >0 forte[0,00) and some constant €3 > 0,
* limsup, ., Sé |Bo(s)| ds < oo
Also let g = 0.
Note that on a finite horizon [0,7], T > 0, Assumption 4.36 is a special case of Assump-
tion 4.17. Hence, we can use the results from Section 4.2. Moreover, we restrict ourselves
to deterministic parameter functions in order to be able to apply the results from Section 4.3.

Choosing g = 0 is just a matter of convenience, which does not effect the results of the ergodic
case.

Lemma 4.37

Let o, p, f and g fulfill Assumption 4.36. Then, for the time horizon T > 0, the gradient process
U™ of FBSDE (4.8) is indistinguishable from the deterministic function that fulfills the Riccati-type
integral equation

T
Uthf
t

forte[0,T].

WD e Bra(r) )
2Baa(r) U <C’” +2B, + ﬂaam) 282() = 55,00 | 4

Proof. Note that g = 0. Corollary 4.19 gives that FBSDE (4.8) has a solution on the whole time
interval [0, 7] and that the gradient process U’ solves the BSDE

T UT)? 9
UtT=J [ (07) +Uf <C,?+QBT+B$“<T)> + 9B (r) — L2al0) +2C, 27 | dr
t

B 25aa(r) Baa(r) a 25(1(1 (T‘)

T
- f z9 aw,.

S

Since the drift and final condition are completely deterministic except for the ZY, we get by
standard BSDE theory that ZY = 0 and hence, U” is deterministic as well. Thus, we obtain that
U™ solves the Riccati-type integral equation

e D Bra(r) B2
U; —Jt [ (1) + U, (C,. + 2B, + 5%(7“)) + 2852 (7) 2Ban(r) dr
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Lemma 4.38
Let p,q : [0,00) — R be measurable and bounded. The integral equation

() = h(0) + | [p(s) - hls) + a()] s
0
for h(0) € R and t = 0, has the unique, explicit solution

¢ t
h(t) = eSop(s) ds <h(0) + J q(s)e Jop(r)dr ds> = h(())e%p(s)ds + f q(s)eSZ.P(T) drgs.
0 0

Proof. That h solves the integral equation is straightforward by weak differentiation. The
uniqueness follows since the integral equation is linear in A with bounded coefficents, which
makes it a Lipschitz ODE. |

Proposition 4.39
Let o, u, f and g fulfill Assumption 4.36 and T > 0. Then, the decoupling field u of FBSDE (4.8) is
equal to

where UT is the deterministic gradient process given in Lemma 4.37 and " is indistinguishable
from the deterministic process

T . T T UsT — Bra(s) 3 Bralr) — UE
wm—L[%@ﬁwﬁaﬂﬂﬁjMM@+&®F@<L&+m%w)d0d&

which solves the integral equation

of = LT [@ST <Bs + W) + UL (b + ¢5C5) + Ba(s)m + Bm(s)] ds.

Proof. Proposition 4.21 gives that ¢! solves the BSDE

T T T
T T Bra(s) — Us T T Us — Bra(s)
o; = ft [905 (BS + 725%(5) ) + CscsU; + bU; + By(s) + ﬁa(s)72ﬁaa(s) ] ds

T T
+J CSZf+cSZ§stf Z# AW,
t t

Lemma 4.37 gives that ZU = 0. Since therefore Z¥ is the only stochastic component, we get by
standard BSDE theory that ¢’ is the unique solution of the deterministic linear integral equation

o = LT [%T <Bs 1 W) + UL (bs + ¢,Cs) + Ba(*S)W + 5w<3>] ds.

Solving this linear integral equation (see Lemma 4.38) yields

o - f {UST(bS T eC) + ﬁa(s)(m + 536(5)] exp (L bt Ww) o
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Corollary 4.40
Let Assumption 4.36 be fulfilled and T > 0. Then, for the gradient process U and Z of FBSDE (4.8)
we have for every t € [0,T]

Zy =Ulo(t, X;) as.

Proof. By Proposition 4.39 and Proposition 4.21 we know that
0=2¢ =2, X2/ — o (t, X)) U}

for all ¢ € [0, T]. On the other hand, Lemma 4.37 gives ZYV = 0. Hence, Z; = Ul o(t, X;) a.s. for
all t € [0, T. u

Corollary 4.41
Let o, p, f and g fulfill Assumption 4.36 and T > 0. Then, for t € [0, T] the optimal control is

ag’ _ 90? — /Ba(t) + (UtT — ﬁxa(t))Xt _ ag(Xt>7

2faa(t)

which is a feedback control with the function o : [0,T7] x R — R

OéT(x) - 90,{ — Ba(t) + (UtT — 5ma(t))x
e 2faa(t) '

Proof. Since Assumption 4.36 is a special case of Assumption 4.17, this is just a special case of
Corollary 4.22. |

Since it is more convenient, we make use of the feedback notation in the following.

Proposition 4.42
Let Assumption 4.36 be fulfilled and U"' be the gradient process with time horizon T > 0. Then the
following holds true.

(i) UT is bounded independently of T by 0 < UL < U := P + /P2 + Q, where

P:= sup (2Bsﬁm(s) + Bra(s) + Cszﬂaa(s)) and Q) := sup (46961(5)5@@(3) — ga(s)) .

5€[0,00) s€[0,00)

(ii) UT converges pointwise for T — oo to a process U*, with the same bounds, which fulfills

T_ (U790)2 _ 770 Baa(r) 2 ") — 2a(7) r
<2ﬂaa(7“) Ur <2Br * Baa(r) * Cr) + 2Ba(r) 2ﬁaa(7‘)> !

t

forall 0 <t < T < co. Furthermore, there are constants K1, K5 > 0 such that
U° — UF| < Kye K2
forall 0 <t < T < 0.

76



Ergodic linear-quadratic control problems

(iii) There are constants 61, do > 0 such that

¢ Bralr) — UrT ! Bra(r) — UrT Cf
L <Br + 725%(7“) ) dr < L (Br + 725%(7”) + 2> dr < =61(t — s) + 62

and

s 2Baa(T) s 2B4a(1) 2

forall 0 < s<t<T <o,

Jt <BT+W>dr<Jt (BT+W+Cf)dT<—51(t—S)+52

Proof. First, we define for s € [0, T']

1
o ) o 2 =
Ds = 2BsBaa(8) + Bra(s) + C: Baa(s), s := 4B22(5)Baa(s) — xa(S)a ag .= 25,1&(8) .

Furthermore, p! := pr_g, ¢/ := §r_s and a! := ar_,. Observe that the dynamics of U7, as
given in Lemma 4.37, can be written as

T
UtT = J —ayr <(U7T)2 - 2]5TU7T - @ﬂ) dr.
t

Now we define for 0 < s < ¢ < T and z € [0, U] the process Y77 as the solution of the ODE

y'(t) = —a (w®)* =207 yt)—al),  y(s) =u=,

which exists and is unique by Lemma 4.27 and Assumption 4.36. Note that due to the construc-
tion of Y we have for 0 < r < ¢ < T that

T,0,0 T,0,0
T TorY:. ™ T— Y,
Y; ,0,0 — Y't STy Ly — Y't_TTaoy T

and hence for 0 <t < T < 7 also
_ 7,0,0 7,0,0
YO0 —y Ty (4.18)
Furthermore, a straightforward calculation yields that (YtT’QO)tE[O’T] has exactly the same dy-
namics as (UTT_t)te[()’T] and hence, by uniqueness, they are equal. Thus, we can apply all results
from Section 4.3. Using this, Lemma 4.27 yields that U” is bounded independently of T by

0<UT<U= sup }53+\/( sup ]58)2+ sup qs-.
s€[0,T7] s€[0,T7]

Also, for any 0 < ¢y < ¢t; < T we obtain

11 t1 T—to
~ ~ T,0,0
f ~ar (U —py) dr = f —af_, (YT_T —ﬁ_r) dr = f —ay (V"0 —pl)dr
t t

0 0 T—t1
< —01(t1 —to) + 02
by applying Proposition 4.33. Replacing a and p by their long forms gives the right hand estimate
2
in (747) and noting that % > 0 the left hand one.
Next, observe that due to Equation (4.18) U] = Y:ﬁ;o = YTTLOt’U% forall0 <t < T < 7and
hence, by Theorem 4.34,there are constants K1, K5 > 0 such that

T,0,U

07 = U7 | = [y 57T = V50| < UF = 0] Ky e R0 < TRy e e,

Thus, for all s > 0 the sequence (U T ) 7= 18 @ Cauchy sequence, which implies that U T converges
pointwise exponentially fast to a function that we call U®. Because U is bounded independently
of the time horizon we get that U™ is bounded by the same constants.
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Next, we want to show that U® fulfills the claimed dynamics, which can be rewritten as

T

UF = Uf + | —ar (07 - 207 - 0.) ar

t

forall 0 <t < T < . To this end, define UT** as the solution of

T

o(t) = UF + |

| (w®)? ~ 250(t) - &) ar.

Since the solutions of ODEs depend continuously on their starting value (see e.g. Theorem 1 in
Chapter 2.5 of [Per91]) we can, using Equation (4.18), for all 0 < ¢t < T < oo derive

. . 0.0 . T,0,U% T,0,U% ~ T 50
UP=1lmU = 1limY "' = lim Y, T =Y, T =U"
¢ m Uy = lm Yo7y L O T—t t s
T.0,U%

which proves this result. Since therefore U° = Y., " for all 0 < ¢ < T, we can furthermore
estimate with Proposition 4.33

th T—to T.0,U%
f —ar (U = pr)dr = f ol (VT < gl ) dr < 8 (ty — to) + 6.
to T—ty

Remark 4.43

(i) It might seem a little strange that we describe the dynamics of U* via a backward equation
although there is no real final value. On the other hand, the value of U° is unknown and
a small error would increase over time, due to the dynamics. Furthermore, the backward
notation is similar to the notation of U7 and in a computation the influence of an error in
the final value would decrease over time (see Theorem 4.34).

(i) In the proof of Proposition 4.42 it becomes clear why we choose the parameter functions
to be deterministic in contrast to Section 4.2, where they are stochastic. In order to obtain
the convergence of U’ to U® we need to apply the results from Section 4.3, which are
only available for deterministic parameter functions.

(iii) After extending our parameter functions to negative time e.g. by mirroring them, we can
view (YtT’O’U%O) from the proof of Proposition 4.42 as a single point pullback attractor as
in Definition 2.3 from [Sch00]. Since the theory for pullback attractors also extends to
random processes (see e.g. [Sch99]), we hope that this theory will enable future research
to overcome the restrictions described in Point (ii).

Although Proposition 4.42 states that the gradient process U’ converges to a process U®
and gives estimates we use later on, we are not able to give explicit solutions due to the time
inhomogenous parameters. In the following corollary we have a look at the time homogenous
case, where the formulas become explicit.
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Corollary 4.44

Let Assumption 4.36 be fulfilled and additionally all parameter functions be constant. Then, for
this time-homogeneous problem, the gradient process U” is explicitly given for all every T > 0 and
te[0,T] by

=p++/p? + gtanh (a«/p2 +q(T —t) + tanh ™! (—f)) ,
P +yq

where p := 2B)844(0)+ 82a(0) + C¢ Baa(0), ¢ := 4822(0)Baa(0) — 5%,(0), a := 25&71(0). Furthermore,

S =pt+ VPP tg

for all t € [0, 00), which means that it is constant.

Proof. The first statement can be verified by using the construction of Y in the proof of Propos-
ition 4.42 together with Lemma 4.29. The second statement follows directly by considering the
limit limg_,, U/ [ |

The next lemma shows that not just U7 but also ¢’ converges, which means that the decoup-
ling field and the optimal feedback control converge.

Lemma 4.45
Let Assumption 4.36 be fulfilled. Then ¢! is bounded by some constant ¢ > 0, independently of
T > 0, and converges for T' — oo pointwise to the bounded function ¢©* which is defined by

v%#WWG+w+£%>@$%WWMJ

Baa(r >
- ex B, + T dr | ds.
g <£ 2ﬁaa< )
Moreover;, ™ solves for all 0 <t <
T 0
Ta - Us
ot = - | [or (B4 P20
t

2aas)
. Ba(s) \  Bals)Buals)
+U; (bs + csCys + 2@1&(8)) 2Bua ()

T < oo the integral equation

+ ﬁx(s)] ds.

Also, there are constants ki, ko > 0 such that
|0 — oF | < ke R0,
which further yields

T
k1
L ‘Sot _¢t|dt k2

forall 0 <t < T < 0.

Proof. Proposition 4.39 gives us ¢! as

o =[] o7 (e 5s) S+ oo o (] 20 25 ar)ae
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By Proposition 4.42 there are 6,2 > 0 such that forall s > ¢ >0

exp (ft B, +Wdr) <exp (—di(s —t) + da).

Since furthermore U7 is bounded by Proposition 4.42 and the processes

(ot 30 e (T )

s€[0,00)

are bounded by Assumption 4.36, we get that ¢! is bounded independently of 7.
Also by Proposition 4.42 we obtain

N Ba(s) >_ﬁa( 5)Baa(s) ] ( Baalr) = UL )
L HU (bsmcﬁwaa(s) DBals) T PelS)| P LB” 2ﬁaa H )]s
. Ba(s) ~ Ba(8)Brals) H * =01 (s—8) 42
S o) {U Pt et | T 2Buals) T f as

_ : Bl || Bl e
ses[ldl,lso) |:U bt el 26041(5) 260“1 ) 1
< o,

which means that ¢* is well defined and bounded. Furthermore, we get for 7' >t > 0

“Pt _Spt‘

L ' [Uso (bs FeCyt ngij))> - ﬁgﬂm()” n ms)]

{exp (J Br Bmwm 0 dr>_exp <J Br ﬂm;ﬁm )T a ﬂd

T Bza(r)— Ur
+J (ur-ul) (bs+csCs+ fa(s) ) (Bt T I g
t

; 2Baa(s)
G O e v R L
7 e G AR |
e (e %)(J G FeRlk
+S€s[ggo) bs + ¢sCs + Qﬂaa e Ka(T=9)o=01(s=D+02 g
7 g e+ 2§a§?)> ¢ g [ - [T rveoma

by Proposition 4.42 with some constants d1, d2, K1, Ko > 0. Next we estimate the three integrals
on the right hand side separately. In order to estimate the first summand, we obtain by again
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using Proposition 4.42

Jo oo ([ e Py ar) = ([ 2 P55 o)
m s T 770

<[] m i) ixp<t %ﬁaa{{; ar)]as .
+ jﬂ exp (f B, BMQBM( §Jr dr> + exp (L B, + ng(;(ﬁa)a(_) - dr> ds

Tt T
< J P emhi(s—t)+6 <exp < s J Kie K= dr) — 1> ds + J 2e 01 (s=t)+02 g g
t 2Baa Jt Tt
T
fT+t

ds

T+t

< f2 e+ (exp <2g1 eiKQ(Tf%)(s — t)) - 1) ds +
t aa

2e01(s=t)+02 4 g

T
2;(1 eiK2 [1 —e —o 5t ] + (518751 [1 — 62;((11(1 e 272 T2}
6 aa
=e -
01(01 — 2[;:@ e et t)
1
N 2:; 2 [8_51% _ 6_51(T—t)]
1
5 _mm{él Ko} (T—t)
<-° i ’ - [ [v{l (1 - ef%(Tft)> + 63 (1 — exp < Iv{l (T - t)e?(Tt)>>} .
51(51 2?:(1 CfT(Tft)) 2B4a 4844

For the second summand we get

T T
J Kle—Kz(T—S)e—51(8—t)+52 ds < J K1€52€_ min{Ks,61}(T—s+s—t) ds
t t

_ K1652 (T o t)ef min{K2,51}(Tft)
and for the third one

o0 62
f o0 (=082 g _ " —u(T—t)
T 01

Remember that (T — t)e *(T~*) goes to 0 for T' — oo and is furthermore bounded for all k > 0.
Thus, by putting the three integrals back together, we can find constants k1, k2 > 0 depending
only on the bounds in Assumption 4.36 such that

|80t _Sﬁt‘<k€ k(T t)

which means that ¢” converges to ¢* exponentially fast.
Now we take a look at Sg | — ¢ | dt. Integrating the above estimate yields

T k1 _ k
JO |90t _90t|dt kz (1_€k2T><kf;

independently of T
Finally, we turn to proving the integral equation. Note that Proposition 4.39 states the
¢! solves a similar integral equation. Using this and dominated convergence, we obtain for
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0<t<T <

. [ T [ /Bwa(3> - UT
w0 _ T T frar/ 7S
P = lm [¢T+L (% (Bs T 20

0 (e o) - ) g ) ]

T . T
=¢F + J [ lim goST (Bs + lim 7596&(8) Us )
¢

T—w 2844 ()

T<f <t
. T 5(1(8) Ba(s)ﬁxa(s)
e (e g3y ) - P+ “”(S)] -
T<T
_ 0 T 0 B:m(s)_UsOO
- [ (o )

07 (b0 o 20 Pl

2Baa(s) 2Baa(s) - B$(3>] ds.

Corollary 4.46
Let Assumption 4.36 be fulfilled and additionally all parameter functions be constant. Then, using
the definition of p, q, a from Corollary 4.44, for allt > 0

o (p+ V2 a) (0 + c0Co + aBa(0)) — aBa(0)Bra(0) + B2 (0)
$r = 2 )

a«/p2+q+%

which in particular means that ¢™ is constant.

Proof. Using the definition of »* in Lemma 4.45 and the result from Corollary 4.44 we obtain

o = j [(p+ Vi + a) (bo+ caCo+ aBul0)) — aBu(0)82a(0) + 5(0)] " (v )y,

B [ <p + \V p2 + Q) (bO + COCO + aﬁa(o)) - aﬁa(o)ﬁxa(o) + /8:1:(0)

c2
—a\/p? +q— 5
2

o (e (ovra- D)
(p+ V7t a) (b0 + c0Co + aB(0)) — aBu(0)5ra(0) + B (0)

2
a\/pQ—&-q—i-%

Corollary 4.47
Let Assumption 4.36 be fulfilled. Then the optimal feedback controls o converge for T —
pointwise to the feedback control

0 (z) = 0 — Ba(t) + (U — Bua(t))
! 2844 (t)
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Ergodic linear-quadratic control problems

Proof. Since ¢! and U” converge for T — oo and all other components do not depend on 7,
this is straightforward. |

We have to distinguish between the process controlled by the control a’, which is optimal
for horizon T, and the ones controlled by the ergodic control a®. Therefore, recall the notation
from the beginning of Section 4.1: By X* we denote the state process controlled by the feedback
control «. This means that X solves the SDE

t t

(u(s, X&) — as(X$))ds + f o(s, X&) dWs.

Xfé:$0+f
0

0

In order to show that a® solves the ergodic control problem (4.17), we have do derive some
estimates for the first moments of the controlled process.

Remark 4.48
Since X" and X®” both have Lipschitz continuous dynamics, we know by standard theory (see
e.g. [Kun97]) that E[|X®"|*"] and E[| X" |*"] for all m € IN are finite and integrable. This

in particular implies that terms like {; (X ST)Z dW; or § (X 50‘00)2 dW, are true martingales and
hence have an expectation of 0. We use this fact in the following lemmas without mentoning it.

Lemma 4.49
Let Assumption 4.36 be fulfilled. Then

T t ﬁ:ca(s)—UsT t — T + S t 5aca(7‘)—U,,T
E [Xta ] = -TOGSO Bt 2Baal(s) @ + J bs + SDS Ba( ) BSs Br 2faa(r) dr dS,
0 2fBaal(s)

2 t Bra(s)-UT | C2
. RX{"T) } = g2elo Bt ot s
t T T 2
— + S t Bza(r)=U; | C§5
+J {cﬁ +2E [XgT] <bs L 29 thals) QCSCSH oo Br PR+ G dr g
0 2B4a(5)

¢ Bza(s)-UL  C2 t ¢ Bza(r)—UL | C2
§o Bst ™ 350aty T3 ds +J cgess Brt Sbaaty T2 4T g
0

! : ﬁma(T)_U;T s —or s ﬁxa(v)—Ug
+J 2[$0€SOBS+2ﬁaa(r)dT +J (br n W) 2 B 2220t qy dr]
0 0 25(1(1("“)

— T t ﬁxa(")—UqT sz
. |:bs + M + 26503:| ess B+ 2Baa(r) + 2 dr dS
2B4a(s)

= x%e S

and the moments IE[X?T], E[Xt“w], ]E[(XST)Q] and ]E[(Xtaw)Q] are bounded independently of
0 <t <T < w for every initial value x( € R.

Proof. Observe that by Corollary 4.22

f t (bs L poxet _ s = Pals) + (Us — Bra(5)) XY ) dJ

IE[X,?T] — 20+ E

0 2B4a(s)
t T s t §)— T .
=:1:0—|—L (bs+m>ds+ﬁ) <BS+W>E[X§‘ ]ds.
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By Lemma 4.38 we get

t Bza(S)*UST t — T t Bza(r)*Ug‘
E [X?T] — 20 Bt T b + —¢s + Bals) s Brt Tohgam AT 4
0 2B4a(3)

and hence, using Proposition 4.42 and that

D + sup, (T
< sup |bo]+ ¥ p e[O,oo) |Ba(r)]
re[0,00) 2B4a

< o0,

we obtain

_QPZ + Ba(r)

‘IE [Xto‘T” < |zole 0+ 1 gup 2Bon (1)
aa\T

re[0,00)

b, +

Jt 6751(t77‘)+52 dS
0

_‘PZ + Ba(r)
2B4a(r)

%2 D + sup, (7
< max | [zole”, - sup |b| + i Prel0.) 1Pl .
01\ ref0,0) 2Bua

e
— |@o|eP2e 01t + (1 — 6751t> — sup |bp +

Completely analogous we also have that

» 02 D+ su r (7
‘]E [Xfl ]’ < max | |zo|e”, | sup |br| + 7 Pref0,) |Ba(r)] ,
01\ re[0,00) 2Baa

Furthermore, using It0’s Formula

E [(Xf‘T) 2}

t T _ 5 T o XaT 2
:$3+EU " <b8+BSXgT_% Ba(s) + (UT = Bra(s)) X )+(CS+CSXST) dS]
0

2faa(s)

¢ T
= ap + L (c? + 21 [XgT] <bs + W + 2cscs>> ds

+ ft2 (Bs + Baals) Uy’ + Cf) E [(XST)2] ds

0 2B4a(S) 2

t _ UT 02
= 22 ex (J Bs + Bra(s) = Uy + == ds)
0P, 2Baa(s) 2

t T t T 2
2 aT —ps + Ba(s) Bla(r) — Ur Cs
+L[CS+2E[XS ]<b5+25aa(8)+2CSCS>]6XP<LBT+2IBML(T)+2dT>dS

due to Lemma 4.38. Plugging in the formula for It [X fT] we get the second claimed equation
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2
for [(Xf‘T) } . By Proposition 4.42 and the above result we can moreover estimate

el )]

1 (t70)+52

<

—_ T t
+ | sup ‘c ‘ +2 sup ’E [Xa ] sup |bs + Lﬁa(s) + 2¢,C f e~ (t=r)+oz 4
s€[0,00) s€[0,00) s€[0,00) 25aa(5) 0
_ 1'26626 o1t
02 T
+ (1 — 6_51t> - sup |c | +2 sup ‘E [XO‘ ] sup |bs + M + 2¢C5
o1 re[0,00) re[0,00) re[0,00) 2Baa(s)
< 0.
Again, we completely analogously obtain ‘]E [(Xf‘m)Q]’ < 0. [ ]

We have shown that the first moments of X are bounded. The next lemma states that the first
T . .
and second moment of X® converge with exponential speed towards the ones of X”.

Lemma 4.50
Let Assumption 4.36 be fulfilled. Then there are constants Ki,...,Kg > 0 independent of
0<t<T < o and zy € R such that

’E [Xt _ X ] < Kye K1)

E[( *_ x"
B () - (k)]

Proof. Using Corollary 4.22 and Corollary 4.47 we can calculate

? < Kse —Ka(T-t) and

< K5€_K6(T_t) .

E [Xfé"o - X;’T]
P ol UPXS" —UTXE" = Bras) (X7 — x2)

t . o ©
) LBS<X§‘ XS )f () ds
t ZO_ z U;O—UST E Xgoc B:va UT a ol
:L_w : +(waa(s) )[ ]+<BS+ 2<5a)a<) >E[X - X s

Lemma 4.38 furthermore yields

0 e
e N A

0 2Baa(s)
Using Proposition 4.42, Lemma 4.45, Lemma 4.49 and Assumption 4.36 we get that there are
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constants K1, Ky > 0 such that

X - x|

t

gj Ky Kpe—K2(T=5) = FKa(t=9) g g
0

~ K, <67K2(T7t) _ efKQ(Tth))

< Kpe K(T-1) (4.19)
Again using the representation of o’ and a®, we obtain

E [(Xtaw - X?T)2]
— | [ e (e ") (s = a7 (x57) e (sx5”) + o (x27))

SO _903

<£{‘]E[X?w—Xa ] (E[ xe” - xeh) }+E{(X§“T)2D (U -Uy)

+E [(Xa” — X ) } <2B + gfgz; U* + 03) } ds.

With Gronwall’s inequality and the estimates in Inequality (4.19), Proposition 4.42, Lemma 4.45
and Lemma 4.49 we derive that there are constants k1, ..., kg > 0 such that

]E[(Xf‘oc—Xf‘T>2] f“E[X"‘ —XO‘ H e il +]E[(X§‘T)2} (USOO—UST)}ds
-exp<Lt{(U —~Ul') + 2B, +6’”“(8) UOO+CQ}ds>

ﬁaa(s)
t t
< f [kle_kQ(T_S) + k3e— 4( dS exp <f k5€ 6(T—5) 4 — krt + k8>
’ 0
max{k1, ks} .
< —"2 7 T ks
min{ky, ks} eXp( min{kg, ka}( )) exp < et + 2+ k8>

Hence, there are constants K3, K4 > 0 such that
E [(X;*” - X,?T>2] < Kge  KaT=1),
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Once more using Corollary 4.41, Corollary 4.47 and Lemma 4.38

E[<Xf@>2—<xfﬂ=f<—“”S”‘“”WL;Z??‘U@E“XS““Q]

+2( b+ S08+ C)]E[X?w—XfT]

(" %
oS5 Yol o

(62 = D) E[x27] + (UF - UD) B [ (x27)7)

B Jot < B 2Baa(5)
2 <b8 + W + csCs> E [X;** - XgT] )

¢ Bza(r)-UL | C2
.eSsQ(B”J”W"’ >d7“

[\

+

ds.

Thus, by Lemma 4.49, the bound on the parameter functions and Proposition 4.42, there are
constants K5, Kg > 0 such that

¢
< J K5K66_K6(T—8)€_K6(t_5) ds < K5e_K6(T_t)
0

B[ () ()]

analogously to Inequality (4.19). |

Remark 4.51

Lemma 4.50 implies that X o’ converges for T — o pointwise in probability to X*”. Since
moreover the decoupling field v of FBSDE (4.8) converges pointwise (see Proposition 4.39,
Proposition 4.42 point (ii) and Lemma 4.45), we get that the backward process Y; = u(t, X2 )
converges pointwise with exponential speed, too. Furthermore, Corollary 4.40 states that Z; =
Ulo(t, X?T). Since again all components converge, we get that Z converges pointwise as well.

Summing up, we obtain that the solution (X ol , Y, Z) of FBSDE (4.8) converges for T — o
pointwise to some tuple (X", Y®, Z%) which solves forevery 7 > 0 and all ¢ € [0, 7] the FBSDE

t t

X =gt [ s, X2 = gt (s, 607 ) s+ [ ot x")aw,
0 0

-
Y,® :YTOC—L 7% dW,

4 JT |Cuns, X)W + 205, X228 + 0uf (5. X7, 10 (5, X027, v7) )| s
t

87



A decoupling field approach to position control problems

After knowing that the first and second moments are bounded and converge for a fixed starting
value, we now turn to an estimate of the difference of the first and second moment for optimally
controlled processes with different starting values.

Lemma 4.52
Let Assumption 4.36 be fulfilled and x1, z, € R. Then, for the processes X %1, X**-%2 fulfilling

t t
Xe5m = 4 f | (5. x87m) = (X270 ) s + f o (s, X7 ) aw,
0 0
resp.
t t

Xf‘oo’x2 =29+ fo [u (S,X;loo’z?) —af (ng,m)] ds + Jo o <5, X;‘“@?) dWs,

there exist constants 01, d2, 93, 04 > 0 such that

o0 0
‘E [Xta ,T1 _Xta ,zz] < ‘1,1 _$2|51€—52t

and

e (xim)? — (x| < (s A b = e

© © © 2 o 2
Proof. We define =" := X, "™ — X}* " and P/ := <Xt°‘ ””1) - (Xta ’”) fort > 0.
By Corollary 4.47 we obtain

t 0 t
UL — Bra(s)
22— gy — By — =S | BTV g f CE50"2 AW,
t 1 x2+L ( s Q/Baa(s) s s+ o 5= S5

t 0
— S
Ptxl,xz _ :L‘% —33% _|_J 9 <bs n Ps Ba(s) +Cscs> So1T2 g

0 2Baa(s)
t Uoo _ 6 (S) C2> t
+ | 2(Bs— =52+ =2 | PP ds +f Cs 2TV 4 O PPV | AW,
JO ( 2faa(s) 2 ° 0 [ ]

and hence, by Lemma 4.38,

t 0 0 _
UL — t UL —Brals)
E[EM"]) =21 — 20 + J B, — 576"”“(5) E[=71%2]ds = (21 — 22) oo Bs— =g ds,
0 2Baa(3)
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t o _
E[P12) = 2} — a3 + f 2 <b5 ¢ & Buls) cscs> E[E217] ds

0 2B4a(5)
+ Ltz (Bs - w + Cf) E [P*1"2] ds
_ (2 ) 2o o
- f 9 <bs + 95" — Bals) + cs@) I [22172] 6822<3r7%+%@> -
0 2B4a(5)

Using Proposition 4.42 we obtain that there are constants d1,d2 > 0 such that
IE[Z7"2]] < |1 — o] 517"

Therefore and by Lemma 4.45 and Assumption 4.36 we also get that there exist other constants
03,04, 05 > 0 such that

t
|E[P72]] < {JJ% — x%| 5%6726215 + f 205 |x1 — 2| 51675285%67252(1575) ds
0

t
< 2% — 23] 57202t 4 f 205 |21 — o] 3e 2 ds
0

— 202 <|x% - $%| et 4 |z) — o 2555%15)

< (‘x% — x%| + |z — 932|) 53676415.

Now we have all necessary tools to show that a® is indeed an optimal ergodic control.

Theorem 4.53
Let Assumption 4.36 be fulfilled. Then the optimal ergodic costs are

1 1 1
inf limsup —J(T, g, @) = limsup —J(T, 29, @) = limsup —J(T,zg,a’) =:ne R
acA 17,00 T T—ow 1 T—w T

for all xy € R. In particular n is a constant and does not depend on the starting value x( € R of the

controlled process. Likewise, the minimal ergodic costs are

1 1 1
inf lim inf TJ(T’ xo, ) = lim inf fJ(T, zg,a™) = liminf TJ(T’ zo,0l) =€ R

aceA T—w0 T—o0 T—00

forall xy € R.
Furthermore, there is a constant K > 0 such that for all x1,22 € Rand T > 0

ik

1 1
‘J(T,xl,of@) — TJ(T,xl,ozT)‘ < and

=N

K
’a:% - x%‘ + |21 — 22) T

—

1
‘TJ(T, r1,a”) — TJ<T’ acg,aoc)’ <
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Proof. Since for each time horizon 7" > 0 and z € R the control a’ is optimal, we know that

for the optimal ergodic cost holds

1 1 1
inf limsup —.J (T, z, ) = limsup inf —J(T,z,a) = limsup —J(T,z,a’).
acA T T oA T T 1

Thus, limsupy_,., #J(T, 2, a”) is a lower bound for the optimal ergodic cost. Our aim is to
show that this lower bound is reached by the ergodic costs of the control a®. To this end,
remember Corollary 4.22 and Corollary 4.47 and observe that

- 1 oy _ L T
lerIlj;p 7 (T 20, a”) = 7 J(T, 20, @7)
. 1 T a® oo a® ol T aT
—h;njo%p TEL [f (s,Xs , 0l (XS >> —f(s,XS , Ol <XS ))]ds
. 1 T a® 2 O¢T 2 a® aT
= limsup TEJO Baa(s) <(X ) - (Xs ) )—l—ﬁr(s) (XS _ X )
o (05 = Bals) + (U — ﬁza(s))Xsaoo>
+Bza(s) | Xg
Pra(s) ( < 2Baa(s)
B <XQT o8 = Ba(s) + (U — Bra(s)) X>
’ 2faa(s)
0% = Ba(s) + (UL — Bra(s) Xg"
+Pals
9t = Bals) + (UL = Brals)) X&"
2Baa(s)
o\ 2
ps = Pa(s) + (Us° — Brals)) X§' )
+Daals
Bua() (( e
_(@Z_/Ba(s)+ (UsT_/Bxa(S)) X?T)Q ds
2fBaal(s)
. 1 T a® aT 1 a® 2 aT 2 2
= limsup TJD (]E[Xs — X ]DS+E[<XS ) —(Xs ) ]DS
[ o0 ya® T yval 3 0 ya® T yvaTl 4
+E QOSXS _SOSXS ]DS+E[US Xs _USXS ]Ds
[ o) 0\ 2 2
+B |o2ue xe” — LUt XgT]D§+1E[U§O (xe7) vl (x27) ]DS
i 0\ 2 2
+B | (v2xe”) - (vrxe") ]DZ +E[p? — ] DS
E | (¢7) = (¢1)°] DS ) ds
for some bounded and deterministic processes D’ for i = 1,...,9 which are independent of T..

Using that ab—cd = (a —¢)d + a(b— d) and likewise abc —def = (a—d)ef +a(b—e)f + ab(c— f)
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we can rewrite this as

1 1
li —J(T ©y — — J(T T
imsup |7 (T, o, ™) T (T, 0, )‘
o a® aT 1 © 13 0 4 0 b
hmsup ( X X ](Ds+gost+UsD + PUX DY)
T—o0

+E { (xe7)"— (x27) ](D§+U§°DS+(U§O>2DZ)
+ (92 - ¢F) (]E [XgT] D} + UTE|X2"| D} + DS + (¢ + ¢T) DY)
+ (e -ul) (B[xe"| i+ p7B [ X2"| D3

+E [<X§T> ]Dg + (UT + UF)E [(XgT)2] DZ) ) ds|.

(4.20)
By Lemma 4.50 we have for some constants K1, Ko, K3, K4 > 0 and every T' > 0
1 (7 . T 1 (" 1 K, 1 K,
- E[Xa _ X ”dtgf Kie ®2T=0qs = ~ 2L (1 KTy ¢ ~ 2L (401
TL‘ t t T), ¢ T, 0 ) S5y, 42D
and
1 (" BN 7 2 1 (" 1 K3
| I (XO‘ ) _ (XO‘ ) At < — f Kge KaT=t) g < = 22
TJO { t t T), 7% TK, (4.22)

Likewise, Proposition 4.42 and Lemma 4.45 imply that there are constants K5, K¢, K7, Kg > 0
such that for all " > 0

1 K
f |Ut UtT|dt J Ks e Ke(T-1) qt < TK5 (4.23)
6
and
Lt IR 1 K7
Tfo ot — of |t < TJ;) Kre 5s(I=0) qt < TRy (4.24)

Note that D' for i = 1,...,9 are bounded and by Proposition 4.42, Lemma 4.45 and
Lemma 4.49 the processes UL, U*, o7, p®, E[X ?‘T] and IB[(X ,O‘T)2] are bounded, too. Hence,

applying the estimates of the integrals in the equations (4.21), (4.22), (4.23), (4.24) to Equa-
tion (4.20) we obtain

<

1 1
‘TJ(T, xo,a®) — fJ(T, zg,al)| <

NI =

for some constant X > 0. Thus,

1

1
lim sup fJ(T, xp, a®) — fJ(T, zo,al) =0

T—o0

and the ergodic control o™ yields ergodic costs equal to the lower bound

1 1
lim sup inf TJ(T7 xo, ) = limsup TJ(T’ x0, a®)

T—on Q€A T—w
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implying that the costs of a® are optimal. Using the same arguments we also obtain the minimal
ergodic costs.

Now let 1, z3 € R be two starting values. For the corresponding processes X1 and X "2
we obtain by Lemma 4.52 that there exist constants d1, d2, d3, 64 > 0 such that

‘E |:Xtaoo,$1 _ Xtaw’IQ] —d1t+02

< |z —xole
and
o \2 o N\2
e (xim)? = (x| < (o b = .

Due to the structure of f and a® (see Assumption 4.17 and Corollary 4.47), we know that there
are constants K1, K > 0 such that we obtain for any 7" > 0

|J (T, z1,a®) — J (T, x2,a™)|

T o\ 2 o N2 . .
<J K, E[(Xsa ’m1> - (XSO‘ ’m2> ”—FKQ‘IE) [X;I X ,mg] ds
0
03 2 2 —6,T %2 6T
<Kl*(|x1*$2|+|$1*~"32|) 1-e + Ko— |21 — 22| (1 —€
(54 51
0 ) 52
<K1—3|x%—x%|+ K1—3+K26— |x1 — xaf .
54 54 (51

Hence, the difference of ergodic costs for those two starting values can be estimated by

1 1
lim sup TJ(T,xl,ozoo) - TJ(T, xg,aoo)‘

T—o0

. 1 (53 2 2 (53 662
<l — | K1— |z — Ki— + Ko— -
ljr{ljo%pT < 54 71 — @] + "5, M 01 o1 =zl
=0,
giving us that for all starting values the optimal ergodic costs are equal, making them a constant.
[

Remark 4.54
Note that in general the optimal ergodic costs  and the minimal ergodic costs 7} are not neces-
sarily equal. It only holds true that

1 1
7 = inf 1iminffJ(T, x0, ) < inf limsup fJ(T, xo, Q) = 1.

acA T—w acA T_,pn

In the following we examine the properties of the optimal control more closely and draw some
connections to the Hamilton-Jacobi-Bellman approach.

Lemma 4.55
Let Assumption 4.36 be fulfilled. Define for T € (0,00) u {0} the function

! t 0% — Pals))”
o7 (t,x) = iUtT'J»Q +op _Jo @5 bs + UST§ + Bo(s) — (45(8))

ds
forallt e [0,T] n[0,0) and x € R. Then for T € (0,00] and z € R
— F (0] (@) = 207 (1,2) + (u(t,2) — o (1)) 007 (1,2) + 50°(t,2)220" (1, 2).
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Proof. Remember that by Proposition 4.39 and Lemma 4.45

»Ba(t) 5a(t)ﬁxa(t) /Bxa(t) - UtT T
waa(t))‘ 2Braa(t) *59”“)]‘[3” 2Buall) ]“Of

and by Lemma 4.37 and Proposition 4.42

at@? = — [UtT (bt + ¢ Cy +

r  Wh)?’ Boalt) | ) B2, (t)
(9tUt 2,8aa( ) Ut <2Bt + ﬁaa(t) + Ct) QBxx(t) + 72,86“1(15) .

Hence, with Corollary 4.22 and Corollary 4.47

00T (t,x) + (u(t, ) — atT(x)) 0,07 (t,x) + %JQ(t,x)am@T(t,x)
_ %;& ( ut)y” Ul <QBt 4 Gual®) | C’t) 9 (1) + Daald) )

20aa(t) Baa(t) 20Baa(t)
—r T c Ba(t) _ ﬂa( 5xa 5&1 T
(for (n-vecre i) - i < e« [ 250 )
62
- @?bt - UtTgt - BO(t) + (90? - /Ba(t>) < 25(1&/8(;)( )> - Baa(t) ( 26‘1&/8((;)( )>
T _ T
i (bt b= Sle2ﬁaf(;)(t> N Ut2ﬁaf$(t) x) (bi +Ua) + % (et + Cea)" UF
LWy B2.()
= 1 PO D)
T /Ba( ) _ 5a<t>ﬁma(t> T _90? - Ba(t)
v |- (g~ e+ e0) T ()
N of = Ba(t)) o = Balt)\”
+ [ folt) — () (2000 — g0 (2200 ]
On the other hand

- f (tvl'a O‘? (:E))

(P? - Ba(t) + (UtT - /Bza(t)) x
_{ﬁo(t) + Bax ()2 + B () + Boa(t)x ( (D )

o= Ba\? (6T = Ba®) (UF = Bea®) z ((UF = Bua(®)) 2\
+/Baa(t) (( 25aa(7§) ) +2 L (QBaa(t))Q +< 2ﬁaa(t) >

90; B /Ba(t) + (UtT - Bxa(t)) (E}

+ Bal(t)

M0
_ (v B2,(1)
=N 15 PO )
T 6(1() _ Ba(t)ﬂma(t) T _W?_Ba(t)
“”[ (Ut Buat)  2Buall) ”x“)>+Ut< E0) )]

I T _ 2
[ () o () ]
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Thus, we obtain that

00T (t,z) + (u(t, z) — o () 0,07 (¢, x) + %(72(t,x)8m@T(t, x) =—f(ta, ol (2)) .

Proposition 4.56

Let Assumption 4.36 be fulfilled and T € (0,0) U {00}. Then ©7, as defined in Lemma 4.55, solves
the HJB-equation

0= Hel]}f{ {8t@T(t,:1:) + (u(t,z) — a)d,0% (t,z) + %UQ(t,x)am@T(t,x) + f(t,x, a)}

forallte[0,T] n[0,0) and = € R.

Proof. Note that f is strictly convex in a and hence the whole function inside the infimum
is strictly convex in a. To find the global minimum it suffices to determine for which a the
derivative equals 0. To this end observe that

0Oa [@@T(t, z) + (u(t,z) — a)d,0% (t, ) + %UZ(t,x)(?m@T(t, x) + f(t,x, a)]

a=a (@)

= [—5I@T(t,1’) + ,Ba(t) + 5wa(t>w + 2Baa(t)a] a:aT(m)

= —Uth — gof + Ba(t) + Bra(t)x + Zﬁaa(t)atT(x)
~0

by Corollary 4.41 if T' € (0,T) or by Corollary 4.47 if T = co. Since furthermore Lemma 4.55
yields that

0= [@@T(t, z) + (u(t,z) — )0, 0% (t, x) + %ag(t,m)am@T(t,x) + f(t, =, a)]

a=al (2)

we know that o is a minimizer and hence ©7 solves the HJB-equation. |

Now we have a function that solves the HJB-equation. The standard HJB-theory suggests
that the value function also solves HIB-equation. Hence, we already have a guess for the value
function. In the next theorem we give for a finite time horizon an explicit representation of the
value function and show that the value function differs from ©7 only by a constant.
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Theorem 4.57
Let Assumption 4.36 be fulfilled and T € (0, ). Then, for 0 < t < T and x € R, the value function
is given by

T
V(t,T,x):= inf EJ f(s,X;)"t’x,as) ds
t

ac AT

Lo 9 T T T Tcg
:§Ut e +90t"r+ (psbs_‘_Us?—i_BU(s)_
¢

a,t,x

where X *!% s the process controlled by o and X;""" = x. In particular

V(0,T,z) = inf J(T,xz,a).
acAT

Furthermore, for all (t,z) € [0,T] x R the value function V solves the HIB-equation

0= in]lf>L {@V(t,T, z) + (p(t,x) —a)d, V(t,T,z) + %JQ(t,x)ﬁsz(t,T,x) + f(t,zx, a)} :
ae

Proof. First, note that ¢} and U} are deterministic and depend only on the parameter functions
from time ¢ until 7. Hence, it is straightforward to see that shifting time together with the
parameter functions does not change ¢’ or U”. Thus, we can also conclude that the optimal
control o does not change by a timeshift of the problem neither. Therefore, Corollary 4.22 still
yields the optimal control regardless whether we start at time 0 or at time ¢. Using this, we have
by Corollary 4.41, Lemma 4.55, It&’s formula and the fact UL = L = 0 that

V(t,T,z) = E Ut f (3, xofte oT (XgT:t’I» ds}

-] ' (0007 (5. 05707) (s x377) = (25707) ) s (s 27
102 (s.x2 )0 (s ng>) ds}

T

_m[or (1xp" ) - oF (1, X;Tm)]

T T 2
=;U§F‘x2+@f~x+£< b+UT + Bo(s) — (%4/85“:;)))(15,

which proves the first result. Now, we turn to the HJB-equation. Note that

2 (0T — Bals))?
[ b+UT + Bo(s) — EETRORE ds,

V(t,T,x)— @T(t, x) = JT
0

which does not depend on ¢ or x. Therefore, the derivatives with respect to ¢ and z of the

functions V and ©7 are the same. Since only those derivatives appear in the HJB-equation we
get that V solves it, exactly as ©7 does by Propositon 4.56. [ |

Theorem 4.57 allows us to give a more explicit formula for the optimal ergodic cost.
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Corollary 4.58
Let Assumption 4.36 be fulfilled. Then, for any x € R, the optimal ergodic cost n equals

1
7 = lim sup fV(O, T,0)

T—w
- h;nj;ép’;LT [ < bs + UOO ‘s + Bo(s) — (Cpiﬁ_af(as(;)f] as
and the minimal ergodic cost 17 likewise equals
= hTInJOIéf %V(O, T,0)
:1iTHLi£f:1FLT[ Tbs +UT 2 + Bo(s) — W] ds
=1iTrE)i£f;LT[ Lbg +UOO + Bo(s) — W] ds.

Proof. By Theorem 4.53 we know that each starting value gives the same ergodic cost. Hence,
we can choose without loss of generality 0 as starting value. Again, Theorem 4.53 yields that

1
n = limsup —J(T,0,a7)
T—o0 T

and therefore, by Theorem 4.57 we obtain

1
1 = lim sup TV(O’T’ 0)

T—o0
T e (¢ — Bals))’
_thﬂnjo%prg [ Tbs + UL 2+ Bols) — T 4Bal(s) ds.

Also, UT,U®, T, ©»® and all parameter functions are bounded and by Proposition 4.42 and
Lemma 4.45 there are positive constants K7, KQ such that |U” — Ul'| < K exp(—Ka(T —t))

and | — ]| < Ky exp(—K2(T —t)) forall 0 < ¢t < T < oo. Hence, we obtain that
. LT 7 T Cs (SDsT_/Ba(S))2
Tl'l—{anJ;)[ b+U*+6() 4/8a—a(8>d8
1 (T e (0F — Bal5))?
_Tfo [ Lbs + U +50( ) — T 1Buals) ds| =0
and therefore,
1 (7 (¢F — Ba(5))”
lim su J Tp, +UT—S+ ~E_— 7 |ds
Tﬂoop T Jo [ Pols) = 4Baa(s)
L c (% — Bals))?
= limsu J Lbs —i—UOO + _ s —PalS)) | g,
The result for the minimal ergodic cost 7} follows completely analogously. |
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In the next proposition we state a result for the ergodic version of the value function, which
actually does not represent the value (or in our case rather the costs) but can be used to derive
the optimal control, as we show in the following corollary.

Proposition 4.59
Let Assumption 4.36 be fulfilled. Define for 7 € R and (t,x) € [0,00) x R
1 t _ 2 o0 _ (s 2
Vo (tx) = 2Utoo-9:2+<p§°'ﬂz+f0n— < Cbs —l—UOO + Bo(s) — (65 = Bals))” >ds.
Then, for all j € R and (t,z) € [0,00) x R, the function V;* fulfills

O = lnf {atvﬁoo(ta .CC) + (M(tPT) - a)axv;?oo(t7x) + 10-2(?57 $)a$$vﬁm(tax) + f(t7:1:7a) - ﬁ} )
aceR 2

which we call the ergodic Hamilton-Jacobi-Bellmann equation (eHJB). Moreover;, 0 is the only real
number with

liminf — V (t,z) =0 and

t—00

t
Voo(t,:zc) = lim (V(t,T, z) — V(0,T, 0)) + limsup =V (0,T,0)
i T—o0 T—0 T

and 1 is the only real number with

1
lim sup tVOO( z)=0 and

t—00

V2 (t,x) = lim (V(t,T,x) —V(0,T, o)) +1iminf%V(0,T, 0).

T—o0 T—o0

Proof. Observe that V2°(t,z) = ©*(¢,z) +t - 7). Since ©” solves the HJB and the eHJB and HJB
differ only by the term —7, we obtain

;gﬁ {ﬁtvﬁw(t,x) + (u(t,2) — a)dL V5  (t, ) + %JQ(t,m)am‘/%oo(t,x) + f(t,x,a) — ﬁ}
- ég]tl; {&g@oo(t,x) + (u(t,z) —a)d, 0% (t,x) + %UQ(t@)(?m@w(t,x) + f(t,z,a)
+0(t- 1) + (u(t,x) —a)dL(t-n) + ;J (t, )02z (t - 1) — }

n
= in}f{{&t@w(t,x) + (u(t,z) —a)d0%(t,z) + %UQ(t,x)é’MG (t,x) + f(t,z,a }
ae

=0.
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Next,

t
hm(V@Twy4waTmD+nmwpfvuTﬁ)

T—o© T—oo

T—o0

1 T 2
= Jim (U7 ool k[ | Tbr UT 4 Bus) -
t

—~

T 2 T _
~0-0 —fo [so;”bs FUTS + Bols) - (%wﬁs)

1
+t-limsup =V(0, T, O))
T—o0 T

T—o0

1 t 2
= lim <UtT.x2+<ptT-x> Yton— limf [¢STbS+USTCS+5O(S)_
2 T—w Jg 2
1 ¢ t 2 ©_ g3 2
:2wmw+@”x+fn®—f[@M+U?§+%@%f%‘”$)ds
0 0
:Vnoo(t,:v)

since everything inside the integral is bounded, in particular with respect to T', and hence domin-
ated convergence can be applied together with Proposition 4.42 and Lemma 4.45. Analogously
we obtain

t
hm(V@T@%ﬁd&ﬂ@)+%ngvmﬂﬂnzufﬁx)

T—0o0
Finally, observe that
. . 1 CX)

1 t 2 w0 . 2
2Ufo-x+g0§°-:v+f n— (cp?bs+U§Oc;+Bo(s)—(¢ﬁ(S))>ds]
0

= lim inf1
t—oo
1 c: (92 — Ba(s))”
=0+n—1 - Pp, + UFX = — s Pl 1d
+1] 1§§2g>t~L [@S s+ USS + Bo(s) 1Boa(s) s
=n—n
and likewise

1
lim sup EVﬁoo(t, x) =1 —1.

t—00

Corollary 4.60
Let Assumption 4.36 be fulfilled. Then, for all T > 0 and (t,z) € [0,T] x R, we have
0V (t,T,x) — Ba(t) — Bea(t)x

2B4a(t)

af (z)
and for all (t,z) € [0,0) x R, ne R

0 _ afvﬁoo(t’ x) - 5a<t> - ﬂma(t)x
o (z) = S0 .
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Proof. Using the explicit formulas of V' and V* as given in Theorem 4.57 and Proposition 4.59
and the explicit formulas for o’ and a® given in Corollary 4.41 and Corollary 4.47 this is
straightforward. n

In the next corollary we take a look at time-homogeneous parameter functions as a special
case.

Corollary 4.61
Let Assumption 4.36 be fulfilled and additionally the parameter functions be constant. Then

1 i
Vﬁ”(t,z)=§U80-x2+s08°‘9«“+t-(77—n)

for every t = 0, x,7 € R and the optimal ergodic cost is given by

2 o a02
ﬁ=77=3080b0+U5’0620+50(0)_W’

Wh€r€f07”p = 2B(]ﬁaa(0> + Bwa(()) + C(%Baa(o) and q:= 46$Z(0>60«a(0) - %a(o)

Qﬁaa(o) U(c)zo bo + coClo + Ba(0) | _ Ba(0)Bza(0) +/3z(0)
YR Ul L sty |~ “5) |

VP? + g+ C3Baa(0)

In particular, only for the parameter 1) does V,° not depend on time and is equal to

1
VP () = UL -2 + ¢f - o = lim V(0,T,2) — V(0,T,0).
2 T—o0

Proof. First, observe that ¢o®b + U,Ooé —Bo — (“O'C;%i:ﬁ i (“D'jﬁ_a’i 2)® is constant by Corollary 4.44
and Corollary 4.46. Hence, for every 7' > 0

1 (" o oocz (9030_@1(5))2 _ ® ooc(% (9080_@1 O))2
Tfo @ bs + U 5“‘50(3)—4&—(18) ds = ¢ bo + Uy 5+’80(O>_—4ﬁaa( )
and thus, by Corollary 4.58,
2 o0 2
o o €0 . (0 — Ba(0))
vy bo + Uy 9 + 50(0) 4,Baa(0)
(" © oocg (¢ — Ba(s))z .
~Jim ), [ e = S s

Using this together with the definition of V2*, we already have
V> _ 1Uoo 2 0 ~
Z(tx) = SV0 T+ o cx o+t (=)
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Finally, observe that

lim V(0,T,2) — V(0,T,0)
T—o0

T 2 T 2
lim Ut 2t ol i+ f [S%Tbs + UST%S + Bo(s) — —(905 Fuls)) ] ds

T—0 2

lim Ut il x

T—00 2

= V;Ioo(t,x).

Remark 4.62
Restricting to time-homogeneous parameter functions and 3., = 5y = 0 and furthermore plug-
ging the optimal control oj°(z) = At (t’x;gﬁa((tt))fﬂm(t)x into the eHJB we obtain that the pair

(V,;°(0,-),n) is the unique solution of

~ (1 - 0000

244 (0)
+ Baa(0)2? + B2(0)z + Baa(0) (

1
0xV,2(0,2) + 5 (o + Cox)” Oaa V(0. 2)

0:V,*(0,2) — B4(0) 0z V°(0,2) — Ba(0)
R0 ) RO T
(

= (bo + Boa}) (’)anOO(O, :C) + ; (Co + C[)w)2 &wvnw 0, a;)
a0 4 a0y~ LV 0T~ Ba0)” (4.25)
aa :1: T 4/6aa( ) .

Note that Equation (4.25) replicates the 1-dimensional version of the result in [BF92].

Remark 4.63

It is possible to weaken Assumption 4.36 a little bit. If the parameter functions are bounded by
a slowly growing function, then they would still be bounded on every interval [0,7] < [0, ©0),
enabling us to still apply the results from Theorem 4.10 and Section 4.3. However, then the
constants given in Proposition 4.33 and Theorem 4.34 depend on time since the growth of the
parameter functions is involved. Choosing the growth small enough still yields some exponential
decay allowing a polynomial growth for all parameters not yet restricted.
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5 Simulation of McKean Vlasov SDEs
with super linear growth

The aim of this chapter, which is based on [dRES18], is to develop a numerical scheme for sim-
ulating McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with drifts of super-linear
growth and Lipschitz diffusion coefficients (with linear growth). MV-SDEs differ from standard
SDEs by means of the presence of the law of the solution process in the coefficients:

dX; = b(t, Xy, ) dt + o(t, Xy, i) AW, Xo € LT (RY),

where ;X denotes the law of the process X at time ¢. Similar to standard SDEs, MV-SDEs have
been shown to have a unique strong solution in the super-linear growth in spatial parameter set-
ting, see [dRST19]. Of course, many mean-field models exhibit non-global Lipschitz growth, for
example mean-field models for neuronal activity (e.g. stochastic mean-field FitzHugh-Nagumo
models or the network of Hodgkin-Huxley neurons) [BFFT12], [BCC11], [BFT15] appearing
in biology or physics [DGG11], [GGM*18]. We refer to the review in [BFFT12] for further
motivation of the problem.

In general, closed form solutions for such equations are rare. Hence, to fully utilize MV-SDEs
as a modelling tool, one needs a reliable way in which to simulate them. It is well known
that for SDEs the explicit Euler scheme runs into difficulties in the super-linear growth setting,
see [HJK11], even though the SDE is known to have a unique strong solution. The original
solution to this problem was to consider an implicit (or backward) Euler scheme developed in
[HMSO02]. Although implicit schemes allowed one to tackle more general SDEs they are slower
especially in higher dimensions. The reason for this boils down to the fact that one is required
to solve a fixed point equation at every time-step, which can be computationally expensive. To
solve this problem an explicit scheme was then developed in [HJK12], a so-called Tamed Euler
scheme. Since then several authors have built on this result and developed algorithms to deal
with coefficients that grow super-linearly, see [CJM16], [Sab13], [FG16] for example. There
has been some work on improved Monte Carlo methods for MV-SDEs with super-linear drift, see
e.g. [dRST18].

An extra complication MV-SDEs offer over standard SDEs is the requirement to approximate
the law p at each time step. Although there are other techniques (see [GP18]), the most common
is the so-called interacting particle system

XN = bt XN, ) dt o (6 X0, ) W

where ui{’N(dx) = % Zj.v:l dyin(dr) and 0, ~ is the Dirac measure at point Xg’N, and
. t t

W' i = 1,...,N are independent Brownian motions. Under Lipschitz type conditions this

particle system is known to converge pathwise to the true solution of the MV-SDE (see [Szn91],

[MéE196]). However, this convergence (with corresponding rate) in a super-linear growth setting

has thus far not been considered in full generality.
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In this chapter we show that the above particle scheme converges (propagation of chaos) in
the super-linear growth case without coercivity/dissipativity. This result is crucial in showing
convergence of the numerical scheme to the particle system rather than to the original MV-SDE,
with corresponding rate.

Furthermore, we develop an explicit scheme and prove strong convergence to the MV-SDE,
inspired by the explicit scheme originally developed in [HJK12], [Sab13]. We also obtain the
classical 1/2 rate of convergence in the stepsize. Combining this with the propagation of chaos
result gives an overall convergence rate for the explicit scheme.

The final contribution is to show strong convergence of an implicit scheme. This turns out to be
a challenging problem since results involving implicit schemes rely on stopping time arguments.
This causes several issues when generalizing results to the MV-SDE setting and we have to make
stronger assumptions on the coefficients in this setting in order for the arguments to continue to
hold. On the other hand, we allow for random initial conditions and time dependent coefficients
that, to the best of our knowledge, have not been fully treated in the standard SDE setting. We
discuss these issues in Remark 5.7. We only focus on strong convergence of this scheme and not
the rate, mainly because the explicit scheme is shown to work under more general assumptions,
scales better (as our numerical testing shows) and such proof would lead to lengthy statements
without substantially enhancing the scope of applications. The question is left for future research
with a tentative methodology discussed in Remark 5.11 below.

Other works, which are close to ours, are the following: [BF17] develop an explicit Euler
scheme to deal with a specific MV-SDE type equation from a chemotaxis model; convergence
is given but under Lipschitz conditions and constant diffusion coefficient. [Mal03] studies an
implicit Euler scheme in order to approximate a specific equation and requires a constant diffu-
sion coefficient, symmetry and uniform convexity of the interaction potential. Lastly, in [GPV19]
Section 3.5 the authors are only able to justify their simulation for the Lipschitz case and the
results we propose would allow for more general potentials.

This chapter is structured in the following way: In Section 5.1 we introduce the notation and
our tamed particle scheme. In Section 5.2, we state our main result, namely, propagation of
chaos and convergence results for the two schemes. Following that, in Section 5.3 we provide
several numerical examples and highlight the particle corruption phenomena. This analysis im-
plies one cannot hope to build a reliable scheme based on a standard Euler scheme. We further
show the increased computational complexity associated with a MV-SDE makes the implicit
scheme a less viable option than the explicit (tamed) scheme. Finally, the proofs are given in
Section 5.4.

This chapter is based on [dRES18] in which most of my contribution is to the proof of the
convergence of explicit Euler scheme and the implementation.

5.1 Preliminaries

Throughout the chapter we work on a filtered probability space (2, F, (F;):>0, P) satisfying the
usual conditions, where F; is the augmented filtration of a standard multidimensional Brownian
motion W. We work with R¢, the d-dimensional Euclidean space of real numbers, and for
a=(ay, - ,aq) € R*and b = (by,--- ,by) € R? we denote by |a|> = 3~ | a? the usual Euclidean
distance on R? and by (a,b) = Zf;l a;b; the usual scalar product. For matrices V € RF*¢ we
define [V| = sup,ere, u<1 [Vul-

We consider some finite terminal time 7' < oo and use the following notation for spaces,
which are standard in the McKean-Vlasov literature (see [Carl6]): We define SP for p > 1,
as the space of R?-valued, F.-adapted processes Z, that satisfy E[supy<;<r |Z(t)|P]V? < 0.
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Similarly, L}(R?), defines the space of R?valued, F;-measurable random variables X, that
satisfy E[| X|P]'/? < 0.

Given the measurable space (R, B(R?)), we denote by P(IR?) the set of probability measures
on this space, and for p > 1 write € P,(RY) if u € P(R?) and for some z € R?, §;. |z —
y[Pu(dy) < oo. We then have the following metric on the space P,(R?) (Wasserstein metric) for
1, v € Pp(RY) (see [Vil08], [dRST19] among others),

1

WP (1) = i?rf {(J]Rd n |z — y|p7r(d:1c,dy)) " meP(R? x R with marginals ; and V}.

The most common choice in the McKean-Vlasov setting is, p = 2, and is what we shall use
throughout most of this paper. As W@ is a metric (see [Vil08] Chapter 6), we have for

[11, 12, 13 € Pa(RY)
w® (pe1, p13) < W (1, p2) + w®@ (p2, p13)-

As in [Carl6], we introduce the empirical measure constructed from i.i.d. samples of some

process X by uX’N =% Z] 1 X] Another standard result for the Wasserstein metric for two

such empirical measures pg ", MSYN is that

WO (N Ny < (

]zj: >1/2.

= \

5.1.1 McKean-Vlasov stochastic differential equations

Let W be an I[-dimensional Brownian motion and take the progressively measurable maps b :
[0,T] x R? x Po(RY) — R%and o : [0, 7] x R? x Po(R?%) — R¥*!, MV-SDE:s are typically written
in the form,

dX; = b(t, X, X)) At + o (t, Xp, 1" ) AWy, Xo € LH(RY), (5.1)

where 1;¥ denotes the law of the process X at time t, i.e. X = P o X; '. We make the following
assumption on the coefficients throughout.

Assumption 5.1
Assume that o is Lipschitz in the sense that there exists L, > 0 such that for all t € [0,T] and all
z, 2’ € R and Yy, i/ € Po(R?) we have that

o (t,@, 1) — ot 2, 1) < Lo(lz — 2| + W, 1)),
and let b satisfy

1. One-sided Lipschitz in « and Lipschitz in law: there exist Ly, L > 0 such that for all t € [0,T7],
all x,2' € R and dll p, ji' € Po(R?) we have that

<$*$/7b(t7x7 ) ( )> Lb|x*$|2
and  [b(t, @, p) = b(t, @, 1) < LW (1),

2. Locally Lipschitz with polynomial growth in x: there exist L. > 0 and q € IN with ¢ > 1 such
that for all t € [0,T], Vi € P2(R?) and dll z, «' € R?

[b(t, 2, 1) = (¢, ', p)| < L1+ ||? + |22 — 2|.
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Assumption 5.2
Assume that b and o are 1/2-Hélder continuous in time, uniformly in z and p.

Using the one-sided Lipschitz drift, a particularized version of Theorem 3.3 in [dRST19] pro-
vides a result for existence and uniqueness. Assumption 5.2 is not needed here.

Theorem 5.3 ([dRST19])

Suppose that b and o satisfy Assumption 5.1 and 5.2. Further, assume for some m > 2,
Xo € LT (R?). Then there exists a unique solution X € S™([0,T]) to the MV-SDE (5.1). For
some positive constant C we have

IE[ sup |Xt|m] < C(E[|Xo™] + 1) eCT,
te[0,T]

If the law ;X is known beforehand, then the MV-SDE reduces to a “standard” SDE with added
time-dependency. Typically this is not the case and usually the MV-SDE is approximated by a
particle system.

The interacting particle system approximation. We approximate (5.1) (driven by the
Brownian motion W), using an N-dimensional system of interacting particles. Leti = 1,..., N
and consider N particles X*" satisfying the SDE with i.i.d. Xé’N = X} (the initial condition is
random, but independent of other particles)

axiN = b(t, XN N ) dt + a(t, XN N ) awg, (5.2)
X7N O 1 N s : 3 ]7N
where ;7 (dz) 1= § 2,1, 6ys;v(dz) and 6 ;v is the Dirac measure at point X;"", and the
t ) t
independent Brownian motions W* i = 1,..., N (also independent of the BM W appearing in

(5.1); with a slight abuse of notation to avoid re-defining the probability space’s Filtration).

Propagation of chaos. In order to show that the particle approximation is of use, one shows
a pathwise propagation of chaos result. Although different types exist we are interested in the
strong error. Hence a pathwise convergence result is needed and we consider the system of non
interacting particles

AX7 = b(t, Xi, pX Y dt + o(t, XI, X ) dWE, X = X1, tel[0,T], (5.3)

which are of course just MV-SDEs and since the X's are independent, y;* P = piX for all i. Under
global Lipschitz conditions, one can then prove the following convergence result (see Theorem
1.10 in [Car16] for example)

lim sup E[ sup |XZ’N—XZ'|2] =0.

No® <N 0<t<T
Several propagation of chaos results have been shown over the years under varying conditions,
see [Szn91], [Mé196] and [Lac18] among others. All SDEs appearing below have initial condi-
tion X} and we work on the interval [0, T].

Standard Euler scheme particle system. In general one cannot simulate (5.2) directly and
therefore turns to a numerical scheme such as Euler. We partition the time interval [0, 7] into
M steps of size h := T'/M, we then define t;, := kh and recursively define the particle system
for ke {0,...,M — 1} as,

$oNM _ giNM n b(tk7Xi,N,M7ﬂi7N)h " O_(tijvi,N,Mvﬂi,N> AWtik’

lkt1 173 173 123
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where ﬂfi’N(dx) = %Zjvzl dgina(de), AW} = W} = — W and XeNM .~ Xi. Under
tk

Lipschitz regularity it is well known that this scheme converges, see [BT97] or [KHO97] (here
a weak rate of convergence is shown under an additional regularity assumption).

Euler particle system for the super-linear case: Explicit and Implicit. However, as dis-
cussed in works such as [HJK11], [HJK12], [Sab13] one does not have convergence of the
Euler scheme when we move away from the global Lipschitz setting. The goal of this chapter
is to therefore construct a suitable numerical scheme which converges. Inspired by the above
works we consider a so-called tamed Euler scheme. With the notation above we consider the
following scheme

b(tk’XzNM IuXN)

i

X—i,N,M _ X—iNM
_ -i,N,M _X,N
@ b<tk7XtZk Jutk )‘

b b
tr4+1 tg +

h+ a(tk,XzNM i N)AWtk, (5.4)
1+ M

where fi;, " (dz) = £ 20,0 gz (dz) and ace (0,1 /2] with X;VM = xi.

Of course, explicit schemes are not the only method one can deploy to solve this problem, we
also consider the following implicit scheme

tet1 tk+1 173

xiNM _XzNM_’_b<tk7 iNM ﬂXNM>h+U(tk7XzNM MXNM>AWtk’ (5.5)

where ji;, "M (dz) == & SV 6 ¢y (dz) and XV = X
2z

5.2 Main Results

We state our main results and assumption here, the proofs are postponed to Section 5.4. Recall
that we want to associate a particle system to the MV-SDE and show its convergence, so-called
propagation of chaos. We have the following result that holds under weaker assumptions than
those in Theorem 5.6.

Proposition 5.4 (Propagation of chaos)
Let the assumption in Theorem 5.3 hold for m > 4. Let X* be the solution to (5.3), and X*" be
the solution to (5.2).

Then we have the following convergence result.

N-1/2 ifd <4,
sup E[ sup 1Xi — XNl < C S N~V21og(N) ifd =4,
1SN 0<t<T N-2/d ifd> 4

This result shows the particle scheme will converge to the MV-SDE with a given rate. There-
fore, to show convergence between our numerical scheme and the MV-SDE, we only need to
show that the “true” particle scheme and numerical version of the particle scheme converge.
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Explicit scheme

We first introduce the continuous time version of the explicit scheme (5.4). Denote by
k(t) := sup{s € {0,h,2h,...,Mh} : s < t} forallt € [0,T], bps(t,z,v) := Hz\;ﬁta—m with
ae (0,1/2] forallt € [0,T], x € RY, v e Py(RY)

XZ”N’M = X{+ L b (/{(s),X:(Jz)’M,uf(’g’M) ds

t . . 1 Y
N L - (K(S)’X;,(];f),M’Mf(,g,M> AWi, VM (g — = Z Oygnar(dz). (5.6
=1

Note that |by(t, z, v)| < min (M®, [b(t,z,v)|) and that X" = XM forall k € {0,1,..., M}

and hence X%V is a continuous version of X*V:* from (5.4). We then obtain the following
convergence result.

Proposition 5.5
Let the assumptions in Theorem 5.6 (see below) hold. Then it holds that
sup E[ sup | XN — xPVM 121 < O,

1<i<N  0<t<T

This then leads to our main explicit scheme convergence result.

Theorem 5.6 (Strong Convergence of Explicit)
Let Assumption 5.1 and 5.2 hold, further let Xy € L™(RY) for m = 4(1 + q) (note ¢ > 1) and set
o = 1/2. Let X' be the solution to (5.3), and X" be that for (5.6).

Then we obtain the following convergence result

N-YV241p ifd < 4,
sup E[ sup |X; — XZ’N’M|2] <C{ N Y2log(N)+h ifd=4,
I<i<N - 0<t<T N-2d |, ifd> 4.
Proof of Theorem 5.6. Theorem 5.6 is a consequence of Propositions 5.4 and 5.5. [

Remark 5.7 (Issues using stopping times) .
The technique of using the stopping time 7}, := inf{t > 0: | X ’N’M| > R} to control the particles
is suboptimal here and several problems appear by introducing them. Namely, one can only
consider stopping times that stop one particle since otherwise the convergence speed would
decrease with a higher number of particles. However, applying a stopping time to a single
particle does not allow us to fully bound the coefficients and moreover destroys the result of all
particles being identically distributed.

The stopping time arguments used for the implicit scheme below require stronger assumptions
in order to make the theory hold.

Implicit scheme

As alternative to the explicit scheme we now discuss the implicit or backward Euler scheme.
That being said, the implicit scheme has some well documented disadvantages, namely it is
expensive compared to its explicit counterpart, we discuss this issue further in Section 5.3. One
can consult, [MS13] for example on the implicit scheme (and extensions) for standard SDEs.
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Standard implicit scheme convergence results rely on the so called monotone growth condi-
tion, we therefore proceed with the following assumption.

Assumption 5.8
(H1). There exists a constant C such that, for all ;1 € P(R?),

60,0, )| + 00,0, )| < C.

(H2). The drift and diffusion coefficient satisfy the stronger bound in measure condition, for all
te[0,7T], all z € R and all p, ji' € Po(RY)

b(t, @, 1) = b(t,x, )| + |o(t, 2, p) = o (t, 2, 1) < LW (u, 1),

where W)(.,.) is the Wasserstein-1 distance.

Although the main convergence theorem requires both H1 and H2, we only use H2 at the end
of the proof of convergence. We present our auxiliary results requiring only H1 as we believe
them to be of general independent interest.

We now state the strong convergence of the implicit scheme (5.5) to (5.2).

Proposition 5.9

Let Assumption 5.1, 5.2 and 5.8 hold. Fix a timestep h* < 1/max(Ly,23) and assume that
Xo € LMaHD(RY). Let X»N be the solution to (5.2), and XN be that for (5.5). Then, for any h
and M with T = hM and s € [1,2)

sup lim B[| X5 — XLNM s = o
1<i<N h—0

Theorem 5.10 (Strong Convergence of Implicit Scheme) 3
Let the assumption in Proposition 5.9 hold and let X" be the solution to (5.3), and X*™™ be that
for (5.5). Then, for any h and M with T'= hM and s € [1,2) one has

lim sup lim BE[| X% — X;N’MP] =0.

N—0 j<j<N h—0

Proof. The proof of this result follows by combing Proposition 5.4 and 5.9 and noting that the
assertion in Proposition 5.9 is independent of V. [ |

Remark 5.11 (On the convergence rate of the implicit scheme)

Theorem 5.10 shows the convergence of the implicit scheme but without establishing a rate.
Methodologically speaking, the approach proposed in [HMS02] seems applicable here, where
the convergence rate of the implicit scheme would be shown by defining an intermediate process
and considering the convergence of the implicit scheme to the intermediate process and then
that of the intermediate process to the original equation, see [HMS02]. We suspect that such
proof is not straightforward with several extra constraints appearing due to the presence of
the law. As it stands, the convergence of our implicit scheme requires stronger assumptions
(see Assumption 5.8) than the explicit one so we leave establishing the rate for future. Our
numerical experiments hint that the convergence rate should be the same as the explicit, which
is consistent with the case of standard SDE:s.
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5.3 Numerical testing and Examples

We illustrate our results with numerical examples. We highlight the issues of using the standard
Euler scheme in this setting and also compare the computational time and complexity of the
explicit and implicit scheme. We juxtapose our findings to those in [BFFT12].

5.3.1 Particle Corruption

It is well known that the Euler scheme fails (diverges) when one moves outside the realm of
linear growing coefficients, see [HJK11]. We claim that this divergence is worse in the setting
of MV-SDEs and associated particle system due to an effect we refer to as particle corruption.

The basic idea is that one particle becomes influential on all other particles, thus we are no
longer in the setting of “weakly interacting”. This is of course not a problem for standard SDE
simulation. We show two aspects of particle corruption in a simple example. Firstly, one particle
can cause the whole system to crash. Secondly and perhaps more profoundly, the more particles
one has the more likely this occurs. This is of course a devastating issue when simulating
a MV-SDE since accurately approximating the measure depends on having a large number of
interacting particles.

To show this example we take a classical non-globally Lipschitz SDE, the stochastic Ginzburg
Landau equation (see [Tie13]) and add a simple mean field term to it,

2
dX, — (%Xt X34 c]E[Xt]> dt +oX, dW;, Xo = =

This MV-SDE clearly satisfies the assumption to have a unique strong solution in S? for all p > 1,
hence in theory one could calculate ¢(¢) := E[X;] and have a standard SDE with one-sided
Lipschitz drift. The analysis carried out in [HJK11] then implies that the Euler scheme diverges
here.

Showing particle corruption exists. For our example we simulate N = 5000 particles with a
time step h = 0.05, 7' = 2 and X = 1, we also take 0 = 3/2 and ¢ = 1/2. We rerun this example
until we observed a blow up and plotted the particle paths in Figure 5.1.

Realisations in the particle system

Value of each particle

6 —Other Particles H
----- Corrupt Particle §

0 0.2 0.4 0.6 0.8 1 1.2

Time
Figure 5.1: Showing the realizations of the particles in the system. We note that the particle
given by the dashed line is starting to oscillate and is taking larger values than its
surrounding particles.

Figure 5.1 shows the first part of the divergence, namely all particles are reasonably well
behaved until one starts to oscillate rapidly. We have stopped plotting before the time boundary
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since this particle diverges shortly after this. We refer to this particle as the corrupt particle and it
is fairly straightforward to see it will diverge. However, due to the interaction this single particle
influences all the remaining particles and the whole system diverges shortly after.

Remark 5.12 (Why is particle corruption so pronounced?)
The reason this effect is so dramatic is a simple consequence of the mean-field interaction.
Typically, one observes divergence of the Euler scheme via a handful of Monte Carlo simulations
that return extremely large (or infinite) values. When one then looks to calculate the expected
value of the SDEs at the terminal time for example, these few events completely dominate the
other results. This is summed up in a statement of [HJK11], where an exponentially small
probability event has a double exponential impact.

The difference in the MV-SDE (weakly interacting particle) case is that the expectation ap-
pears inside the simulation, hence a divergence of a single particle influences multiple particles
simultaneously during the simulation and not just at the final time.

Convergence of Euler and propagation of chaos is impossible. The above shows that
one particle diverging can cause the whole system to diverge. One may argue that using more
particles would reduce the dependency between them and hence influence the system less. In
fact as we shall see the opposite is true, the more particles the more likely a divergence is. To
test this we use the same example as above but use N = [1000, 5000, 10000, 20000] particles
and rerun each case 1000 times and record the total number of times we observe a divergence
over the ensemble.

Number of particles | 1000 | 5000 | 10000 | 20000
Number of blow ups 3 32 43 108

Table 5.1: Number of divergences recorded at each particle level out of 1000 simulations.

The results in Table 5.1 show conclusively that the more particles the more likely a divergence
is to occur. This is a real problem in this setting since in order to minimize the propagation
of chaos error one should take N as large as possible, but doing so makes the Euler scheme
approximation (likelier to) diverge.

Remark 5.13 (Euler cannot work)

We have shown that naively applying the standard Euler scheme in the MV-SDE setting with
non globally Lipschitz coefficient has issues. However, for standard SDEs there are some simple
fixes one can apply and still obtain convergence e.g. removing paths that leave some ball as
considered in [MTO05]. Methods like this cannot work here since, we either take the ball “small”
and therefore our approximation to the law is poor. Or we take a large ball, but then as the
particles head towards the boundary they can “drag” other particles with them which again
makes the system unstable.

The dependence on the measure (other particles) implies that the cruder approximation tech-
niques cannot yield the strong convergence results we obtain with the more sophisticated tech-
niques presented in this chapter. In [BFFT12] the authors have a non-globally Lipschitz MV-SDE
and simulate using standard Euler scheme. Since no divergence was observed in their simula-
tions they conjectured that the Euler scheme works in their setting. However, they used a “small”
diffusion coefficient (o € [0,0.5]) and small particle number (in the order of hundreds), which
makes divergence unlikely to be observed (but not impossible) and yields poorer approximation
results. Again, our methods provide certainty in terms of convergence (and convergence rate).
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Phase transition and particle systems within a bistable potential. We have applied our
algorithms to the problem highlighted in [GPV19] (see their equation (2.1) and the setup of
their Section 3.5) and shortly report that we recover the same findings as above to their problem
when dealing with the bistable potential V; () = n*/4 — n?/2. Divergence of the explicit Euler
scheme in [GPV19, Section 3.5] when using V, (1) while both schemes we propose behave as
we have described. We do not provide the numerical experiments as it would be a repetition of
the results above.

5.3.2 Timing of Implicit vs Explicit: Size of cloud and spatial dimension

It is well documented that implicit schemes are slower than explicit ones, mainly because one
must solve a fixed point equation at each step. This operation is not “cheap” and moreover
scales d? in dimension, see [HJK12]. Of course this analysis is carried out for standard SDEs.
What we wish to consider is how the particle system affects the timing of both methods.

We consider the same example as previous (but take 7" = 1), we then consider a set of dimen-
sions from 1 to 200 and number of particles from 100 to 20000. Plotting the time taken for both
methods is given in Figure 5.2.

Firstly, we observe that the explicit scheme is two to three orders of magnitude faster than the
implicit scheme. At the highest dimensional and particle number this difference is very apparent
with the tamed scheme taking approximately 1 minute and the implicit 10 hours. Another note
to make is the scaling of each method: both methods scale similarly with particle number, but
the tamed scheme scales linearly with dimension; this is superior to the d? scaling of the implicit
scheme.

Time Scaling of the Explicit Method Time Scaling of the Implicit Method

200 200
2 150 2
100

100 ’ 15
05 x10* 0 o 05 x10*

I 0 —
Dimension Number of Particles Dimension Number of Particles

(a) Explicit Scheme (b) Implicit Scheme
Figure 5.2: Showing how the time (in seconds) of the explicit scheme (left; timescale ~ 60
seconds) and implicit scheme (right; timescale ~ 10* seconds) changes with particles
and dimension.

Even for the case d = 1, N = 20000 the tamed scheme takes approximately 7 seconds while
the implicit scheme takes approximately 23 minutes. For many practical applications N = 20000
is not enough for an acceptable level of accuracy, with this in mind and the dimension scaling,
this makes the implicit scheme a very expensive method in this setting.
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5.3.3 Explicit Vs Implicit Convergence: the Neuron Network Model

We compare the convergence of the explicit and the implicit scheme. To this end we use the
system in [BFFT12] where the authors develop a non globally Lipschitz MV-SDE to model
neuron activity. In our notation their system with b : [0,7] x R? x Po(R3) — R3,
o :[0,T] x R? x Po(R3) — R3*3 reads for x = (21,72, 23), 2 = (21, 22, 23) € R? as

x1— (21)*/3 —wa + 1 — (s J (21 — View) 23 dpu(2)

b(t,z, p) = C(:L‘l(+a)—b$2)
Tmaz(l—2
Qr 1+exp(f)\(30173VT)) — Q4T3
Oct 0 —(psoy(x1 = Vie) z3dpu(2)
o(t,x,p) = 0 0 0
0 0'32(1') 0
with
032(2) 1= Lzze(0,1)}4 [ Cr Dol ~23) agrs Texp(—A/(1 — (223 — 1)%)),
3= 1+ exp(—=A(z1 — V1))
T = 2 is chosen as the final time and
Vo oy, O 0
Xo ~ N wo s 0 Owg 0 y
Yo 0 0 Ty

where the parameters have the values

Ww=0 oy=04 a=07 b=08 ¢=008 I=05 o0cu=05
wog =09 0yy=04 Vigy=1 a,=1 ag=1 Thez=1 A=0.2
Y =03 o0y =005 J=1 0;,=02 Vp=2 TI=01 A=0.5

As the true solution is unknown to compare the convergence rates, we use as proxy the output
of the explicit scheme with 223 steps. Since the explicit scheme has convergence rate v/h we
know that 2'6 steps and below yields one order of magnitude larger errors. The simulation for
1000 particles and average root mean square error of each particle is given in Figure 5.3.

One can observe that although initially the implicit scheme has a better rate of convergence, it
levels off to yield the expected 1/2 rate!. Making the explicit scheme the more computationally
efficient. Of course our “true” was calculated from the explicit scheme, hence we additionally
carried out a similar test with a “true” from the implicit, and the results were almost identical.

Remark 5.14 (Small Diffusion Setting)

Above, we have taken o.,; = 0.5, this goes against the example in [BFFT12] where o.,; = 0. As
it turns out, in the case o.,; = 0, the implicit scheme has a convergence rate close to 1 (up to an
error of around 10~%), while the explicit scheme maintains the standard 1/2 rate. It is our belief
that this is due to the fact that when o.,; = 0 the diffusion coefficient makes little difference,
hence both scheme revert close to their deterministic convergence rate. The explicit scheme of
course still rate of order 1/2, while the implicit is order 1. It may therefore be that in the setting
of small diffusion terms the implicit can yield superior results, of course though this is a special
case and is not true in general.

!One can note that the x-axis is written in terms of runtime rather than number of time-steps. As there is a one to
one correspondence between the time-steps and the time taken we can still determine the rate. However, this scale
allows one to compare both the rate and the time-taken to achieve a given error.
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100 T T T
—©— Explicit Scheme
% Implicit Scheme
> AN e 1/(44 sqrt(.))
AN ———-1/(17 sqrt(.))

102 F

103 F

Root mean square error of a particle

1 1

10 :
10 102 10° 102 10
Runtime in seconds
Figure 5.3: Root mean square error of the explicit and implicit (see Footnote 1). The number
of steps of the explicit scheme are M e {22,23,...,2!6} and of the implicit scheme
are M e {22,23 ... 2!}, We used 1000 particles and the true is calculated from the

explicit with 2% steps. Both schemes converge with rate 1/2.

Obtaining the Density

McKean-Viasov Density

Density

) -0.5
x1 X2

Figure 5.4: Approximate density of the first and second component of the MV-SDE at time
T = 1.2. We used 10000 particles, 22° steps and a bandwidth of 0.15 in the ker-
nel smoothing.

In some applications as well as the value of the MV-SDE at the terminal time, one may also be
interested in the density (law). In [BFFT12, Section 4] the authors compare density estimation
using both the Fokker-Plank equation and the histogram from the particle system. The approach
using PDEs becomes computationally expensive here if one considers multiple populations of
MV-SDE and hence the authors take a simple case (see [BFFT12, Section 4.3]). There are of
course other drawbacks such as dimension scaling which often make stochastic techniques more
favorable in this setting. Moreover, using the PDE one will only obtain the density. If one is
further interested in calculating a “payoft” i.e. E[G(Xr)] for some function G, then we would
require an additional integral approximation or Metropolis Hastings style sampling scheme to
calculate this expectation. While [BFFT12] apply a basic histogram approach when using MV-
SDEs, this does not yield particularly nice results, namely, the resultant density is not a smooth
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surface. There are however, many statistical techniques one can use to improve this, see [Keell,
Chapter 18.4] for further results and discussion. Taking the example in [BFFT12] (with o, = 0)
and applying MATLAB’s ksdensity function we obtain Figure 5.4.

One can observe the similarity between our result using SDEs and the one obtained in
[BFFT12, pg 31] using the (expensive) PDE approach.

Conclusions and future work

We have shown how one can apply the techniques from SDEs to the MV-SDE setting and some
of its pitfalls and challenges that arise. The numerical testing carried out shows that the explicit
scheme yields superior results (over the implicit scheme) in general.

Although we have been able to obtain convergence for the implicit scheme it is under stronger
assumptions than the explicit scheme (the implicit scheme works very well in Section 5.3.3).
The reason for these assumptions is that the implicit scheme is more challenging to bound than
the explicit. The standard approach around this problem is to use stopping time arguments.
However, as described in Remark 5.7, stopping times are harder to handle in the MV-SDE frame-
work. Caution is needed to account for the extra technicalities that arise.

It is our belief that Assumption 5.8, although sufficient, is not necessary to guarantee the
implicit scheme converges. As research is carried out into stopping times and MV-SDEs, future
theoretical developments in this direction may allow this assumption to be weakened. We also
leave open a proof for the convergence rate of the implicit scheme. Showing such a convergence
rate in our framework is clearly possible but adds little in scope given the gains of the explicit
over the implicit scheme. We leave the question open until a time a more resourceful implicit
scheme can be designed.

Another interesting area which we have not discussed is sign preservation and the impact it
has on the law. For example a MV-SDE may be known to be positive. However, if the numerical
scheme takes the solution into the negative region how does the law dependence influence the
remaining particles? One can consider the special case of L, < 0 in Assumption 5.1, even
though the MV-SDE could have a nonnegative solution, the numerical scheme may not preserve
this feature.

5.4 Proof of Main Results

We shall use C to denote a constant that can changes from line to line, but only depends on
known quantities, T, d, the one-sided Lipschitz coefficients etc.

5.4.1 Propagation of Chaos

Let us show the propagation of chaos result.

Proposition 5.4. Let us fix 1 < ¢ < N, we then approach the proof in the usual way for dealing
with one-sided Lipschitz coefficients, namely we apply It6’s formula to the difference (note the
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X{ cancel out),

Xi - XV f X — XN bs, X1, ug) — b(s, XV, pX V) ds
t
n f WX — XN (0(5, XF, ) — (s, XN, 5Ny dWy
0

Lt
+ Zf |0a(s, X2 1) — oa(s, XEN, N2 ds, (5.7)
— 0

where o, is the ath column of matrix o, hence o, is a d-dimensional vector. Considering the first
integral in (5.7),
<X; - Xsi7N7 b(S, Xé’ MS) - b(S, Xé’Nv Mf’N)>

= <X5Z; - X;’Nv b(sv Xsia MS) - b(sv Xsi’N7 :us)> + <X; - Xé’Nv b(57 Xsi7N7 :U’S) - b('Sv X;’Nv Mf’N)>‘

Applying the one-sided Lipschitz property in space and W in measure along with Cauchy-
Schwarz we obtain,

<X; - X;’Nv b(S, X;, :us) - b(S, X;:’Na Mi(’N)> < C|X; - X;’N|2 + C‘X; - X;’N|W(2) (:us’ :uf’N)
As in [Carl6], we introduce the empirical measure constructed from i.i.d. samples of the true
solution uév = % Z;V: 10y As W@ is a metric (see [Vil08, Chapter 6]), we have
W (g, 1N ) < W (g, p) + Wl 5.

Since Y, ,uf’N are empirical measures a standard result for the Wasserstein metric is

N

1 : . 1/2
WO, 1Y) < (5 X 1XE - XIVP2)

j=1
We leave the other W () term for the moment and consider the diffusion coefficient in the time
integral. Since o is globally Lipschitz and W@ for each a (by definition o, = oe,, with ¢, the
basis vector, global Lipschitz follows from our norm), we get

|Ua(37Xsi7Ns) - O'a(S,X;’N,uf’N)P
C(‘Ua(&X;Ns) - Ua(S7X;’N7NS)‘2 + |‘7a(57X;’Na ts) — a(s, X;’Na Mf’N)lz)
E =X W )

<O(1Xi - X2V + Z X7 = XN+ WO (g, 1)),
j 1
One can note this is independent of a. The final term to bound is the stochastic integral term.
To do this we apply the supremum and expectation opterator to (5.7)

B| sup |x] - XN
te[0,T]

SCE supf|XZ X’le-l-]Xl XZN’W (Ms7M§7N)d3]
te[0,T]

+E[ sup f XS XV (o5, X ) — o (s, X0V, ) aw |
0

te[0,T]
N . .
+ CIE| sup f X7 — XN2 4 2 X3 = XIVP WO, u )2 ds|. 58)
te OT j=1
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For the stochastic integral,

t
E sup | 2060 X0V (005, Xh ) - o5, XV, V) AW
te[0,77 Jo

<[ sup | f 2XE = XN (s, X1, 1) — (s, X0V, V) Wy
teOT

]
T ' ) . . 1/2
<ce[( | (32 s, X ) — oo XEN X)) 2 - x5 as) |
a=1

. . T A A 1/2

< B[ sup |X;—XZ’N|20f D 1ol X 1) = oalis, XN, NP ds) .
tE[OvT] 0 a=1

where we have applied Burkholder-Davis-Gundy to remove the stochastic integral. Using

Young’s inequality ab < a?/2 + b?/2 we can bound this term by

1 . .
IE)[§ sup | X7 — X2 4 f Z loa(s, X2 ps) — oa(s, XEN, u5N)|2 ds].
te[0,T] =1

Substituting into (5.8) yields,

]E[ sup | X} —XZ’N|2]
te[0,T7]

t
< CE[ sup [ X~ X0V 4 [X] - X0V W) Y s
te0,7] Jo

+ E|:§ SES%] |)(Z - ,LN j Z |Ja S Xsnus) - O-a(5>X;7N7:u§7N)|2dS]
te

t

1 . .

+CE[ sup [ X1 XV 4 S 1 = XIV 2 WO 2 s).
te[0,77] JO N j=1

Taking the 1 SUPye(0,7] | X} — XZ’N|2 to the other side, noting that the supremum value over the

integrals is ¢ = T and using the bound for the difference in o we obtain,

T
<CE [ j X — XEN2 | X - XEN W @) (g, ) ds]
0

B| sup |X; - XN
te[0,T7]

T N
. A 1 , ,
| X Y X - I W, ) ds] .
0 i
7j=1

+ CE

To deal with the summation term, observe that since all j are identically distributed,

B[y 57Xz - X | = Elixi - XV,
7j=1
Therefore, applying Young’s inequality to | X! — X Z"JV]W(Q) (us, 1Y) and taking the supremum
over i,

T A
<C sup E[|X! - X;’N|2] + EW® (u, 1 )?] ds
0 1<i<N

sup | X — XN
te[0,T]

sup E

1<i<N

CJ 2 (s, 1) ]ds,
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Simulation of MV-SDEs with super linear growth

where the final step follows from Gronwall’s inequality. At this point, one could conclude a
pathwise propagation of chaos result, see [Carl6, Lemma 1.9], however, here we are interested
in the rate of convergence. We use the improved version [CD17, Theorem 5.8] of the classical
convergence result [RR98, Chapter 10.2]. Provided X! e L”(R?) for any p > 4, which follows
from [dRST19, Theorem 3.3] then for any s,

N-12 if d < 4,
E [w@)(us,ugv)ﬂ < C{N"V2log(N) ifd =4,
N—2/d if d > 4.
Using the result in Theorem 5.3 with our assumption then completes the proof. [

5.4.2 Proof of Explicit Convergence

We prove Proposition 5.5 by establishing first a few auxiliary results. To keep expressions com-
pact we introduce

AXONM .= XN xONM - for s € [0,T).

Further, we will use throughout and without mentioning the following result

N
1 A : .
Bl 2 [AXNMP | = B[ [AXEM| = sup B [[AXINM,
N 1<j<N
which holds because for every i the RVs are identically distributed.

Lemma 5.15
Suppose Assumption 5.1 and 5.2 are fulfilled, then there exists a constant C which is independent
of N and M such that

= \

R (e R (R

N
2’XJNM2>

and

4 2 . N
‘U (LXtMN,M“utXNMN <C(lJrLthz,N,M Z‘XJNM )

Proof. First, observe for z,z’ € R? and ;. € P(R?) that

(w—a by (t,z, 1) — bar (8,27, )
bl b )
B 1+ M=2b(t,z, p)|

_ (=2 bt x, p) — b(t, 2" 1)
h 1+ M=2b(t,z, p)|

b(ﬂl'/,ﬂ)(\b(t’iﬂa#)\ B ‘b(tw%'/aﬂ))‘ >

= T8+ [b(t, 2 m)]) (M + 165, )

bt 2’ )2 = [b(t, 2, )| [bt, ', )] |
[b(t, 2, )bt o, 1)

Assuming without loss of generality (otherwise just switch = and 2’) that |b(¢, z, p)| = |b(¢, 2/, u)]
we get by Assumption 5.1

+(z -

+ |z -2 +

(o —a by (tym, ) —bar(t, 2, 1)y < (Ly + 1)z — x/\Q + 1.
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Similarily we obtain for all z € R? and p, 1/ € P(R?)
|bM(t7 Zz, /J“) - bM(tu L, MI)‘ < |b(t7 Zz, H) - b<t7 €z, :U’/)| +1< LW(Q) (H7 :U‘,) + 1.
Using this, we have

<th‘,N,M7 by (t, XZ‘,N,M’ MtX,N,M>>
= (XM 0, by (t, XM M;X»N’M) — bar (£,0,60)) + <XNM bar (2,0, 60))

. . 2 .
< XN 2 IV L @) (M 50) 1 XYM 4 oy (1,0, d)

N
iNMp2 L 5,N,M 2
<C(1+|Xt ]+NZ\Xt \)
j=1
by the 1/2-Hélder-continuity in Assumption 5.2. Again with Assumption 5.1 and 5.2 we get

. 2 . 2
‘0 (t, XZ’N’M,,utX’N’M)’ < ’a (t,XZ’N’M,uf(’N’M) — o (t,0, 50)’ + |U (¢,0,60) |2
4 2
<L, <|XZ’N’M|2 +Ww® (MgﬁN:M,(so) ) + o (£,0,60) |

N
, 1 ,
<C (1 TR yxngvM\2> :
j=1

Lemma 5.16
Suppose Assumption 5.1 and 5.2 are fulfilled and Xy € L*(R?), then there exists a constant C
which is independent of N and M such that

sup sup sup I [\XZ’N’MF] <C.

M=11<i<N 0<t<T
Proof. Applying It&’s formula and restructuring the terms gives
: 2
5]

. 2
oy (%(S)’Xz,N,M’MX,N,MN ds

¢ l
i|2 i,N,M i.N.M  X,N,M
— |X0| + Jo 2<XK(S) b (/{(s),Xﬁ(s) My >> + Z (o) ()

a=1

| 200N (o), XM ) W
0

+f 2<X;’N’M — X:g)’M,bM (/@(s),X;’g)’M,uf(’g’M)>ds.
0
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Simulation of MV-SDEs with super linear growth

We start with the expectations of the last term (using |s — k(s)|

D
i\N,M  X,N,M
‘IE J<J bM X() s Hoe(ry )dr

<T/M and a € (0,1/2])

*L<s>f’< ) 6 (0 3 ]

w(r) > Fr(r)

M-1

k=0

E[fbM( (r), XZ(];[)M,uf(gM)errf (ﬁ ) X b

J;-c(s)

k

t

<E f‘bM XONM XN M
. COR RN

<tTM2a_1

< tT.

by

(s)

Z f:kﬂ IL{s<1t}IE[<bM< X’ NM XNM)
k

( (r) x o.M X.N.M

w(r) > Fr(r)

Putting this together and using Lemma 5.15 we obtain

' A t N .
Bl < B o (] | e g B as))
j=1

E[|1X0°] + 0(1 + f

0 0<u<s

which furthermore yields

t
sup

J=

1 ; 2
B[ XM+ 5 2 XN ds).

1

NM) dWl

)| ar ds]

]-"tk]>] ds

t
. 2 i 2
sup sup B [|XpV | < 0 <1 + B Xo/’] +J sup sup | [ XM ]ds) <,
1<i<N O<u<t 0 1<i<N O<u<s

and hence by Gronwall’s lemma

sup sup [E

1<i<N O<u<t

|[xi¥)| < ¢

where C' is a constant which is independent of N and M.

Lemma 5.17

If Assumption 5.1 and 5.2 are fulfilled and X, € L?(R?), then for all p € (0,2] we have

sup sup I HXZ’N’M - X;’(];;’M’ ] < CM~P2

1<i<N 0<t<T

and

N, M N,M
sup sup E HXZ —X;(t)
1<i<N 0<t<T

‘bM (H(O,Xz’,N,M“uX,N,M

K(t) K(t)

)]<c

where C'is a positive constant independent of N and M. Furthermore, if for p > 2

sup sup E
M=11<i<N

sup

L0<t<T

S NP
’XZ’N’M‘ ] < o,

then the estimates (5.9) and (5.10) hold for those p as well.
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Proof of Main Results

Proof. We obtain for any p > 2

t
J(t) bM( (8), XiéZ)M’“i((gM) ds

p
< TPMP72, (5.11)

since |bys| < M® and o < 1/2. It is easy to see that in the case of p € (0, 2]

i,N,M i,N,M|P
B - x|
2:|§
’ iNM XNMy ;|2 ¢ iWNM  X,N,M 1215
meM(’f(S),Xn’(s)’ 1 He(s) )ds‘ * J(wg(m(s)’Xﬁ’(s)’ ey ) AW ]

and due to Itd’s isometry , Lemma 5.15 and Lemma 5.16 for C' independent of M and ¢

<]E[

t t ‘
f()bM(/i(s),X;g)M’#X(];fM) d5+J()G(H(S),X;(J\;)M7MX(1;/M) W
K(t K(t

< 2p/QE[

2

t , ,
E f o (H(S),XZ’N’M uX’N’M> AW

" ws) 2 Hi(s)

<1EUt()K<1+‘X;NM‘ + = Z‘XJNM‘ )ds]
t

K

T . ,
< sup sup E {MK (1 + | XENM | xENM| )] <CM™,
1<i<N se[k(t),t]

which gives, combined with (5.11), that
sup E HXz’N’M - Xli’(];;’M‘p] <CM™P2 forallpe (0,2].
0<t<T

ZNM|]

If additionally sup ;- sup;<;<n ]E[ supo<i<t | X, < oo for some p > 2, then

B [l x|

t , t
< CE j(t)bM(IQ(S),X:(]X):M’Mi((,s];/,M) ds‘ﬂ J(t)U(H(S)’X;(NS)M’Mf(gM) AW ]
2 ’ NM XN M2 [P/2
< CE |TPMP? + f 0(/-@(5),X:(8)’ Hg(s)’ ) ds‘ ,
K(t)

by the estimate (5.11) and the Burkholder-Davis-Gundy inequality. Since furthermore,

p/2

t , 2
& J a(/@(s),XZ’N’M,MX’N’M> ds

(1) K(s) K(s)

<E (T>p/2 sup K [ 1+ |XPNMP (1 i |Xj’N’M\2>p/2
M) selrv) ° N

T \"? i, N,M [P 5N, M |P
< | = K|[1+E| sup ‘Xt’ ' ‘ + sup E| sup ‘Xt’ ’ ‘
M 0<t<T 1<j<N  lost<T

< CM™P2,
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Simulation of MV-SDEs with super linear growth

we get the desired result here as well.

Finally, using the above results and that o < 1/2, we obtain for any p > 0 for which
E[ X7 — XM P < CMP2, that

i i p i p i, i, o
E HX;N*M - XH’(]X)’M’ ‘bM(/i(t)ij’év)’M,umXé])v’M)‘ ] HX NM i ]Mp <0,

holds for any ¢ € [0, 7] and 1 < ¢ < N, which completes the proof. [

Lemma 5.18
Suppose that Assumption 5.1 and 5.2 are fulfilled, then for every p > 2 with Xo € LP(IR?) there
exists a constant C such that

’ P
sup sup E{ sup ‘XZ’N’M’ ] < C.

M=>11<i<N o<t<T

Proof. Define p > 2 such that E[| X(|”] < oo and note that for p < 2 Lemma 5.17 yields immedi-
ately the result.

We use an inductive argument and start with p = 2. In every step we set ¢ = 2p A p. By It0’s
formula and Lemma 5.15 we have

) 2 ) 2 Ly )
‘XZ’N’M‘ < ’XS,N,M‘ +f ‘X;,N,M B X;(Z;/)M‘ ’bM (K(S)’XzNM”uXNM ds
0

K(s)

. N .
o (L k ) X as

0

t .
+ L XENM g (1), X;v(fZ;M, ufj(f{ Myaw] .

With the inequality |a + b|%/? < C(|a|9? + |b|%/?) and Jensen’s inequality we therefore obtain

. t .
E[ sup [X2NM)0 ]<C<1+E[]X5’N’M\q] +J B|[xiM | as
0<s<t 0
t
" f B[N M9 (), XENA 5 72

sup | [0 ) X5 ) aw ] )

O<s<t

The application of the Burkholder-Davis-Gundy inequality and Lemma 5.17 with? ¢/2 yields

. t
]E[sup | XN | ] <C<1+]EHX8’N’M‘Q]+J ]E[ sup | XENM|? ]ds
0

0<s<t 0<u<s
’ i,N,M |2 iN.M  X,NM o/t
Jo | XM ‘a (/@(s),X,{(S) M) )‘ ds ,

where C denotes in each case a constant that is independent of M. With Young’s inequality in

+E

2Observe that Lemma 5.17 holds for the current value of p and since ¢ = 2p A p it implies that it holds for ¢/2.
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the form ab < 2Ca + Cb2, Holder’s inequality and the estimate for o we have

E [ sup |X§’N’M|q]

0<s<t

' t
<C (1 +EHX8’N’M’[1] —I—J E{ sup ’XZNM‘ ]d + —E [ sup ‘X’NM‘ }
0<u<s 2C 0<s<t

[ [ (e ) as])

. t ' |
<C(1 +F HX(’),N,M‘ ] +J ]E[ sup ‘X;:N,M’q] ds + %]E [ sup ’X;,N,M‘Q]

O<u<s 0<s<t
iN,M 1 N2 )92
— supK1+{X |+< Z‘X{L” |) )ds.
O<u<s N j=1
Taking the 1 E[supgc <, | Xs »N:Mq] term to the LHS taking the sup over i on both sides we obtain

, t
sup ]E[sup ‘XZNM@ (1+E[|X8’N’M|q]+f sup E{ sup |XZNM’ ]ds) < 0,

1<i<N 0<s<t 0 1I<i<N 0<u<s

and thus the application of Gronwall’s lemma yields that

sup E[ sup !XZ’N’M‘(]] < C, (5.12)

1<i<N o<t<T

for some positive constant C which depends on E[| X}|?] but is independent of N and M.

Since (5.12) is proven for ¢ we can set p = ¢ and use this result in the next step of the iteration.
Since the new ¢ is at most twice as much as p, Lemma 5.17 can again be applied for ¢/2. This
iteration gets repeated until ¢ = p. |

Now we can complete the proof of Proposition 5.5.

Proof of Proposition 5.5. Using It0’s formula we observe,

‘AXzNM‘ f HAXENM (b (5, XN ) — by </€(3),XzNM ;LXNM))>ds

K(s) k(s)
t
; i\N.M  X,N,M
£y [ 1o X ) () X ) Pt
a=1
t
; ; i NM X,N,M ;
+ L 2<AX;7N7M7 (0' (SaX;’Naﬂij) -0 (H(S)a X;(S) 1 Hig(s) )) dWsz>
Furthermore observe that

XN = XM (s, XN, 1 0N) = bar (), X 05 ey ™)
= (AXPNM (s, XON pN) = b(s, X2 BN
+(AXENM b(s, XM MX,N) B b(87X;',N,MHUJXNM)>
FCAXENM () XN XN,M) ~ b(s(s )’X;,MM?M:SXNM)>

(s,

+ <AX§’N’M b(ﬁ XZNM,/@(NM) b(ﬁ(s),X;g)M,quM»
((s (k(s),
(r(s

+ <AX§’N’M b(k(s ;NM,quM) —b(k(s X,i’(]:)’M,uf(’g’M»
i ZNM N,M i, N,M N,M
+(AXIM b(k(s), XD ,uf(s) ) = bar (k(s), X, ,uf(s) ),
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where we estimate every term on the right hand side as follows. Due to Assumption 5.1 we have
<AX;’N7M7 b (Sv XS’Nv 'uf,N) —b (87 X;’N7M7 /jlg(’N)> < Lb |AX;’N7M| )
and

(XN s X o X)) AR )
. 1 . 1/2
< |AXENM 7( AXHNM 2)
i i Z| JM|
yAX“VM\ + Z]AXJ’NM\

and with Assumption 5.2
(AN X ) ), X))

C|AXENM||s — k(s)|? < \AXZNM\JrCM_

Further,

CAXENM b(o(s), XENM SN b (n(s), XM N

,’AXzNM‘ +2‘b XzNM“Ué(NM) b<m(s)7Xi,(];f),M’M§(NM>”

which we can furthermore dominate by using the polynomial growth of b with rate ¢, Cauchy-
Schwarz, Lemma 5.18 and Lemma 5.17, to have

E

K(s) s

b (), XN 8 b (i), X35, ) ds]

U

sup J
uel0,¢] JO

t . 2
N,M ; N,M
<f IE[ (1 XMy ‘XZ ) ’XQMM - Xt ]ds
X q . q\ 4 . . 4
J \/ 1 [xp M ) }]E [‘Xﬁ’N’M - X5 ]ds

< J VOM—2ds < CM™!
0

since

. 4q , 4(1+q)
N,M N,M
sup ’XZ’ ’ ‘ <1+ sup sup E| sup ‘XZ ’ ‘ < 0.
M>11<i<N 0<t<T

sup sup E[
Mz11<i<N  [o<t<T

Again Assumption 5.1 yields

<AX;',N,M,b<K(S)7Xi,N,M’M§(NM> ( (s

o\ N,M XNM
K(s) X, ’M )>

k(s)

)
‘AXzNM’ <§1 X]NM XJNM‘>1/2
VN =] (s)

1 2 112 & N,M|?
1 iN,M 1L” ANM 30N,
< 5 [AXENMP 4 S ;’X X7
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and the definition of b,; together with |a — m| = |a1+M a\a|| la|> M~ that

(DX b(n(s), X5 uii’j)v’M) = bar (m(8), Xy gy ™)
1 7 7 2
< S AXPNMP 4 ‘b ) XM M) = o (), XM M)
1 i, o 4
SIS i Mﬂb( XZ(N)M,Mf(gM);
1|AX7,NM| +CM—2a<1+XZNM4(1+q)+( ‘X]NM ))
2 K(s) k(s ’

where ¢ is again the polynomial growth rate of b. Also the Burkholder-Davis-Gundy inequality

yields
B[ sup [ 2O, (oo, X5 p5) — o), XU SN ) v
u€l0,t] JO
t 1 ' ‘
< B (0| (X louls, X, i) = o XA MR |AXES M ) ]
a=1
1 . t ! A
<E[f sup |AX;’N’M2+CJ Z Ua(s,X;’N,,uf’N)—Ja(/i(s),X;g)M,uX(];[M)‘ ds].
2 uefot) 0 41
and

‘ 2
Oq (S,X?N’Mf’N) — Ogq (H(S)yX;(Jj)MMU’)((Z;TM)’
X,N XNM)

<C’]s—m(s)\+C’X§’N—X,i’(];[)’M} +Cw® ( M)

<CM_1+C‘XZN XINM‘ + = EIX]N XJNM‘

K(s)

. C
i,N ZNM 7,N,M N,M _ ~53,N,M
<CM~ +C‘X - X0 = 2_ <|AX ? +‘X b 6 )

By putting those estimates together we obtain

IE)[ sup |AX’NM| }
0<u<t
N

M‘1+J |AXENM + ‘XJNM b G ’ Mty s 3 |axdNm?
N &

< CE

+ ’Xﬁ’N’M - Xi’ng’ + M2 <1 + ‘X;(];’M 4(1+q)) + M2 <% i ‘XJNM‘ ) 3]

1 .
+E[f sup |AXZL’N7M\2]
2 uefo,4]

and therefore

E[sup ’AXZNM‘] (JtE[ sup ‘AXINM’ ]ds—i—M 200 4 M*1>,
0

o<u<t 0<u<s
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by Lemma 5.18 and since X%V are identically distributed and X*"-™ are identically distributed
forallie {1,..., N}. This estimate holds for every i hence we can insert sup, ;< on both sides
giving

t

sup E| su AXi’N’M2 <C sup E| su AX"’N’M2 ds+ M2+ M ') <w

p p |[AXNM p p u :
0

1<i<N O<su<t 1<i<N 0<u<s

and finally by Gronwall’s lemma (using that o = 1/2),

sup ]E[ sup | X5V — X;NMF] <CM™.

1<i<N O<u<t

5.4.3 Proof of Implicit Convergence

The main goal here is to prove Proposition 5.9. We loosely follow [MS13], however, due to the
extra dependencies on time and measure and further allowing for random initial conditions we
require more refined arguments. We take N as some fixed positive integer. Before considering
the implicit scheme, let us make a remark and show a result on the particle system (5.2).

Remark 5.19 (Monotone Growth)

The combination of Assumption 5.1, 5.2 and H1, imply the monotone growth condition. Namely,
there exist constants «, 8 € R such that V¢ € [0, T], u € Po(R?) with [ being the dimension of the
Brownian motion,

l
1
btz )+ 5 Y loalt 2, )P < ot Bl Vo e RY

a=1

Proposition 5.20
Let Assumption 5.1, 5.2 and HI1 (in Assumption 5.8) hold, further, let Xy € L?>(R?). Then the
following bounds hold,

sup E[|X;"[?] < (B[|Xo[*] + 2aT) exp(257),

I<i<N
and for 7¢, = inf{t > 0 : |XZ’N| > m} we have

1

sup P(T;n < T) < W

(E[|X0[*] + 2T exp(28T).
1<i<N

Proof. Firstly, let us consider the stopped process X;JAVTi . Applying It6 to the square of this

process and taking expectations yields

i
T AT,

!
BN, )= BUXGE + B | 200 b0 XY ) + 3 ol 5N ) s
a=1

T . .
< EB[| X4 + 2aT + J 26E[ XN, [1ds < (E[|X3[?] + 2a7) €7,
0

SATH

where we have used the growth and stopping condition to remove the martingale term, then
Remark 5.19, uniform boundedness of b in the measure component and Gronwall’s inequality
to obtain the result.
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Noting that the following lower bound also holds,

N . » 1 :
[\X’TW ?] = m?P(ri, <T), weobtain P(r}, <T) < W(E[\X(’)]Q] +2aT) exp(25T).
Further, since lim,,,—,o |X1TJAVTZ | = ]X%N |, we obtain by Fatou’s lemma,

E[|X2Y ] < liminf E[| XY

M—00 TATE, | ]

(E[|X4[%] + 2aT) exp(28T).

The result then follows by noting that E[| X{|?] = E[| Xo|?] and hence the bounds are independ-
ent of 7, so we obtain the result for the supremum over i. [ |

Let us now return to the implicit scheme. At each time step ¢; and for each particle i one needs
to solve the fixed point equation

XM b<tk’Xi,N,M’ﬁi,N,M)h XzNM n U<tk’XzNM’NXNM)AWtik.

lkt1 lkt1

This leads us to consider a function F
F(tyx,pu) :==x — b(t,z, u)h. (5.13)

For the implicit scheme to have a solution the function F' must have a unique inverse. The
following lemma is crucial in proving convergence of the implicit scheme.

Lemma 5.21

Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold and fix h* < 1/ max(Ly,203). Further,

let 0 < h < h* and take any t € [0,T] and pu € Po(RY) fixed. Then for all y € RY, there exists a

unique z such that F(t,z, u) = y. Hence the fixed point problem in (5.5) is well defined.
Moreover, for all t € [0,T] and p € P2(R?) the following bound holds,

2 < (1= 2hB) " (|F (¢, 2, )| + 2hav), (5.14)
and for any k = 1 the following recursive bound holds,

SiNM ~X,N,M
|F(tkaXZk+1 y My )|2

!
N.M ~X,N,M N.M ~X,N,M ; 2
<P (e KM i YO P 4 (X loaltn, XV 1 (AW, ])

' Pt
a=1

+ 2ha + 218 XM P 4 2 XM oty XPOM L M AWE S, (5.15)

’tk

where (AW}, ) is the ath entry of the vector.

Proof. Let us first prove there exists a unique solution to (5.13), in the sense that for all ¢ € [0, T]
and p € Py(R?) fixed, then there exists a unique 2 € R? such that F(¢,z,u) = y for a given
y € R? provided 0 < h < h*. This is a classical problem considered in [Zei90, p.557] or
see [LdRS15, p.2596], which requires F' to be continuous, monotone and coercive (in z). The
continuity of b yields that of F'. For the monotonicity of F’, we have

(x —a' F(t,z,p) — F(t,2',p)) = |v — 2'|* = (& — 2/, b(t, z, p)h — b(t, ', p)h)
> |z — 2'|*(1 — Lyh),
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Simulation of MV-SDEs with super linear growth

and provided h < 1/Ly, the final constant is strictly positive. Coercivity follows similarly by the
monotone growth condition in b,

(&, F(t,x, 1)) = |2|* = h(a + Blzf?),
therefore,

lim w =ow, forh<1/p.

] 00 ||

Hence F(t,z, ) = y has a unique solution for F' defined in (5.13) and therefore the numerical
scheme (5.5) is well defined.
To show x is bounded by F(-, z,-), again fix some t € [0,T] and u € P2(R?). Then,

|F(t, 2, 1)* = |2 = 2¢a, b(t, @, )b + [b(t, x, 1)

by Remark 5.19. Since h < 1/(2/3), we obtain
2l < (1—208) " (|F(t,z, )| + 2ha).

This result is useful since it holds for all ¢ € [0, 7] and u € P2(IR?). For the recursive bound it is
useful to note

F(tk7Xi,N,M ﬂX7N,M) _ XNM b(ty, M MXNM)h

g1 Ptk le+1 tet1 tk
_ sz,N,M ot XzNM7MiNM)AWtik
N, M ~ X N, M ,IN,M  ~ X ,N,M
= F(tk 1,)(z Mtk L )+b(tk 1,_XZ :U’tk L )h (5.16)

,N,M  ~X,N,M
+o(te, XM AW

This recursion is only valid for £ > 1 due to the appearance of ¢;_;. Using this relation observe
the following,

|t XM i, P = P (s X g P+ 1o, X5 PR
o (e, XM iy ™M AW |
+ 20 F (tor, XM M, bty X0OM i M) R
+ 2 F(tgor, XM, oM
+ b(trer, XpOM i MR o (b, XM SN AW .
We now look to bound these various terms. By definition of F,

2<F(tk71,XZNM //Lt)i]\l[M> b(tk 1,XZNM t)i]\lfM>>h+‘b(tk 1,XZNM Mi](;]\lfM ’ h2

< 2XPNM b(tmy, XPNOM L oMYy B < 2ha+ 2081 XM,
Similarly,

2(F (te—1, X; VM 52Ny by, XV 5N R o (b, XYM oMM AW
N, M SN, M N,M
= 20X, ,a(tk,XZ M AW,
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In order to obtain the desired form we note

l

O'(t,.iE,/L)AWt = Z O-a(ta$aﬂ)(AWt)a‘
a=1

Crucially (AW}), is a scalar and standard properties of norms yield,

i,IN,M XNM ZNM XNM
| (tk,X s AWtk Z ’Ua b, X )||(AWtk) ‘

) Ly,

The bound on F' then follows immediately from these results. |

Let us now show the first moment bound result. As is standard with implicit schemes we firstly
do this up to a stopping time, hence we define

Ao, = inf{k s [XPM] > m). (5.17)
One should note that this stopping time does not actually bound X at that point i, the best one
can do is bound the previous point i.e. for A\, > 0, we have |X o M <m.

Lemma 5.22
Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold and fix h* < 1/max(Ly,203). Then for
any p = 2 such that E[| Xy|P] = C(p) < oo, we also have,

sup IE[|X’ ’ |p]1{k<wn}] C(p,m) Vk<M and0 < h < h*.

1<i<N

Using standard notation, C'(a) denotes a constant that can depend on variable a.
Proof. As it turns out the function F in (5.13) gives us a useful bound. From (5.16) we obtain,

N,M ~X NM — o1,N,M N,M ~X N,M i
| (tk? XZ)H,l 7Iutk, )|p < 2p 1(’XZ;€ |p + |U(tk7XZ 7Iutk )AWtzlJp)‘

Hence, multiplying with the indicator and taking expected values yields,

NM ~X,N,M
E[|F (te, Xp0M, i VM) PLgga )]

< C(p) (mp + E[|o(ty, X}, NM, Mf,i A AWtik\p]l{kHs,\;'n}])
Then we estimate

[|0(tk7XZNM NXNM)AWtk| 1{k+1<>\ }]

7tk

MM XN :
Z Elloa(tr, XM i 1P L geex,y] + B (AWE, o]

Using the bounds on each coefficient of o, it is straightforward to observe,

Joa (e, XM i PP < Cp) (1 + XYM

Using this bound we obtain,

Si,N,M  ~X,N,M
E[|F(ty, X; fi Wikri<niy) < Cp,m).

k1 PPt
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Simulation of MV-SDEs with super linear growth

Rewriting the quantity we wish to bound as

[|X1NM|p]l{k<)\z 1] = [|XZNM|p]l{k<,\z k=03 +IE[|X”VM|p]1{k 0, xi,=0y] < Clp.m),

where the inequality follows from Estimate (5.14), our bound on F, and the assumption that
Xo € LP(R?). Again, the corresponding bound is independent of the choice of i and hence the
result holds for the supremum over i. [

Although the previous bound is useful, the presence of the stopping time is inconvenient. We
therefore remove it and show the second moment is bounded.

Proposition 5.23
Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold and fix h* < 1/ max(Ly,203). Further
assume that Xo € L*(R?). Then,

sup Ssup Ssup EHX&MM’Q]gC'
1<i<N h<h* 0<k<M

Proof. Firstly let us take a nonnegative integer K, such that Kh < 7. Now let us consider
(5.15). One can note that this bound still holds where the F' terms are multiplied by 1(: -,
(since both sides are nonnegative and the indicator is bounded above by one). Summing both
sides from k = 1 to K A !, noting that the F terms cancel, we obtain,

i,N,M ~X,N,M\ |2 .
[F(tg ani, s Xt(KM?n)HthKM%)\ Lixi >0y
K AN,
JN,M ~X N,M >i,N,M
< |F(to, XM, MM 2 Tni ~0p + Z (2ha + 2081X; M P10 ~op)
k=1
K AN, 9
NM ~X,N,M
) (Zm (s X3V M AWE) ) g 0
KA,\;n
N',N,M N,M  ~ X ,N,M ;
+ Z 2<sz (t XZ Hutk )AW;k>1{A§n>0}a
k=1

where we use the convention 22:1 - = 0. Although the stopping time is useful it is not ideal that
it appears on the sum. However, for nonnegative terms it is straightforward to take the stopping
time into the coefficients and the stochastic term can be rewritten as

K AN

m

~1;,N,M iN,M ~X,N,M
12X o, XEUY i T AW D 2o

K
Z2<XZNM XZNM7ILLXNM>AWtk>1{k<)\z

Taking expectations and noting, by Lemma 5.22, that X’Z};N M Lipeni ) € Lf},c (R%) we conclude
this term to be a martingale. We therefore obtain the following bound,

S i,N,M _X,N,M
E[|F(tgaxi » Xy fhy )WPLini ~oy]

b aniny+1? Tl A,

K
NM - X,N,M NM
E[|F(to, XM, g MM ] + 20T + 3 2hBE[| X" |2]1{m o]

k=1

. l N.M ~X,NM 2

+;11E[(Zl\aa(tkw X g awd ), y) 1w-n>0}].
= a
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Proof of Main Results

The idea is to apply the discrete version of Gronwall’s inequality to this (see for example
[MPF12, pg. 436] or [MS13, Lemma 3.4]), which requires our bound to be in terms of F.
Using arguments similar to previous ones

[( Z [a Benxi, ZNM XNM)H(AW%MZ ) |>21{)\%>0}]

kAZ k:>\7'

N,M  ~ X ,N,M
[|aa (g, XM MR (AWE ), PP 0

beani, e ani,

h(1+E yX”VM| Loxi ~03])

where we have used independence of o(-)1): -y and AW along with the growth bounds on o
to obtain the final inequality. Combining this with our previous bounds and appealing again to
Lemma 5.21 (to bound X by F) we obtain,

=i, N, M _X,N,M
E[|F(tgan X 00 )L =03

(K AN, +1 KA )\l
K
SiNM ~X,N,M N.M 2
E[|F (to, X3, fizy M )P] + C + ). ChE \XZ \ Txi >0}
k=1
h
Ja zNM ~X,N,M 1

kX” (kadk,)—1

K
h
+ Z Cl _ QhBE“F(t(kA)\fn)*l’X 7NM7MtXNM )|21{)\£n>0}]-
k=1

Applying a discrete version of the Gronwall inequality and noting Zszl 1 < T'/hyields

=i,N,M _X,N,M
E[’F(tl(m\;'n,Xt(Kwn)H tenni )PLini ~o0y]

’L h C
< (BIF (o, X iy MO + O 1+ 1—55) ) b (1=5)-

Recalling (5.16), we can apply the same arguments as before to obtain the bound

E[[F (to, X5, ey ™ P] < €1+ (1L + mE[ X ).

Noting that our bound for F' is now independent of m, we can use Fatou’s lemma to take the
limit and obtain (for K > 1),

7 2 h ¢
B[ F(te, Ko ™) P] < 01+ (1 + WELX; NM|]+1_2h5)exp(m)-

Again by Lemma 5.21, the LHS of the latter inequality bounds X “NM-(with some constant),

hence we obtain a bound for X’ i’N Mfor k > 2. By assumption X’Z(’)N M has second moment
therefore we need to obtain a bound for X nN,M

we can bound X as follows,

. This is not difficult to obtain using again that

BIXM 2] < (10— 208) 7" (2ha + B[P0, X5 M P]),

» Hto

then we can apply the same bound on F' as above.
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Simulation of MV-SDEs with super linear growth

In order to complete the proof, we also need to show that this bound exists for all i and
0 < h < h*. One can see immediately that all bounds decrease as h decreases, hence the
supremum value is to set h = h*, which is also finite since h* < 1/(2/3). The supremum over i
follows from the fact that all bounds are independent of i. [

Now that we have established a bound on the second moment, we look to show convergence of
this scheme to the true particle system solution. As always with discrete schemes it is beneficial
to introduce their continuous counterpart. As it turns out doing it naively for implicit schemes
leads to measurability problems, hence one introduces the so-called forward backward scheme

N, M N, M N,M ~X,N,M N,M ~i,N,M ;
XM = XM b (w0, VM BN b o (0 XM M) AW

trt1 tk—1v0

Si N.M . . . . . .
where X7 = X{ and v denotes the maximum. The scheme’s continuous time version is

t t

K x|

Ob<(/<c(s)—h) v 0, XENM XN M >d3+f

SiN,M  ~i,N,M i
(o) st -hyvo o (), M ) @

K(s)
(5.18)

The first result we present is that the discrete and continuous versions stay close to one another,
up to the stopping time (5.17).

Lemma 5.24
Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold and fix h* < 1/max(Ly,203). Further
assume X € L*@+D(R%). Then for 1 < p < 4 the following holds for 0 < h < h*,

N,M N, M
121<pN0<s;1£MEUX1 _XZ PLireni, }] C(m,p)h?.

Moreover, we also have the following relation between X and F for all 1 < k < M,

1
GV = (b, XM RN P = Jotte, XM YRR (5.19)

Proof. To show the first part we start by noting the following useful relation between (5.5) and
(5.18), namely for 1 < k < M,

N,M oi,N,M N,M ~X,NM oi,N,M ~X N,M
sz _X (b(t Xz :uto )_b(tk 17X 7Mtk 1 ))h

Noting that one can bound

|b(t0’XzNM IuggNM)_b(tk 1,XZNM Hgi]\lfM” <C(1+|tk|1/2+|XZ(,)N,M|q+1_’_|Xtil,€N,M‘q+1)’

where we have used the polynomial growth, Holder-continuity on the coefficient b and in par-
ticular Assumption H1. Hence,
Si,N,M i, N,M
L O
< CW(1+ 6P + B[ XM P o ] + BIXEVM PO D150 4]).

One observes that the terms on the RHS are bounded by C(p, m) for p < 4 since X, e L4+ (R%)
and Lemma 5.22. This completes the first part of the proof.
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For the second part, recall from the relation between (5.5) and (5.18), one has,

XzNM_b(t XINM,;ngNM)h—FXZNM—b(tk 1,XZNM,/L§i]\1[M>h

N M ~X,N,M N,M ~X,N,M
- b(t(]? ,L 7Ht0 )h—‘r F(tk‘ 1’XZ ' ,,LLtkL17 )
Using the reverse triangle inequality we obtain,
i, N,M |2 oi,N,M ~X,N,M >i,N,M ~X,N,M
|XtZk: ’ > _|b(tO7X;0 7Iut() )h| + |F(tk717XZk 7Iu’tk 1 )‘

The result follows from squaring both sides and applying the generalisation of Young’s inequality,
namely,

JN,M  ~X,N,M ,N,M ~X ,N,M
’b(t07XZ 7:U‘t )h’HF(tk I’XZ 71U’tk 1 )‘

N,M o ~ X N,M N,M ~ X, N,M
|b(t07XZ JI"LtO )h|2 | (tk 17XZ 711”’t)c 1 )| °

The next result we wish to present is that both schemes do not blow up in finite time, for this
we define a new stopping time,

nh, =1inf {t >0 XM > ) or \XZNM| > m}.
Note in particular that ¢, is smaller than or equal to \!, in (5.17).

Lemma 5.25

Let Assumption 5.1, 5.2 and H1 (in Assumption 5.8) hold, fix h* < 1/max(Ly,23) and assume
Xo € L*9tD)(RY). Then, for any € > 0, there exists a m* such that, for any m > m* we can find a
h§(m) (note the dependence on m) so that,

sup P(nl, <T) <e, forany 0 < h < hi(m).
1<i<N

Proof. Note due to the initial condition being random we must be careful with how we set m,
we shall come back to this later. Let us start by applying It6 to the stopped version of (5.18),

i,N,M 2
X

. TAnp, ;
SR | R (n(s) =) v 0K )

T Ant, . i i )
+ 2 0 () K P dsor | 2NN () R0 ) AW,

We now look to bound the various integrands. Firstly one can observe

l
o1, N,M i, N, M~ X, N,M i ,N,M ~i, N,M
Xy 7b((’i(3) —h)v 07XH(8) ’M(H(S)*h)v0)> T le ’Ga( 5); X3 w(s) 7 Hi(s) )’2

CiNM i NM iNM - X,N,M
= (XM = X0 0((R(s) = h) v 0, X T B h)v0)>
+ XM ((kls) = B) v 0, XM i o)) + Z joa (), X 5™ ™1

i, N, M i, N,M Si,N,M ,N,M
< CIXPY = X+ X 1T + 200+ 81X P
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Simulation of MV-SDEs with super linear growth

where we used Cauchy-Schwarz, polynomial growth bound, Hélder-continuity and monotone
growth to obtain the final inequality.

Taking expectations and noting that due to the stopping time the stochastic integral is square
integrable and hence a martingale, we obtain,

B[ XN 2]

, TAty, . . y
E[|Xi[2] + E”O CIXENM — XEEM|(1 4 |XESMT) + 20+ B X5 2 as |-

To proceed we note the following, \XQ(];])’MP < 2(|)~(;’(]§)’M — XENM2 4 XENAM2) and also that

T/\nfn

TAt y . iy
| R R s < cm) | R - R ds,
0 0

where we used the fact that the stopping time ensures X and X are < m for s < nt, and s = n},
has measure zero. The same reasoning also implies,
TAn T/\"Y
| eI R M ds < O [ R -
0 0
Hence the following result holds,
N,M 2 ; TAm
(X500 ) < E(XGP) + CE| |

v Cm)| XN — KENM| 1 4 BIXENM 2 as].
0

The next step is of course to take the expectation inside the integral. Let us start by noting the
difference term can be bounded as

Trm i\ NM ~ i,N,M
7’7 9
]E[JO | X —Xﬁ(s) ]ds]

T/\nfn . T/\nﬁn
< ]E” | XNM XZNM\derJ KM = XM as]
0

<B[h LT% b ((s(s) — h) v 0, KENM MY ]

T A, . , ,
+E| L o (s(s), XEMM M) (Wi — W) ds] + Clm),

where we have used Lemma 5.24 for the final inequality. For the other terms, one can note due
to the growth assumptions on b and Lemma 5.22, that

T A1l
oi,N,M ~X NM
]E[hfo b (((s) = By v 0, XM a5 Lo ) 1ds] < Cm).

The term involving o is more complex. However, we can bound it as follows:

B[ | "o (w0, X:;{Z;M, i) WS =il ds|

f o ((s), KI5 G ) 1OV~ Wi algugorzey, 3| s

T
< cf 2 WP+ Bl X0, [P ds < Cm)h'2
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z‘,N,M‘

Further, since | X, > 0, we obtain,

T/\nin . T
EU |X;’N’M|2ds] <j E[| XN M2] ds.
0

0 sAnL,

Hence,

T
E[| Xy P] < E[IXG°] + C(m)h'? + CL L+ BR[N] ds

< (E[|1X3%] + C + C(m)h*?) exp(CBT), (5.20)

where the final inequality follows from Gronwall.

In order to obtain an upper bound on the probability of the stopping time occurring we look
to obtain a lower bound for (5.18) at the stopping time. For the moment let us take | X}| < m,
hence n¢, > 0. There are now two possible ways the stopping time can be reached: if X
hits the boundary first, then we have |X HNMY— o and if X hits the boundary first we have

’IIL
X’LNM > m.
|

In the case that X hits the boundary first, the lower bound is obvious, namely ]X LN, M | = m.
For the second case it is less obvious. Recalling (5.19) and (5.14) we obtain lower bound
XM = 5 (0= 2m8) (XM~ 2ha) — [b(to, X3, iy ™M) A P,

’ Hto

[\.')M—A

where again we are taking £ > 1 here, but this is not a problem since we are assuming for
the moment |X}| < m. Observing that this lower bound holds independently of which process
triggers the stopping condition we have on {]X LN, M| > m} that

Ai,N,M
1 zNM _X,N.M

» Mto

Thus, for constants C7,Csy > 0,

oi,N,M
X PLipgiamy = (Crm” = b1 gy cmy — COMAL x5 oy
where |b(to, X" NM,ufg ald )’1{|Xé|<m} < C(m)1{|xg|<m} via the growth condition on b. Let us

now combine these results to obtain an upper bound for the probability of the stopping time.
Notice that

[|X1TJI7,M’ = E[\Xé\zﬂuxg\;m}] + E[‘X;iv’M’21{\X3|<m}]l{0<77§n<T}]
> P(1;, = 0) + ((C1m® = Coh) — C(m)h?) P({|X§] < m} n {0 <n;, <T}).

Leaving the second term for the moment, and noting that X is uniformly integrable, then for
any ¢ > 0 there exists an m* > 0 such that for all m > m*

P (1 = 0) < mP(|Xg| > m) < B[ X1y xi12my] < 5

It is also useful to note that

P({|X5] < m} n {0 <mp, < T}) = P({0 <1, <T}).

133



Simulation of MV-SDEs with super linear growth

From our previous analysis it is clear that for m large enough and some contant C'(m), by using
(5.20), the probability can be bounded by

E[IXp00 1 (BIXEP) + C + Cm)h'/2) exp(CHT)

P L<T)< S
O < <T) < Gz = Goh — Com)i?) Cym? — Cyh — C(m)h?

Now the goal is to bound this by 2¢/3. We already have taken m sufficiently large
to obtain the last inequality. Now consider for any given m a factor hfj;(m) such that
Cohly(m) + C(m)hE (m)? < 1. It is clear for 0 < h < h¥(m) the same bound holds. Then
for the same ¢ as before choose m large enough such that,

(E[|XE[°] + C) exp(CBT)
Clm2 —1

<

Wl M

Redefine m* as the corresponding maximum of this m and m*. Now for any m > m*, define
h§,(m) such that,

Cm)(hy)!? exp(CHT) _ ¢
Cim? -1 =

w

Again for 0 < h < h{y(m) the above inequality holds. Hence for any m > m* and any
0 < h < min(hf; (m), hE,(m)), we have, P(nl, <T) < P(n!, =0)+ P00 <ni, <T) <e. |

We now look towards showing our strong convergence result, firstly by showing convergence
between (5.18) and (5.2) and then (5.5) and (5.2). From this point onwards we require H2 (in
Assumption 5.8).

Recalling the stopping time in Proposition 5.20, we now define 6! := 7 A ¢ and have the
following convergence result.

Lemma 5.26
Let Assumption 5.1, 5.2, the full Assumption 5.8 hold, fix h* < 1/max(Ls,23) and assume
Xo € L9+ D(RY). Then, for all h € (0, h*),

sup B[ sup [X]M — XV 2] < Cm)h + CB[1yrag y]7*.

7
1<i<SN  0<t<T A0

Proof. For ease of presentation we denote by %(s) := (k(s) — h) v 0. As is standard we start by
applying It6 to the difference to obtain
Y oi, N, M
|XZA9§R - th/\%n |2
N
m i i i _ >i,N.M ~X,N,M
:JO 2<X§’N - X?N’M, b(s, X;’Na N5X7N) — b(R(s), X,;(S) 1 Mz (s) )>

l

; SiNM ~X.N.M
+ 2 ‘Ua(st;N?Nf’N) - Ua(’f(s)aX,:(s)  Fg(s) )‘st

a=1

AN
m - o ; i, N,M  ~X,N,M ;
TR < X (o5, X ) = (), KM ) 4w
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By writing out the drift term we have that

N = XM (s, X0V, ) = bR (), XM iy ™)
= (XN = XM b(s, XEN, ) — b(s, XV )
+ (XN = XM b (s, KOV, ) — b (s), XEMVM L)

+<X§7N_X;,N7M’b )XZNM7MS ) ()’ INM XN)>

( ( b( n(s y Mg
+ (XN = PN b(m(s), XM ) = b(EGs), X i)
QXN = XN (), XM 1) = br(s), KM iy ™)

< C(\X;’W — XPNM2 4 g (O a CWD (XN, G A2
+ (14 | XBNM 20 \X;’(JSV)’M|24)|X§’N7M - le(N)vM|2
N M (20 | ZUNM 20y 6N M g N M 2
U+ IR PRSP - X)),
where we have used the growth bounds on b along with several applications of Cauchy-Schwarz
and Young’s inequality. In particular we have used the fact that b is both globally and W)
bounded in measure to obtain the C' A CW® (3, g( g M) bound. Using similar arguments
to earlier proofs and to the drift term above, we get the following bound for the diffusion

. i, N, M~ X ,N,M
|O.a(5’ X;’N, Mf,N) _ Ua(“(s)’X;(s) "U’;-;(s) )|

< C(hm i |X;',N _ X;’,N,M| I |X;‘,N,M _ XZ(JV)M|

oi,N,M i, N,M X,N,M
X = X+ LA W (N, ).
Ultimately we need to take supremum and expected values. Hence, we wish to bound

T . .
E[ suwp fo XN = KENM (o (s, XEN, 12N = ar(ia(s), XM kM) awdy|.

0<r<tab?, r(s) w(s)

We use the Burkholder Davis Gundy inequality, however care is needed since the terminal time
is a stopping time. It turns out the usual upper bound still holds (see for example [Pro05, pg.
226]), hence we obtain, by using Young’s inequality,

B sup 20X - XV o, XY ) — ol) XA ) WD)

) k(s)
o<r<tafi, Jo

tAbh, . L . 1/2
<cE|( fo XEN = KM N (o (s, XN, i) = aa(n(s), XM ik )M as) ]
a=1
1 . Ny
<7E[ sup \X;’N—X;’N’MP]
2 Locs<tnor,
A0 ; N.M ~X,N,M
B[ [ 3 ol X5V ) = (o), K0 M s

Taking the supremum over time and expectations of our original difference and using these
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bounds we obtain the inequality

1 i,N i,N,M |2
§E [OE?ET |Xt/\01 - Xt/\Gl |
N ) .
< E[J C(\X;N _X;,N,M‘z + (1 A W(l)( XNHUJX(];/M))
0

+ (1 + |Xi,N,M‘2q + |Xi,N,M|2q)|X§,N,M o X;,(N),M|2
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Let us now concentrate on the measure terms 1 A WO (uSN XNy and 1 A

’ IU’E(S)
W uf N uf( g M ). The goal in the end is to use a Gronwall type inequality. Hence, we want to

obtain terms of a similar form. The standard argument in this case is to remove the average sum
of other particles using the fact that they are identically distributed, unfortunately the presence

of the stopping time breaks this argument and forces us to argue a different way. We start by
noting the following bound

N
1 . .
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J=1

By using the fact that for a, b, ¢ > 0, min(a, b + ¢) < min(a, b) + min(b, ¢) and min(a, b) < v/av/b
alongside Holder inequality for sums, we obtain
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Let us further define 3" = =% Z 0 i Then using the triangle inequality we get
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Hence, we can bound the measure terms by

T/\Gi
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and likewise also
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Therefore, taking the expectation inside the integral and supremum over the particle index;
noting particles are identically distributed, we obtain

sup E
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where we have further used that if Y. > 0, then Y1,y < Y{..y. Noting 1, = Jl%,}, we obtain
via Cauchy-Schwarz inequality
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Noting that

X o (R0 KRS ) o (00 SR 0) - W )

which implies
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where we used Lemma 5.22 to obtain the final inequality (note that by assumption
Xo e L*9+D(R%)). Arguing in the exact same fashion along with Lemma 5.24 also yields
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The remaining terms can be bounded using the same arguments as above. Substituting these
bounds then implies
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Hence, by Gronwall’s inequality we obtain,
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We then complete the proof by applying Cauchy-Schwarz to the expectations in the integrand
along with Propositions 5.20 and 5.23. [

We now can prove our main implicit scheme result.

Proof of Proposition 5.9. Recall that s € [1,2). Define the error term as E,.(T) = X%N —
and also let us note a more general version of Young’s inequality
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From Lemma 5.24 we obtain,
i, NM i, N,M
EHX;L - X;’ |81{T,§1>T, n§n>T}] < C(ma S)hs'
Also let us note,
E[|E.(T)] < 2B X" |* + | XV Y P < 20,

where we have used Propositions 5.20 and 5.23. Hence for any £ > 0, we can choose § such
that,

13
< -,

3
By subadditivity of measures, E[1(i <7 or i <13] < P(7,

i < T)+P(ni, <T). By Proposi-
tion 5.20, there exists m* (dependent on §), such that for m > m*,
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Then, noting by Lemma 5.26,
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Again by subadditivity of measures we can bound
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By the same argument as before we can define a new m*, greater than or equal to the previous
such that CP (7}, < T)%* is sufficiently small. By Lemma 5.25, by taking h small enough
for any € > 0, P({, < T) < &, and by extension, there exists an h small enough such that
P(n}, < T)** < &. Hence, for any m, we can take h small enough such that

_ i\N  i,N,M
2 HE[XT — X2 Ly o1, o1y

Si,NM i, N,M 2-s ; £
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and hence E[|X¥N - X%N’MP] < e. Since € > 0 was arbitrary, we have the result. [ |
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