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Abstract

In this work we study the low-energy physics of Yang-Mills theory coupled to adjoint
matter by means of lattice Monte Carlo simulations. A main ingredient of our computa-
tions is the Yang-Mills gradient flow, which is a gradient flow in field space. The kernel
of the flow operator smoothens the fields in such a way that correlators of local operators
can be computed avoiding divergences and extra multiplicative renormalisations. The
flow kernel can also be related, under some specific conditions, to a renormalisation
group transformation. This property allows to compute the scaling dimensions of
operators, with respect to variations of the energy scale. We exploit these two properties
of the gradient flow in order to study non-perturbative properties of Yang-Mills with
adjoint fermions.

First, we study the case when the Yang-Mills field is coupled to a single adjoint
fermion. This model is the N = 1 supersymmetric Yang-Mills theory. It is the only
QCD-like supersymmetric theory in the sense that it has no scalars, is asymptotically
free, has a low-energy mass-gap, is confining and shows fermion condensation. We
study these properties at zero and finite temperatures for the SU(2) and SU(3) gauge
groups. With the gradient flow we are able to confirm the formation of a non-vanishing
chiral condensate at zero temperature and its melting at higher temperatures. We also
observe that chiral symmetry restoration and deconfinement occur at the same critical
temperature. We moreover investigate SU(3) supersymmetric Yang-Mills on R3 × S1

with periodic boundary conditions for the fermions at different compactification radii.
We compare the fate of confinement with the thermal case, and measure the trace of the
energy-momentum tensor, which gives us information about the Witten index.

The second part of this work is devoted to Nf adjoint QCD, i.e. Yang-Mills theory
coupled to Nf adjoint fermions. Depending on the number of flavours, adjoint QCD
may lie inside the conformal window and thus become a strongly interacting conformal
field theory in the infrared. In this context we use the gradient flow and the lattice in
order to measure the scaling of the mass anomalous dimension, as the energy scale is
lowered. The goal is to see signals of conformal behaviour and to determine the value
of the anomalous dimension at the critical point, which is important within the scope of
beyond the Standard Model theories.



Zusammenfassung

Wir untersuchen die Eigenschaften von Yang-Mills-Theorien mit Fermionen in der ad-
jungierten Darstellung bei niedrigen Energien mittels Monte-Carlo Gitter-Simulationen.
Hierbei spielt die sogenannte Gradient-Flow-Methode (GF), oder Gradientenfluss, eine
prominente Rolle. Zum einen werden Quantenfelder durch den Kern des GF-Operators
so geschmiert, dass Korrelatoren von lokalen Operatoren endlich bleiben und im Fall
der Eichfelder keine zusätzliche Renormierung nötig ist. Zum anderen kann der Kern
des Gradientenflusses unter speziellen Umständen als Teil einer Renormierungsgrup-
pentransformation (RG) betrachtet werden. Somit ermöglicht die GF-Methode die
Berechnung der Skalierung verschiedener Operatoren als die Energieskala verändert
wird.

Zunächst beschäftigen wir uns mit der supersymmetrischen Yang-Mills-Theorie bzw.
Yang-Mills-Theorie mit einem einzigen adjungierten Majorana Fermion. Dieses Mod-
ell ist der Quantenchromodynamik (QCD) sehr ähnlich, da es keine elementaren Skalar-
felder beinhaltet, es asymptotisch-frei ist und es ein Mass-Gap zeigt. Es besteht außerdem
das Quark-Confinement und die spontane Brechung der chiralen Symmetrie bei niedri-
gen Energien. Wir untersuchen diese Eigenschaften bei verschiedenen Temperaturen für
die Eichgruppen SU(2) und SU(3). Mithilfe der GF-Methode bestätigen wir die Entste-
hung eines nicht-verschwindenden Fermionen-Kondensats bei T = 0 und sein Schmelzen
bei höheren Temperaturen. Darüber hinaus finden wir, dass die Phasenübergänge zum
Deconfinement und zur Wiederehestellung der chiralen Symmetrie an derselben kritis-
chen Temperatur geschehen. Im Fall der SU(3) Eichgruppe beschäftigen wir uns außer-
dem mit der Theorie definiert auf dem Zylinder R3×S1 und mit periodischen (d.h. nicht-
thermischen) Randbedingungen für die Fermionen. Wir erkunden das Confinement
im Vergleich zum thermischen Fall und messen die Spur des Energie-Impuls-Tensors,
welcher Rückschlüsse auf die Realisierung der Supersymmetrie anhand des Witten-Index
ergibt.

Der zweite Teil dieser Arbeit ist der Yang-Mills-Theorie mit mehr als einem Fermion
gewidmet, der sogenannten adjungierten QCD. Je nach der Anzahl an Fermionen kann
die Theorie im Infrarotbereich stark wechselwirkend sowie konform bzw. skaleninvari-
ant werden. Wir verwenden die GF-Methode, um die Skalierung der anomalen Dimen-
sion des Massenoperators zu untersuchen, wenn die Energieskala variiert wird. Das
Ziel ist Hinweise auf skaleninvariantes Verhalten zu erkennen und den kritischen Wert
der anomalen Dimension im Limes der unendlichen Gradientenfluss-Zeit zu bestimmen,
welcher im Rahmen der Erweiterungen des Standardmodells relevant ist.
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Chapter 1

Introduction

Emergent collective phenomena are perhaps as intriguing as the question about what the
fundamental bricks of Nature are. The sought after a logical explanation of how matter
and time arise and evolve, has played a pivotal role in all societies throughout millen-
nia. It underlies both the ancient natural philosophy and the more recent discovery of
the Higgs boson. Already the earlier Greek and Indian-Buddhist philosophers imagined
the Universe as being composed of different invisible and indivisible atoms moving in
void. Comparatively, we talk today of a very precise and finite number of elementary
particles. However, and in spite of this similitude, our world-view has since then sub-
stantially changed. Our comprehension of the elementary bricks of Nature distinguishes
itself greatly from the ancient atomism, not because we can actually measure the particles
but because of two fundamental facts: interactions and emergence. Both are essential
ingredients of the current most successful framework to describe the Universe at small
scales: Quantum Field Theory (QFT). We currently see particles as particular states of
quantum fields, which are objects with infinite strongly interacting fluctuating degrees of
freedom.

We confront ourselves with emergence, when we meet the laws of thermodynamics for
the first time. They are universal, they require no specific knowledge about the micro-
scopic degrees of freedom of a given material. Something similar happens in hydrody-
namics. We learn that a small number of parameters suffices to describe a system, and
we don’t need to characterise every single of the millions of atoms that constitute it. The
microscopic world thus influences the phenomena occurring at larger scales in a very
particular way. As we go from smaller to larger scales only some information prevails,
while much gets washed out. Being able to put the theory of scales into a solid theo-
retical framework has been one of the greatest achievements in the history of physics:
The Renormalisation Group (RG). The RG is a systematic way to go from the micro to
the macro, which has been pioneered by Kenneth G. Wilson in the 1970s [1]. The RG al-
lows us to ask what microscopic features are relevant and which become irrelevant as we
change the scale. Moreover it addresses the question about the limits where the scaling
ceases: the fixed points. If we could zoom in all the way down to scales smaller than the
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smallest known particle, perhaps, at some point, the picture doesn’t change anymore and
all we would see is the fabric of the space-time. If we could zoom out and see the Uni-
verse as a whole, perhaps we would see that the clusters of galaxies just build self-similar
structures, whose picture doesn’t change as we move to larger distances. These extremal
situations are fixed or scale-invariant points. In between the points there is a seemingly
hierarchical structure: elementary particles, atoms, molecules, proteins, cells, humans,
societies, planets, the visible Universe. Each of these realms can then be described by
a scale-dependent effective model. Thanks to the RG, the concepts of statistical contin-
uum limit and universality were properly understood. Universality means that two (or
more) systems, which at small distances are very different from each other, have the same
properties at larger scales. This led to a deep understanding of second order phase tran-
sitions in condensed matter physics. The concept behind the continuum limit is that the
emergent large-scale physics of condensed matter systems can be modelled through QFT.
In the 1970s QFT was also able to accurately explain the output of experimental particle
physics. However, the problem of infinities appearing in the computations had a merely
operational solution. With the RG it was understood that the infinities appeared as the
signal of a lacking characteristic length in the system. For example, in QED, the solution
is to introduce a scale at which one set the effective renormalised charge, defined through
the measured interaction at that scale.

Also in the 20th century the way to describe interactions changed radically through the
concept of gauge theories. According to this, forces between particles arise from vector
fields or, equivalently, from the associated force-carrier particles. The canonical example
of an (Abelian) gauge theory is the quantisation of Maxwell’s theory, QED. Almost 70
years ago, Chen Ning Yang and Robert Mills formulated the theory of local isotopic spin
rotations, today known as Yang-Mills theory (YM), in their paper [2]. Their theory models
the nuclear interaction by generalising QED to a non-Abelian gauge theory, called QCD,
where the gluon vector field interacts with itself and with the quarks. Gauge theories have
an underlying rich geometry, which resembles the mathematical fundaments of Einstein’s
gravity. However, within the frame of QFT and RG, there is much more to tell. YM theory
should be able to reproduce the short-range nuclear forces, however, as a non-Abelian
generalisation of the Maxwell equations, it describes massless waves, which propagate
at the speed of light. Having massless propagating modes is precisely what we want
when describing the electromagnetic field. However, if we intend to describe the nuclear
forces, this theory seems to be wrong. Puzzling enough, QCD correctly described the
bunch of strongly interacting massive particles (hadrons) discovered by the 1970s. From
the point of view of RG, this is actually not that surprising. Quarks and gluons are the
degrees of freedom at very small scales, where the interaction is vanishingly small. This
is the so-called asymptotic freedom, discovered by David Gross, Frank Wilczek and David
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Politzer in 1973. According to this, at very short distances the YM theory becomes a non-
interacting (or Gaussian) fixed point. In other words, at high energies the interactions
are Coulomb-like, as in electromagnetism, and the gluons are massless waves. When we
start zooming-out with the RG, the large-scale behaviour is determined by the interaction,
which becomes larger and larger. At large distances, the lightest particle in the spectrum
of QCD has a mass ∆ > 0. In this spectrum the gluons and quarks are inexistent as
free states and are confined inside the hadrons. Also, the vacuum is dominated by pairs
of condensed quarks. These three phenomena are still very poorly understood. One of
the Millennium Prize Problems of the Clay Mathematics Institute is to "prove that for any
compact simple gauge group G, a non-trivial quantum Yang-Mills theory exists on R4 and has a
mass-gap ∆ > 0"[3]. Thus, we don’t really understand how hadrons arise from gluons and
quarks. To understand that is necessary for our modern world-view, since these particles
make almost all of the visible Universe and thus we experience them every day.

These two observations on emergence and gauge theories suggest that the quest for
the ultimate description of Nature is very subtle. The problems that emergence poses
are as fundamental as the question of what the most elementary degrees of freedom are.
Both are indeed intertwined. To find a high energy description of Nature, we must assure
that it reproduces the effective theories of the phenomena we have learnt to understand
in the last decades. But our understanding of the low energy also depends on relevant
properties of the high energy degrees of freedom. In that sense, it is believed that the
global geometry of the gauge fields have an impact on the origin of their low energy
properties. In recent years also new proposals of emergence have appeared in the context
quantum gravity through an interplay of information theory and gauge-gravity dualities
[4], namely that the bulk space-time geometry (in the holographic sense) emerges from
entanglement entropy (and quantum complexity) of the quantum fields [5, 6].

Also related to string theory is the concept of supersymmetry (SUSY), which allows to
transform bosonic and fermionic degrees of freedom into each other. Mathematically,
SUSY is a graded extension of the isometry transformations of the space-time. It has been
part of many attempts to complete the Standard Model of particle physics by assign-
ing a superpartner to every known particle. That fermion-boson symmetry or degeneracy
leads to the cancellation of additive quadratic corrections to the mass of the Higgs boson,
which is often seen as unnatural. Although a large portion of the high energy physics
community were confident about the Large Hadron Collider at CERN to discover super-
symmetric particles 1, this has not been the case and the hope for SUSY to be discovered
near the electroweak (TeV) scale has pretty much vanished. Independently from the fact

1From 2000 until 2016 there was even a very famous bet among the leading scientists within high energy
physics. The mathematical beauty of SUSY led some of them to lose a bottle of expensive Cognac on the
non-discovery of SUSY particles by 2016.
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of whether SUSY is part of Nature or not, SUSY QFTs can be very useful in order to under-
stand how YM behaves at low energies. The reason is, roughly said, that the cancellation
between fermionic and bosonic quantum corrections leads to the fact that many features
at large scales can be exactly computed from classical contributions. A especial SUSY
model is the so-called Super Yang Mills (SYM) theory, whose field content is the YM field
plus its superpartner, the gaugino. This model shares many of the interesting low-energy
properties of QCD and thus may help us understand the origin of rather enigmatic phe-
nomena like quark confinement, quark condensation and a possible hidden underlying
relation between them.

It turns out that coupling more than one gaugino to the YM field yields very interest-
ing non-SUSY theories, also known as adjoint QCD. Depending on the number of gaug-
inos, these theories become fixed points of the RG at very large distances, or may well
have a very weak scale dependence. This latter property is essential within a family of
technicolour theories, which are, like SUSY, possible extensions of the Standard Model of
particle physics. These theories would solve the unnaturalness of having a fundamental
scalar Higgs boson by adding a strong interaction at high energies. Beyond that, studying
the evolution of adjoint QCD at low energies and their fixed points is an exciting subject
by itself, as understanding gauge theories in general may be a key part into a deeper un-
derstanding of our Universe. This mere theoretical understanding is important, because
of a difficulty that derives itself from the RG: if many of the short distance properties
of a system become irrelevant at large distances, then looking after the theory of every-
thing at our accessible energies may be out of reach. Especially the lack of experimental
evidence for new physics makes the progress of theoretical physics, where experiments
have historically played an essential role, especially difficult.

Yet, how can we tackle the difficulties of exploring the long distance properties of YM?
Also the RG, and Wilson, are key in this regard. With them we learn that QFT can describe
both elementary particles and also the emergent large-scale physics of condensed matter
systems. Hence, we can re-formulate the QFT we are interested in, in such a way that
it resembles a finite (strongly coupled and fluctuating) many body system. Then we can
use the tools of statistical mechanics to solve it. The reformulation or discretisation is
made in such a way that in the continuum limit, in the RG sense, the high energy theory
is recovered. The main ingredient behind this so-called lattice field theory is to replace the
space-time by a lattice and solve the finite system on a computer by means of Monte Carlo
methods.

In this work we use lattice field theory in order to explore the emergent behaviour of
SYM and adjoint QCD at large scales (i.e. low energies). In chapter 2 we introduce the
foundations of YM, Wilson lines and instantons. Then in chapter 3 we give an overview
on the most important aspects of the RG, which are relevant for our investigations. Also in
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chapter 3 we introduce the conformal window, which is the range of number of gauginos
with a low-energy fixed point. The generalities of SUSY, its algebra and the Witten index
are introduced in chapter 4. After that, in 5 we focus on the low-energy properties of
SYM: confinement, gaugino condensation and the chiral anomaly. Lattice field theory
and Monte Carlo simulations are handled in chapter 6. In chapter 7 we introduce the
Gradient Flow (GF). This is a method we combine with the lattice techniques. In classical
YM, the GF is a flow towards the minima of the classical action. We will see that in QFT
the GF is very useful. It allows to set a scale, to compute a renormalised coupling and
to compute expectation values of local composite operators, like currents and densities.
Moreover, under some circumstances, the GF can be related to the RG and thus it can
facilitate the computation of the scaling behaviour of operators. In chapter 8 we present
results of the thermal phase diagram of SU(2) and SU(3) SYM. In chapter 9 we explore
confinement and the Witten index in SU(3) SYM on a cylinder R3 × S1 and compare the
results with the thermal case. Finally, in chapter 10 we use the relation between the GF
and the RG to compute the scaling of the mass anomalous dimension in adjoint QCD and
its critical value at the fixed point.

The compilation of this work is solely due to the author. However, parts of this work
wouldn’t have been possible without the joint work with the members of the DESY-Münster-Jena-
Regensburg collaboration. Its members have provided the main C++ code which has been used to
generate the lattice configurations and to be the basis for the further development of the gradient
flow measurements. Part of the configurations, especially for the SU(2) gauge group, were part of
previous studies made by present and past members of the collaboration on the spectrum of super
Yang-Mills theory. Many of the SU(3) lattices have been generated by myself, while the config-
urations for the investigations of the conformal window have been provided by Istvan Montvay.
One of the most important contributions of the author to the code has been the implementation of
the gradient flow of the fermion condensate and of the anomalous dimension. All the data analysis
has been performed solely by the author, as well as the largest part of the anomalous dimension
studies. The investigations of super Yang-Mills theory have been done in collaboration with Georg
Bergner and Stefano Piemonte.
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Chapter 2

Yang-Mills theory

In the last decades YM theory has led to a cross-fertilisation between mathematics and
theoretical physics. While in physics classical YM describes the high-energy regime of
strong interactions, in mathematics it has led to important results in the characterisation
of the topology of four-manifolds [7]. In this chapter we review classical YM theory,
Wilson lines and the instantons. As we will encounter as we progress in this work, global
(topological) features of the fields are believed to play an important role in the low-energy
behaviour of YM theory. In most of the chapter we follow closely Ref. [8]. In the section
about instantons we additionally take as reference the nice lecture notes found in [9].

2.1 Classical Yang-Mills theory

YM is a theory of principal SU(N)-bundles with a locally defined connection A, also
called the gauge field, whose transition functions on the base manifold are gauge trans-
formations. Hence, both A and objects constructed out of it, are globally well-defined.
The connection lives on the tangent bundle at the group identity. In other words, it is in
the Lie algebra su(N) and can thus be written in the basis of Lie algebra generators Ti as

Aα = AaαTa, [Ta, Tb] = f cabTc, Tr(TaTb) = δab. (2.1)

From the connection we can find the curvature form F = dA+A∧A, which in turn defines
the gauge invariant action functional

SYM =

∫
M

(F ∧ ?F ) =

∫
M

|F |2 dV . (2.2)

SYM determines the dynamics through the principle of stationary action.
We callA a Yang-Mills field if it is a critical point of the action, i.e. if dAF = dA(?F ) = 0.

This condition is clearly a generalisation of the Maxwell equations for su(N) covariant
fields.
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2.2 Wilson lines

We discuss now how to describe the movement of an external particle (field source)
φ in the gauge bundle. We can describe particles as vectors in an associated bundle,
which transforms in some representation of the gauge group, e.g. the fundamental φi,
i = 1, · · · , N , for some general field φ. Similar to general relativity, where the movement
of matter is determined by the space-time geometry, a test particle would also be influ-
enced by the geometry (and topology) of the gauge bundle. The analogy is clear: the YM
connection Aµ describes the parallel transport of vectors, just as the Levi-Civita connec-
tion on curved manifolds. Accordingly, when φi is parallel transported, it gets rotated.
This phenomenon is similar to the Aharonov-Bohm effect in U(1) gauge theory, where a
test particle would pick up a phase after having been transported along a closed path. It
is moreover natural that the transport of the vector φi is given by a path ordered prod-
uct of SU(N) elements. As a consequence, if the curvature of the bundle is not trivial,
transporting φi along a closed path C would transform it as

φ′ = W [C]φ, W [C] = tr

{
P exp

{
i

∮
A

}}
. (2.3)

W [C] is nothing but the holonomy, also known as the Wilson loop and it is a gauge
invariant observable of the theory. Later we will see that Wilson loops can provide
insightful information into the low-energy behaviour of YM theory.

It is worth to point out that the present analysis of the parallel transport by considering
the particle as a vector is very simplistic. It should be understood to be valid only on the
classical level. Of course, in a more realistic semi-classical theory we should consider the
test particle to span a finite dimensional Hilbert space. Although it is a very nice exercise
to see how to quantise the degrees of freedom of φi, it lies outside the scope of this work.

2.3 The theta term and instantons

Let us remember the YM action in local coordinates (cf. Eq. 2.2)

SYM = − 1

2g2

∫
d4x tr(F µνFµν).

It is clear that we can also take into account another four-form, which is also gauge and
Lorentz invariant, namely
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Sθ =
θ

16π2

∫
d4x tr(?F µνFµν). (2.4)

This extra term is known as the theta-term. The theta-term carries with itself information
about the global topology of the gauge bundle. The reason for this is that P = tr(?F µνFµν)

is a characteristic class, more precisely the second Chern class, and thus its integral is a
topological invariant number, the second Chern number. More specifically, P is given by
the derivative of the Chern-Simons 3-form K:

Sθ =
θ

16π2

∫
d4x ∂µK

µ

Kµ = εµνρσ tr

(
Aν∂ρAσ −

2i

3
AµAρAσ

)
and we notice that, since dF = 0, it must obviously hold that P is closed, i.e. dP = 0. This
is how P defines a cohomology class, i.e. the second Chern class. If P is globally exact,
i.e. if P = dK with K globally defined, then one would expect Sθ to vanish. If we have
no global K, then the theta-term does not vanish. To see this let us compactify R4 on the
four-sphere S4 by including a point in infinity. We can cover the sphere with two charts
U+, U− in such a way that

U+ → S4 − {∞} , U− → ball around ∞.

Clearly U+ ∩ U− ' S3. Let us call the restrictions of K on the charts K+ and K−. Thus we
can write∫

S4

P =

∫
U+

dK+ +

∫
U−

dK− =

∫
S3

(K+ −K−) =

∫
S3

(K(A+)−K(A−))

where we make explicit de dependence of K on the connection. Since A change by a
gauge transformation Ω in the intersection U+ ∩ U−, the integral reads∫

S4

P =

∫
S3

(K(ΩA−Ω−1 + iΩ∂Ω−1)−K(A−)).

We note that the curvature F must vanish at infinity, i.e. on S3, otherwise we would
have infinite energy and the theory wouldn’t make sense. Therefore, A must be a pure
gauge. We can pick A− = 0, and thus A+ = iΩ∂Ω−1. It is thus straightforward to see
that the value of the integral is determined by the gauge transformations Ω alone. These
gauge transformations are indeed maps from the intersection manifold S3 on to the group
manifold, Ω : S3 7→ SU(N). They are, in fact, separated into different homotopy classes
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Π3(SU(N)) = Z. This means that gauge transformations are characterised by the times S3

wraps around the Lie group manifold, i.e. by the winding number n ∈ Z. For example,
if N = 2, we have SU(2) ' S3 and thus the homotopy classes are labelled by the winding
number of the map S3 7→ S3. It can be shown that, with the proper normalisation, the
winding number determines the value of Sθ

Sθ =
θ

16π2

∫
P = nθ, n ∈ Z. (2.5)

In other words, homotopic Ω elements give the same theta term. Since the contribution
of Sθ to the path integral is einθ, then θ ∈ [0, 2π).

The theta term is tightly related to the vacuum structure of classic YM theory. If the
vacuum is characterised by S = 0, then the curvature must vanish, i.e. F = 0. For this
to happen, A doesn’t have to vanish if it is a pure gauge, as stated above. But, since Ω is
divided in homotopy classes, we get different vacua labelled by the winding number n,
e.g. |n〉. One would be tempted to think that these vacua are isolated, since one cannot
deform, say Ω(m) → Ω(n). This is however not true. In fact, we can have field config-
urations that minimise the action with S 6= 0, which then allow to go jump among the
"different" vacua. To see which configurations are let us write the YM action, with the aid
of equations 2.4 and 2.5, as

SYM =
1

2g2

∫
d4x trF µνFµν =

1

4g2

∫
d4x tr(Fµν ∓ ?Fµν)2 (2.6)

± 1

2g2

∫
d4x trFµν ? F

µν ≥ 8π2

g2
|n|. (2.7)

It is obvious that SYM is minimised when the bound, also known as Bogomol’nyi bound,
is saturated and that this happens when

Fµν = ± ? Fµν , (2.8)

i.e. when the curvature is self-dual or anti-self-dual. These special field configurations
not only minimise the action but they also have a non-vanishing winding number n.
They are called instantons and because of them the winding number is also known as
instanton number, among other several names found in the literature. The instanton
equations actually imply the equations of motion. It can be furthermore shown that an
instanton with winding number k yields the tunnelling amplitude between two vacua
|m〉 → |m+ k〉.

The existence of instantons interpolating the topological vacua gives us a glance at
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how the vacuum of YM theory may look like. In the semi-classical approximation of the
path integral, instantons have the main contribution and one can describe the ground
state of the theory as the overlap of all topological vacua

|θ〉 =
∑
n

eiθn|n〉.

Here the tunnelling between different |θ〉-vacua is forbidden by a super-selection rule
and thus θ is a parameter of the theory that cannot be changed. Moreover, different
theta values describe physically inequivalent theories, since θ 6= 0 breaks CP symmetry
explicitly.

Instantons are very interesting objects. As we saw, they are gauge bundles with non-
vanishing second Chern class and self-dual curvature. Therefore, they carry information
about the global topological properties of the base manifold on which the theory is de-
fined. This rises the question about the usefulness of instantons in order to describe the
physics of YM theory. As we saw above, they seem to characterise pretty good the ground
state of the theory through the semi-classical approximation. However, as we will shortly
see, this is not necessarily true. Let us get a feeling of what is going on by looking at the
SU(2) YM. An instanton with n = 1 can be easily constructed for this gauge group1:

Aµ =
1

x2 + ρ2
ηiµνx

νσi, Fµν = − 2ρ2

(x2 + ρ2)2
ηiµνσ

i

here ηiµν are three 4×4 self-dual matrices, which are an irreducible representation of su(2),
also known as ’t Hooft matrices. We don’t give their explicit form here, as we don’t really
need it. Moreover σ are the Pauli matrices and ρ parametrises the size of the instanton.
It can be shown that the contribution of one n = 1 instanton to the path integral in the
semi-classical approximation is

Z =

∫
DAe−SYM+iSθ ≈

∫ ∞
0

dρ f(ρ)e−8π2/g2

eiθ.

Here f(ρ) contains the Jacobian of the change of variables in the path integral and also
the determinant of the expansion of the action up to quadratic order in the fluctuations
around the instanton. Without going into the details, this integral diverges as ρ becomes
large. This means that the main contribution is carried by large instantons. This is a
big problem since, as we know, in the quantum theory the coupling of YM runs and

1This is not the only form the n = 1 instanton can take. In fact, there is the ADHM construction, which
allows to find all the possible instantons for a given winding number n in SU(N). There are, in total, 4Nn
solutions to Eq. 2.8.
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gets strong at low energies / long distances. At strong coupling the semi-classical
approximation is however no longer valid. As a result, instanton calculations cannot
describe the low energy behaviour of YM theory.

Nevertheless, the failure of the semi-classical approximation doesn’t mean that study-
ing instantons is useless at all. Later in this work we will see that instantons play an in-
teresting role in the physics of YM when coupled to matter, specifically in the appearance
of the chiral anomaly. Moreover we will learn how instanton contributions yield exact
results in supersymmetric theories and that there is a very interesting relation between
supersymmetry and instantons. Instantons have also been highly useful in mathematics
and mathematical physics. A great example is the work of Donaldson, as he used instan-
tons to find new topological invariants and develop new theorems for four-manifolds
[7]. His results are in fact ultimately related to the later work of Witten and Seiberg on
supersymmetric gauge theories [10].
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Chapter 3

The renormalisation group and the
conformal window

Throughout this chapter we will focus on the qualitative aspects of the RG, which are
necessary for the introduction of the conformal window and for the understanding of the
idea behind lattice field theory. We explore the Wilsonian RG from a rather conceptual
point of view and hence don’t include the machinery behind the functional RG. We take
as a guide the references [11][12][13].

3.1 Short review of the RG

If we wish to describe the interactions of particles as seen in some given experiment, we
usually write down the partition function Z of a QFT with an UV cut-off, as we don’t
really have information about what happens at infinitely large energies. There is some
freedom in choosing the cut-off (or scheme). It can be sharp or smooth, in momentum
or in real space. Let us consider a very general d dimensional theory with fields φ. The
partition function is given by

Z(Λ0, g
i
0) =

∫
Λ<Λ0

Dφ e−S[φ0,g0],

SΛ0 [φ0, g0] =

∫
ddx

(
1

2
(∂µφ)2 +

∑
i

Λd−di
0 gi0Oi(x)

)
,

where di is the dimension of the operatorsOi and gi are the couplings. For the illustrative
purposes of this section, we choose a sharp UV cut-off Λ0 in momentum space, which
leads to a clear picture of what the RG is about. In practice, in the context of the functional
RG, it is custom to work with soft cut-off functions (see for example [14]). If we are
interested in energies µ � Λ0, we are free to change the cut-off down to some Λ1, if
µ � Λ1 < Λ0, without altering the physics at µ. We explicitly decompose φ into its low
and high energy parts, i.e. φ = ϕ+ψ respectively. The measure can thus be written simply
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as Dφ = DϕDψ. We then integrate over all modes with momentum Λ1 < |p| < Λ0, i.e.
over ψ, finding the effective action at Λ1 to be given by

e−S
eff
Λ1

[φ] =

∫
Λ1<|p|<Λ0

Dψ e−S[φ0,g0]. (3.1)

This is the first step of a RG transformation, also known as coarse graining. Of course, this
process of integrating over high momenta modes can be systematically repeated. In every
step we can write the effective action from the original one by absorbing the information
of the integrated modes in the renormalisation of the fields and couplings. The effective
action can be written in general as:

Seff
Λ =

∫
ddx

(
zΛ

2
(∂µφ)2 +

∑
i

Λd−diz
ni/2
Λ gi(Λ)Oi(x)

)
, (3.2)

where gi(Λ) are the effective couplings at Λ, and zΛ are the wave-function renormalisation
factors.Since we have just integrated over a finite momentum shell of our integral, the
partition function Z should not change. The derivatives of Z, i.e. the correlation function
〈φ(x1) · · ·φ(xn)〉 ≡ Gn

Λ(x1, · · · , xn; g(Λ)), should remain the same up to renormalisation
factors of the fields. It follows a so-called Callan-Symanzik equation

Λ
dG

(n)
Λ

dΛ
=

(
Λ
∂

∂Λ
+ βi

∂

∂gi
+ nγφ

)
G

(n)
Λ (g) = 0. (3.3)

From this we can see that the integration of the higher modes is compensated by a change
in the couplings, which is described by the β-functions, and in the normalisation factor of
the kinetic term, which is described by the the anomalous dimension γφ:

βi = Λ
∂gi
∂Λ

, γφ = −1

2
Λ
∂ ln zΛ

∂Λ
.

A consequence of the Callan-Symanzik equation is that, when integrating between
(sΛ0,Λ0) for some s < 1, the correlation functions would change as

G
(n)
sΛ0

(x1, · · · , xn; gi(sΛ0)) =

(
zsΛ0

zΛ0

)n/2
G

(n)
Λ0

(x1 · · ·xn; gi(Λ0)). (3.4)

Here we encounter a problem. We have integrated out a momentum shell but the result-
ing theories explicitly depend on different cut-offs. To be able to compare the different
effective theories, we have to rescale all momenta and distances, so that the cut-off Λ0

is restored. Equivalently, if we are working in real space with a lattice cut-off a, coarse-
graining would leave us with a coarser space-time a/s, and it would be necessary to
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rescale the lattice, i.e. to "zoom out". This is then equivalent to look at the theory from
larger distances. A scale transformation that leaves the action invariant is given by

Λ0 → Λ0/s, xi → sxi φ(sx) = s(2−d)/2φ(x).

Inserting this into the lhs of Eq. 3.4 yields

G
(n)
Λ0

(x1/s, · · · , xn/s; gi(Λ0)) =

(
s2−d zΛ0

zsΛ0

)n/2
G

(n)
Λ0

(x1, · · · , xn; gi(sΛ0)), (3.5)

where we have changed all the original operator insertion points xi → xi/s. We notice
that, as this is a mere rescaling, the coupling constants don’t change. We know that the
correlators must depend on the distance between the insertion points, i.e. |xj − xi|/s. If
we consider correlators within the original theory, i.e. gi(Λ0), taking s → 0 on the lhs
means that the insertion points are very far away from each other or, in other words, that
the correlators are probing the long-distance (IR) properties of the theory. The rhs then
tells us that this long-distance behaviour is described by theory at sΛ0, with the insertion
points left constant. The factor sn(2−d)/2 on the rhs of Eq. 3.5 accounts for the classical
scaling of the correlation functions, as the field φ has mass dimension (d− 2)/2. The non-
trivial scaling part is given by zΛ0/zsΛ0 . This ratio is, of course, related to γφ and it carries
information about the quantum corrections to the classical scaling behaviour. Writing
s = 1− δs, with δs infinitesimally small, one finds for each φ insertion in G(n)

(
s2−d zΛ

zsΛ

)1/2

≈ 1 +

(
d− 2

2
+ γφ

)
δs

The rescaling is the second step of a RG transformation. For the effective action Seff
Λ in Eq.

3.2 to look like the action at Λ0, a third and final step is necessary, namely the redefinition
of the fields φ → φ′ = z

1/2
Λ φ, so that the kinetic term is canonically normalised. A RG

transformation is thus a map

Rs(S[Λ, gi(Λ)]) 7→ S ′[g′i(sΛ), zsΛ],

consisting of the three steps mentioned above. Clearly, applying two consecutive RG
transformations is equivalent to applying one transformation with a smaller step s.
It thus holds that RaRb → Rab. Historically, this property suggested the name of
renormalisation group. However, since integrating out is a non-reversible process, there
is no inverse element such that R−1

a Ra = 1 and so it is actually a semigroup. We can
imagine all possible couplings gi to span an infinite dimensional configuration space
M, where each point correspond to a different theory and the RG transformations map
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theories into each other. Then, starting at some given point, the application of successive
Ri generates a flow onM. We can parametrise this flow by the flow-time t = − log(s),
so that Λ(t) = Λ0e−t. As we saw, R continuously changes the coupling and then, for
large flow-times t, we would either end up with a coupling running all the way up to
infinity or hit a fixed point where βi(g∗i ) = 0. These fixed points are invariant under RG
transformations and thus are scale invariant. The irreversibility of the RG flow was
formally proved in two dimensions in [15] through the c-theorem. Accordingly, a function
c(g) was proposed which monotonically decreases with the RG flow, i.e. cIR < cUV , and
whose value at the fixed points is the central charge of the conformal field theory (CFT).
In four dimensions a generalisation of the c-theorem, the so-called a-theorem, was proved
in [16].

It is frequently said that the scale invariant fixed points correspond to CFTs1. However,
the equivalence of scale and conformal invariance is not yet fully proven. A proof exists
only in two-dimensions, and was given by Polchinski in [17]. In higher dimensions a
proof of the conformal symmetry enhancement is still missing. However, it has been
shown that if the trace of the energy-momentum tensor can be written as

T µµ = ∂ρ∂σLρσ, (3.6)

for some local operator L, then there exists a conserved conformal current. With this
observation, the authors [18] argued that in four dimensions unitarity and scale invari-
ance imply Eq. 3.6 and, as a consequence, conformal invariance 2. When we discuss the
conformal window, we will assume that this argument hold and that the fixed point is
conformal.

To gain information about the RG flow, it is interesting to look at the vicinity of a
fixed point S∗(gi∗), which would be parametrised by small perturbations of the couplings
gi = g∗i + δgi. The behaviour of these perturbations is then given by expanding βi up to
leading order in δgi:

βi(g
∗
i + δgi) = Bijδgj +O(δg2

j ).

This makes explicit the fact that R can in general mix the couplings. If we diagonalise
Bij we can write in terms of the eigenvectors σi and eigenvalues λi

Bσi ≡ ∂tσi = λiσi ⇒ σi(t) = σi(0)eλit.

1In the CFT the correlation length either ξ = 0 or ξ = ∞ and thus the correlators follow a power
law, which only depend on the separation of the insertion points and the scaling dimensions. This can be
inferred from Eq. 3.3

2Additional discussions on this subject can be found in the review article [19]
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We see that if λ > 0 then σi runs unbounded with t. This is a relevant deformation that
takes us away from the fixed point. If λ < 0 the perturbation gets smaller with t and even-
tually brings the flow back to the fixed point. This is an irrelevant deformation. The case
λ = 0 is a so-called marginal deformation. In general, the number of couplings defining a
given theory is infinite. However, almost all of them are irrelevant. The set of irrelevant
couplings span an infinite dimensional sub-manifold of the theory space called the criti-
cal manifold C. All theories lying exactly on C, i.e. with no relevant operators turned on,
will, after some flow-time, reach S∗. This lies at the heart of universality, as theories that
look very different at high energies, are described by the same theory in the IR. Notice
that turning on a relevant coupling would shoot the flow away from S∗, unless we tune
it properly.

Until now we have said nothing about removing the cut-off, i.e. taking the continuum
limit. Being able to do this means that our theory is valid up to arbitrary short distances.
Let us suppose we are interested in probing the theory at some low energy ΛR. If we are
sitting on the critical surface, sending Λ0 → ∞ means that we need increasingly longer
flow-times to reach ΛR by consecutive actions of R, i.e. t→∞. As a consequence, we hit
the fixed point. However, we know that theories used to describe Nature are not CFTs
(with the exception of critical systems). If we want to describe a non-scale-invariant the-
ory at ΛR, which also makes sense in the continuum limit, we must fix the finite relevant
coupling g(ΛR). This can be done, for example, by measuring some observable in an ex-
periment. We the then tune the bare relevant coupling so that σ → 0 as Λ0 → ∞, i.e.
towards C. We call g(ΛR) the renormalised coupling, whose definition depends on the new
scale ΛR (or scheme). Consequently, the effective theory at ΛR is originated from an UV
fixed point, by turning on a relevant deformation. A nice example of such a theory is,
indeed, YM theory where the relevant direction is given by the YM coupling. This can be
seen from the sign of the β-function at one loop

β(g) = µ
dg

dµ
= β0g

3, β0 = −11

3

N

(4π)2
. (3.7)

The coupling grows as we flow down to the IR and vanishes towards the UV, i.e. we find
a UV Gaussian fixed point. This is the asymptotic freedom we mentioned in chapter 2.
It turns out that the contrary happens in QED, where the β function has a positive sign,
so that the theory gets weaker in the IR, where the effective charge e(µ) of the electron
diminishes. Such a phenomenon can be rather intuitively explained through the charge
screening of one external electron by a cloud electron-positron pairs. But how can we
picture the opposite effect in the YM case? We can certainly think of a kind of colour-
electric anti-screening. In fact, anti-screening in the YM vacuum appears simultaneously
with paramagnetism, which arises from the spin of the gauge field.
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3.2 The Yang-Mills conformal window

Up to this point we have discussed the properties of classical and semi-classical YM, as
well as the generalities of the RG flow. In last section we saw that YM theory has a non
interacting UV fixed point and that, at least at one loop order, the coupling grows without
bounds with increasing length scale. When we couple YM to Nf Dirac fermions in the
R representation of SU(N), the scheme-independent (universal) one-loop and two-loop
coefficients of the β-function take the form [20]

β(g0)2−loops = β0g
3
0 + β1g

5
0, β0 = − 1

(4π)2

(
11

3
C2(adj)− 4

3
TRNf

)
,

β1 = − 1

(4π)4

(
34

3
C2(adj)2 − 20

3
TRNfC2(adj)− 4TRNfC2(adj)

)
where C2(adj) is the quadratic Casimir of the adjoint representation and TR the normali-
sation of the generators. Since we are interested in fermions transforming in the adjoint
representation, we have C2(adj) = Tadj = N . We thus reproduce Eq. 3.7 if Nf = 0. We
notice that the two-loop beta-function has a non trivial fixed point at g2

∗ = −β0/β1. As
we increase Nf , we find a zero at some Nu

f . For Nf > Nu
f the β-function become positive

and the coupling would hence grow with the energy, missing the UV fixed point, i.e. we
lose asymptotic freedom. At the same time, the coupling goes to zero in the IR, i.e. it hits
an IR free fixed point. These kind of theories have no well-defined continuum limit. As
we lower the energy, we need to add higher loop corrections to the β-function. We thus
change the zeroes of β and span an interval of possible Nf values that lead to IR fixed
points with different critical g∗. We denote the lowest flavour number N l

f . The interval
N l
f < Nf < Nu

f is called the conformal window. In that region we have UV and IR fixed
points. If the critical coupling is g∗ � 1, we talk of a Banks-Zaks fixed point. This portion
of the conformal window can be investigated perturbatively. Below N l

f we miss the IR
fixed point and the coupling grows at long distances, as in the pure YM case. We then
expect to find confinement and chiral symmetry breaking. We will say more about these
two phenomena when we discuss the supersymmetric version of YM theory, which is
surely below the conformal window.

Since at the lower edge of the conformal window the critical coupling g∗ is large, we
cannot employ perturbation theory and thus the exact determination of N l

f is a non-
perturbative problem. Indeed, for general gauge theories this is still an open problem,
with exact computations being only possible for some models with extended supersym-
metry. In chapter 10 we will explore the conformal window of adjoint QCD, i.e. YM
theory coupled to Nf adjoint fermions, on the lattice.
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Chapter 4

Supersymmetry

In this chapter we learn how the dynamics of SUSY models are greatly constrained by the
underlying supersymmetry. We will moreover briefly discuss on the intriguing relation
between instantons and SUSY, which allows instanton computations to yield exact non-
perturbative results. This relation is related to further advances made in mathematics,
which were initiated by Witten [21] after the work by Donaldson we mentioned earlier.
These advances ended up in the Witten-Seiberg theory of the electric-magnetic duality in
N = 2 SYM [22, 23].

4.1 Algebraic aspects of SUSY

In the 1960s Gell-Mann’s eightfold way successfully organised all the experimentally
known hadrons in SU(3) multiplets. This triggered the attention of the particle physics
community to look for more general multiplets, which could also include particles with
different spins. One of the proposals back then (see Ref. [24]) was that this SU(3) flavour
symmetry of quarks could be extended to a SU(6) group, where different spins and
strangeness numbers would be part of a single super-multiplet. The three flavours of
quarks (up, down and strange), and their two spin projections (up and down), would
be part of a single multiplet. This kind of unification ideas got however greatly restricted
in 1967, as Coleman and Mandula published their very famous no-go theorem [25]. This
states that, in an interacting theory, the most general symmetry of the S-matrix is a direct
product of the Poincaré group times internal symmetries. The reason behind this theorem
is that the existence of any conserved tensorial charge different than the momentum Pµ,
the Lorentz generators Jµν and some Lorentz scalars Bk, would make the S-matrix trivial.
However, a loop-hole in the Coleman-Mandula theorem allowed Golfand and Likhtman
[26] to give birth to SUSY in the early 1970s. The loop-hole is that, although tensor charges
are excluded, the theorem doesn’t consider the case of having spinor charges. In [27] all
possible supersymmetries of the S-Matrix were classified.
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4.1.1 SUSY Algebra

The generators of the Poincaré algebra are Bk, Pµ and Jµν , which transform in the bosonic
(0, 0), (1

2
, 1

2
) and (0, 1) ⊕ (1, 0) representations of SL(2,C). The space-time symmetries of

a supersymmetric QFT include, in addition,1 the spinor charges Qα and Q†α̇, which trans-
form in the (1

2
, 0) and (0, 1

2
) representations, respectively. In general, we are not restricted

to have a single supercharge. Thus, to keep the discussion as general as possible, let us
consider N supercharges. These satisfy the relations

{Qiα,Qj†α̇ } = 2δijσµαα̇Pµ, [Qiα, Pµ] = 0, [Jµν ,Qiα] =
1

2i
(σµν)

β
αQiβ, (4.1)

where i = 1, · · · ,N . These relations are, in turn, invariant under a so-called R-symmetry,
which is generated by the elements Tr in some representation r

[Tr,Qiα] = (tr)
i
jQjα,

where (tr)
i
j are the structure constants. Clearly, in the case whereN = 1 this R-symmetry

is only given by U(1). By includingQ, we extend the Lie algebra of the Poincaré group to
a so-called Lie superalgebra, whose underlying vector space is a Z2 graded vector space
V . This graded vector space is the set-theoretical union of an even (bosonic) subspace V0

and an odd (fermionic) one V1 [28], i.e.

V = V0 ∪ V1 with [V0, V0] ⊂ V0, [V0, V1} ⊂ V1, {V1, V1} ⊂ V0.

Eq. 4.1 yields moreover that the Hamiltonian of a supersymmetric QFT is a non-negative
operator

H ≡ P0 =
1

4
(Q1Q†1 +Q†1Q1 +Q2Q†2 +Q†2Q2), (4.2)

which is manifestly non-negative, as it is given by the squares of supercharges. From
this follows that the spectrum of the Hamiltonian has no negative eigenvalues. Thus,
the lowest energy in the theory is zero, corresponding to the vacuum annihilated by the
supercharges. It turns out that SUSY is not spontaneously broken only if the vacuum state
has zero energy, what can be corroborated by noticing that

if H|0〉 6= 0 ⇒ Qiα|0〉 6= 0 or Qi†α |0〉 6= 0

1In the case that conformal symmetry is not broken, we would have in addition dilations and special
conformal transformations.
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and the ground state wouldn’t be invariant under SUSY transformations. As we will
see below, each excited state has a corresponding superpartner with a spin increased or
decreased by 1

2
. Moreover, the members of such a super-multiplet share the same mass,

as a consequence of the commutation between Q and Pµ.

Let us briefly comment on the missing commutators in 4.1, namely {Q,Q} (and h.c.).
In some cases, like in SUSY QM, this commutator vanishes. However, this doesn’t hold
in general, as shown in Ref. [27]. Indeed, if N > 1, the commutator must be a linear
combination of operators in the irrep (0, 0) and (1, 0) of the Lorentz group. The only tensor
satisfying this condition is the self-dual part of Jµν . However, this cannot be the case as
the term doesn’t commute with Pµ, contradicting the algebra relations. The commutator
must thus be proportional to an element Zij , which commutes with all other elements of
the superalgebra, i.e. an element of its centre

{Qiα,Qjβ} = 2εαβZ
ij, {Qi†α̇ ,Qj†β̇ } = 2εα̇β̇Z

ij†. (4.3)

As Zij commutes with the space-time symmetries, it must be a linear combination of the
R-symmetry generators, i.e. Zij = αijr Tr. These Zij are called central charges. Later, in the
context of N = 1 super Yang-Mills theory, we will see that also the theory with minimal
SUSY admits a kind of central extension in the presence of topological defects.

4.1.2 Representations

Let us first consider massive states without central charges. Massive representations of
the Lorentz group are characterised by their mass m, total spin s and one component of
the spin, e.g. s3. Accordingly, a given one-particle state in Fock space can be written as
|m, s, s3〉. In a rest frame the momentum operator would be given by Pµ = (m,~0), and
the SUSY algebra is just {Qiα,Qj†α̇ } = 2Mδαα̇δ

ij . To construct the representations, we need
to identify a vacuum state |Ωs〉, which is usually called the Clifford vacuum, together with
creation and annihilation operators, which change the spin by ±1

2
. For the theory to be

supersymmetric, |Ωs〉 must be annihilated by the supercharges. Following [29], one can
write

|Ωs〉 = Q1Q2|m, s′, s′3〉 ⇒ Q1|Ωs〉 = Q2|Ωs〉 = 0,

which is a consequence of the supercharges being anti-commuting. With this observation,
we can consider Qiα as an annihilation operator and Qi†α̇ as a creation one. A general state
is then just Qi1†α1

· · · Qin†αn |Ωs〉. In general, there are 4N states which can be constructed by
acting with the supercharges on a single |Ωs〉. The maximal possible spin is smax = s+ N

2
.
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Moreover, one gets different kind of super-multiplets, depending on the spin of the
Clifford vacuum.

Massless states are labelled by their energy E and helicity λ. Here we can choose a
frame Pµ = (E, 0, 0, E), yielding {Qiα,Qj†α̇ } = 2Eδij(σ0 + σ3)αα̇ ⇒ {Qi2,Qj†2̇ } = 0. This
means that Qi1 (Qi†

1̇
) are the only annihilation (creation) operators. As a result, massless

super-multiplets are shorter than the massive ones2, since there are only 2N states.

In N = 1, we usually call the super-multiplets chiral if the Clifford vacuum is |Ωs=0〉,
and vector if one starts with |Ωs=1/2〉. The relevant SUSY model in this work is the N = 1

massless vector super-multiplet. This is constructed starting with the vacua with helicities
λ = 1 and λ′ = −1/2, yielding a massless vector boson A, i.e. the gauge field, and a Weyl
fermion λ, called the gaugino. This model is indeed the minimal supersymmetric YM
theory, which will be extensively discussed throughout the next chapters. Because of
SUSY, the fermion must transform, like A, in the adjoint representation of SU(N). The
on-shell action with θYM = 0 is given by

S =

∫
dV

[
−1

4
TrFµµF

µν +
i

2
Tr
(
λ̄ /Dλ

)]
where Dµ ≡ ∂µ − ig[Aµ, ·] is the gauge-covariant derivative and g the coupling constant.
This action is invariant under the infinitesimal SUSY transformations δε

δεAµ = iε̄γµλ, δελ = iF µνΣµνε (4.4)

where ε is a Majorana spinor, which generates the transformations. In the upcoming
chapters we will go deeper into the details of the low-energy dynamics of this theory.

4.2 The Witten index

Back in the 1980s, Witten proposed in Ref. [30] a constraint on the spontaneous breaking
of SUSY, based on the index which now carries his name:

∆ = Tr(−1)F = nE=0
B − nE=0

F , (−1)F = e2πiJz , (4.5)

where F is the fermion number, i.e. F = 0 for bosons and F = 1 for fermions. The index
4.5 is only given by the zero-energy modes, since the excited ones cancel each other,
thanks to the Fermi-Bose degeneracy of SUSY. If ∆ 6= 0, then SUSY can’t be spontaneously

2The construction of the multiplets goes analogously to the massive case. However, CPT symmetry
requires the helicities −λ to be included.
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broken. The reason behind this is that a zero index reflects an unbalance between the
number of bosonic and fermionic ground states. This unbalance rules out the possibility
for the ground state to form a super-multiplet, which could have a non-zero energy and
then break SUSY. Witten’s idea was to identify a topological-invariant-like quantity of
the SUSY QFT3, as perturbation theory is not reliable to determine whether the vacuum
energy is zero or not. Having a topological invariant moreover allows the theory to be
deformed in convenient ways. Witten considered a SUSY QFT on a torus, as having a
finite volume discretises the spectrum of the Hamiltonian, making the pairing of the
excited states evident. Moreover, if the ground-energy is zero at finite volume, it will
remain to be zero at infinite volume. An important observation is that the zero modes are
not paired and nF and nB can take arbitrary values. Moreover, smoothly deforming the
theory, i.e. changing the volume of the torus and the coupling constants, would modify
the spectrum as follows. Some Bose-Fermi pairs with zero-energy could get a positive
energy and thus nF and nB would decrease by one. As a result, the difference nB − nF
would not change. Since this difference is insensitive with respect to how we deform
the theory, one can take convenient limits, where it is easiest to compute. If the result is
different from zero, then we can be sure that SUSY is not broken, although having ∆ = 0

doesn’t necessarily imply that SUSY is broken4.

A final remark is necessary. The trace in Eq. 4.5 runs over the all states of the Hilbert
space, and it must be regulated in order to be well-defined. The following regulation

∆ = Tr
(
(−1)F e−βH

)
(4.6)

will be for us, in fact, the definition of the Witten index. We will compute the derivative
of this quantity for SU(3) N = 1 SYM in chapter 9.

3It is important to notice that the topological invariant concerns the whole theory and not single field
configurations.

4At this point it is necessary to comment on the subtleties of the previous discussion. Firstly, although
one could be concerned with regard to how Witten’s argument would change in the presence of ultravi-
olet divergences, one should take into account that the index is sensitive with respect to the zero-modes
alone. The second subtlety deserves important attention and concerns the potential energy for large field
strengths. Although it seems that we are free to deform the theory as we like, there could be a discontinu-
ity in ∆ = Tr(−1)F if a deformation changes the asymptotic behaviour of the potential in field space. This
would allow for new zero-modes to move from or out to infinity. In other words, large theory deformations
could drastically change the original Hilbert space and the whole argument would be invalid. This subtlety
is more deeply addressed in the original paper by Witten.
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4.3 Instantons and non-perturbative SUSY

Non-perturbative physics in SUSY models is particularly accessible to analytical meth-
ods. The reason is the Fermi-Bose degeneracy and the special underlying relation be-
tween instantons and SUSY. Recalling the transformations 4.4, it turns out that the self-
dual instanton equation F = ?F implies F µνΣµνε = 0, i.e. the SUSY transformations ε are
preserved in the presence of an instanton, while the other half (ε̄) are broken, as it gener-
ates fermion zero modes λ̄ = F µνΣ̄µν ε̄ [9]. This is a rather intriguing observation, since
general background fields do break SUSY completely. Because the instantons preserve
SUSY, this property still holds for the fluctuations around them. This is extremely useful.
In double expansion, i.e. semi-classical plus perturbative

e
− 8π2

g2 (c0 + c2g
2 + c4g

4 + · · · )

the Fermi-Bose degeneracy ensures that the loop expansion vanishes to all orders. In
this case instanton computations yield exact results [31]. In some cases, multi-instanton
calculus is necessary. However, in many practical problems already one-instanton com-
putations are exact [32]. For example, since all perturbative corrections to the vacuum
energy vanish, a non-zero vacuum energy, i.e. spontaneous breaking of SUSY, can only
arise non-perturbatively through instantons. This also applies for low-energy phenom-
ena in SUSY YM like confinement and gaugino condensation, which we will discuss in
upcoming chapters.
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Chapter 5

Low energy N = 1 super Yang-Mills
theory

In this chapter we focus on the low-energy features of N = 1 SYM, especially on con-
finement and the spontaneous breaking of chiral symmetry. The IR of YM, and QCD-like
theories in general, is highly non-trivial and can’t be tracked analytically. Especially
confinement is one of the most prominent puzzles in theoretical physics [33]. In the IR
QCD-like theories are strongly coupled and thus both perturbative and semi-classical
analysis of instantons fail. An ideal toy model to study how QCD-like theories behave
in the IR is N = 1 SYM. The reason for this is two-fold. First, as mentioned earlier, the
interplay between SUSY and instantons makes instanton computations exact, and thus
the properties of the SUSY ground state are analytically accessible. Secondly, N = 1

SYM is the only QCD-like theory with SUSY. With QCD-like we mean four-dimensional
asymptotically free and confining gauge theories without elementary scalars. Indeed,
some models with extended SUSY are under analytical control and exact results have
been found. For example, the work by Seiberg and Witten in N = 2 SYM showed that
in that theory confinement arises from monopole condensation [22]. However, these
theories always have scalars, which can’t be really removed from the theory, without
changing the physics [34].

As we will see, SUSY allows for the exact computation of the beta-function in N = 1

SYM. It moreover leads to the proof of gaugino condensation at zero temperature, where
the theory is furthermore confining. The theory has a mass-gap and its low-energy spec-
trum was analytically predicted by Veneziano and Yankielowicz (see Ref. [35]) to consist
of a chiral super-multiplet of mesons and a gaugino-glue state. Later, this picture was
extended to include glue-balls in Refs. [36, 37]. The formation of the spectrum has been
studied on the lattice for SU(2) and SU(3) gauge groups in [38–40].
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5.1 Symmetries and anomalies of SYM

In this section we would like to discuss the symmetries of SYM in the IR. Regarding
gauge invariance, contrary to extended SUSY models, there are no scalars that can trigger
a Higgs mechanism and thus the SU(N) redundancy prevails1. In general, the symme-
tries of the classical action can be anomalous, i.e. they may not be a symmetry of the path
integral. Moreover, quantum symmetries may be spontaneously broken, i.e. they may not
be a symmetry of the ground state. Anomalies are stable with respect to the renormalisa-
tion group, meaning that they are reproduced at all energies [41]. Spontaneously broken
symmetries can however be restored, and this is often related to phase transitions.

When we discuss confinement, we will mostly rely on Ref. [33]. We will moreover
notice that confinement is naturally discussed in the terms of lattice field theory. Indeed,
this phenomenon is thought to arise from the non-triviality of the vacuum, through the
global properties of the gauge bundles. As we discuss in chapter 6, the gauge fields on
the lattice are described by group (instead of algebra) elements. This feature makes the
lattice formulation more sensitive to the global properties of the theory.

5.1.1 Scale invariance

Without a soft-breaking gaugino mass term, the classical action of SYM is scale invariant.
This is can immediately be seen from the fact that the couplings of the Lagrangian are
dimensionless. However, the quantum theory is not scale invariant, as the coupling is
scale dependent and this dependency is encoded in the beta-function. More specifically,
in order to have scale invariance on the quantum level, we must have a conserved dilation
current2 ∂µJdµ = 0. It is also a well-known fact that ∂µJdµ = T µµ [42] and thus the theory is
scale invariant if the energy-momentum tensor is traceless. It is however not the case, as
it holds the trace anomaly [43]3

T µµ ∼ β(g)(F aµνF a
µν).

Scale invariance is thus explicitly broken once we turn on deformations that push the
theory away from the fixed point. In other words, it amounts to add operators to the CFT,
which explicitly break the conformal symmetry.

1Later in chapter 9 we will see that the symmetry can be Higgsed through compactification.
2On the quantum level, these equations are understood as operator equations, i.e. to be valid inside

correlation functions with arbitrary operator insertions.
3This trace anomaly has a slightly different nature than the trace anomaly in CFTs. A conformal theory

on flat space can get a trace anomaly when a background curvature is turned on Tµµ ∼ cR, where R is the
Ricci scalar and c the central charge.
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5.1.2 Centre symmetry and confinement

A sidenote on what we mean by confinement

It is worth to devote a couple of words to explain what we actually mean when we talk
about confinement. Although this concept is widely used in the literature, it is often not
clear what physicists actually mean by it (see Ref. [33] for a thorough discussion on the
subject). We would like to distinguish among confinement as

• A mass gap ∆, i.e. that the Hamiltonian H has no eigenvalues in (0,∆).

• The existence of only colour-singlets in the spectrum.

• A linear-growing inter-quark potential, up to string breaking.

All these properties lead to a spectrum where quarks are "trapped" inside hadrons and,
especially the last two, are often labelled as confinement. A colour-singlet spectrum is,
however, also seen in gauge-Higgs-theories with fundamental Higgs [44][45]. Indeed,
in some limit the Higgs condensate screens the colour-electric field. Moreover, there is
no phase transition associated to this. Although in QCD there is actually no deconfine-
ment phase transition but a crossover, one hopes to understand the mechanism behind
confinement by exploring QCD-like theories like SYM, which actually has a phase tran-
sition. Therefore, in this work we consider confinement as the linear potential between a
quark and an anti-quark and, very importantly, its connection with a phase of "magnetic
disorder" and centre symmetry.

Confinement and Wilson lines

It can be shown that a linearly growing quark potential arises when the expectation value
of a Wilson loop (cf. Eq. 2.3)

W [C] = P
{

exp

[∮
C

Aµdx
µ

]}
(5.1)

falls exponentially with its area

〈W (R, T )〉 ∼ e−cRṪ ∼ e−V (R)T ,

where R is the space and T the time separation, respectively, and V (R) ∼ cR a linear
potential. Without a rigorous proof, this fact can be easily seen on a lattice. Indeed, we
can create a pair quark-antiquark at time t = 0, separated from each other by a distance
R. We then let the pair propagate up to some time t = T . If the pair is created by an
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operator Q0 and annihilated by Q†T , then the propagation is given by 〈Q†TQ0〉. We know
that for T →∞ the correlator should have the form

〈Q†TQ0〉 = e−∆EminT .

Moreover, it should depend on the expectation value of the product of links around the
path R× T , i.e. the Wilson loop. Since in the presence of the two particles the energy dif-
ference ∆E is just the static potential, if the potential is linear, then the Wilson loop must
exponentially fall with the area. It turns out that this area-law exists when the magnetic
fluxes running through the loops are uncorrelated. In the jargon of statistical mechanics,
this situation represents a vacuum in a phase of "magnetic disorder". Moreover, similar
to the Ising model, we can think of a transition to a "magnetised" or deconfined phase. As
in the Ising model, we can also think of an underlying symmetry that is spontaneously
broken. This is a nice picture, as it suggests that, as we may suspect, confinement is a
consequence of the highly non-trivial vacuum structure.

Centre symmetry and confinement

Let us consider Euclidean YM with the time-direction x4 compactified on a circle with
radius β. It turns out that, for the gauge field Aµ to be periodic, i.e. for A(~x, x4 + β) =

A(~x, x4), it must hold for the gauge transformations that

g(~x, x4 + β) = z g(~x, x4),

where z is an element of the centre of SU(N), which is isomorphic to the cyclic group ZN ,
and is made up of the N roots of the unity times the unity matrix:

zn1N = exp

(
2πin

N

)
1N , n = 0, 1, 2, . . . , N − 1.

If the condition is satisfied, the theory is invariant under ZN . Although the gauge symme-
try SU(N) cannot be broken, this Abelian global subgroup can break spontaneously. It is
worth to notice that this symmetry is physical and it’s not a mere redundancy, as SU(N)

is. This can be immediately understood from the fact that gauge invariant Wilson loops
are not invariant under this transformations 4. A possible order parameter to probe the
breaking of ZN is the Wilson loop winding around the compact time-direction, i.e. the

4In the modern jargon of high energy physics ZN is a so-called 1-form symmetry, since it acts on line op-
erators. In recent years, the development of higher form symmetries [46], combined with ’t Hooft anomaly
matching, has shown itself to be a very useful non-perturbative tool.
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Polyakov loop

PL = exp

{∮
dx4A4

}
, , PL 6= z PL. (5.2)

As PL is not invariant under the centre, its expectation value can signal the breaking of
the symmetry, just as the average spin serves as order parameter in the Ising model. The
expectation value of PL is related to the exponential of the free energy Fq of an isolated
quark

〈PL〉 = e−βFq ,

and thus a vanishing expectation value of the Polyakov loop implies that the free energy
of the static quark is infinite and that the centre symmetry is unbroken. Conversely, if at
some β one has 〈PL〉 6= 0, then there is a phase transition to broken centre symmetry, i.e. to
a deconfined phase. It is important to notice that the quark is not dynamical, otherwise,
its presence would break the centre symmetry explicitly and there would be no phase
transition but a crossover. This is indeed the case of QCD. There, in the confined phase,
the quark-antiquark potential grows linearly until the energy of the confining field is high
enough for a quark-antiquark pair to arise from the vacuum5.

The story is different when we add adjoint matter to the theory, as is the case of SYM
and adjoint QCD. Adjoint fermions have the same (zero) N-ality as the gauge fields and
thus transform on the same way, leaving the theory still invariant under ZN . At this point
it is important to notice that the confinement of gluons and gauginos inside bound states
is not the confinement we relate to centre symmetry and "magnetic disorder". The absence
of asymptotic coloured in the spectrum is, in fact, due to colour screening. Indeed, since
the string-tension for zero N-ality is zero, as sources start to separate, they get rapidly
screened. Hence, the confining properties of these theories is just as the YM case, even
though they include fermionic matter. The vacuum thus acts as a confining medium for
external static quarks.

5.1.3 Chiral symmetry and the anomaly

N = 1 supersymmetric Yang-Mills theory is chiral when no soft-SUSY-breaking mass
term is included in the action. Unsurprisingly, the chiral symmetry coincides with the
U(1) R-symmetry on the classical level. Under chiral rotation the gaugino transforms as

λ→ λ′ = exp(−iωγ5)λ, (5.3)

5As a remark, confinement shouldn’t be confused with the fact that a single-quark state is not gauge-
invariant. Indeed, when one talks about a single quark, one should think about it as a quark with a Wilson
line attached. As we see, the configuration quark plus Polyakov loop is gauge-invariant but has infinite
energy in the confined phase.
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where ω parametrises the transformation. We notice that if we choose ω to depend on the
position, the fermionic part of the SYM action transforms as

S =
1

2

∫
d4x

(
λ̄ /Dλ

)
→ S ′ =

1

2

∫
d4x

[
λ̄ /Dλ− i(∂µω(x))λ̄γµγ5λ

]
. (5.4)

If we let ω to be a constant, we immediatly see that the action is invariant. It is easy to see
that the corresponding Noether current is just

JAµ = λ̄γµγ5λ, with ∂µJAµ = 0.

On the quantum level, this symmetry is anomalous because of instanton configura-
tions [47]. A nice way to derive the anomaly is the very illustrative Fujikawa’s procedure
[48], which we review in Appendix B. Accordingly, the anomaly function A(x) is related
to both the instantons and the fermion zero modes as

∫
d4x A(x) = n+ − n−,

1

8π2

∫
d4x Tr

(
F̃ µνFµν

)
= n+ − n− ≡ n, (5.5)

where n+ and n− are the number of zero modes for each chirality. This equation relates
solutions of the Dirac operator to the topology of the gauge bundles. Indeed, the rhs
equals the algebraic index of the Dirac operator

index( /D) = dim(ker /D)− dim(ker /̄D) = n+ − n−,

while the lhs is the instanton winding number n ∈ π3(SU(N)) = Z and hence a topological
invariant, the topological index. This relation represents the celebrated Atiyah-Singer in-
dex theorem. What underlies the theorem, and the chiral anomaly itself, is that the dimen-
sion of the kernel of an elliptic differential operator on a compact manifold is determined
by the topology of the manifold itself6. The relation between the anomaly and the index
theorem was first discussed in [49]. If we look closely at the anomaly A(x), we immedi-
ately recognise that it is, indeed, the same as the theta term of the YM action. This means
that we can compensate a chiral rotation by a change in the theta term θYM → θYM−2Nω.

Since the theta term is periodic, including it in the SYM action makes the breaking of the
chiral symmetry explicit, as only chiral rotations with ω = nπ

N
, n = 0, · · · , 2N−1 leave the

action invariant. This means that the chiral symmetry is no longer U(1)R but Z2N . The
relation between the theta angle and chiral rotations has an even more deep and subtle
physical meaning. In chapter 2 we saw that the theta term is physical in pure YM theory,

6Thus, the analysis given for the chiral anomaly only holds in Euclidean space, as there the Dirac oper-
ator is elliptic and instantons exist.
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because it labels the different vacua of the theory, and these vacua are interpolated by
the instantons. If we include fermions, however, the theta term is not physical anymore,
precisely because a change in theta can be compensated by a chiral rotation.

5.1.4 Spontaneous chiral symmetry breaking and the gaugino conden-

sate

We have seen that the non-anomalous chiral symmetry of SYM is the discrete group Z2N .
It turns out that, at strong coupling, the vacuum is populated by pairs of gauginos, also
known as the gaugino or chiral condensate. In other words, one has the non-vanishing
correlator 〈λ(x)λ(x)〉 6= 0. Semi-classically, the condensation can be understood from
an observation made by ’t Hooft in Ref. [50]. He saw that in the presence of an n = 1

instanton background, the vacuum-to-vacuum amplitude vanishes unless operators with
fermion zero modes are inserted in the correlator:

〈0||0〉 = 0, 〈0|λ̄λ|0〉 6= 0.

Thus, the vacuum in this background is populated condensed fermion pairs. Because
of arguments given before on SUSY and instantons, we expect this observation to be ac-
curate for SYM 7. The condensate breaks the non-anomalous chiral symmetry down to
some subgroup. In SYM theory, the chiral symmetry is spontaneously broken down to a
sign flip, i.e one has the symmetry breaking pattern Z2N → Z2. The spontaneous break-
ing of this discrete symmetry has a deep physical meaning. It was conjectured by Witten
[30] that the N different vacua, labelled by the different values of the condensate, are su-
persymmetric and that N is precisely the Witten index. This means that SUSY in SYM
can’t break spontaneously. The gaugino condensate was computed for the first time in
[51]. In the last decades, several other authors have computed the "exact" condensate.
Some of the procedures to achieve this involve instanton calculus, others Seiberg-Witten
theory in softly broken N = 2 gauge theory. We use quotes when referring to the exact
condensate because there has been some disagreement in the literature regarding its ex-
act value8. Currently, however, the issue seems to be settled and the following result is
widely accepted, as different methods agree on it:

〈λλ〉 = cNΛ3e2nπi/N ,

7For a non-SUSY theory, however, the existence of a chiral condensate is very difficult to prove analyt-
ically. In QCD we know that a chiral condensate exists because it is an essential parameter in the effective
chiral Lagrangian, which describes very well the low energy hadron spectrum seen in experiments. In some
cases one can use anomaly matching conditions in order to infer that, if the theory confines, then there must
exist a non-vanishing condensate

8A thorough review on this issue can be found in Sec. VII of Ref. [32].
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where the term e2nπi/N shows the existence of the N degenerated vacua. One approach
to this result is the so-called weak coupling instanton (WCI). Accordingly, one adds matter
superfields, i.e. quarks and squarks, to the SYM and study the theory in the Higgs
phase, where the theory is in the weakly-coupled regime and semi-classical analysis with
instantons is valid. The end result for the condensate is found when the matter fields
are decoupled. This is precisely the method used in [51]. A non-instanton-approach
is for example the semi-classical study of the non-thermally compactified theory on
R3 × S1, where condensation of magnetically charged objects contribute to the value of
the condensate (see Ref. [52]).

An important last remark is that, since in SYM the original quantum chiral symmetry
is discrete, there are no Goldstone-bosons. This is very different from QCD, where the
pions are a consequence of the formation of the chiral condensate. In SYM we rather
get domain walls, which interpolate the N different vacua. From the point of view of
the softly-broken SUSY theory, the spontaneous breaking of the symmetry means that,
at mg = 0, there is a first order phase transition, where we find the coexistence of the N
vacua, separated by the domain walls.

5.2 The domain wall in N = 1 SYM

In Refs. [53, 54] Dvali and Shifman showed that, because of the domain walls,N = 1 SYM
in four dimensions has tensor central charges. They moreover argued that the domain
walls are BPS-saturated states, meaning that the QFT on the wall has half of the bulk
supersymmetries. Let’s briefly show how central charges can arise inN = 1 SYM. In four
dimensions, the general form of the anti-commutator of supercharges reads

{Qα,Q†α̇} = 2σµαα̇Pµ + 2(γ5σ
µν |Jµν |)αα̇.

The operator Jµν in the second term is normally not taken into account, since it vanishes
when translational symmetry is not spontaneously broken [54]. This is actually a con-
sequence of the Coleman-Mandula theorem, which forbids conserved tensorial charges.
However, translational symmetry does break due to the domain wall, and then Jµν is a
conserved current. It turns out that the tensor is given by Jµνα = εµναβ∂β(λλ) [53].
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Chapter 6

Lattice quantum field theory for SUSY
and adjoint QCD

In chapter 3 we motivated the non-perturbative study of the conformal window of adjoint
QCD. Then, in chapter 5, we saw that we need non-perturbative methods in order to
investigate confinement and the spontaneous breaking of the discrete chiral symmetry
through the gaugino condensate. These are formidable problems to be tackled by means
of the best established non-perturbative method: lattice Monte-Carlo simulations. In this
chapter we first review how these simulations can yield an approximate solution of the
Euclidean path integral. We then discuss how to discretise gauge theories with adjoint
fermions, and the complications arising from chiral symmetry and SUSY. After that, we
focus on the technical part of the simulations, i.e. how to generate configurations and
measure observables. Much of the general aspects of lattice field theory are discussed
following Ref. [55].

6.1 The idea of lattice field theory

Lattice field theory is a method to compute full correlators of quantum fields by solv-
ing the Euclidean path integral numerically, i.e. non-perturbatively and exact up to
numerical uncertainties. Its birth dates back to the 1970s and is due to the work of
Kenneth Wilson on the RG in strong coupling [56, 57]. He observed that the anomalous
dimensions in QFT are related to critical exponents in statistical mechanics and that, in
this sense, the Ising model can be regarded as a QFT living on a space-time lattice. These
observations led him to study QCD in a novel form, namely by regularising the theory
on an Euclidean four-dimensional lattice with the gauge fields located on the links and
the quarks on the sites.

Let us elaborate more on how this works. In QFT, we are interested in computing
correlation functions of fields. The canonical way to do that is through the Feynman path
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integral formulation. For a given QFT with classical action S[φ], the expectation value of
a functional F [φ] can be written in Minkowski space as

〈F〉 =

∫
Dφ F [φ] eiS[φ]∫
Dφ eiS[φ]

,

where the measure Dφ samples over the whole field space and thus 〈F 〉 is not only de-
termined by the fields that minimise the action S[φ], but also by in general arbitrary large
fluctuations around these minima. This becomes clear from the fact that the term eiS[φ]

greatly oscillates for field configurations with large action. Solving such an integral is in
general impossible. However, if we give up on studying time dependent phenomena, we
can perform a Wick rotation and rewrite the path integral in Euclidean signature as

〈F〉 =

∫
Dφ F [φ] e−SE [φ]∫
Dφ e−SE [φ]

. (6.1)

It is clear now that configurations with large Euclidean action are exponentially sup-
pressed. More interestingly, the Euclidean formulation makes explicit the tight relation
between QFT and statistical mechanics. Indeed, the denominator in equation 6.1 looks
just like the partition function Z of, let’s say, a spin system with Hamiltonian H[s] in a
heat bath at temperature T

Z =
∑
s

e−
H[s]
T ⇔

∫
Dφ e−SE [φ].

Both structures are evidently similar: in the spin system the number of states is given
by a sum over spin configurations with Boltzmann factor e−H[s] and, in the QFT, it is
given by the integral over field configurations with action SE[φ]. We can thus regard
the denominator in Eq. 6.1 as a partition function. This observation allows us to employ
methods from statistical mechanics in order to study QFT on an Euclidean manifold. It is
further useful to make the space-time finite, in order to make the similarity to statistical
mechanics explicit, what also makes the numerical work possible. We thus reformulate
the QFT on a finite Euclidean space-time lattice1 with spacing a and length L, so that a
space-time point x is given by

Γ =

{
x | x =

4∑
µ=1

anµµ̂, nµ ∈ Z
}
,

1Along this work we will only consider hypercubic lattices. Other geometries are however possible and
to some extent studied in the literature.
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where µ̂ are unit vectors pointing in every space-time direction, and nµ are the coordi-
nates. The lattice volume L4 puts an IR cut-off in the system, while the lattice spacing
a has the effect of introducing a UV cut-off. The cut-off a renders the measure of the
integrals in 6.1 finite, as only momenta in the Brillouin zone p ∈ [−π/a, π, a) are allowed∫

Dφ ⇒
∫ ∏

xi=[a,··· ,L]

dφ(x1, x2, x3, x4).

Thus, we have in total (L
a
)4 integrals. Later we’ll see how to solve them by means of

Markov chain Monte Carlo (MC) methods. It is interesting to mention that Lorentz sym-
metry is, unsurprisingly, explicitly broken by the lattice down to the subgroup of hyper-
cube isometries. Fortunately, SO(4) invariance is restored in the continuum limit.

6.2 Gauge theories on the lattice

To solve YM with adjoint fermions on the lattice, we have to properly discretise the action

S =

∫
d4x

 1

2g2
0

tr(F µνFµν) +
1

2

Nf∑
i

λ̄i
(
/D +m0

)
λi

 (6.2)

Here λi are Nf Majorana fermions. The subscripts in g0 and m0 denote that they are bare
parameters. We will shortly see why we have to add a mass term and why we simulate
Majorana instead of the original Weyl fermions. Naturally equation 6.2 represents SYM
for the case Nf = 1. The first discretisation step is to change the space-time integral by a
sum over the lattice points

∫
d4x → a4

∑
x. We would like to define a bare action at cut-

off Λ0 ∼ 1/a and coupling β ∼ 1/g2
0 , so that the continuum limit reproduces the original

quantum continuum theory. In the context of the RG flow, this means that we have to
design our lattice action to lie on the critical manifold whose fixed point is the theory we
want to study. One has to be careful, as the RG transformations can give rise to all the
terms compatible with the symmetries of the theory (and of the lattice). Thus, we have
to ensure that only irrelevant operators, i.e. those that die off as a → 0, are produced2.
It turns out not to be a major problem for gauge fields and, to some extent, fermions,
unless they are massless. Further, we have to tune the relevant couplings, e.g. g and m,
so that they vanish with a. This is thus similar to the continuum limit of YM discussed in
chapter 2. As we will shortly see, we will encounter subtleties arising from the fermions
and SUSY.

2This can be problematic for scalar fields as the quantum corrections to the mass grow with the mo-
mentum cut-off. This is analogous to the mass corrections to the Higgs mass in the SM.
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6.2.1 Gauge fields

Let us start with the discretisation of the gauge action. Since we are not on a contin-
uum manifold anymore, we cannot demand the gauge fields to live on the Lie algebra
of SU(N). Instead we work with group elements U ∈ SU(N), defined through the expo-
nential map of Aµ, i.e. Aµ → eiaAµ(x) ≡ Uµ(x), with Aµ in the fundamental representation.
These are just the parallel transporters, or Wilson lines, connecting the site x with the site
x+ µ and hence live naturally on the links of the lattice (see Fig. 6.1). As group elements
they transform naturally as

Uµ(x)→ Ω(x)Uµ(x)Ω(x+ µ̂).

This already gives us a hint about how to construct gauge invariant operators, namely by
closed paths of Wilson lines, as the Wilson loops introduced in section 2.2. The simplest
Wilson loop is given by the plaquette

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x),

where Uµ(x) goes from x to x + µ̂, while U †µ(x) from x + µ to x. This yields an orien-
tation of the paths. Since a closed path of the connection yields a curvature term, we
can already guess that we can use the plaquette to define the gauge lattice action. In-
deed, we can find the continuum version of the plaquette by expanding Uµν in terms of
the gauge connection by using the Baker-Campbell-Hausdorff relation exp(A) exp(B) =

exp (A+B + 1/2[A,B] + · · · ) and the Taylor expansion Aν(x + µ̂) = Aν(x) + a∂µAν(x) +

O(a2). The explicit computation yields

Uµν(x) = exp
{
ia2
(
∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)] +O(a3)

)}
= exp

(
ia2Fµν(x) +O(a3)

)
= 1 + a2Fµν(x)− 1

2
a4FµνF

µν + · · · .

We are of course interested in the term quadratic in F . We can cancel the identity and
the term O(a2) by writing the action as

SG[U ] =
2

g2

∑
x∈Γ

∑
µ<ν

Re tr [1− Uµν(x)] =
a4

2g2

∑
x∈Γ

∑
µ<ν

tr[FµνF
µν(x)] +O(a2), (6.3)

where a4
∑

is just the discretisation of the space-time integral. This means that the pla-
quette corresponds to the continuum action up to O(a2) operators. Fortunately those
operators are irrelevant. Moreover, the derivation of the gauge lattice action suggests
that we have some freedom on constructing it. Indeed, we can for example sum over
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FIGURE 6.1: Parallel transporters and the plaquette

bigger plaquettes, in such a way that some higher order terms in F cancel, as long as we
reproduce the main F 2 term. This kind of actions are said to be Symanzik improved [58]. A
common choice is to add rectangles made out of double-plaquettes �� ≡ Rµν

Ssymanzik
G [U ] =

2

g2

∑
x∈Γ

[
c0

∑
plaquettes

Re tr(1− Uµν) + c1

∑
rect

Re tr(1−Rµν)

]
, (6.4)

c1 = − 1

12
, c0 =

5

3
.

This action agrees with the continuum one, up to O(a4).
After having discretised the action, we can now take care of the measure DA in the con-
tinuum path integral. However, as we already mentioned, on the lattice the gauge fields
live in the Lie group instead of in the Lie algebra, and the relevant measure is thus D[U ].
This simplifies the analysis. Indeed, in the continuum we have to sum over all the orbits
of A and we end up fixing the gauge through the Faddeev-Popov method. On the lattice,
we integrate over the SU(N) manifold, which is compact, and whose measure is just the
Haar measure.

6.2.2 Fermions

We now focus on the more subtle part of the discretisation: the fermion action. We al-
ready saw that chiral symmetry is anomalous in the presence of gauge fields, as the the
conservation of the axial current is broken by instantons. So let us for a moment ignore
the gauge field. In the continuum we know that free fermions conserve their chiralities.
But what would happen if we try to put free chiral fermions on a lattice? This was ad-
dressed long ago by Susskind in Ref. [59]. Let’s consider a single free right Weyl fermion
ψ− living on a 3d spatial lattice, so that the time remains continuous. The Hamiltonian
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reads

H = i

∫
d3x ψ†−σ

i∂iψ−,

and discretising with a symmetric derivative:

H = −ia3
∑
x∈Γ

ψ−(x)
∑
i

σi

[
ψ−(x+ âi)− ψ−(x− âi)

2a

]
(6.5)

Expanding the spinor in Fourier modes yields

ψ−(x) =

∫
d3k

(2π)3
eikxck.

Since we are in a lattice only the momenta in the Brillouin zone ki ∈ [−π/a, π/a) con-
tribute. This brings us to the Hamiltonian

H =
1

2a

∫
BZ

d3k

(2π)3

∑
i

2 sin(kia)c†kσ
ick

Denoting the vacuum as the Dirac sea |Ω〉, the energy of a state |k〉 = c†k|Ω〉 is given by

E(k) =
1

a

∑
i

sin(kia)σi.

This dispersion relation shows that the energy has zeroes at ki = 0 and π/a. The latter
corresponds to a left-handed fermion. This is called fermion doubling. Since i = 1, · · · , 3,
we have 23 = 8 zeroes in total. The half of them are left and the other half are right
handed. As a consequence, we cannot have a single Weyl fermion, as second one with
opposite chirality would be produced alone by the presence of the lattice. Therefore, the
lattice breaks the chiral symmetry explicitly even without gauge fields. Unfortunately,
this problem doesn’t go away if we discretise time. On the contrary, it gets worse, as 24

doublers appear as poles in the fermion propagator at the corners of the Brillouin zone.
Indeed, if we discretise the free Dirac operator λ̄/∂λ as above in equation 6.5, we find that
its inverse in momentum space is given by

D(p)−1 =
−ia−1

∑
µ γµ sin(pµa)

a−2
∑

µ sin(pµa)2 ,

where we see that there are 15 poles more than the one we would get in the continuum
at pµ = 0. One has to better get rid off these doublers, as they are not physical degrees of
freedom in the continuum theory. As we will see, there are ways to remove them but, in
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most cases, the solutions require that we give up on chiral symmetry.

A widely used way to remove the doublers is due to Kenneth Wilson and the so dis-
cretised fermions are called Wilson fermions. This is the type of discretisation we used
in all the simulations presented in this work. Wilson proposed to add a new term to the
naive fermion action, equivalent to the continuum operator −(a/2)∂2:

−a
2
λ̄∂2λ → −a

2
λ̄

(
λ(x+ aµ̂)− 2λ(x) + λ(x− aµ̂)

a2

)
. (6.6)

The effect of this term is to give a mass m ∼ 1/a to the doublers, forcing them to decouple
in the limit a→ 0. Another effect is that this term is a mass, even though we started with
a massless fermion. Hence, the Wilson term breaks chiral symmetry explicitly. More-
over, although the term is irrelevant, we can always get a residual mass ms ∼ 1/a. As
a consequence the gaugino mass renormalises additively. This is similar to the quantum
corrections the Higgs field becomes in the SM. To get a zero renormalised mass mg, we
have to tune the bare massm0 → ms. This justifies the necessity for a bare mass parameter
in the action.

6.2.3 The lattice action

We are now ready to write down the lattice action of YM coupled to adjoint Majorana
fermions. On the way we have seen that we can’t put single Weyl fermions on the lattice
and that we need a mass term, in order to tune towards the continuum limit. The only
missing step is to include the parallel transporters in the Dirac operator. For this purpose
we have to transform the link variables Uµ, which are in the fundamental representation,
into the adjoint one through [38]

V ab
µ (x) = 2 tr

(
U †µ(x)T aUµ(x)T b

)
. (6.7)

Collecting this expression with the discretisations in equations 6.3 and 6.6, the lattice
action reads

SL = β
∑
p

(
1− 1

N
Re trUp

)
+

1

2

∑
xy

Nf∑
i

λ̄ix(Dw)xyλ
i
y, (6.8)

(Dw)x,a,α;y,b,β = δxyδa,bδα,β − κ
4∑

µ=1

[(1− γµ)α,β(Vµ(x))abδx+µ,y

+(1 + γµ)α,β(V †µ (x− µ))
]
,
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where the bare lattice coupling is β = 2N/g2
0 , and p is an index labelling the plaquettes.

Moreover, the Dirac-Wilson operatorDw is written with the aid of equation 6.7, with (a, b)

and (α,β) being the SU(N) and spinor indices respectively. The bare mass and the Wilson
term coefficient are summarised in the hopping parameter κ = 1/(2am0 + 8). As already
mentioned, the gauge action in 6.8 equals the continuum one up to O(a2) terms, while
the discretisation effects of the Wilson-Dirac operator areO(a). In the simulations carried
out in this thesis we usually employ a Symanzik improved gauge action (see eq. 6.4). We
also frequently use an improved Wilson fermion action along the lines of the Symanzik
improvement program [60], which reduces the errors toO(a2). This consists in adding an
irrelevant operator, the so-called clover term to the action

−csw(g)

4
λ̄(x)σµνF

µνλ(x), csw = c0
sw + c1

swg
2 + c2

swg
4 + · · ·

where csw is the Sheikholeslami-Wohlert coefficient. We use the one-loop value of csw
found in [61]. The clover discretisation of Fµν is given by

Fµν − i
1

4

∑
p

(Up − U †p). (6.9)

6.2.4 SUSY

As previously said, the Lorentz symmetry is broken on the lattice down to a discrete
subgroup. This subgroup is enhanced to the full Lorentz symmetry as a → 0. If we
are interested in studying properties of supersymmetric theories, we would like to keep
SUSY unbroken, at least in the continuum limit. However the SUSY algebra

{Qα,Q†β} = 2σµαβPµ

is completely broken on the lattice, as we don’t have a generator of infinitesimal transla-
tions on a discrete space-time. What is more, the Wilson term and the bare mass break the
Fermi-Boson degeneracy. There are ways to overcome this as reviewed in Refs.[62–64], so
that SUSY models can be formulated on the lattice. A natural way is to tune the relevant
couplings so that the supersymmetric critical point is achieved in the continuum limit
[65]. For extended SUSY this procedure can become quickly too complex from the techni-
cal point of view, as one would have to take control on many parameters. Because of this
reason, in the last years some proposals to discretise SUSY have arisen [66–70], according
to which the subalgebra {Q†,Q} ∼ P = 0, i.e. nilpotent supercharges, is conserved at
a 6= 0 and the full algebra is recovered in the continuum. Although these approaches are
very interesting, we don’t make use of them in the present work and won’t have too much
to say in this regard. We will rather work within the proposal of Curci and Veneziano to
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study N = 1 SYM on the lattice [71]. They suggested the lattice action in equation 6.8
(for Nf = 1) and investigated the tuning to the SUSY point. They showed that, although
the lattice and the Wilson discretisation explicitly break chiral symmetry and SUSY, both
are simultaneously restored in the continuum limit. Especially, the chiral limit implies
SUSY. Therefore, to restore SUSY we only need to tune the bare gaugino mass, as men-
tioned above, so that the renormalised mass vanishes. There are several ways to achieve
that and some methods are more expensive from the computational point of view than
others. One method is to measure the residual mass from the Ward identities on the lat-
tice [72]. Also, since at the chiral point the gaugino condensate has a 1st order phase
transition, one can determine the critical hopping parameter value κc ∼ 1/mg where this
happens.
A cheaper way to tune the mass is through the square of the unphysical "adjoint-pion"
state, as it holds that m2

a−π ∼ mg, as shown in Ref. [73] 3. The mass ma−π can be ob-
tained from the connected part of the propagator of λ̄(x)γ5λ(x) (see below). The chiral
and supersymmetric point is then found by taking the limit m2

a−π → 0.

6.3 Simulating Yang-Mills with adjoint Majorana

fermions

After having discretised the action, we now show how to actually compute the path in-
tegral in equation 6.1. We saw that the lattice cut-off renders the path integral finite.
However, the remaining integral is in general still very large and difficult to compute
by direct numerical integration. This problem can be overcome by means of importance
sampling [74]. Indeed, the Boltzmann factor e−SE in the path integral tells us that not all
regions of field space contribute equally to the integral. We can create a Markov-Chain of
randomly generated field configurations {U, λ}(0) → {U, λ}(1) → · · · , whose distribution
asymptotically converges to

dP =
1

Z
[dU ][dλ]e−SL .

Once some number Nconf of configurations has been generated, the expectation value of
some observable F is computed as the average (cf. 6.1)

〈F〉 = lim
Nconf→∞

1

Nconf

Nconf∑
n=1

F [Un, λ],

3Such a relation is widely used in chiral perturbation theory, since the pions are Goldstone bosons and
thus physical states of the theory. There one has F 2

πM
2
π = −m(r)NfΣ(r). Where Fπ is the pion decay

constant, Mπ the pion mass and Σ the renormalised chiral condensate.
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and the statistical error goes as 1/
√
Nconf. The algorithm we have used to originate the

Markov Chain of field configurations is the so-called Rational Hybrid Monte Carlo RHMC.
The Hybrid Monte Carlo method [75] (without the R) is a combination of the well-known
Metropolis algorithm and molecular dynamics. The latter describes an evolution along a
trajectory in phase space, parametrised by a spurious time τ . Let us denote with φ(x, τ) a
general bosonic field. In the field chain, the first configuration φ(0) is chosen randomly. A
configuration φ(k+1) in the chain is obtained from φ(k) as follows

1. Generate random Gaussian distributed conjugate momenta Pi(x, 0)(k) to φi(x, 0)(k)

2. Compute the initial energy: H(0) = S[φ(k)] + 1
2

∑
i (P

(k)
i )2

3. Integrate the equations of motion dφi
dτ

= Piφi, dPi
dτ

= −∂S[φ]
∂φi

up to time τ to obain
Pi(x, τ)(k), φi(x, τ)(k)

4. Compute the energy of the new fields and momenta H(τ)

5. Generate a random number 0 < r < 1. Accept the new field configuration, i.e.
φ(k+1) = φ(x, τ) if r < eH(0)−H(τ). Otherwise reject it, i.e. φ(k+1) = φ(k).

Originating configurations with Majorana fermions requires special care. We note
that the fermion integral is a Gaussian integral over Grassmann numbers and thus we
can easily integrate out the fermions. When having a "full" Dirac fermion, the integration
yields det(DW ). However, since a Majorana fermion has the half of degrees of freedom,
we get the Pfaffian of the Wilson-Dirac operator Pf(DW ), which is not positive definite∫

[dλ] e−
1
2
λ̄DWλ = Pf(CDW ) = sign(Pf(CDW ))

√
| det(CDW )|.

In our sampling algorithm we use the square root of the determinant. The reason for this
is that we want to use the fermion Pfaffian as a probability weight factor for the gauge
fields, but a negative value would lead to a sign problem, as it couldn’t be interpreted
as a probability. A negative sign is expected to appear more often at smaller masses and
larger lattice spacings [38, 40, 76]. This sign problem can thus be avoided by control-
ling the lattice parameters, while a sporadic sign can be introduced through reweighting.
Furthermore we write

√
| det(DW )| = 4

√
det((γ5DW )2). This rewriting is useful, since the

matrix (γ5DW )2 is Hermitian, and it thus has real non-negative eigenvalues. We now
write the determinant as a Gaussian integral over complex bosonic fields F , the so-called
pseudofermions

(det
(
(γ5DW )2

)
)1/4 =

∫
[dF ][dF †] exp

{
−F †((γ5DW )2)−1/4F

}
.
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Note that we can write the action in terms of the Gaussian distributed χ, with F =

((γ5DW )2)1/8χ. To compute F we use the rational approximation of the matrix [77]

M1/8 =
∑
k

ak
M + bk

,

and F is obtained by solving the Dirac equation

((γ5DW )2 + bk)ηk = χ → F =
∑
k

ckηk

This rational approximation gives the name to the RHMC algorithm. We generate the
chain of fields analogue to the standard HMC discussed above

1. Generate random Gaussian distributed vector χ and momenta P . Then compute F
as shown above

2. Compute the initial energy as before, plus the fermion contribution χ†χ

3. Fix F and integrate the equations of motion to find the new field φ(x, τ) and mo-
menta P (x, τ)

4. Compute H(τ) and do the last accept/reject step.

6.4 Extracting physics from the lattice

6.4.1 Measuring correlators

On the lattice one often wants to measure propagators of composite operators made of
gauge fields and fermions. Although in this thesis we are mostly interested in observables
like the gaugino condensate, the Polyakov loop and the plaquette, in chapter 10 we will
need to measure the correlators of meson-like operators. To achieve that one constructs
field-interpolators O,O, which are the lattice equivalents to the creation and annihilation
operators in the Hilbert space. One choose the interpolators in such a way that it has
the same quantum numbers as the continuum state we want to measure. Once we have
identified the correct interpolator, we just use Wick’s theorem to express the propagator
as a sum over fermion contractions. Let’s briefly see how this works taking as example
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the propagator of the pseudo-scalar operator OPS = λ̄γ5λ:

〈OPS(y)OPS(x)〉 = (γ5)α′β′(γ5)αβ〈λ̄(y)αλ(y)βλ̄(x)α′λβ′(x)〉 (6.10)

= (γ5)α′β′(γ5)αβ
{
−2(SW )−1

α′β(x, y)(SW )−1
αβ′(y, x)

+(SW )−1
αβ(y, y)(S−1

W )α′β′(x, x)
}

= −2 tr
[
γ5(SW )−1(x, y)γ5(SW )−1(y, x)

]
+ tr

[
(SW )−1(y, y)

]
tr
[
(S−1

W )(x, x)
]

The first part is called the connected part and the second one the disconnected part. The
latter arises because of the Majorana condition λ̄ = λTC. To obtain the full correlator we
measure the quantity 6.10 on every configuration and then take the Monte Carlo average.
The inverse of the Wilson-Dirac operator is computed by means of a point source and the
conjugate gradient. Finally the propagator is extracted by means of a zero momentum
projection, placing the source in the origin (see Fig. 6.2)

〈OPS(p = 0, t)OPS(0, 0)〉 =
1

V3

∑
~x

〈OPS(~x, t)OPS(0, 0)〉 (6.11)

FIGURE 6.2: Correlator of
O = λ̄γ5λ in SU(2) Nf = 2
adjoint QCD

FIGURE 6.3: Determination
of t0 on a 323 × 64 lattice at
β = 1.65 and κ = 0.175 in
SU(2) SYM.

6.4.2 Setting the scale

We have seen how to approximate path integrals by means of Monte Carlo methods and
how to measure quantities on the thereby generated configurations. There is however a
last point to discuss. The output of our measurements is always a dataset of dimension-
less numbers, given in terms of the lattice spacing a, which is the only physical scale in



Chapter 6. Lattice quantum field theory for SUSY and adjoint QCD 46

the simulation. For example, if we extract the mass of OPS by taking the logarithm of the
correlator 6.10, we would get a number aM , where M is the physical mass. If we want
to extract physical information from our lattice data, for example in order to relate our
results to experimental results or to other lattice studies, we have to set the scale, i.e. to
determine the lattice spacing in physical units. In theories like QCD, this can be done by
measuring an experimentally well-known quantity like the Sommer scale or the hadron
masses. This procedure is of course analogue to our discussion in chapter 3, where we
reviewed the RG flow. We fix a finite value of the renormalised coupling at some scale
ΛL, and we then tune the bare coupling to zero as we remove the cut-off. On the lattice,
the observables also obey a Callan-Symanzik equation, which describes the flow of the
coupling as function of a. To one-loop one has that a in general depends on the coupling
as

a(g) =
1

ΛL

(β0g
2)−β1/2β2

0 exp

(
− 1

2β0g2

)
(1 +O(g2)),

and the scale ΛL depends on the regularisation scheme. In the case of SYM, we make use
of the NSZV beta function, whose two first coefficients are universal [78, 79]

∂g

∂ log(a)
= − g3

16π2

3N

1− Ng2

8π2

⇒ a(g) =
1

ΛL

exp

(
− 8π2

3Ng2

)
. (6.12)

Throughout this thesis we fix the scale by using the Wilson flow [80] (see chapter 7). We
compute the flowed energy density

E(t) =
1

4
Ga
µνG

a
µν(t), (6.13)

where Ga
µν is the clover discretisation of the field strength tensor as in Eq. (6.9), with the

links flowed through the integration of the flow equation 7.2. The scale t0 parameter is
then defined as

t2〈E(t)〉
∣∣
t=t0

= 0.3, (6.14)

and has dimension length squared, so that
√
t0/a is dimensionless. An example of a

typical determination of t0 can be seen in Fig. 6.3. This measurement is computationally
very inexpensive and the value of t2E(t) is rather stable over the Markov Chain, as can
be noticed from the tiny error bars in the figure. From some intermediate t on, the flow-
time dependence of the observable is moreover almost lineal. This behaviour is related to
the scaling (running) of the coupling, and it will be discussed in the next chapter (cf. Eq
7.7). In chapter 10 we will see that, in the case of near conformal theories, plotting t2E(t)

against t already gives us hints on scale invariance.
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Chapter 7

The gradient flow

In the last decade, the gradient flow (GF) method [80–84] has caught a lot of attention
especially within the lattice field theory community [85, 86]. It has not only found several
important applications in the simulation of QFTs, but also motivated theoretical work
related to its likely relation to the renormalisation group [87–91]. In this chapter we will
introduce the GF, starting with its original formulation as given in [80, 82]. Considering
the flow-time as an additional dimension, we will discuss how it doesn’t introduce any
UV singularities and thus flowed local composite operators are finite. We moreover show
how the GF can be used to define a renormalised coupling constant, which may be used
to compute a numerical non-perturbative beta-function. At the end of the chapter we will
discuss how the GF can be related, in some situations, to the RG. We anticipate that this
relation will allow us to extract the anomalous dimension of scaling operators, what we
employ in chapter 10 in the context of adjoint QCD.

One of the main contributions of the author to the investigations of SYM and adjoint
QCD within our collaboration has been to include the GF into the measurements carried
out through the C++ code of the Monte Carlo simulations. As we will see, the fermion
flow plays a central role in most of the results shown in this work. Its implementation has
made possible the first observation of gaugino condensation, and thus of chiral symme-
try breaking, made with Wilson fermions in SYM at zero temperature. Before, this had
only been achieved by means of Ginsparg-Wilson fermions. Being able to compute the
fermion flow (and thus flowed interpolators) has moreover made possible the very first
investigations of the conformal window of adjoint QCD using the GF.

7.1 Flow equations

∂tBµ = DνGνµ, Bµ|t=0 = Aµ, (7.1)

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ] , Dµ = ∂µ + [Bµ, ·]
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This diffusion equation defines the gradient flow of the gauge field Aµ on field space,
where we call t the flow-time. MoreoverB andG are the flowed gauge field and curvature,
respectively. The flow equation in terms of the lattice link variables Ux,µ is given by the
flow of the Wilson action SW :

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ). (7.2)

Equation 7.1 is clearly highly non-linear, as several interaction terms appear because of
the non-Abelian nature of the fields. To see how the flow acts on the fields, we can con-
sider a perturbative ansatz Bµ =

∑
gk0Bµ,k. At leading-order, the flowed field is

Bµ,1(t, x) =

∫
dDy Kt(x− y)Aµ(y), Kt(z) =

∫
dDp

(2π)D
eipze−tp

2

=
e−z

2/4t

(4πt)D/2
, (7.3)

where Kt(z) is the kernel of the diffusion equation. We see that the kernel has a smooth-
ing effect on the fields. Indeed, the kernel manifestly smears the field over a space-time
region, which can be easily determined to be

√
8t. Moreover, the term e−tp

2 is an evident
momentum cut-off. It turns out that no UV divergences appear at higher order in pertur-
bation theory. Further, it is also possible to write a flow equation for fermion fields. A
simple choice is to consider a heat equation

∂tχ = ∆χ, ∂tχ̄ = χ̄
←−
∆ , χ|t=0 = ψ, χ̄|t=0 = ψ̄, (7.4)

∆ = DµD
µ, Dµ = ∂µ +Bµ.,

where the gauge fields in the covariant Laplacian are at the same flow-time as the
fermions. This form of the fermion flow is not unique and other formulations have been
given, e.g. the supersymmetric gradient flow [92–94]1. Although it is fairly easy to see
that the smoothening of gauge fields leads to the finiteness of correlators of composite
gauge operators, the treatment of correlators involving flowed fermion fields requires
some caution. As we will see, the fermion fields require an extra multiplicative renormal-
isation constant at t > 0. The full perturbation theory of the gradient flow was developed
in [83], which we now briefly review.

1Although this approach explicitly preserves SUSY, it still remains a formal construction, since its prac-
tical implementation would demand a high computational cost.
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7.2 D+1 dimensional theory

The flow-time can be lifted to be the extra dimension of aD+1 dimensional (non-Abelian
gauge) field theory. From that point of view, the theory lives in theD dimensional bound-
ary, while the smeared fields are local operators living in the bulk2. The new space-time
manifold is simply R4 × (0,∞]. In the D + 1 theory the flow equations are imposed
through Lie-algebra-valued Lagrange-multiplier-fields Lµ(t, x), λ(t, x). Accordingly, the
action can be written as

Stot = SD + Sgauge,t + Sfermion,t + Sghost,t,

Sgauge,t = −2

∫ ∞
0

dt

∫
dDx tr {Lµ(t, x) (∂tBµ −DνGνµ −Dµ∂νBν) (t, x)}

Sfermion,t =

∫ ∞
0

{
dt

∫
dDx λ̄(t, x) (∂t −∆ + ∂νBν)χ(t, x) + χ̄

(←−
∂ t −

←−
∆ − ∂νBν

)
λ(t, x)

}
Sghost,t = −2

∫ ∞
0

dt

∫
dDx tr

{
d̄(t, x) (∂t −Dµ∂µ) d(t, x)

}
where SD is the usual YM action with matter. For simplicity it is possible to focus first
on the gauge fields, provided they are flowed independently from the fermions. The
theory on the boundary, as custom in the continuum, is gauge-fixed through the Faddeev-
Popov mechanism. We moreover express the boundary theory through renormalised
quantities. We have the renormalisation constants Z,Z3,Z̃3 corresponding toAµ,R, cR, and
c̄R, respectively. A natural question to ask is whether additional divergences arise in the
bulk. To answer this question we begin by writing the gauge action as

Sgauge = ∆S + Sbare + ∆Sbc,

where ∆Sbc are extra terms needed if one rewrites the boundary condition as

Bµ|t=0 = Aµ,R, d|t=0 = cR.

These new terms merely set the bulk fields on the boundary to be equal to the renor-
malised unflowed ones. As usual in perturbation theory, we expect infinities to appear in
loop diagrams. Moreover, the required counter-terms should involve either only bound-
ary fields or only bulk ones (see Ref. [83] for a thorough discussion on this ). To see which
divergent loop-diagrams contribute to the correlation functions of bulk fields, one should
take a look at the general form of the diffusion kernel. The importance of the kernel is
obvious, since this object drives the flow like a sort of flow-propagator, connecting fields

2There have been investigations where this picture is used in the context of gauge/gravity dualities, see
Ref. [95, 96]
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at different flow-times. The general form of the kernel to all orders in the coupling can be
derived by solving equation (7.1). This can be split into the linear partial derivative term
plus an interaction Rµ

∂tBµ = ∂ν∂νBµ + ∂µ∂νBν +Rµ, Rµ = 2[Bν , ∂νBµ]− [Bν , ∂µBν ] + [Bµ, ∂νBν ] + [Bν , [Bν , Bµ]].

With this, the kernel is given by

Kt(z)µν =

∫
dDp

(2π)D
eipz

p2

{
(δµνp

2 − pµpν)e−tp
2

+ pµpνe
−tp2
}

and the bulk gauge field can be written as

Bµ(t, x) =

∫
dDy

{
Kt(x− y)µνAν(y) +

∫ t

0

ds Kt−s(x− y)µνRν(s, y)

}
. (7.5)

The Feynman graphs would be built from interaction vertices, boundary operators and
directed lines of increasing flow-time. From this we see, however, that the kernel is a
retarded propagator and thus all flow-loops have to vanish. As a consequence, there are
no divergences arising in the bulk. Any possible extra counter-term must arise from the
value of the bulk fields on the boundary. This possibility is actually very restricted, as the
only allowed counter-term in the action is

c.t. ∼
∫
dDx tr

{
z1Lµ(0, x)Aµ,R(x) + z2d̄(0, x)cR(x)

}
.

It turns out that BRS symmetry requires this counter-term to vanish. A similar analy-
sis follows for the fermions. Since the fermion integral is Gaussian3, we can use Wick’s
theorem and express the n-point functions through the contractions

ψ(x)ψ̄(y) = S(x, y), λ(t, x)λ̄(s, y) = 0, (7.6)

χ(t, x)λ̄(s, y) = θ(t− s)K(t, x; s, y),

λ(t, x)χ̄(s, y) = θ(s− t)K(s, y; t, x)†,

χ(t, x)χ̄(s, y) =

∫
dDv dDwK(t, x; 0, v)S(v, w)K(s, y; 0, w)†

3Although Sf,t is linear on the fields, integrating over the Lagrange-multiplier λ yields the flow equa-
tions through a delta-distribution. Therefore, the action is still quadratic in the fermion fields.
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Hence, any counter-term must be proportional to either of these fields and, because of the
discussion given above, it must live on the boundary. The only possible counter-term is

c.t. ∼
∫
dDx

{
λ̄(0, x)ψ(x) + ψ̄(x)λ(0, x)

}
,

which is related to a multiplicative wave-function renormalisation constant Zχ

χ = Z−1/2
χ χR, λ = Z1/2

χ λR.

Contrary the gauge fields case, this counter-term does not vanish and therefore the flowed
fermionic fields require an extra renormalisation constant. It may seem that the GF would
bring extra difficulties to actual computations. This is however not true. What the GF
tells us is that for t > 0, all correlators we compute are automatically renormalised, up
to a multiplicative renormalisation constant for the fermions. Since the flowed fields are
smeared, this means that complicated local composite operators renormalise according to
its field content, i.e. all we need isZχ. Moreover, the GF is defined in the continuum and is
independent of the regularisation. This means that we can use these results and especially
the advantages they bring for renormalisation, in lattice computations. On the lattice, the
GF makes computations of currents and densities easier. As an especial case, we will see
that the additive renormalisation constant, which is necessary for the computation of the
gaugino condensate with Wilson fermions, is not necessary if these are flowed up to some
finite flow-time.

7.3 Gradient flow and the renormalised coupling

The fact that correlators of flowed gauge fields are renormalised, allows us to use these
kind of observables to define a renormalised coupling. As suggested in [80], a especially
easy observable to measure with the GF is the energy density in Eq. 6.13. In terms of the
MS scheme of dimensional regularisation, its expansion in perturbation theory is

〈E(t)〉 =
3(N2 − 1)

16t2π2
g2

MS
(µ)
(
1 + c1g

2
MS

(µ) +O(g4
MS

)
)
.

One then defines the GF renormalised coupling as

g2
GF(µ) =

16π2

3(N2 − 1)
t2〈E(t)〉

∣∣∣∣
t=1/8µ2

(7.7)
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7.4 Relation between the gradient flow and RG transfor-

mations

The soft UV cut-off the GF puts on the fields (see Eq. 7.3), resembles the coarse graining
step of a RG transformation. The similitude is evident if instead of the hard cut-off used in
Eq. 3.1, one introduces a soft one like in the Polchinski equation. However, the GF is not
a coarse graining in the RG sense. The issue is that the GF is a deterministic flow, which
tends to bring the system to the classical minima of the bare action at large flow-times.
This fact can already be seen from the flow equations. The RG flow, on the contrary,
would lead the system to minima of the effective action. This means that the GF would
correspond to a RG transformation if we would solve the flow equations for the effective
action at each step of the RG. In the context of scalar field theory, it has been noted in
Refs. [87, 90] that a RG transformation can be seen as originating from a stochastic process
given by a Langevin equation

∂tφt(x) = −∆φt(x) + ηt(x), φ0(x) = ϕ(x)

with solution

φt(x) ≡ φt[ϕ; η] = (Ktϕ)(x) +

∫ t

0

ds(Kt−sηs)(x),

where ϕ, φ are scalar fields, η(x) is Gaussian distributed noise, and Kt is the GF or heat
kernel. In this sense the flowed field is only the mean with respect to the noise η. As
shown in [90], the Langevin equation generates a distribution Pt(φ, ϕ), i.e. the probability
distribution of φ(t), given the initial condition ϕ at t = 0. It is moreover noted that the
distribution is equivalent to a constraint functional in the context of functional RG. With
such a distribution, the effective action is written as (cf. Eq. 3.1)

e−St[φ] =

∫
Dϕ Pt(φ, ϕ)e−S0[ϕ], P0(φ, ϕ) = δ(φ− ϕ) (7.8)

where S0[ϕ] is the bare action. Moreover φ and ϕ are the lower and higher modes, respec-
tively. Let us consider the correlator of some observable O in the effective theory:

〈O(φ)〉St =
1

Z

∫
Dφ O(φ)e−St[φ].



Chapter 7. The gradient flow 53

By replacing Eq. 7.8 into the integrand, we notice that the integration over φ yields a
stochastic mean value with respect to Pt:∫

Dφ O(φ)Pt(φ, ϕ) = 〈O(φt[ϕ, η])〉η

and this leads to the double expectation value

〈O(φ)〉St = 〈〈O(φt[ϕ, η]〉η〉S0 . (7.9)

This remarkable result tells us that correlators in the low-energy effective theories are
equivalent to the correlators of bare fields evolved by the Langevin equation. In other
words, up to the expectation value over the noise η, we can compute the low energy ex-
pectation values from the GF of the bare theory. In the given references it was shown that
the contribution from the stochastic noise becomes irrelevant when the insertion points of
the correlators are well separated. As a result, at least in the context of scalar field theory,
the GF may be related to the coarse graining step of a RG transformation and can be used
to explore the long-length properties of a theory. Of course, only if the large separation
condition is satisfied. In chapter 10 we will be interested in computing the flow of the
mass anomalous dimension γm of adjoint QCD, in order to see if we find hints for the
existence of an IR fixed point. At the fixed point, γm stops to run and reaches its critical
value γ∗. In that chapter we will show how this value can be extracted from the GF, given
the discussion presented in this section.
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Chapter 8

The phase diagram of N = 1 super
Yang-Mills theory on the lattice

We saw in chapter 5 that, at zero temperature, massless SYM has a one-form ZN symme-
try which acts on Polyakov loops and which is related to the confinement of static external
quarks. We have moreover seen that, also at zero temperature, the non-anomalous Z2N

symmetry is spontaneously broken down to Z2 by the non-vanishing gaugino conden-
sate. With that information, in this chapter we pursue the following two tasks.

First, we check if this zero temperature scenario is in fact dynamically realised by the
theory. For this purpose, we will measure the expectation value of the Polyakov loop
and the flowed gaugino condensate on different lattices at zero temperature. Despite
the fact that the condensate has been computed analytically from instanton calculus, it is
important to be able to compute its value from the full theory, without deformations and
without breaking the gauge symmetry. This study is moreover a further step towards
a determination of the exact normalisation constant of the condensate in the continuum
and chiral limits, which could be compared to other renormalisation schemes.

The second task is to turn on a temperature and use the Polyakov loop and the con-
densate as order parameters to test the realisation of the centre and chiral symmetries.
To achieve finite temperatures, we impose antiperiodic boundary conditions in the Eu-
clidean time direction for the fermions and vary the length of the time compactification
radius. The expectation is that at some critical temperature T dc we find a deconfinement
phase transition signalised by a non-vanishing Polyakov loop expectation value. More-
over, we expect to see a phase transition at T χc where the non-anomalous chiral symmetry
Z2N is recovered, i.e. where the gaugino condensate vanishes. It is natural to ask what
kind of phases the theory has at different temperatures. Anomaly matching conditions
give us the hint that confinement implies the spontaneous breaking of the chiral symme-
try. From this follows that the following relation must hold [97–99]

T χc ≥ T dc . (8.1)
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In other words, at T dc , we may find a phase transition to a mixed phase where the ground
state is not confining but where chiral symmetry is still broken. The matching of the
anomalies doesn’t give us any further information and there is no other analytic way
to confirm or rule out the existence of this mixed phase. At the end of this chapter we
will have shown that, within the uncertainties of the numerical lattice computations, this
phase is not realised by the SU(2) gauge theory. Moreover, we will see that there are
evidences, which suggest that it is also the case for SU(3). Hence, the bound in equation
8.1 must be saturated. The SU(2) results have been published in [100]. Our findings for
SU(3) are expected to be published soon. However, some preliminary observations have
been presented in Ref. [101].

Let us now briefly comment on the technical difficulties we encounter when comput-
ing the order parameters. Although the computation of the Polyakov loop through the
lattice version of equation 5.2

PL =
1

V3

∑
~x

Tr

{
Nt∏
t=1

U4(~x, t)

}
, PL 6= z PL (8.2)

is pretty straightforward, measuring the condensate is a more subtle and difficult task
on the lattice. The reason is, of course, that the condensate is a true order parameter of
the spontaneous breaking of the chiral symmetry when the gaugino is massless. We al-
ready saw that chiral symmetry is explicitly broken on the lattice and that we can only
restore it either by tuning the renormalised gaugino mass to zero or by implementing
Ginsparg-Wilson fermions. Since we use Wilson fermions, there is, besides the multi-
plicative renormalisation factor (Zλ̄λ), an additive renormalisation (b0) in the condensate:

〈λ̄λ〉WR = Zλ̄λ(β)(〈λ̄λ〉WB − b0(β)),

where the superscript "W" denotes that the condensate is computed with Wilson
fermions. In the literature the additive constant b0 is often removed by subtracting the
value of the bare condensate at zero temperature [102]

〈λ̄λ〉WS = 〈λ̄λ〉WB (T )− 〈λ̄λ〉WB (T = 0).

This is however an incomplete solution, since the so "renormalised" condensate is
forced to vanish at T = 0. Although this subtraction shouldn’t have any effect in the
determination of the critical temperature, with this ansatz it is not possible to determine
whether the renormalised condensate vanishes at zero temperature or not.
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8.1 The gaugino condensate from the gradient flow

In chapter 7 we saw that, in the flowed theory, the gauge fields don’t renormalise and
the fermions renormalise multiplicatively. Moreover, we found that composite operators
renormalise just according to its field content. For the condensate, this means that

〈λ̄λ〉R(t) = Zλ̄λ〈λ̄λ〉B(t) = (Z
1/2
λ )2〈λ̄λ〉B(t).

Since the GF is regularisation scheme independent, the flowed condensates should agree
up to a multiplicative constant, both in the continuum and on the lattice, regardless of the
explicit lattice discretisation. Thus, it must hold that

〈λ̄λ〉R(t)W = 〈λ̄λ〉B(t) ∼ 〈λ̄λ〉R(t)

This means that there is no additive renormalisation constant in the flowed condensate,
even with Wilson fermions. As a consequence, it is possible to determine from the flowed
condensate whether the renormalised condensate is non-vanishing at zero temperature.
Moreover, the both values would differ only by a constant factor. This computation
would suffice to confirm the spontaneous breaking of chiral symmetry at zero temper-
ature and in the chiral limit. The question about the flowed gaugino condensate being
an adequate order parameter for chiral symmetry was already addressed by Lüscher in
Ref. [82]. Since the GF equations preserve chiral symmetry, one expects the flowed chiral
condensate to show the same critical behaviour as the unflowed one. As a consequence,
measuring the temperature dependence of the former should be sufficient in order to
explore the phase diagram of SYM. The issue of finding Zλ can be avoided if the scale,
i.e. β, is fixed.

The flowed gaugino condensate can be determined by means of Wick’s theorem, to-
gether with the contractions in Eq. 7.6:

〈λ̄(x, t)λ(x, t)〉B = −
∫
dDvdDw K(t, x; 0, v)S(v, w)K(t, x; 0, w)†. (8.3)

Thus, the flowed condensate is given by the action of the heat-kernel on the fermion
propagator S ≡ D−1. This is natural, since the (unflowed) condensate is proportional to
the expectation value of the propagator: in the partition function Z(m), the gaugino mass
acts as a source for the fermion bilinear λ̄λ, and thus the condensate can be computed as
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the derivative of ln(Z(m)) with respect to m:

〈λ̄λ〉B = −T
V

∂

∂m
ln(Z(m)) (8.4)

= − 1

Z(m)

T

V

∂

∂m

〈
exp

{(
1

2
tr ln (D(m))

)}〉
Sg

= −T
V

〈
1

2
trD−1

〉
= −T

V

〈
1

2
trS

〉
.

It is worth to note how this derivation of the condensate allows for a comparison of the
spontaneous breaking of chiral symmetry with the ZN Ising model. In the Ising model
the symmetry is broken by an external magnetic field and the order parameter is the
spontaneous magnetisation. In SYM the mass act as the external field and the condensate
as the magnetisation.

We stress again that the flowed condensate in equation 8.3 is proportional to any other
renormalised condensate. The multiplicative factor in comparison to the MS scheme can
be determined from a small flow-time expansion [103].

8.2 The gaugino condensate on the lattice

The chiral condensate can be measured on each lattice configuration by means of the
discrete version of equation (8.3)

〈λ̄(x, t)λ(x, t)〉B = −
∑
v,w

〈tr{K(t, x; 0, v)(DW(v, w))−1K(t, x; 0, w)†}〉,

where the trace runs over spinor and gauge group indices. For the numerical computa-
tion, it is helpful to insert a complete set of random complex noisy vector fields η(x) with
〈η(x)〉 = 0 and 〈η(x)η(y)†〉 = δx,y:

〈λ̄λ(t)〉 =
1

NΓ

∑
x∈Γ

〈λ̄λ(x, t)〉 = − 1

NΓ

∑
v,w

〈ξ(t; 0, v)†D−1
W ξ(t; 0, w)〉, (8.5)

ξ(t; s, w) =
∑
x

K(t, x; s, w)†η(x).

This expression is evidently a lattice version of Eq. (8.4), where NΓ represents the four-
volume in lattice units. To compute the new vectors ξ, the following adjoint flow equation

∂sξ(t; s, w) = −∆(Vs)ξ(t; s, w), ξ(t; t, w) = η(w), (8.6)
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must be integrated from s = t to s = 0, i.e. backwards in the flow-time. Here is where
the computation turns out to be computationally expensive. We notice that the Laplacian
∆(Vs) is a covariant one. Thus, for every integration step, we need the value of the links
V at flow-time s. Then, to integrate the noise fields from s = t down to s = t− ε, one first
has to integrate the gauge field up to t. The algorithm to numerically compute the flowed
condensate starts with the integration of the gauge fields:

1. Take an initial (unflowed) gauge configuration Vt=0

2. Integrate (7.2) up to some t by means of the following Runge-Kutta integrator with
step-size ε

W0 = Vt,

W1 = exp{(1/4)Z0}W0,

W2 = exp{(8/9)Z1 − (17/36)Z0}W1,

Vt+ε = exp{(3/4)Z2 − (8/9)Z1 + (17/36)Z0}W2, with Zi = −ε∂x,µSw(Wi),

where Sw is the Wilson plaquette action. Equation 8.6 tells us that, to compute the flowed
fermion for a given flow-time s = t, we need all the gauge fields from t = 0 up to t = s.
The next steps in the algorithm are

3. Generate one random source vector ξs=t = η on the lattice, for a given spinor-gauge-
group index, and then integrate it by means of the following Runge-Kutta integrator
down to s = 0

λ3 = ξεs+ε,

λ2 =
3

4
∆2λ3,

λ1 = λ3 +
8

9
∆1λ2,

λ0 = λ1 + λ2 +
1

4
∆0

(
λ1 −

8

9
λ2

)
, with ξεs = λ0

4. Compute the vector W (v) =
∑

wD(v, w)−1ξ(t; 0, w) through the conjugate gradient
method

5. Contract W (v) with ξ(t; 0, v)† and average over the lattice sites, i.e.

− 1

NΓ

∑
v

ξk(t; 0, v)†W (v)
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6. In order to have the full estimate of the condensate, the whole process must be re-
peated for sufficiently many source fields and covering all spinor-gauge-field-index
combinations (4× (N2 − 1) for adjoint SU(N)).

At the end of the algorithm and from equation 8.5, we are left with an estimation of the
flowed condensate 〈λ̄λ(t)〉 for a given lattice configuration.

In the simulation code we have created a measurement sweep, where unflowed gauge
configurations are read and then flowed according to points 1 and 2 of the algorithm.
Afterwards they are converted into the adjoint representation and passed to the Laplacian
operator ∆. Then points 2 through 6 are performed. A critical part is however the relation
between memory usage and computing time. A direct implementation of the algorithm,
i.e. computing the flowed gauge fields for every step of the adjoint fermion flow equation,
yields a very slow performance. Computing speed can be improved by carrying out first
the gauge integration for all flow-times, i.e. points 1 and 2, and keeping the flowed gauge
fields in the memory, e.g. in a container of gauge configurations. This solution is ideal if
one has access to large amounts of memory. It requires for example the usage of fat nodes
on computer clusters. In our simulations we allow for a tuning of the ratio between
memory usage and speed, depending on the available machines, the lattice parameters
employed and the wished maximal flow-time. For example, for very large lattices and
large flow-times, where huge amounts of memory are required, one can choose to save
only some intermediate gauge configurations. Another important factor regarding the
computation of the flowed condensate are both the integration step ε and the number of
stochastic estimators η(x). We will comment more on this later.

In the following sections we measure the flowed condensate at the scale t0 and at
different temperatures. An important step of the analysis is to check the flow-time de-
pendence of the condensate. From the properties of the GF, one expects the condensate
to take always larger values in the limit t → 0, since there an additive renormalisation
is required. At larger intermediate flow-times, the regularisation scheme independence
of the GF should be evident and the condensate should vary very weakly with the flow-
time, as it approximates the value of the renormalised condensate up to the multiplicative
renormalisation constant. At very large flow-times, where the effective smearing radius√

8t is bigger than the lattice size, one expects oversmearing and thus non-physical re-
sults. In Fig.8.1 we show the flow-time dependence of the condensate. An example of
how oversmearing affects the condensate can be seen in Fig. 8.4.
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FIGURE 8.1: flow-time dependence of the condensate in SU(2) SYM at β = 1.75
and κ = 0.1490 with spatial volume 243. Nt = 8 (left) and Nt = 10 (right).

8.3 The SU(2) SYM phase diagram

8.3.1 The gaugino condensate at zero temperature

We begin our investigations of the phase diagram of SU(2) SYM by measuring the gaug-
ino condensate at zero temperature. Our lattice action is Symanzik improved (see Eq.
6.4). The links in the Dirac-Wilson operator have one-level stout smearing with ρ = 0.15.
We choose a lattice coupling β = 1.75, volume 323 × 64 and four different bare gaugino
masses with parameters κ = 0.1490, 0.1492, 0.1494 and 0.1495. The four different masses
are used to extrapolate to the chiral/supersymmetric point, where the renormalised gaug-
ino mass vanishes. All the results of the flowed condensate shown from this section on
are expressed in units of t0:

〈λ̄λ〉 ≡ t
3/2
0 〈λ̄λ(t)〉 |t=t0 .

For every κ value we have considered O(1000) configurations, starting at the 1000th

in the Markov Chain to ensure thermalisation. We have moreover measured every
fourth configuration, in order to reduce autocorrelation. Thus, we have analysed O(100)

configurations for every κ value. We use t0 to set the scale. We determined t0 for
each κ from Eq. 6.14 and found the chiral extrapolated value tchiral

0 = 12.81(35). The
flowed gaugino condensate was computed at the same flow-time tchiral

0 by employing the
algorithm explained above. The results are summarised in table 8.1. Here is important to
notice that the smearing radius at t0 is smaller than the dimensions of the lattice box and
then we shouldn’t have any oversmearing troubles. The parameters of the computation
are the integration step size ε and the number of stochastic estimators η(x). In the case
at hand, these parameters had to be chosen carefully. Regarding ε, one can be tempted
to use a very small value, in order to gain precision in the Runge-Kutta integration. One
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has however to take into account that the whole procedure of computing the flowed
condensate is computationally very expensive. Not only the relation speed/memory
explained above plays a role but also the inversion (cf. point 4 of the algorithm) of the
Dirac operator at every integration step. After evaluating the influence of ε on the results,
by analysing a small number of configurations, we have chosen ε = 0.01. We have also
chosen a rather conservative number of stochastic estimators, namely 10. The underlying
reason is, again the computational cost. At the beginning of our analysis we have varied
this number up to 100 on some test configurations and we observed no very significative
deviations. In our simulations, after setting nη = 10, we have controlled the error of
the flowed condensate with respect to the stochastic estimators on every configuration
and have seen that this error is in general ∼ O(1e − 6). Moreover, the estimators on
two different configurations are independent from each other. Thus, it suffices to only
take into account the statistical uncertainty, which is quoted in the results of table 8.1.
The statistical uncertainties are computed by means of jackknife resampling. It may be
remarkable for the reader that the uncertainties are rather small. The stability of the
value of the flowed condensate can be understood as arising from the following two
factors. The first is the smoothening effect of the GF and the second is the fact that the
renormalised gaugino masses we are considering are rather large (see 8.1). This means
that we are still away from the chiral point and thus from the first order phase transition
where both phases (+,−) of the condensate coexist. If we were at smaller masses, we
would see more fluctuations on the value of the flowed condensate and eventually
tunnelling to the negative phase. We complement this discussion with the Monte Carlo
histories of the flowed condensate in Fig. 8.2

FIGURE 8.2: Monte Carlo histories of the flowed condensate at 323 × 64, β = 1.75
and tchiral

0 . On the right κ = 0.1492, on the left κ = 0.1495.
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κ amπ t0 〈λ̄λ〉
0.1490 0.23847(41) 9.851(32) 0.003520(23)

0.1492 0.20346(54) 10.545(69) 0.003441(10)

0.1494 0.1604(15) 11.262(72) 0.003353(9)

0.1495 0.1294(24) 12.49(18) 0.003269(21)

TABLE 8.1: The GF scale t0 for each κ and the values of the gaugino condensate for
each ensemble.

Linear 0.003185(14)

Quadratic 0.003160(30)

TABLE 8.2: Extrapolations of the condensate to the chiral point.

With the results of table 8.1, we have performed an extrapolation to the chi-
ral/supersymmetric point, which can be seen in Fig. 8.3 and is summarised in table 8.2.
The errors of the extrapolation result from the statistical uncertainties at every point.
We can clearly see that the gaugino condensate doesn’t vanish in the chiral limit. This
result is actually the first clear numerical evidence, obtained with Wilson fermions, of
the spontaneous breaking of the Z2N chiral symmetry at zero temperature and zero
gaugino mass. In previous non-gradient-flow studies found in the literature [38, 104],
the formation of the condensate was inferred from a double peak observed in the Monte
Carlo histogram. These simulations seem to have been however unstable, performed in
small volumes close to the chiral point.

Because of the great advantages of the GF method, our results are as significant as
those performed with Domain-Wall and overlap fermions in [64, 105–108]. Especially,
there is a remarkable compatibility with the most recent results from overlap fermions
(see Ref.[109]). As in our simulations, the authors of those works didn’t determine the
renormalisation factor Zλ̄λ of the condensate and, therefore, their results are, as in our
case, proportional to the renormalised condensate in the MS renormalisation scheme.
These first GF investigations show that it is, in principle, possible to study the SYM vacua
with Wilson fermions, which are computationally less expensive than the Ginsparg-
Wilson fermions. This study can furthermore be seen as a first step towards more am-
bitious goals. As mentioned before, there have been discrepancies and puzzles regarding
the output of analytical computations of the condensate by means of weak and strong
coupling instanton calculations. One way to settle this issue would be to make more rig-
orous measurements of the condensate, so that one can get an exact value, which can be
compared to the analytical predictions. For this purpose it would be necessary to

1. Match our renormalisation scheme with, for example, MS.
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FIGURE 8.3: Extrapolation of the condensate to the chiral point. It seems to scale
linearly with the gaugino mass, while a weak quadratic dependence seems to appear
as the mass grows.

2. Determine the exact value of the renormalisation constant Zλ̄

3. Match the analytical, semi-classical predictions to MS.

8.3.2 Chiral symmetry restoration and centre symmetry breaking

After having confirmed that chiral symmetry is broken at zero temperature, let us
now see how the system behaves as the temperature rises. We analysed three different
ensembles with coupling β = 1.75 and hopping parameters κ = 0.1480, 0.1490, 0.14925.
We used the same lattice action as before. However, in order to check the lattice spacing
effects in our results, we included an additional lattice with β = 1.65, κ = 0.175 and
tree-level clover improved fermion action with unsmeared links. As mentioned above,
non-zero temperatures are achieved by imposing anti-periodic boundary conditions for
the fermions in the Euclidean time dimension. To achieve different temperatures we fix
the lattice parameters and vary the length of the thermal circleNt. The lattice volumes are
thus 243×Nt forNt = 4, 5, 6, · · · , 48, with the upper bound labelling the zero-temperature
limit. The number of configurations and the fermion flow integration parameters
are analogous to the zero-temperature case. A difference is , however, that for these
finite-temperature measurements we set a mass-dependent scale setting. This means
that the flow-time t0 where the gaugino condensate is measured, is different for each κ

value. There are two reasons for this choice, which are related to the fact that t0 becomes
large in the chiral limit. The first one is that the numerical integration of the adjoint
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flow equation 8.6 becomes very expensive as the flow-time grows. The second reason
is that at large t and small Nt oversmearing takes over, leading to meaningless results.
Luckily, all t0 values allowed us to resolve inverse temperatures up to Nt = 9, which lie
beyond the critical temperature. For the smallest gaugino mass, oversmearing can be
seen already at Nt = 8, and is signalised by a growth in the value of the condensate. This
can be seen in Fig. 8.4, where we have included the over-flowed value for illustrative
purposes. To be sure that the mass-dependent scale doesn’t introduce significant errors
to the results, we measured the condensate at flow-times around t0. For t0±0.1, the value
of the flowed condensate changes by about 1%. Therefore, we don’t expect our results
to significantly differ from those obtained with the chiral extrapolated fixed scale. This
observation moreover means that the uncertainty in the value of t0 at every κ doesn’t
greatly influence the determination of the critical temperature in physical units.
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FIGURE 8.4: Temperature dependence of the flowed gaugino condensate for
κ = 0.1480, 0.1490 and 0.14925. On the lowermost graphic, the point
corresponding to the highest temperature appears to show a growth in the
condensate. This is however a non-physical over-smoothing artefact due to the fact
that
√

8t0 > Nt in that region.
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FIGURE 8.5: Binder cumulant of the Polyakov loop at the same κ values of Fig. 8.4.
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critical temperature of the Polyakov loop. Right: gaugino condensate at β = 1.65
and κ = 0.175. The phase transition occurs at N c

t = 7, which roughly agrees in
dimensionless units with the critical temperature for β = 1.75.

The results of the flowed condensate and the Polyakov loop are summarised in
Figs. 8.4, 8.5, 8.6 and table A.1. In figure 8.4 we see that, at some temperature T χ∗ , the
value of the condensate starts to quickly decrease. For the largest gaugino mass, this
decreasing is almost monotonic. However, as the gaugino mass becomes smaller, we
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FIGURE 8.7: Chiral extrapolation of the deconfinement phase transition. The
deconfinement temperature extrapolated to the chiral limit is
Tc|ma–π=0 = 0.2574(26).

start to see a jump-like behaviour in the condensate value around T χ∗ . This is a pseudo
phase transition, which we expect to become a true phase transition at zero gaugino
mass, characterised by a jump to a vanishing condensate. Since T χ∗ doesn’t change
with the mass, we can say that this temperature is, in fact, the critical temperature,
i.e. T χ∗ = T χc . The existence of the phase transition can be more clearly seen from the
disconnected chiral susceptibility in Figure 8.6.1 From the peak of the susceptibility we
see that the critical temperature is T χc =

√
t0/Nt ∼ 0.25. Remarkably, the same critical

temperature is observed for β = 1.65 with the clover improved lattice action (see also Fig.
8.6). Although for most of the Nt values we analysed O(100) configurations, we have
increased (doubled) the statistics at and around the critical temperature, e.g. Nt ∼ 13 for
κ = 0.14925. The reason is that, at these temperatures, the value of the flowed condensate
shows significative fluctuations. This can be seen in the histories of Fig.8.8 and in the
larger error bars in Fig. 8.4. Remarkably, as shown in the figure, it seems that we have
spotted a negative condensate at one of the configurations.

We can now turn our attention to the deconfinement phase transition, which is a true
phase transition even at non-zero fermion mass. In Ref.[102] it was found that the decon-
finement phase transition is second order and that it shows the critical behaviour of the

1As noted in [102], it is expected that the largest contribution to the phase transition’s peak comes from
the disconnected part of the susceptibility.
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FIGURE 8.8: Histories of the flowed condensate near the critical temperature at
κ = 0.14925.

Z2 Ising model. Hence, one can use the Binder cumulant of the Polyakov loop

B4(PL) = 1− 1

3

〈P 4
L〉

〈P 2
L〉2

to determine the critical temperature. The transition occurs when B4(PL) reaches the crit-
ical value Bc

4 = 0.46548(5) (for details see [110]). We measured B4 at the given ensembles.
The critical value Bc

4 is shown as horizontal lines in the plots of Figure 8.5, for the differ-
ent κ values. Here we would like to mention one drawback of the fixed scale approach,
namely that we can only change the temperature by discrete steps. In order to precisely
estimate at which temperature the critical point is achieved, we performed a linear inter-
polation of the Binder cumulant between the two points approaching the critical value
Bc

4 both from the left and from the right. The critical temperatures at finite gaugino mass
were then extrapolated to the chiral/supersymmetric point through a linear fit. This ex-
trapolation can be seen in figure 8.7. The extrapolated value is T dc = 0.2574(26), which
happens to coincide, up to numerical uncertainties, with T χc . At this point it is worth to
comment on the systematic uncertainties arising from SUSY breaking lattice artefacts. The
authors of Ref. [40] investigated the low-energy particle spectrum and SUSY Ward identi-
ties on the same zero-temperature ensembles studied here. According to their results, the
role of these lattice artefacts is expected to be small. Moreover, our findings are in agree-
ment with the results of Ref.[102], obtained without GF, where a coincidence of the critical
temperatures was also observed. The present work has however important differences, as
we use an improved lattice action and smaller lattice spacing, combined with the advan-
tages of the GF method. Our results are very remarkable. They suggest that the bound
in equation 8.1, predicted from the matching of the anomalies, must be saturated. In this
way lattice simulations allow us to get a deep insight into the physics of SYM, which is
not possible from any known analytical tools. Indeed, the saturation of the bound is far
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from trivial and some simulations of adjoint QCD have previously supported the exis-
tence of mixed deconfined-chirally-broken phases. In Ref. [111], for example, the authors
found T χc ' 8T dc in SU(3) two-flavour adjoint QCD with staggered fermions. Although
non-perturbative analytical studies of SYM cannot predict our results, semi-classical anal-
ysis on R3×S1 have, in fact, predicted the coincidence of the phase transitions in SYM and
adjoint QCD on that manifold (see Refs. [112–115] ). Moreover, shortly we will see how
the coincidence of the critical temperatures can be understood from the point of view of
string-theory by means of a model which is equivalent to SYM at criticality.
To conclude the results for SU(2) SYM, we compare the deconfinement critical tempera-
tures of SYM and pure YM theory. The latter critical temperature is taken from Ref. [116].
We obtain the ratio

Tc(SYM)

Tc(YM)
=

0.2574(26)

0.3082(2)
= 0.8352(90). (8.7)

The temperatures are given through the GF scale as
√
t0/N

c
t . The value of t0 in SU(2) YM

was computed in Ref. [117]. Interestingly, the ratio is in rough agreement with the ana-

lytical prediction of Ref. [118], where the authors propose the value Tc(SYM)
Tc(YM)

=
√

2
3
∼ 0.82.

8.4 Prediction from string theory and anomaly matching

The coincidence of the critical temperatures not only means that confinement implies chi-
ral symmetry breaking, as predicted from the consistency of the anomalies. Our results
suggest, in fact, that both phenomena are non-trivially intertwined and that there should
be an underlying mechanism that relates them. Such a result can’t be inferred from non-
perturbative analytical methods and thus the lattice shows itself as a very powerful tool.
Unfortunately, the lattice is not able to provide us with the answer about what exactly
causes the intertwining of these symmetries. Nevertheless, as often happens in physics, it
is sometimes useful to take a look at dual formulations of a model. With dual formulation
we mean that, in certain limits, a single phenomenon can be described by two different
mathematical formulations. Thus, if one would find a dual framework describing
the physics of SYM near criticality, and if we could have control on the topological as-
pects of this dual system, then it would be possible to predict the mentioned intertwining.

As it was shown by Witten, string theory formulations can, although not solve our
problem, at least give some prediction in a model similar to our SYM. In Ref. [119]
Witten considered a certain brane configuration consisting of two differently oriented
NS five-branes and N D-four-branes stretching between them in weakly coupled IIA
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superstring theory2. On the world-volume of the four-brane lives a 3+1 dimensional
SU(N) gauge theory with N = 1 SUSY. This theory has N vacua, which can be regarded
as the N vacua we get in SYM through spontaneous breaking of the chiral symmetry.
Witten showed how the confining string emanating from a colour-electric source is
topologically equivalent to the IIA fundamental string. Furthermore he found that the
BPS-domain wall is a D-brane, and thus the confining strings can end on it. This fact
directly relates confinement and chiral symmetry breaking. The domain wall, which is
a kind of four-dimensional kink, has unbroken chiral symmetry in its core. Moreover
a colour-electric source sufficiently near the wall behaves as a free quark, since the
flux ends on the wall, charging it. Since the wall is colour-charged, the Polyakov loop
expectation value doesn’t vanish. This picture was further studied in Ref. [120] through
an effective field theory for the condensate and the Polyakov loop. In the SU(3) case,
Zχ

3 restoration implies Zc
3 breaking. The authors of the study moreover argued that the

results of Witten, i.e. that the confining strings end on the domain wall, can only be
realised if both phase transitions agree.

Our results are in agreement with these observations. This is however not the end of
the story. The string theory explanation is not fully satisfactory, since the model is just
dual to SYM in some given limit. Therefore we don’t learn much about how confinement
and chiral symmetry breaking exactly arise in the first place. There is also no information
about what happens after the phase transition, i.e. what the fate of the ZN domain wall
is.

8.5 The phase diagram of SU(3) SYM

After having explored the phase diagram of SU(2) SYM, we focus now in the SU(3),
which is more similar to the real-world QCD. We measure again the Polyakov loop and
the gaugino condensate. It is however important to notice that the vacuum structure is
more complex and difficult to explore. In SU(2) we had two degenerated vacua labelled
by the two (real) values of the condensate 〈λλ〉 = ±2cΛ3. In SU(3) we have 3 degenerated
vacua

〈λλ〉 = 3cΛ3


e2πi0/3

e2πi1/3

e2πi2/3

,

2The framework is actually M-theory. The brane model is not equivalent to SYM but is in the same
universality class. SYM is obtained when taking the IIA, i.e. ten dimensional limit.
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and only in one of them the condensate is real. As we see, the other 2 values of the con-
densate are complex. The extra imaginary part is given by a non-vanishing pseudoscalar
condensate 〈λ̄γ5λ〉. Non-vanishing values of the pseudoscalar condensate signal that
the vacuum has broken CP symmetry. This is not surprising, as these vacua correspond
to theta values different from 0 and π, and we know that only these two theta values
yield CP symmetric vacua. It turns out that the observation of the first order phase
transition at mg = 0, i.e. the coexistence of the three degenerated vacua signalled by
the corresponding peaks in the condensate histories, is as today an open problem. In
fact, it seems that the exploration of the vacuum in the SU(3) theory demands the use
of Ginsparg-Wilson fermions. For this reason, we limit ourselves to the study of the
thermal phase transitions, using the absolute value of the gaugino (scalar) condensate as
the order parameter of chiral symmetry realisation. It is important to mention that this
SU(3) project is still a work in progress.

We choose a tree-level Symanzik improved gauge action and one-loop clover-
improved Wilson-fermions with csw = 1.598. The lattice parameters are β = 5.5 and
V = 163 × Nt, with Nt between 4 and 12. The κ values are 0.165, 0.1667 and 0.1673. The
first part of our investigations consisted in the determination of the flowed condensate,
analogous to the SU(2) case. As expected, for SU(3) the computational cost is much
higher. Already the generation of O(2000) lattice configurations per κ and per Nt took
quite a long time. The first results are shown in Fig. 8.9, where we show both the
Polyakov loop and chiral susceptibilities for our two smallest gaugino masses. Remark-
ably both phase transitions appear to happen at the same critical temperature Tc = 0.16,
which correspond to Nt = 9 in the case of κ = 0.1673 and Nt = 8 for κ = 0.1667. Hence,
the critical temperature in physical units doesn’t change considerably with the mass in
the considered parameter range, and therefore the peaks of the susceptibilities signal a
true phase transition. As a consequence, we also observe the intertwining of chiral and
centre symmetries when the gauge group is SU(3).

To observe the coincidence of critical temperatures at N = 3 is, in fact, not quite
unexpected. There is actually no reason to think that the intertwining would disappear
by increasing N . In fact, the string theory picture described above holds for general
N . However, we cannot rush to assume that the phase transition is second order, like
for SU(2). Therefore, we have to look more carefully what is going on at and near
the critical temperature. For this purpose we focused on the behaviour of the order
parameter around Nt = 9 at the largest κ. The plot on the left of Fig. 8.10 shows the value
of the unflowed gaugino condensate and the absolute value of the Polyakov loop for
every analysed configuration. The plot on the right corresponds to the flowed gaugino
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FIGURE 8.9: Polyakov loop and chiral susceptibilities (left and right resp.) for
different temperatures. The critical temperature for both phase transitions seem to
be Tc ∼ 0.16, which corresponds to Nt = 9.
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flowed (right) gaugino condensate at Nt = 9, κ = 0.1673.
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condensate. Both plots provide us with two insightful pieces of information. We see
that the order parameters seem to be correlated: configurations with a large Polyakov
loop have a small gaugino condensate and vice versa. To confirm the correlation we
considered the Pearson coefficient ρ in both cases. As shown in Fig. 8.10, the correlation
number is significantly larger (ρ = −0.815) when employing the flowed condensate. This
is a clear signal of the (anti)-correlation of both order parameters. The fact that the cor-
relation is stronger when the condensate is flowed can be understood as a consequence
of the gradient flow smoothing out the fluctuations. This observation further supports
the coincidence of the phase transitions. The second piece of information is that there
appear to form two domains, which correspond to the vacua at the phase transition. In
both figures, the patch on the left corresponds to the confining/chiral-broken vacuum,
while the patch on the right corresponds to the deconfined/chiral-restored one. This fact
suggests the coexistence of the two kind of vacua and provide evidence for a possible
first order phase transition.

In a similar way, the Monte Carlo histories (Fig. 8.11) and the 2d histograms (Fig. 8.12)
of the Polyakov loop at different temperatures seem to support this picture. We see that,
at high temperatures, the Polyakov loop is far away from zero. This corresponds to the
deconfined phase. As we approachNt = 9, the histogram starts to shift towards vanishing
Polyakov loop expectation value. At Nt = 9, one starts to recognise high density regions,
with one of them being near to zero. This is more visible when looking at the real part
alone. AtNt = 10, the two peaks are more pronounced and one of them is centred around
the origin. This can be interpreted as a hint for the coexistence of both the confined and
deconfined phases at the critical temperature. Moreover, according to the data, the critical
temperature should be somewhere between Nt = 9 and 10. As the temperature is further
lowered, we see a unique peak around zero, which signals that the theory is confined,
as expected. This is seen already at Nt = 11. To confirm the hypothesis of the phase
transition being first order, further investigations are however required. For example, if
it is first order, repeating the measurements on different volumes should yield that the
positions of the peaks are stable with respect to the change in the volume and that the
peaks become sharper. Also a larger statistics would be necessary. The completion of this
study is currently work in progress.
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Chapter 9

SU(3) super Yang-Mills theory on R3 × S1

In this chapter we discuss the physics of adjoint QCD on R3×S1, with periodic boundary
conditions for the fermions, and show results for the nf = 1 supersymmetric case. In the
large circle limit L4 →∞ the theory naturally corresponds to the four-dimensionalN = 1

SYM theory, while the dimensional reduction L4 → 0 is N = 2 SYM in three dimensions.
In this chapter nf denotes the number of Weyl fermions.

9.1 Semi-classics and confinement in adjoint QCD on the

cylinder

The study of QCD-like theories defined on the cylinder R3 × S1 has been a very active
research topic in the last years (see for example Refs. [113–115, 121–128]). A clear motiva-
tion for this is the qualitative understanding of confinement. Although this phenomenon
is well understood in some SUSY models with scalars, the same cannot be said for QCD-
like theories on R4 and R(3,1), where it is still an open problem. The reason behind this
difficulty was already mentioned before. If we want to understand confinement from
the non-perturbative contributions of gauge bundles with non-trivial topology, like in-
stantons, we encounter the obstacle that semi-classical expansions are not valid at large
distances. An insightful way to overcome this is to work with the theory on the cylinder.
Because of asymptotic freedom, at small radii L4Λ � 1, QCD-like theories are weakly
coupled and thus we can trust semi-classical analysis. Using this technique with the hope
of learning about confinement in R4, is however only realisable as long as there is no de-
confinement at some critical radius Lc. If the small circle and infinite circle regimes are
smoothly connected, i.e. if there are no phase transitions, we speak of adiabatic continuity.
This requirement already fails for pure YM, where the theory on the cylinder is thermal
and we have the familiar deconfinement transition at weak coupling1. It has been pro-
posed that centre symmetry can be preserved at all L4 if we include adjoint fermions

1A way out is to deform the theory by a double trace operator which stabilises the centre symmetry at
small radii. This was proposed in [128]
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[125]. We say then that the fermions dynamically stabilise the bosonic effective potential
responsible for the breaking of the symmetry. Thus, the origin of confinement in adjoint
QCD may be analytically studied through the semi-classical approximation on the cylin-
der. Also in Ref. [125], the authors have found that topological molecules called bions
are responsible for confinement in the small radius regime. Let’s briefly comment on the
main results.

At the small radius regime, adjoint QCD is similar to the 3d Georgi-Glashow model.
The theory Abelianises, i.e. the gauge group is Higgsed SU(N)→ U(1)N−1, due to a non-
vanishing VEV of the gauge field A4 around the compact direction, so that the Wilson
loop becomes

Ω(x) = Pei
∫
dx4 A4 ⇒ Ω(x) = eiLΦ, Φ = diag(φ1, φ2, · · · , φN).

Hence, the gauge field A4 gives rise to the 3d adjoint scalar Φ = ΦaT a, the Higgs field,
which is compact because it is circle-valued2. Each VEV correspond to one of the N

vacua (supersymmetric in SYM), which are connected by ZN transformations. After the
Abelianisation, the colour non-diagonal components of the fermions and gauge fields
become massive (W bosons), while the diagonal parts become photons and massless
fermions. Perturbatively, an effective potential arises after the Kaluza-Klein (KK) modes
with kn ∼ 2πn

L4
are integrated out

Vpert[Ω] = (−1 + nf )
2

π2L4
4

∑
n

1

n4
| tr Ωn|2,

which vanishes for SYM. Moreover, because of SUSY, the potential vanishes to all or-
ders in perturbation theory. We focus now exclusively on SYM, although the more
general nf > 1 cases follow similarly, as the arguments will not rely on SUSY. Let’s
see now how a potential may arise non-perturbatively. Similar to the Georgi-Glashow
model, we have N − 1 three-dimensional SU(2) ↪→ SU(N) BPS monopoles (monopole-
instanton on the Euclidean cylinder). Since at L4 > 0 the theory is still locally four di-
mensional and due to the compactness of the Higgs field, there is an additional so-called
KK monopole-instanton3. The monopoles have the following magnetic and topological
charges (mag,top)

BPS : (1, 1/2), KK : (−1, 1/2)

BPS : (−1,−1/2) KK : (1,−1/2).

2Note that this feature is unlike the SM Higgs, which is R-valued.
3If one thinks of the BPS monopoles as connecting the vacua φ1 → φ2, · · · , φN−1 → φN , the KK

monopole connects φN → φ1, because of the compactness of the Higgs.
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Because of the index theorem, each monopole creates two fermionic zero modes4. Let
us ignore for a while the fermions. In the semi-classical approximation, one writes the
partition function as a sum over well separated monopoles eSmono and their Coulomb-like
interactions (dilute monopole gas). Because of the Abelian duality in 3d QED, the inter-
actions can be written by means of the scalar dual photon σ through operator insertions
eiσ(x). This results in a sine-Gordon-like effective Lagrangian of the form

Lσ =
1

2
(∂µσ)− ce−S0 cos(σ),

where e−S0 is the 1-instanton amplitude and c is a constant. Thus, in the absence of
fermions, monopole-instantons generate a mass for σ. The story is different when mass-
less fermions are included, since the instantons always come along with two zero modes
each:

e−S0 cosσ → e−S0 detλ0λ0(cosσ).

As a consequence, the cos(σ) term is not part of the bosonic potential. In Ref. [125], it
was proposed that only objects with vanishing topological charge can contribute to the
bosonic potential. These objects appear at order e−2S0 in the semi-classical expansion. To
order e−2S0 , the effective bosonic Lagrangian is

Lσ =
1

2
(∂µσ)− be−2S0cos(2σ),

where b is a constant. The 2σ term signals that the contributions to the potential come
from objects carrying two times the monopole charge. These are precisely pairs (or
molecules) of monopoles-antimonopoles, e.g. BPS·KK. They are called magnetic bions.
This bosonic potential generates a mass term for σ, which then generates confinement
through Debye screening. The dual-photon mass is proportional to the confinement
string tension. The pairing of the monopoles forming the bions is stable due to an ef-
fective attractive force, which arises through two-fermion exchange. This force overcome
the repulsive magnetic force between them.

Magnetic bions thus explain confinement in SYM on the cylinder at small L4, through
the generation of a centre-stabilising effective potential. It is now natural to ask what
happens beyond the range of validity of the semi-classical expansion LΛ � 1 and at
mg 6= 0. In general one probes the phase structure as function of L4 and the gaugino
mass mg by means of the partition function, which for periodic boundary conditions is

4In R4 we have that BPS instantons are associated to 4nf zero modes, because their topological charge
is n = 1.
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the graded (non-thermal) sum

Z̃(L4,mg) = tr
[
e−L4Ĥ(mg)(−1)F

]
. (9.1)

In massless SYM, only the zero-modes contribute and thus equation 9.1 reduces to the
Witten index IW = N , which is independent of L4 and correspond to theN supersymmet-
ric vacua labelled by the VEV of A4. This independence makes clear that, in the massless
limit, there should be continuity between the small and large circle physics. For mg 6= 0,
i.e. for softly-broken SUSY, Z̃ is not an index, but it is a functional that "interpolates" be-
tween the Witten index and the thermal partition function of pure YM, where the fermion
decouples as mg →∞. Contrary to the massless case, a small mass not only breaks SUSY
but also leads to a non-zero perturbative effective potential

Vpert[Ω] = − m2
g

2π2L2
4

∑
n

1

n2
| tr Ωn|2,

which breaks the centre symmetry, and to corrections to the non-perturbative one. Then,
in the different regions of the (L4,mg) plane, there is a competition among the dif-
ferent centre-stabilising and centre-destabilising contributions. As discussed in Ref.
[123], within the range of validity of the semi-classics, centre symmetry is preserved if
mg/8L4 � 1, where bion contributions dominate. Outside that range, e.g. at smaller L4

and fixed mg, destabilising monopole effects take over leading to deconfinement. From
here follows an additional continuity conjecture, namely that on the (L4,mg) plane the de-
confinement phase transition line smoothly connects SYM (mg=0) and thermal YM theory
(mg →∞). A semi-classical prediction of the phase diagram of SU(2) SYM is sketched in
Fig. 9.1. Interestingly, this figure is compatible with our result of section 8.3.2, namely the
ratio of deconfinement phase transitions Tc(SYM) = 0.8352 Tc(YM).

9.2 Confinement of SU(3) SYM on the cylinder

The nice semi-classical picture explained above is very revealing and sheds light on the
long-standing confinement problem. The continuity of this description up to the the R4

limit depends, as mentioned earlier, on the absence of phase transitions as L4 → ∞. Of
course, taking this limit moves us of away from the weak coupling regime that is trackable
through the semi-classical approximation. We can test the continuity by simulating the
theory on the lattice.

In our discretisation, we employ a tree-level Symanzik improved gauge action and
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FIGURE 9.1: Semi-classical prediction of the phase diagram of SYM on the
cylinder. Figure taken from Ref. [129].

one-loop clover-improved Wilson fermions. We test continuity by measuring the funda-
mental Polyakov loop at different compactification radii L4. As for SU(3) at finite tem-
peratures, we set the bare gauge coupling β = 5.5. We analyse three different gaugino
masses corresponding to the hopping parameters κ = 0.165, 0.1667, 0.1673, with the crit-
ical point being at κc = 0.1684. The different radii of the cylinder are achieved, at fixed
β, by varying the number of points in that dimension, i.e. Nt. Moreover R3 is, as usual,
approximated by choosing the other cycles of the lattice to be much larger than the com-
pact time direction. We considered nine different radii Nt ∈ {4, · · · , 12}. The results are
summarised in figure 9.2, where we compare both boundary conditions.

FIGURE 9.2: Comparison of the Polyakov loop at different L4 for both the thermal
theory and the theory on the cylinder.
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We first see that for large radii (low temperature) Nt = 10, 11, 12, the theory is always
confined, as expected from the limits L4 → ∞ and T → 0. Then, for thermal boundary
conditions, the centre symmetry gets broken already at large radii, signalised by a non-
vanishing Polyakov loop VEV. The critical temperature of the phase transition aTc = 1/N c

t

is higher for larger bare fermion mass, and it is expected to reach the critical value for pure
YM in the limit mg →∞.
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FIGURE 9.3: Polyakov loop susceptibilities at κ = 0.1667 and κ = 0.1673 as
function of L4. A peak is observed at Nt = 5.

For periodic boundary conditions, the theory remains confined up to smaller L4. In
Fig. 9.3 we see a peak in the susceptibility of the Polyakov loop at around N c

t = 5 for
the two largest κ values, which may be a signal of deconfinement. Hence, we already
encounter a difference with respect to anti-periodic boundary conditions, where the peak
of the susceptibility was found at Nt = 9. This difference tells us that the theory on the
cylinder confines at least down to Nt = 5. Nevertheless, in order to be able to determine
if there is actually a deconfinement phase transition, we need to take a closer look at the
behaviour of the Polyakov loop near the peak, just as we did for finite temperatures. In
Fig. 9.4 we see the density plots of the Polyakov loop in the complex plane. At Nt = 9

the theory is clearly confining. When the radius L4 is reduced, the values of the Polyakov
loop are distributed around a small region near to zero. A direct comparison of the plots
at Nt = 5 for periodic and antiperiodic (Fig. 8.12) boundary conditions makes however
evident that, on the cylinder, the non-vanishing value of the Polyakov loop is significantly
smaller. An important observation is moreover that the distribution of the Polyakov loop
is very broad at small compactification radii. This means that the effective potential at
such radii is nearly flat, and its minimum is marginally shifted from the origin. This
picture could however change if we would increase the statistics. We could namely see a
clearer distribution around zero, i.e. confinement. The flatness of the potential together
with the fact that finite size and volume effects become significant as Nt → 05, make such

5See Ref. [129, 130] for a thorough investigation of continuity in SU(2) SYM.
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FIGURE 9.4: Polyakov loop histories at different L4 for κ = 0.1673 (blue) and
κ = 0.1667 (green).
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an analysis particularly difficult to perform and one may need to take into account a very
large number of configurations. Thus, we don’t have enough information in order to
fully determine whether a deconfinement phase transition actually takes place or not at
small L4. Nevertheless, the proximity of the value of the Polyakov loop to zero and the
broadness of the distribution may be a hint for the prevalence of confinement down to
very small L4. Clearly, a more thorough study is necessary in order to make this statement
more precise. We plan to increase the statistics and to analyse different volumes. By
doing so, one could confirm the continuity of the phase transition line as predicted by
the semi-classical analysis. Accordingly, one should see that the critical Lc4 gets smaller
as mg → 0. The main result of this section is nevertheless the big qualitative difference
between thermal and periodic boundary conditions. We see that SYM with a periodic
gaugino remains confined at least down to Nt = 6.

9.3 The Witten index in SU(3) SYM

If we go down to mg = 0, the twisted partition function equals the Witten index, which
tells us that SUSY is unbroken at all L4. Hence, we can look for hints of continuity by
measuring the Witten index at different masses. We should see that the Witten index
smoothly becomes independent of L4 in the massless limit. This measurement would
allow us moreover to see how badly broken SUSY is for different lattice parameters, and
whether it is recovered in the massless limit. From equation 9.1 follows that the Witten
index is given by

Z̃(L4) ≡ IW =
∑

bosons

e−L4EBi −
∑

fermions

e−L4EFi , (9.2)

and, as we already mentioned, IW = N , the number of supersymmetric vacua. The
energies EB,F

i are the eigenvalues of Ĥ on the graded Hilbert space. A direct measure of
the Widen index on the lattice is difficult, as it implies knowing Z̃ and its normalisation
factor. Luckily, we can easily measure derivatives of Z̃ on the lattice, as it is actually what
we usually do when we measure correlators. We thus derive equation 9.2 with respect to
L4 to find the graded energy density

EG(L4) =
∂Z̃

∂L4

=
∑

fermions

EF
i e−L4EFi −

∑
bosons

EB
i e−L4EBi . (9.3)

We normalise it by subtracting the value in the limit of decompactification
limL4→∞EG(L4) ≡ E∞. If SUSY is unbroken, we must find ES(L4) ≡ EG(L4) − E∞ = 0.

In other words, ES is sensitive to the mismatch between bosonic and fermionic excited
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modes. The expectation is then to see that the subtracted energy density approaches zero
at all compactification radii L4 as we reduce the fermion mass.

Our approach to measure ES(L4) is analogue to methods used to compute the equa-
tion of state in lattice QCD (see for example [131]). Note that in our isotropic lattice, i.e.
with unique lattice spacing a in all dimensions, if we derive Z̃ with respect to L4, we
also have to take into account the variation with respect to the three-volume V = (aNs).
Since the latter yields the pressure p, we are actually computing the trace of the energy-
momentum, also called the interaction measure

∆ =
ε− 3p

T 4
,

where ε is the energy density and T = 1/L4. Following Ref.[131], we write

ε− 3p =
T

V
a
d~b

da
·
〈
∂SL

∂~b

〉
sub

, (9.4)

where we make explicit that we subtract the correlator at zero temperature. SL is the
lattice action and d~b/da the beta-functions of the lattice coupling parameters. In our case
the couplings are just β and κ. It thus follows

∆ =
N3
t

N3
s

[
a
∂β

∂a

〈
∂SL
∂β

〉
sub

+ a
∂β

∂a

∂m

∂β

∂κ

∂m

〈
∂SL
∂κ

〉
sub

]
. (9.5)

The first term is the action density, which is six times the average plaquette (see Fig.
9.5), while the second term requires the measuring of the condensate (see Fig. 9.6), since
the mass is a source of the fermion bilinear (cf. equation 8.3). The derivative ∂κ/∂m
follows from the definition of the hopping parameter and ∂m/∂β is obtained from the
change of the critical mass with respect to β. Finally, the beta-function is computed
through the NSZV beta-function (see 6.12), yielding

∂β

∂a
=

3

4π2

3N

1− Ng2

8π2

.

We measure ∆ according to equation 9.5 on the same lattices as in previous section.
The results for the three different gaugino masses are shown in Fig. 9.7. In Fig. 9.8 we
compare the results to the finite temperature case. We observe that for the larger masses,
∆ deviates towards positive values. This fact signals the explicit breaking of SUSY and
thus an unbalance between bosonic and fermionic modes. The deviation from zero is
greatly suppressed for the smallest mass, where the value is very near to zero at all L4,
consistent with an almost recovery of SUSY. This tendency shows that ∆ actually vanishes
in the limit of zero renormalised gaugino mass, where continuity along L4 is expected.
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Chapter 10

The conformal window of adjoint QCD

In this chapter we approach the problem of determining the IR phase of adjoint QCD
by exploring whether the theory lies or not inside the conformal window. We have seen
that analytical and numerical computations are able to describe the non-perturbative
low-energy properties of SU(N) SYM. Nevertheless, when we add more fermions to the
theory, we break SUSY explicitly. With the loss of SUSY we also lose all the restrictions
it puts on the dynamics, and thus we lose analytical predictability. We are left with a
very limited number of available tools, namely semi-classical computations, like those
we reviewed on the cylinder, and ’t Hooft anomaly matching. However, semi-classical
computations are only valid on the small circle and they can’t tell us whether there
are phase transitions in the decompactification limit. Moreover, anomaly matching
conditions often don’t provide a unique IR scenario. As we will see, lattice simulations
are a well-suited tool to investigate the conformal window. The analysis focuses on the
scaling of the mass anomalous dimension and profits from the relation between the GF
and the RG transformations, as discussed at the end of section 7.4.

At this point, a brief remark is in order. Following our results of section 8.3, one may
be tempted to employ Wilson fermions to measure the flowed condensate in adjoint
QCD, in order to see whether the theory is conformal, or if it breaks chiral symmetry
through fermion condensation. We have tried this naive approach in Nf = 1 adjoint
QCD. However, we quickly noticed that it is not practicable. The reason is that this
theory should be in or very near the lower edge of the conformal window. This can be
seen from Fig. 10.1, where t2E(t) (cf. Eq. 7.7) varies very weakly with t at finite gaugino
mass. As a consequence, we are unable to determine the scale t0, contrary to the SYM
case (cf. Fig. 6.3). Therefore, we are not able to perform any consistent measurements
of the condensate. Such a study would require the implementation of Ginsparg-Wilson
fermions. This is a study we leave for the near future.

The study of conformal and near-conformal theories on the lattice is difficult, since
the discretisation imposes UV and IR cut-offs, and it normally requires fermions to have



Chapter 10. The conformal window of adjoint QCD 87

FIGURE 10.1: t dependence of t2〈E(t)〉. Nf = 1 adjoint QCD on 243 × 48 lattice
at β = 1.75, κ = 0.1663.

a mass. In other words, the lattice naturally puts a scale in the system, breaking conformal
symmetry explicitly. Nevertheless, exploring the conformal window has been an active
research area within the lattice community, not only because of pure theoretical reasons
but also motivated by BSM theories of electroweak symmetry breaking, e.g. technicolour
models (see Ref. [132] for an overview). These theories are candidates to explain the dy-
namical breaking of the electroweak symmetry through an additional strong interaction.
Consistency with experiments requires the new strong sector to be near-conformal and to
have a large critical mass anomalous dimension γ∗ ∼ 11. In this regard, several methods
have been employed in order to determine if a theory is conformal or near-conformal, and
especially to compute the value of γ∗. The fact that for fermions in higher representations
the conformal window is already achieved at small Nf , makes adjoint QCD especially
interesting.

A widely used method is to extract γ∗ from the bound state spectrum. Accordingly,
all masses M of the theory should scale to zero with the renormalised fermion mass mg

as M ≈ m
1/(1+γ∗)
g [133, 134]. A more precise method relies on the scaling of the inte-

grated spectral density of the Dirac operator, the mode number (for details see Ref. [135]).

In this work we compute γ∗ from the scaling of the mass anomalous dimension γm, as
we vary the energy. In the end of this chapter we show results for SU(2) adjoint QCD with
1/2 ≤ Nf ≤ 2 Dirac flavours. Hereby, our main focus lies onNf = 2, since there is enough
evidence for this theory to lie within the conformal window. Moreover, this model has
caught the most attention within the high energy physics community, and thus there are
many results in the literature we can compare ours to. Our purpose is, to a great extent,

1The upper bound of γ∗ is 2, the maximal allowed value for a unitary CFT.
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to probe the effectiveness of this new method, its goodness and limitations, before we
pursue more ambitious goals.

10.1 The anomalous dimension from the gradient flow

The method we describe now was first proposed in Ref. [91] and it is built upon the main
result of section 7.4, namely that at large distances the correlators of effective fields are
equivalent to correlators of flowed bare fields. In section 7.4 we discussed the coarse-
graining features of the GF. However, we didn’t take into account the remaining steps of
the RG, namely the dilations. To study the existence of a fixed point, we are in fact in-
terested in making that scaling explicit. In the lattice regularisation, a RG transformation
changes the couplings as2 g → g′, m → m′ and the cut-off as a → a′ = b a. In analogy to
equation 3.5, a 2-point function transforms as:

〈O(0)O(x0)〉g,m = b−2(dO+γO)〈O(0)O(x0/b)〉g′,m′ , (10.1)

where the operator O(x0) is some lattice interpolator, which is in general a monomial of
gauge and fermion fields. The correlator of the rhs is computed in the effective theory
and, because of equation 7.9, we can express it through flowed fields. However, since
the GF doesn’t give us the wave function renormalisation constant of the fermions, the
effective fields φb and the flowed fields φt only agree up to a normalising factor, which
depends on the scaling dimension. We fix that by writing

φb(x0/b) = bdφ+η/2φt(x0),

where dφ is the classical and η the anomalous dimension. Note that this re-scales the
coordinates on the rhs of 10.1 and now both correlators depend on the same insertion
points. We notice moreover that equation 7.9 makes it natural to relate

√
t ∝ b, as long

as the operators are well separated. Putting all these observations together we write
equation 10.1 in terms of the flowed operators as

〈Ot(0)Ot(x0)〉
〈O(0)O(x0)〉 = t∆O−nO∆φ , ∆i = di + γi, (10.2)

where nO counts the powers of φ in O. We see that γO is in the exponent of t. To extract
it we have to get rid of ∆φ. This can be achieved by multiplying the lhs of 10.2 with a
similar ratio of correlators, where the operators V are protected from running by some
symmetry, i.e. γV = 0, and whose field content is the same asO, so that the multiplication

2Here b > 1 is analogous to the parameter s < 1 in chapter 2
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completely cancels ∆φ. Assuming that such an operator can be found, one defines the
ratio

RO(t, x0) =
〈O(0)Ot(x0)〉
〈O(0)O(x0)〉

( 〈V(0)V(x0)〉
〈V(0)Vt(x0)〉

)nO/nV
= tγO/2+dO/2−(nO/nV )dV/2.

As we will see, our operators will satisfy nO = nV and dO = dV . We then arrive to

RO(t, x0) =
〈O(0)Ot(x0)〉
〈O(0)O(x0)〉

〈V(0)V(x0)〉
〈V(0)Vt(x0)〉 = tγO/2 (10.3)

Since the computation of the flowed correlators 〈Ot(0)Ot(x0)〉 requires the integration of
the computationally expensive adjoint fermion flow equation 8.6, we opt for determining
instead 〈O(0)Ot(x0)〉, i.e. we only flow the source. This adds an uncertainty O(a

√
t/x0)

in the measurement of RO. As in Ref. [91], we extract the scaling of γO with the energy
scale by means of the function

γO(t̄) =
log(RO(t1)/RO(t2))

log (
√
t1/
√
t2)

. (10.4)

Note that in this equation R doesn’t depend on x0, as it is expected that R(t, x0)

approaches a constant (a plateau), at large x0 values. Eq. 10.4 is the main result of this
section and correspond to the quantity we will measure on the lattice. At this point it is
important to make a remark. If the theory we are studying has an IR fixed point, then
it should lie on the critical surface in theory space, so that the fixed point is reached
at infinite flow-time. Relevant deformations would shoot us away from the critical
trajectory. Moreover, we see that no relevant couplings were taken into account for
deriving equation 10.3. This means that if such deformations are present, the value of
RO would get extra corrections in form of complicated t-dependences. On the lattice,
the fermion mass and the volume are relevant deformations that cannot be easily
discarded, especially when using Wilson fermions. In order to minimise this problem,
we will simulate lattices with the smallest masses we can achieve. Moreover, we will, in
some cases, be able to compare two different volumes in order to have a sense of its effect.

10.2 The mass anomalous dimension of Nf adjoint QCD

We measured the anomalous dimension of the pseudo-scalar operator, which is related to
the mass anomalous dimension as γm = −γPS , in adjoint QCD with Nf = 1/2, 1, 3/2 and
2. As mentioned earlier, our emphasis lied on the two-flavour case. From the analysed
theories, only the SYM is known to lie outside the conformal window. The interpolator
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of the pseudo-scalar operator is just the one given in equation 6.10. The choice of V was
narrowed down to the vector current, as it is the simplest conserved current on the lattice.
It is however important to notice, that the local (continuum) vector current Vµ = λ̄γµλ is
not exactly conserved at finite lattice spacing. A thorough discussion on this issue can
be found in Ref. [136]. In short, the vector operator entering the vector Ward identity is
actually the non-local current, which is also known in the literature as point-split lattice
vector current:

Ṽaµ =
1

2

[
λ̄(x)(γµ − 1)Uµ(x)

τa

2
λ(x+ aµ̂) + λ̄(x+ aµ̂)(γµ + 1)U †µ(x)

τa

2
λ(x)

]
. (10.5)

Here τa are the Pauli matrices. The correlator of Ṽµ is computed in a similar way to the lo-
cal operator, by applying Wick’s theorem as in Eq. 6.10. Inserting the two-point function
of Ṽaµ in Eq. 10.3 would allow us to completely remove the dependence of RO(t, x0) on
the anomalous dimension of the field λ. If we instead use the local current Vµ, we would
still have some dependence on γλ, since ZV 6= 1. How much the renormalisation factor
ZV deviates from 1, is something one has to estimate directly from the lattice simulation.
As we show in the next section, we actually perform the measurements of γPS with both
currents for the Nf = 2 case.

Once γm is determined, we talk of IR conformal or near-conformal behaviour if γm
stops running as the energy scale is changed. It gets frozen at its critical value γ∗. Since
we can’t go to very large flow-times because of finite size effects and oversmearing, we
measure γm at intermediate flow-times. If we observe either freezing or a very slow
walking of γm, we perform an extrapolation to the limit t → ∞, where a theory lying on
the critical surface should converge to the IR fixed point. In our results, we represent the
energy scale µ through the flow-time as µ = 1/

√
8t̄, where t̄ is just the average of two

consecutive flow-times, in lattice units.

We considered the lattices shown in table 10.1. We employ a tree-level Symanzik im-
proved gauge action and three-level stout-smeared Wilson fermions, except for the SYM
configurations.

10.2.1 Nf = 2

In the specific case of Nf = 2, we have two different volumes, V = 243 × 64 and V =

323×64, for every lattice coupling, with β = 1.5, 1.6 and 1.7. In all cases we have measured
O(100) well separated configurations. Although this may seem to be a small number, we
have observed that it is sufficient. This can be inferred from the small statistical errors in
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the figures below. Our results consider flow-times in the range 1 ≤ t/a2 ≤ 9. We have
seen strong IR cut-off effects from t/a2 = 10 on. For β = 1.6 and 1.7, we considered both
V and Ṽ3. Analogue to Ref. [91], we use the following relation

RO(g, s4t, s2L) = RO(g, s2t, sL) + s−γO (RO(g, t, sL)−RO(g, t, L)) +O(g′ − g), (10.6)

in order to obtain data in a third effective volume V = s2L× 64, where the volume effects
should be very small. For the available lattices s = 32/24, i.e. LS ∼ 42. The first part of the
analysis is to determine the ratios RPS(t, x0), which are easily obtained from the vector
and pseudo-scalar operators at different flow-times. In Fig. 10.3 we show the ratio RPS

as a function of x0 at different flow-times. We compare the results from both the local and
non-local vector currents. We see that, for the local current, RPS(x0) rapidly reaches a
plateau. The formation of a plateau is however not very clear when the non-local current
is used instead. In other words, we observe thatRPS has some long-range fluctuations as
a function of x0. Although the figure shows β = 1.7, we observed this behaviour for all the
volumes and β values we considered. Since Eq. 10.4 takes the asymptotic value ofRPS(t)

at large distances, we take the average of R over the interval x0 ∈ [15, 20]. In Fig. 10.4
we present γPS(t) at β = 1.7 and spatial lattice size L = 32, computed with both kind of
vector currents. We immediately see that the results are compatible, the uncertainties are
however larger in the non-local current case. This arises from the fluctuations ofR(t, x0).
Such a result suggests two things. First, the renormalisation factor of Vµ doesn’t seem
to have a very important impact in the outcome. Second, one has to choose whether to
use the local current, which is stable but not strictly conserved, or the non-local, which is
conserved but noisy. For Nf = 2, we carry out the full analysis employing both currents,
with the exception of β = 1.5. For all other measurements, we stick to Vµ. The running
of γPS for all β values and lattice sizes L = 24, 32 can be seen in Fig. 10.5, for the local
current case.

After γPS is computed, we utilise Eq. 10.6. Remember that the volume and the mass
are relevant and they push us away from the critical surface. They tend to make the
relation 10.3 not to be quite exact. From table 10.1 we see that the analysed masses are all
very small and thus we expect our results to be dominated mainly by volume effects as
we approach the infrared. The effective volume achieved through Eq. 10.6 allows us to
minimise these effects. Since we don’t have measurements at t′ = s2t, as required by the
volume formula, we obtain the termRO(g, s2t, sL) by interpolating the jackknife samples
with an exponential function (see Fig. 10.6). The outcome of Eq. 10.6 can be seen in Fig.
10.7.

3The reason behind the lack of data for β = 1.5 with the non-local current is actually the reduced
computing time available. We are planning to complete the analysis in the near future
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After obtaining RPS(s4t) for L = 42, we directly compute γPS(µ). In Fig. 10.8 we
show the final results for Nf = 2 using the local current, while the non-local current
results follow in Fig. 10.9. We stress again that β = 1.5 was always computed with the
local current. In both cases we only take into account the extrapolated values at L = 42,
since they should be almost free of volume effects. In general we see that γPS , although
not being strictly constant, shows a very weak scale dependence. This is a hint for an at
least near conformal behaviour. At larger µ, we see that the different bare couplings yield
distinct γPS values. As we move towards the infrared, however, the curves start to flow
together. This is very clear when analysing β = 1.6 and 1.7, which overlap at µ ∼ 0.08.
This behaviour is in fact what we expect to see in a near conformal system. Indeed, in
the limit µ → 0, all bare couplings must yield the same universal value γ∗. To obtain the
critical γ∗ we performed a global (joint) fit to a cubic polynomial, where the parameter
at µ = 0, i.e. γ∗, was common to all data sets. The remaining fit parameters are allowed
to vary. We see that the results obtained with both currents are compatible within their
uncertainties.

In the literature, as mentioned before, there is a rather large number of studies focused
on the computation of γ∗ for Nf = 2 adjoint QCD. We emphasise on the results of Ref.
[137], where the authors also explored β = 1.5 and 1.7 with the same lattice action we
employed in this work. They get two different values for each bare coupling, namely
γ∗ = 0.376(3) and γ∗ = 0.274(10) respectively. It is worth to mention that the fermion
masses analysed in this thesis are much smaller and that we have an additional β, namely
1.6. Table 10.2 summarises our results and compare them to other studies found in the
literature. From the table it can be seen that our findings are compatible with many of
the studies performed in the last years. Moreover, since we get a unique γ∗ value through
the joint extrapolation, the gradient flow method might help to resolve the β dependence
of γ∗ in the deep infrared limit. We remark however on the fact that β = 1.5 is close to
the bulk transition and thus a stronger β-dependence is expected there. Therefore, the
goodness of the method in adjoint QCD should be further investigated through a more
complete analysis by including more β values. It would be moreover important to see
an overlap of γPS(µ) for all β values already before the extrapolation is performed, as it
happens for β = 1.6 and 1.7.

10.2.2 Nf < 2

We performed the same measurements for all the others lattices of table 10.1. The
analysis was done in the same way as in the Nf = 2 case. The only difference is that here
we have notably less ensembles. In particular, for Nf = 3/2 we only have one β value.
Although we employ the volume formula for this single β, we are of course not able
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FIGURE 10.8: Nf = 2:Extrapolation of γm to its critical value γ∗ at µ→ 0, from
the local current.
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Nf LS LT β κ amPCAC

2 24 64 1.5 0.1350 0.03136(15)

2 32 64 1.5 0.1350 0.030414(45)

2 24 64 1.6 0.1340 0.00869(23)

2 32 64 1.6 0.1340 -

2 24 64 1.7 0.1328 0.00878(18)

2 32 64 1.7 0.1328 0.00894(13)

3/2 24 48 1.7 0.1340 -0.00097(22)

3/2 32 64 1.7 0.1340 -0.00052(11)

1 24 48 1.75 0.1663 -

1/2 32 64 1.75 0.1495 -

TABLE 10.1: Lattice
parameters.

γ∗

This study local: 0.26(3)

non-local: 0.22(2)

Ref. [137] β = 1.5 : 0.376(3)

β = 1.7 : 0.274(10)

Ref. [135] 0.371(20)

Ref. [138] 0.269(2)(5)

Ref. [139] 0.20(3)

Ref. [140] 0.31(6)

Ref. [141] 0.22(6)

Ref. [142] 0.50(26)

TABLE 10.2:
Comparison of our

results to values found
in the literature for

Nf = 2.

to determine the β dependence of γ∗, as we did in the previous section. The results for
Nf = 3/2 can be seen in Fig. 10.10. We clearly see that the anomalous dimension is almost
a constant. This is a signal for the IR (near-)conformal behaviour of the theory. Hence,
the system appears to lie inside the conformal window. We extrapolate to µ → 0 and
obtain γ∗ = 0.38(2). As expected, the value of γ∗ is larger than in the two-flavour case.
Our result is in agreement with previous lattice investigations found in Refs. [134, 143,
144]. Especially, we get the same value as in Ref. [143], where the authors found γ∗ ∼ 0.38.

In the one-flavour case we only have one β and one volume. The results are
shown in Fig. 10.11. Although for these parameters we are already able to see a
(near-)conformal behaviour, i.e. a very weak change in γPS , the extrapolated value γ∗
should be taken very carefully. Especially, it is considerably smaller than the results
in Ref. [144], which is estimated to be γ∗ ∼ 0.9. It is however a valuable piece of in-
formation to see that it is likely for the theory to lie in or very near the conformal window.

Finally, in SYM, as expected, we don’t see any freezing in the running of γm. This can
be seen in Fig. 10.13. From Fig. 10.12 we see that no plateau is formed for R(x0). If one
insists in averaging over some x0 interval, the resultingR(t) yields a γPS(µ) that seems to
run without bounds as µ→ 0. This result is indeed a signal for a system lying well below
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FIGURE 10.10: Extrapolation of γPS to its critical value γ∗. Nf = 3/2, L = 42.

the lower edge of the conformal window, as predicted for SYM.
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FIGURE 10.11: Extrapolation of γPS to its critical value γ∗. Nf = 1.
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FIGURE 10.12: R(x0) in SU(2) SYM. The ratio doesn’t converge to a constant at
large x0.

FIGURE 10.13: Running of γPS in SU(2) SYM.
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Chapter 11

Summary and conclusions

In this thesis we have investigated the low-energy emergent behaviour of YM theory
coupled to adjoint fermions, on the lattice. The Dirac-Wilson operator we use to discre-
tise the fermion action explicitly includes a mass which has to be tuned to the critical
point. This mass term poses, in general, a difficulty to the investigations of the chiral
properties of the vacuum of the theory. For example, gaugino condensation, which is
predicted from analytical computations, can’t be proved at zero temperature because of
this renormalisation constant. In theory, one would have to use lattice chiral fermions
in order to measure this quantity. However, thanks to the gradient flow, the author
has been able to measure, for the first time with Wilson fermions, the condensate of
SU(2) SYM at zero temperature and in the chiral/supersymmetric limit, which agrees
with the condensates in other renormalisation schemes up to a constant factor. This
has been possible because flowed fermions only renormalise multiplicatively and the
gradient flow is regularisation scheme independent. The lattices we have employed were
moreover shown in previous studies to have a very small breaking of SUSY, and thus
the expected uncertainties arising from the finite lattice spacing are expected to be very
small. Later, we have turned on a temperature and have measured the flowed condensate
and the Polyakov loop, which in SYM is a true order parameter of the centre symmetry
realisation. The author has found that the critical temperatures of deconfinement and
chiral symmetry restoration agree up to very small uncertainties. It means that SU(2)

SYM has a single second order phase transition, which in the literature is predicted to be
second order and to be in the universality class of the Z2 Ising model. The coincidence
of the critical temperatures is in agreement with the bound on critical temperatures
T χc ≥ T dc predicted from anomaly matching conditions. Our results suggest however the
saturation of the bound. Although this saturation was previously seen by other authors
from semi-classical analysis, our findings arise non-perturbatively from the full theory.
Such an observation is highly non-trivial and suggests that, at least in R4, chiral and
centre symmetries are somehow intertwined. We have shortly discussed that a possible
explanation for this may be found in the language of branes and strings as proposed
by Witten. Namely that confining strings are fundamental strings, and that the domain
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walls that connect the SUSY vacua are D-branes upon which the strings can end. The
wall is then colour-charged and thus the Polyakov loop is non-zero and chiral symmetry
is recovered in its core. However, it is still unclear how the string theory picture could
explain the fate of the domain walls at the phase transition, as well as their interplay
with the domain walls arising from the breaking of centre symmetry.

We have performed a similar work on the thermal phases of SU(3) SYM. By using the
gradient flow, the author found that the critical temperatures also coincide for this gauge
group. The results are however not as clear as in the SU(2) case. The problem lies on the
determination of the order of the phase transition. To get a better idea about this, the
Monte Carlo histories and 2d histograms of the Polyakov loop have been investigated
at the critical Nt. The results give hints for a first order phase transition. Nevertheless,
the coexistence of both confining and de-confining vacua is difficult to confirm with
the available statistics and from the temperatures we can achieve within the fixed-scale
approach. An important result is however that there is a clear correlation between the
Polyakov loop and the flowed gaugino condensate, which supports the existence of a
single phase transition.

The study of SU(3) SYM was extended by investigations on the cylinder R3×S1, with
periodic boundary conditions for the fermions. While in the case of antiperiodic bound-
ary conditions the theory is thermal and thermal fluctuations break SUSY, the theory on
the cylinder should preserve it as predicted by the Witten index. We have measured the
Polyakov loop and have found no signal of deconfinement for compactification radii sig-
nificantly smaller than the thermal critical radius. From the chiral susceptibility we see
a possible deconfinement phase transition at very small radii, which could be expected
provided we simulate at finite gaugino mass. Our results are however inconclusive with
respect to the existence of this phase transition. The reason is that we see a nearly flat
effective potential at small radii, signalised by a broad distribution of the Polyakov loop
values in the complex plane. This distribution is moreover centred very near the origin.
It is difficult to tell whether this observation is due to deconfinement or to lattice effects,
which dominate the small radius regime. We have moreover measured the trace of the
energy momentum tensor ∆ at different radii. This quantity is computed as the derivative
of the Witten index with respect to the volume, and is sensitive to the unmatch between
fermionic and bosonic excited states. If ∆ 6= 0, then SUSY is broken. By analysing three
different gaugino masses we have seen that ∆ smoothly goes to zero in the chiral limit.
This result explicitly shows how SUSY is recovered in that limit.
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Finally we have discussed recent proposals in the literature about the relation between
the gradient flow and the RG. Although the relation is not direct, since the gradient flow
is not a RG because of its deterministic nature, the former can still be used to probe the
long-distance properties of the theory, provided we only consider correlators of opera-
tors well separated in real space. We have identified an energy scale change b with the
gradient flow-time t through t ∼ b2, at large distances. The author has performed the
very first studies of the conformal window of adjoint QCD, where this relation between
the gradient flow and the RG is exploited. We have compared ratios of correlators of the
pseudo-scalar operator λ̄γ5λ and of the vector current at different flow-times. From the
flow-time dependence of those ratios we have extracted the running of the mass anoma-
lous dimension γm = −γPS . The most complete study was carried out for adjoint QCD
with two adjoint Dirac flavours. For that case, we have measured the scale dependence
of γPS at three different β and at two different volumes. In order to avoid mass-effects,
the fermion mass was chosen to be very small amPCAC ∼ 0.008. We have used the vol-
ume formula 10.6 in order to compute γPS at an effective lattice size L = 42, which is
almost free of volume effects. In general we have observed a very weak dependence of
the anomalous dimension on the energy scale. In other words, we see that at low ener-
gies γPS is almost constant. This is consistent with an IR conformal behaviour. We have
extrapolated γPS to the limit µ → 0 in order to get the critical anomalous dimension γ∗,
whose value is universal. This analysis, for the two-flavour case, was carried out using
both the local and the point-split version of the vector current, where only the latter is
strictly conserved at finite lattice spacing. We found that both results are compatible up
to statistical errors. In the first case we found γ∗ = 0.26(3) and in the second γ∗ = 0.22(2).
Our results are in agreement with several previous investigations found in the literature.
However, from our analysis the β-dependence of γ∗ is not quite resolved yet. Although
we observe that all γPS(µ) tend to converge towards the IR, only the data from the two
largest β actually overlap. The convergence to γ∗ follows from the extrapolation. Espe-
cially β = 1.5 seems to be somewhat problematic, as it is near to the bulk transition. We
plan to complete this study by analysing more intermediate β values.

The author has performed the same analysis for the Nf = 1, and 3/2 theories. Also in
these cases, hints for IR conformality have been observed, despite the fact that only one
β value was available. It was found that γ∗ grows as the number of flavours is lowered.
As mentioned above, for Nf = 2 we have γ∗ ∼ 0.26. At Nf = 3/2, γ∗ ∼ 0.38 and γ∗ ∼ 0.66

at Nf = 1. At the end of this work also SYM theory was analysed, i.e. Nf = 1/2 adjoint
QCD. For this theory no freezing of the running of γPS was observed. This is of course
expected for SYM, which is known to lie outside the conformal window.
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Appendix A

Data finite temperature SU(2) SYM

κ t0 Nt < λ̄λ > Susceptibility B4(PL)

0.1480 6.332(48) 8 0.002557(12) 0.000076(14) 0.65531(86)

9 0.002738(20) 0.000082(6) 0.6417(27)

10 0.002913(51) 0.000203(41) 0.5796(94)

11 0.003289(16) 0.000073(13) 0.261(37)

12 0.003334(46) 0.000214(48) 0.332(27)

13 0.003614(34) 0.000165(34) -0.051(66)

14 0.003775(27) 0.000157(16) 0.031(27)

15 0.003861(17) 0.000154(22) -0.026(43)

16 0.0039778(93) 0.000109(6) 0.012(26)

0.1490 9.851(32) 8 0.001374(21) 0.000031(5) 0.65851(49)

10 0.001491(73) 0.000068(19) 0.6349(21)

11 0.001557(32) 0.000077(11) 0.6110(33)

12 0.001808(70) 0.000209(31) 0.530(15)

13 0.001880(35) 0.000101(23) 0.377(37)

14 0.002612(64) 0.000112(35) 0.079(38)

16 0.002733(29) 0.000061(23) 0.031(43)

0.14925 10.545(69) 8 0.001144(12) 0.000025(2) 0.6581(3)

10 0.001059(29) 0.000077(14) 0.6372(14)

11 0.001254(23) 0.000102(24) 0.6244(18)

12 0.001326(50) 0.000338(90) 0.5618(66)

13 0.001742(121) 0.000450(78) 0.424(18)

14 0.002013(92) 0.000155(21) 0.338(22)

15 0.002533(28) 0.000108(11) 0.026(38)

16 0.002564(57) 0.000116(17) -0.026(35)

TABLE A.1: Condensate, chiral
susceptibility and Binder cumulant of
the Polyakov loop at β = 1.75, 243 ×Nt.

κ ama−π

0.1480 0.4119(39)

0.1490 0.23780(97)

0.14925 0.1896(17)

TABLE A.2:
Adjoint

pion
masses
for each
κ value.
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Appendix B

The chiral anomaly

In this chapter we derive the chiral anomaly by means of Fujikawa’s procedure [48]. This
method consists in looking how the path integral transforms under chiral transforma-
tions. We already saw how the action transforms. Since the partition function Z is inde-
pendent of the transformation parameter ω, i.e. δZ

δω
= 0, if we assume that the measure is

invariant, we quickly see from equation 5.4 that

∂µ〈λ̄γµγ5λ〉 = 0. (B.1)

In other words, the invariance of the measure leads the current to be conserved also on the
quantum level. This means that the anomaly must be hidden inside the transformation of
the measure, which shouldn’t be invariant after all. To analyse this, we start by looking
at the orthonormal eigenstates of /D and /̄D

D2fn ≡ /̄D /Dfn = −`2
nfn, /Dfn = `ngn, (B.2)

D2gn ≡ /D /̄Dgn = −`2
ngn, /̄Dgn = −`nfn. (B.3)

It is thus evident that the eigenstates fn and gn have opposite chiralities but share the
same eigenvalues `2

n. This is however not necessarily the case when ` = 0 and, as we will
see, this fact will play the key role in the breaking of chiral symmetry. We move forward
by expanding the gaugino fields in the basis of eigenstates

λ(x) =
∑
n

anfn(x), λ̄(x) =
∑
n

bngn(x),

where an and bn must be Grassmannian, so that the Fermi statistics holds. In this basis
the measure takes the form

Dλ →
∏
nm

dan.
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Now, under an infinitesimal local chiral rotation δλ = −iω(x)γ5λ, the coefficients an
would change as

δan = Cnmam,

and the measure transforms accordingly by∏
n

dan → det(δnm + Cnm)−1
∏
m

dam,

where C is just the matrix representing the induced change of variables. Since the eigen-
functions fn and gn are an orthonormal basis, we can use their orthogonality relations∫

d4xf ∗nfm = δnm,

∫
d4xg∗ngm = δnm

to find that

Cnm = −
∫
d4x iω(x)γ5 f

∗
n(x)fm(x).

Furthermore the identity

det(1 + C)−1 ≈ det(1− C) ≈ det e−C = e−Tr C

allows us to write the Jacobian of the effective change of variables as

J = (detC)−1 = exp

{(
i

∫
d4x ω(x)A(x)

)}
, (B.4)

A(x) = Tr
∑
n

f ∗n(x)γ5fn(x).

The functionA(x) is the anomaly, and it contains the physical information about how chi-
ral symmetry is broken on the quantum level. We are, of course, interested in computing
it explicitly. A complication arises by noticing that the expression is, in fact, ill-defined.
The reason is that the number of eigenstates fn, just as the measure itself, is infinite. We
thus introduce a regulator function

A(x) = lim
M→∞

Tr
∑
n

exp

{
`2
n

M2

}
(f ∗n(x)γ5fn(x)). (B.5)
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and use the completion relation∑
n

f ∗n(x)fn(y) = δ(x− y)

to arrive to

A(x) = lim
y→x

lim
M→∞

Tr

[
γ5 exp

{−D2

M2

}]
δ(x− y).

The square of the Dirac operator can be expanded as

D2 =
1

2
[γµ, γν ]DµDν +

1

2
{γµ, γν}DµDν

and, using {γµ, γν} = 2δµν1 as well as σµν = i
2

[γµ, γν ] we find

D2 = DµDµ − iσµνDµDν = DµDµ −
i

2
σµν [Dµ, Dν ] = DµDµ +

1

2
σµνF µν .

Where we have used the asymmetry of σµν and the identity −i [Dµ, Dν ] = F µν . Thus, the
anomaly A(x) takes the form

A(x) = lim
y→x

lim
M→∞

Tr

[
γ5 exp

{−DµDµ − 1
2
σµνF µν

M2

}]
δ(x− y).

The only terms which will finally contribute to A(x) are those which don’t depend on
the cut-off M . If we expand the exponential, it is clear that terms with powers of the
gauge field greater than two will die out as M →∞. One power of the gauge field would
still vanish, as Tr(γ5σ

µν) = 0. We are only left with the term independent of Aµ, namely
e−∂

2/M2 and a term proportional to (σµνFµν)
2. We use the Fourier transformation of the

delta distribution and write

A = lim
M→∞

Tr

[
γ5

1

2

(
σµνFµν
2M2

)2
]∫

d4k

(2π)4
e−k

2/M2

(B.6)

= lim
M→∞

1

8M4
Tr
(
γ5σ

µνσαβ
)

Tr(FµνFαβ)
M4

16π2

=
1

32π2
εµναβ Tr(FµνFαβ)

=
1

16π2
Tr
(
F̃µνFµν

)
,

where F̃µν = 1
2
εµναβFαβ is the dual of the field strength tensor and the final trace runs over

colour space. To arrive to the result the identity Tr
(
γ5γ

µγνγαγβ
)

= 4εµναβ was employed.
This results leads to the conclusion that the measure is not invariant under chiral rotations
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but it changes as

Dλ → exp

{
1

16π2
i

∫
d4x ω(x) Tr

(
F̃µνFµν

)}
Dλ

and thus we have to include the anomaly in the naive Ward identity B.1

∂µ〈λ̄γµγ5λ〉 =
1

16π2
Tr
(
F̃µνFµν

)
. (B.7)

With this result, we have shown that chiral symmetry is broken on the quantum level.
Moreover, since the integral of the anomaly looks just like the action of an instanton (cf.
chapter 2), it becomes clear why the anomaly is an instanton effect. Indeed, Eq. B.7 tells us
that an instanton creates an unbalance between right and left handed fermions. In other
words, they interact with fermions by flipping their chirality[50]. But the chiral anomaly
is not only related to the topology of the gauge field. From equation B.5 the regularised
integral of the anomaly reads∫

d4x A(x) = lim
M→∞

∑
n

e`
2
n/M

2

Tr

∫
d4x f ∗n(x)γ5fn(x). (B.8)

Since it holds that { /D, γ5} = 0, it follows that f ∗n and γ5fn are orthogonal eigenstates for
`n 6= 0. As a consequence, only the zero modes of /D will contribute to the anomaly B.8∫

d4x A(x) = n+ − n−,
1

8π2

∫
d4x Tr

(
F̃ µνFµν

)
= n+ − n− ≡ n, (B.9)

Here n+ and n− are the number of zero modes for each chirality. As mentioned in the
main text, this equation relates the index of the Dirac operator and the instanton winding
number. It is an example of the Atiyah-Singer index theorem.

Let us finally comment on a very interesting fact, which is related with the power
of the index theorem. Along our discussion on the chiral symmetry of SYM, we have
seen that the chiral anomaly is given by the non-triviality of the YM bundle. But, what if
we have extra geometrical structure? this would be the case if the base manifold of our
theory is non-flat, i.e. if we have a background gravitational field. We can answer this
by noting that our Dirac operator would include, besides the gauge connection, the spin
connection. Comparing to our result in equation B.6, we would then expect an anomaly
depending on the Riemann tensor. Indeed, it can be shown that [47]

A ∼ εµναβRµνλσR
λσ
αβ.
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Appendix C

Nielsen-Ninomiya theorem

As we saw in section 6.2, the lattice explicitly breaks the chiral symmetry by creating
equal amounts of right and left-handed fermions, even when we start out with a single
Weyl fermion in the continuum. In this appendix we will see that the reason behind this is
topological and is encapsulated in the Nielsen-Ninomiya theorem [145][146]. The theorem
is nicely derived by Witten in Ref. [147]. An additional proof is given in [148]. The
Hamiltonian of a single Weyl fermion in 3 + 1 dimensions is, in general, given by

H = bi(k)σi + ε(k),

where k is the spatial momentum, living in the Brillouin zone. Because of the Pauli matri-
ces, one says that the Hamiltonian has two bands and, in the case at hand, the two bands
have crossing points at some degenerated points k∗, i.e. where the Hamiltonian eigenval-
ues coincide. Here we set ε(k∗) = 0, so that the band crossing coincides with the top of
the Dirac sea. The points k∗ are found when all bi(k) = 0. Expanding the Hamiltonian
around k∗

H = aij(k − k∗)jσi +O((k − k∗)2), aij =
∂bi
∂kj

we can see that the chirality of a mode near the points is given by

chirality := sign det

(
∂bi
∂kj

)
.

We remember that, due to the periodicity in k, the Brillouin zone is actually a torus. The
Hamiltonian tells us that for every k in this zone we have two states, corresponding to
each band, and that Dirac sea contains the lower (negative) energy. Let us focus on the
Dirac sea. There one has H|ψ(k)〉 = −|ψ(k)〉. The phase of the wavefuncion is however
not fixed. We consider now a U(1) fibre bundle with base space the Brillouin zone. If we
transport a fermion along some path, its wave function |ψ(k)〉 changes by a phase. This is
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the Berry phase. The corresponding U(1) Berry connection and curvature are defined as

Ai(k) = −i〈ψ(k)| ∂
∂ki
|ψ(k)〉, Fij =

∂Aj
∂ki
− ∂Ai
∂kj

This similar to electrodynamics but with the base space being the momentum space. If
we transport |ψ(k)〉 around a loop and we get a total change in the phase, then the bundle
is not flat and the phase is physical. We learnt before, that the non-trivial topology of the
YM bundle is reflected in the second Chern number c2, which is the integral of tr(F 2

YM).
Here we can do something similar, namely compute the first Chern number c1 ∼

∫
F . If

we integrate F on a sphere S2
α around a degenerated point k∗, we get the winding number

nα =
1

2π

∫
S2
α

F = ±1.

The sign of the winding number is the chirality of the mode. Applying Stoke’s theorem,
the bulk is given by the Brillouin zone with the degenerated points k∗i removed. We get

1

2

∫
bulk

dF =
1

2π

∑
α

∫
S2
α

F =
∑
α

nα = 0.

The integral on the bulk vanishes because dF = 0. We thus see that the sum of all winding
numbers has to vanish. In other words, there has to be an equal number of left and right
modes. Another way to look at this is through the Hopf-Poincaré theorem. Since the
Brillouin zone is a torus, its Euler characteristic is zero and thus the sum of the winding
numbers around the singular points must vanish. One can see nα = 1 as a magnetic
monopole in momentum space. Since the base manifold is compact, the flux line can’t go
to infinity but always has to end in a sink with nα = −1.
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