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Abstract 

Neuroimaging studies have revealed regions in the human brain that respond 

preferentially to human voices. These regions are mostly located along the superior 

temporal gyrus and sulcus (STG/S). It has been hypothesized that the right anterior 

STG/S is crucial for voice-identity recognition because the amplitudes of anterior 

STG/S neuroimaging responses correlate positively with voice-identity recognition 

performance. Here, my aim was to test this hypothesis by using non-invasive 

transcranial direct current stimulation (tdcs) in a randomized double blind sham-

controlled within-participants design. 24 neurotypical participants were familiarized 

with four unfamiliar speakers’ voices and were then tested on voice-identity and 

speech recognition. While performing the voice-identity and speech recognition test, 

participants received anodal, cathodal, and sham tdcs on three different days, 

respectively. As hypothesized, voice-identity recognition was improved when 

applying anodal tdcs to the right anterior STG/S as compared to cathodal and sham. 

However, this was only the case on day three. My results support the hypothesis 

that the right anterior STG/S is behaviourally relevant for identifying a speaker’s 

voice. 
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Zusammenfassung  

Der Titel der Arbeit lautet wiefolgt: Ist der rechte anteriore superiore temporale 

Sulcus (aSTS) in die Identifizierung einer sprechenden Person involviert? – Eine 

transkranielle Gleichstromstimulation des rechten aSTS.  

Die meisten Menschen können eine bekannte Person anhand ihrer Stimme 

erkennen. Dem rechten anterioren superioren temporalen Sulcus (aSTS) wird eine 

wichtige Rolle bei dieser Stimmidentifizierung zugeschrieben. Darauf deuten 

kombinierte behaviorale und funktionelle Bildgebungsstudien (fMRT) hin.  

In diesem Projekt sollte nun mithilfe von anodaler, kathodaler und sham 

transkranieller Gleichstromstimulation (tdcs) des rechten aSTS von 24 

ProbandInnen ein kausaler Zusammenhang zwischen Verbesserung bzw. 

Verschlechterung bzw. Gleichbleiben der Stimmerkennung und der Stimulationsart 

des rechten aSTS gezeigt werden.  

Die Arbeitshypothese lautete wie folgt: Die Ergebnisse zur Sprechererkennung 

(Erkennung von zuvor gelernten Stimmen, sogenannten „recently-familiarised 

voices“ (Maguinness et al. 2018) verbessern bzw. verschlechtern sich unter 

anodaler bzw. kathodaler tdcs Stimulation. Weiterhin bleibt die Stimmerkennung 

unverändert unter sham-tdcs Stimulation des rechten aSTS. In der Kontrollaufgabe, 

einer Spracherkennungsaufgabe, sollten sich unter dem gleichen 

Stimulationsmuster keine Veränderungen ergeben, da die Spracherkennung 

tendenziell der linken Hemisphäre zugeschrieben wird.  

Das Experiment war in zwei Teile aufgeteilt: in einen ersten Teil, in welchem die 

ProbandInnen Stimmen von ihnen vorher unbekannten männlichen Sprechern 

lernten und deren Erkennung trainierten und in einen darauffolgenden zweiten Teil, 

in welchem die ProbandInnen tdcs erhielten und dabei Sprechererkennungs- und 

Spracherkennungsaufgaben ausführten.  

Die Anwendung eines Gemischten Modells zur Analyse der Daten mit den festen 

Faktoren STIMULATIONSART (anodal, kathodal, sham), AUFGABE (Sprecher, 

Sprache) und TAG (Tag1, Tag2, Tag3) ergab als Ergebnis eine dreifach-Interaktion 

für die Aufgabe „Sprechererkennung“.  
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Um diese genauer zu eruieren, wurden weitere Analysen durchgeführt. 

Diese ergaben, dass die Sprechererkennung am dritten Tag der Stimulation in der 

anodalen tdcs signifikant besser ware im Vergleich zur kathodalen und sham tdcs. 

Auf der Basis des Ergebnisses, dass anodale tdcs des rechten aSTS am dritten Tag 

der Stimulation mit einer besseren Sprecheridentifizierung im Vergleich zur 

Sprecheridentifizierung unter der kathodalen und sham Stimulation einherging, 

kann geschlussfolgert werden, dass anodale tdcs den Zugriff auf im rechten aSTS 

gespeichertes Wissen über die Identität eines Sprechers erleichtert hat.  

Ob es sich hierbei um einen Zugriff auf Stimmmodalität-spezifisches Wissen handelt 

oder vielmehr um allgemeineres, mehrere Modalitäten vereinendes Wissen über die 

Identität einer Person, ist aus dem Studiendesign nicht ersichtlich.  

Hierfür könnte eine Studie angeschlossen werden, welche aus einem Design mit 

einer zusätzlich eingebauten Aufgabe zur Gesichtserkennung besteht, um neben 

der Modalität „Stimme“ die Modalität „Gesicht“ zu testen und somit zwischen 

„stimmspezifischer“ und „allgemeiner“ Identität zu unterscheiden. 
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Introduction 

Communication is essential for everyday life and the ability to recognize the identity 

of a person is indispensable for successful communication (Bruce and Young 1986, 

von Kriegstein et al. 2008, Yardley et al. 2008, Young and Bruce 2011). 

One of the most important cues for person recognition is the human voice (Papcun 

et al. 1989, Schweinberger et al. 1997, Sheffert et al. 2002); for reviews see Belin 

et al. (2004), Kreiman and Sidtis (2011). In humans, as well as in non-human 

primates, several brain structures are preferentially responsive to human voices 

(Belin et al. 2000, Fecteau et al. 2004, Shultz et al. 2012); for reviews see Petkov et 

al. (2009), Mathias and von Kriegstein (2014). 

To-date, however, it is unclear whether these regions are critical for voice-identity 

recognition behaviour. Neuroimaging studies have shown that voice-sensitive 

regions are located predominantly in the temporal lobe of the human brain (Belin et 

al. 2000, Binder et al. 2000, von Kriegstein et al. 2003, Fecteau et al. 2004, von 

Kriegstein and Giraud 2004, von Kriegstein and Giraud 2006, Shultz et al. 2012). 

These involve Heschl’s gyrus (Formisano et al. 2008, Bonte et al. 2014), planum 

temporale (von Kriegstein and Giraud 2006, Warren et al. 2006), and most 

prominently several regions along the superior temporal gyrus/sulcus (STG/S) and 

middle temporal gyrus (MTG) (Belin et al. 2000, von Kriegstein and Giraud 2004, 

von Kriegstein et al. 2005, Warren et al. 2006, Latinus et al. 2011). Neuroimaging 

as well as lesion studies evidenced that voice-sensitive regions are more 

pronounced in the right hemisphere; for neuroimaging studies see Belin et al. 

(2000), Belin et al. (2002), von Kriegstein et al. (2003), Formisano et al. (2008), 

Bonte et al. (2009), Kreifelts et al. (2009); for lesion studies see Assal et al. (1981), 

Van Lancker and Canter (1982), Van Lancker and Kreiman (1987), Van Lancker et 

al. (1988), Van Lancker et al. (1989), Neuner and Schweinberger (2000), Lang et 

al. (2009). 

There is neuroimaging evidence that the more anterior regions of the STG/S seem 

to be involved in voice-identity processing. For example, right anterior STG/S 

yielded higher blood oxygen level dependent (BOLD) responses during a speaker 

task than a speech task on the same stimulus input (von Kriegstein et al. 2003, von 

Kriegstein and Giraud 2004) or when subjects were presented with changing 

speakers compared to changing syllables (Belin and Zatorre 2003). A particular role 
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of the right anterior STG/S as well as the middle STG/S in voice-identity processing 

also has been suggested, because voice stimuli at greater distance from a 

prototypical voice elicited greater BOLD signal in these regions; for aSTG/S see 

Andics et al. (2010); for mSTG/S see Latinus et al. (2013). Also, 

magnetoencephalography (MEG) results support a role of the aSTG/S in voice-

identity recognition. There were higher responses in right aSTS during a voice-

recognition than during a speech-recognition task, and this amplitude difference 

correlated positively with voice-recognition accuracies among participants (Schall et 

al. 2015). 

Currently, the evidence for an involvement of the anterior STG/S in voice-identity 

recognition and identity representations has been largely indirect. And the few 

studies including more causal measures for the neural underpinnings of voice-

identity recognition revealed mixed results (Luzzi et al. 2018). There are two lesion 

studies on patients with neurodegenerative disease that support a causal role of 

lesions in the right anterior temporal lobe for voice-identity recognition deficits 

(Hailstone et al. 2010, Hailstone et al. 2011). However, the anterior temporal lobe 

was not exclusively associated with impaired voice-identity recognition but also with 

person-identity recognition deficits by face and name. In contrast, studies on 

patients with focal brain lesions showed that deficient familiar voice-identity 

recognition is linked to lesioned structures outside the temporal lobe, i.e., right 

parietal lobe. Interestingly, lesions in the temporal lobes lead to deficient voice 

discrimination and concurrent intact familiar voice-identity recognition (Van Lancker 

et al. 1988, Van Lancker et al. 1989). 
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Aims of the present study 

The present study aimed to use transcranial direct current stimulation (tdcs) on the 

right anterior STG/S to test the hypothesis that the right anterior STG/S is causally 

involved in voice-identity recognition in neurotypical participants. 

To do so, all participants received anodal, cathodal, and sham tdcs on three days 

while performing a voice-identity recognition task (i.e., speaker task) and a word 

recognition task (i.e., speech task). In the following, I will refer to the three 

stimulation conditions with anodal, cathodal, and sham. Based on the common view 

that anodal should be facilitating, cathodal inhibiting and sham should not influence 

the underlying brain area (Nitsche et al. 2008), I hypothesized that voice-identity 

recognition performance is facilitated by anodal and inhibited by cathodal 

stimulation. I expected that sham has no effect on task performance. Furthermore, 

I predicted that the modulation of the anterior STG/S is specific to voice-identity 

processing and does not occur for the speech-recognition task (von Kriegstein et al. 

2003, Formisano et al. 2008, Bonte et al. 2009, Friederici et al. 2010). 
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Materials and Methods  

Ethics statement 

The study was approved by the Ethics Committee of the Medical Faculty at the 

University Leipzig, Germany (AZ 129-11-18042011; see supplementary). All 

participants provided written informed consent to participate in the study in 

accordance with the 'Declaration of Helsinki'. 

Participants 

24 participants (16 female, mean age = 25.25 years, SD = 2.87, range = 22-28 

years) took part in the study. All were German native speakers and right-handed as 

assessed with the Edinburgh questionnaire (LQ ≥75; Oldfield, 1971). All participants 

reported having normal hearing and normal or corrected-to-normal vision. None of 

them reported a history of neurological or psychiatric disease. All 24 participants 

fulfilled the inclusion criteria for tdcs application. One of the 24 participants had a 

retainer and could therefore not participate in the MRI-scan. The participants did not 

attend any other tdcs study during the period of the experiment. All participants were 

compensated for their participation. 
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Experimental Procedure 

Stimuli 

I took stimuli from an in-house data base. They were high-quality speech stimuli 

spoken by four male native standard German speakers (age = 23, 27, 22, and 22 

years). The speakers were instructed to speak at a normal speech rate with an 

emotionally neutral intonation. All speakers were unknown to the participants prior 

to the experiment. The stimulus material consisted of short-stories, five-word 

sentences, and two-word sentences. The short stories were taken from a creative 

writing competition (http://www.zeit.de/campus/2009/literaturwettbewerb/junge-

stimmen-2009). One story lasted about ten min. The five-word sentences consisted 

of 100 declarative (e.g., German: “Der Junge trägt einen Koffer.”; english: The boy 

carries a suitcase.) and 18 five-word interrogative sentences (e.g.,”Trägt der Junge 

einen Koffer?”, Does the boy carry a suitcase?). One five-word sentence lasted 

approximately 1.7 sec. The two-word sentences consisted of 240 declarative 

(e.g.,”Er sagt.”, He says.) and 240 interrogative sentences (e.g.,”Er sagt?”, Does he 

say?). One two-word sentence lasted approximately 0.7 sec. 

All short stories and sentences were recorded from all four speakers in a sound-

attenuating chamber using a condenser microphone (Neumann TLM 50, Berlin; Mic-

Peramp: Mic-Amp F35, Lake People, Germany; Soundcard: Power Mac G5 Dual 

1.8 GHz, Apple Inc., CA, USA; 44.1 kHz sampling rate, and 16 bit resolution) and 

the software Sound Studio 3 (Felt Tip Inc., NY, USA). Stimuli were post-processed 

using Audacity (version 1.3.5. beta, http://audacity.sourceforge.net) and Matlab 

(version 8.1, The MathWorks, Inc., MA, USA), and were normalized for peak 

amplitude using PRAAT (Boersma and Weenink, 2005). 

 

Experimental Design 

The study had a randomized, SHAM-controlled, double-blinded within-subjects 

design (Figure 1). 
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Figure 1 (A)-(C) Experimental Design 

 (A)The experimental protocol comprised two parts: (i) a voice familiarisation part on two 

subsequent days; ii) a tdcs experiment testing for voice-identity recognition. Each 

participant received all three tdcs treatments (i.e., anodal, cathodal, and sham tdcs) on three 

different days. 

 (B) The voice-familiarisation included two sessions: (i) a voice-name learning and (ii) a 

voice-name learning test.  

Voice-name learning: During voice learning, participants listened to short stories uttered by 

each of the four male speakers. For each speaker, the respective name was provided on 

the screen. [ShSt = Short story] 

Voice-name learning test: During the voice-name learning test participants were presented 

with a target voice (uttering five-word sentences) and were asked to match the correct 

speaker’s name (keys 1-4) to the target voice (i.e.,(1) for Leon, (2) for Jonas, (3) for Felix 

and (4) for Moritz).  

(C) All participants received anodal, cathodal, and sham tdcs to the right aSTS/G. 

Direct current was maintained for 20 min and the voice-identity recognition test started after 

five min of tdcs. In the voice-identity recognition test, participants did a speech task and a 

speaker task. In total, there were six blocks for each task and each block contained 40 trials. 

One trial lasted three sec. There was an interblock interval of ten sec. 
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The study included a voice-familiarisation part without tdcs, in which participants 

learned to recognise four different speakers by their voice over two days. The voice-

familiarisation part was followed by the voice-identity recognition experiment with 

tdcs including three sessions on different days. For all parts of the study, participants 

were seated in front of a computer screen, on which the visual information was 

presented. The auditory stimuli were delivered through headphones (Sennheiser, 

HD 280 pro, 64Ω, Sennheiser, Wedemark, Germany). For all tasks, participants’ 

responses were recorded via key press on the computer keyboard. I presented the 

stimuli and recorded the key press responses using Python software (Version 2.7.3, 

Python Software Foundation; open source license). 

Voice familiarization (without tdcs) 

The voice familiarisation proceeded over two days, in which participants learned the 

names and voices of the four speakers (Figure 1B). The familiarisation comprised 

ca. 80 min total listening time (20 min per speaker) and a total duration of 1.5 to two 

hours per day. On each day participants first learned the association between a 

speaker’s voice and the corresponding target name (voice-name learning) and were 

then, subsequently after each learning session, tested on how well they learned the 

voice-name associations (voice-name test). 

Voice-name learning  

For the voice-name learning participants listened to short stories spoken by each 

speaker. At the same time the corresponding speaker’s name was presented on the 

screen.  

On the first day of voice familiarization participants conducted three learning 

sessions. First, participants listened to two short stories; one spoken by speaker 

‘Leon’ (1) and the other by speaker ‘Jonas’ (2) amounting to 20 min of listening (ten 

min per story). The second voice-name learning session contained two short stories 

spoken by the speaker ‘Felix’ (3) and ‘Moritz’ (4). The third learning session 

comprised four short stories spoken by all four speakers presented in the order (1), 

(2), (3), (4) amounting to 40 min of learning.  

On the second day, participants conducted two learning sessions. In each session 

short stories of all four speakers were presented. The order of speaker presentation 

was reversed compared to day one (i.e., speaker (4), (3), (2), (1)).  
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During voice familiarization, each voice-name learning session was followed by a 

voice-name learning test, in which the learning rates for the respective speakers 

were tested. 

Voice-name learning test 

During the voice-name learning test, the learning rate of how well participants 

associated the name to each respective speaker’s voice was assessed. On each 

trial participants were presented with a sentence spoken by one of the speakers and 

simultaneously with numbered written names of all four speakers. The auditory 

material consisted of five-word declarative and interrogative sentences that were all 

presented in random order. After each sentence presentation participants were 

asked to indicate the name corresponding to the target speaker’s voice by pressing 

the respective key on the keyboard (i.e., 1, 2, 3, 4).  

After a correct trial the next sentence was presented. After an incorrect trial the 

same trial was repeated until it was completed correctly. There was no time 

restriction for the response.  

The voice-name learning test stopped after ten correct trials in a row after the voice-

name learning session, which contained four short stories, and after 15 correct trials 

in a row after the voice-name learning session, which contained four short stories. 

If participants failed to correctly respond to ten trials or 15 trials, respectively, in a 

row, the training went on until 100 trials were completed, irrespective if the trials 

were correct or not.  

Voice-identity recognition experiment (with tdcs) 

The voice-identity recognition experiment consisted of (i) a voice-identity recognition 

test that included a speaker and a speech task and (ii) the tdcs application (Figure 

1C). In the speaker task, participants listened to two-word sentences spoken by the 

previously learned four speakers. Simultaneously to the auditory presentation, 

participants were presented with the speakers’ names (numbered 1-4) on the 

screen. Participants were asked to indicate the name corresponding to the target 

speaker’s voice by pressing the respective key (1-4). 

The speech task was performed on the same auditory stimuli as the speaker task. 

However, now, after auditory presentation, instead of names, four German verbs 

were presented on the screen (numbered 1-4). All German verbs were 

phonologically similar (e.g., “flieht”, “fliegt”, “sieht”, “zieht”; english: “flees-flies-sees-
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pulls”). Participants were asked to indicate which written verb matched the verb of 

the two-word sentence. 

In both tasks after three sec the next trial started regardless of any key press. There 

was no feedback about correct responses provided. 

The voice-identity recognition test was arranged in 12 blocks, i.e., six blocks of the 

speaker task and six blocks of the speech task. Speaker and speech task blocks 

were presented in alternating order with an inter-block interval of ten sec. The name 

and word options on the response screen informed participants about the task they 

had to perform, i.e., speaker or speech task, respectively.  

In addition, test instructions, which participants received prior to the experiment, 

informed participants about the alternating block order. Each block contained 40 

trials in a randomised order. The complete voice-identity recognition test lasted 26 

min. Participants conducted the voice-identity recognition test on three separate 

days with a different tdcs application on each day (see section below ‘Transcranial 

direct current stimulation (tdcs)’) 

Questionnaires 

The study comprised three questionnaires (see supplementary; the questionnaires 

are in German). The first questionnaire had to be completed prior to the tdcs 

experiment. The participants reported their current mood and well-being, motivation 

for the experiment, and drug consumption. The second questionnaire was 

completed after each tdcs session. This questionnaire comprised, again, the mood 

questionnaire plus questions about their subjective feeling on how well they 

performed the voice-identity recognition test and about side effects of tdcs (Loo et 

al. 2010, Brunoni et al. 2011, Kessler et al. 2012, Palm et al. 2013). The third 

questionnaire was completed after the third day of tdcs application. This 

questionnaire included questions about potential strategies for the speaker 

recognition task used in the voice-identity recognition test (‘strategy questionnaire’). 

Transcranial direct current stimulation (tdcs) 

Tdcs sessions 

On three separate days each participant completed different tdcs sessions, i.e., with 

anodal, cathodal, and sham tdcs, respectively. This approach is similar to previous 

studies, which have included both active (i.e., anodal and cathodal) and sham 
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stimulation (Fregni et al. 2006, Boggio et al. 2008, Loo et al. 2010, Nitsche and 

Paulus 2011). During each tdcs session, participants performed a voice-identity 

recognition test. In total, each voice-identity recognition experiment lasted 31 min, 

including 20 min of tdcs application and 26 min of voice-identity recognition test. The 

voice-identity recognition test started five min after the tdcs application. Accordingly, 

there was a phase of tdcs without testing (i.e., five min at the beginning) and a phase 

of testing without tdcs (i.e., 11 min at the end). This design took advantage of the 

tdcs aftereffects that occur for up to one hour after the end of a stimulation that had 

a duration of ten min or longer (Nitsche and Paulus 2001, Liebetanz et al. 2002, 

Priori 2003, Monte-Silva et al. 2010).  

The order of stimulation type was randomized between participants. Since each 

participant received anodal, cathodal, and sham tdcs, there were six different 

possibilities of stimulation order (i.e., ACS, ASC, CAS, CSA, SAC, SCA // A=anodal, 

C=cathodal, S=sham).  

Within each participant each of the three sessions was conducted at approximately 

the same time of day (+/- 1 or 1.5 hours). This allowed testing participants at a similar 

level of alertness since the time of day is proposed to be an important determinant 

of the induction of plasticity (Ridding and Ziemann 2010). To avoid potential carry-

over effects of the stimulation, an interval of 48 - 72 hours between the tdcs sessions 

was set (Nitsche et al. 2008). 

Tdcs parameters 

For the tdcs parameters refer to table 1. 
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Table1 Tdcs parameters 

DC-Stimulator   NeuroConn GmbH, Ilmenau, Germany 

 

Electrode material  Rubber electrodes, conductive paste 

 

Electrode size  active e.: 9 cm² | reference e.: 100 cm² 

 

Electrode form  rectangle  

 

Current strength  .75 mA 

 

Current density  

 

.083 mA/cm² at the active e.  

.0075 mA/cm² at the reference e. 

 

Duration  20 min for anodal and cathodal  

| 30 sec for sham |  

30 sec fade in and fade out for all conditions 

Table1  

Displayed are the tdcs parameters used in the current study 

 

TDCS acts through a very low direct current, which is utilized to modulate cortical 

excitability (Nitsche et al. 2008, Brunoni et al. 2012). It shifts the resting membrane 

potential without directly triggering action potentials (Radman et al. 2009), other than 

TMS (Sparing and Mottaghy 2008, Priori et al. 2009).  

For tdcs a weak direct current of .74 mA was delivered for 20 min (30 sec for SHAM 

tdcs) using a battery driven stimulator (DC-STIMULATOR-PLUS, Model-no: 0021, 

SN: 1367, Power: 1.2W, neuroConn GmbH, Ilmenau, Germany). I used rectangular 

rubber electrodes with surfaces of (A = 2.5 cm * 3.6 cm = 9 cm²; current density .083 

mA/cm²) for the active and (A = 10 * 10 cm = 100 cm²; current density .0075 mA/cm²) 

for the reference electrode (Nitsche et al. 2007). Current density was within the 

recommended limit (< .1 mA/cm²) to prevent tissue damage (Federal Institute for 

Drugs and Medical Devices, Bonn, Germany). The maximum impedance was set to 

15 kΩ.  
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My tdcs parameters were in accordance with the safety guidelines provided by Iyer 

et al. (2005), Poreisz et al. (2007), Bikson et al. (2009). 

The active electrode was placed over the target brain region, the right aSTG/S. The 

reference electrode was placed over the right shoulder joint (i.e., Musculus 

deltoideus). Using an extra cephalic reference electrode has the following 

advantages: It avoids the confounding effects of two electrodes with opposite 

polarities over the brain (Cogiamanian et al. 2007) and, in addition, the increasing 

electrode separation leads to an increasing relative amount of current entering the 

brain (Bikson et al. 2010). Applying tdcs with an extra cephalic reference electrode 

has been reported as a safe procedure in neurotypical participants previously 

(Vandermeeren et al. 2010, Im et al. 2012). 

The electrodes were covered with highly conductive electrode gel “Ten20 

Conductive Paste” (Weaver and Company, CITY info, USA).  

The active electrode was fixed using flexible straps to avoid electrode movement. 

For the fixation of the reference electrode a fabric ribbon was used with a hook and 

look fastener.  

I used disinfectant skin preparation of the stimulated skin areas prior to each 

stimulation session to reduce resistance and to improve homogeneity of the electric 

field under the electrode (Nitsche et al. 2008, DaSilva et al. 2011, Kronberg and 

Bikson 2012). Current was ramped up for 30 sec in the beginning and ramped down 

for 30 sec at the end of the stimulation block to minimize discomfort. 

Blinding 

Participants and the experiment instructor were blinded regarding the tdcs 

application type (i.e., whether anodal, cathodal, or sham was delivered) to prevent 

biased responses (Boutron et al. 2007, Brunoni et al. 2011). The double blinding 

(i.e., of participants and experiment instructor) was accomplished by the following 

procedure: In addition to the experiment instructor there was one person at the 

beginning of the experiment to operate the tdcs device (i.e., tdcs operator). The 

function of the tdcs operator was to start the tdcs devise by setting the respective 

tdcs application (i.e., anodal, cathodal, sham). This was done in a way that the 

stimulation type was blind to the experiment instructor and participants during the 

complete experiment time: (i) The devise sound was switched off for the sham tdcs 

session. By default settings the stimulation end of the tdcs-stimulator is indicated by 
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a device sound i.e., after 30 sec for sham and after 20 min for anodal, cathodal tdcs. 

For anodal and cathodal tdcs the sound was not switched off for security reasons 

as the signal also indicates a potential increment of the impedance exceeding the 

manual set threshold 15 kΩ. Though, in the current study the impedance did not 

exceed this threshold. (ii) Irrespective of the length of stimulation (i.e., 30 sec for 

sham and 20 min for anodal, cathodal), the experiment instructor pressed the on-off 

button after 20 min making the procedures between all three tdcs conditions as 

similar as possible (Boutron et al. 2007, Brunoni et al. 2011). (iii) After setting the 

stimulation type, the tdcs operator covered the device display to ensure that the 

experiment instructor and participants could not see the displayed stimulation type 

(Poreisz et al. 2007). 

Description of MRI scanning parameters 

Individual structural magnet resonance imaging (sMRI) scans were acquired at 

three different 3T MRI scanners (in order to, later, localize the target brain region for 

the placement of the electrode during tdcs; see “Localisation of target brain region” 

below). Eight participants were scanned on a 3T Siemens MAGNETOM TIM TRIO 

Scanner (Siemens AG, Berlin and Munich, Germany). Four of the participants had 

the following parameters (TI = 650 ms; TR = 1300 ms; TE = 3.46 ms; alpha = 10°; 

image matrix = 256 x 240; FOV = 256 mm x 240 mm; voxel size = 1x1x1), another 

three participants with (TI = 900 ms; TR = 2300 ms; TE = 2.96 ms; alpha = 9°; image 

matrix = 256 x 240; FOV = 256 mm x 240 mm; voxel size = 1x1x1), and another one 

(TI = 650 ms; TR = 1300 ms; TE = 2.23 ms; alpha = 10°; image matrix = 256 x 240; 

FOV = 256 mm x 240 mm; voxel size = 1x1x1). There were 13 participants that were 

scanned on a 3T Siemens MAGNETOM PRISMA Scanner (Siemens AG, Berlin and 

Munich, Germany) with nine of them having the following parameters (TI = 650 ms; 

TR = 1300 ms; TE = 3.5 ms; alpha = 8°; image matrix = 256 x 240; FOV = 256 mm 

x 240 mm; voxel size = 1x1x1) and one participant with the following parameters (TI 

= 900 ms; TR = 2300 ms; TE = 2.98 ms; alpha = 9°; image matrix = 256 x 240; FOV 

= 256 mm x 240 mm; voxel size = 1x1x1). Two participants were scanned on a 3T 

Siemens MAGNETOM VERIO Scanner (Siemens AG, Berlin and Munich, Germany) 

with the following parameters ((TI = 900 ms; TR = 2300 ms; TE = 2.98 ms; alpha = 

9°; image matrix = 256 x 240; FOV = 256 mm x 240 mm; voxel size = 1x1x1). 
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Localisation of target brain region 

To locate the region of interest I used an MNI coordinate that was found to be 

sensitive to voice-identity recognition in an earlier functional MRI study (von 

Kriegstein and Giraud, 2004). The coordinate was located in the right anterior 

STG/S [x/y/z (51/18/-15) MNI space] and represented the statistical maximum for a 

contrast between a task, in which participants had to recognize a target speaker’s 

voice, in comparison to recognize a spoken word. The peak coordinate is close to 

other coordinates reported to be responsive to voice-identity processing (see Figure 

2). 

Figure 2 Overview over coordinates for voice-identity sensitive regions in the right STS 

(A)- (D): Displayed are four different neuroimaging studies that found voice-identity sensitive 

regions. The regions are indicated via red spots. The first line under a picture indicates the 

study, the second line the MNI-coordinate of the voice-identity sensitive region for the task 

that is displayed in the third line.  
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(E): The red surface illustrates the region covered by the active electrode during tdcs. 

 

 

To locate the coordinate in each participant, I used the previously acquired individual 

sMRIs (n = 23). Because one participant had an exclusion criterion for MRI (e.g., a 

retainer), I used a sMRI scan of another participant that had a similar head anatomy 

based on visual inspection. The scans were either taken from the in-house MRI-

database, if available, or were acquired preceding the tdcs experiment.  

Data sets were transferred in digital imaging and communications in medicine 

(DICOM) format to a G3 Power Macintosh workstation (Apple Computer Inc., 

Cupertino, California, United States). I used Brainsight software (version 1.7.8, 

Rogue Research, Montreal, Quebec, Canada) to create and visualise three-

dimensional cortical surfaces.  

For each participant the individual right anterior STG/S was marked on the scalp for 

defining the position of the active electrode. This was done using image-guided 

frameless stereotaxic consisting of a Polaris position sensor (Northern Digital Inc., 

Waterloo, Ontario, Canada), a tracker attached to the participant’s head, and a 

pointer tool to define the participant’s position in space.  
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Data analysis  

I used SPSS Statistics 22 (IBM SPSS Statistics, Armonk, New York, United States) 

to perform a Linear mixed model analysis to compare voice recognition (i.e., 

accuracy and reaction time measures of the participants’ responses in the speaker 

and speech task) under the influence of anodal, cathodal, and sham tdcs. I modelled 

the fixed effects Task (i.e., speaker and speech task), Treatment (i.e., anodal, 

cathodal, sham), Day (Day1, Day2, Day3), and all multivariate variables (i.e., 

Task*Treatment, Task*DAY, Treatment*DAY, Task*Treatment*DAY). As random 

effects I had intercepts for subjects.  

For normality testing: I examined the assumption of normality qualitatively a 

posteriori and looked at the empirical distribution of the residuals.  

For all statistical tests the level of significance was defined at α = .05. 
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Results 

Accuracy  

The accuracy scores in percent correct (%) averaged over the three sessions are 

plotted in Figure 3.  

 

 

Figure 3 Accuracy for the tasks 

Displayed are the mean correct responses for the speech task and for the speaker task. 

 

The Linear Mixed Model analysis revealed a significant main effect of Task (F (1,103) 

= 192.3, p = .000) and a significant three way interaction between the factors 

Treatment, Task and Day (F (4,103) = 4.99, p = .001).  

 

Contrary to my hypothesis, there was no significant interaction of Treatment and 

Task. Also the main effects of Treatment, Day, and the interactions between 

Treatment and Day and Task and Day were not significant. 

To investigate the cause of the significant three way interaction I split the data by 

Day. Table 2 and Figure 4 show the accuracy scores for each day separately.  



25 
 

Table 2 Accuracy scores for each day separately 

 

Accuracy per day 

[Mean (SD) %] 

Speaker task Speech task 

Day one Total 73.5 (.15) 95.0 (.03) 

Anodal 67.9 (.17) 96.1 (.02) 

Cathodal  70.3(.16) 94.4 (.02) 

Sham 79.6 (.12) 94.6 (.03) 

Day two Total 78.6 (.16) 96.0 (.03) 

Anodal 73.5 (.16) 94.4 (.04) 

Cathodal 84.9 (.12) 97.5 (.02) 

Sham 75.0 (.22) 95.8 (.04) 

Day three Total 79.0 (.17) 96.6 (.03) 

Anodal 90.7 (.05) 97.6 (.01) 

Cathodal 68.6 (.21) 95.6 (.06) 

Sham 74.9 (.16) 97.1 (.02) 

Table 2 

Displayed are the behavioural results in mean percent correct for accuracy for the different 

types of stimulation (anodal, cathodal, sham) separately for day and task. The numbers in 

brackets indicate the standard deviation (SD). 
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Figure 4 Development over days 

Displayed are the mean accuracy results for the speaker task and speech task (the 

displayed error bars represent +/- one standard deviation (SD)) 

 

 

On day three there was a significant main effect of Treatment (F (2, 21) = 4.74, p = 

.020) and a significant interaction between the factors Treatment and Task (F (2, 21) 

= 4.36, p = .026). For the other days, these effects were not significant. The 

significant main effect of Task was present on all three days (all p < .001). 

 

To investigate the cause of the significant Treatment and Task interaction at day 

three I split the day three data by Task and did a pairwise comparison between the 

stimulation types (Table 3). 
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Table 3 Speaker and Speech Task separated on Day three 

 

 Speaker Speech 

AN vs. CA .008 .074 

AN vs. SH .042 .751 

CA vs. SH .430 .141 

Treatment .021 .168 

Table 3 

Speaker and Speech Task separated on Day three. The stimulation types were compared 

with each other. Displayed are the p-values of the pairwise comparisons of anodal, 

cathodal, and sham, and the fixed effects for the factor Treatment. The significant p-values 

are printed in bold print. AN=anodal tdcs; CA=cathodal tdcs; SH= sham tdcs 

 

In line with my hypothesis, performance on the speaker task was significantly higher 

for anodal compared to cathodal (p = .008, difference of the mean: .221, confidence 

interval: .06 - .38, Standard error: .078) and sham (p = .042, difference of the mean: 

.158, confidence interval: .006 - .31, Standard error: .073) on day three. Conversely, 

for the speech task no significant effects were found. 

 

Reaction time  

The mixed model analysis of reaction time (for the behavioral results refer to table 

4) yielded a significant main effect of Task (F(1,103) = 81 , p = .000) and Day (F(2,104) 

= 13.354, p = .000) indicating that the reaction times were faster for the speech 

than the speaker task and that reaction time decreased over the three 

experimental sessions. There were no further significant effects. This suggested 

that the significant effects found within the accuracy data analysis were not 

introduced due to an accuracy-reaction time trade off.  
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Table 4 Mean reaction times (RT) 

RT per day 

[Mean (SD) %] 

Speaker task Speech task 

Day one   

Anodal 1645 (201) 1782 (100) 

Cathodal  1621(166) 1755 (105) 

Sham 1614 (213) 1846 (202) 

Day two   

Anodal 1547 (238) 1736 (142) 

Cathodal 1507 (124) 1657 (118) 

Sham 1608 (198) 1712 (126) 

Day three   

Anodal 1499 (178) 1680 (180) 

Cathodal 1542 (278) 1794 (168) 

Sham 1494 (195) 1599 (136) 

Table 4  

Displayed are the mean reaction times (RT) for responding to the required tasks, 

separated for the different types of stimulation (anodal, cathodal, sham) and for day and 

task. RT are displayed in millisec, the numbers in brackets indicate the standard deviation 

(SD). 
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Evaluation of the questionnaires  

Side effects 

All participants tolerated the stimulation well. Most of them experienced the 

expected tingling sensation on the skin during the ramp-up phase of tdcs. The side 

effects were similar across all three stimulation conditions. For a detailed breakdown 

of stimulation type and sensation refer to table 5. 

 

Table 5 Side effects that occurred during and after each tdcs session 

Side effects Total (out of 72 

sessions) 

anodal cathodal sham 

Tingling 69 1x no tingling - 2x no tingling 

Skin redness 15 9 6 - 

Headache 8 2 3 3 

Slight fatigue 6 4 1 1 

Afterimages 1 1 - - 

Table 5:  

The table displays the side effects that occurred during and after each tdcs session. 

Effects were recorded via a questionnaire (see supplementary). 

 

Subjective performance level evaluation 

The participants were informed about the hypothesized effect of anodal, cathodal, 

and sham tdcs and that within each session they received another stimulation type. 

To assess whether the blinding worked for the participants, I asked them after each 

tdcs session to guess whether their performance had changed due to the respective 

tdcs application. Using a non-parametric binominal test, I tested for unknown 

probabilities, i.e., whether there was a significant deviation from 33% in guessing 

(i.e., chance level). In neither of the stimulations there was a significant difference 

from 33% of “guessing rate” (p = .58).  
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Discussion 

The aim of the current study was to provide causal evidence for the involvement of 

the right anterior STG/S in voice-identity recognition.  

In accordance with my hypothesis, anodal tdcs to the right anterior STG/S 

significantly increased voice-identity recognition compared to sham and cathodal 

tdcs. This was, however, only evident on day three of stimulation. In contrast, a 

speech task on the same stimulus material was not affected by any of the tdcs 

conditions. 

The results are in line with current neuroimaging studies that ascribe voice-identity 

recognition to the right anterior STG/S (Belin and Zatorre 2003, von Kriegstein et al. 

2003, von Kriegstein and Giraud 2004, Andics et al. 2010, Blank et al. 2011, Blank 

et al. 2015, Schall et al. 2015). I make a fundamental advance in comparison to 

these neuroimaging studies as I am the first to provide direct evidence of a causal 

role of the anterior STG/S in voice-identity recognition in neurotypical participants.  

The evidence for a causal role of the anterior STG/S in voice-identity recognition 

has so far been scarce.  

One previous brain stimulation study has investigated the link between right middle 

temporal voice area (TVA), detected individually for each participant, and voice 

detection ability while listening to vocal compared to von-vocal sounds (for 

information about vocal vs. non-vocal sounds see: Belin et al. (2000) ). The ability 

of discriminating voices from non-voice sounds using transcranial magnetic 

stimulation (TMS) was significantly impaired when TMS was targeted at the right 

middle TVA (Bestelmeyer et al. 2011). They conclude that it is likely that right TVA 

is causally related to voice cognition and that the right TVA could subserve higher 

auditory functions. 

 

The stimulation effect on voice, but not on word recognition, integrates well with the 

assumption of a relative independence of these two processes. This assumption 

was based on neuroimaging as well as lesion studies. There is a wealth of evidence 

that linguistic material is preferentially processed in the left hemisphere (Hickok and 

Poeppel 2007, Friederici et al. 2010). 
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Furthermore, this seems largely independent from processing of voice-identity 

(Belin and Zatorre 2003, von Kriegstein et al. 2003, Formisano et al. 2008, Bonte et 

al. 2009, Schall and von Kriegstein 2014). Also, results of patient studies suggested 

a dissociation between voice-identity recognition difficulties and aphasic symptoms 

(Assal et al. 1976, Assal et al. 1981, Lang et al. 2009). The finding of an independent 

effect of stimulation on the speaker, but not the speech task, complements these 

findings and emphasises the preference particularly of the right anterior STG/S in 

the representation of voice-identity.  

It was surprising that the expected tdcs effect on voice-identity recognition only 

occurred at day three of testing. I can only speculate about the possible reasons for 

this. When applying tdcs, the anodal treatment is assumed to enhance and cathodal 

to down regulate cortical excitability (Nitsche and Paulus 2000, Stagg et al. 2009). 

Especially for tdcs studies on cognitive functions it has been shown that anodal has 

a probability of .81 of enhancing and cathodal a probability of .48 of down-regulating 

cortical excitability (Jacobson et al. 2012). Thus, the null-effects at day one and two 

could be due to the variable nature of tdcs effects. A second possibility is that the 

anterior STG/S is only critically involved in voice-identity recognition if the voices 

have been learned over a longer time period. However, there is currently no 

evidence for such an interpretation as all fMRI-studies that showed BOLD 

responses in anterior STG/S involved either no training (Belin and Zatorre 2003) or 

a relatively short training before the sessions for the unfamiliar voices, the familiar 

voices were the voices of working colleagues (von Kriegstein and Giraud 2004) and 

a short training before the sessions consisting of the presenting of 36 sentences per 

voice (von Kriegstein et al. 2003). 

The active electrode was well placed above the right anterior STG/S individually for 

each participant. However, the spatial resolution of tdcs within the human brain is 

largely unknown and has low spatial precision (Nitsche et al. 2007, Miranda et al. 

2009). Because of the electrode size in the present study (A = 2.5 * 3.6 cm = 9 cm²), 

it covered not only anterior STG/S but also parts of frontal regions.  

Parts of the frontal cortex are found to be voice sensitive, named frontal voice areas 

or “the extended system of the voice perception” and are part of the “voice 

perception network” showing functional connectivity to TVAs during voice 

perception (Aglieri et al. 2018). Still, there exists no consensus to what extent they 
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are involved in voice identity recognition and furthermore, to what degree the 

familiarity of a voice increases or decreases BOLD responses (Zaske et al. 2017). 

There are two studies that have found the right IFG being involved in the processing 

of speaker-identity, independently of verbal information (Latinus et al. 2011, Zaske 

et al. 2017). However, all BOLD responses reported in Latinus et al. (2011) 

underlying the perception of learned identities (i.e., [(Between and Within) > Same] 

in the second session of scanning) are located more superior to the space covered 

by the electrode. They report one BOLD response in the right IFC/insula [x/y/z 

(33/27/0) MNI space], which could have been affected in my study since the 

coordinate is just 2 mm away from the upper frame of the electrode. However, the 

BOLD response in this region occurred during the first session of scanning where 

identity changes were linked to physical changes in the perceived stimuli and they 

were not yet associated with any learned identities.  

Looking at the coordinates (i.e., [x/y/z (52/20/26) MNI space]) reported by Zaske et 

al. (2017), who discuss the right IFC in being involved in learned voice recognition 

(i.e., reduced activation in right IFG for voices correctly classified as “old” compared 

to “new”) it is still unlikely that my electrode affected this region since it is 2.6 cm 

away from the upper frame of the electrode.  

Furthermore, it is unlikely that I stimulated the region offered in the Meta analysis by 

Blank et al. (2014) who implement right inferior frontal gyrus (i.e., [x/y/z (41/25/21) 

MNI space]) in learned familiar person-identity recognition.  

So taken together, and noting, that a direct comparison between the studies is 

limited due to different grades of voice familiarity (i.e., different voice learning 

paradigms) and recognition tasks (i.e., discrimination tasks and recognition tasks), 

it is unlikely that regions in frontal cortices led to the effect in the present study. 

Models of voice-identity recognition assume several stages of processing, i.e., a 

stage of basic perceptual analysis, a stage were the voice is recognised as familiar, 

and a stage were association is made to semantic and name information about the 

person (Ellis et al. 1997, Neuner and Schweinberger 2000, Belin et al. 2004, 

Roswandowitz et al. 2018). The anterior STG/S has been shown to be responsive 

to voice-identity processing even if no name of the person was known and the task 

was passive listening or matching of a previously heard voice to a target voice (Belin 
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and Zatorre 2003, von Kriegstein et al. 2003, von Kriegstein and Giraud 2004, 

Andics et al. 2010). In contrast to the more posterior STG/S regions, the anterior 

STG/S does not seem to be involved in perceptual processing of the voice (von 

Kriegstein et al. 2003, von Kriegstein and Giraud 2004). It is therefore conceivable 

that voice-identity processing has been facilitated at the stage where a voice is 

recognized as familiar. However, the region that responds to voices even if they 

have not been paired with the name is in very close proximity to regions that have 

been implied in multimodal person identity recognition; for review see Gainotti 

(2011), Blank et al. (2014). Because of the inherently low spatial resolution of tdcs I 

cannot exclude that I additionally stimulated this anterior temporal lobe region. This 

anterior temporal lobe region is for example more responsive to the matching of 

names or faces to voices in contrast to matching brand names of mobiles or pictures 

of mobiles to a mobile ring tone (von Kriegstein and Giraud 2006). Furthermore, 

BOLD responses in this area positively correlate with the speed of name retrieval 

when recognizing voice-identity (von Kriegstein and Giraud 2006).  

A tdcs study with anodal tdcs to the right and left anterior temporal lobe (T3/T4 

electrode location following the international 10-20 system) is congruent with these 

fMRI findings. Anodal tdcs to the right anterior temporal lobe significantly improved 

naming of famous people’s faces if they had difficulties retrieving the name for the 

face, but not for places (Ross et al. 2010, Ross et al. 2011). 

 

The question remains open at what stage I modulated voice-identity recognition in 

the present study. 
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Conclusion 

In conclusion, my findings provide causal evidence for the involvement of the right 

anterior STG/S in the perception of recently-familiarized (Maguinness et al. 2018) 

voice identity. This strengthens the currently discussed role of the anterior STG/S in 

identity representations of human voices in the brain (Blank et al. 2014, 

Roswandowitz et al. 2018). 
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Evaluation of the questionnaires: Mood 

All participants had relatively high ratings on the two mood questionnaires (see 

Table 6a-c). There were no significant differences in the questionnaire items 

depending on the type of stimulation or day.  

 

Table 6a-c Contemporary general state of health before and after the tdcs experiment 

Table 6a 

Day 1       anodal 

 

     cathodal 

 

      sham 

 

 before     after before      after before      after 

well being 7.57 7.71 8 8.14 8.50  7.90  

fitness 8 7.71 8.14 7.43 7.80 7.10 

motivation 8.43 8.14 7.29 6.57 8.40 7.50 

concentration 7.86 6.86  8 7 8.10 6.90 

happiness 8.43 8.43  8.43 7.86 8.60 8.50 

 

 

Table 6b       

Day 2      anodal 

 

     cathodal 

 

      sham 

 

 before      after before      after before      after 

well being 8.25 7.75 7.9 7.7 8.17 8.17 

fitness 7.75 7.25 7.9 7.1 7.83  7.67 

motivation 7.25 7 8 7.4 7.92 7.42 

concentration 7.88 6.75 7.6 6.6 7.5 6.83 

happiness 8 7.75 7.9 8.1 8.33  8.5  
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Table 6c 

Day 3       anodal      cathodal 

 

      sham 

 before     after before       after before      after 

well being 8.56 8.11 7.86 7.43 8 8 

fitness 8.44 7.78 8.00 7.43 7.38 8 

motivation 8.44  7.56 8.43 7.86 7.5 7.75 

concentration 8.11 7.67 7.71 7.14 7.63 7.38 

happiness 8.33 8.22 8.57 8.57  7.88  7.88  

Table 6a-c 

Contemporary general state of health before and after the tdcs experiment (0-10: 0= not 

well; 10= very good). Evaluation of the participants’ general state of health separated by 

day and stimulation type. ‘Before’ refers to the time before the experiment started and 

‘after’ refers to the time after the experiment has been completed. 

 

Table 7 Strategies for speaker recognition 

Table 7 

Displays the strategies for speaker recognition amongst the participants. The numbers 

indicate the numbers of participants who used the kind of strategy 

 

 

Strategies  

Voice character: how high, deep, bright, clear a voice sounded) 12 

Imagination of a person to whom the voice could belong 4 

nasality 4 

A friend with a similar voice 3 

Throatiness 3 

Imagination of faces 2 

Dialect  2 

Similarity to a pop musician/movie star 3 

Sympathy of the person? Voice? 1 

How male the voices sounded 1 
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Table 8 Difficulty of speaker recognition 

 

 

 

 

 

Table 8  

The table displays how many participants found it easiest to recognize a specific speaker. 

In comparison to the table hereafter in brackets the statistics for correct speaker 

recognition, in percent: (Leon: 91.7, Jonas: 73.2, Felix: 73.1, Moritz: 66.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name  % 

Leon 83.3 

Jonas 20.83 

Felix 12.5 

Moritz Not mentioned 
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Questionnaires 

Fragebogen VOR der tdcs Testung 

Wie ist Ihr heutiger Allgemeinzustand? 

Ich fühle mich wohl (10) -------------------------------------(5) ------------------------------------

- unwohl (0) 

Ich fühle mich fit (10) -----------------------------------------(5) ------------------------------------

- müde (0) 

Ich bin motiviert (10) -----------------------------------------(5) ------------------------------------

- unmotiviert (0) 

Ich bin konzentriert (10)--------------------------------------(5) ------------------------------------ 

unkonzentriert (0) 

Ich bin gut gelaunt (10) --------------------------------------(5) -------------- genervt/gereizt/ 

schlecht gelaunt (0) 

Haben Sie in den letzten Nächten ausreichend geschlafen?  

Leiden Sie derzeit an Kopfschmerzen? / an anderen Schmerzen? 

Hatten Sie in der letzten Zeit Kopfschmerzen/Migräne? 

Haben Sie in den vergangen Tagen Alkohol/andere Drogen eingenommen? 

Wenn ja, welche und wie viele? 

Für Frauen: Besteht die Möglichkeit einer Schwangerschaft? 

Leiden Sie im Moment an einer Allergie? Atemwege/Haut 

Wenn ja, an welchen: 

Wie lange lagen Sie in den letzten Tagen in der Sonne? 

Wie viel Sport haben Sie in den letzten Tagen getrieben? 

Hatten Sie seit der letzten tdcs Anwendung Operationen/Kopfverletzungen? 
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Hat sich irgendetwas anderes in Ihrem Gesundheitszustand geändert seit der 

letzten tdcs Anwendung?  

Nehmen Sie derzeit an anderen Studien teil? Wenn ja, an welchen? 

 

Fragebogen NACH der tdcs-Testung  

Zum Befinden: 

Ich fühle mich wohl (10) -------------------------------------(5) ------------------------------------

- unwohl (0) 

Ich fühle mich fit (10) ---------------------------------------- (5) ------------------------------------

- müde (0) 

Ich bin motiviert (10) -----------------------------------------(5) ------------------------------------

- unmotiviert (0) 

Ich bin konzentriert (10) ----------------------------------(5) ----------------------------------- 

unkonzentriert (0) 

Ich bin gut gelaunt (10) --------------------------------------(5) ------------------------------------ 

ich bin genervt/gereizt/ schlecht gelaunt (0) 

 

Bitte geben Sie auf einer Skala von 0-10 (0=nichts gespürt; 10= stark gespürt) an, 

ob Sie folgende Wahrnehmungen WÄHREND und/oder NACH der tdcs Anwendung 

hatten  

 

                                           WÄHREND            DANACH 

Kribbeln (Ort) 

Jucken (Ort) 

Brennen (Ort) 

Schmerz (Ort) 
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Kopfschmerz (Ort) 

Übelkeit 

Lichtblitze 

Hatten Sie weitere Wahrnehmungen/Empfindungen? 

Was vermuten Sie? Hatten Sie eine Verbesserung/Verschlechterung/keine 

Veränderung der Aufgabenausführung durch die Anwendung von tdcs?  

 

Befragung zusätzlich nach der dritten Testung („Strategy-Questionnaire“): 

Hatten Sie eine Strategie, um die Sprecher wieder zu erkennen? Wenn ja, welche? 

Konnten Sie einen Sprecher besonders gut erkennen? Wenn ja, welchen und 

woran? 

Finden Sie, dass die Sprecher Hochdeutsch gesprochen haben? Wenn NEIN: 

Welcher Sprecher hatte einen Dialekt; und können Sie sagen, welchen Dialekt? 

Ist Ihnen einer der beiden Blöcke leichter gefallen? Wenn ja, welcher? 

Wie würden Sie das Experiment insgesamt einschätzen? 0= leicht; 6=sehr schwer 

Haben Sie sonstige Anmerkungen? 
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Tdcs Fragebogen 

Mit den folgenden Fragen wollen wir mögliche Risikofaktoren der transkraniellen 

Gleichstromstimulation (tdcs) ausschließen. Sie dienen Ihrer persönlichen 

Sicherheit während der tdcs Experimente. Bitte antworten Sie nach bestem Wissen 

und fragen Sie uns jederzeit bei Unklarheiten. 

Haben Sie einen Herzschrittmacher, eine Insulinpumpe, einen Shunt 

(Hirnwasserdrainage) oder Innenohrimplantat? Ja nein 

Haben Sie Metallclips nach Gefäßoperationen oder künstliche Herzklappen?  

Ja nein 

Haben Sie Gelenkprothesen aus Metall? Ja nein 

Haben Sie Metallplatten, -schrauben, -nägel nach Knochenverletzungen? Ja nein 

Wurden Sie innerhalb der letzten zwei Monate operiert? Ja nein 

Wenn ja, woran? 

Haben Sie Herzrhythmusstörungen? Ja nein 

Haben Sie Hörprobleme bzw. leiden Sie an Tinnitus? Ja nein 

Ist bei Ihnen ein Anfallsleiden (Epilepsie) bekannt? Ja nein 

Hatten Sie in der Kindheit jemals einen Fieberkrampf erlitten? Ja nein 

Ist in Ihrer Familie eine Epilepsie bekannt? Ja nein   

Ist jemals eine unklare Bewusstlosigkeit aufgetreten? Ja nein 

Sind bei Ihnen andere neurologische oder psychiatrische Erkrankungen bekannt? 

Ja nein 

(z.B. Multiple Sklerose, ADHS, Schizophrenie, Depression) 

Wenn ja, welche? 

Hatten Sie jemals behandlungsbedürftige Kopfverletzungen? Ja nein 
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Hatten Sie jemals behandlungsbedürftige Kopfschmerzen? Ja nein 

Leiden Sie regelmäßig an Kopfschmerzen oder Migräne? Ja nein 

Leiden Sie an Schlafstörungen?  Ja nein 

Besteht eine regelmäßige Alkohol- oder andere Drogeneinnahme? Ja nein 

(z.B. Psychoaktive Substanzen) 

Leiden Sie an einer chronischen Krankheit (Asthma, Bluthochdruck, Diabetes)  

Ja nein 

Wenn ja welche? 

Sind Allergien bekannt? Ja nein 

Wenn ja, welche? 

Sind Hauterkrankungen bekannt? Ja nein  

Nehmen Sie regelmäßig Medikamente (z.B. Schmerzmittel, Antidepressiva, 

Antipsychotika: z.B. Clozapine, verschreibungspflichtige Stimulanzien)? Ja nein  

Wenn ja, welche(s)? 

Besteht die Möglichkeit einer Schwangerschaft? Ja nein 

 

 

Frau/Herr _________________________________ hat mit mir heute anhand der 

Hinweise dieses Informationsblattes ein Aufklärungsgespräch geführt, in dem ich 

alle mich interessierenden Fragen stellen konnte. 

1  Ich habe keine weiteren Fragen und benötige keine zusätzliche Bedenkzeit. 

2  Ich versichere, dass meine Angaben vollständig und richtig sind. 

3  Bei möglichen Folgeuntersuchungen informiere ich Sie unaufgefordert über 

jede Änderung bezüglich der o.g. Angaben sowie über Änderungen meines 

Gesundheitszustandes. 
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