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Summary

Motivation. Climate extreme events such as the 2018 drought and heatwave in
Germany often affect the well-being of humans and society. In Germany, increased
oil prices due to the low water levels during the 2018 event as well as potentially
lagged impacts through bark beetle attacks on forests in 2019 attracted considerable
media attention.

In general, droughts can lead to lower drinking water quality and scarcity of water,
which can directly affect humans or trigger armed conflict and violence. Harvest losses
due to droughts and heatwaves can increase food prices and lead to hunger or even
mass migration due to the loss of income in agriculture, highlighting just a few of the
many possible impacts of such events on humans and society.

Furthermore, droughts and heatwaves are known for their severe impacts on veg-
etation and the global carbon cycle. Although terrestrial ecosystems are usually a
carbon sink, they can turn into a carbon source during and after climate extreme
events. In severe cases, the impacts of these events on terrestrial ecosystems can
undo years of carbon sequestration.

In the context of climate change, the negative impacts of climate extreme events
have to be taken into account. The number of heatwaves is expected to increase,
as well as the number of droughts in some regions. More frequent climate extreme
events with negative impacts on vegetation and the terrestrial carbon cycle can even
partly offset human efforts to reduce carbon emissions by frequently turning some
ecosystems into carbon sources.

A key aspect in the context of impacts of droughts and heatwaves on the carbon
cycle is the role of different plant species and vegetation types at different scales. The
physiological mechanisms during droughts and heatwaves are differing on a species
level, but also on a larger scale e.g. different rooting depths between grasslands,
forests and crops suggest differences in the associated responses to climate extremes.
These differences in carbon uptake of different vegetation types have not yet been
systematically evaluated for droughts and heatwaves on a global scale.

Furthermore, it should be noted that these climate extreme events are inherently
multivariate. It is well known that the capacity of hot air for storing water is higher
than the capacity of cold air for storing water. Extreme events that have had a strong
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impact in the past were frequently concurrent droughts and heatwaves, like Europe
in 2003, Russia in 2010, or the US in 2012. It is expected that these compounding
droughts and heatwaves will increase in many regions in the future.

The aforementioned multivariate nature of climate extreme events such as droughts
and heatwaves requires a multivariate perspective on climate extreme events. Com-
mon peak over threshold detection of extreme events in climate science and related
disciplines uses the marginal distribution of the variables and does not consider co-
variation among the variables, potential non-linearities or can not be applied to high-
dimensional settings. Thus, multivariate extreme event detection schemes have to be
adapted and transferred from other disciplines that provide a multivariate perspective
on climate extreme events.

Objectives. The overall objective of my thesis is to improve the detection and
understanding of climate extremes and their impacts on vegetation by facilitating
a broader multivariate perspective that complements previous approaches to detect
extreme events.

1. As multivariate extreme event detection schemes are rarely used in climate
science and related disciplines, I will first transfer and adapt methods from
other disciplines developed for the detection of multivariate anomalies (chapter
3). The objective of this study is to evaluate which combination of multivariate
anomaly detection algorithm and feature extraction is best suited for detecting
anomalous events.

2. One particularly well-performing algorithm from the artificial experiment is
then chosen to detect events in variables describing hydrometeorology and the
exchange of matter between the atmosphere and the terrestrial surface (chapter
4). The objective is to evaluate whether a broader multivariate perspective
facilitates our understanding of extreme events and their impacts by revealing
previously overlooked facets. This is done using the example of a well studied
extreme event of the past: the Russian heatwave in 2010.

3. One result of the analysis of the Russian heatwave is that forests and crops are
associated with different and largely contrasting responses during the Russian
heatwave. Chapter 5 evaluates whether different responses between vegeta-
tion types are just a singular case study or are common during droughts and
heatwaves globally. The objective is to evaluate the importance of different veg-
etation types on shaping the impact of climate extremes relative to other factors,
which is still highly uncertain on the global scale.

Methods and Main Results. In order to address the first objective, I imple-
mented and tested several combinations of potential multivariate detection algorithms
with preprocessing and feature extraction steps (such as dimensionality reduction) on
artificial data that mimic various types of anomalous conditions, including extreme
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events (chapter 3). I have identified one of the detection schemes as outperforming
other approaches and being able to handle the covariation between the variables,
non-linearities and high-dimensional settings in a more accurate way. The detection
scheme consists of (i) subtracting the seasonality and (ii) a principal component anal-
ysis to account for the linear covariation and to reduce the dimensionality. It (iii)
uses kernel density estimators in the reduced principal component space to detect
deviations from the general multivariate and potentially non-linear distribution.

Second, this detection scheme is used on two sets of variables: one set of vari-
ables describing hydrometeorology and one set of variables of fluxes between the
atmosphere and the terrestrial land surface (chapter 4). I chose one particularly
well-studied case of an extreme event, the 2010 Russian heatwave, in order to eval-
uate the results and to compare them to existing studies. A major, existing finding
is that, depending on the researcher’s perspective, the affected area or volume of
the so-called Russian heatwave is very different and strongly dependent on the focus
on different variables. This mismatch between different affected areas of the Rus-
sian heatwave can be easily remedied by the proposed multivariate extreme event
detection scheme, complementing earlier studies on this event. Furthermore, it is
shown that northern forest ecosystems are associated with enhanced productivity
during the Russian heatwave. In contrast, agricultural systems are strongly affected
by the heatwave. Taking into account several confounding factors, it is shown that
the vegetation type is indeed the most important factor for this contrasting effect.

Third, the role of different vegetation types during droughts and heatwaves is
globally assessed between 2003 and 2018 by applying the developed detection scheme
to hydrometeorological variables (temperature, radiation, water availability). For this
evaluation, droughts and heatwaves that occur during the growing season from this
set of extreme events are selected. The associated productivity during the droughts
and heatwaves is modeled using boosted regression trees. The main result is that
besides the factors background climate and duration in the statistical model, the veg-
etation type is particularly important for the direction of the associated productivity
response. Forests are more often associated with immediate enhanced productivity
during droughts and heatwaves than agriculture and other ecosystems. Thus, con-
trasting vegetation responses in case studies like the Russian heatwave 2010 are not
just a single occurrence but can be observed frequently in global estimates of gross
primary productivity. Although vegetation type related differences in the response
to climate extremes are plausible to a certain degree due different water manage-
ment and (micro-)climate, these results also point to potential biases with respect to
remote sensing derived estimates of gross primary productivity.

General Conclusions and Outlook. Overall the thesis introduces a detection
scheme for multivariate extreme events and applies it in the context of droughts and
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heatwaves and their impacts on vegetation and the carbon cycle. It demonstrates
that consistent application of this multivariate detection scheme can complement our
knowledge of specific cases of extreme events as well as the impact of these events on
the carbon cycle and the modulating role of different vegetation types during extreme
events globally. However, the focus on immediate productivity during droughts and
heatwaves requires a thorough assessment of lagged effects of extreme events in future
studies. Further ground-based observations would greatly reduce the uncertainty of
the findings which largely rely on remote sensing-based retrievals of productivity.
Future studies should improve these remote-sensing derived retrievals of productivity
with respect to their sensitivity to extreme events and specific vegetation types. In
general, the proposed methodology of this thesis can be easily extended to detect
any type of extreme events and to evaluate changes in the future composition of
multivariate climate extreme events.



Zusammenfassung

Motivation. Klimaextremereignisse, wie die Trockenheit und Hitzewelle in Deutsch-
land 2018, beeinflussen das Wohlbefinden von Menschen in unserer Gesellschaft.
Die gestiegenen Ölpreise fanden beispielsweise aufgrund des niedrigen Wasserstan-
des während der Trockenheit und Hitze im Jahr 2018 in Deutschland, sowie wegen
dem Baumsterben aufgrund von Borkenkäferbefall im Jahr 2019 in den Medien große
Beachtung.

Trockenheit kann im Allgemeinen zu verringerter Trinkwasserqualität und -knapp-
heit führen, was sich direkt auf die Gesundheit des Menschen auswirken kann oder
sogar bewaffnete Konflikten und Gewalt nach sich ziehen kann. Ernteverluste auf-
grund von Dürre und Hitzewellen können die Lebensmittelpreise erhöhen. Die daraus
resultierenden Einkommensverluste in der Landwirtschaft können Hunger oder sogar
Massenmigration auslösen, um nur einige von vielen weiteren möglichen Auswirkun-
gen auf Menschen und die Gesellschaft zu nennen.

Darüber hinaus können Trockenheit und Hitzewellen starke Auswirkungen auf
die Vegetation und den globalen Kohlenstoffkreislauf haben. Obwohl terrestrische
Ökosysteme normalerweise eine Kohlenstoffsenke sind, können sie sich während und
nach extremen Klimaereignissen in eine Kohlenstoffquelle verwandeln. Damit können
besonders starke Klimaextremereignissen die Kohlenstoffaufnahme in terrestrischen
Ökosystemen von mehreren Jahren rückgängig machen.

Insbesondere im Zusammenhang mit dem Klimawandel müssen die negativen Aus-
wirkungen der Klimaextremreignisse berücksichtigt werden. Die Anzahl der Hitze-
wellen wird voraussichtlich zunehmen. Ebenso wird die Anzahl der Trockenheiten
in einigen Regionen ansteigen. Häufige Extremereignisse mit negativen Auswirkun-
gen auf die Vegetation und den terrestrischen Kohlenstoffkreislauf können die An-
strengungen des Menschen zur Reduzierung der Kohlenstoffemissionen teilweise auf-
heben, wenn Ökosysteme regelmäßig in Kohlenstoffquellen verwandelt werden.

Ein entscheidender Aspekt ist die Rolle verschiedener Pflanzenarten und Vegetati-
onstypen auf unterschiedlichen Skalen, die die Auswirkungen von Trockenheiten und
Hitzewellen auf den Kohlenstoffkreislauf beeinflussen können. Die physiologischen
Mechanismen während Trockenheiten und Hitzewellen unterscheiden sich deutlich
auf der Ebene von Pflanzenarten. Aber auch auf größerer Skala sind unterschiedli-
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che Reaktionen auf Klimaextremereignisse naheliegend, zum Beispiel aufgrund un-
terschiedlicher Wurzeltiefen zwischen Grasland, Wäldern und Kulturpflanzen. Diese
Unterschiede in der Kohlenstoffaufnahme verschiedener Vegetationstypen sind auf
globaler Ebene während Trockenheiten und Hitzewellen bislang nicht systematisch
ausgewertet und vollständig verstanden.

Zudem sind Klimaextremereignisse von Natur aus multivariat. Heiße Luft kann
mehr Wasser speichern als kalte Luft. Extremereignisse mit starken Auswirkungen
traten in der Vergangenheit häufig gleichzeitig auf, wie beispielsweise Trockenheiten
und Hitzewellen in Europa 2003, Russland 2010 oder die USA 2012. Es wird erwartet,
dass diese kombinierten Trockenheiten und Hitzewellen in Zukunft in vielen Regionen
zunehmen werden.

Die zuvor erwähnte multivariate Natur von Klimaextremereignissen erfordert ei-
ne multivariate Perspektive auf diese Ereignisse. Bisher findet die Detektion von
Extremereignissen in den Klimawissenschaften und verwandten Disziplinen mittels
Schwellenwerten statt. Typischerweise werden einzelne Variablen dafür genutzt und
keine Kovariation zwischen verschiedenen Variablen oder mögliche Nichtlinearitäten
berücksichtigt. Daher müssen multivariate Extremereigniserkennungsschemata aus
anderen Disziplinen übertragen und für Klimawissenschaften angepasst werden, um
eine multivariate Perspektive auf Klimaextremereignisse zu bieten.

Ziele. Das übergeordnete Ziel meiner Dissertation ist es, die Erkennung und das
Verständnis von Klimaextremen und deren Auswirkungen auf die Vegetation zu ver-
bessern, indem eine breitere multivariate Perspektive ermöglicht wird, die bisherige
Ansätze zur Erkennung von Extremereignissen ergänzt.

1. Da multivariate Methoden zur Erkennung von Extremereignissen in den Klima-
wissenschaften und verwandten Disziplinen selten verwendet werden, übertrage
und adaptiere ich zunächst Methoden aus anderen Disziplinen, die für die Er-
kennung multivariater Anomalien entwickelt wurden (Kapitel 3). Das Ziel dieser
Studie ist es, zu evaluieren, welche Kombination von Methoden zur Erkennung
von multivariaten Anomalien und Vorverarbeitungsschritten am besten zum Er-
kennen anomaler Ereignisse geeignet ist.

2. Ein besonders gut funktionierender Algorithmus auf künstlichen Daten wurde
ausgewählt, um Ereignisse in Variablen zu detektieren, die die Hydrometeorolo-
gie und den Austausch von Kohlenstoff und Wasser zwischen Atmosphäre und
Erdoberfläche beschreiben (Kapitel 4). Ziel ist es dabei, zu bewerten, ob eine
breitere multivariate Perspektive unser Verständnis von Extremereignissen und
deren Auswirkungen verbessert, indem zuvor übersehene Facetten aufgedeckt
werden. Dies geschieht am Beispiel eines gut untersuchten Extremereignisses
aus der Vergangenheit: die Fallstudie Hitzewelle in Russland 2010.

3. Ein Ergebnis der Fallstudie zur Hitzewelle in Russland 2010 ist, dass Wäl-
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der und landwirtschaftliche Flächen mit unterschiedlichen und zum großen Teil
gegensätzlichen Reaktionen während der Hitzewelle in Russland reagieren. In
Kapitel 5 wird analysiert, ob unterschiedliche Reaktionen zwischen Vegetati-
onstypen nur ein Einzelfall sind oder häufig bei Trockenheiten und Hitzewellen
weltweit auftreten. Das Ziel dieser Studie besteht darin, die Bedeutung ver-
schiedener Vegetationstypen für die Beeinflussung der Auswirkungen von Kli-
maextremereignissen im Verhältnis zu anderen Faktoren zu bewerten, was auf
globaler Ebene immer noch sehr unklar ist.

Methoden und Hauptergebnisse. Um das erste Ziel zu erreichen, implemen-
tierte und testete ich mehrere Kombinationen von potenziellen multivariaten Detek-
tionsalgorithmen und kombinierte sie mit Vorverarbeitungs- und Merkmalsextrakti-
onsschritten (z. B. Dimensionsreduktion) in einem extra dafür erstellen Datensatz.
Dieser Datensatz imitiert verschiedene Arten anomaler Bedingungen, einschließlich
extremer Ereignisse (Kapitel 3). Ein Detektionschema kann besonders gut anomale
Bedingungen erkennen und dabei mit der Kovariation zwischen verschiedenen Varia-
blen, Nichtlinearitäten und vielen Variablen umgehen. Das Detektionsschema besteht
aus (i) Subtrahieren der Saisonalität, (ii) einer Hauptkomponentenanalyse, um die li-
neare Kovariation zu berücksichtigen und die Dimensionalität zu reduzieren, und (iii)
einer Kerndichteschätzung im reduzierten Hauptkomponentenraum, um Abweichun-
gen von der allgemeinen multivariaten und möglicherweise nicht-linearen Struktur
der Daten zu erkennen.

Im zweiten Schritt wird dieses Detektionsschema für zwei Variablensätze verwen-
det. Ein Variablensatz beschreibt die Hydrometeorologie, und ein Variablensatz die
Stoffflüsse zwischen der Atmosphäre und der Landoberfläche (Kapitel 4). Um die Er-
gebnisse zu bewerten und mit vorhandenen Studien zu vergleichen entschied ich mich
für einen besonders gut untersuchten Fall eines Extremereignisses, die Hitzewelle in
Russland 2010. Ein Hauptergebnis ist, dass abhängig von der Perspektive des For-
schenden das betroffene Gebiet oder Volumen der sogenannten Hitzewelle in Russland
sehr unterschiedlich ist. Es hängt stark vom Fokus der verschiedenen Variablen ab.
Diese Unterschiede zwischen verschiedenen betroffenen Gebieten der russischen Hit-
zewelle kann durch das vorgeschlagene multivariate Detektionsschema leicht behoben
werden und ergänzt frühere Studien zur Hitzewelle in Russland. Darüber hinaus wird
gezeigt, dass in borealen Wäldern eine erhöhte Produktivität während der Hitzewelle
in Russland zu beobachten ist. Landwirtschaftliche Systeme hingegen sind stark von
der Hitzewelle betroffen. Unter Berücksichtigung mehrerer Störfaktoren wird gezeigt,
dass der Vegetationstyp tatsächlich der wichtigste Faktor für diese gegensätzliche
Reaktion ist.

Im dritten Schritt wird die Rolle verschiedener Vegetationstypen während Tro-
ckenheiten und Hitzewellen zwischen 2003 und 2018 global analysiert. Dafür wird
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das entwickelte Detektionsschema auf hydrometeorologische Variablen (Temperatur,
Strahlung, Wasserverfügbarkeit) angewendet. Aus den so identifizierten Extremereig-
nissen werden Trockenheiten und Hitzewellen ausgewählt, die während der Vegeta-
tionsperiode stattfinden. Die Produktivität von Ökosystemem während Trockenheit
und Hitzewellen wird unter Verwendung von boosted regression trees modelliert.
Folgendes Hauptergebnis kristallisiert sich dabei heraus: Neben den Faktoren Kli-
ma und Dauer des Extremereignisses bestimmt der Vegetationstyp entscheidend, ob
sich die Produktivität steigert oder im Vergleicht zu langjährigen Mittel reduziert.
Wälder sind viel häufiger mit einer Steigerung der Produktivität während Dürren
und Hitzewellen assoziiert als die Landwirtschaft und andere Ökosysteme. Daher
sind gegensätzliche Reaktionen wie bei der Hitzewelle in Russland 2010 nicht nur ein
Einzelfall, sondern können häufig in globalen Schätzungen der Primärproduktivität
beobachtet werden. Produktivitätsunterschiede zwischen unterschiedlichen Vegetati-
onstypen sind durch unterschiedliches Wassermanagement und (Micro-)Klima bis zu
einem gewissen Grad plausibel, deuten hier aber auch auf potentielle Probleme in
Schätzungen der Produktivität mihilfe von Fernerkundung hin.

Allgemeine Schlussfolgerungen und Ausblick. Insgesamt wird in der Ar-
beit ein Detektionsschema für multivariate Extremereignisse vorgestellt. Dieses wird
im Kontext von Trockenheiten und Hitzewellen sowie deren Auswirkungen auf die
Vegetation und den Kohlenstoffkreislauf angewendet. Die Arbeit zeigt, dass eine kon-
sequente Anwendung dieses multivariaten Detektionsschemas unser Wissen über spe-
zifische Fallstudien von Extremereignissen ergänzen kann. Außerdem kann damit die
Auswirkung von Extremereignissen auf den Kohlenstoffkreislauf untersucht werden.
Die Arbeit ergänzt damit unser Wissen über die modulierende Rolle verschiedener
Vegetationstypen während Extremereignissen. Der Fokus liegt hierbei auf die Pro-
duktivitätsveränderungen, die während Trockenheiten und Hitzewellen stattfinden.
Dies erfordert jedoch auch eine Berücksichtigung der verzögerten Auswirkungen nach
den Extremereignissen in weiteren Studien. Weitergehende bodengestützte Beobach-
tungen würden die Unsicherheit der Ergebnisse stark verringern, da die Ergebnisse
größtenteils auf Schätzungen der Produktivität auf der Grundlage der Fernerkun-
dung beruhen. Zukünftige Studien könnten diese auf Fernerkundung basierdenden
Schätzungen der Produktivität, im Hinblick auf Ihre Sensitivität für Extremereig-
nisse und unterschiedliche Vegetationstypen, verbessern. Im Allgemeinen kann die
vorgeschlagene Methodik leicht erweitert werden, um jede Art von Extremereignis-
sen zu erkennen und Änderungen in der zukünftigen Zusammensetzung multivariater
Klimaextremereignisse zu analysieren.



XV



XVI



Chapter 1

Introduction

1.1 Motivation

2018 was a year of ’exceptional’ weather, as stated by the vice president of the German
Weather Service (Deutscher Wetterdienst, DWD) at the end of the year (DWD, 2018).
According to their evaluation, 2018 was the hottest year since the start of the country-
wide weather observations in 1881. Additionally, it was the sunniest and also one
of the driest years in Germany (except southern Bavaria, Beenen et al., 2018). In
terms of the multivariate distribution of temperature and precipitation anomalies,
2018 was clearly an exceptionally hot and dry year in that country (Fig. 1.1). This
coincidence of several variables being far away from normal variability (temperature,
precipitation, and radiation as reported by the DWD for 2018) seems to be a feature
of high-impact extremes, e.g. like Europe 2003 or Russia 2010 (Fischer & Knutti,
2013). It already indicates that the monitoring of climate extreme events may be a
multivariate task.

Importantly, climate extreme events, like in 2018, are known to impact society.
For 2018, media reported wheat harvest losses of 25%, as well as low water levels
in rivers in Germany. These low water levels led to the lowest hydroelectric power
production for more than a decade. Furthermore, they hampered inland waterway
transport which affected e.g. regional oil prices in the country (Beenen et al., 2018).
This year (2019), tree mortality in Germany gained a lot of media attention (DPA,
2019; Köppe, 2019; Weiß, 2019). These reports of tree mortality in 2019 may poten-
tially be related to the 2018 drought and heat event, as insect infestations are known
to affect forests in the year after the extreme event (Rouault et al., 2006).

Recent scientific literature shows that the year 2018 was characterized by a cli-
matic dipole with hot and dry conditions north of the Alps but opposite conditions
(cool and moist) in the Mediterranean (Buras et al., 2019). Furthermore, in 2018
several concurrent heat events were affecting the Earth north of 30◦ latitude. These
kinds of spatial concurrent events would very likely not have occurred without human-
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2 CHAPTER 1. INTRODUCTION

Figure 1.1 – ’How exceptional was the year 2018?’ Deviation of temperature and precipitation
between 1881 - 2018 in Germany. Red (blue) colors indicate too hot (cold) temperatures, green
(orange) colors indicate too wet (dry) years in terms of precipitation. Figure from DWD, 2018.

induced climate change (Vogel et al., 2019). In general, it is expected that climate
change leads to an increase in the frequency of heatwaves (Seneviratne et al., 2012),
and compounding hot and dry events in some regions (Zscheischler & Seneviratne,
2017). Thus, climate extreme events are gaining more and more relevance in the
context of climate change.

Generally, examples of climate extreme events (for a definition of extreme events
see Section 2.1) include heavy precipitation, storms, droughts, and heatwaves, among
others. Detecting and understanding those (climate) extreme events is crucial for
society as they have severe impacts on humans (see Section 1.1.1), which may even be
exacerbated when taking place simultaneously as so-called concurrent or compound
events (AghaKouchak et al., 2014; Zscheischler et al., 2018). The overarching aim of
the present thesis is to contribute to this inherently multivariate task of monitoring
and understanding climate extreme events as well as their impacts and to improve the
detection and understanding of climate extremes and their impacts on vegetation by
facilitating a broader multivariate perspective which complements previous approaches
to detect extreme events.

Understanding and detecting climate extreme events is important as climate ex-
tremes are directly or indirectly affecting humans and society (Section 1.1.1). They
are also projected to increase in frequency and intensity in some regions of the world
in future climate (Section 1.1.4, Easterling et al., 2000; Meehl & Tebaldi, 2004). How-
ever, one particular focus of this thesis is to detect climate extreme events and to eval-
uate their impacts on vegetation and the global carbon cycle. Humans are affected by
vegetation productivity e.g. through agricultural yields and forestry (Section 1.1.1).
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Furthermore, climate extremes are of interest as their associated impacts affect the
global carbon cycle (Section 1.1.2, Reichstein et al., 2013 ), which feeds back into
the climate system through changes in land and/or ocean carbon sinks. The carbon
cycle-climate feedback is a crucial source of uncertainty in climate change projections
(Section 1.1.4, Friedlingstein et al., 2014). Another focus is on two specific types of
climate extreme events, namely droughts and heatwaves, as those two are expected
to have the most severe impacts on the productivity of vegetation (Zscheischler et al.,
2014b).

1.1.1 Impacts of droughts and heatwaves on humans and so-

ciety

Extremes events, in general, can have severe impacts on human lives, which is one
motivation to study extreme events. Here, I want to highlight the impacts of droughts
and heatwaves on humans in particular.

Heatwaves. Heatwaves can affect humans in various ways. Observed impacts of
heatwaves on humans include direct health impacts (increased mental health prob-
lems, Hansen et al., 2008, increased morbidity, Åström et al., 2011), or indirect health
impacts via respiratory problems due to increased surface ozone (Filleul et al., 2006),
or via lowering the protein content of crop yields (Dwivedi et al., 2013). Heatwaves
can lead to stock mortality, e.g. of broilers (Vale et al., 2010). Heatwaves can also
affect humans through affecting infrastructure directly (melting of asphalt, Reeves
et al., 2010, bridge cracking, Zhou et al., 2016, airplane groundings, Smoyer-Tomic
et al., 2003), or indirectly through power outages (e.g. due to high energy demand
of air conditioning, Miller et al., 2008, or reduced generator cooling, De Bono et al.,
2004). Reported economic impacts of heatwaves include impacts on tourism (Buck-
ley & Foushee, 2011), or lowered labour productivity through increased absenteeism
(Zander et al., 2015). Heatwaves may even enhance cases of suicide and aggres-
sive behaviour (Berry et al., 2009). They can also lead to mass migration due to
losses of crops and farming income in certain areas of the world (Mueller et al., 2014;
Nawrotzki et al., 2015). The variety of impacts of heatwaves on humanity shows that
there should be an inherent interest for society to detect and understand those kind
of events.

Droughts. Observed impacts of droughts are similarly diverse and severe. Short-
age (Shen et al., 2007), contamination (Benotti et al., 2010; Vliet & Zwolsman, 2008)
and decreasing quality of drinking water can directly or indirectly affect human health
and lead to diarrhoea, cholera, or dysentery (Calow et al., 2010). Increased dust emis-
sions can impact human health as well (Miri et al., 2007; Prospero & Lamb, 2003).
Virus outbreaks e.g. of the West Nile virus (Epstein, 2001), and chikungunya (Gould
& Higgs, 2009) are associated with droughts if followed by flooding. Food quality
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is affected by decreased protein content in crops (Dwivedi et al., 2013). Increased
livestock mortality (Begzsuren et al., 2004; Terrence McCabe, 1987), and shellfish
mortality (Wetz & Yoskowitz, 2013) have been reported. Agricultural losses, e.g.
due to exceeding physiological limits in plants, can lead to starvation and economic
losses affecting e.g. wheat prices globally (Wegren, 2010). Losses in forestry e.g.
though massive dead wood due to insect attacks (Rouault et al., 2006) also lead to
economic losses or may affect wood prices for energy consumption. Infrastructure
during droughts can be affected by low water levels in rivers, hampering shipping
(Van Lanen et al., 2016), locally increased oil prices are reported e.g. for 2018
(Hanrahan, 2018). Changing water levels affect tourism (Scott & Lemieux, 2010).
Droughts lead to increased fire risk (Brando et al., 2014; Westerling et al., 2006),
which destroy homes, or can increase migration from rural areas (McLeman & Smit,
2006; Meze-Hausken, 2000). Conflicts about water rights and access can be enhanced
by droughts (AghaKouchak et al., 2015; Gleick, 2014) and droughts can trigger insur-
gency, violence (Hendrix & Salehyan, 2012; Uexkull et al., 2016) or armed conflicts
in general (Mach et al., 2019). Hence, detecting and understanding droughts and
heatwaves is important for early warning systems or impact-mitigation strategies.

Known case studies of drought and heatwave impacts show that it is often dis-
cussed or depending on the (impact) perspective whether the event was perceived as
a drought or a heatwave. However, from a meteorological perspective, many famous
large scale climate events are both hot and dry (Barriopedro et al., 2011; Ciais et al.,
2005; Wolf et al., 2016). One such example is the so called European heatwave in the
summer of 2003 which was perceived as a heatwave in the public and similarly in the
scientific literature (Black et al., 2006; Coumou & Rahmstorf, 2012; Fischer et al.,
2007; Schär & Jendritzky, 2004). This perception is probably related to the human
perception of heat, and the observed mortality among elderly people associated with
the heatwave (Garcia-Herrera et al., 2010). However, as carbon cycle impacts of the
2003 heatwave are more related to dry conditions than hot conditions (Granier et al.,
2008; Reichstein et al., 2007), it is predominantly called a drought rather than a
heatwave in the context of carbon cycle impacts (Frank et al., 2015; Reichstein et al.,
2013). The impacts of droughts and heatwaves on the carbon cycle are the topic of
Section 1.1.2.

1.1.2 Impacts of droughts and heatwaves on the carbon cycle

Another motivation to study extreme events is their impact on the terrestrial carbon
cycle. In particular extreme temperature during heatwaves and the lack of water
during droughts have impacts on vegetation productivity.

Extreme temperature during heatwaves leads to an increase of the atmospheric
water demand (vapour pressure deficit), which first of all increases evapotranspira-
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tion. To counteract the atmospheric demand of water and to prevent dry down,
plants are capable of closing their stomata which leads to reduced gross primary pro-
ductivity (the uptake of CO2 by ecosystems). Furthermore, plants respiration may be
enhanced during times of increased temperature (Bastos et al., 2014). Additionally,
extreme temperatures can disrupt enzymatic activity needed for photosynthesis and
subsequently change growth patterns (Larcher, 2003).

Similarly, the lack of water during droughts leads to drought stress in plants as
soon as the evaporative demand is larger than the available water from soil. Gross
primary productivity gets reduced through decreasing stomatal and mesophyl con-
ductance, and enzymatic concentration and activity (Chaves et al., 2009; Keenan
et al., 2010). In contrast to heatwaves, respiration rates during droughts are rather
decreased (Bastos et al., 2014).

The loss of carbon on a large scale is reported in both droughts and heatwaves. For
example, carbon losses for the European heatwave 2003 are estimated to offset three
to five years of terrestrial net carbon uptake in the region (Ciais et al., 2005). For
comparison, this is as much as half of the anthropogenic emissions of the European
Union member states in 2015 (Sippel et al., 2018).

Secondary effects of droughts and heatwaves can have similarly strong effects on
the carbon cycles as the event itself. During the Russian Heatwave 2010 fires are
estimated to emit 70 Tg C into the atmosphere (Guo et al., 2017), which is of similar
magnitude (90 Tg C) as the estimates of direct carbon losses in vegetation (Bastos
et al., 2014). Additionally, other secondary effects like pest or pathogen outbreaks
can be triggered by climate extremes as well and may even exceed carbon losses of
the event itself (Frank et al., 2015; Rouault et al., 2006).

Droughts and heatwaves are strongly interlinked. During high temperatures, air
can store more water than during low air temperature, i.e. the atmospheric demand
for water is larger during heatwaves. This phenomenon leads to a faster drying out of
soil moisture and to fewer rainfall than usual (Trenberth et al., 2013; Williams, 2012).
Additionally, evaporative cooling is low during heat events (Teuling et al., 2010) and
heat is further enhanced if soil moisture is limited (Hirschi et al., 2010; Seneviratne et
al., 2006). Apart from this positive feedback loop of drought and heat events, dry and
hot air can be transported and thus propagate to other neighbouring or teleconnected
regions (Miralles et al., 2019). These processes show that droughts and heatwaves
cannot be evaluated independently from each other (Mueller & Seneviratne, 2012),
and inherently require a multivariate view on climate extremes (Section 1.2).

1.1.3 The role of vegetation during droughts and heatwaves

When motivating impacts of droughts and heatwaves on the carbon cycle, one has to
consider that these impacts are largely mediated through different vegetation types.
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Three main vegetation types are particularly important, as they cover more than
half of the terrestrial surface on Earth: About 20%-28% of the Earth terrestrial
surface are covered by forests (Erb et al., 2007; Feng et al., 2016; Keenan et al.,
2015; Li et al., 2018), 10%-13% are covered by crops (Erb et al., 2007; Li et al., 2018;
Monfreda et al., 2008; Portmann et al., 2010), and 24-36% are covered by grasslands
and savannahs (Erb et al., 2007; Li et al., 2018). Uncertainties in the numbers
arise e.g. from different data sources, timing of the analysis, spatial resolutions,
methods to estimate the numbers, and also definitions of the vegetation types. In
the context of the global carbon cycle, forest ecosystems play a major role. Gross
primary productivity is globally estimated to be 122 Pg C year −1. Forests make up
about half (59 Pg C year −1) of the global gross primary productivity. For comparison,
crops account for 15 Pg C year −1, and grasslands and savannahs for 40 Pg C year
−1, despite grasslands and savannahs are covering equally large or even larger areas
than forests (estimation of gross primary productivity from Beer et al., 2010).

In general impacts of climate extremes may differ among different vegetation
types. It can be reasonably assumed that a climate extreme with a given magnitude
hitting two different vegetation types at the same time will have a different impact
on forests, crops, or grasslands and savannahs (Frank et al., 2015), e.g. due to
vegetation type specific responses to climate extremes. Reasons for these differences
may be related to physiological differences, (climatic) history and adaptation, or
management.

The vulnerability of crops to climate extremes is of key interest. May be not due to
the role of crops for the global carbon cycle, but more due to their importance for food
production and food security. Vulnerability of crops highly depends on the timing,
i.e the growth stage (Velde et al., 2011). Agricultural systems are highly managed
systems: most crops are annually planted and then harvested. Thus, impacts of
climate extremes can be managed, e.g. through (short term) irrigation, changes
in timing of seeding or harvest, and other (more long-term) management strategies
(Lobell et al., 2012; Pereira et al., 2002). Lagged effects in agricultural systems are
rather not expected to play a role due to resetting the conditions through a mostly
annual harvest (Frank et al., 2015).

For forests, large impacts of climate extremes on the carbon cycle are expected
due to their global importance for the carbon cycle. However, the impacts on produc-
tivity in forests relative to other vegetation types are still uncertain. The degree of
isohydricity differentiates the vulnerability of forest ecosystems to climate extremes
on a species level (Roman et al., 2015; Ruehr et al., 2015; Yi et al., 2017). On an
ecosystem level, forests have access to deeper soil water than other vegetation types
(Fan et al., 2017; Yang et al., 2016), as well as a different water management, i.e. a
higher water use efficiency for productivity compared to other ecosystems (Heerwaar-
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den & Teuling, 2014; Teuling et al., 2010). Micro-climate in forests may also lead to
different impacts of extremes events on forests, i.e. in forest generally lower temper-
atures and more humidity in the air are expected compared to adjacent ecosystems
(Chen et al., 1993). Forests may also adapt to historic climate conditions, or weaken
their investment tissue maintenance and defence (Doughty et al., 2015). These dif-
ferences between species and ecosystem scale may translate into different impacts of
droughts and heatwaves on forest ecosystems, which needs to be further scrutinized
- in particular systematically on a global scale.

1.1.4 Extreme events and climate change

Climate change is another motivation to study climate extreme events: Small changes
in the mean and the variance lead to much stronger changes in the tails of a variable’s
distribution, i.e. the changes in the extremes are expectedly large (Katz & Brown,
1992; Nicholls & Alexander, 2007). Then, changing patterns in climate extremes may
induce sensitive feedback mechanisms which can further exacerbate climate change
(Reichstein et al., 2013).

Generally, the statement of intensified frequencies and intensities of climate ex-
tremes may be oversimplified (Sippel et al., 2018). For heat extremes, the statement
may be justified (Coumou & Robinson, 2013; Fischer & Knutti, 2014), and the
frequency of heatwaves even increased globally during a pause in global mean tem-
perature increase (the climate hiatus) (Seneviratne et al., 2014). However, droughts
require a more nuanced description. As more water can be stored in the atmosphere
with increasing temperatures, a quicker establishment of more intense (Trenberth
et al., 2013) and longer lasting droughts (Fischer & Knutti, 2014) can indeed be
expected. However, a higher variability in precipitation patterns can lead to strong
regional differences of drought patterns (Pendergrass et al., 2017), and soil moisture
can further complicate the patterns via inducing persistence and (mostly positive)
feedback mechanisms of precipitation (Seneviratne et al., 2010). Thus, whereas the
statement may be justified generally for heatwaves, changes in drought patterns are
more complex and depend on the region of interest.

However, marine and atmospheric circulation patterns are also changing. For
example the loss of sea ice due to climate change is associated with changes in large
scale atmospheric circulation patterns (Overland & Wang, 2010). This process is
taking place faster than expected (Dai et al., 2019). Additionally, the weakening of
ocean circulation patterns, e.g. due to freshwater inflows (Stouffer et al., 2006), has
a strong influence on climate (Minobe et al., 2008). Hence, the influence of changing
large scale marine or atmospheric circulation patterns can be stronger than changes
in local or regional climate.

The role of vegetation and the terrestrial carbon cycle within the process of climate
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change is still under discussion and is also a source of uncertainty in climate change
projections (Friedlingstein et al., 2014). Terrestrial carbon uptake may be increased
due to elevated CO2. However, the effect saturates with time (Cao & Woodward,
1998). Furthermore, carbon uptake is limited by nitrogen and is thus enhanced by
atmospheric nitrogen deposition globally. Other nutrient limitations may counteract
this process (Zaehle & Dalmonech, 2011). Longer summers in high latitude regions
may be another factor leading to a global increase in carbon uptake (Black et al.,
2000; Myneni et al., 2001; Nemani et al., 2003). Thus, many factors point towards
increased carbon uptake with climate change.

The role of climate extremes is crucial in this context. Although plant responses
to elevated CO2 may counteract droughts (Swann et al., 2016), increased carbon
uptake with elevated CO2 is reduced under more frequent extreme weather conditions
(Obermeier et al., 2016). Furthermore, many carbon cycle models are discussed to
underestimate (Schewe et al., 2019) or overestimate (Ukkola et al., 2016) the impacts
of climate extremes. For example carbon cycle feedback to extremes and related
insect outbreaks are ignored in climate models (Kurz et al., 2008). The occurrence of
more frequent large scale climate extremes, like the European heatwave 2003, can turn
some ecosystems into carbon sources instead of sinks (Ciais et al., 2005), or simply
offset human efforts to reduce carbon emissions (Sippel et al., 2018). Additionally, the
risk of concurrent (compounding) droughts and heatwaves in the future is increased
due to the dependency structure of temperature and precipitation (Zscheischler &
Seneviratne, 2017), which calls for a multivariate perspective on climate extremes
(Zscheischler et al., 2018). This approach is also reflected in the objectives of this
thesis (Section 1.2).

For forests in particular, large net impacts of climate extremes on the carbon
cycle are expected (Frank et al., 2015). These are expected due to the global im-
portance of forest ecosystems for the carbon cycle, their large carbon stocks of forest
ecosystems, and potentially long-lasting legacy effects of forest dieback after droughts
(Frank et al., 2015). However, their vulnerability to future droughts and heatwaves is
still discussed (Allen et al., 2015). Some studies point towards a low vulnerability of
forests and suggest that forests are capable of dealing with droughts in future hotter
climate and may even benefit from global warming. In contradiction, other studies
point towards a high vulnerability of forests to droughts and heatwaves, which will
increase forest mortality and exceed critical physiological thresholds (Allen et al.,
2015). Although evidence in previous research appears to be contradictory, forests
with access to water may to be rather resilient to drought and heat in the short term.
In contrast, lagged responses or sustained drought and heat, may lead to tree mor-
tality in the long term. Thus, the vulnerability of forests to droughts and heatwaves
in a future climate still needs to be assessed systematically. Analysing vegetation
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responses in current climate conditions may already improve our understanding of
the vulnerability of forests to future conditions.

1.1.5 Towards a multivariate perspective on extreme events

Extreme events in climate science and related studies of ecosystems and the exchange
of matter between the atmosphere and the terrestrial land surface are commonly de-
tected as peak over threshold in marginal distributions of one variable (Section 2.1) or
in absolute univariate indices defined in a purely climatological framework (Sillmann
et al., 2013). If more than one variable is of interest, a frequently used approach is to
detect peak over threshold extremes in each marginal distribution separately. In such
a way detected extreme events in different variables can be connected via a logical
OR, or a logical AND connection. While the former technique detects extreme events
in any of the variables under scrutiny, it is often not explicitly applied, but implicitly
e.g. by comparing maps of from different (climate) variables, like temperature, pre-
cipitation, or soil moisture (Bastos et al., 2014; Ciais et al., 2005; Reichstein et al.,
2007). The latter technique is usually referred to as coincidences or co-exceedances
(Donges et al., 2016; Donges et al., 2011; Guanche et al., 2016; Rammig et al., 2015;
Siegmund et al., 2016; Zscheischler & Seneviratne, 2017; Zscheischler et al., 2015).
It is used for the detection of compound extremes events, i.e. multivariate extreme
events which occur simultaneously in more than one variable. However, one should be
aware that both techniques are not considering the multivariate covariance structure
between the variables of interest in the detection process.

In contrast to the previously mentioned approaches, the copula approach explic-
itly includes the covariance structure among different variables. Copulas are joint
distribution functions of the marginal distributions, which are transformed to be
uniform. This approach is used to find a multivariate parametric description of
non-normally distributed variables. It is successfully applied in hydrology (Genest
et al., 2007; Renard & Lang, 2007), meteorology and climate science (De Michele,
2003; Schoelzel & Friedrichs, 2008; Vannitsem, 2006; Vrac & Naveau, 2007) and re-
ceived more attention within the discussion on compound events (Bevacqua et al.,
2017; Zhou et al., 2019; Zscheischler & Seneviratne, 2017). The strength of cop-
ulas is clearly to obtain a parametric description of the multivariate distribution,
although one has to choose the family of the copula used (Schoelzel & Friedrichs,
2008). However, copulas are restricted to low dimensional settings (two or three
variables) Mikosch:2006kv,Mikosch:2006hn, which is one reason they are not further
used in this thesis.

Hence, it seems there is a need for extreme event detection methods in climate sci-
ences and related studies, which consider a multivariate covariance structure. This
method should be able to deal with highly correlated potentially dependent vari-
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ables and should be applicable to high dimensional data. Transfer and adaptation of
promising methods from other disciplines is further developed in this thesis.

1.2 Objectives and structure of the thesis

The overarching aim of my thesis is to improve the detection and understanding
of climate extremes and their impacts on vegetation by facilitating a broader multi-
variate perspective which complements previous approaches to detect extreme events.
Therefore, the thesis will provide some background information about anomaly and
extreme event detection in chapter 2 and the following main parts.

First, the detection of climate extremes is an inherently multivariate task (Sec-
tion 1.1), but multivariate approaches to detect climate extremes are rarely used for
Earth observations and lacking a common comparison (Chapter 1.1). Therefore, in
chapter 3 I adopt and develop generic approaches in order to detect multivariate
anomalies of different types in artificial data. The artificial data is built to mimic
different properties and types of anomalies in Earth observations. It serves as a test
bed to evaluate the capability of a wide selection of multivariate algorithms, prepro-
cessing steps, and feature extraction steps to detect different types of anomalies in
the artificial data. The objective of this part is to evaluate which combination of
multivariate anomaly detection algorithm and feature extraction is best suitable for
detecting anomalous events. I select one of the best performing algorithm and fea-
ture extraction combinations to detect extreme events in data. Extreme events in
the artificial experiment are represented as a few time steps lasting "BaseShift" in
the artificial experiment.

Second, in chapter 4 I further develop and apply the selected combination of pre-
processing, feature extraction, and multivariate algorithm to detect extreme events
in hydrometeorological and biospheric data. The objective is to test the algorithm
on Earth observation data and to evaluate whether a broader multivariate perspec-
tive facilitates our understanding of extreme events and their impacts by revealing
previously overlooked facets. Therefore, I focus on the 2010 Russian heat wave, an
extreme event that is well-known from the literature. A key result of the study is
that an objective detection algorithms which detects multivariate extreme events in
any set of variables relative to their normal conditions can bridge the gap between
different views on the very same extreme event, i.e. the Russian heatwave 2010 (e.g.
a climate or hydrometeorological view and a biospheric view). Applying the algo-
rithm in a rigorous (objective) manner shows that during the Russian heatwave 2010,
forest ecosystems in higher latitudes are associated with enhanced primary produc-
tivity whereas in contrast southern agricultural systems reduce their productivity
tremendously.
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Third, in chapter 5 I further built on these results to evaluate whether this kind
of contrasting response during the Russian heatwave in 2010 was just a singular case
or can be found frequently for extreme droughts and heatwaves, when applying the
developed extreme event detection scheme globally. The role of vegetation types in
mediating impacts of droughts and heatwaves on productivity is still highly uncertain
on a global scale (Section 1.1.3). The more general objective of this study is to
evaluate the importance of different vegetation types on shaping the impact of climate
extremes relative to other factors. To elaborate on this issue further, I focus on relative
droughts, heatwaves and combined droughts and heatwaves during growing season
as they are typically affecting primary productivity most negatively. The droughts,
heatwaves and combined droughts and heatwaves can be detected by the previously
developed detection scheme reliably. However, as the generic algorithm detects any
kind of extreme event, the selection of droughts and heatwaves takes place after the
detection scheme.

In the overarching discussion (Chapter 6), I discuss possible alternative pathways,
further potentials of the developed methodology and possible future research direc-
tions. I will also return to the objectives of the thesis in the concluding summary
(Chapter 7).
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Chapter 2

Background

2.1 On the definition of extreme events

There is no common objective definition of extreme events. In the public, extreme
events in weather are usually perceived as periods in which the variable of interest
(e.g. temperature, precipitation) is not in the range of normal variability which would
be expected at this time and region. In a scientific context, Seneviratne et al., 2012
defines an extreme event to be a value near the upper (or lower) range of observed
values in a climate or weather variable. More statistically, extreme events can be
defined as values that occur in the tails of a probability distribution (Ghil et al.,
2011; Kantz, 2005). Common of the above mentioned definitions is that extreme
events cannot be defined objectively, as the definitions include a subjective step of
defining (i) the reference of normal variability and (ii) a threshold to discriminate
between normal variability and the extreme values.

Several approaches of choosing a reference of normal variability exist. One ap-
proach particularly common in climate science is to choose a reference of normal
variability based the past observations, e.g. often a climatic mean and standard de-
viation within a period of 30 years (Coumou & Robinson, 2013; Hansen et al., 2012;
Huntingford et al., 2013). Especially for few observations (e.g. 30 yearly observa-
tions), the estimation of the mean and standard deviation within the reference period
leads to an overestimation of extreme events in the out-of-reference period. One can
adjust for this systematic bias (Sippel et al., 2015). Another approach is to estimate
the mean and standard deviation within the period of interest (Zscheischler et al.,
2014a; Zscheischler et al., 2013). This approach is not affected by the above men-
tioned bias of overestimating extreme events. It rather underestimates the number
of extreme events as the mean and standard deviation are strongly influenced by
extreme observations. Generally using robust estimates of the mean and standard
deviation, like the median and the median absolute deviation is influenced less by
outliers or extreme observations (Leys et al., 2013; Rousseeuw & Hubert, 2011). This

13
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thesis builds upon these robust statistical measures. Additionally, a recently devel-
oped approach relies on robustness through spatial replicates (Mahecha et al., 2017).
The idea is to define the reference of normal variability not solely based on the tem-
poral information of one time series, but to include information of other similar time
series (or grid cells, in spatio-temporal gridded data sets) as spatial replicates in the
estimation of the reference of normal variability. Similar time series in this context
may be time series of similar seasonal patterns, but other features are possible as
well. The thesis is build upon and further develops this idea (Chapter 4, 5). Apart
from defining a robust reference of normal variability, the latter idea can also be used
to define more robust regional thresholds to discriminate between normal variability
and extremes events.
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Figure 2.1 – Detecting extreme events with a peak over threshold.

One key choice for detecting extreme events is the choice of the threshold to
discriminate between extreme events and normal variability. A threshold is often
chosen in the variable of interest, defining extreme events as observations which are
above (or below) the defined threshold (Figure 2.1). In climate science, extreme
events are often defined as observations exceeding two or three standard deviations
(Coumou & Robinson, 2013; Hansen et al., 2012; Huntingford et al., 2013). This
approach assumes a gaussian distributions of the underlying variable which may not
always be the case. Choosing a certain percentile in the observed values is more
appropriate in those cases. Common choices are 1%, 5% or 10% (McPhillips et
al., 2018; Seneviratne et al., 2012). In this thesis, a percentile of 5% is chosen to
detect extreme events. However, as the results may be sensitive to this key choice,
a sensitivity analysis of the results with respect to other choices of the threshold is
performed (Chapter 4). Recently, a cross-disciplinary review for defining extreme
events concluded that they cannot present a unifying threshold for defining extreme
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events. The threshold may be depending on event types, the system under scrutiny,
geography, society, and the goal of the study. However, they identified that it is
important to discuss the threshold and to explicitly name the used definition of
extreme events (McPhillips et al., 2018).

Apart from extreme events in climatological or hydrometeorological variables,
extreme events may be defined differently from a biospheric perspective. In the bio-
sphere, extreme events may not only include extremeness in the (climatic) driving
variable, but also in the biospheric response variable (e.g. some vegetation index), as
a climate extreme may not always be relevant for the biosphere or a biospheric event
is not exclusively restricted to extreme conditions in the hydrometeorological drivers.
(Smith, 2011) defines extreme events as ’episode or occurrence in which a statistically
rare or unusual climatic period alters the ecosystem structure and/or function well
outside the bounds of what is considered typical or normal variability’. In this con-
text, a backward assessment of detecting extreme impacts rather than extreme events
in the driving variables and to evaluate the conditions under which these impacts oc-
curred is another straightforward approach (Zscheischler et al., 2013). This approach
leads to useful insights, although the focus on extreme impacts is questioned in an
cross-disciplinary context as it is biased towards negative (or positive) impacts. A
standalone backward assessment does not consider similar conditions in the drivers
which did not lead to extreme impacts e.g. in more resilient systems (McPhillips et
al., 2018). This critique can be addressed if the backward assessment is accompanied
by a forward assessment of extremes in the drivers.

Extreme events may not only occur in one variable, but can occur simultaneously
or successively in multiple variables (AghaKouchak et al., 2014; Griffin & Anchukaitis,
2015). This is usually discussed under the term ’compound events’. Apart from
extreme events in multiple variables, compound events also include conditions in the
variables which may not be extreme in the marginal distribution of the variable, but
lead to extreme events or impacts when combined (Leonard et al., 2014; Seneviratne
et al., 2012). It is currently under debate, whether compound events are events which
lead to societal or environmental risk (Zscheischler et al., 2018), or are more generally
speaking events for which more than one variable is involved (Buttlar et al., 2018;
Zscheichler et al., 2014; Zscheischler & Seneviratne, 2017; Zscheischler et al., 2014c).
In this thesis, the latter definition is adapted. More generally speaking, multivariate
extreme events are defined here as extreme events which include more than one
variable in the detection process. This definition includes but is not exclusively
restricted to compound events.
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2.2 Multidisciplinary overview on potential multi-

variate detection concepts

Multivariate extreme event detection is not commonly applied in climate and related
disciplines. Used techniques so far are not taking the covariance structure of the
data into account, are not suitable for non-linearities or restricted to few variables
(Section 1.1.5). Therefore, I review existing techniques which can be adapted and
used in climate science, and related studies on fluxes between the atmosphere and
biosphere in the following.

2.2.1 Statistical process monitoring

One promising concept for multivariate event detection evolves from industrial pro-
cess monitoring. There, several sensors monitor the processes taking place within
the production chain in time. An alarm is raised as soon as the production process
gets ’out of control’. This concept is classically called statistical process control or
process monitoring (more recently) (Santos-Fernandez, 2013). Process monitoring in
industry is explicitly built to deal with multivariate and highly correlated variables,
similar to the case in earth system sciences.

Multivariate process monitoring is known in industry since Harold Hotelling pub-
lished a multivariate extension of the traditional Shewart’s control chart in 1947,
which is now known as Hotelling’s T 2 (Lowry & Montgomery, 1995). It ought to
be one of the most widely used multivariate process monitoring techniques in indus-
try (Bersimis et al., 2007). Hotelling’s T 2 is based on the Mahalanobis distance to
the mean of the data, thus assumes a multivariate normal distribution (Figure 2.2).
Many modifications and extensions to Hotelling’s T 2 have been developed. A slight
modification is used to detect outliers in hyperspectral images (Bauer & Bauer, 2015;
Smetek & Bauer, 2007). One famous and also widely used extension is the multi-
variate exponentially weighted moving average which includes temporal information
through exponential weighting before applying Hotelling’s T 2 (Lowry & Woodall,
1992). Another extension is the fast minimum covariance determinant estimator
which uses a subset of the observations to robustly estimate the mean and covariance
(Rousseeuw & Van Driessen, 1990).

The concept of traditional statistical process control splits the data in two parts:
’in-control’ data is used for the first establishment of the algorithms in Phase I. In the
second step (Phase II) the data stream is continuously monitored with the parameters
and control limits obtained from Phase I (Santos-Fernandez, 2013). The procedure
of splitting the data in two parts is similar to using a reference period in climate
science. However, one difference is that Phase I data should be based on ’in-control’
data, i.e. the estimation of the mean or the covariance matrix are not confounded by
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Figure 2.2 – A random sample of multivariate normal distributed data to illustrate Hotelling’s
T 2. Colors denote Hotellings’s T 2 scores, black lines are isolines of similar mahalanobis distsance
to the mean. Figure modified after Santos-Fernandez, 2013

outliers or extreme observations like in climate sciences.

2.2.2 Novelty detection

Another concept is called novelty detection. Novelty detection tries to detect data
during testing which differs from the data which was available during training (Pi-
mentel et al., 2014). Thus, the concept as such is very well suited to detect instances
of data for which a previous model was not constructed for. Common application en-
compass image processing and classification, healthcare informatics, credit card fraud
detection, fault detection in industrial networks, sensor networks, and text mining
(see (Pimentel et al., 2014) and references therein).

Conceptually, there is a major difference to the application in earth system sci-
ences for multivariate extreme event detection in this thesis. Multivariate extreme
event detection in earth system sciences does not aim at detecting differences between
a training data set and a testing data set, because a training data set without extreme
events cannot be found with certainty. Thus, a perfect novelty detection algorithm
would not detect those constellations of variables during multivariate extreme events
which are already contained in the training data. Nevertheless, we evaluate the per-
formance of two different methods developed in the field of novelty detection (Chapter
3). One commonly used method in this context is support vector data description,
which also allows for some outliers in the training data (Tax & Duin, 2004). The
other more recently developed method in the field of image classification is based on
the kernel null foley sammon transform (Bodesheim et al., 2013).

In contrast to the supervised novelty detection which detect differences between
training and testing data set, a more conceptually related technique might be the
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field of unsupervised anomaly detection.

2.2.3 Anomaly detection

Closely related to novelty detection is the field of anomaly detection. Anomaly detec-
tion aims detecting patterns in the data that do not belong to the ’normal’ behavior.
It is often used interchangeably with the term outlier detection. The main difference
to novelty detection is that anomaly detection is also possible in an unsupervised
way, i.e. there is not necessarily a ’normal’ training data set like in novelty detection
(Chandola et al., 2009).
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Figure 2.3 – Pairwise distances of observations at different time instances in the three dimen-
sional space of temperature, surface moisture and radiation deviations from the mean seasonal
cycle; depicted is one pixel affected by the Russian Heatwave 2010, for more information on
variables see Chapter 5.

Many techniques in anomaly detection are based on the idea that the variable
space can be condensed by computing distances between different observations (Chan-
dola et al., 2009; Pimentel et al., 2014). These pairwise distances are used to compute
an anomaly score (Figure 2.3), e.g. based on the k-nearest neighbor(s) (Harmeling
et al., 2006; Ramaswamy et al., 2000), or based on the number of observations falling
within a hypersphere (Faranda & Vaienti, 2013; Knorr et al., 2000). Both approaches
can be seen as estimates of the inverse density of a given data point (Chandola et
al., 2009), i.e. observation with higher distances to their neighbors, or few other
observations within a certain hyperball are being considered anomalous or outliers.
Thus, another way to obtain an anomaly score is to use density estimates of the data.
Following up on this idea, one can directly transform pairwise distances into a mea-
sure of similarity or density by centering gaussian kernels around each observation.
This technique is known as kernel density estimation or parzen window estimator
(Parzen, 1962), and also frequently used for anomaly detection (Harmeling et al.,
2006; Pimentel et al., 2014; Yeung & Chow, 2002).
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In the particular case of time series, anomalous observations often form block-like
structures in the matrix of pairwise distances, i.e. rectangles in the matrix which
differ between ’anomalous’ parts and ’normal’ parts of the data (see e.g. 2.3). This
finding at the start of this thesis led to the parallel development of an algorithm
in computer science, which is based on measuring the kullback leibler divergence
between two data distributions (Barz et al., 2017; Rodner et al., 2016).

Apart from the above mentioned techniques to detect anomalies, outliers or nov-
elties, many other techniques and specific modifications of the above mentioned tech-
niques exist (for an overview see (Chandola et al., 2009; Pimentel et al., 2014)).
A comparison of different detection algorithms as done in Chapter 3 can never be
’complete’ by definition as new algorithms are being constantly developed. Also fre-
quently used for anomaly detection are classification based techniques (e.g. k-means
clustering) and parametric approaches (e.g. gaussian mixture models) (Chandola et
al., 2009; Pimentel et al., 2014). Both are not used in this thesis as they require a
parameter for the number of clusters of or the number of gaussian mixtures, respec-
tively, which is not possible to obtain in a generic automatic way without training or
without a reference period containing solely ’normal’ data. Thus this thesis is built
predominantly on unsupervised and non-parametric techniques to detect anomalies
as outlined before.



20 CHAPTER 2. BACKGROUND



Chapter 3

Multivariate anomaly detection for
Earth observations: a comparison of
algorithms and feature extraction
techniques
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Abstract. Today, many processes at the Earth’s surface are constantly monitored by multiple data streams.
These observations have become central to advancing our understanding of vegetation dynamics in response
to climate or land use change. Another set of important applications is monitoring effects of extreme climatic
events, other disturbances such as fires, or abrupt land transitions. One important methodological question is
how to reliably detect anomalies in an automated and generic way within multivariate data streams, which typ-
ically vary seasonally and are interconnected across variables. Although many algorithms have been proposed
for detecting anomalies in multivariate data, only a few have been investigated in the context of Earth system
science applications. In this study, we systematically combine and compare feature extraction and anomaly de-
tection algorithms for detecting anomalous events. Our aim is to identify suitable workflows for automatically
detecting anomalous patterns in multivariate Earth system data streams. We rely on artificial data that mimic
typical properties and anomalies in multivariate spatiotemporal Earth observations like sudden changes in basic
characteristics of time series such as the sample mean, the variance, changes in the cycle amplitude, and trends.
This artificial experiment is needed as there is no “gold standard” for the identification of anomalies in real
Earth observations. Our results show that a well-chosen feature extraction step (e.g., subtracting seasonal cy-
cles, or dimensionality reduction) is more important than the choice of a particular anomaly detection algorithm.
Nevertheless, we identify three detection algorithms (k-nearest neighbors mean distance, kernel density estima-
tion, a recurrence approach) and their combinations (ensembles) that outperform other multivariate approaches
as well as univariate extreme-event detection methods. Our results therefore provide an effective workflow to
automatically detect anomalies in Earth system science data.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

The Earth system can be conceptualized as a system of highly
interconnected subsystems (e.g., atmosphere, biosphere, hy-
drosphere, lithosphere). Each of these subsystems can be
monitored and characterized by multiple variables. Techno-
logical progress over the past decades has led to a boost in
satellite technologies (Pfeifer et al., 2011; Nagendra et al.,
2013) as well as ground station development and routine
monitoring (Baldocchi et al., 2001; Dorigo et al., 2011; Ciais
et al., 2014). Additionally, advanced computational methods
efficiently integrate remote sensing and in situ information to
routinely derive novel data products (e.g., Beer et al., 2010;
Jung et al., 2011; Tramontana et al., 2016). One key scien-
tific challenge is co-interpreting these multiple views of the
Earth system, in particular to address the impacts of changes
in the climate system, the land use system, and other trans-
formations.

Of particular importance is the analysis of extreme events
like droughts, fires, heat waves, or floods, which are expected
to change in a future climate (Kharin et al., 2013). One mat-
ter of concern is changes in hydrometeorological extremes
that may translate into anomalies in vegetation dynamics, or
extremes in vegetation dynamics that might result from slight
changes in climatological conditions or human intervention
and that can have severe consequences for vegetation and
the carbon cycle (Easterling et al., 2000; Meehl and Tebaldi,
2004; Seneviratne et al., 2012; Reichstein et al., 2013). Apart
from natural events, one also aims to detect events that are
a direct consequence of human interference, e.g., detecting
deforestation activities is required to assess the compliance
with laws or agreements on forest conservation and climate
change.

The flood of observational data is accompanied by a sim-
ilar increase in data from Earth system models (Overpeck
et al., 2011). As large numbers of data are difficult to han-
dle and to translate into quantities of human interest, it can
be easy to overlook events of particular importance. For ex-
ample, using a simple semiautomatic detection scheme to
identify abrupt climate shifts in simulations of future climate,
Drijfhout et al. (2015) found a number of abrupt events that
had previously been overlooked in simulations.

In observations, anomalous events are often detected us-
ing extreme event detection methods suitable for univari-
ate data streams (e.g., Alexander et al., 2006; Rahmstorf
and Coumou, 2011; Zhou et al., 2011; Donat et al., 2013;
Lehmann et al., 2015). Univariate extreme event detection
can also be used to infer knowledge about underlying drivers
of extremes (Zscheischler et al., 2014a); it is particularly
valid when the variable of interest is either of specific im-
portance or integrates a wide array of relevant processes.
However, some information might only be inferred when
taking the multivariate combination of several data streams
into account (Vicente-Serrano et al., 2010; Seneviratne et al.,
2012; Fischer, 2013; Zscheischler et al., 2015). For instance,

a significant fraction of events of carbon extremes in Europe
is not associated with univariate climate extremes (Zscheis-
chler et al., 2014b). Earth observations (EOs) are multivari-
ate and naturally characterized by strong dependencies and
correlations in space, time, and across dimensions (Leonard
et al., 2013). We assume that any suitable anomaly detection
algorithm needs to consider these data properties. By con-
sidering multivariate constellations for anomaly detection, it
might become possible to gain further information, i.e., about
anomalies that cannot be detected with univariate extreme
event detection methods (for a review of approaches see, e.g.,
Ghil et al., 2011).

Multivariate approaches in geoscience make use of
anomalies occurring simultaneously in multiple data streams,
often referred to as coincidences or co-exceedances (e.g.,
Donges et al., 2011b; Rammig et al., 2015; Zscheischler
et al., 2015; Donges et al., 2016; Guanche et al., 2016; Sieg-
mund et al., 2016). An alternative is the copula approach
introduced to the field by Schoelzel and Friedrichs (2008)
and Durante and Salvadori (2010). However, the copula ap-
proach is limited so far to two or three simultaneous data
streams (Mikosch, 2006), which makes it unsuitable for high-
dimensional data as used in this paper.

Interestingly, there are multiple industrial applications that
likewise require anomaly detection. In this context, anomaly
detection has become a standard procedure in the wake of
Harold Hotelling’s publication of the T 2 control chart in
1947 (Hotelling, 1947; Lowry and Woodall, 1992). Con-
sider, for instance, several sensors observing some industrial
production chain. These (potentially correlated) sensor data
streams can be monitored with a statistical process control
(SPC) algorithm (Lim et al., 2014; Ge et al., 2013; Lowry and
Montgomery, 1995). The basic idea is to raise an alarm as
soon as an anomaly according to the SPC is detected, mean-
ing that the production chain is out of control. Despite the ob-
vious analogy, the ideas of SPC are largely unknown in the
geoscience community to the best of our knowledge. Con-
ceptually, the industrial application is equivalent to the idea
of monitoring environmental variables. However, data dif-
fer. EOs exhibit strong (potentially nonlinear) dependencies
among the variables; seasonal cycles are typically present in
both temporal mean and variance. The variables may also
encode dynamic feedbacks and abrupt transitions. EOs are
possibly more strongly corrupted by noise compared to in-
dustrial applications. Furthermore, industrial applications are
typically less affected by low-frequency variability than EOs.
The most problematic aspect when considering SPC con-
cepts in Earth system sciences is, however, defining states
of normality.

The objective of this study is to provide an overview
and comparison of anomaly detection algorithms and their
combination with feature extraction techniques for identify-
ing multivariate anomalies in EOs. Spatiotemporal EOs are
therefore stored in the Earth system data cube, which is a
four-dimensional array of latitudes, longitudes, time, and dif-
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ferent measurement variables. To detect multivariate anoma-
lies in EOs, we define an anomaly to be any consecutive spa-
tiotemporal part of the data cube that differs with respect to
the mean, the variance, the amplitude of the seasonal cycle,
or trends from the normal rest of the data cube. We adapt al-
gorithms from SPC and novelty detection. The study is struc-
tured as follows: first, we create a series of artificial Earth
system data cubes that try to mimic a series of real world fea-
tures (in terms of multiple variables, seasonal cycles, and cor-
relation structure, etc.). We are aware that these artificial data
cubes are not real simulations of Earth system data cubes.
However, relying on artificial data in this paper is motivated
by the fact that a meaningful quantitative evaluation of unsu-
pervised anomaly detection algorithms and feature extraction
techniques in real Earth observation data is difficult due to the
lack of ground-truth data (Zimek et al., 2012). Second, we
use these artificial data to evaluate the capability of different
algorithms to detect multivariate anomalous events, includ-
ing compound events (e.g., events in which none of the single
variables are extreme, but their joint distribution is anoma-
lous and might lead to an extreme impact) (Seneviratne et al.,
2012; Leonard et al., 2013). Specifically, we evaluate the per-
formance of the algorithms in detecting multivariate changes
in the mean (comparable to an extreme event), the amplitude
of the annual cycle, the variance, and the onset of trends. Us-
ing the artificial dataset as a test bed we apply various feature
extraction schemes (Sect. 3.1), several detection algorithms
(Sect. 3.2), and combinations of detection algorithms (en-
sembles, Sect. 3.4) to compare their performance in identify-
ing anomalous events (Sect. 3.3). From this comparison we
select suitable combinations of feature extraction (Sect. 4.1)
and a few algorithms (Sect. 4.2) as well as ensembles of al-
gorithms (Sect. 4.3) as the best ones applicable to EOs, in-
cluding suggestions for their specific usage (Sect. 5).

2 Experimental setup

2.1 Generation principle of the artificial data

Ground truth for detecting anomalies in multivariate data is
rare, in particular for detecting anomalies in real EOs. Thus,
we generate artificial data that represent common properties
of EOs, including anomalies. In particular, we focus on the
existence of seasonality, correlations among variables, and
non-Gaussian distributions. Data generation assumes that
each subsystem of the Earth has uncorrelated intrinsic prop-
erties, i.e., it is dominated by a few independent compo-
nents. Consequently, generating these independent compo-
nents (which cannot directly be monitored) is the first step.
We then derive variables that contain elements of all inde-
pendent components and correspond to the observable mea-
surements as a set of correlated variables (Fig. 1).

More precisely, as a basic version we create three inde-
pendent components for the artificial data, each consisting
of a signal (Gaussian, SD= 1.0) that includes seasonality in

Figure 1. Combination of three independent component cubes to
derive 10 correlated variables X as observable measurements. The
anomalous event is propagated into some variables of X.

some cases (Sect. 2.2). Anomalous events are induced in one
of the independent components for which we track the ex-
act spatiotemporal location. These three independent com-
ponents are then weighted with randomly generated linear
(or nonlinear, Sect. 2.3) weights to create a set of 10 corre-
lated variables, which represent the artificial data cube, i.e.,
try to mimic observable measurements. We add some addi-
tional measurement noise (Gaussian, SD= 0.3) to the data
cube. For more technical details of this generation scheme
we refer the reader to the Appendix A.

Our standard data cube Xti,j ,lat,lon,var encompasses ti,j =
1, . . .,T time steps (T = 300) corresponding to a 6.5-year
time series of satellite images in 8-day intervals, lat=
1, . . ., LAT latitudes (LAT= 50), lon= 1, . . .,LON longi-
tudes (LON= 50), and var= 1, . . .VAR data streams, or vari-
ables (VAR= 10).

2.2 Generating anomalous events

Anomalous events are introduced in the independent compo-
nents only and then propagated from the independent com-
ponent to some of the variables in the data cube with ran-
dom weights. The anomalies are contiguous in space and
time. The center of the anomaly is assigned randomly. The
challenge is to detect the propagated anomaly through the
unsupervised algorithms, i.e., without using the information
about the spatiotemporal location of the anomaly. With this
data cube generation scheme, we can generate anomalies by
controlling the type of the anomalous event (event type), the
magnitude of the anomalous event, and the spatiotemporal
location.

We create four data cubes using the following temporary
event types:

a. a shift in the baseline, i.e., shift of the running mean of
a time series (BaseShift) (Fig. 2a). This event type is
closely related to extremes in real world EOs.

b. an onset of a trend in the time series (TrendOnset)
(Fig. 2b).

c. a change in the amplitude of the mean seasonal cycle
of a time series (MSCChange) (Fig. 2c), which might
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Figure 2. Visualization of the four different event types (a–d) with two variables along time ti,j = 1, . . .,T (T = 300). The two variables
contain an anomalous event (red shape) that is propagated through the underlying independent components with randomly drawn weights
within the generation process of the variables. For illustration purposes two variables are shown for one specific magnitude of the anomaly.
The artificial data farm encompasses 10 variables and anomalous events of 20 different magnitudes ranging from very subtle to exceptionally
high changes.

happen in the real world carbon cycle as a response to
combined drought–heat waves (Ciais et al., 2005).

d. a change in the variance of the time series (Vari-
anceChange) (Fig. 2d), e.g., in temperature (Hunting-
ford et al., 2013).

2.3 Additional data properties

Apart from the basic data cubes, we want to test the in-
fluence of certain data properties on the anomaly detection
algorithm. In order to do so, we create data cubes, each
with one added data property, i.e., we increase the num-
ber of independent components (MoreIndepComponents) or
use a squared dependency among independent components
(NonLinearDep) instead of a linear one. Furthermore, typi-
cal EO variables are often driven by extrinsic forcings, i.e.,
the Earth’s solar system orbit, rotation, and axis tilt. Thus, we
add a seasonal cycle modifying the signal (SeasonalCycle).
In a global context, the mean is rarely constant; we therefore
introduce a linear latitudinal trend into the baseline (Latitu-
dinalGradient). In the basic case, the signal of our indepen-
dent components follows a Gaussian distribution. In the more
complicated versions, we also implement alternative scenar-
ios with Laplacian (doubly exponentially) distributed signals
(LaplacianNoise) and signals that exhibit spatiotemporal cor-
relation with red noise (CorrelatedNoise). Signal-to-noise ra-
tio is 0.3 in the basic version, one additional data property in-
creases the signal-to-noise ratio to 1.0 (NoiseIncrease). Also,
the shape and duration of anomalous events differ. We dou-
ble (LongExtremes) or reduce the temporal duration of the

anomalous events (ShortExtremes) and change the spatial
shape from rectangular to randomly affecting neighboring
grid cells (RandomWalkExtreme).

2.4 Experiment design

Each data cube with a specific type of the event is generated
20 times, each time with a different magnitude of the anoma-
lous event (Appendix A). We introduce 10 spatially contigu-
ous anomalous events into the independent components, with
a spatial extent of 20 latitude and longitude steps each. Each
event has a temporal extent of five time steps (which would
be equivalent to 40 consecutive anomalous days in a 6.5-year
record). Our total number of anomalies equals about 3 % of
the total data cube, which we consider to be a realistic sce-
nario (comparable to Zscheischler et al., 2014a), for example.
Some latitudes and longitudes do not exhibit any anomaly by
design. The algorithms (Sect. 3.2) are expected to be able to
deal with parts of the data cube that do not exhibit anomalies
at all, as this is also very likely to happen for applications in
real EOs.

Our experiment comprises 36 different event-type combi-
nations of data properties, each repeated 20 times with vary-
ing event magnitudes (Appendix A). The entire set of artifi-
cial data cubes consists of 720 data cubes, corresponding to
≈ 87 GB of data 1.

1Code to reproduce the data farm is provided in the Data Avail-
ability section.
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Figure 3. Data processing for detecting multivariate anomalies. We
extract relevant features from each artificial data cube before apply-
ing the detection algorithms. The detection algorithms output some
anomaly score, which we evaluate against the known extent of the
event using the area under the curve (AUC). Feature extraction ele-
ments on the right-hand side are understood as options and can be
combined with each other.

3 Workflows to detect anomalies

The idea of this study is to elaborate workflows that contain
both data preprocessing via feature extraction and algorithms
for the detection of anomalous events (Fig. 3). In the follow-
ing we introduce these two elements separately and explain
the performance evaluation strategy afterwards.

3.1 Feature extraction

Feature extraction is a process to derive information from
the data and condense it into nonredundant characteristic pat-
terns. This may facilitate data interpretation (van der Maaten,
2009). In our study the aim is to maximize the detection of
anomalous events by providing relevant features. Feature ex-
traction is often an element of data preprocessing. A very
simple form of feature extraction could be to subtract the
mean seasonal cycle. We consider the anomaly time series
to be the extracted feature in this case. Here, we concentrated
mainly on feature extraction methods that are used in the con-
text of classical multivariate SPC (Lowry and Montgomery,
1995), data-based process monitoring in industry (Ge et al.,
2013), and univariate extreme event detection. The following
feature extraction methods are used in this study:

Subtracting the median seasonal cycle (sMSC) is one way
to deseasonalize time series. Deseasonalization may be in-
strumental in detecting anomalous events across different
seasons. The remaining part of the time series is often re-
ferred to as anomalies in the climatological sense. These
anomalies are used here as an input feature. Please note,
that the climatological anomalies are only the difference be-
tween the mean behavior and thus are not to be mixed up
with anomalies (strange or rare regions in the data, closely
related to extreme events) as detected through the (multivari-
ate) anomaly detection algorithms (Sect. 3.2).

Computing the moving window variance (mwVAR) is a
popular technique for detecting trends in the variance in uni-
variate time series (e.g., Huntingford et al., 2013). We choose
a window size of 10 and compute the variance in the running
window along the time series of each variable. We use the
estimates of the mwVAR time series as a feature to detect
multivariate anomalies in the variance.

Time delay embedding (TDE) increases the feature vector
Y t with time-delayed vectors (Y t = (Xt −0τ,Xt −1τ,Xt −

(m− 1)τ )) to include temporal context information. In the
univariate case, this approach ideally creates an image of
the attractor of a dynamical system (Takens, 1980). In high-
dimensional multivariate data applications it is used to in-
clude information of the dynamics in the feature vector (e.g.,
Koçak et al., 2004; Ge et al., 2013; Smets et al., 2009). Crit-
ical hyperparameters are the time delay τ and the number of
dimensionsm. We fixm to 3 (corresponding to the number of
independent components within the data farm creation) and
τ to 6, which is a compromise between the typical choice of
the first zero crossing of the temporal autocorrelation func-
tion or the first local minimum of the mutual information
(Webber Jr. and Marwan, 2015) (here: 11.5 corresponding
to one-quarter of the annual cycle with 46 time steps) and an
accurate temporal detection (requires small τ ).

Principal component analysis (PCA) is a data rotation,
used to find an orthogonal (uncorrelated) subspace of the data
of nPC≤VAR variables (Von Storch and Zwiers, 2001). We
choose nPC such that at least 95 % of the variance in the orig-
inal data cube is explained. By assuming a homogeneous co-
variance structure within the entire data cube, we perform the
PCA globally, i.e., with the same rotation matrix for all grid
cells. The combination of TDE and PCA is sometimes re-
ferred to as dynamic PCA when considering subsequent lags
in the time series (Lee et al., 2004).

Independent component analysis (ICA) can be regarded
as a nonlinear alternative to PCA; it has become a standard
technique of data-based process monitoring. We use one ICA
variant that tries to separate different sources of data by max-
imizing the negentropy, a measure of non-Gaussianity of the
data (Hyväringen and Oja, 2000)2. We apply ICA globally
to each data cube. The hyperparameter is the number of in-
dependent components (sources). We choose the number of
independent components to be equal to nPC (see PCA) for
consistency reasons (Majeed and Avison, 2014).

Exponentially weighted moving average (EWMA) is one
way of reducing the noise of the time series and taking tem-
poral information into account. It is common in the context
of classical multivariate SPC to detect only “significant” out-
liers (Lowry and Woodall, 1992). The multivariate feature
time series Y is computed recursively as

Y ti = λXti + (1− λ)Y ti−1 . (1)

2We use the fastICA algorithm implemented in the ju-
lia package MultivariateStats.jl (https://github.com/JuliaStats/
MultivariateStats.jl).
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The hyperparameter λ determines the degree of exponen-
tial weighting between 1 (no weighting) and zero (common
choice 0.1≤ λ≤ 0.3; Santos-Fernández, 2013). We stay in
this range with λ= 0.15.

There is of course a multitude of alternative approaches
available in the literature, but we focus on the previously
summarized ones as they are widely used and efficiently im-
plemented. Furthermore, different feature extraction meth-
ods can also be combined (Fig. 3). As the number of pos-
sible combinations is considerably large, we focus here on
dimensionality reduction techniques (ICA, PCA) combined
with some EWMA to reduce the noise level afterwards. De-
pending on the event type and data properties, additionally
removing seasonality (sMSC) or including the variance mw-
VAR seems to be straightforward. Information about the
dynamics (TDE) can be included before applying dimen-
sionality reduction techniques to keep the dimensionality
of the system as low as possible. In the following, combi-
nations are noted in the order in which they were applied
(e.g., PCA_EWMA means first applying PCA, then applying
EWMA to the PCA features). In some cases this might lead
to non-commutative combinations, especially for nonlinear
feature extraction techniques (ICA, TDE).

3.2 Anomaly detection algorithms

We use several detection algorithms that we implemented
in the Julia package MultivariateAnomalies (https://github.
com/milanflach/MultivariateAnomalies.jl). Some anomaly
detection algorithms require the estimation of parameters
(details are given below for each algorithm separately). In
that case we fix the model parameters for the entire data cube.
We estimate model parameters (σ , ε, Q, µ; see below) and
train the models themselves (support vector data description,
kernel Null Foley–Sammon Transform, KNFST; see below)
based on a random subsample of 5000 data points obtained
from the entire data cube. To account for variability in the
model parameter estimation, we resample three times. More
resampling is not affordable due to high computational costs
of processing the large number of data cubes. However, very
little random variability is observed with this sample size for
the best algorithms. Thus, we consider a resampling of three
times to be sufficient for a first attempt to account for vari-
ability in the parameterization. The following algorithms are
investigated for anomaly detection.

Univariate approach (UNIV) is a simple approach to de-
fine extremes in univariate data by identifying all points
above (or below) a certain quantile. This so-called “peak-
over-threshold” approach can be transferred to deal with mul-
tiple univariate data streams. In this case, one would con-
sider a data point to be extreme if one or several of the
univariate variables are above (or below) a certain quantile
threshold of the marginal distributions of each single vari-
able. (here: globally) (e.g., Ledford and Tawn, 1996; Bae
et al., 2003; Donges et al., 2016). Applications of the so-

called co-occurrence or coincidence analysis can be found in
Donges et al. (2011b), Rammig et al. (2015), Zscheischler
et al. (2015), Guanche et al. (2016), and Siegmund et al.
(2016). For comparing the algorithms, we are interested in
the information that at least one variable is above a certain
threshold. We compute this information for different thresh-
olds (in terms of quantiles of the marginal distributions be-
tween 0.0 and 1.0, accuracy 0.01) to get a score, i.e., a rank-
ing of the extremeness of the data points.

Hotelling’s T 2 (T 2) computes the squared Mahalanobis
distance of each data point Xt to its temporal mean µ

weighted with the covariance matrix Q (Hotelling, 1947):

(Xt −µ)′Q−1(Xt −µ). (2)

A crucial prerequisite is the estimation of the covariance
matrix Q, which is estimated from the random subsam-
ple of 5000 data points. Combining the feature extraction
EWMA with T 2 equals the traditional multivariate exponen-
tial weighted moving average (Lowry and Woodall, 1992;
Lowry and Montgomery, 1995).

Apart from computing weighted distances to the mean
(like T 2), it is also possible to compute pairwise Euclidean
distances in variable space d(Xti ,Xtj ) between vectors Xti

and Xtj of time steps ti and tj for all possible time steps
ti, tj = 1. . .T . The resulting matrixD withDij = d(Xti ,Xtj )
is often referred to as distance matrix or dissimilarity matrix.
For real world data, variables have to be standardized with
care before computing the distance matrix (Sect. 5). How-
ever, in the artificial data used the variables are already com-
parable by construction; thus, standardization is not needed.
The following algorithms are based on pairwise distances.
K-nearest neighbors (KNNs) can be used for anomaly de-

tection by considering the mean distance to the k-nearest
neighbors (k-nearest neighbors Gamma, KNN-Gamma) and
the length of the mean of the vectors pointing from Xti to its
k-nearest neighbors (k-nearest neighbors Delta, KNN-Delta)
(Harmeling et al., 2006; Ramaswamy et al., 2000). With the
latter approach KNN-Delta also considers the direction of the
neighbors, i.e., has higher values in case its nearest neigh-
bors are pointing in one direction, which is in contrast to the
directionless distance of KNN-Gamma. We fix the hyperpa-
rameter k at 10 after carefully trying different choices for
k without seeing major effects on preliminary results. Fur-
thermore, we exclude trivial temporal autocorrelations by ex-
cluding five neighboring time steps (abs(ti − tj )≥ 5) to also
be nearest neighbors.

Recurrences (REC). Within the framework of the theory
of nonlinear dynamical systems, each state of a dynamical
system will revisit a particular region in its phase space, if
waiting for a sufficiently long time (Poincaré, 1890). These
dynamics can be visualized in the recurrence plot and are
quantified with several metrics usually referred to as recur-
rence quantification analysis (Marwan et al., 2007). It seems
straightforward to use the concept of recurrence analysis to
detect states in a dynamical system that are considered to be
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rare or unusual. Faranda and Vaienti (2013) used the concept
of recurrences and combined it with extreme value theory.
We want to use a more general approach without binning the
time series. We count the number of observations ζ falling
into a certain ε ball in a system of multiple variables, con-
densed by their distance d(Xti ,Xtj ):

ζ (Xti )=
T∑

j=1
8(ε− d(Xti ,Xtj )). (3)

8(z) is the Heaviside function, coding the distances to binary
values (8(z)= 0 if z < 0, 8(z)= 1 otherwise). An ε hyper-
ball containing only few recurrent observations is considered
to be rare in comparison to the majority of ζ values. We com-
pute 1−ζ ·T −1 to get anomaly scores, which are more likely
to be an anomaly for high score values. ζ · T −1 is known as
local recurrence rate or degree density in recurrence analy-
sis (Marwan et al., 2007; Donner et al., 2010) (Donges et al.,
2012). ε is the crucial hyperparameter, defining the radius of
the ball. Typical choices of ε in recurrence analysis are quan-
tiles of the distribution of elements of the distance matrix,
e.g., 5 or 10 % (Donges et al., 2011a; Flach et al., 2016). As
we are not interested in small-scale variations in REC, but
more in major anomalies we estimate ε as median of the dis-
tance matrices in the random subsample. This choice turned
out to be the optimal choice (in terms of maximizing the area
under the curve, AUC; Sect. 3.3) for ε in a small simulation,
varying the thresholds between the 5 and 95 % quantiles of
the element of the distance matrix (Supplement Fig. S1). We
exclude five neighboring time steps to be counted as recur-
rences (similar to KNN). KNN has similarities to REC, as
one could also choose a data-adaptive k such that ζ = k.

The distance matrix D can be transformed into a kernel
matrix K = exp(−0.5 ·D ·σ−2), i.e., by computing pairwise
dissimilarities using Gaussian kernels centered on each data
point.

Kernel density estimation (KDE) is a standard technique
for estimating densities based on column means of the kernel
matrix K (Parzen, 1962). The bandwidth σ of the kernel is
a hyperparameter. We estimate σ by using the median of the
temporal distance matrix on the random subsample, which
is a common choice (Schölkopf and Smola, 2001; Schölkopf
et al., 2015).

Support vector data description (SVDD) models the distri-
bution of the training data with an enclosing hypersphere in a
high-dimensional kernel feature space (Tax and Duin, 2004).
As usual a kernel matrix of the random subsample is used
for training. Although being a rather simple data description,
a hypersphere in the kernel feature space can result in com-
plex nonlinear decision boundaries in the original space of
predictor variables if a nonlinear kernel function is used. In
addition to the σ hyperparameter of the kernel function (see
KDE), the SVDD approach has a parameter called outlier ra-
tio ν (fixed to 0.2). The outlier ratio ν controls the number
of training samples that can be located outside of the hyper-

sphere to prevent overfitting. As anomaly score for testing,
its distance to the center of the hypersphere in the kernel fea-
ture space is computed. Testing requires pairwise similarities
between test and training samples. For performance reasons
in terms of computation time, we used the implementation
by (Chang and Lin, 2013) of the one-class support vector
machine (Schölkopf et al., 2001), which is an alternative for-
mulation that leads to identical data descriptions as SVDD in
our setup.

kernel Null Foley–Sammon Transform (KNFST) maps the
training data into a so-called null space, in which the train-
ing samples have zero variance, i.e., all training samples are
mapped to the same point called the target value (Bodesheim
et al., 2013). Nonlinearity is incorporated by using a kernel
matrix containing pairwise similarities of the training sam-
ples (training on the random subsample as for SVDD). Since
all training samples are represented by a single target value in
the one-dimensional null space, the anomaly score of a test
sample is the absolute difference between its projection in
the null space and this target value. The projection of the test
sample requires pairwise similarities to the training samples.
Compared to SVDD no parameters need to be tuned except
for σ of the kernel function that is fixed to the same values
for all kernel methods.

3.3 Ranking of the workflows

Given the large number of potential combinations of fea-
ture extraction and anomaly detection algorithms, we need
an objective criterion to compare the performances of the
numerous possible workflows. We use the area under the re-
ceiver operator characteristics curve (AUC) as our measure
of detection skill for a specific event type (Fawcett, 2006).
The AUC is based on the fraction of events that are cor-
rectly detected (true positives) and the fraction of detections
among all non-events (false positives), for all possible de-
cision thresholds that could be applied to scores produced
by the algorithms. AUC values of 0.5 would be achieved by
random detection, and values below 0.5 indicate that a lower
score is more likely assigned to (true) anomalies than to non-
anomalies.

For each data cube with a given event magnitude and event
type we compute the AUC for each data property, feature
extraction, and algorithm combination. This leads to an en-
tire catalogue of possible combinations, namely 1.27×105 (4
event types, 20 event magnitudes, 11 data properties, 18 fea-
ture extraction combinations, 8 algorithms). The number of
combinations strongly requires simplification to infer knowl-
edge about which combination is advisable to use. Hence,
we focus on events of magnitudes typically detected in real
world data i.e., deviations from the mean (extremes) larger
than 2 SD (e.g., temperature extremes in Hansen et al., 2012),
a relative increase or decrease in the mean annual cycle am-
plitude of 25 % (which might happen in the carbon cycle af-
ter combined drought and heat waves (Ciais et al., 2005) or in
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the Arctic due to abrupt sea ice losses (Bintanja and van der
Linden, 2013; Bathiany et al., 2016), for example) or an in-
crease in the signal variance of 25 % (e.g., in temperature;
Huntingford et al., 2013).

One way of summarizing the results of such a large num-
ber of combinations is treating the AUC values as the out-
comes of an experiment in which the different design deci-
sions (e.g., feature extraction techniques, anomaly detection
algorithms) are the experimental factors. As a control treat-
ment we introduce the simplest possible approach to detect-
ing the anomaly: UNIV approach on the selected event type,
without any further data properties (e.g., short extremes or
increased measurement noise) on the event type and without
prior feature extraction. In order to assess the (averaged) ef-
fect of each experimental factor, we fit a linear mixed-effect
model (Pinheiro et al., 2016) to the AUC data (fixed effects:
data properties, feature extraction, anomaly detection algo-
rithms; random effect: magnitude of the event). This model’s
coefficients express the overall effect of a factor level with
respect to the control while averaging over all other exper-
imental factors. They are considered to be significant for
p < 0.01.

Additionally, we compute the resampling variation in
parameter estimation of the anomaly detection algorithms
(RVP) as mean difference of the maximum AUC and min-
imum AUC for each resampling i = 1. . .3 (Sect. 3.2).

RVPalgorithm =mean(max(AUCcomp, feat, magn, event,i)
−min(AUCcomp, feat, magn, event,i)) (4)

3.4 Ensembles of anomaly detection algorithms

Summarizing the output of several anomaly detection algo-
rithms is one way to create more robust results (Thompson,
1977). For better comparability of the algorithms’ outputs,
we rank them by computing the percentiles of the algorithm
scores. These are then aggregated into ensemble scores by
computing the minimum (consensus voting), the mean (bal-
anced voting), or the maximum (risky voting) of the scores of
selected well-performing algorithms (e.g., Aggarwal, 2012;
Zimek et al., 2013).

4 Results and discussion

In the following, we present the performance of the work-
flows in subsections corresponding to feature extraction tech-
niques (Sect. 4.1), anomaly detection algorithms (Sect. 4.2),
and ensembles of detection algorithms (Sect. 4.3). Specifi-
cally, we present the AUC difference to the UNIV control,
i.e., the output of the linear mixed-effect model on the ex-
perimental factors feature extraction and detection algorithm
(Fig. 4). The corresponding tables present the estimates as
well as the RVP (Tables 1, 2). Apart from the model the full
range of AUC values with respect to different event magni-

tudes, data properties, and event types is presented in Ap-
pendix B, Fig. B1.

4.1 Feature extraction techniques

Feature extraction techniques are often more important than
the detection algorithm itself (Fig. 4). However, we find that
choosing a suitable feature extraction technique largely de-
pends on the event type of interest. Therefore, the feature
extraction techniques are presented for different event types
separately.

BaseShift Shifts in the baseline are simulated to mimic ex-
treme events. Increasing the magnitude (in terms of
standard deviations) of a BaseShift makes it easier to de-
tect the event (Fig. B1). Dimensionality reduction (via
PCA or ICA) is a crucial feature extraction technique
step as it derives meaningful uncorrelated subsets of the
data (Fig. 4a). The combination of dimensionality re-
duction with some temporal smoothing (EWMA) does
not exhibit better overall performance (Fig. 4a) as it
fails for ShortExtremes due to oversmoothing. Never-
theless, EWMA can improve the detection rate for spe-
cial cases, i.e., long events (LongExtremes) and high
signal-to-noise ratios (NoiseIncrease) (Fig. B1).

TrendOnset Results look very similar to those of Base-
Shift, except that temporal smoothing with EWMA has
a stronger positive effect than for BaseShift. This may
be related to the fact that events for TrendOnset are
longer than those for BaseShift. Since the algorithms
used in this work are not specifically designed to detect
the onset of linear trends, we speculate that their capa-
bility to detect such anomalies may be related to their
ability to detect base shifts. While algorithms specifi-
cally designed to detect changes in trends (e.g., Forkel
et al., 2013)) were not included in our work due to our
focus on more generic types of anomalies, such special-
ized algorithms may perform better for this particular
class of anomaly.

MSCChange In the detection of MSCChange, most feature
extraction algorithms showed some skill in the detec-
tion of an amplitude increase, while only a subset of
these also succeeded in detecting decreases in ampli-
tude (Fig. B1). We focus on the latter ones, which have
one step in common: they subtract the median seasonal
cycle before applying the detection algorithm (sMSC)
(Fig. 4c). In line with the results for TrendOnset and
BaseShift, temporal smoothing in combination with di-
mensionality reduction improves detection by a large
margin (PCA_sMSC_EWMA). Furthermore, account-
ing for temporal dynamics with a TDE is even more
suitable (TDE_PCA_sMSC_EWMA).
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Figure 4. AUC difference with respect to the UNIV control in the experimental factors feature extraction and detection algorithm for the
event types (a–d).

VarianceChange The algorithms used are hardly able to de-
tect any decrease in variance (Fig. B1). This may be
due to an overwriting of the decrease in signal vari-
ance with the independent noise since we are using a
signal-to-noise ratio of 0.3. Thus, we exclude a decrease
in the variance from the evaluation of the detection al-
gorithms compared to the control. The detection of an
increase in the variance can be improved by a combina-
tion of dimensionality reduction and variance in a mov-
ing window (PCA_mwVAR) (Fig. 4d). Using the vari-
ance in a moving window is a popular approach (Hunt-
ingford et al., 2013) although it has to be applied with
care when used in conjunction with normalization pro-
cedures (Sippel et al., 2015).

SeasonalCycle Seasonality occurs in most EOs. Not ac-
counting for the seasonal cycle has a negative impact
on the AUC (Appendix B, Fig. B2a, b, d). However,
if we subtract the median cycle within the feature ex-

traction step (PCA_sMSC_EWMA; Fig. 4a, b, d), we
can almost account for the negative AUC impact of the
seasonal cycle, as in our experimental setting anoma-
lous events do occur independently of seasonality. How-
ever, depending on the research question, independence
of seasonality might not always be the case: some EOs
may depend on vegetation activity, for example, which
results in a strong dependence on seasonality.

4.2 Performance of multivariate anomaly detection
algorithms

In contrast to the investigated combinations of feature extrac-
tion methods, we can identify three of the tested algorithms
performing on average almost equally well for most event
types given a suitable feature extraction as discussed before
(Sect. 4.1).
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Table 1. Average AUC difference of the anomaly detection algorithms from the UNIV control for each event type.

KNFST SVDD T 2 KNN-Delta KNN-Gamma KDE REC

BaseShift −0.017 −0.069 0.013 0.006 0.032 0.024 0.024
TrendOnset 0.001 −0.015 0.014 −0.052 0.003 0.084 0.068
MSCChange −0.023 −0.072 −0.023 −0.019 0.007 0.039 0.029
VarianceChange −0.007 −0.027 0.003 0.012 0.018 0.022 0.019

Mean −0.012 −0.046 0.002 −0.013 0.015 0.042 0.035
RVP 0.007 0.111 0.003 0.000 0.001

KDE and REC These techniques exhibit overall the high-
est AUC and lowest RVP (Table 1). Their estimated
mean differences are rather small since REC can be con-
sidered as a binary form of the KDE. As REC uses a
threshold ε for defining the hyperball of recurrences,
the results can exhibit slightly higher AUC than KDE
(Fig. S1). However, with REC the caveat is that the pa-
rameter ε is not necessarily optimally chosen.

KNN In most of the cases, KNN-Gamma performance is
better than the UNIV control, but only as good as the
UNIV control for detecting TrendOnset. This may be
due to the fact that for TrendOnset, the mean distance
to the KNN does not change, unless considering a very
large number of KNN values or excluding a large frac-
tion of temporally near data points to be within the
KNN. When excluding TrendOnset, the mean perfor-
mance increases to 0.019, which is comparable to KDE
and REC. In addition, we observe even superior perfor-
mance of KNN-Gamma compared to KDE and REC for
difficult data properties (e.g., MoreIndepComponents,
CorrelatedNoise; Fig. S2). In contrast, KNN-Delta does
not yield high AUC, probably because we do not con-
struct anomalies in the data cube explicitly with a direc-
tion that is accounted for by KNN-Delta (mean length
of the vectors to its KNN). The finding that simple algo-
rithms like KNN-Gamma (or KDE, T 2) are very com-
petitive, if not favorable algorithms, is in line with re-
sults of Harmeling et al. (2006), Killourhy and Maxion
(2009), and Ding et al. (2014) for various data sets.

KNFST and SVDD These techniques perform on average
worse than or equally as well as UNIV. Also, the RVP
is highest among the algorithms (Table 1). It has al-
ready been reported that SVDD can exhibit remarkable
fluctuations in the results for sample sizes smaller than
1000 data points (Ding et al., 2014). However, we use
5000 points for training. Thus, we suggest that the fluc-
tuations are due to the fact that SVDD and KNFST
use a training set that is chosen at random and may it-
self contain anomalies. In the current setting the size
of the training sample (5000) is rather small compared
to the spatiotemporal size of the data cube (750 000),
and it does not seem to be sufficient to train these algo-

rithms on the data cube. Increased sample sizes, how-
ever, would heavily increase memory demand and com-
puting time, rendering kernel algorithms computation-
ally inapplicable. Furthermore, Ding et al. (2014) shows
that the sample size has a remarkable effect for SVDD
(better performance for lager sample sizes). However,
even with very large sample sizes SVDD still performs
worse than KNN in the setting of Ding et al. Train-
ing and testing SVDD on each pixel does also not im-
prove the results as the number of anomalies differs be-
tween different pixels in our setting. Training and test-
ing SVDD on each pixel assumes the same number of
anomalies in each pixel (constant outlier ratio assumed
by the fixed ν parameter), which is contrary to the gen-
eration of the artificial data farm.

We explicitly do not want to state that KNFST and
SVDD are generally worse algorithms, i.e., they are just
not built for these massive numbers of data. KNFST
and SVDD outperform other algorithms in very differ-
ent settings (novelty detection in images) (Bodesheim
et al., 2013).

T2 exhibits good performance for detecting starting trends
and shifts in the mean. However, it also exhibits the
third largest RVP (Table 1), indicating that the estima-
tion of the covariance matrix may be sensitive to ran-
dom variation in the data. Nevertheless, the RVP is
still far better than for SVDD. The robust estimation
of the mean and covariance matrix might be a diffi-
cult task (Smetek and Bauer, 2007; Rousseeuw and Hu-
bert, 2011) for which rather complex algorithms like
the (fast) minimum determinant covariance estimator,
which are closely related to T 2, have been proposed
(Rousseeuw and Van Driessen, 1990). Furthermore, T 2
assumes a multivariate Gaussian distribution and linear
dependencies among the variables. Thus, it is not prefer-
able for the data properties NonLinearDep and Correlat-
edNoise unless combined with a nonlinear feature ex-
traction technique like ICA (Fig. B1).
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Figure 5. The residual time series obtained by subtracting the median seasonal cycle from (a) the fraction of absorbed photosynthetic
radiation (fPAR) and (b) gross primary productivity (GPP) at northern latitudes exhibit heteroscedastic patterns.

4.3 Ensembles

The selection of algorithms for computing the ensemble is
a compromise between accurate detection of and diversity
amongst the selected algorithms (Zimek et al., 2013). We se-
lect the four best algorithms (KDE, REC, KNN-Gamma, T 2;
referred to together as 4b) and the three best distance-based
algorithms (KDE, REC, KNN-Gamma; referred to together
as 3d) for computing their ensembles. We assume that this
choice accounts for accuracy (best algorithms selected) as
well as for diversity (different algorithms selected).

Overall, ensemble building improves the anomaly detec-
tion rate. The mean AUC of each of the ensemble members
(3d: +0.030, 4b: +0.023) is lower than the AUC of the en-
semble, regardless of whether the maximum or the mean is
used for ensemble aggregation. Minimum aggregation of en-
semble members, however, performs worse than the individ-
ual ensemble members REC and KDE. Using the maximum
or mean yields consistently higher AUC than using the min-
imum (Table 2). The superior performance of the maximum
choice compared to the minimum indicates that single al-
gorithms overlook more often anomalous events than rais-
ing false alarm. Nevertheless, the maximum has the caveat
that even a single algorithm may cause a false alarm (Zimek
et al., 2013), e.g., due to a poor parameterization or inade-
quate assumptions about properties of the data. Thus, a more
balanced voting procedure like the mean is the preferable
choice and more stable with respect to possible error sources.
Among the mean ensembles, the 3d or 4b ensembles perform
equally well (0.041 vs. 0.039± 0.001 overall) (Table 2).

4.4 Limitations

High dimensionality The utility of distance-based outlier
detection algorithms as used in this paper is often ques-
tioned in the context of high-dimensional data (Zimek
et al., 2012). The “curse of dimensionality” states that
the difference between near and far distances diminishes
with increasing dimensionality. However, Zimek et al.
(2012) showed in the case of KNN that the contrary is
true for outliers with fixed magnitude in otherwise un-
correlated data. Dimensionality reduction as crucial fea-
ture extraction transforms the data into a few (ideally)

meaningful and uncorrelated variables. Thus, the find-
ings of Zimek et al. (2012) provide strong arguments for
applying dimensionality reduction on correlated data.
We anticipate that their findings are the reason of the
superior performance of dimensionality reduction here.

Heuristic choices Within the parameterization process, sev-
eral heuristic choices are made. We exclude five time
steps to be counted as recurrences or k-nearest neigh-
bors. We fix several parameters, e.g., the number of
nearest neighbors is fixed to 10. Also, other parame-
ter choices are rather heuristic (e.g., σ ), although com-
monly used. The artificial data farm’s intrinsic dimen-
sion is 3 as it was created from three independent com-
ponents. Therefore, the embedding dimensionm is fixed
accordingly, although it can be inferred based on the
data by determining the number of false nearest neigh-
bors (Kennel et al., 1992; Hegger et al., 1999). The
signal-to-noise ratio of our artificial data farm is 0.3.
Furthermore, the choice of the data properties might
influence the results for each event type, as the stan-
dard deviation of AUC values over all data properties
(0.05) is rather large, compared to the average AUC gain
of the three best algorithms with respect to the control
(+0.03). However, the ordering of the algorithms is also
important to derive rankings of algorithms (Hornik and
Meyer, 2007). By choosing different subsets of the data
properties, we observe that the three best algorithms
(KDE, REC, KNN-Gamma) are on top, independently
of the chosen data property. Therefore, the data proper-
ties might have an influence on the AUC values them-
selves, but not on the choice of the top three candidates.

5 Remarks on applications for real Earth
observations

Our version of the artificial data farm was generated to test
different algorithms for their capability to deal with typical
properties of EO data. The workflows were chosen to be as
generic as possible, and therefore their application to real
data with slightly different properties should be made as easy
as possible. Nevertheless, several points have to be consid-
ered, when applying the algorithms to real EOs.
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Table 2. AUC difference of the ensembles of anomaly detection algorithms to the UNIV control. Ensembles are computed out of the four
best algorithms (4b, KDE, REC, KNN-Gamma, T 2) and the three best distance-based algorithms (3d, KDE, REC, KNN-Gamma).

3d max 3d mean 3d min 4b max 4b mean 4b min

BaseShift 0.042 0.037 0.033 0.042 0.038 0.030
TrendOnset 0.059 0.058 0.033 0.060 0.056 0.020
MSCChange 0.033 0.040 0.032 0.033 0.037 0.017
VarianceChange 0.027 0.027 0.025 0.023 0.026 0.022

Mean 0.040 0.041 0.031 0.039 0.039 0.022
RVP 0.001 0.001 0.001 0.001 0.001 0.001

A typical preprocessing of EOs is to center variables to
zero mean and standardize to unit variance (also known as
z transformation). A standardization of this kind is of key
importance in global EOs. Real multivariate observations of-
ten have different physical units or ranges, which have to
be made comparable before analyzing. However, standard-
ization has to be applied with care. Differences between the
mean and variance between geographically distinct or even
adjacent grid cells as well as seasonal cycles might corrupt
any further analysis. We recommend subtracting the median
seasonal cycle before standardization. The median is pre-
ferred over the mean as mean seasonal cycles are affected by
changes in the amplitude of the cycle. Standardization can
be applied globally (i.e., with global spatiotemporal mean
and variance), regionally (i.e., with spatiotemporal mean and
variance in subregions of the globe), or locally (i.e., with
temporal mean and variance in each grid cell). Global stan-
dardization might be more robust than local but detects only
anomalies in high-variance regions. Local standardization as-
sumes that the number of extreme anomalies is equal in each
grid cell, which is a rather strong assumption. Thus, a re-
gional standardization is favorable in regions with similar
mean and variance.

Especially variables presenting a signal from the biosphere
are known to exhibit heteroscedasticity, e.g., the variance
during growing season is substantially larger than during
the rest of the year (Fig. 5). Atmospheric variables in high
latitudes also show higher variability during the cold sea-
son, e.g., temperature variability might be higher over ice
(cold season) than over open water (warm season) (Hansen
et al., 2012). Specifically for global applications, using es-
timates of variance or standard deviation locally (in each
grid cell) leads to an underestimation of the variance during
growing season and thus to an overestimation of anomalies
due to standardization, especially in the northern latitudes
(Guanche et al., 2016). Thus, we recommend accounting for
the heteroscedastic pattern by adjusting the variance during
the growing season within similar regions. We also recom-
mend this kind of adjustment for the covariance matrix used,
e.g., in T 2 or PCA as well as for the parameterization of KDE
or REC.

Furthermore, anomalies are also overestimated when us-
ing a reference period for the estimation of the variance (Sip-
pel et al., 2015). However, with 300 observations in 8-day
intervals, as used in this study, this issue is expected to be
less pronounced than for fewer observations as it scales with
the length of the time series. Nevertheless, we rather recom-
mend using estimates of the variance of the entire time series
or correcting for the overestimation in the out-of-reference
period as shown in Sippel et al. (2015).

Regarding the parameterization process of the algorithms,
we use fixed parameters for σ , ε, k, ν, mean vector, and co-
variance matrix globally on the entire artificial data cube.
Local parameterization assumes the same number of anoma-
lies in each region, which is neither suitable for the artificial
data by construction nor for real global data. Thus, we rec-
ommend parameterizing globally or within similar regions.
Classification of the Earth into similar regions and applying
multivariate extreme detection in each region will be the sub-
ject of future research.

6 Conclusions

Our aim is to identify suitable methods for detecting anoma-
lies in highly multivariate, correlated, and seasonally varying
data streams as they are common in Earth system science.
In particular, we are interested in detecting shifts in mean
(extremes), changes in the amplitude of the seasonal cycle,
temporal changes in the variance, and onsets of trends. We
test a wide range of workflows (i.e., combining feature ex-
traction techniques and anomaly detection algorithms). All
experiments are based on artificial data, designed to mimic
real world Earth observations.

We can show that, on average over different anomaly
types and data properties, three multivariate anomaly detec-
tion algorithms (KDE, REC, KNN-Gamma) outperform uni-
variate extreme event detection as well as other multivari-
ate approaches (mean AUC compared to univariate control:
+0.030). Additional slight improvement can be achieved by
combining the best algorithms into ensembles using an ag-
gregation by averaging score quantiles (+0.041). In contrast,
the tested machine-learning algorithms (SVDD −0.05, KN-
FST−0.01) may fail due to overfitting to the training sample.
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However, we also find for the considered type of events
that including a suitable feature extraction technique in the
detection workflow is often more important than the choice
of the event detection algorithm itself. However, we find
that the feature extraction has to be explicitly designed for
the event type of interest, i.e., time delay embedding (for
detecting changes in the cycle amplitude) and exponential
weighted moving average (for detecting trends and long ex-
tremes and removing uncorrelated noise in the signal) in-
creases the detection rate of the anomalous events. Includ-
ing features of the variance within a moving window works
partly for detecting increases in the variance but fails to de-
tect a decrease in the variance due to the relatively high ob-
servational noise level. In general, if the data comprise sea-
sonality, subtracting them and using the remaining time se-
ries as the input feature is essential. Furthermore, we im-
prove the detection rate of multivariate anomalies in highly
correlated data streams by adding a dimensionality reduction
method to the workflow (in line with results of Zimek et al.,
2012).

The proposed workflows are capable of dealing with com-
mon properties of Earth observations like seasonality, non-
linear dependencies, and (to a certain degree) non-Gaussian
distributions and noise. Nevertheless, they have to be applied
with care to Earth observations, i.e., standardization issues
along with strong heteroscedastic patterns (e.g., in biosphere
variables of northern latitudes) may lead to an overestima-
tion of anomalies. Future work will explore the potential of
the identified workflows in rediscovering known and poten-
tially unknown extremes as well as other anomalies in a set
of real Earth system science data streams. We anticipate that
an automated application of our workflows might enable the
establishment of automated Earth system process control in
a very generic manner.

Data availability. The artificial data farm can be created af-
ter cloning in https://github.com/CAB-LAB/DataFarm. Genera-
tion is done with the following command within the program-
ming language Julia, version 0.4, using SurrogateCube, Surrogate
Cube.DataFarm.makeDataFarm(300,50,50,PathToFolder).
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Appendix A: Technical details on generating the
artificial data

Within the generation process, we assume that the signal S
is additive to the baseline B. The baseline might represent
reoccurring patterns like seasonality or a constant mean. In
addition, binary event parameters evt,lat,lon are introduced,
which allow for switching the anomaly on (evt,lat,lon 6= 0)
and off (evt,lat,lon = 0) (normality). The event type and mag-
nitude of the event is controlled separately by a parameter for
the baseline (kb), the signal (ks), and a mean-shift parameter
(km) scaled with the standard deviation of the data (SD).

2t,lat,lon = Bt,lat,lon · 2(kb·evt,lat,lon)
+ St,lat,lon · 2(ks·evt,lat,lon)

+ km · evt,lat,lon ·SD (A1)

For a basic version, three independent components
2t,lat,lon,var are created with the signal consisting of Gaussian
noise (SD= 1). Each component represents intrinsic proper-
ties of the Earth system. Furthermore, we assume that prop-
erties of the Earth system 2t,lat,lon are not measured directly
but indirectly via a set of correlated variables, i.e., represent-
ing patterns of these intrinsic properties. Hence, these vari-
ables propagate anomalous events that occur in one indepen-
dent component. This set of correlated variables Xvar is cre-
ated by weighting the intrinsic properties2var with randomly
drawn linear (or nonlinear) weights wj plus additional mea-
surement noise ε (Gaussian, SD= 0.3) added to each vari-
able.

Xvar =

j=3∑

j=1
wj ·2j + ε (A2)

Table A1. Parameter settings for the generation of the artificial data farm. Details are given for each event type and data property (in brackets).

Basic (Data property) BaseShift VarianceChange MSCChange TrendOnset

Independent comp. 2 3 (MoreIndepComponents) 3 (6) 3 (6) 3 (6) 3 (6)
Dependency (2) Linear (w) (NonLinearDep squ) w (squ) w (squ) w (sq) w (sq)
Baseline B Const.= c (SeasonalCycle s, Lati-

tudinalGradient lg))
c (s, lg) c (s, lg) s (lg) c (s, lg)

Signal S Gaussian g (LaplacianNoise l, Cor-
relatedNoise r)

g (l, r) g (l, r) g (l, r) g (l, r)

Variables VAR 10 10 10 10 10
Noise ε 0.3 (NoiseIncrease) 0.3 (1) 0.3 (1) 0.3 (1) 0.3 (1)
Events

Event number 10 (ShortExtremes,
LongExtremes)

10 (50, 5) 10 (50, 5) 1 1

Spatial extent 1000 1000 1000 4 1000
Temporal extent 5 (ShortExtremes,

LongExtremes)
5 (1,10) 5 (1,10) 92 (46, 184) 150

Magnitudes km = 0.2–4 ks =−2 : 2 kb =−2 : 2 km = 0.2-4
Shape Rect. (RandomWalkExtreme

rw)
rect (rw) rect (rw) rect (rw) rect

Using this data generation scheme, a standard data cube
Xti,j ,lat,lon,var is created, encompassing 300 time steps (T ),
10 temporally correlated variables (VAR), and the total num-
ber of latitudes (LAT) and longitudes (LON) fixed to 50 each.
We induce anomalous events with a spatial extent of 40 % of
the latitude and longitude and 10 events, each with a tempo-
ral extent of five time steps. Our total number of anomalies
equals about 3 % of the total data cube.

In the basic version we create four data cubes, each with a
different temporary event type, including

– shift in the baseline, i.e., shift of the running mean of a
time series (BaseShift) (Fig. 2a);

– change in the variance of the time series (Vari-
anceChange) (Fig. 2b);

– change in the amplitude of the mean seasonal cycle of a
time series (MSCChange) (Fig. 2c);

– onset of a trend in the time series (TrendOnset)
(Fig. 2d).

Regarding the data properties, some of the event type data
property combinations are excluded (Table A1). In detail, we
do not expect a TrendOnset to infect neighbored cells (Tren-
dOnset plus RandomWalkExtreme) and a TrendOnset can
hardly be called a TrendOnset if it encompasses only one
time step (ShortExtremes).
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Appendix B: Detailed results
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Figure B1. AUC versus event magnitude for all combinations (grey) and the univariate control (red). Columns of the matrix represent
different event types; rows represent data properties. Additional colored workflows represent the workflows with the five highest mean
values for the magnitudes > 2 SD (> 0.6).
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Figure B2. Effect of the data properties on the three best detection algorithms (KDE, REC, KNN-Gamma) presented as AUC difference of
the UNIV control for the event types (a–d).
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Abstract. Combined droughts and heatwaves are among
those compound extreme events that induce severe impacts
on the terrestrial biosphere and human health. A record
breaking hot and dry compound event hit western Russia in
summer 2010 (Russian heatwave, RHW). Events of this kind
are relevant from a hydrometeorological perspective, but are
also interesting from a biospheric point of view because of
their impacts on ecosystems, e.g., reductions in the terres-
trial carbon storage. Integrating both perspectives might fa-
cilitate our knowledge about the RHW. We revisit the RHW
from both a biospheric and a hydrometeorological perspec-
tive. We apply a recently developed multivariate anomaly de-
tection approach to a set of hydrometeorological variables,
and then to multiple biospheric variables relevant to describe
the RHW. One main finding is that the extreme event iden-
tified in the hydrometeorological variables leads to multi-
directional responses in biospheric variables, e.g., positive
and negative anomalies in gross primary production (GPP).
In particular, the region of reduced summer ecosystem pro-
duction does not match the area identified as extreme in
the hydrometeorological variables. The reason is that forest-
dominated ecosystems in the higher latitudes respond with
unusually high productivity to the RHW. Furthermore, the
RHW was preceded by an anomalously warm spring, which
leads annually integrated to a partial compensation of 54 %
(36 % in the preceding spring, 18 % in summer) of the re-
duced GPP in southern agriculturally dominated ecosystems.

Our results show that an ecosystem-specific and multivari-
ate perspective on extreme events can reveal multiple facets
of extreme events by simultaneously integrating several data
streams irrespective of impact direction and the variables’
domain. Our study exemplifies the need for robust multi-
variate analytic approaches to detect extreme events in both
hydrometeorological conditions and associated biosphere re-
sponses to fully characterize the effects of extremes, includ-
ing possible compensatory effects in space and time.

1 Introduction

One consequence of global climate change is that the in-
tensity and frequency of heatwaves will most likely be in-
creasing in the coming decades (Seneviratne et al., 2012).
Heatwaves co-occurring with droughts form so-called com-
pound events, for which we can expect severe impacts on
the functioning of land ecosystems (e.g., primary production,
von Buttlar et al., 2018) that may affect human well-being
(e.g., via reduced crop yields, health impacts) (e.g., Schef-
fran et al., 2012; Reichstein et al., 2013; Lesk et al., 2016).
Investigating historical extreme events offers important in-
sights for deriving mitigation strategies in the future.

One well-known example of a compound extreme event is
the 2010 western Russian heatwave (RHW). The RHW was
one of the most severe heatwaves on record, breaking temper-
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ature records of several centuries (Barriopedro et al., 2011).
It was accompanied by extensive wild and peat fires with
smoke plumes about 1.6 km high at the peak of the heatwave
in early August, and estimated emissions of around 77 Tg
carbon due to multiple fire events (Guo et al., 2017). Carbon
losses due to reduced vegetation activity were estimated to be
in the same order of magnitude as losses due to fires (90 Tg,
Bastos et al., 2014). The amount of emitted carbon monox-
ide was almost comparable to the anthropogenic emissions in
this region (Konovalov et al., 2011). Approximately 55 000
cases of death have been attributed to health impacts of the
RHW (Barriopedro et al., 2011).

The RHW was associated with an atmospheric blocking
situation (Matsueda, 2011), which led to a persistent anticy-
clonic weather pattern in eastern Europe (Dole et al., 2011;
Petoukhov et al., 2013; Schubert et al., 2014; Kornhuber
et al., 2016).

However, to fully understand the developments and im-
pacts of heatwaves or droughts, apart from hydrometeoro-
logical drivers, associated land surface dynamics and feed-
backs need to be considered (Seneviratne et al., 2010).
For instance, under persistent anticyclonic and dry condi-
tions, land–atmosphere feedbacks are expected to further am-
plify the magnitude of heatwaves via enhanced sensible heat
fluxes, as shown also for the RHW (Miralles et al., 2014;
Hauser et al., 2016). These feedback mechanisms highlight
the importance of depleted soil moisture to heatwaves. In
2010 a negative soil moisture anomaly contributed to in-
creased temperatures (Hauser et al., 2016). It is a general
observation that the combination of anticyclonic weather
regimes and initially dry conditions prior to the event am-
plifies heatwaves in most cases (Quesada et al., 2012).

The direct impacts of such extreme events on ecosystems
are manifold. Summer heat and drought typically reduce (or
even inhibit) photosynthesis, hence reducing the carbon up-
take potential of ecosystems (Reichstein et al., 2013). How-
ever, the magnitude of these impacts varies between ecosys-
tems (Frank et al., 2015), and the resulting net effects are still
under debate, particularly for heatwaves (Sippel et al., 2018).
However, in-depth investigations of a number of individual
events such as the European heatwave 2003 (Ciais et al.,
2005), the 2000–2004 and 2012 droughts in North Amer-
ica (Schwalm et al., 2012; Wolf et al., 2016), and the RHW
(Bastos et al., 2014) agree on an overall tendency towards
negative impacts on the carbon accumulation potential.

The RHW has been thoroughly investigated from a hy-
drometeorological point of view linking the atmospheric
blocking to the large-scale positive anomalies in air tempera-
tures and negative anomalies in water availability (e.g., Bar-
riopedro et al., 2011; Rahmstorf and Coumou, 2011). The
event has also been well investigated, with an emphasis on
the biospheric impacts describing the negative anomalies in
ecosystem productivity and related vegetation indices (e.g.,
Bastos et al., 2014). However, comparing the reports of areas
affected by the RHW reveals some discrepancies. Hydrom-

eteorological anomalies point to much larger areas affected
compared to biosphere response patterns. Figure 1 shows the
zonal evolution of the RHW in both domains. We find that the
spatiotemporal patterns of the temperature anomaly do not
match the zonal anomaly in vegetation productivity anoma-
lies. Thus, an integrated assessment including the hydrome-
teorological and biospheric domains simultaneously may fur-
ther our understanding of the RHW.

The figure reveals an unusually warm period during spring
and one longer heatwave during summertime (Fig. 1a). Tem-
perature anomalies exceed more than 10 K in both spring and
summer, but they lead to distinctive anomalies in gross pri-
mary productivity (GPP). Positive GPP anomalies occur dur-
ing the spring event, whereas negative GPP anomalies occur
during the summer heatwave. The positive GPP response in
spring might be a reaction to warmer, more optimal spring
temperatures (Wang et al., 2017) possibly accompanied by
enough water availability. However, negative GPP anomalies
in summer occur only in areas south of 55◦ N (Fig. 1c), in-
dicating that the GPP response involves far more processes
than high temperatures and drought during the unique RHW.
As already indicated by Smith (2011), the connection be-
tween biosphere and hydrometeorology is much more com-
plex than just a direct one-to-one mapping. Further compli-
cating this issue is the fact that the summer event cannot be
investigated without the previous spring as both seasons are
inherently related via memory effects in water availability.
Increased GPP in spring due to warm temperatures can neg-
atively influence soil moisture and thus GPP during summer
(Buermann et al., 2013; Wolf et al., 2016; Sippel et al., 2017).
In particular, Buermann et al. (2013) show for North Ameri-
can boreal forests that earlier springs are followed by reduced
productivity in summer because of water constraints.

In summary, comparing these two Hovmöller diagrams
shows that (1) the affected latitudinal range of the negative
GPP anomaly is much smaller than the positive tempera-
ture anomaly and (2) the evolution of the summer impacts
should consider potential carry-over effects of positive GPP
anomalies during spring, as earlier studies showed that ear-
lier spring onset and increased spring GPP may negatively
influence soil moisture and thus GPP during summer (Buer-
mann et al., 2013). The objective of this paper is to revisit the
RHW and to investigate the GPP response during the spring
event and the summer heatwave in detail by investigating
spatiotemporal anomalies in hydrometeological drivers and
ecological variables.

This kind of integrated assessment requires a generic
methodological approach. Here, we use a multivariate ex-
treme event detection approach that (1) does not differentiate
between a positive and negative extreme event, and (2) can
equally be applied on any set of time series, regardless of
whether they describe the biospheric or hydrometeorological
domain. We expect that we can reveal previously overlooked
facets in the RHW and discuss whether our approach may fa-
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cilitate a broader perspective and improved interpretation of
extreme events and their impacts.

2 Methods and data

2.1 Rationale

One approach to detect extreme events like the RHW could
be to identify the peaks over some threshold in the marginal
distribution of a variable (or its anomaly) of interest. For
instance, one could identify values that deviate by more
than 2 standard deviations from the variable’s mean values
(Hansen et al., 2012; Sippel et al., 2015). However, univari-
ate approaches only allow us to characterize an event by,
e.g., extremely high temperature anomalies, lack of precip-
itation, or very low soil moisture but not their compound
anomaly. However, from earlier studies (e.g., Miralles et al.,
2014; Hauser et al., 2016) we know that more than one vari-
able is involved in the RHW, and a multivariate extreme
event detection (i.e., a compound event, Leonard et al., 2014;
Zscheischler and Seneviratne, 2017) is more feasible. Mul-
tivariate algorithms to detect extreme events are expected
to offer more robust detection capabilities when accounting
for dependencies and correlations among the selected vari-
ables (e.g., Zimek et al., 2012; Bevacqua et al., 2017; Flach
et al., 2017; Mahony and Cannon, 2018). Multivariate ex-
treme event detection considers all observable dimensions of
the domain simultaneously. With a multivariate approach one
may, for instance, detect very rare combinations of variables
even if the individual variables are not extreme. In the follow-
ing, we detect the anomalies in a multivariate variable space
in two sets of variables describing (1) the hydrometeorologi-
cal conditions and (2) the biospheric response. The workflow
involves a data pre-processing to compute anomalies, a step
for dimensionality reduction to not be biased by redundan-
cies among variables. Based on the reduced data space, an
anomaly score is computed that can then be used as a thresh-
old. For various reasons, however, in practice the threshold
needs to be computed across multiple spatial grid cells of
comparable phenology.

2.2 Data and pre-processing

Our data set for analyzing the hydrometeorological domain
includes those variables which we consider to be of particular
importance for processes taking place during extreme events
in the biosphere based on prior process knowledge (Larcher,
2003) and empirical analysis (von Buttlar et al., 2018). The
hydrometeorological data set consists of air temperature, ra-
diation, relative humidity (original resolution 0.71◦, all three
from ERA-INTERIM, Dee et al., 2011), precipitation (orig-
inal resolution 1◦, Adler et al., 2003), and surface moisture
(resolution 0.25◦, http://www.gleam.eu, last access: 12 Octo-
ber 2018, v3.1a, Miralles et al., 2011; Martens et al., 2017).
We consider surface moisture to be a hydrometeorological

variable due to its importance for drought detection, although
we notice that surface moisture is influenced by biospheric
processes. We use gross primary productivity (GPP), latent
heat flux (LE), sensible heat flux (H ) (resolution of 0.25◦, all
three from FLUXCOM-RS, Tramontana et al., 2016), and the
fraction of absorbed photosynthetic active radiation (original
resolution 1 km, FAPAR, moderate resolution imaging spec-
troradiometer (MODIS) based FAPAR; Myneni et al., 2002)
to describe the land surface dynamics.

The selected variables cover the spatial extent of Europe
(latitude 34.5–71.5◦ N, longitude: −18–60.5◦ E) and are re-
gridded on a spatial resolution of 0.25◦ from 2001 to 2011
in an 8-daily temporal resolution. The temporal extent is se-
lected as it is covered by all data sets used in the study. To
check for differences in land cover types, we estimate the
dominant land cover type of the European Space Agency
Climate Change Initiative land cover classification on a spa-
tial resolution of 0.25◦ (original: 300 m). To check for con-
sistency of our findings among other variables (Sect. 3.2),
we additionally use terrestrial ecosystem respiration (TER)
and net ecosystem productivity (NEP, both originating from
FLUXCOM-RS, Tramontana et al., 2016).

The actual event detection is realized on the anomalies of
these data sets. To compute the anomalies, for each variable
under consideration, we first estimate the seasonality as a
smoothed median seasonal cycle per grid cell. We use the
median instead of the mean as it is less susceptible to out-
liers. We then subtract these seasonal cycles from each vari-
able and year to obtain a multivariate data cube of anomalies
(Fig. 2, step 1). Small data gaps are set to zeros to ensure that
they are not detected as anomalies. The gap filling is neces-
sary for a multivariate detection approach as there are many
more cases in which one variable is missing in the multivari-
ate cube compared to a univariate data stream.

2.3 Feature extraction and anomaly detection

We use a multivariate anomaly detection algorithm proposed
by Flach et al. (2017) and apply it separately to two sets
of variables for the biosphere and hydrometeorology. The
method expects a multivariate set of anomalies and projects
them to a reduced space via principal component analysis, re-
taining a number of principal components that explain more
than 95 % of the variance (Fig. 2, step 3b). This procedure
accounts for linear correlations in the data only by removing
redundancies among the variable anomalies.

We compute an anomaly score via kernel density estima-
tion (KDE, Parzen, 1962; Harmeling et al., 2006) in the re-
duced anomaly space (Fig. 2, step 4). KDE showed very
good performance among different other options to detect
multivariate anomalies in previous experiments (Flach et al.,
2017). One strength of KDE is that it considers nonlinear de-
pendencies among dimensions (Fig. 3). The anomaly scores
are transformed into normalized ranks between 1.0 (very
anomalous, data point in the margins of the multivariate dis-
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Figure 1. Longitudinal average (30.25 to 60.0◦ E) of (a) temperature anomalies (reference period: 2001–2011), (b) absolute temperature,
and (c) GPP anomalies in 2010 with a contour of temperature anomalies (+3, +5 K).

(1) Multivariate anomalies cube

(2) Spatiotemporal segments

(3) Feature extraction

(4) Anomaly detection

(5) Anomaly score

(6) Events

a) Standardize b) PCA

KDE

for biospheric and hydrometeorological variables separately

transform into normalized ranks

get events based on connected components

1
Figure 2. Data processing for detecting multivariate anomalies.

tribution) and 0.0 (completely normal, data point in the dense
region of the multivariate distribution; Fig. 2, step 5). In this
univariate index of compound extremes, it is legitimate to use
a classical threshold that can be intuitively analyzed. How-
ever, to avoid an equal spatial distribution of event occur-
rences we do not apply this multivariate anomaly detection
per pixel, but rather by region.

2.4 Spatiotemporal segmentation

The spatiotemporal segmentation aims to identify spatial ar-
eas of comparable phenology, climate, and seasonality. To
identify these regions, we follow the methodology described
by Mahecha et al. (2017) and extend it to the multivariate
case. The main idea is that the (now spatial) principal compo-
nents of the mean seasonal cycles can be used for classifying
regions according to their characteristic temporal dynamics.

The procedure for extracting spatial segments of similar
grid cells works as follows (for a detailed description, see
Mahecha et al., 2017).

1. We estimate the median seasonal cycle in each grid
cell and of each variable individually and standardize
the median seasonal cycles to zero mean and unit vari-

ance to get the cycles comparable across different units
(Fig. 4, step 1).

2. To remove the effect of different phasing (similar but
only lagged seasonal cycles), we sort the median sea-
sonal cycles according to a variable showing a strong
seasonality, which is temperature in our case. Thus, we
memorize how to bring temperature in a sorted increas-
ing or decreasing order (the “permutation” of tempera-
ture) and apply the same permutation to the other me-
dian seasonal cycles (Fig. 4, step 2). We prepare the
data for dimensionality reduction by concatenating the
seasonal cycle of all variables to a matrix seasonal cy-
cles× space. We apply a principal component analysis
(PCA) to reduce the dimension of the concatenated me-
dian seasonal cycles.

3. We select locations (grid cells) of similar phenology and
climate by dividing the orthogonal principal component
subspace into equally sized bins (Fig. 4, step 3). We
used NPC = 4 components in this step, explaining 71 %
of variance. The bins are sufficiently small compared to
the length of the principal components to ensure a fine
binning of very similar phenology and climate.
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Figure 3. Illustration of the multivariate anomaly detection algorithm with two variables. The data have (a) linear dependencies (multivariate
normal) and (b) a nonlinear dependency structure. Univariate extreme event detection (peak-over-threshold in the marginal distribution of a
variable) does not follow the shape of the data, whereas algorithms assuming a multivariate normal distribution (Hotelling’s T 2, Lowry and
Woodall, 1992) are suitable for case (a); kernel density estimation (KDE) gets the shape of the data in both cases (a) and (b); 5 % extreme
anomalies are outside the shaded areas (region of “normality”) for all three algorithms.

(1) Median seasonal cycles of one grid cell (2) Ordered seasonal cycles

Sort according to T

PCA (including
all grid cells)

(3) Grid cells in PC space 

Memorize
locations
on map

(4) Grid cells with similar climate on the map

Selected grid cells in the main bin
Grid cells in  the neighboring bin

PC 1

PC
 2

Locations in PC space
Selected bin
Neighboring bins

Figure 4. Illustration of the spatial segmentation procedure with two principal components.

4. We compute the multivariate anomaly score in an over-
lapping moving window for all grid cells that fall into
one of the bins (the central bin and the neighboring bins,
Fig. 4, step 4).

A final detail to consider is the effect of changing seasonal
variance (temporal heteroscedasticity). These patterns lead
to detecting extreme events predominantly during the high-
variance seasons (i.e., summer times). To avoid seasonal bi-
ases in the extreme event detection, we additionally apply the
entire anomaly detection scheme to seasonally overlapping
moving windows across years.

Within the spatiotemporal segmentation procedure, we en-
sure that the number of observations is at least 198 (9 time

steps× 11 years, at least one spatial replicate). To reunify the
spatiotemporal segments, we assign the normalized anomaly
scores temporally to the time step in the center of the tempo-
ral moving window and spatially to the grid cell in the central
bin of similar climate and phenology.

2.5 Statistics of extreme events

We assume that 5 % of the data are anomalous in each over-
lapping spatiotemporal segment and convert the anomaly
scores into binary information. However, the main results
of compensation effects are not sensitive to this threshold
selection (Appendix Table A1, varying the threshold be-
tween 1 % and 10 %). To compute statistics based on the
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spatiotemporal structure of each extreme event, we follow an
approach developed by Lloyd-Hughes (2011) and Zscheis-
chler et al. (2013) and compute the connections between spa-
tiotemporal extremes if they are connected within a 3×3×3
(long× lat× time) cube. Each connected anomaly is consid-
ered as a single event (Fig. 2, step 6). In this way, we observe
event-based statistics, i.e., affected area (km2), affected vol-
ume (km2 days−1), centroids of the area, and histograms of
the single variable anomalies stratified according to differ-
ent ecosystem types (land cover classes). Furthermore, we
observe the response of individual variables to the multi-
variate event by computing the area weighted sum of the
variable during the event in which the variable of interest
is positive relative to the seasonal cycle (res+) or negative
(res−), respectively. For many biospheric variables, one ex-
pects a mainly negative response to hydrometeorological ex-
treme events like heatwaves or droughts (Larcher, 2003; von
Buttlar et al., 2018). Thus, we define compensation of a spe-
cific variable to be the absolute fraction of res+ from res−.
The balance of a variable is the sum of res+ and res−. Cen-
troids of res+ and res− are computed as the average of the af-
fected longitudes, latitudes, and time period, weighted with
the number of affected grid cells at this longitude, latitude,
and time period, and its respective anomaly score. They are
used to compute the spatial and temporal distance between
res+ and res−. Affected area, volume, response, and cen-
troids take the spherical geometry of the Earth into account
by weighting the affected grid cells with the cosine of the
respective latitude.

3 Results

3.1 Extreme events in western Russia in 2010

We identify two multivariate extreme events in the set of hy-
drometeorological variables in western Russia 2010, based
on the spatiotemporal connectivity. The two extreme events
are separated by approximately 1 week of normal conditions
towards the end of May.

– Hydrometeorological spring event: anomaly of the hy-
drometeorological variables in western Russia during
May ranging from longitude 30.25 to 60.0◦ E, latitude
≥ 55◦ N. (Fig. 5a, b)

– Hydrometeorological summer event: anomaly of the hy-
drometeorological variables in western Russia, June to
August, ranging from longitude 28.75 to 60.25◦ E, lat-
itude 48.25 to 66.75◦ N. This event is usually referred
to as Russian heatwave (RHW) 2010 (e.g., Barriopedro
et al., 2011; Rahmstorf and Coumou, 2011) (Fig. 5c, d).

Both multivariate hydrometeorological anomalies partly
overlap with a multivariate anomaly in the set of biosphere
variables (biospheric spring event and biospheric summer

event). Of specific interest is that the area affected by anoma-
lous hydrometeorological summer conditions is remarkably
larger than the one detectable in the biospheric variables (bio-
spheric summer event, 2.4×106 vs. 1.1×106 km2, Table 1).
This fact already indicates that biosphere responses are more
nuanced than the hydrometeorological events and do not sim-
ply follow the extent of the hydrometeorological anomaly.
As indicated, e.g., also by Smith (2011), a hydrometeoro-
logical extreme event does not necessarily imply an extreme
response.

3.1.1 Hydrometeorogical events

As GPP is a key determinant of ecosystem–atmosphere car-
bon fluxes, we focus on the gross primary productivity (GPP)
response to the multivariate hydrometeorological anomaly:
we find that the GPP response is entirely positive during the
short-lasting hydrometeorological spring event (+17.8 TgC,
Table 1), while it is mainly negative during the summer event
(+8.8, −49 TgC, Table 1). A part of the GPP summer losses
(18 %) associated with the RHW in the southern region are
instantaneously reduced by over-productive vegetation in the
higher latitudes, which are hit by the extreme event. Please
note that the carbon balance in summer accounts for the GPP
response to the same hydrometeorological extreme event,
namely the RHW, which leads to contrasting responses in
adjacent regions. If we estimate the annually integrated ef-
fect of the anomalies, another 36 % of the carbon losses are
compensated during spring in higher latitudes. We did not
find extreme events after summer, which implies a fast recov-
ery of vegetation activity after summer. Integration over the
spring and summer events thus equals the annual integration.
Overall, we find that 54 % of the negative GPP anomalies are
compensated either because of the positive spring anomalies
or across ecosystems hit by the same event during summer.
These compensation effects reduce the negative carbon im-
pact of integrated annual hydrometeorological events from
−49.0 to −24 TgC in total (Table 1). We want to emphasize
that the negative impact of the RHW in terms of GPP is just
reduced, and still negative in total.

3.1.2 Biospheric events

Moving the focus to the multivariate biosphere events (bio-
spheric spring and biospheric summer event), which over-
lap with the hydrometeorological events, we find that GPP
responses based on the biospheric spring event are almost
entirely positive (+33.8 TgC), and based on the biospheric
summer event almost entirely negative (−82.6 TgC). If we
consider the annually integrated effect of the anomalies,
spring carbon gains are estimated to offset 41 % of the subse-
quent carbon losses in summer (56 days earlier) in the higher
latitudes (514 km distance of the centroids, Table 1). To fur-
ther examine these findings, we check for these kinds of com-
pensation effects among different variables and another GPP

Biogeosciences, 15, 6067–6085, 2018 www.biogeosciences.net/15/6067/2018/



M. Flach et al.: Contrasting biosphere responses to extremes 6073

(a) Duration of the hydrometeorological spring event
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(b) Sum of GPP during the hydrometeorological spring event
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(c) Duration of the hydrometeorological summer event
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(d) Sum of GPP during the hydrometeorological summer event
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(e) Duration of the biospheric spring event
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(f) Sum of GPP during the biospheric spring event
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(g) Duration of the biospheric summer event
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(h) Sum of GPP during the biospheric summer event
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1Figure 5. Left column: temporal duration of the (a) hydrometeorological spring event, (c) hydrometeorological summer event, and biospheric
events (e, g). Right column: corresponding GPP response, i.e., the sum of deviations from the seasonal cycle during the event for the
(b) hydrometeorological spring event, (d) hydrometeorological summer event, and biospheric events (f, h). While the GPP response during
the hydrometeorological spring event is entirely positive (more productive than usual, b), GPP response during the hydrometeorological
summer event differs between higher latitudes (> 55◦ N, short-lasting, positive) and lower latitudes (long-lasting, negative).
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Table 1. Statistics of the extreme events, based on their spatiotemporal connectivity structure: affected area, affected volume, positive and
negative GPP response (res+/−) to the event, compensation of the negative response (comp.), as well as average spatial and temporal distance
between the parts of the events with positive and negative responses.

event area (km2) volume (km2 days−1) GPP comp. res+GPP res−GPP spatial (km) temporal (d)

hydrometeorological

spring 0.77× 106 0.81× 107 – 17.8 Tg –
summer 2.44× 106 5.79× 107 0.18 8.8 Tg −49.0 Tg 499 −4
integrated 3.29× 106 6.60× 107 0.56 26.6 Tg −49.0 Tg 452 −34

biospheric

spring 1.25× 106 1.48× 107 117.04 33.8 Tg −0.3 Tg 756 −16
summer 1.06× 106 4.22× 107 0.00 0.4 Tg −82.4 Tg 962 50
integrated 2.28× 106 5.70× 107 0.41 34.2 Tg −82.7 Tg 514 −56

data set in the following section. Note that the data set of
biosphere variables includes GPP itself. Computing the re-
sponses based on the extent of the biospheric event is never-
theless useful, as an extreme event in the biosphere variables
is not exclusively restricted to extreme conditions in the hy-
drometeorological conditions (Smith, 2011).

3.2 Compensation in other data sets and variables

The annually integrated compensation effect in GPP is highly
consistent among different variables. For instance, NEP (ex-
cluding fire) shows such a kind of compensation, but also
FAPAR and LE (Table 2). Sensible heat flux, on the other
hand, is high during the hydrometeorological summer event
(biospheric summer event) as well as the hydrometeorolog-
ical spring event (biospheric spring event), as expected for
strong positive temperature anomalies. However, some of the
remote sensing data products might be affected by high fire
induced aerosol loadings during the heatwave that affect at-
mospheric optical thickness (e.g., Guo et al., 2017; Kono-
valov et al., 2011). Exploring an almost entirely climate-
driven GPP product (FLUXCOM RS+METEO, Jung et al.,
2017), we also find the integrated compensation effect, al-
though much less pronounced (Appendix Fig. B1). Thus, we
are confident that the observed compensation effect is not re-
lated to the optical thickness during the RHW.

3.3 Influence of vegetation types

In Fig. 6 we present the histograms of GPP anomalies for
different land cover classes (forests, grasslands, and crops)
based on the hydrometeorological spring event and hydrom-
eteorological summer event (biospheric spring event and bio-
spheric summer event, respectively, Fig. C1) to highlight
two aspects: first, during the spring event (hydrometeorolog-
ical spring or biospheric spring), forests react almost entirely
with positive GPP anomalies (Fig. 6a). Forests in this region
are energy-limited, so the timing of the extreme event leads

to hydrometeorological conditions (e.g., positive temperature
anomalies in spring, more incoming radiation accompanied
by enough water availability) which are favorable for vege-
tation productivity, as absolute spring temperatures are still
below the temperature optimum of GPP (Fig. 8a, Wolf et al.,
2016; Wang et al., 2017).

Second, during the hydrometeorological summer event,
we observe positive to neutral GPP responses in forests,
whereas crops and grasslands react strongly negatively
(Fig. 6b). The positive vs. negative GPP responses almost
entirely reflect the map of dominant vegetation types (for-
est vs. agricultural ecosystems, Fig. 7). However, different
vegetation types exhibit a transition from higher latitudes
(predominantly forest ecosystems) to lower latitudes (dom-
inated by agricultural ecosystems). Thus, the different re-
sponses of vegetation types might be confounded by the fact
that absolute temperatures also follow a latitudinal gradient
(Fig. 1b). Absolute temperatures for agricultural ecosystems
are higher and far beyond the temperature optimum of GPP
(Fig. 8c). Additionally, agricultural ecosystems are drying
out in summer (low soil moisture, Fig. 8c). In contrast, forest-
dominated ecosystems at higher latitudes experience temper-
atures just slightly above the temperature optimum of GPP,
accompanied by high soil moisture (Fig. 8b). The response
of forest ecosystems partly reflects a latitudinal gradient: for-
est ecosystems in the lower latitudes react positively to the
spring temperature anomaly and then tend to react more neg-
atively to the summer heatwave than forest ecosystems in
higher latitudes. Forest ecosystems in higher latitudes are
still productive in terms of GPP during the peak of the heat-
wave (Fig. 9). We find negligible anomalies in autumn for
both ecosystems, which implies a fast recovery after the heat-
wave.

To disentangle the variable importance of the different
confounding factors, we run a simple linear regression model
which tries to explain GPP as a function of the hydromete-
orological driver variables (temperature, precipitation, radi-
ation, and surface moisture, including their anomalies and
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Figure 6. Histogram of GPP anomalies (reference period: 2001–2011) for different land cover classes based on the spatiotemporal extent of
(a) the hydrometeorological spring event and (b) the hydrometeorological summer event. Bars denote the sum of all vegetation classes.
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(b) Sum of GPP during the hydrometeorological sum-
mer event
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Figure 7. (a) Dominant land cover classes of a spatial extent of the RHW. (b) The boundaries of the different ecosystem types (forest-
dominated ecosystems vs. agriculture-dominated ecosystems, denoted by the black contour line) match the observed patterns of the GPP
response (reference period for the calculating anomalies: 2001–2011) during the hydrometeorological summer event.

absolute values), as well as vegetation type, duration and lat-
itude (Appendix D). We use an algorithm following Chevan
and Sutherland (1991) which extracts the independent con-
tribution of the variable importance related to this particular
variable regardless of the model complexity or dependencies
among variables. The model reveals from a statistical point of
view that vegetation type and the latitudinal gradient are the
most important variables explaining GPP during the summer
event, followed by the hydrometeorological drivers. Access
to deeper water and soil type as well as nonlinear feedbacks
are factors which are not represented in the model but might
explain the high importance of latitude. Apart from vege-
tation type being important for the GPP response, underly-
ing water use efficiency (calculated according to Zhou et al.
(2014) is consistently higher in forest-dominated ecosystems
compared to agriculture-dominated ecosystems (Appendix

Fig. E1a), and higher evaporative fraction in forest ecosys-
tems during the peak of the heatwave (Appendix Fig. E1b).

4 Discussion

In this paper we show that the hydrometeorological extreme
events affecting western Russia in spring and summer 2010
do not directly map to the observed vegetation responses.
Positive to neutral GPP responses prevail in higher latitudes
during summer, whereas strong negative impacts on GPP
can be found in lower latitudes. We interpret this effect by
different water management strategies of forest vs. agricul-
tural ecosystems (Teuling et al., 2010; van Heerwaarden and
Teuling, 2014) that meet a general latitudinal temperature
gradient. Apart from a more efficient water usage of forest-
dominated ecosystems, access to deeper soil water might be
another reason for ecosystem-specific responses (Fan et al.,
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Table 2. Negative responses to the RHW are partly compensated based on the integrated biospheric or hydrometeorological events in 2010.
The finding is consistent over different variables and data sets.

hydrometeorological events biospheric events

variable res+ res− comp. (%) res+ res− comp. (%)

NEP 17.53 Tg −34.03 Tg 51.5 23.45 Tg −48.49 Tg 48.4
LE 19.90 Tg −53.97 Tg 36.9 16.34 Tg −102.81 Tg 15.9
FAPAR 1.89 −4.03 47.0 2.52 −6.61 38.1
TER 18.97 Tg −11.06 Tg 171.4 13.71 Tg −23.43 Tg 58.5

Figure 8. Temperature optimality for GPP in (a) forests during spring, (b) forests during summer, and (c) crops during summer. Contour
lines enclose 75 % of the data points.

2017; Yang et al., 2016). Note that the latitudinal tempera-
ture gradient alone might explain differences in the response
within ecosystems in summer and between spring and sum-
mer, but does not sufficiently explain differentiated GPP re-
sponses in summer among different ecosystems (predomi-
nantly forest vs. agricultural ecosystems).

Another important aspect is that the combination of the
anomalous spring and the unique heatwave in summer might
be inherently connected via land surface feedbacks. Buer-
mann et al. (2013) showed that warmer springs going hand
in hand with earlier vegetation activity negatively affect soil
moisture in summer, and thereby vegetation activity. It is a
general observation that warm and dry springs enhance sum-
mer temperatures during droughts, which suggests the pres-
ence of soil-moisture temperature feedbacks across seasons
(Haslinger and Blöschl, 2017). In the case of the Russian
heatwave 2010, soil moisture was one of the main drivers
(Hauser et al., 2016), hand in hand with persistent atmo-
spheric pressure patterns (Miralles et al., 2014). Thus, we
suspect that the spring event is connected to the summer heat-

wave in 2010, if not setting the preconditions for a heatwave
of this unique magnitude.

The integration of the carbon balance over spring and
summer might be justified by assumed connections between
spring and summer as outlined before. However, we would
like to note that common annual integration and assessment
of compensatory effects on the carbon balance over events
during the growing season equal the integration over spring
and summer for this particular case, as we did not find any
events after summertime. The absence of events after the
summer heatwave implies a fast recovery of the ecosystems.

Compensations of parts of the negative impacts on the
carbon balance during hydrometeorological extreme events
have been reported in earlier studies. On the one hand, Wolf
et al. (2016) report that a warm spring season preceding the
2012 US summer drought reduced the impact on the car-
bon cycle. Yet on the other hand, the increased spring pro-
ductivity amplified the reduction in summer productivity by
spring–summer carry-over effects via soil moisture deple-
tion: higher spring productivity leads to higher water con-
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Figure 9. Temporal evolution of the GPP anomaly (reference period: 2001–2011) for (a) agricultural ecosystems and (b) forest ecosystems,
colored according to the latitude.

sumption in spring. The high water additionally consumed
during spring reduces the water availability in summer and
thereby affects productivity during the following summer.
However, it remains unclear whether this observation was
a singular case or whether it could become a characteristic
pattern to be regularly expected in a warmer world. In this
study, we provide some evidence for presumed comparable
effects. In contrast to the discussion in Wolf et al. (2016), en-
hanced productivity does not exclusively occur temporally,
i.e., spring partly compensates for summer losses, but rather
spatially adjacent forest ecosystems are reducing the nega-
tive impact of agricultural ecosystems on the carbon balance.
Spatially adjacent ecosystems partly compensating carbon
losses due to drought or heatwaves have been observed ear-
lier, e.g., in mountainous ecosystems that respond differently
than lowlands during the European heatwave 2003 (Reich-
stein et al., 2007).

Following up on compensatory effects, Sippel et al. (2017)
use ensemble model simulations to disentangle the contribu-
tion of spring compensation vs. spring–summer carry-over
effects on a larger scale. They show that in general warm
springs compensate for parts of summer productivity losses
in Europe, whereas spring–summer carry-over effects are
constantly counteracting by enhancing summer losses. Also,
Mankin et al. (2017, 2018) note that increased spring pro-
ductivity with spring–summer carry-over effects can be ob-
served in Earth system models. We can confirm the general
finding that spring partly compensates for summer produc-
tivity losses in observations for our case study on the RHW.
Without using model simulations it is difficult to quantify
spring–summer carry-over effects via soil moisture deple-
tion. In the case of the RHW only very few areas are anoma-
lously productive in terms of GPP in spring and unproductive
in summer as well. Thus, we suspect that exclusively tempo-
ral spring–summer carry-over effects play a rather small role
for the RHW. However, we also emphasize that longer-term
effects, such as effects in subsequent years through species
changes (Wagg et al., 2017), have not been considered in the

present study and likely remain hard to quantify beyond ded-
icated experiments.

The RHW is among the best studied extreme events in the
Northern Hemisphere. However, the enhanced productivity
of northern forests which diminishes the negative carbon im-
pact of the RHW as reported in this study has only received
marginal attention so far. For instance, Wright et al. (2014)
mention positive NDVI anomalies in spring 2010, but then
focus largely on productivity losses in the Eurasian wheat
belt. Similarly, Bastos et al. (2014) focus on a spatial ex-
tent of the biosphere impacts that only partly includes for-
est ecosystems at higher latitudes. Our estimation of carbon
losses due to decreased vegetation activity (82 TgC) is com-
parable to the one of Bastos et al. (2014) (90 TgC). Similar
to the results of our study, Yoshida et al. (2015) report re-
ductions in photosynthetic activity in agriculture-dominated
ecosystems during the RHW, but only small to no reductions
in forest ecosystems during summertime. However, their in-
terpretations focus on the summer heatwave. Nevertheless,
re-evaluating impact maps (published, e.g., in Wright et al.,
2014; Yoshida et al., 2015; Zscheischler et al., 2015) in the
light of our findings suggests that their evidence supports the
presence of contrasting responses, differing among ecosys-
tems during the RHW. When it comes to extreme events,
the general tendency in many existing studies is naturally to
focus on negative impacts as they are of particular interest
for society (Bastos et al., 2014; Wright et al., 2014; Yoshida
et al., 2015; Zscheischler et al., 2015).

5 Conclusions

We re-analyzed biospheric and hydrometeorological condi-
tions in western Russia in 2010 with a generic spatiotempo-
ral multivariate anomaly detection algorithm. We find that
the hydrometeorological conditions and the biospheric re-
sponses exhibit two anomalous extreme events, one in late
spring (May) and one over the entire summer (June, July,
August), covering large areas of western Russia. For the sum-
mer event, we find that the spatially homogeneous anomaly
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pattern (characterized by high solar radiation and tempera-
ture, low relative humidity, and precipitation) translates into
a bimodal and contrasting biosphere response. Forest ecosys-
tems in higher latitudes show a positive anomaly in gross pri-
mary productivity, while agricultural systems decrease their
productivity dramatically.

If we consider the annually integrated effect of the anoma-
lous hydrometeorological conditions in 2010, we find that
forest ecosystems reduce the negative impact of the produc-
tivity losses experienced in agricultural ecosystems by 54 %
(36 % during spring, 18 % during summer). Please note that
the annually integrated impact of the 2010 events on the car-
bon balance stays strongly negative. Our findings do not al-
leviate the consequences of extreme events for food security
in agricultural ecosystems.

From a methodological point of view, this study empha-
sizes the importance of considering the multivariate nature
of anomalies. From this study, we learn that it is insightful to
consider the possibility of both negative as well as positive
impacts and to assess their annually integrated statistics. Al-
though the integrated impact of gross primary production on
the hydrometeorological conditions in 2010 is strongly nega-
tive, it is important to notice the partial compensatory effects
due to differently affected ecosystem types, as well as timing
of the extreme events.

Data availability. The data are available and can be processed
at https://www.earthsystemdatalab.net/index.php/interact/data-lab/,
last access: 15 October 2018.
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Appendix A: Sensitivity of the threshold selection

Table A1. Compensation effects of the integrated hydrometeoro-
logical events (spring and summer) are not sensitive to varying the
threshold for extreme event detection between 93 % and 99 % (7 %
and 1 % of extreme data in each spatiotemporal segment). A slight
tendency towards more pronounced compensation effects can be
seen for the 90 % threshold. Such a kind of enhancing the positive
response is expected for lower thresholds, as the hydrometeorolog-
ical conditions are not perceived as “extreme” anymore.

Compensation [%]

Threshold 90 % 93 % 95 % 97 % 99 %

GPP 65 53 54 58 55
NEP 60 52 52 51 46
LE 49 36 37 38 32
FAPAR 70 46 47 50 50
TER 150 147 171 191 197

Appendix B: Comparison with METEO + RS
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Figure B1. The longitudinal (30.25–60.25◦ E) average of the GPP
anomalies during the RHW 2010, based on the Climate Re-
search Unit observation-based climate variables (CRUNCEPv6,
New et al., 2000) driven GPP product originating from FLUXCOM
RS+METEO. Jung et al. (2017) show similar but weaker compen-
sation effects; 28 % of the negative GPP response to the RHW is
compensated based on the shown latitude–longitude subset.
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Appendix C: Biosphere response
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Figure C1. Histogram of GPP anomalies (reference period: 2001–2011) for different land cover classes constrained by (a) biospheric spring
and (b) biospheric summer event.
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Appendix D: Factors explaining the GPP response

As several factors might contribute to the GPP response
to the hydrometeorological anomalies in spring and sum-
mer 2010, we assume that a linear model can partly explain
the variance in GPP and improve our understanding of the
extreme events in spring and summer via the variable impor-
tance of the model. Thus, we model GPP of all pixels dur-
ing spring and separately during summer as a function of the
factors temperature (T ), precipitation (P ), global radiation
(Rg), soil moisture (SM), and their corresponding anoma-
lies. We include land cover type, duration, and latitude as
possible drivers of the full model (spring R2

= 0.86, sum-
mer R2

= 0.35). We use a variable importance partitioning
algorithm according to Chevan and Sutherland (1991) to get
the variable importance of the full model while accounting
for redundancies (e.g., dependencies) among the factors and
model complexity. The partitioning algorithms compute all
possible combinations of submodels (excluding one or sev-
eral factors). By combining the differences of R2 measures
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1Figure D1. Independent, joint, and total contribution of the factors explaining (a) GPP response during the hydrometeorological spring event
and (b) during the hydrometeorological summer event. Used abbreviations are T (temperature), P (precipitation), Rg (radiation), and SM
(soil moisture).

of the submodels in an intelligent way (for more details, see
Chevan and Sutherland, 1991), it is possible to partition the
total importance of each variable into an independent con-
tribution and a joint contribution. Results show that the hy-
drometeorological spring event is mainly a response to very
favorable hydrometeorological conditions (higher radiation
due to the lack of precipitation, high absolute spring temper-
atures beyond the optimum of GPP), which is indicated by
the high independent contributions of the variables. As only
forest ecosystems are affected, vegetation type plays a minor
role (Fig. D1a). The lower explanatory power of the model
for the summer event indicates that there are potentially non-
linear feedback loops not captured by the model or factors
playing a role, which we did not include in the model. One of
the latter candidates is the access to deeper water, also indi-
cated by the high variable importance of latitude. Apart from
latitude vegetation type is the most important factor driving
the GPP response during the summer event (Fig. D1b).
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Appendix E: Water use efficiency and evaporative
fraction of different land cover types

Figure E1. (a) Underlying water use efficiency (uWUE) and (b) evaporative fraction (EF) of the area affected by the RHW in 2010. uWUE
is calculated according to Zhou et al. (2014) including vapor pressure deficit. In contrast to WUE, uWUE attempts to correct for differences
in temperature and vapor pressure deficit to a certain degree.
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Abstract. Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. Factors such as the

duration, timing and intensity of extreme events influence the magnitude of impacts on ecosystem processes such as gross

primary production (GPP), i.e. the ecosystem uptake of CO2. Preceding soil moisture depletion may exacerbate these impacts.

However, some vegetation types may be more resilient to climate extremes than others. This effect is insufficiently understood

at the global scale and is the focus of this study. Using a global upscaled product of GPP that scales up in-situ land CO2 flux5

observations with global satellite remote sensing, we study the impact of climate extremes at the global scale. We find that GPP

in grasslands and agricultural areas is generally reduced during heat and drought events. However, we also find that forests,

if considered globally, appear not in general to be particularly sensitive to droughts and heat events that occurred during the

analyzed period or even show increased GPP values during these events. On the one hand, this is in many cases plausible, e.g.

when no negative preconditioning has occurred. On the other hand, however, this may also reflect a lack of sensitivity in current10

remote sensing derived GPP products to the effects of droughts and heatwaves. The overall picture calls for a differentiated

consideration of different land cover types in the assessments of risks of climate extremes for ecosystem functioning.

1 Introduction

We expect that climate change leads to increases in frequencies, durations, intensities, and spatial extents of droughts and

heatwaves in the next decades (Meehl et al., 2000; Olesen and Bindi, 2002; Seneviratne et al., 2012; Coumou and Robinson,15

2013; Cook et al., 2015; Zscheischler and Seneviratne, 2017). Ecosystems will respond to the events ahead in multiple ways. In

particular the processes controlling the terrestrial carbon balance, i.e. photosynthesis and respiratory processes as well as fires

and e.g. pest-induced mortality are expected to be affected (Peuelas et al., 2004; Ciais et al., 2005; Vetter et al., 2008; Reichstein

et al., 2013; Bastos et al., 2014; Yoshida et al., 2015; Wolf et al., 2016; Brando et al., 2019) (for a recent review see Sippel

et al. (2018)). Given that these responses represent feedbacks to the coupled climate–ecosystem dynamics, it is important to20
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understand which factors generally influence the magnitudes of such impacts at the global scale (Frank et al., 2015). Previous

studies have shown that event duration can be as important as intensity in controlling the reduction of gross primary production

(GPP), which represents the total ecosystem carbon uptake (Granier et al., 2008; von Buttlar et al., 2018; Orth and Destouni,

2018). In particular, compound extreme events, e.g., the combination of drought and heat stress can increase the impact on

GPP as compared to singular stressors (Ciais et al., 2005; AghaKouchak et al., 2014; Zscheischler et al., 2018; von Buttlar25

et al., 2018). Several case studies point to the crucial role of timing in influencing the magnitude of impacts on ecosystem

functioning. Warm and early springs may partly compensate for severe carbon impacts of summer droughts (Wolf et al., 2016).

In contrast, soil moisture depletion in spring can even enhance carbon losses during summer (Buermann et al., 2013; Sippel

et al., 2017a; Buermann et al., 2018).

Probably the least understood aspect is the question how strongly land cover types modulate drought and heat impacts on the30

fundamental processes controlling ecosystems carbon dynamics, such as gross primary production, ecosystem respiration, and

net ecosystem exchange. Evidence from eddy covariance stations (von Buttlar et al., 2018) and case studies using spatiotem-

poral remote sensing derived data (Wolf et al., 2016; Flach et al., 2018) suggest that certain ecosystems are less vulnerable to

heat and drought events than others. However, the question to what degree land cover types shape the impacts of droughts and

heatwaves globally remains unclear. Here we aim to specifically investigate the importance of land cover type in controlling35

the impacts of climate extremes relative to other factors.

When discussing impacts of climate extremes, the crucial question is their definition. If values over some global thresholds

are used to detect extremes e.g. in some meteorological variable and investigate anomalies in ecological processes, one might

find very different impact patterns as compared to events that are extreme relative to their expected value. Another approach

is to consider the joint probability of multiple variables contributing to an event. Here we rely on a multivariate extreme40

event detection algorithm that can detect extremes in multi-dimensional data sources (Flach et al., 2017, 2018) and restrict our

analysis to those events that can be also considered a relative drought and heat event. We estimate anomalies regionally i.e.

defining extreme events relative to the typical conditions of the regional growing season. We apply this method jointly to air

temperature, surface moisture, and incoming shortwave radiation as fundamental variables to detect relative extreme events.

Each event describes a spatiotemporal context that can be described by its spatial extent and duration (Zscheischler et al., 2013;45

Mahecha et al., 2017). The impacts are then assessed in these areas as anomalies in gross primary production (GPP). Our study

addresses the impacts in the time range between 2003 and 2018 globally in different land cover classes and builds on nonlinear

predictive models to understand the importance of the driving factors (for details see Methods, Section 2).

2 Methods

For detecting hydrometeorological extreme events across ecosystems we need (i) a set of variables describing hydrometeo-50

rological extreme events and their impacts on productivity (Section 2.1), (ii) a detection algorithm (Section 2.2), and (iii) an

approach to evaluate the hydrometeorological extremes with regard to responses in different ecosystems (Section 2.3).
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2.1 Data

To detect hydrometeorological extreme events we use 2-m air temperature, incoming shortwave radiation (both from ERA5,

original resolution 0.25◦, Copernicus Climate Change Service (C3S) (2017)), and surface moisture (v3.2b, original resolution55

0.25◦ from the GLEAM model-data integration framework, (Miralles et al., 2011; Martens et al., 2017)). We consider surface

moisture as a hydrometeorological variable due to its importance for drought detection although it is influenced by vegetation.

The impacts of the identified extremes are quantified as anomalies in gross primary productivity (GPP, original resolution 1
12

◦

from FLUXCOM-RS, Tramontana et al. (2016)). Anomalies in GPP are computed as deviations from the mean seasonal cycle

excluding the extreme year itself. The selected hydrometeorological variables have global coverage and a common spatial60

resolution of 0.25◦, and are used at an eight-daily temporal resolution covering the 2003–2018 period. Land cover classes

at 1
12

◦ resolution were obtained from MODIS (collection 5, Friedl et al. (2010)) We group the available land cover classes

in forest ecosystems (land cover classes containing "forest"), agricultural ecosystems (containing "crop"), and, all remaining

other land cover types.

2.2 Preprocessing and anomaly detection65

We compute deviations from a smoothed median seasonal cycle in the hydrometeorological variables, which we denote as

anomalies. For detecting extreme events, we apply a multivariate anomaly detection procedure described in detail in (Flach

et al., 2018). It (i) accounts for seasonal changes in the variance of the anomalies using a moving window technique, and (ii)

uses climatic similarities to obtain more robust thresholds for extreme event detection via spatial replicates as proposed by

Mahecha et al. (2017) (for more details see the B).70

The extreme event detection algorithm itself is applied to the set of hydrometeorological anomaly time series and returns

anomaly scores computed by kernel density estimation. Kernel density estimation showed good performance among other

possible methods and accounts for nonlinearities in the data (Flach et al., 2017). The resulting anomaly scores can be interpreted

as a univariate index of deviation from the general multivariate pattern. We consider the highest 5% of the anomaly scores to

be extreme events (95th percentile), which is within the typical range of percentiles defining extreme events (McPhillips et al.,75

2018).

2.3 Framework for extracting event-based statistics

We use the extracted binary information (extreme / non-extreme) to compute statistics based on the spatio-temporal structure

of the extreme events similar to (Lloyd-Hughes, 2011; Zscheischler et al., 2013; Mahecha et al., 2017; Chen et al., 2019).

Extreme voxels are considered to belong to the same extreme event if they are connected within a 3 x 3 x 3 (long x lat x80

time) cube. Note that this definition includes connections over edges. We compute event-based statistics from the 1000 largest

extreme events globally as introduced also for the Russian heatwave (Flach et al., 2018). Specifically, we calculate affected

volume, centroids, mean and integral of GPP separately for positive and negative anomalies, as well as the distance between

the centroids of the positive and the negative anomalies of GPP during the event. We consider an event to be predominantly a

3
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Figure 1. Relative drought and heat events coloured with the relative anomaly in gross primary production for (a) agricultural and (b) forest

ecosystems. Point sizes are proportional to the affected volume of the space-time event. The largest and some well known events are labelled.

relative drought (relative heatwave) if more than 50% of the surface moisture (temperature) values during the extreme event are85

beneath (exceed) the 5th (95th) percentile of the variable. We select drought (n = 98) and heat (n = 44) events and combined

drought–heat events (n = 71), which are taking place during the growing season (total n = 213), i.e. the centroid of the event is
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within the half year encompassing the seasonal GPP maximum. Our statistics account for the spherical geometry of the Earth

by weighting with the cosine of latitude.

Furthermore, we evaluate if the positive and negative anomalies in GPP during the event predominantly have a spatial or90

temporal component. Therefore, we split the event in parts with enhanced and parts with reduced productivity. Between those

two parts, we compute the spatio-temporal distance between the centroids of each part. We consider positive and negative

GPP anomalies to occur predominantly spatially if the temporal distance of the centroids is almost simultaneous, i.e. less than

one time step in the data (eight days). GPP anomalies are considered to be predominantly temporally changing if the spatial

distance of the centroids is less than 110 km (approximately one degree at the equator). Both, spatial and temporal components95

can be found for centroids which are more than 110 km and more than eight days away.

enhanced

reduced

agriculture

forest

other

affected ecosystemgross primary productivity

Figure 2. Proportion of GPP anomalies with reduced or enhanced productivity and their distribution in the different ecosystems (growing

season events from 2003-2018). Bar sizes are proportional to the affected volume of the identified events. Forests tend to be associated with

enhanced productivity rates, while agricultural ecosystems tend to be associated with reduced productivity.

2.4 Statistical model of GPP during extreme events

As we detect heatwaves and droughts relative to the mean seasonal patterns, positive or negative GPP anomalies during the

droughts and heatwaves may additionally be influenced by differences in the conditions in the hydrometeorological variables

during the extreme event, differences in background climate in which the vegetation is growing, or duration and affected area of100

the event. We use gradient boosting machines (Friedman, 2001) to predict average GPP anomalies during the event as a function

of mean surface moisture, mean temperature, mean radiation during the event, duration, affected area, land cover class, and

mean climate during the growing season, i.e. mean temperature and surface moisture during all growing seasons between 2003

and 2018. We tune model parameters (shrinkage parameter, depth of the trees, bag fraction, minimal number of observations

per node) by following a workflow described in Elith et al. (2008) using a hyper grid search from 100 different random105

initialisations of splitting the data into training (75%) and testing (remaining 25%). We compute uncertainty of the variable

importance measure described in (Friedman, 2001) from each of the 100 best models of the hyper grid search. Additionally

5
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we use an approach based on Local Interpretable Model-agnostic Explanations (LIME), which tries to predict each single

observation in a black box model based on locally weighted regression (Ribeiro et al., 2016). Here, this approach helps to

understand (1) the effect of specific land cover classes, and (2) the direction of the effect.110

3 Results

Our analysis based on a 5% threshold in the multivariate anomaly scores leads to a detection of 213 events (98 relative droughts,

44 relative heatwaves, 71 compound drought–heatwaves) between 2003 and 2018.

If we only discriminate forest and agricultural ecosystems, we find substantial differences in the direction of the GPP anoma-

lies during extreme droughts and heatwaves in the growing season. In agricultural and other non-forest land-cover types, GPP115

was reduced during the identified events (agricultural land-cover types: 64% (56–72%) reduction, Figure 1 (a); other ecosys-

tems 60% (53–67%), Appendix Figure A1). In forested areas, instead, a majority of 71% (63-78%, 95% confidence interval) of

events shows enhanced productivity (Figure 1 (b)). The dichotomy described in the instantaneous response patterns confirms

the overall statistics. Events with their centroid in France 2003, Russia 2010, and Germany 2018 all show bidirectional GPP

anomalies that coincide with land-covery type transitions between predominantly forested land cover and others (a detailed120

illustration of the different events is provided in the supplementary materials)Figure 2 summarizes these findings across all

events by relating the global integral areas of positive and negative anomalies in GPP during extreme events to the dominant

land cover type.

The events analyzed here are based on relative radiation, heat and water availability anomalies (see Methods). To better

understand the role of absolute climate conditions we show the reported GPP anomalies in the terms of absolute temperatures125

and surface moisture levels in Figure 3(a). The figure shows that reduced rates of GPP tend to coincide with very low surface

moisture and high temperature (eight-daily averages). Delineating different ecosystems within this space shows that they are

arranged along decreasing surface moisture values. Most extreme events in forests tend to occur under slightly higher surface

moisture conditions compared to agricultural and other ecosystems (Figure 3(b)). Forests are hit less frequently critical dry

conditions for which we predominantly observe reduced productivity. In contrast, we observe reduced productivity during the130

events for agricultural ecosystems, which experience frequently critical hot and dry conditions (Figure 3(b)).

While Figure 3(a) shows that temperature and soil moisture have some effect on the direction of the impacts, they are

insufficient to explain the observed patterns in detail. To unravel the importance of land cover type and other factors we predict

average GPP anomalies using gradient boosting machines (R2 = 0.43, Friedman (2001) Section 2.4) and explore their relative

variable importance. Growing season temperature, event duration, and land cover type are, in decreasing order, are the most135

important variables in the statistical model (Figure 4(a)).

Apart from identifying important variables that explain the GPP anomalies during drought and heat anomalies, we disen-

tangle the direction of each factor’s effect in the model, and, in particular for specific land cover classes. Whereas growing

season temperature and duration show a negative model coefficient, i.e. a longer duration and a warmer climate are associated

with a stronger impact, as expected, productivity in different land cover types is influenced in contrasting ways: Land cover140

6

https://doi.org/10.5194/bg-2020-80
Preprint. Discussion started: 27 March 2020
c© Author(s) 2020. CC BY 4.0 License.



(a)

Europe 2003 forests

India 2009 forests

Horn of Africa 2009 forests

Amazon 2010 forests

Russia 2010 forests

Siberia 2011 forests
China 2011 forests

USA 2012 forests

Brazil 2012 forests

East Europe 2015 forests

Europe 2018 forests

Europe 2003 crops

India 2009 crops

Horn of Africa 2009 crops

Amazon 2010 crops

Russia 2010 crops

Siberia 2011 crops

China 2011 crops

USA 2012 crops

Brazil 2012 crops

East Europe 2015 crops

Europe 2018 crops

10

20

30

40

0.1 0.2 0.3 0.4
Surface moisture [−]

Te
m

pe
ra

tu
re

 [°
C

]

−20
−10
0
10
20

Rel. GPP anomaly [%]

log10(Volume) [km2 d]

0
2
4

(b)

Surface moisture [−]

Te
m

pe
ra

tu
re

 [°
C

]
10

20
30

0.2 0.3 0.4

 50 

 50 
 50 

 25 

 25 

 25 

● events
forests
agriculture
others

Figure 3. (a) Mean temperature and surface moisture during the relative drought and heat events for forests and agricultural ecosystems.

Size and color of the points denote the affected space–time volume and the direction of the impact on productivity. (b) Average conditions in

temperature and surface moisture for all ecosystems. Colored lines enclose 25% and 50% of the events within forest, agricultural and other

ecosystems.
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types including forests and woody savannas show increased average GPP during the extreme events. In contrast, agricultural

ecosystems (land cover types including crops), grasslands, savannas, and other land cover types reduce average GPP anomalies

(Figure 4(b)). Warmer growing season climates and higher temperatures during the event are associated with negative GPP

anomalies. In contrast, greater availability radiation and higher surface moisture have a positive influence on the impact.

We showed that land cover type is one of the major factors influencing the GPP anomaly during the event. A single hy-145

drometeorological extreme event can affect two or more adjacent land cover types simultaneously with potentially contrasting

impacts (spatial contrasting anomalies), but enhanced productivity can also be observed earlier than reduced productivity (or

vice versa, temporally contrasting anomalies). To explicitly quantify the role of spatial vs. temporal effects on the GPP anoma-

lies during extreme events we split each event in parts with enhanced and reduced GPP anomalies and compute the centroidal

distance in space and time. In fact, positive and negative GPP anomalies mostly co-occur simultaneously in adjacent spatial150

regions (116 events of 213 events in total within ± 8 days, Figure 5). Especially for large scale events (large volume), a consid-

erable distance of the anomalies can be observed in space and time. However, taking only the temporal distance into account,

we have more events with enhanced productivity before the reduced productivity (temporal distance < −8 days, n = 44) than

after (> 8 days, n = 33).
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Figure 4. (a) Variable importance of the ten best gradient boosting machines predicting average GPP anomalies during the events, and

(b) direction and feature weight of the variables explaining GPP anomalies of the individual events based on linear regression via local

interpretable model-agnostic explanations (LIME).
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Figure 5. Each extreme event is split into parts with enhanced and reduced GPP anomalies. The centroidal distance between both parts in

space and time shows whether contrasting GPP anomalies are predominantly taking place temporally, spatially or spatio-temporally. Point

sizes are proportional to the event’s affected volume.
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4 Discussion155

Contrasting responses of ecosystems to climate extremes, e.g. in the US in 2012 (Wolf et al., 2016) or in Russia in 2010 (Flach

et al., 2018), are not singular cases but are shown to be frequent phenomena in response to hydrometeorological extreme

events at the global scale. Within the same extreme event, reduced and enhanced productivity can be observed simultaneously

in adjacent spatial regions. This finding complements previous studies on temporal (Wolf et al., 2016; Sippel et al., 2017a;

Buermann et al., 2018) or spatial contrasting responses (Jolly et al., 2005; Zaitchik et al., 2006; Lewińska et al., 2016).160

This study provides evidence that the impacts of extreme drought or heat anomalies on GPP during growing seasons is,

firstly a function of event duration and long-term climate, but secondly, also depends on the affected land cover type. In

particular the tendency towards positive vs. negative responses seems to be controlled by tree cover (similar to the results of

Ivits et al. (2014); Walther et al. (2019)), i.e. forests seem to show higher resilience to drought and heat anomalies on the

short term, which is reflected in a tendency towards positive GPP anomalies during the events. However, our results are based165

on events that are extreme relative to the regional normal conditions. In the supplementary materials we illustrate a range of

events in more detail. For instance, a relative drought or heatwave in a typically wet ecosystem can boost productivity as well

as a heatwave in ecosystems that are typically cold (see cases reported e.g. for China 20011, India 2009, and the Siberian

heatwave 2011). Both water stress and temperature affect ecophysiological processes in a nonlinear manner. Heat events below

optimal temperatures enhance photosynthesis (Wang et al., 2017), or photosynthesis may be enhanced by the radiation surplus170

during dry periods (Walther et al., 2019) especially at higher latitudes (Bachmair et al., 2018) and as long as ecophysiological

limits are not violated. Yet, the prevalence of certain land cover types is partly controlled by climatic gradients, and therefore

land cover cannot really be considered independently of the mean climatological conditions that likewise play a role (Figure

3(a)). Climate conditions also lead to adaptation of physiological processes. For instance, forests in dry ecosystems may be

characterized by a more conservative water use strategy (Teuling et al., 2010; van Heerwaarden and Teuling, 2014; Ramos175

et al., 2015) and adapted to drought compared to analogous land cover types whose biogeographic history experienced colder

and more moderate conditions (Doughty et al., 2015). Moreover, forests have access to deeper soil water compared to other

ecosystems (Yang et al., 2016; Fan et al., 2017). The degree of isohydricity may further differentiate the response of forests, as

it differs between tree species (Roman et al., 2015; Ruehr et al., 2015; Yi et al., 2017).

Our study only reports on GPP responses during the climatic anomaly without considering the legacy of the events. Re-180

sponses may emerge with some time lag between weeks to months (Schwalm et al., 2012; Ruehr et al., 2015), or even at longer

time scales (years) (Saatchi et al., 2013; Anderegg et al., 2015). Hence, finding enhanced productivity of forests during some

heat event does not exclude increased mortality in the long-term. Forest ecosystems are known to potentially respond much

delayed to environmental stress, which can trigger strong secondary impacts like insect outbreaks (Hicke et al., 2006; Rouault

et al., 2006; Allen et al., 2010), or fires (Brando et al., 2014). In contrast, agricultural systems are known to be very directly185

vulnerable to droughts (De Keersmaecker et al., 2016; Bachmair et al., 2018). We choose the growing season as time period

of interest, which is notably different than summer for some regions, e.g. in the Mediterranean where more positive responses

to warm anomalies in the cold season may be expected (Sippel et al., 2017b), and also impacts of droughts may be less than
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during the dry season (Huang et al., 2018). Note that due to complex interactions between GPP and ecosystem respiration no

direct translation of the results into net ecosystem exchange is expected (Richardson et al., 2007).190

Another aspect to discuss is data quality. Gross primary productivity from FLUXCOM-RS may inherit errors from the

underlying remote sensing products; these have, in particular, been discussed for tropical forests (Asner et al., 2004; Asner and

Alencar, 2010; Wu et al., 2018). Recently, Stocker et al. (2019) showed at the global scale that remote sensing retrieved GPP

underestimates drought impacts due to soil moisture effects on light use efficiency. Comparing our estimates of GPP impacts to

published data from eddy covariance stations for two case studies (US 2012, (Wolf et al., 2016), and Europe 2003 (Ciais et al.,195

2005; Reichstein et al., 2007)) indicates that we do indeed underestimate GPP impact. Thus, we suspect that in addition to the

GPP estimates used by Stocker et al. (2019), also FLUXCOM-RS GPP underestimates the impacts of climate extreme events

specifically for forest ecosystems. As FLUXCOM-RS exhibits a good agreement for forests globally with GPP estimates based

on solar-induced fluorescence (Walther et al., 2019), the lack of sensitivity to drought and heat impacts in forest ecosystems

may be a more general issue in remote sensing data.200

5 Conclusions

We conclude that a more differentiated consideration of the role of land cover reveals firstly major differences between forest

and agricultural ecosystems. These differences may originate from a different (micro-)climate or different water management

strategies including the access to deeper soil water or point to more strongly lagged impacts in forest ecosystems. However,

the lack of sensitivity of forest ecosystems to droughts and heatwaves is stronger than we would expect it to be. Thus, we think205

that our results also point towards deficiencies in FLUXCOM-RS derived GPP which are potentially a more general issue in

remote sensing derived indices of vegetation activity. These deficiencies call for the development of new global GPP products

with a higher sensitivity to droughts and heatwaves, which can unravel the role of forest ecosystems in a more frequently hot

and dry future climate.

Data availability. We use data originating from the FLUXCOM initiative (http://www.fluxcom.org), the GLEAM model data integration210

framework (https://www.gleam.eu/), and ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/home). The harmonized data set is available

within the project Earth System Data Lab (ESDL) and can be accessed here: https://www.earthsystemdatalab.net/index.php/interact/data-

lab/.
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Appendix A: Other ecosystems
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Appendix B: Technical details on the spatial segmentation215

We follow the procedure described and developed by Mahecha et al. (2017), which was extended to the multivariate case

by Flach et al. (2018). In summary, the used approach defines climatically and phenologically similar regions by using the

leading principal components (here: three) of the seasonal cycles of the hydrometeorological variables (temperature, surface

moisture, radiation) in addition to the vegetation proxy (gross primary productivity). Similar cycles appear in the same region

of the obtained principal component space (Figure B1). Thus, a simple classification can be obtained by dividing the principal220

component space into equally sized cubes. Here we use 25 breaks for each of the first three principal components, which leads

to 814 classes globally of similar climate and phenology. For each pixel, we sample four random spatial replicates from each

region to efficiently run the following anomaly detection workflow globally (previously the procedure was used for Europe

only).

Figure B1. Map of the first three leading principal components (PCs) colored according to the colorspace hue (PC1), saturation (PC2), and,

lightness (PC3).
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Chapter 6

Discussion

6.1 Alternative pathways

One aspect to discuss is that it would have been possible to use different algorithms
or ensembles of algorithms in chapter 3, and following up on this in chapter 4 and 5.
A methodological comparison of different algorithms as performed in chapter 3 can
never be complete by definition due to an ever growing set of potential algorithms and
simultaneous developments of methods in the field (e.g. Maximal divergent intervals
Barz et al., 2017; Rodner et al., 2016). Methods can fail due to slightly different
assumptions (e.g. training data without anomalies Pimentel et al., 2014, which may
be fixable by applying a method repeatedly. However, in the method comparison
of chapter 3, I tried to focus on methods which (1) can detect anomalies in an
unsupervised way and (2) which are non-parametric, or whose model parameters
can be fixed with some rule of thumb to facilitate automated detection in Earth
observations at the least. Nevertheless, another set of algorithms for usage in chapter
4 or 5 would have been possible.

In particular, I selected one of the three best algorithms (kernel density estima-
tion) to detect extreme events in chapter 4 although other choices would have been
possible. Another choice would have been the recurrence approach. Although the
performance in terms of area under the receiver operator curve is similar, the re-
currence approach is more sensitive to the chosen parameter (ε) than kernel density
estimation (Supplementary material of chapter 3). Similar, the third of the three
best algorithms, a k-nearest neighbours approach is more sensitive with respect to
choosing the number of nearest neighbors k. Using ensembles of the three best al-
gorithms would be another approach, which was not chosen due to computational
constraints, although I note that efficient and fast implementations of the algorithms,
e.g. on GPU machines are ready to be applied soon Michailidis, 2013; Rawald et al.,
2017.
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6.2 Sensitivity of the results

Another aspect to discuss is the sensitivity of the results. Two choices are particularly
relevant for chapter 4 and 5: the threshold to detect extreme events, and the sen-
sitivity of the results with respect to applying the extreme events detection scheme
regionally (instead of locally for each pixel, or globally for one region).

First, it is shown in chapter 4 that the results are not particularly sensitive to
the chosen threshold (5% extreme events per region). The sensitivity of the results
with respect to the chosen threshold was not evaluated in detail in chapter 5, as I
expect a similar sensitivity globally as for the Russian Heatwave 2010. Furthermore,
the chosen threshold is one of the standard choices in this field McPhillips et al.,
2018. Thus, similar to chapter 4, positive GPP anomalies during extreme events
in forest ecosystems are expected to be found as well as for lower thresholds (10%
extreme events per region) as well as for more strict thresholds. However, when using
very strict thresholds, like 1%, the results for the Russian Heatwave started to get a
stronger tendency towards more negative GPP anomalies. Thus, it is expected that
more stricter thresholds are associated also globally with a tendency towards more
negative GPP anomalies.

Second, detecting extreme events in different regions adds another aspect to the
sensitivity of the results. Detecting extreme events locally (per time series in a
pixel) Ivits et al., 2014 or with one threshold globally Zscheichler et al., 2014 leads to
differences in the results. However, the sensitivity of our results to slight modifications
in the parameters used to identify similar regions has not been discussed so far.
Testing the sensitivity of the extreme event detection scheme in a latitudinal transect
over Africa and Europe shows that a rather low sensitivity to slight modifications in
the regionalisation parameters can be expected globally (Supplementary materials,
Chapter S1.3).

One aspect in the context of the regionalisation scheme is particularly relevant
for chapter 5 and has not been discussed in detail in this chapter. In this particular
chapter, I use a subsampling procedure for each different region in order to detect the
events. The main pixel is extended by four pixels from the respective region, which
seems to be very little at first glance. Four samples are, however, chosen to keep
computational time low. Yet, given that the subsampling procedure is repeated for
each pixel, and the number of pixels is high and can be regarded as a spatial replicate
of the subsampling procedure, the repeated subsampling procedure may be sufficient
to cover the variability in each region. Using spatial replicates is common, e.g. for
predicting carbon, water and energy fluxes globally (Jung et al., 2017; Tramontana
et al., 2016).

Furthermore, the results of any analysis as such can be highly sensitive to the
data under scrutiny. Here FLUXCOM-RS data (Tramontana et al., 2016) is used in
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chapter 5, and additionally the fraction of absorbed photosynthetic active radiation
in chapter 4. It can be questioned whether data originating e.g. from dynamic
global vegetation models (Sitch et al., 2008) show similar patterns. It is possible
that patterns of more positive responses of forest ecosystems are a feature of machine
learning, i.e. learning the model from biased remote sensing data (Stocker et al.,
2019) in contrast to process based models. Recently (Stocker et al., 2019) shows that
impacts of droughts on primary productivity in general are underestimated when
retrievals of gross primary productivity are based on remote sensing. Apart from
the points already mentioned in the discussion of chapter 5, it is important to note
that one general result here is the differentiated response of specific vegetation types.
Even if the impacts of gross primary productivity are underestimated in general in
the data used here (the FLUXCOM-RS data used here is not analyzed by the paper
of (Stocker et al., 2019)), the differentiated response of specific vegetation types is
still remaining one main result.

6.3 Timing of droughts and heatwaves

In chapter 5, solely the impacts of climate extreme events during the growing season
are assessed, although timing of droughts and heatwaves may be crucial Sippel et
al., 2016. Growing season includes effects of timing between spring, summer, and
autumn. In particular, vegetation is highly sensitive in spring and summer (Darenova
et al., 2017; Denton et al., 2016), with potentially contrasting impacts (Buermann
et al., 2013, 2018; Wolf et al., 2016). However, the definition of growing season
used here (half year around maximum gross primary productivity) does not include
extreme events in winter (for temperate regions), or dry seasons for some ecosystems.
Furthermore, other definitions (like using a threshold of gross primary productivity
per month) may be useful, e.g. for Africa, were more than one rainy season can lead
to several distinct growing seasons.

The importance of extreme events in the non-growing season time cannot be
neglected. For example, winter warming can lead to the complete loss of berries in
the following summer (Bokhorst et al., 2008). In general, high damage on evergreen
plants occurs after midwinter warming (which leads to shallow snow depth) which
is followed up by extreme frosts (Bjerke et al., 2014). Snow cover is also crucial for
the survival of young trees (Drescher & Thomas, 2012), which can impact the carbon
cycle apart from biodiversity (Section 6.5). Conversely, in mediteranean ecosystems
winter warming leads to enhanced productivity rather than damage of vegetation
(Sippel et al., 2017). However, generally, severe impacts of droughts have been found
for semi-arid ecosystems (Ma et al., 2015). There, non-growing season droughts in
the dry season may have stronger impacts on vegetation than droughts in the growing
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season (Huang et al., 2018). Hence, the effect of timing is difficult to generalize and
strongly dependent on the ecosystem under scrutiny as well as the event type.

6.4 Lagged effects in forests

In media tree mortality in Germany recently gains a lot attention (DPA, 2019; Köppe,
2019; Weiß, 2019). One shortcoming in the public perception of tree mortality as well
as in chapter 4 and 5 is the lack of considering legacy effects: tree mortality in 2019
may not be instantaneously driven by the dry spring or the hot summer 2019, but the
previous year may play an important role (Arnone et al., 2008). The exceptionally hot
and dry summer 2018 may trigger lagged tree mortality in 2019. Insect populations,
in general, are affected when temperature is reaching conditions above some optimum.
However, bark beetles are known to undergo a process similar to summer dormancy
during extreme heat years (Rouault et al., 2006). Lacking water during extreme
droughts (but not during moderate droughts, (Raffa, 2001)) can reduce resin flow
and therefore weaken the trees with respect to attacking insects. In the year after
the drought, e.g. for 2004 (after the 2003 drought and heat) exploding bark beetle
populations and damage on trees is reported. Possible reasons are already weakened
host-trees and strong insect populations, which may benefit from warm spring or
winters following the summer drought and heat (Hicke et al., 2006; Rouault et al.,
2006). Thus, the sequence of two unusual years in large parts of Germany (2018
and 2019) in terms of heat and dryness further complicates the attribution of tree
mortality lamented by foresters to one of the specific events. This sequence of events
is one reason why the focus of chapter 5 is on instantaneous effects of drought and
heat on vegetation.

Another aspect which complicates the assessment of lagged effects is the question
of the time scale on which lagged effects are taking place. Reported time scales range
from weeks to several years, or even more (Anderegg et al., 2015; Ruehr et al., 2015;
Saatchi et al., 2013; Schwalm et al., 2017). For instance, (Anderegg et al., 2015)
reports one to four years of recovery time after extreme droughts. Another study
reports less than one year for most regions globally (Schwalm et al., 2017), but talks
about higher recovery times in the Northern latitudes and the tropics (in agreement
with (Saatchi et al., 2013)). Thus, to assess lagged effects of climate extremes, longer
time series than used in chapter 4 and 5 would be desirable.
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6.5 A more general view on impacts of droughts and

heatwaves

The focus of chapter 4 and 5 is on the impact of droughts and heatwaves on ecosys-
tems and specifically on primary productivity as any changes in productivity can
affect the global carbon cycle (Le Quéré et al., 2018). However, impacts of extreme
events are manifold (see also chapter 1.1) and not just focussed on carbon. More
generally, ecosystem services can be affected strongly by droughts and heatwaves.
Related to reductions in primary productivity are reductions in agricultural systems
providing food for the society (Wegren, 2010). The development of mitigation strate-
gies of impacts on agriculture is of particular importance (Lopez-Nicolas et al., 2017).
Furthermore, droughts also strongly affect the water supply and quality which is an
important ecosystem service for society (Benotti et al., 2010; Shen et al., 2007; Vliet
& Zwolsman, 2008). Another ecosystem service is tourism. It can be affected by
heatwaves (Buckley & Foushee, 2011), and droughts (Scott & Lemieux, 2010) e.g.
through water levels of rivers used for recreation.

Biodiversity is affected by droughts and heatwaves in terrestrial ecosystems (Jentsch
et al., 2011), and is also discussed for marine ecosystems recently (Smale et al., 2019).
Loss of biodiversity due to extreme events is likely and can lead to shifts in species
compositions (Jentsch & Beierkuhnlein, 2008). For example, changes in species com-
position due to droughts favour C4 plants (White et al., 2000). C4 plants cope better
with droughts, which can also be seen in a more neutral modelling coefficient of C4
crops compared to C3 crops (see results of chapter 5 (Figure 4b)). Additionally,
biodiversity is associated with less impacts from climate extreme events, e.g. more
diverse grassland communities are less affected by droughts than less diverse grass-
land communities (Kreyling et al., 2008). Hence, biodiversity is affected by climate
extremes and may also serve as a counteracting force for buffering the impacts.

Lacking water directly impacts microbial activity in the soil, i.e. ecosystem res-
piration is decreased (Jentsch et al., 2011) (Davidson & Janssens, 2006). However,
species communities in the soil may be affected as well, e.g. by selectively affecting
specific species (bacteria) less than others (funghi) (Yuste et al., 2010), but can also
be less pronounced than expected (Eisenhauer et al., 2011). Furthermore, a drought
followed by re-wetting and drying patterns can enhance carbon emissions from soils
and may also disrupt soil aggregates or reduce nutrient retention (Borken & Matzner,
2009).
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6.6 Climate extremes beyond droughts and heat-

waves

Apart from drought and heat events, which I focussed on in chapter 4 and 5, other
climate extreme events are also impacting the carbon cycle. Specifically, extreme
frosts, heavy precipitation and heavy storms are known to play a role in this context
(Frank et al., 2015).

Extreme frosts can lead to ice breakage or frost damage. In particular for the
latter one, timing is of crucial importance: frost damage happens particularly often
in early spring after short warming periods. Heavy precipitation can lead to flooding
and burial of carbon (see (Frank et al., 2015), and references therein). Storms can
lead to tree mortality through wind throw. Two famous examples are the storm
Lothar in Europe 1999 (Chambers et al., 2007), and the hurricane Katrina in the US
2005 (Lindroth et al., 2009), which both offset large parts of the carbon sink in the
respective regions. All these kinds of extreme events, such as storms, frost damage
or flooding have not been considered in the thesis.

However, I want to emphasize here that the methods developed in chapter 3 are
generic enough to detect any type of extreme event, and not just drought and heat
events. Drought and heat events were in the focus of this thesis due to their expected
high impacts on primary productivity (e.g.)(Zscheischler et al., 2014b). An outline
of how a generic detection of any type of extreme events could look like is given in
chapter 6.8.

6.7 Differences between the multivariate and uni-

variate perspective

Part of the overarching aim of this thesis was also to facilitate a broader multivariate
perspective which complements previous approaches to detect extreme events. Hence,
one question to ask concerns differences between the multivariate and univariate
perspective. What do we really gain from a multivariate extreme event detection
compared to a common univariate extreme event detection?

The disadvantages of a multivariate detection scheme may hinder their application
in analysis of extreme events. First, it is more complicated to understand the methods
behind a multivariate perspective. I experienced it to be much more complicated to
communicate a multivariate detection in the climate science community. Second,
the multivariate detection scheme as used in this thesis, detects any type of extreme
event in any direction of the variables, independent of whether a variable has values
near the upper or lower bounds of the marginal distribution. Assigning one or several
variables and a direction of the extreme event is a second step after the detection
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step. Thus, in any application of a multivariate extreme event detection scheme,
these two disadvantages have to be kept in mind.

However, a multivariate perspective on extreme events has several advantages.
First, the detection in any direction of the variables can also be an advantage, as
it makes the multivariate detection scheme per se more objective than a standard
univariate detection scheme. For example, an increased productivity anomaly prior
to the Russian heatwaves 2010, has not been studied in detail before (chapter 4),
presumably due to a focus on higher impacts, i.e. on negative anomalies in produc-
tivity. However, note that multivariate directional approaches exist, which are used
to detect extreme events as well. These approaches are e.g. based on copulas or
principal component analysis (Torres et al., 2017).

Second, the multivariate approach is very generic and can detect various types
of anomalies in many different variables (Chapter 3). Thus, it is easily possible
to streamline different views on the very same extreme event with a multivariate
perspective. Different views can originate from looking at the very same extreme
event with different variables, often utilizing variables which are commonly used in
the discipline of the researcher. A multivariate perspective e.g. on the Russian
heatwave facilitates a broader view on the area which was hit by the multivariate
extreme event. Focussing on single variables only, one can potentially miss parts
which are affected by the inherently multivariate event (e.g. a focus on temperature
solely misses 52% of the affected multivariate volume, a focus on surface moisture
misses 31% of the affected volume (see Supplementary materials S1.1).

Third, sensitivity with respect to the chosen threshold for detecting extreme
events is simplified. In the case of multivariate extreme event detection, one multi-
variate threshold to detect extreme events needs to be adjusted for sensitivity anal-
ysis. In the case of univariate extreme event detection, one threshold needs to be
adjusted for each variable, and potentially combined with all possible combinations
from other variables. The number of possible combinations hinders sensitivity anal-
ysis when combining several univariate extreme event detection schemes.

Fourth, multivariate extreme event detection is more precise than univariate ex-
treme event detection as it uses information from multivariate covariate patterns
(Santos-Fernandez, 2013). The developed multivariate extreme event detection scheme
follows the shape of the multivariate distribution, i.e. linear multivariate methods
like the mahalanobis distance to the mean of the data (Hotelling’s T 2) accounts for
correlation among the variables. Thus, multivariate algorithms are stricter than uni-
variate thresholds, when looking at the direction aligned with the main correlation
patterns. This means that events are usually closer to the upper or lower bound of the
marginal distributions in this direction. Anomalies in this direction, which are identi-
fied in a univariate setting but not in a multivariate are usually considered to be false
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positive detections in the univariate setting (ignoring the covariance structure) (Gar-
rett, 1989). On the contrary, in the orthogonal direction, which is misaligned with
the main correlation pattern, the multivariate algorithm detects events which would
not be detected by a univariate detection scheme. Recovering these non-detected
true anomalies in a univariate setting may be a much harder task than figuring out
the false positive detections (Garrett, 1989). Kernel density estimation is used in the
thesis to furthermore account for potential non-linearities in the general multivariate
pattern.

An alternative to multivariate extreme event detection schemes is to apply a
univariate peak-over threshold scheme repeatedly. However, it has to be applied with
care as dependency structures are not accounted for, and a rigorous application may
lead to an overestimation of extreme events (Garrett, 1989). Applying univariate
thresholds for each variable (blue box) overestimates the total number of extreme
events with an increasing number of variables. For example, a 5% threshold for each
of three uniformly distributed variables would lead to flag (1−0.05)3 = 0.953 = 85.7%

as normal, and respectively 14.3% of the data as extreme, whereas a multivariate
algorithm exactly flags the chosen 5% to be extreme. This setting would lead to a
difference in the number of data points flagged as extreme between the univariate and
the multivariate setting, i.e. 2.86 more events flagged as extreme in the repeatedly
applied univariate setting. This factor is lowered by covariance structures in the data,
but only disappears for perfect correlation between the variables.

Last, a multivariate perspective has the potential to detect novelties. In chapter 4,
it was shown that the objectiveness and possibility to apply a multivariate detection
scheme to any set of variables facilitates a different perspective and yields interesting
new results. The result of contrasting vegetation responses to well studied climate
extremes like the Russian heatwave 2010 is one example. However, similar results
would have been possible by applying univariate extreme event detection schemes to
several variables repeatedly, and considering any direction of the limits of a marginal
distribution and then merging the results. An up-until now "unknown" type of an
extreme event may be an event, which can be detected by a multivariate algorithm
but not by a univariate detection scheme. For linear dependency structures, these
kind of events are located mostly orthogonal to the main covariance structure of the
variables. Therefore, these events appear to be historically much more rare, smaller
and of lower impacts than expected (see Supplementary S1.2), and were therefore
not analysed in detail in this thesis. However, with climate change, an intensification
of those events may be expected in regions where the climate moves in the direction
orthogonal to the main covariance structure (Mahony & Cannon, 2018).
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6.8 Outlook

The developed multivariate approach (chapter 3) and the studies of ecosystem-specific
responses for a case study (chapter 4) and globally, (chapter 5) open up a variety
of possible follow-up research questions. More case studies could be used to study
differentiated responses of vegetation types, as well as trying to disentangle impacts
in 2019 associated with legacy effects of 2018 and from instantaneous impacts in 2019.
Another option would be to put more focus on the "unknown" events, i.e. events
which can be detected by a multivariate approach, but not by a univariate approach.
The latter option was considered but not explored in detail in this thesis, due to the
rare number of this type of extreme events. Furthermore, it would be possible to
focus more on the near real-time detection and prediction of multivariate extreme
events, which would require monitoring and analysis of constantly incoming data
streams. An automated operational detection scheme would be necessary to exercise
this, which can be set up on the basis of this thesis. However, in the following I
want to emphasize two further research directions: One is to further tap into the
potential of the multivariate algorithms and to develop a multivariate typology of
extreme events, which can be applied to historical data and might be of interest in
the context of climate change (Section 6.8.1). Another direction is to use the tested
methods of chapter 3 and to adjust them to detect novel climates and the timing
when a region or ecosystem departs from what one would consider normal variability
in this region (Section 6.8.2).

6.8.1 Further potentials of the multivariate perspective

One potential of the developed multivariate perspective on extreme events is to fully
built on the potential of the multivariate algorithm to detect extreme events in any
direction of the variables. With the developed multivariate approach, it is possible to
distinguish many more nuanced differences among climate extreme events, e.g. one
can not only detect droughts, heatwaves and compounding droughts and heatwaves
(like in chapter 5, but also droughts and heatwaves with extremely high, medium
or extremely low radiation, probably differentiated even further with any other (cli-
mate) variable. This kind of refined differentiation of extreme events would allow
for developing an entire typology of extreme events. Typologies have been devel-
oped e.g. for different types of flooding (Merz & Blöschl, 2003), crop vulnerability
to droughts (Simelton et al., 2009), or climate change adaptation strategies (Biagini
et al., 2014). In the attribution community, i.e. attributing climate extreme events
to climate change, (Otto, 2017) calls for establishing a typology of the potential at-
tribution of climate extremes to human induced climate change. However, a typology
of multivariate climate extremes would already be novel as such, to the best of my
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knowledge and facilitates further research questions.
First, a typology of extreme events could be used to identify potential high impact

events. Although it is expected that compound events are associated with higher
impacts than their univariate equivalent (e.g. only drought, not heat) (Zscheischler
et al., 2018), this is usually only shown for specific types of extreme events, e.g. for
impacts of compounding droughts and heatwaves on vegetation productivity (Buttlar
et al., 2018). This generalisation of impacts of compound events can be further
differentiated e.g. it can be assumed that compounding droughts and heatwaves
with concurrent high wind speed increase wildfire risk (Abatzoglou et al., 2018; Di
Virgilio et al., 2019; Pinol et al., 1998; Sharples, 2009). Furthermore, compounding
droughts and heatwaves with concurrent high radiation are associated with different
impacts on vegetation productivity than compounding droughts and heatwaves with
concurrent low radiation (for a more detailed example of a typology of extreme events
see Supplementary materials S1.2). Also other impacts, like impacts on humans, or
specifically impacts targeted for agricultural system, can be of interest in order to
develop (regionally adapted) early warning systems for different types of extreme
events, which are expected to lead to highest impacts as learnt from history in the
respective region.

Figure 6.1 – Change in the risk ratio of two multivariate normally distributed variables, compared
to (univariate) risk assessment ignoring the covariance structure.

Second, a multivariate perspective on and typology of extreme events facilitates
the refinement of our understanding of changing patterns in the extremes with climate
change. For example, the dependency structure between temperature and precipita-
tion and future changes therein lead to a higher frequency of compounding droughts
and heatwave than one would expect from univariate risk assessment in historical
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data (Sarhadi et al., 2018) and in model projections of future climate (Zscheischler
& Seneviratne, 2017) (Figure 6.1). Similarly, including more variables may reveal
more nuanced details in changes of the future dependency structures, and thus point
towards much higher increase in numbers of specific types of extremes than one would
expect from the change in the marginal distribution. Vice versa, other types of ex-
treme events may get less frequent not only due to trends in a warming climate, but
also due to regionally changing dependency structures in the earth system models.

6.8.2 Novel climates

Another potential future research direction is the usage of the multivariate perspective
to compute a multivariate measure of the time of emergence / novel climates.

Climate models can be used to compute the time when the climate departs from
normal variability in the respective region for a specific climate variable. This is
usually referred to as time of emergence from natural climate variability or novel
climates, and is an important indicator for regional risk assessment from climate
models (Hawkins & Sutton, 2012). It is usually computed for single variables e.g. for
precipitation (Giorgi & Bi, 2009; Sui et al., 2014), temperature (Frame et al., 2017;
Hawkins & Sutton, 2012; Mahlstein et al., 2011; Sui et al., 2014), sea levels (Lyu
et al., 2014), ocean biogeochemistry (Keller et al., 2014), and ice cover (Screen &
Deser, 2019). In principle the idea is applicable to any (climate) variable (Hawkins
& Sutton, 2012), and has even been applied to climate extremes (King et al., 2015).

However, the idea of the time of emergence from natural variability is not re-
stricted to marginal distributions. It may be an inherently multivariate question of
several climate variables. A first multivariate approach to detect novel climates in a
bivariate distribution of temperature and precipitation was developed by (Mahony et
al., 2017) and applied to the global scale (Mahony & Cannon, 2018). The technique
is based on the Mahalanobis distance to the mean of the data, which is also used in
chapter 3. One main result in this context of novel climates is that the departure
from normal variability is taking place earlier compared to a univariate perspective,
in particular when the associated climate change signal is not aligned with the main
direction of the correlation between temperature and precipitation see conceptual
figure (Mahony & Cannon, 2018).

One further research potential in the context of novel climates is to extend previ-
ously developed approaches with a set of variable describing the climate of a specific
region in its entirety. First applications of the time of emergence to three variables
(precipitation, daily maximum and minimum temperatures) are currently developed
in order to analyse migratory bird populations (La Sorte et al., 2019). However, in-
cluding variables like radiation or wind speeds would allow for a much more detailed
description of the current regional climate in a specific region. It can be expected
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that similarly to the results of Mahony & Cannon, 2018 the departure time from
normal variability is even faster than for two variables, when the direction of the
departure is not aligned with the multivariate covariance structure. One particularly
challenging aspect may be the visualisation of the departure from normal variability
in more than three dimensions.

Furthermore, including variables important to vegetation development, like water
availability, may allow to characterize novel climates with respect to normal condi-
tions for ecosystems. Another possibility would be to compute a time of emergence
for indices of vegetation productivity, like the fraction of absorbed photosynthetic
active radiation, solar induced fluorescence, or primary productivity.

Another potential in the context of multivariate novel climates is to built on the
techniques which were tested and applied in this thesis. So far, techniques based
on the Mahalanobis distance are used for first multivariate applications on novel
climates (La Sorte et al., 2019; Mahony & Cannon, 2018; Mahony et al., 2017). Al-
though the simple interpretation is clearly an advantage of the Mahalanobis distance,
it assumes a multivariate normal distribution of the data. Hence, the Mahalanobis
distance is limited to detect deviations from linear dependency structures. Linear
dependencies may not be the case for climate variables. Thus, using nonlinear tech-
niques to compute the time of emergence may facilitate a refined view on novel
climates. One possibility of a nonlinear technique is kernel density estimation, which
was used in chapter 4 and 5 to detect extreme events. However, many more methods
are possible, as computing the time of emergence is a well defined novelty detec-
tion problem in the context of computer science (see chapter 2.2.2). The reference
period of normal variability can be considered as training data of any (supervised)
novelty detection algorithm. One promising method is the kernel null foley sammon
transform (Bodesheim et al., 2013), which was not suitable for the (unsupervised)
detection of extreme events (chapter 3). However, it might be suitable for detecting
novel climates, because is can accurately map the differences to the training data
(even in multiple classes) (Bodesheim et al., 2013) which may be an advantage for
detecting novel climates.
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Concluding summary

The overarching aim of the thesis was to improve the detection and understanding of
climate extremes and their impacts by facilitating a broader multivariate perspective
which complements previous approaches to detect extreme events.

First, in chapter 3, the objective was to evaluate which combination of multivari-
ate anomaly detection algorithms and feature extraction is best suitable for detecting
anomalous events. In this paper, I identified several suitable methods for extreme
event detection. The methods are ready to be applied to earth observations. They
can be applied to any set of variables and the chosen multivariate algorithms are
objective, i.e. detect extreme events in any direction of the variable’s multivariate
distribution. In particular, one detection scheme was identified to be suitable for
high dimensional, correlated, and non-linear data. The selected detection scheme
consists of subtracting the seasonality, reducing the dimensionality and accounting
for linear correlations in the data via principal component analysis, and detecting
multivariate extreme events in the reduced feature space via non-linear kernel den-
sity estimators. Detection schemes in earth system science are commonly univariate
(ignore correlations between the data). Multivariate approaches so far are based on
the Mahalanobis distance to the mean of the distribution (restricted to linear set-
tings) or based on copulas (not applicable in high dimensional settings and direction
dependent). Thus, compared to other approaches, the developed approach has the
advantage to be non-linear, applicable in high-dimensional settings and to account
for dependencies in the data.

Second, the objective of chapter 4 was to apply the newly developed detection
scheme to one well known event, and to evaluate whether a broader multivariate per-
spective facilitates our understanding of extreme events and their impacts by revealing
previously overlooked facets. In this context, it was possible to reveal enhanced spring
productivity prior to the Russian heatwave 2010 due to the objectiveness of the al-
gorithm. Furthermore, it was possible to detect enhanced productivity in higher
latitudes during the Russian heatwave 2010, and to complement different perspec-
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tives on the Russian heatwave which were based on the focus on specific variables.
Ecosystem type was identified to be the most important factor which is associated
with a contrasting response between enhanced productivity of forest ecosystems and
tremendously reduced productivity of agricultural ecosystems. Confounding factors
are latitude (e.g. soil type, absolute temperatures), and duration of the heatwave.
Regions associated with enhanced productivity can also be found in maps of already
published articles of this famous extreme event. However, due to a different focus on
mostly negative impacts, the enhanced productivity was previously overlooked. In
this paper, I suspect that overseeing enhanced productivity might also be related to
the choice of a common direction when detecting extreme events and their impacts.
Contrastingly, the multivariate algorithms facilitate a broader perspective because
they are directionless by definition.

Third, one directly subsequent question is to evaluate whether this kind of differ-
entiated and potentially contrasting productivity response to the Russian heatwave
is just a single case or is a more frequent phenomena in current climate around the
world. This leads to the objective in chapter 5, i.e. to evaluate the importance of
different vegetation types on shaping the impact of climate extremes relative to other
factors. This paper shows that apart from background climate, duration of the event
is the most important factor in determining impacts of growing season droughts and
heatwaves globally. However, the direction of the impact (enhanced vs. reduced
productivity) is associated with different vegetation types (forests vs. grasslands and
crops). The study shows forests are often associated with normal to slightly enhanced
productivity during droughts and heatwaves globally. It shows that the contrasting
productivity as seen during the Russian heatwave is a rather frequent phenomenon,
instead of just a singular case. Furthermore, the differentiated productivity accord-
ing to different vegetation types is a spatially contrasting effect, which complements
previous studies on temporally contrasting compensation effect (spring vs. summer
extreme events).

Overall, the overarching aim of the thesis was to improve the detection and under-
standing of climate extremes and their impacts by facilitating a broader multivariate
perspective which complements previous approaches to detect extreme events. It was
possible to facilitate a broader perspective and to detect multivariate droughts and
heatwaves. Furthermore, the thesis improved the understanding of the impacts of
droughts and heatwaves on different vegetation types.

However, limitations are e.g. present in the selection of the variables (e.g. lacking
the influence of soil). Furthermore, the study was limited to remote sensing retrieved
gross primary productivity, which transfers potential biases of this technique onto
the results of the differentiated vegetation response to climate extremes. Although
the results of differentiated vegetation responses and in particular a less sensitive
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response of forests to droughts and heatwaves may be plausible in many cases, I also
suspect that the sensitivity of current remote sensing derived productivity estimates
to drought and heat effects is limited and should be an issue for future research. The
focus of analyzing the impacts of climate extremes, was the instantaneous responses
during the growing season. Lagged responses of different vegetation types still need
to be scrutinized further. An example of this kind of lagged impacts would be the
bark beetle outbreaks which can currently (2019) be observed in Germany’s forests,
presumably due to last year’s drought (2018).

The multivariate perspective allows to easily extend the focus on droughts and
heatwaves in this thesis to other types of extreme events, such as frost damage,
heavy precipitation or wind throw. Furthermore, the multivariate perspective allows
to develop an entire multivariate typology of extreme events, in order to identify
current high-impact types of extreme events, potential changes in future climate,
or to rely on multivariate methods to detect novel climates in the future and the
departure time from normal variability.
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Chapter S1

Supplementary material

S1.1 Multivariate perspective compared to single vari-

ables

One very simple way to illustrate the advantage of the multivariate perspective on
the Russian heatwave is to calculate the percentage of the anomaly one would miss
compared to the multivariate combination of variables, when focussing on a single
variable of interest.

The proportion one would potentially miss ranges between 13% (rH) to 89%
(P) for the atmosphere (atmos-RHW) and 0% (GPP, LE) to 10% (FPAR) for the
biosphere (bio-RHW) (Tab. S1). Thus, for the atmosphere anomaly, the multivariate
combination of variables is essential to cover the whole anomalous area. In contrast,
the biosphere variables already integrate over a wide range of processes and one
could potentially focus on specific variables (GPP, LE), without missing parts of the
anomaly.

Table S1 – Part of the RHW event one would potentially miss, when focussing on single variables
only.

event / variable T Rg P rH SM GPP LE H FPAR
atmos-RHW 0.52 0.36 0.89 0.13 0.31 0.19 0.18 0.23 0.56
bio-RHW 0.75 0.36 0.95 0.29 0.57 0 0 0.08 0.10

S1.2 An exemplary typology of extreme events

In chapter 5, 180 droughts and heatwaves were selected from all 1000 largest extreme
events, due to their expected high impacts on vegetation’s productivity. This restric-
tion to droughts, heatwaves and combined droughts and heatwaves is not necessary
with a different objective. An detailed analysis of any of the largest extreme events
may reveal more details. One could detect extreme events in three variables, e.g.
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temperature, radiation and some index of water availability. First one can distin-
guish many more nuanced differences of droughts and heatwaves, e.g. compounding
droughts and heatwaves with simultaneously high radiation, as well as normal or low
radiation. The same differentiation is possible with droughts (or heatwaves), splitted
according to temperature (or water availability) (normal, low), and radiation (nor-
mal, low, high). Going even further, it is possible to develop an entire typology of
extreme events, e.g. building on 33 = 27 possible combinations (3 variables, each
variable three categories: high, normal, low). Evaluating differences in the impacts
e.g. on gross primary productivity and trying to explain those could facilitate more
facets in the understanding of climate extreme events and their impacts (Table S2).

index FAPAR (5%) FAPAR (3%) Temperature Radiation Water availability
9 -0.070 -0.070 high high low
6 -0.063 -0.069 high normal low

18 -0.061 -0.067 high high normal
8 -0.060 -0.065 normal high low
4 -0.056 -0.064 low normal low

14 -0.055 -0.049 normal normal normal
27 -0.052 -0.042 high high high
15 -0.052 -0.057 high normal normal
17 -0.051 -0.054 normal high normal
22 -0.050 low normal high
1 -0.050 -0.051 low low low

24 -0.047 -0.041 high normal high
13 -0.047 -0.050 low normal normal
19 -0.046 -0.046 low low high
5 -0.043 normal normal low

10 -0.041 -0.048 low low normal
26 -0.040 -0.043 normal high high
20 -0.039 -0.049 normal low high
2 -0.038 -0.042 normal low low

16 -0.037 low high normal
11 -0.032 -0.036 normal low normal
7 -0.032 -0.016 low high low

23 -0.031 -0.035 normal normal high
12 -0.016 high low normal
3 -0.013 -0.009 high low low

25 -0.010 -0.015 low high high
21 -0.010 -0.005 high low high

Table S2 – Example of establishing a systematic typology of extreme events in three variables
(temperature, radiation and water availability), and associated instantaneous negative impacts
calculated as deviation of the fraction of photosynthetic absorbed active radiation from mean sea-
sonal cycle (FAPAR). FAPAR is summarized as mean globally. The number in brackets denotes
two different thresholds to detect extreme events with the applied detection scheme of chapter
5. The table shows that compounding droughts and heatwaves with concurrent extremely high
radiation are associated with highest impacts (strongest reduction in FAPAR).
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S1.3 Sensitivity of the regionalisation procedure

Figure S1 – Sensitivity of the regionalisation procedure assessed by changing the number of used
principal components which are used for classification on a North-South transect covering Africa
and Europe. In general, very low differences are found for detecting extreme events. However,
some regions (e.g. West Africa, Albania) show slightly high deviations in the anomaly scores,
when changing the number of principal components.
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Chapter S2

Supplemantary material of chapter 3
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Supplementary Material 1 Parameterization of Recurrences and Kernel Density Estimation
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Figure S1. We test different choices of σ (Recurrences (REC)) or ε (for Kernel Density Estimation (KDE)) in a small simulation (500
repetitions) trying to detect a BaseShift. σ (or ε, respectively) is varied between the 0.05 and 0.95 quantile of the distribution of values of the
distance matrix. The Area Under the receiver operator characteristics Curve (AUC) is computed for each parameterization. Results exhibit
constant AUC values for KDE within the testing range of σ. In contrast REC is more sensitive to the choice of ε, although it might yield
slightly higher AUC values in case of optimal chosen ε.
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Supplementary Material 2 Effect of different data properties on the algorithms

−0.10

−0.05

0.00

0.05

0.10

C
or

re
la

te
dN

oi
se

La
pl

ac
ia

nN
oi

se

La
tit

ud
eG

ra
di

en
t

Lo
ng

E
xt

re
m

es

M
or

eI
nd

ep
C

om
po

ne
nt

s

N
oi

se
In

cr
ea

se

N
on

Li
ne

ar
D

ep

R
an

do
m

W
al

kE
xt

re
m

e

S
ea

so
na

lC
yc

le

S
ho

rt
E

xt
re

m
es

(a) BaseShift

∆A
U

C

KDE
KNN
REC

−0.1

0.0

0.1

0.2

0.3

C
or

re
la

te
dN

oi
se

La
pl

ac
ia

nN
oi

se

La
tit

ud
eG

ra
di

en
t

M
or

eI
nd

ep
C

om
po

ne
nt

s

N
oi

se
In

cr
ea

se

N
on

Li
ne

ar
D

ep

S
ea

so
na

lC
yc

le

(b) TrendOnset

KDE
KNN
REC

−0.10

−0.05

0.00

0.05

0.10

0.15

C
or

re
la

te
dN

oi
se

La
pl

ac
ia

nN
oi

se

La
tit

ud
eG

ra
di

en
t

Lo
ng

E
xt

re
m

es

M
or

eI
nd

ep
C

om
po

ne
nt

s

N
oi

se
In

cr
ea

se

N
on

Li
ne

ar
D

ep

R
an

do
m

W
al

kE
xt

re
m

e

S
ho

rt
E

xt
re

m
es

(c) MSCChange

∆A
U

C

KDE
KNN
REC

−0.10

−0.05

0.00

0.05

C
or

re
la

te
dN

oi
se

La
pl

ac
ia

nN
oi

se

La
tit

ud
eG

ra
di

en
t

Lo
ng

E
xt

re
m

es

M
or

eI
nd

ep
C

om
po

ne
nt

s

N
oi

se
In

cr
ea

se

N
on

Li
ne

ar
D

ep

R
an

do
m

W
al

kE
xt

re
m

e

S
ea

so
na

lC
yc

le

S
ho

rt
E

xt
re

m
es

(d) VarianceChange

KDE
KNN
REC

Figure S2. Effect of different data properties on the 3 best detection algorithms (KDE, REC, KNN-Gamma) presented as AUC difference
to the UNIV control for the event types (a-d). Details for each algorithm reveal that KNN-Gamma is often less affected by ’difficult’ data
properties like CorrelatedNoise or MoreIndepComponents, i.e. KNN-Gamma is more adaptive than the other two algorithms.
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Supporting Information for ”Vegetation
modulates the impact of climate extremes
on gross primary production” by Flach
et. al.
Case Studies

To illustrate the range of relative drought and heat anomalies, we report
on different high and low impact extreme events in our data base in the
following.
Case Study: European Heatwave 2003

The European heatwave 2003 (classified here as compounding drought
and heatwave) started in April, peaked on the 14th of July and finished in
September with a maximal duration of 104 days (Figure 1). The affected
volume was 33 · 106 km2d. Total reduction in GPP is estimated here as -
11 gC m−2month−1, which is less than reported in (Ciais et al. 2005) (-28
gC m−2month−1). Differences can be seen especially for forested ecosys-
tems in the low mountain ranges (Vosges, Thuringian Forests, Black Forest,
Ardennes, Rhenish Massif, Taunus) and a larger area with enhanced pro-
ductivity around the Alps (Figure 1). Comparing our results with eddy
covariance site level data (Ciais et al. 2005, Reichstein et al. 2007) from lit-
erature reveals that site level data and Fluxcom-RS agree on the direction
of the GPP anomalies for DE-Hai (both negative), FR-Hes (both negative),
FR-Lbr (both positive), and disagree for BE-Vie, DE-Tha (both positive by
FLUXCOM-RS, negative at the tower site).
Case Study: US drought and heatwave 2012

The US drought and heatwave in 2012 started in April, peaked on June,
29th, and ended mid October with a maximal duration of 144 days. The af-
fected volume was 12 ·106 km2d. Total reduction in GPP is estimated here as
-15 gC m−2month−1. However, on average forests increase their productivity
by 13% ( 22 gC m−2month−1). The one common affected tower site from
literature (US-MMS) (Wolf et al. 2016) is in agreement with FLUXCOM-RS
(both agree on a negative impact) (Figure 2).
Case Study: Russian Heatwave 2010

The Russian heatwave 2010 is one of the most impacting events in our
data base (Fig. 3, classified here as compounding drought and heatwave).
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It started in June, peaked on July, 19th, and ended in September with a
maximal duration of 80 days. The affected volume was 87 · 106 km2d. The
total reduction in GPP is estimated here as 72 TgC, roughly comparable to
(Bastos et al. 2014) (90 TgC). We estimated losses in agricultural ecosys-
tems to be 22% compared to the normal GPP average, which is comparable
e.g. to estimates from (Wegren 2010) (grain harvest reduction of one third).
However, we also estimate forests to enhance their productivity by 5% dur-
ing the event. We could not find eddy covariance tower based estimates of
carbon losses in literature.
Case Study: European heatwave 2018

The summer drought and heatwave in Mid-Europe 2018 started in June,
peaked on July, 24th and lasted until August (Fig. 4). It was associated with
a relative reduction in GPP by 10 % (6%) in agricultural (other) ecosystems.
However, forests on average still are still productive as usual (± 0 % ). These
differences between forests and agricultural ecosystems are also reported in
(Buras et al. 2019).
Case Study: Drought in Brazil 2012

The drought in Brazil 2012 is another high impact event in our data
base (Fig. 5). It started in April, peaked on May, 2nd, and lasted until
September, with a maximum duration of 136 days. The affected volume was
24 · 106 km2d. Total reduction in carbon is estimated to be -36 TgC. We
are not aware of any tower or model based comparison of this number. The
affected area is in agreement with maps published in (Marengo et al. 2013).
Case Study: Horn of Africa 2009

The drought at the greater Horn of Africa 2009 (Fig. 6 is classified here as
compounding drought and heatwave). It started in July, peaked on August,
14th, and lasted until September. The affected volume was 23 · 106 km2d.
Total reduction in GPP is estimated to be 20 TgC. There have been no eddy
covariance towers in the affected region 2009, but the event is also reported
in (Nicholson 2014).
Case Study: Indian heatwave 2009

The Indian heatwave 2009 is one of the least impacting (most enhanced
GPP) events in our data base (Fig. 7). It started in May, peaked at August,
1st. and lasted until September. The affected volume of the event is 45 · 106

km2d. The peak of the event is 53 days before peak of the growing season.
Although it is classified as a relative drought and heatwave, there is still
water available for large areas during the event (Fig. 7 (d), 25%, mean
surface moisture during event). The conditions are associated with increased
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productivity by 6 % (12%) in agricultural (forest) ecosystems and enhances
total GPP by 13 TgC compared to the other years. The event presents
the strongest enhancement of GPP of a single event in our data base. We
can find warnings related to drought reduced agricultural yields in literature
(Neena et al. 2011). However, the Organisation for Economic Co-operation
and Development (OECD) reports a 4% increase in the wheat production for
India 2009 (OECD 2009).
Case Study: Siberian heatwave 2011

The Siberian heatwave in 2011 another example of the least impacting
event in our data base (Fig. 8). It starts in May, peaks on June, 1st. and
lasts until the end of June. The affected volume is 31 ·106 km2d. The peak of
the heatwave is 41 days before peak growing season and it is has a maximum
duration of 40 days, but shows a rather short duration for large parts of the
event (Fig. 8). Water seems to be available during the heatwave (27%, mean
surface moisture during event). These conditions are associated with an en-
hancement of GPP by 34 % (29 %) in forests (other) ecosystems (43 TgC) in
other ecosystems. The event illustrates that a relative detection of drought
and heat anomalies also includes events which are not severely affecting veg-
etation but can be beneficial for vegetation especially in Northern latitudes
for which temperature and surface moisture conditions are still moderate.
Case Study: China drought 2011

The drought (and heatwave) in Southern China 2011 is one of the events
in our data base (Fig. 9) showing strong differences among a East-West gradi-
ent. It starts in July 2006, peaks on August, 21th and lasts until September.
The affected volume is 38 · 106 km2d. Maximum duration is 72 days, 31 days
after peak growing season. Eastern agricultural (-7 TgC) areas are strongly
affected by the event in contrast to other ecosystems (+7 TgC) in the west-
ern parts of the affected area. These dipole-like structures can also be seen
in maps of mean temperature and surface moisture during the event. Forests
are partly associated with enhanced productivity, especially in regions with
high temperatures and available surface moisture. This is interpreted as a
positive reaction to the available radiation during the heatwave part of the
event (Song et al. 2019).
East Europe 2015

The summer drought and heatwave affecting Europe with a focus on
East Europe in 2015 started in June, peaked on August, 2nd and lasted until
September. It was relatively short lasting for most of the affected area (< 20
days), and probably therefore affecting productivity not so strongly (Total
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impact: -0.5 TgC agriculture, +5 TgC forests), although the affected volume
was comparable to other high-impact extreme events ( 21·106 km2d).
Amazon 2010

The Amazon drought 2010 is one of the well-known high-impact events of
the last decade. It is classified here as a compounding drought and heatwave.
It started in October 2009, peaked on January, 25th and lasts until March
with a maximal duration of 184 days. It affected both, forests, and other
ecosystems which reduced GPP by 7%, 9% respectively. The affected volume
(107 ·106 km2d) is among the highest in our data base (Fig. 11).

4



References

Bastos, A., Gouveia, C. M., Trigo, R. M. & Running, S. W. (2014). Analysing
the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on
plant productivity in Europe, Biogeosciences 11(13): 3421–3435.

Buras, A., Rammig, A. & Zang, C. S. (2019). Quantifying impacts of the
drought 2018 on european ecosystems in comparison to 2003, Biogeo-
sciences Discussions 2019: 1–23.
URL: https://www.biogeosciences-discuss.net/bg-2019-286/

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubi-
net, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F.,
De Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch,
B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G.,
Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard,
K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze,
E. D., Vesala, T. & Valentini, R. (2005). Europe-wide reduction in
primary productivity caused by the heat and drought in 2003, Nature
437(7058): 529–533.

Marengo, J. A., Alves, L. M., Soares, W. R., Rodriguez, D. A., Camargo, H.,
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Figure 1: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the European heatwave 2003.
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Figure 2: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the US 2012 drought and heatwave.
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Figure 3: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the Russian heatwave 2010.
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Figure 4: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the European heatwave 2018.
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Figure 5: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the drought in Brazil 2012.
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Figure 6: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the drought at the greater Horn of Africa 2009.
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Figure 7: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the Indian heatwave 2009.
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Figure 8: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the Siberian heatwave 2011.
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Figure 9: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the China drought 2011.
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Figure 10: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the Drought and heatwave in East Europe 2015.
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Figure 11: (a) Impact on GPP anomalies, (b) duration, (c) affected ecosys-
tem types, (d) surface moisture conditions, and (e) temperature conditions
associated with the Amazon drought 2010.
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