
Random Hypergraphs

for Hashing-Based Data Structures

Dissertation zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der Fakultät für Informatik und Automatisierung
der Technischen Universität Ilmenau

von

Stefan Walzer

peelabilitysolvabilityorientability

cuckoo
hash table

retrieval via
linear systems

minimum perfect
hash function

Dictionary Retrieval AMQ-filter Simple IBF

⇐⇐

static

static

dynamicstaticdynamic

dy
na
m
ic

Betreuer: Univ.-Prof. Dr. Martin Dietzfelbinger, TU Ilmenau
2. Gutachter: Univ.-Prof. Dr. Konstantinos Panagiotou, LMU München
3. Gutachter: Prof. Michael Mitzenmacher, PhD., Harvard University

Tag der Einreichung: 1. Mai 2020
Tag der Verteidigung: 19. Oktober 2020

urn:nbn:de:gbv:ilm1-2020000498



ii

Zusammenfassung

Diese Arbeit behandelt Wörterbücher und verwandte Datenstrukturen, die darauf aufbauen,
mehrere zufällige Möglichkeiten zur Speicherung jedes Schlüssels vorzusehen.

Man stelle sich vor, Information über eine Menge 𝑆 von𝑚 = |𝑆 | Schlüsseln soll in 𝑛
Speicherplätzen abgelegt werden, die durch [𝑛] = {1, . . . , 𝑛} indiziert sind. Jeder Schlüssel
𝑥 ∈ 𝑆 bekommt eine kleine Menge 𝑒 (𝑥) ⊆ [𝑛] von Speicherplätzen durch eine zufällige
Hashfunktion unabhängig von anderen Schlüsseln zugewiesen. Die Information über 𝑥
darf nun ausschließlich in den Plätzen aus 𝑒 (𝑥) untergebracht werden. Es kann hierbei
passieren, dass zu viele Schlüssel um dieselben Speicherplätze konkurrieren, insbesondere
bei hoher Auslastung 𝑐 =𝑚/𝑛. Eine erfolgreiche Speicherung der Gesamtinformation ist
dann eventuell unmöglich. Für die meisten Verteilungen von 𝑒 (𝑥) lässt sich Erfolg oder
Misserfolg allerdings sehr zuverlässig vorhersagen, da für Auslastung 𝑐 unterhalb eines
gewissen Auslastungsschwellwertes 𝑐∗ die Erfolgswahrscheinlichkeit nahezu 1 ist und für 𝑐
jenseits dieses Auslastungsschwellwertes nahezu 0 ist.
Hauptsächlich werden wir zwei Arten von Datenstrukturen betrachten:

Eine Kuckucks-Hashtabelle ist eine Wörterbuchdatenstruktur, bei der jeder Schlüssel
𝑥 ∈ 𝑆 zusammen mit einem assoziierten Wert 𝑓 (𝑥) in einem der Speicherplätze mit
Index aus 𝑒 (𝑥) gespeichert wird. Die Verteilung von 𝑒 (𝑥) wird hierbei vom Hashing-

Schema festgelegt. Wir analysieren drei bekannte Hashing-Schemata und bestimmen
erstmals deren exakte Auslastungsschwellwerte im obigen Sinne. Die Schemata sind
unausgerichtete Blöcke, Doppel-Hashing sowie ein Schema für dynamisch wachsenden
Schlüsselmengen.
Auch eine Retrieval-Datenstruktur speichert einen Wert 𝑓 (𝑥) für alle 𝑥 ∈ 𝑆 . Diesmal
sollen die Werte in den Speicherplätzen aus 𝑒 (𝑥) eine lineare Gleichung erfüllen, die
den Wert 𝑓 (𝑥) charakterisiert. Die entstehende Datenstruktur ist extrem platzsparend,
aber ungewöhnlich: Sie ist ungeeignet um Fragen der Form „ist 𝑦 ∈ 𝑆?“ zu beantworten.
Bei Anfrage eines Schlüssels 𝑦 wird ein Ergebnis 𝑧 zurückgegeben. Falls 𝑦 ∈ 𝑆 ist, so ist
𝑧 = 𝑓 (𝑦) garantiert, andernfalls darf 𝑧 ein beliebiger Wert sein.
Wir betrachten zwei neue Hashing-Schemata, bei denen die Elemente von 𝑒 (𝑥) in einem
oder in zwei zusammenhängenden Blöcken liegen. So werden gute Zugriffszeiten auf
Word-RAMs und eine hohe Cache-Effizienz erzielt.

Eine wichtige Frage ist, ob Datenstrukturen obiger Art in Linearzeit konstruiert werden
können. Die Erfolgswahrscheinlichkeit eines naheliegenden Greedy-Algorithmus weist
abermals ein Schwellwertverhalten in Bezug auf die Auslastung 𝑐 auf. Wir identifizieren ein
Hashing-Schema, das diesbezüglich einen besonders hohen Schwellwert mit sich bringt.

In der mathematischen Modellierung werden die Speicherpositionen [𝑛] als Knoten und
die Mengen 𝑒 (𝑥) für 𝑥 ∈ 𝑆 als Hyperkanten aufgefasst. Drei Eigenschaften der entstehenden
Hypergraphen stellen sich dann als zentral heraus: Schälbarkeit, Lösbarkeit und Orientier-

barkeit. Weite Teile dieser Arbeit beschäftigen sich daher mit den Wahrscheinlichkeiten
für das Vorliegen dieser Eigenschaften abhängig von Hashing Schema und Auslastung,
sowie mit entsprechenden Schwellwerten. Eine Rückübersetzung der Ergebnisse liefert
dann Datenstrukturen mit geringen Anfragezeiten, hoher Speichereffizienz und geringen
Konstruktionszeiten. Die theoretischen Überlegungen werden dabei durch experimentelle
Ergebnisse ergänzt und gestützt.



iii

Abstract

This thesis concerns dictionaries and related data structures that rely on providing several
random possibilities for storing each key.

Imagine information on a set 𝑆 of𝑚 = |𝑆 | keys should be stored in 𝑛 memory locations,
indexed by [𝑛] = {1, . . . , 𝑛}. Each object 𝑥 ∈ 𝑆 is assigned a small set 𝑒 (𝑥) ⊆ [𝑛] of locations
by a random hash function, independent of other objects. Information on 𝑥 must then be
stored in the locations from 𝑒 (𝑥) only. It is possible that too many objects compete for the
same locations, in particular if the load 𝑐 =𝑚/𝑛 is high. Successfully storing all information
may then be impossible. For most distributions of 𝑒 (𝑥), however, success or failure can
be predicted very reliably, since the success probability is close to 1 for loads 𝑐 less than a
certain load threshold 𝑐∗ and close to 0 for loads greater than this load threshold.
We mainly consider two types of data structures:

A cuckoo hash table is a dictionary data structure where each key 𝑥 ∈ 𝑆 is stored
together with an associated value 𝑓 (𝑥) in one of the memory locations with an index
from 𝑒 (𝑥). The distribution of 𝑒 (𝑥) is controlled by the hashing scheme. We analyse
three known hashing schemes, and determine their exact load thresholds. The schemes
are unaligned blocks, double hashing and a scheme for dynamically growing key sets.
A retrieval data structure also stores a value 𝑓 (𝑥) for each 𝑥 ∈ 𝑆 . This time, the
values stored in the memory locations from 𝑒 (𝑥) must satisfy a linear equation that
characterises the value 𝑓 (𝑥).
The resulting data structure is extremely compact, but unusual. It cannot answer
questions of the form “is 𝑦 ∈ 𝑆?”. Given a key 𝑦 it returns a value 𝑧. If 𝑦 ∈ 𝑆 , then
𝑧 = 𝑓 (𝑦) is guaranteed, otherwise 𝑧 may be an arbitrary value.
We consider two new hashing schemes, where the elements of 𝑒 (𝑥) are contained in
one or two contiguous blocks. This yields good access times on a word RAM and high
cache efficiency.

An important question is whether these types of data structures can be constructed in
linear time. The success probability of a natural linear time greedy algorithm exhibits, once
again, threshold behaviour with respect to the load 𝑐 . We identify a hashing scheme that
leads to a particularly high threshold value in this regard.

In the mathematical model, the memory locations [𝑛] correspond to vertices, and the
sets 𝑒 (𝑥) for 𝑥 ∈ 𝑆 correspond to hyperedges. Three properties of the resulting hypergraphs
turn out to be important: peelability, solvability and orientability. Therefore, large parts
of this thesis examine how hyperedge distribution and load affects the probabilities with
which these properties hold and derive corresponding thresholds. Translated back into the
world of data structures, we achieve low access times, high memory efficiency and low
construction times. We complement and support the theoretical results by experiments.



iv

Acknowledgements

Shortly after my master’s, I find myself in a small unfamiliar town, about to see a professor
I’ve never met before for a job interview. A few minutes later, I am sitting in the office
of Martin Dietzfelbinger – he is explaining small world graphs to me – and I feel at home.
It is his nature that drew me to Ilmenau: Kind, respectful, patient. His thinking seems
remarkably structured, with every word, gesture or stroke of the pen deliberately crafted
to expose an idea more clearly. In the following years, whenever I enter his office, he can
spare a friendly smile and some time for his student. His warm-hearted nature holds the
research group together. He is a role model, as a scientist and as a person. I cannot conceive
of a better advisor and owe him my gratitude.

The following other people deserve my thanks. Michael Rink for providing me with
the extensive bibliography file from his thesis [Rin15] and all cited papers. Alexander
Koch, a good friend and frequent coauthor, for proofreading the introduction of this thesis.
Konstantinos Panagiotou and Michael Mitzenmacher for encouraging words and taking the
time to review this thesis. Konstantinos Panagiotou (again) and Peter Sanders for inviting me
to Munich and Karlsruhe, respectively, to discuss our work. Philipp Schlag for his strong
dedication to our joint teaching duties. And finally, thanks to everyone at the institute
for theoretical computer science for a pleasant work atmosphere, stimulating discussions
over lunch, exciting board game nights and – last but not least – designing my eminently
beautiful doctoral hat.

Contributions by Others

This thesis is based on six papers with coauthors listed in Table 1.2. The following re-
marks are due: Michael Mitzenmacher gave the impulse for [MPW18] and Konstantinos
Panagiotou discovered a Theorem by LutzWarnke, which is a critical ingredient in the proof.
Tobias Maier und Peter Sanders are the primary authors of [MSW19], I only contributed
the derivation of the thresholds, as found in Chapter 11 of this thesis. A question by Seth
Pettie inspired the work of [DW19c]. An email by Djamal Belazzougui provided a key
reference that guided the development of [Wal20b] in the right direction.

The works with Martin Dietzfelbinger were written in close collaboration, and it is
impossible to disentangle who contributed which ideas. Even in the papers where he is not
officially a coauthor, he was always part of the discussion and his comments often greatly
improved the presentation. This is doubly true for [Wal20b], which is a revision of our
joint paper [DW19b].

This thesis is typeset with LATEX using the Linux Libertine typeface. Many illustrations were created
with TikZ. Some designs were adopted from the LIPIcs LATEX-template by Dagstuhl Publishing.



v

Contents

1. Introduction 1

1.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I. Results 11

2. Random Hypergraphs: Peeling, Solving, Orienting 13

2.1. Three Hypergraph Properties . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2. Peelable Hypergraphs at High Densities . . . . . . . . . . . . . . . . . . . . 15

2.2.1. Spatially Coupled Hypergraphs . . . . . . . . . . . . . . . . . . . . 15
2.2.2. Previous Constructions of Peelable Hypergraphs . . . . . . . . . . 17

2.3. Solvability and Good Locality at High Densities . . . . . . . . . . . . . . . 18
2.3.1. New Construction with Two Random Blocks per Row . . . . . . . 18
2.3.2. New Construction with One Random Block per Row . . . . . . . . 19
2.3.3. Previous Constructions of Matrices with Full Rank . . . . . . . . . 19

2.4. Orientability of Variations of Fully Random Hypergraphs . . . . . . . . . . 20
2.4.1. Higher Thresholds using Unaligned Blocks . . . . . . . . . . . . . 20
2.4.2. Less Randomness using Double Hashing . . . . . . . . . . . . . . . 22
2.4.3. Orientability Considerations for Dynamic Settings . . . . . . . . . 23
2.4.4. Previous Work on ℓ-orientability Thresholds . . . . . . . . . . . . . 24

3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond 27

3.1. The Dictionary and its Modest Siblings . . . . . . . . . . . . . . . . . . . . 27
3.1.1. The Ideal Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2. Less Powerful Variations . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3. When Less Power is Sufficient . . . . . . . . . . . . . . . . . . . . . 29

3.2. Modelling Hashing-Based Data Structures via Random Hypergraphs . . . 30
3.3. Dictionaries via Cuckoo Hash Tables . . . . . . . . . . . . . . . . . . . . . 31

3.3.1. Results on Cuckoo Hash Tables . . . . . . . . . . . . . . . . . . . . 35
3.4. Static Retrieval via Linear Systems . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1. Pure Results on Retrieval Data Structures . . . . . . . . . . . . . . 39
3.4.2. Input Partitioning for Faster Construction . . . . . . . . . . . . . . 40
3.4.3. Comparison of Static Retrieval Data Structures . . . . . . . . . . . 42

3.5. (Minimum) Perfect Hash Functions via Retrieval . . . . . . . . . . . . . . . 43
3.6. Approximate Membership via Retrieval and Cuckoo Tables . . . . . . . . . 45
3.7. Straggler Identification via Invertible Bloom Filters . . . . . . . . . . . . . 47

II. Background 49

4. Fundamental Models, Techniques and Algorithms 51

4.1. The Word RAM Model vs. Real Computers . . . . . . . . . . . . . . . . . . 51
4.1.1. The Parity Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 51



vi

4.1.2. Use Case: Scalar Product of Bit Vectors . . . . . . . . . . . . . . . . 52
4.2. Double Hashing and its Uses . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3. Full Randomness Assumption . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1. Building on Weaker Assumptions . . . . . . . . . . . . . . . . . . . 54
4.3.2. Constructing Fully Random Functions: Split and Share . . . . . . . 54
4.3.3. Hoping for Indistinguishability from Randomness . . . . . . . . . . 55

4.4. Solving Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1. Wiedemann’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2. Heuristic Presolving: Lazy Gaussian Elimination . . . . . . . . . . 57
4.4.3. The Method of Four Russians . . . . . . . . . . . . . . . . . . . . . 59

4.5. Connection to Coding Theory . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.1. The Binary Erasure Channel and Low Density Parity Check Codes 61
4.5.2. Good Codes vs. Good Data Structures . . . . . . . . . . . . . . . . 61

4.6. Dictionaries not Building on Random Hypergraphs . . . . . . . . . . . . . 62

5. Local Weak Limits and Lelarge’s Theorem 65

5.1. Defining the Local Weak Limit . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2. The Objective Method and Lelarge’s Theorem . . . . . . . . . . . . . . . . 68
5.3. Proving Local Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . 71

III. Proofs 73

6. Peeling Close to the Orientability Threshold 75

6.1. Threshold Saturation by Spatial Coupling . . . . . . . . . . . . . . . . . . . 75
6.2. The Peeling Process and Idealised Peeling Operators . . . . . . . . . . . . . 75
6.3. Analysis of Iterated Peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1. Unleashing Heavy Machinery from Coding Theory . . . . . . . . . 80
6.4. Peelability of 𝐹𝑛 below 𝑐∗

𝑘,ℓ
. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5. Non-Orientability of 𝐹𝑛 above 𝑐∗
𝑘,ℓ

. . . . . . . . . . . . . . . . . . . . . . . 85

7. Constant - Time Retrieval with O(log𝒎) Extra Bits 89

7.1. Proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.1.1. General Considerations . . . . . . . . . . . . . . . . . . . . . . . . 89
7.1.2. Proof of Theorem B (i) . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.1.3. Proof of Theorem B (ii) . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1.4. Proof of Theorem B (iii) . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1.5. Proof of Lemma 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2. Proof of Theorem B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8. Near-Quadratic Matrices with One Short Random Block per Row 97

8.1. Proof Sketch for Theorem C . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2. A Simple Gaussian Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3. Coin-Flipping Robin Hood Hashing . . . . . . . . . . . . . . . . . . . . . . 99
8.4. Connection between SGAUSS and CFRH . . . . . . . . . . . . . . . . . . . . 100
8.5. Bounding Heights in CFRH by a Markov Chain . . . . . . . . . . . . . . . . 102
8.6. Enter Queuing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



vii

8.7. Putting the Pieces Together – Proof of Theorem C . . . . . . . . . . . . . . 105
8.8. A New Retrieval Data Structure – Proof of Theorem C1 . . . . . . . . . . . 105
8.9. Input Partitioning – Proof of Theorem C2 . . . . . . . . . . . . . . . . . . . 106

9. Load Thresholds for Cuckoo Hashing with Unaligned Blocks 109

9.1. Outline of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2. Equivalence of𝑊𝑛 and �̂�𝑛 with respect to orientability . . . . . . . . . . . 113
9.3. Local weak convergence of 𝐺𝑛 to 𝑇 . . . . . . . . . . . . . . . . . . . . . . 114
9.4. Belief Propagation on the Limiting Tree 𝑇 . . . . . . . . . . . . . . . . . . 116
9.5. Closing the Gap – Proof of the Main Theorem . . . . . . . . . . . . . . . . 119
9.6. Numerical approximations of the Thresholds. . . . . . . . . . . . . . . . . . 121

10. Load Thresholds for Cuckoo Hashing with Double Hashing 125

10.1. No small Hall-witness exists . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.2. The significance of Hall-witnesses . . . . . . . . . . . . . . . . . . . . . . . 129

11. Dynamic Space Efficient Hashing 133

11.1. The Limiting Bipartite Galton-Watson Tree . . . . . . . . . . . . . . . . . . 133
11.2. Applying Lelarge’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11.3. The (implicit) Threshold Function . . . . . . . . . . . . . . . . . . . . . . . 135
11.4. Obtaining Numerical Approximations . . . . . . . . . . . . . . . . . . . . . 135

IV. Evaluation 137

12. Experiments 139

12.1. Empirical Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.2. Benchmarks for Retrieval Data Structures . . . . . . . . . . . . . . . . . . . 140

12.2.1. Testing Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
12.2.2. On the Experiments with bpz . . . . . . . . . . . . . . . . . . . . . 143
12.2.3. On the Experiments with gov . . . . . . . . . . . . . . . . . . . . . 143
12.2.4. On the Experiments with lmss . . . . . . . . . . . . . . . . . . . . 143
12.2.5. On the Experiments with coupled . . . . . . . . . . . . . . . . . . 143
12.2.6. On the Experiments with 2-block . . . . . . . . . . . . . . . . . . 145
12.2.7. On the Experiments with 1-block . . . . . . . . . . . . . . . . . . 146
12.2.8. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

12.3. Experiments on Cuckoo Hashing with Unaligned Blocks . . . . . . . . . . 147
12.3.1. Speed of Convergence and Practical Table Sizes . . . . . . . . . . . 147
12.3.2. Linear Time Construction of an Orientation . . . . . . . . . . . . . 148
12.3.3. Random Walk Insertion . . . . . . . . . . . . . . . . . . . . . . . . 149

12.4. Experiments on Cuckoo Hashing with Double Hashing . . . . . . . . . . . 149

13. Conclusion 151

Bibliography 153



viii List of Figures

List of Figures

1.1. What (not) to expect from this thesis. . . . . . . . . . . . . . . . . . . . . . 9

2.1. Three ways to represent hypergraphs. . . . . . . . . . . . . . . . . . . . . . 13
2.2. Construction of the spatially coupled hypergraph. . . . . . . . . . . . . . . 16
2.3. Comparison of peelable hypergraph constructions. . . . . . . . . . . . . . 17
2.4. Examples for the “Two Block” and “One Block” random matrices. . . . . . 19
2.5. Hypergraph with buckets, aligned blocks and unaligned blocks. . . . . . . 21
2.6. Comparison of thresholds of hypergraphs with aligned and unaligned blocks. 22
2.7. The DySECT hypergraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1. Outline of Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2. Abstract implementation of dictionary operations with a cuckoo hash table. 33
3.3. The DySECT hashing scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4. The phase-dependent load thresholds of the DySECT hashing scheme. . . 37
3.5. Abstract implementation of static retrieval via linear systems. . . . . . . . 38
3.6. Minimum perfect hash functions via spatially coupled hypergraphs. . . . . 45
3.7. Operations of a simple invertible Bloom filter. . . . . . . . . . . . . . . . . 47

4.1. Two c++ implementations of the parity operation. . . . . . . . . . . . . . 51
4.2. Implementation of parity using lookup tables. . . . . . . . . . . . . . . . . 52
4.3. Implementation of parity using ABM instructions. . . . . . . . . . . . . . 52
4.4. Implementation of the scalar product of two bitstrings building on parity. 53
4.5. Example for two steps of the lazy Gaussian elimination algorithm. . . . . . 58
4.6. The Method of Four Russians to solve a system of linear equations over F2. 60

5.1. A sequence 𝐶3,𝐶4, . . . ∈ G∗ of rooted graphs with lim𝑛→∞𝐶𝑛 = 𝐶∞ ∈ G∗. . 66
5.2. A possible outcome of a Galton-Watson tree GWTPo(_) . . . . . . . . . . . . 67
5.3. Example for a weak limit: Random binary search tree. . . . . . . . . . . . . 67
5.4. The skeleton tree: Almost surely the local weak limit of random labeled trees. 68
5.5. Constructing random bipartite graphs from collections of stars. . . . . . . 69

6.1. “Layers” of a spatially coupled hypergraph during 48 rounds of peeling. . . 76
6.2. Visualisation of the potential function 𝜙 . . . . . . . . . . . . . . . . . . . . 80

8.1. A simple Gaussian solver for the One-Block construction. . . . . . . . . . . 99
8.2. The Coin-Flipping Robin Hood hashing algorithm. . . . . . . . . . . . . . . 100

9.1. The transformations from 𝐵𝑘,ℓ𝑛,𝑚 to 𝐻𝑘
𝑛/ℓ,𝑚 and from𝑊 𝑘,ℓ

𝑛,𝑚 to �̂� 𝑘,ℓ
𝑛,𝑚 . . . . . . . 109

9.2. The stars from which the local weak limit of �̂� is built. . . . . . . . . . . . 112
9.3. The transformation of𝑊𝑛 into the equivalent form �̂�𝑛 . . . . . . . . . . . . 113
9.4. The random weak limit 𝑇 of �̂�𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Tables ix

9.5. Functions characterising the threshold 𝛾2,2. . . . . . . . . . . . . . . . . . . 121

10.1. Two out of three steps for proving Theorem E are already done. . . . . . . 125

12.1. Overheads and running times of the retrieval approaches we implemented. 141
12.2. On choosing 𝑧 in finite spatially coupled hypergraphs. . . . . . . . . . . . 144
12.3. Fraction of variables remaining after applying the Lazy Gauss presolver. . 145
12.4. Contributions to construction time per key in the Two-Block approach. . . 146
12.5. Speed of convergence to threshold behaviour for𝑊 𝑘,ℓ

𝑛,𝑐𝑛 . . . . . . . . . . . . 148
12.6. Performance of Khosla’s LSA algorithm for unaligned blocks. . . . . . . . 148
12.7. Random walk insertion for unaligned blocks and double hashing. . . . . . 150

List of Tables

1.1. List of all theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2. Previously published papers. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1. Comparison of various constructions of random matrices. . . . . . . . . . . 20
2.2. Known orientability thresholds of various hypergraphs. . . . . . . . . . . . 24
2.3. Orientability thresholds of fully random hypergraphs. . . . . . . . . . . . . 26
2.4. Load thresholds of fully random hypergraphs. . . . . . . . . . . . . . . . . 26
2.5. Peelability thresholds of fully random hypergraphs. . . . . . . . . . . . . . 26
2.6. Orientability tresholds of hypergraphs with unaligned blocks. . . . . . . . 26

3.1. Comparison of cuckoo hashing schemes. . . . . . . . . . . . . . . . . . . . 34
3.2. Comparison of various retrieval data structures. . . . . . . . . . . . . . . . 42
3.3. Comparison of approximate membership data structures. . . . . . . . . . . 46

7.1. Conjectured thresholds for a variant of the Two-Block construction. . . . . 90

12.1. Breakdown of the space usage of the Two-Block approach . . . . . . . . . 146





1

1. Introduction

Before getting to the contributions of this thesis in Section 1.1, we review the notions of
peelability, solvability and orientability, and how they relate to cuckoo hash tables and re-

trieval data structures. Except for the name “solvability” that we introduce, the terminology
and general ideas are standard in the literature.

Imagine the mapping 𝑓 = { ↦→ 3, ↦→ 7, ↦→ 1, ↦→ 2} should be stored in a data
structure using a table 𝑇 . To facilitate fast information retrieval while maintaining some
flexibility, each key in { , , , } is randomly assigned several positions in 𝑇 . A key’s
information must be stored in exactly one of these positions, and each position can hold at
most one key/value pair. In the case shown below, placing all keys is possible, and we say
the configuration on the left is orientable, with an orientation shown on the right.1

𝑇 : 𝑇 : ,3 ,7 ,1,2

(1.1)

In the given case, a placement can even be found greedily, by identifying positions in 𝑇
that are an option for only one (remaining) key. At first, only can be placed in this way
into position 5, then and can be placed, and, finally, ends up with three positions to
itself and can be placed in any one of them. When this greedy procedure works, we say a
configuration is peelable.

𝑇 : 𝑇 : ,1

𝑇 : ,3 ,1 ,2 𝑇 : ,3 ,7 ,1 ,2

(1.2)

1 Note that the terminology of this introduction is less general than the terminology used in later chapters.
For instance, what is now called an orientation, will later be called a 1-orientation, which is a special case of
an ℓ-orientation.



2 1. Introduction

Finally, consider a somewhat peculiar way of storing the information of 𝑓 :

𝑇 : 𝑇 : 1 3 0 1 6 5 6

(1.3)

By taking the bit-wise exclusive or (xor) of the numbers in the positions assigned to a key,
we get the value assigned to the key. For this would be 1⊕5⊕6 = (001)2⊕(101)2⊕(110)2 =
(010)2 = 2 which is 𝑓 ( ). We say the configuration of keys and associated positions in 𝑇
is solvable because the underlying equations can be satisfied for all keys simultaneously,
regardless of the values assigned to the keys by 𝑓 . We shall later see that peelability implies
solvability which, in turn, implies orientability.

Roughly speaking, the goal of this thesis is to shed light on the following question.

Q: If keys are assigned sets of positions independently at random, under what conditions can

we expect the resulting configuration to be peelable, solvable or orientable?

This question is motivated by hashing-based data structures. To establish the connection and
construct working data structures from the ideas above, we have to provide a mechanism
that assigns to each key a set of positions in 𝑇 . This is done via a hash function, which
is a simple algorithm with pseudo-random behaviour. For a given key (and possibly a
seed) it computes a hash value. This hash value is then interpreted using a hashing scheme
(see below) as a set of positions in 𝑇 . We assume that, in this way, the keys are assigned
sets of positions independently at random with identical distribution.2 Note that repeated
execution of the hash function with the same key always yields the same result.

A dictionary is an abstract data type for storing a function 𝑓 . A cuckoo hash table
[PR04; Fot+05; DW07; CSW07; FR07; LP09; DMR11; PS12] implements a dictionary and is
given by a hash function and a table 𝑇 populated as shown in (1.1). To lookup the key ,
the positions of𝑇 indicated by the hash function, here {2, 4, 6}, are probed and𝑇 [6] reveals
that 𝑓 ( ) = 7. A lookup of an absent key is carried out similarly by evaluating the hash
function and probing positions. After failing to find in these positions, we know that is
not in the domain of 𝑓 .

A retrieval data structure [BKZ05; DP08; ADR09; Por09; DR09; Por09; BPZ13; GOV16;
GOV20; EGV20] is a partial implementation of the dictionary data type. It allows to evaluate
the stored function 𝑓 , but may yield an arbitrary value if the requested key is not in the
domain of 𝑓 . Typically, a retrieval data structure is given by a hash function and a table 𝑇
populated as shown in (1.3). For a given key in the domain of 𝑓 , we can evaluate the
hash function to obtain positions in 𝑇 , here {2, 4, 6}, and by taking the bit-wise exclusive
or (xor) of the stored numbers, here 3 ⊕ 1 ⊕ 5 = 7, we obtain 𝑓 ( ). However, for an absent
key , we can go through the same motions and obtain a value with no indication that
is not contained in the domain of 𝑓 . Strictly speaking, a retrieval data structure therefore
only provides conditional information of the form “if is contained in the domain of 𝑓 ,
then 𝑓 ( ) = 7”. The upside is that keys need not be stored in 𝑇 , which saves a significant

2 Whether or not this “full randomness assumption” is problematic is discussed in Section 4.3.



3

amount of memory, especially if the number of bits required to store a value, here 3, is
far smaller than the number of bits required to store a key. In the example, 7 · 3 = 21 bits
suffice to store 𝑇 .

As a motivation for retrieval data structures, we briefly outline their role in a construc-
tion of approximate membership query (AMQ) filters [Blo70; BM03; CC08; DP08;
FAK13; GL19]. Assume we have a set𝑀 , say𝑀 = { , , , }, and care about membership
queries, i.e. questions of the form “is 𝑥 ∈ 𝑀?”. We choose a range 𝑅 = {0, . . . , 2𝑟 − 1}, say
with 𝑟 = 3, and a hash function 𝑓 with range 𝑅, often called a fingerprint function. We store
the assignment {𝑥 ↦→ 𝑓 (𝑥) | 𝑥 ∈ 𝑀} in a retrieval data structure as shown in (1.3) but
also keep 𝑓 as a hash function. For a given key, we now have two ways of computing a
value from 𝑅, firstly by evaluating 𝑓 directly, and secondly by consulting the retrieval data
structure. For keys from 𝑀 we get the same result in both cases, e.g. 3 for . For a key
∉ 𝑀 , we obtain matching results only with probability 1/|𝑅 | = 2−𝑟 since 𝑓 ( ) had no

role in the construction of the retrieval data structure. To a question “is 𝑥 ∈ 𝑀?” we can
therefore answer “𝑥 ∉ 𝑀 , surely” on a mismatch and “𝑥 ∈ 𝑀 , probably” on a match. Even
though the positive answers are unreliable, such AMQ-filters are useful since they are small
and fast. If the reliable negative answers are sufficiently common, they can significantly
disburden large background data structures that can answer “is 𝑥 ∈ 𝑀?” perfectly but
slowly.

To summarise, orientability from (1.1) allows for cuckoo hash tables, and solvability
from (1.3) allows for retrieval data structures. It is not hard to see that, in both cases,
peelability as in (1.2) guarantees that a simple greedy algorithm, called a peeling algorithm,
can be used to populate the table 𝑇 . We can therefore rephrase our earlier question Q from
a data structure perspective:

Q
′
: Assuming fully random hash functions are available, under what conditions can an at-

tempt at constructing a cuckoo hash table or a retrieval data structure like above be expected

to succeed? Under what conditions can a peeling algorithm carry out the construction?

Let us break this down some more. By “conditions” we mean two things. Firstly, we mean
the ratio 𝑐 = 𝑚

𝑛 ∈ [0, 1] between the number𝑚 of keys and the size 𝑛 of the table𝑇 . We call
𝑐 load or density. Secondly, we mean the hashing scheme. It determines how a key’s
hash value, which is typically a long bit string, is interpreted as a set of positions in 𝑇 .
The hashing scheme therefore dictates the structure of the set 𝑒 (𝑥) ⊆ {1, . . . , 𝑛} of table
positions assigned to each key 𝑥 . Some previously studied schemes are:
Fully Random. For a given 𝑘 ∈ N, The set 𝑒 (𝑥) contains 𝑘 positions selected independ-

ently and uniformly at random. The example was like this with 𝑘 = 3.
Double Hashing. For a given 𝑘 ∈ N, the set 𝑒 (𝑥) is a random 𝑘-term arithmetic progres-

sion, i.e. is of the form {𝑎, 𝑎 + 𝑏, 𝑎 + 2𝑏, . . . , 𝑎 + (𝑘 − 1)𝑏}, with each term taken modulo
𝑛, for random 𝑎 and 𝑏. The motivation is to disburden the hash function, which has to
produce only 2 random values instead of 𝑘 .

(Un-)Aligned Blocks. For given 𝑘, ℓ ∈ N, the set 𝑒 (𝑥) consists of 𝑘 randomly chosen
blocks of ℓ consecutive positions each, for a total of 𝑘ℓ positions. This is motivated by
faster access times to contiguous memory positions due to processor caches. In one
variant, blocks must be aligned to multiples of ℓ . In that case, ℓ must divide the size of
𝑇 . In the unaligned variant, blocks may lie arbitrarily.



4 1. Introduction

The phrase “can it be expected to succeed” in Q
′ indicates that we deal with uncertainty.

Indeed, due to the randomness in the hash function, it is possible that too many keys
compete for the same positions in 𝑇 and a construction attempt fails (though we may
retry with a new hash function or a new seed). But as soon as we consider large data
structures with millions of elements, the uncertainty aspect fades into the background
since the probabilities for success are often extremely close to 0 or extremely close to 1.

To illustrate this general and well-known effect, consider the probability 𝑝 for orient-
ability when using the hashing scheme with 𝑘 = 2 unaligned blocks of size ℓ = 2. In
the following picture on the left, we plot (experimental approximations of) 𝑝 = 𝑝𝑛 (𝑐) for
varying density 𝑐 ∈ [0, 1] and fixed table size 𝑛 = 104.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
𝑝𝑛 (𝑐)

𝑐 0.958 0.96 0.962 0.964 0.966 0.968 0.97
0

0.2

0.4

0.6

0.8

1
𝑝𝑛 (𝑐)

𝑐

𝑛 = 104

𝑛 = 105

𝑛 = 106

𝑛 →∞

As we would expect, when we increase 𝑐 and therefore the number𝑚 = 𝑐𝑛 of keys, the
probability for orientability decreases. What is not obvious is that the transition from
𝑝𝑛 (𝑐) ≈ 1 to 𝑝𝑛 (𝑐) ≈ 0 happens within a tiny interval of values around 𝑐 = 0.96. On the
right, we zoom in and also plot the function for 𝑛 = 105 and 𝑛 = 106. This shows that the
transition becomes even steeper for larger 𝑛 and starts to resemble a step function. Indeed,
as we shall prove in this thesis, there is a sharp density threshold 𝑐∗ ≈ 0.96499 such that
for 𝑐 < 𝑐∗ we have lim𝑛→∞ 𝑝𝑛 (𝑐) = 1 and for 𝑐 > 𝑐∗ we have lim𝑛→∞ 𝑝𝑛 (𝑐) = 0.

In large data structures, the density thresholds for orientability, solvability and peelabil-
ity reveal the memory efficiency that a cuckoo hash table or a retrieval data structure using
a certain hashing scheme can reliably achieve and when a (linear time) peeling algorithm
can reliably carry out the construction. For this reason, the proofs in this thesis frequently
revolve around the following, more concrete question:

Q
′′
: Given various hashing schemes, what are their thresholds for peelability, solvability and

orientability?

We are now ready to delineate our main results.

1.1. Contributions

This thesis contains six main results, denoted by the letters A–F. For each result, there is
a core mathematical theorem, denoted by the same letter, and more “computer sciency”
theorems that transfer the result to data structure applications, denoted by, A1, A2, etc. An
overview is given in Table 1.1.



1.1. Contributions 5

Thm. Subject Notes (may sound cryptic on a first read)

A,A’ peelability spatial coupling raises thresholds to orientability threshold
A1 dictionary O(𝑚) construction
A2 retrieval high space efficiency, O(𝑚) construction
A3 perfect hashing simple O(𝑚) construction, ≈ 2.2𝑚 bits
A4 invertible Bloom filter improved space efficiency

B solvability 𝑚 ×𝑚 matrix, Pr[regular] = Θ(1), two log(𝑚)-sized blocks per row
B1 retrieval optimal space efficiency, Õ(𝑚2) construction
B2 retrieval almost optimal space efficiency, Õ(𝑚1+𝛼 ) construction
C solvability 𝑚 × (1 + Y)𝑚 matrix, rank𝑚 whp, one log(𝑚)/Y-sized block per row
C1 retrieval 1 cache miss, space efficiency 1

1+Y , O(𝑚/Y2) construction, O(1/Y) eval
C2 retrieval theoretical improvement of C1, shaving 1/Y factor from running times

D orientability unaligned blocks yield higher threshold
D1 dictionary unaligned blocks improves load threshold in cuckoo hashing
E orientability double hashing does not affect the threshold
E1 dictionary double hashing does not affect the load threshold in cuckoo hashing
F orientability threshold analysis of certain unbalanced hypergraphs
F1 dictionary small sacrifices in load allow dynamically growing cuckoo tables

Table 1.1 List of all theorems.

Results D–F derive orientability thresholds for previously studied cuckoo hashing
schemes in cases where no complete analysis was known.

Results A–C are different in that they concern novel hashing schemes. The schemes from
B and C are meant for retrieval data structures, the scheme from A has much wider applic-
ability. Apart from analysing their thresholds, we shall argue for their overall advantages
in applications, both in theory and in experiments.

We now briefly outline each individual result.
Result A. We consider a new hashing scheme called spatial coupling inspired from work

in coding theory, parametrised by 𝑘 ∈ N and Y ∈ (0, 1]. In a table of size 𝑛, the 𝑘
table positions of each key are obtained by first choosing an interval of Y𝑛 consecutive
positions at random and then independently selecting 𝑘 positions from that interval.3
The peelability threshold of this scheme is remarkably high. For small Y it is almost
the orientability threshold of the fully random scheme with the same parameter 𝑘 .
This yields, for instance, retrieval data structures with excellent space efficiency and a
construction time of O(𝑛).

Result B. We consider a new hashing scheme with two aligned block subsets. The scheme
resembles aligned blocks with 𝑘 = 2, but is the more natural variant when solvability
rather than orientability is concerned. The block length 𝐿 = Θ(log𝑛) depends on the
table size, and a key is assigned a uniformly random subset of the 2𝐿 positions in the
two blocks.4

3 In Definition 2.4 the scheme is actually parametrised by 𝑧 = 1
Y − 1 ∈ R+ for technical reasons.

4 Note that in Definition 2.5 this will be phrased differently, in terms of matrices that contain 2 blocks of 𝐿



6 1. Introduction

We prove that the solvability threshold of this scheme is 𝑐∗ = 1. This yields a retrieval
data structure with (almost) perfect space efficiency. However, a good bit of engineering
is required to achieve reasonable construction times.

Result C. We consider a new hashing scheme similar to the one from B, but with one

(rather than two) unaligned (rather than aligned) block subset. For Y > 0 and a block
size of 𝐿 = log𝑛

Y , we find a solvability threshold of 𝑐∗ ≥ 1 − O(Y). This yields a retrieval
data structure that achieves an excellent trade-off between important performance
metrics in our experiments.

Result D. Among the hashing schemes with blocks, the ones without alignment achieve
higher density thresholds for orientability compared to those with alignment. There has
been some work on this [DW07; LP09], but we are the first to determine the thresholds
for unaligned blocks exactly.

Result E. We prove that the hashing schemes “Fully Random” and “Double Hashing” have
the same orientability threshold. This was conjectured in [MT12] and partially proven
in [Lec13].

Result F. We derive orientability thresholds for a specialised hashing scheme from [MS17],
which is designed for dynamically growing tables.

A comparison to previous work will be carried out after the technical details of the results
are fully stated and all important performance characteristics of the data structures have
been explained, see Sections 2.2.2, 2.3.3, 2.4.4 and 3.4.3.

1.2. Techniques

From the pictures in (1.1)–(1.3) it should be intuitively clear how a configuration of keys
and table positions can be modelled by a bipartite graph. An equivalent and occasionally
more convenient model uses hypergraphs, with each table position corresponding to a
vertex and each key corresponding to the set of positions assigned to it, hence a hyperedge.
When solvability is concerned, we usually consider the incidence matrix of the hypergraph
because solvability simply means that the rows of this matrix are linearly independent.
Therefore, much of this thesis uses corresponding language from graph theory and linear
algebra. Apart from this, we routinely use standard tools from probability theory such as
first moment arguments and standard concentration bounds.

For Result B, this is all that is needed. The other results, however, require more fancy
equipment. Three theories stand out, the first two of which are particularly far-reaching
and carry the main burden of the proofs in which they are deployed.

The Objective Method and Local Weak Convergence [AS04; BS11; Lel12; LLM13;
Bor16]. Given a graph 𝐺 , its local characteristics can be captured by sampling a vertex
◦ of 𝐺 uniformly at random and then considering, for a small constant 𝑡 ∈ N, the
subgraph𝐺 (◦)𝑡 of𝐺 induced by vertices with distance at most 𝑡 from ◦. When compar-
ing two graphs 𝐺 and 𝐻 through this lense only, i.e. by comparing the distributions
of 𝐺 (◦)𝑡 and 𝐻 (◦)𝑡 , the graphs may appear quite similar even when there are major
global differences. Imagine, for instance, that 𝐺 and 𝐻 are roadmaps of two countries

random bits per row.



1.2. Techniques 7

of different sizes and with different shapes on the map. The graphs may nevertheless
be nearly indistinguishable in their local characteristics, with 𝐺 (◦)𝑡 and 𝐻 (◦)𝑡 both
concentrated on non-descript small planar graphs with many nodes of degree 3 and 4.
For the same reason, it is possible that a sequence (𝐺𝑛)𝑛∈N of graphs, where𝐺𝑛 contains
𝑛 vertices, converges with respect to such local characteristics. For the (hyper-)graphs
considered in this thesis, this is predominantly the case. In the spirit of the objective
method by Aldous and Steele [AS04], we work with a corresponding infinite limiting
object instead of with the infinite sequence of finite graphs in asymptotic considerations.
We can then recruit a theorem by Lelarge [Lel12], which characterises orientability
thresholds in terms of properties of such a limiting object. The theorem is used to
prove Results D and F, but also underlies a theorem by Leconte, which we strengthen
to obtain Result E. Moreover, it plays a supporting role in proving Result A.

Threshold Saturation via Spatial Coupling [KRU10; KRU11; KRU15; TTK12]. We bor-
row an idea from the seemingly distant field of coding theory. A central question in
coding theory concerns the amount of redundancy that must be contained in a message
to allow decoding the message even when a certain amount of information was lost
during transmission. The class of low density parity check (LDPC) codes can be modelled
by hypergraphs, much like the ones we consider in this thesis, and similar thresholds
arise. The threshold up to which a simple belief propagation decoder is likely to succeed
is often lower than the threshold up to which an ideal maximum aposteriori probability

(MAP) decoder with unrestricted running time is likely to succeed.
In this context, the technique of spatial coupling superimposes a linear geometry on
codes, thereby making the constructions less symmetric. In some cases, this raises the
belief propagation threshold 𝑐△ to the MAP threshold 𝑐∗. Translated to our setting, it
allows us to raise a peelability threshold 𝑐△ to an orientability threshold 𝑐∗, which is
what Result A is aiming for.
The phenomenon is counterintuitive. There is an analogous physical phenomenon,
which is also counterintuitive, but undeniably real, for a video demonstration see [Sci14].
Consider the temperature 𝑐∗ = 0 ◦C and the temperature 𝑐△ “at which water freezes”. If
the water is perfectly pure (which most water is not) it can be supercooled to temper-
atures way below 𝑐∗ = 0 ◦C (down to −48.3 ◦C) while staying liquid. This is because
there is no nucleation site at which an ice crystal can start to form. By introducing an
impurity in the water, we raise 𝑐△ to 𝑐∗, i.e. obtain water that freezes at 0 ◦C.
In the context of Result A, the impurities in the hashing scheme are the two ends of the
table. If the table is instead glued into a ring, i.e. if intervals may “wrap around” the
ends of the table, the peelability threshold is significantly lower.
Unsurprisingly, the literature surrounding the phenomenon is riddled with terminology
from statistical physics, but the theorems from [KRU15], through which we access this
world, largely isolates us from most of this terminology.

Queueing Theory [Coo90; EZB06]. Among our results, Result C is the only one not
building on the “power of multiple choices”. Its hashing scheme, using one block subset
per key, has more in common with linear probing than with cuckoo hashing. We shall
find a connection to Robin Hood hashing and end up using tools from queueing theory
in the analysis. Queueing theory can be thought of as dealing with the distribution
of waiting times in a supermarket setting, where customers follow a certain arrival
distribution and cashiers follow a certain service time distribution.



8 1. Introduction

1.3. Thesis Outline

1 2 3 4 5 6 7 8 9 10 11 12 13

results from a mathematical perspective
statements of Theorems A to F.

results from an algorithmic perspective
statements of Theorems A1 to F1.

you are
here experiments

conclusion

A B C D E F

general
background

local weak
convergence proofs

Chapter 2 states our results from a mathematical perspective, speaking of peelability,
solvability and orientability of hypergraphs with independent random hyperedges. A
reader already familiar with applications such as cuckoo hashing and retrieval data
structures will find a concise account of the main contributions.
Chapter 3 is a more gentle and detailed introduction from an algorithmic perspective,
with all results restated as claims about the behaviour of certain data structures. Some
readers may prefer to start there, and refer to Chapter 2 and notation on Page 12 when
needed and with the motivating applications in mind.
Chapter 4 is a collection of background information that relates to our results without
being so essential to understanding as to warrant including in Chapters 2 and 3. We
shall refer to it when appropriate.
Chapter 5 is devoted to the notion of local weak convergence that is at the heart of
several of our proofs.
Chapters 6 to 11 contain the proofs of Theorems A to F and are each based on a
previously published paper as listed in Table 1.2.
Chapter 12 reports on various experiments relating to all theorems. A particular
focus is on evaluating the performance of retrieval data structures following from
Theorems A2, B2 and C2.

Thm. Proof in Publication Co-Authors

A,A’ Chapter 6 [DW19b]5/ [Wal20b] M. Dietzfelbinger / —
B Chapter 7 [DW19a] M. Dietzfelbinger
C Chapter 8 [DW19c] M. Dietzfelbinger
D Chapter 9 [Wal18] —
E Chapter 10 [MPW18] M. Mitzenmacher and K. Panagiotou
F Chapter 11 [MSW19] T. Maier and P. Sanders

Table 1.2 Previously published papers.

5 Note that [Wal20b] is a revision of [DW19b]. While both papers describe a similar construction, the new
analysis is stronger, more general and more elegant. In this sense the older paper is obsolete and this thesis
only presents the updated content.



1.3. Thesis Outline 9

To avoid misunderstandings, Figure 1.1 shows the limits of the scope of this thesis. Some
non-trivial mathematical tools are taken for granted, and not every proof is self-contained.
Some technical details about possible implementations are left aside, especially when other
authors have pursued such questions in sufficiently similar settings.

concentration
bounds

measure theoretic
foundations

statistical
physics

local weak
convergence

phase transitions
in hypergraphs

data structure
constructions

word RAM
model

asymptotic space
and time bounds

high level
implementations

idealising
experiments

fine tuning,
e.g. using simd

general purpose
implementation

external memory
and concurrency

Probability
Theory

not this thesis

Algorithm
Theory

this thesis

Algorithm
Engineering

not this thesis

Figure 1.1 What (not) to expect from this thesis.



10



11

Part I.

Results

The main results are stated twice.
Chapter 2 gives them in pure mathematical form
as Theorems A to F. They concern random hyper-
graphs and the hypergraph properties of being
peelable, solvable and orientable.
Chapter 3 explains how the problem of construct-
ing hashing-based data structures can be reduced
to finding random hypergraphs with suitable prop-
erties. With a corresponding framing our results
yield performance guarantees for data structures,
stated as Theorems A1 to F1.



12

Notation used throughout this thesis

Sets

[𝑛] shorthand for {1, . . . , 𝑛}
[𝑛]0 shorthand for {0, . . . , 𝑛 − 1}
Z𝑛 same as [𝑛]0, but addition is modulo 𝑛
2𝑉 the power set of 𝑉(𝑉
𝑘

)
set of subsets of 𝑉 of size 𝑘 , i.e. {𝑒 ⊆ 𝑉 | |𝑒 | = 𝑘}

F2 the two-element field {0, 1}
𝑋U set of functions with domainU and range 𝑋
Õ big-O notation ignoring polylogarithmic factors

Random Sampling

i.i.d. short for stochastically independent and with identical distribution

whp short for “with high probability”, a probability of 1 − 𝑜 (1)
𝑣 ←− 𝑉 𝑣 is sampled uniformly from 𝑉
𝑒 ←− [𝑉𝑘 ] a (multi-)set 𝑒 = {𝑣1, . . . , 𝑣𝑘 } where 𝑣1, . . . , 𝑣𝑘 ←− 𝑉
𝑋

d= 𝑌 the random variables 𝑋 and 𝑌 have the same distribution

Hypergraphs

𝐻 = (𝑉 , 𝐸) a hypergraph
𝑉 vertex set of a hypergraph
𝐸 ⊆ 2𝑉 hyperedge set of a hypergraph
𝑛,𝑚 usually 𝑛 = |𝑉 | and𝑚 = |𝐸 |. All constructions satisfy𝑚 = Θ(𝑛)
𝑐 ∈ R+ usually the hyperedge density𝑚/𝑛, always a constant
𝐴 ∈ {0, 1}𝐸×𝑉 incidence matrix of 𝐻 , i.e. 𝐴 ∈ {0, 1}𝐸×𝑉 with 𝐴𝑒,𝑣 = 1⇔ 𝑣 ∈ 𝑒

Often indexed simply by [𝑚] × [𝑛], i.e. 𝐴 ∈ {0, 1}𝑚×𝑛
𝑒 ∈ 𝐸 a hyperedge 𝑒 ⊆ 𝑉
®𝑒 ∈ {0, 1}𝑉 the incidence vector 𝐴𝑒 of 𝑒 , i.e. ®𝑒𝑣 = 1⇔ 𝑣 ∈ 𝑒
subhypergraph (𝑉 ′, 𝐸 ′) is subhypergraph of (𝑉 , 𝐸) if 𝑉 ′ ⊆ 𝑉 and 𝐸 ′ ⊆ 𝐸 ∩ 2𝑉 ′

𝑘 ∈ N uniformity of a hypergraph, i.e. all hyperedges have size 𝑘
ℓ ∈ N vertex capacity when discussing ℓ-peelability or ℓ-orientability

Specialised Notation

𝐻𝑘
𝑛,𝑚 the fully random 𝑘-uniform hypergraph from Equation (2.1)

𝑐△
𝑘,ℓ

ℓ-peelability threshold of (𝐻𝑘
𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N

𝑐∗
𝑘,ℓ

ℓ-orientability threshold of (𝐻𝑘
𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N

𝐹𝑛 The random hypergraph 𝐹 (𝑛, 𝑘, 𝑐, 𝑧) from Definition 2.4
𝐴𝐿
𝑚,𝑛 the random matrix from Definition 2.5

𝑀𝐿
𝑚,𝑛 the random matrix from Definition 2.6

𝐵𝑘,ℓ𝑛,𝑚 the random hypergraph from Definition 2.7
𝑊 𝑘,ℓ

𝑛,𝑚 the random hypergraph from Definition 2.8
𝛾𝑘,ℓ orientability threshold of𝑊 𝑘,ℓ

𝑛,𝑚

𝐷𝑘
𝑛,𝑚 the random hypergraph from Definition 2.9

𝐻𝑘
𝑛,𝑖,𝑚 the random hypergraph from Definition 2.10

[𝑘,ℓ,\ ℓ-orientability threshold of (𝐻𝑘
𝑛,𝑛/(1+\ ),𝑐𝑛)𝑐∈R+,𝑛∈N



13

2. Random Hypergraphs:

Peeling, Solving, Orienting

We introduce random hypergraphs with i.i.d. random hyperedges and corresponding notation
(see facing page). A hypergraph 𝐻 = (𝑉 , 𝐸) consists of a finite set 𝑉 and a set 𝐸 ⊆ 2𝑉
of subsets of 𝑉 . The elements of 𝑉 are vertices, the elements of 𝐸 are hyperedges. If all
hyperedges have the same size 𝑘 ∈ N, then𝐻 is called 𝑘-uniform. A subhypergraph of𝐻 is a
hypergraph𝐻 ′ = (𝑉 ′, 𝐸 ′) with𝑉 ′ ⊆ 𝑉 and 𝐸 ′ ⊆ 𝐸∩2𝑉 ′ . Sometimes it is convenient to work
with the transposed incidence matrix 𝐴 ∈ {0, 1}𝐸×𝑉 of 𝐻 over the field F2 = {0, 1}, with
rows ®𝑒 B 𝐴𝑒 ∈ {0, 1}𝑉 for 𝑒 ∈ 𝐸 corresponding to hyperedges and columns corresponding
to vertices. Each 1-entry indicates an incidence, i.e. for 𝑒 ∈ 𝐸, 𝑣 ∈ 𝑉 : 𝐴𝑒,𝑣 = 1⇔ ®𝑒𝑣 = 1⇔
𝑣 ∈ 𝑒 . Examples are given in Figure 2.1.

(a) (b) (c)
1

2 3

4 5
6

1 2 3 4 5 6

41 42 43
41
42
43

©«

1
1

2
1

3
1

4
0

5
0

6
0

0 1 1 1 1 0
1 0 0 1 0 1

ª®¬

Figure 2.1 The hypergraph 𝐻 = ({1, 2, 3, 4, 5, 6}, {{1, 2, 3}, {2, 3, 4, 5}, {1, 4, 6}}) represented in
three different ways. Instead of drawing geometric regions for hyperedges as in (a),
we use bipartite drawings as in (b) or incidence matrices as in (c).

This thesis is concerned with random hypergraphs containing random hyperedges
that are sampled independently and with identical distribution (i.i.d.). Such a random
hypergraph is specified by a vertex set 𝑉 of size 𝑛 ∈ N, a number of hyperedges𝑚 ∈ N,
and a distribution 𝐷 on 2𝑉 . The hyperedge set 𝐸 of 𝐻 is obtained by sampling from 𝐷
independently𝑚 times. In this sense, 𝐻 = (𝑉 , 𝐸) is a random variable.

Throughout this thesis, we use the notation [𝑛] = {1, . . . , 𝑛}, [𝑛]0 = {0, . . . , 𝑛 − 1} and(𝑉
𝑘

)
= {𝑒 ⊆ 𝑉 | |𝑒 | = 𝑘}. Moreover, 𝑣 ←− 𝑉 stands for sampling a value 𝑣 uniformly

from the set 𝑉 , i.e. it introduces a random variable 𝑣 with uniform distribution on 𝑉 that
is independent of all other random variables introduced with the same notation. The
shorthand 𝑒 ←− [𝑉𝑘 ] stands for 𝑒 = {𝑣1, . . . , 𝑣𝑘 } where 𝑣1, . . . , 𝑣𝑘 ←− 𝑉 . An important
example is the fully random 𝑘-uniform hypergraph 𝐻𝑘

𝑛,𝑚 for 𝑘,𝑚, 𝑛 ∈ N given as

𝐻𝑘
𝑛,𝑚 B (𝑉 = [𝑛], 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚}), where 𝑒𝑖 ←− [𝑉𝑘 ] for 𝑖 ∈ [𝑚]. (2.1)

There is a subtle difference between 𝑒 ←− [𝑉𝑘 ] and 𝑒 ←−
(𝑉
𝑘

)
as, in the former case, the

𝑘 elements of 𝑒 need not be distinct. We therefore understand 𝑒 as a multiset.1 Also, we

1 In the incidence matrix it is sometimes convenient to understand ®𝑒𝑣 ∈ {0, 1} as the number of copies of 𝑣 in



14 2. Random Hypergraphs: Peeling, Solving, Orienting

may have 𝑒𝑖 = 𝑒 𝑗 for 𝑖 ≠ 𝑗 , so 𝐸 is a multiset as well. Such details are often inconsequential.
A hypergraph chosen uniformly from the set of all hypergraphs on vertex set [𝑛] with𝑚
distinct hyperedges all of which contain 𝑘 distinct vertices would be equivalent to 𝐻𝑘

𝑛,𝑚 for
our purposes, just less convenient to work with.

The parameter 𝑐 denotes the hyperedge density |𝐸 |/|𝑉 | in all constructions, at least
approximately. Rounding issues are often ignored for sake of clarity.

2.1. Three Hypergraph Properties

The following well-studied properties will accompany us throughout the thesis. The second
one is not usually taken to be a hypergraph property, but we phrase it this way for a unified
presentation.

▶ Definition 2.1 (Peelability, Solvability, Orientability). Let 𝐻 = (𝑉 , 𝐸) be a hypergraph
with transposed incidence matrix 𝐴 ∈ {0, 1}𝐸×𝑉 .
(i) For ℓ ∈ N, 𝐻 is ℓ-peelable if every subhypergraph of𝐻 has minimum degree at most ℓ . In

other words,𝐻 has an empty (ℓ+1)-core, which is defined to be the largest subhypergraph
of 𝐻 with minimum degree at least (ℓ + 1). Equivalently, the peeling process that
repeatedly deletes all vertices of degree at most ℓ (and incident hyperedges) reaches the
empty hypergraph. [Coo04; JL07; Mol05]

(ii) 𝐻 is solvable if 𝐴 has rank |𝐸 |. This necessitates |𝑉 | ≥ |𝐸 |. [Die+10; DM02; PS16]
(iii) For ℓ ∈ N, 𝐻 is ℓ-orientable if every subhypergraph 𝐻 ′ = (𝑉 ′, 𝐸 ′) of 𝐻 satisfies

|𝐸 ′ |/|𝑉 ′ | ≤ ℓ . By Hall’s Theorem [Hal35], this is equivalent to the existence of a map

𝜎 : 𝐸 → 𝑉 with 𝜎 (𝑒) ∈ 𝑒 for 𝑒 ∈ 𝐸 and |𝜎−1(𝑣) | ≤ ℓ for 𝑣 ∈ 𝑉 . We call 𝜎 an ℓ-orientation
of 𝐻 . [CSW07; FR07; FKP16; FP10; GW10; Lel12]

It is a simple observation that these properties are contained in each other in the following
sense (see, e.g. [Die+10]).

▷ Fact 2.2. For any hypergraph 𝐻 we have:
(i) ∀ℓ ∈ N : 𝐻 is ℓ-peelable⇒ 𝐻 is ℓ-orientable.
(ii) 𝐻 is 1-peelable⇒ 𝐻 is solvable.
(iii) 𝐻 is solvable⇒ 𝐻 is 1-orientable.

Proof. (i) Consider the peeling process when 𝐻 is ℓ-peelable. The deletion of any vertex
𝑣 causes the deletion of ℓ𝑣 ≤ ℓ hyperedges 𝑒1, . . . , 𝑒ℓ𝑣 and we define 𝜎 (𝑒1) = . . . =
𝜎 (𝑒ℓ𝑣 ) = 𝑣. All hyperedges are deleted eventually, so we obtain an ℓ-orientation 𝜎 .

(ii) Assume 𝐻 is 1-peelable. Consider the sequence 𝐻0 = 𝐻 , 𝐻1, . . . , 𝐻𝑚 of hypergraphs
where 𝐻𝑖 arises from 𝐻𝑖−1 for 𝑖 ∈ [𝑚], by picking a vertex 𝑣𝑖 of degree 1 in 𝐻𝑖−1 and
removing 𝑣𝑖 as well as the incident hyperedge 𝑒𝑖 . The final hypergraph 𝐻𝑚 contains
𝑛 −𝑚 isolated vertices 𝑣𝑚+1, . . . , 𝑣𝑛 and no hyperedges. By construction, 𝑣𝑖 ∈ 𝑒𝑖 for
𝑖 ∈ [𝑚] and 𝑣𝑖 ∉ 𝑒𝑖′ for 1 ≤ 𝑖 < 𝑖 ′ ≤ 𝑚. Thus, with the ordering 𝑉 = {𝑣1, . . . , 𝑣𝑛} and
𝐸 = {𝑒1, . . . , 𝑒𝑚}, the matrix 𝐴 is in row echelon form and clearly has rank𝑚. Note
that rearranging rows and columns of a matrix does not affect its rank.

𝑒 modulo 2, meaning double incidences “cancel out”.



2.2. Peelable Hypergraphs at High Densities 15

(iii) Again considering 𝐴, solvability guarantees the existence of an |𝐸 | × |𝐸 | submatrix
of 𝐴 with determinant 1. Let 𝑉 ′ ⊆ 𝑉 with |𝑉 ′ | = |𝐸 | be the inducing vertex set. By
the Leibniz formula for the determinant, there exists a bijection 𝜎 : 𝐸 → 𝑉 ′ with∏

𝑒∈𝐸 𝐴𝑒,𝜎 (𝑒) ≠ 0. In particular, 𝜎 is injective and satisfies 𝜎 (𝑒) ∈ 𝑒 for 𝑒 ∈ 𝐸. Thus, 𝜎
is a 1-orientation. ◀

Later we see data structures that work efficiently only if an underlying random hypergraph
𝐻 has one of these properties. Subject to 𝐻 having a property with high probability, we
often try to optimise other parameters of 𝐻 . Asymptotic considerations of this kind are
captured in the following definition.

▶ Definition 2.3 (Threshold, see e.g. [FB99]). Let P be a monotone hypergraph prop-

erty, meaning if 𝐻 ′ is a subhypergraph of 𝐻 then 𝐻 ∈ P implies 𝐻 ′ ∈ P. Moreover, let

(𝐻𝑐,𝑛)𝑐∈R+0 ,𝑛∈N be a family of random hypergraphs that is monotone in 𝑐 , meaning for 𝑛 ∈ N
and 𝑐 < 𝑐 ′ there is a coupling

2
between 𝐻𝑐,𝑛 and 𝐻𝑐′,𝑛 such that almost surely 𝐻𝑐,𝑛 is a

subhypergraph of 𝐻𝑐′,𝑛 . The threshold of (𝐻𝑐,𝑛)𝑐∈R+0 ,𝑛∈N for P is defined as

𝑐∗ B sup{𝑐 ∈ R+0 | Pr[𝐻𝑐,𝑛 ∈ P] 𝑛→∞−→ 1}.

We say the threshold is sharp if

𝑐∗ = inf{𝑐 ∈ R | Pr[𝐻𝑐,𝑛 ∈ P] 𝑛→∞−→ 0}.

Important examples are, for natural numbers 𝑘 ≥ 2 and ℓ ≥ 1, the thresholds 𝑐∗
𝑘,ℓ
∈ (0, ℓ)

of (𝐻𝑘
𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N for ℓ-orientability. These thresholds are sharp and known exactly [FKP11;

Lel12; FKP16]. We reproduce them in table Table 2.3. It is easy to see that 𝑐∗
𝑘,ℓ
/ℓ approaches

1 as 𝑘 + ℓ increases, see Table 2.4. The thresholds 𝑐△
𝑘,ℓ

for ℓ-peelability of (𝐻𝑘
𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N are

also known. They are sharp with the exception of 𝑐△2,1 [Mol05], we give them in Table 2.5.

2.2. Peelable Hypergraphs at High Densities

2.2.1. Spatially Coupled Hypergraphs

For 𝑘 ≥ 2 we find a distribution on hyperedges that yields 𝑘-uniform random hypergraphs
with an ℓ-peelability threshold arbitrarily close to the ℓ-orientability threshold of fully
random 𝑘-uniform hypergraphs, for all ℓ ≥ 1 with (𝑘, ℓ) ≠ (2, 1). This is achieved by spatial
coupling (see below). Formally:

▶ Definition 2.4 (Spatially Coupled Hypergraph Family). For 𝑘 ∈ N, 𝑧, 𝑐 ∈ R+0 and 𝑛 ∈ N,
let 𝐹𝑛 = 𝐹 (𝑛, 𝑘, 𝑐, 𝑧) be the random 𝑘-uniform hypergraph with vertex set 𝑉 = [𝑛]0 and edge
set 𝐸 of size𝑚 = ⌊𝑐𝑛 𝑧

𝑧+1⌋. Each edge 𝑒 ∈ 𝐸 is independently obtained as

𝑒 =
{⌊ 𝑦+𝑜𝑖

𝑧+1 𝑛
⌋ | 𝑖 ∈ [𝑘]} where 𝑦 ←− [ 12 , 𝑧 + 1

2 ), 𝑜1, . . . , 𝑜𝑘 ←− [− 1
2 ,

1
2 ] .

We call 𝑦 ∈ 𝑌 B [ 12 , 𝑧 + 1
2 ) the position of 𝑒 and 𝑣 (𝑧+1)

𝑛 ∈ 𝑋 = [0, 𝑧 + 1) the position of 𝑣 ∈ 𝑉 .

2 An embedding of both random variables in a common probability space.



16 2. Random Hypergraphs: Peeling, Solving, Orienting

𝑋 = [0, 𝑧 + 1)

𝑌 = [ 12 , 𝑧 + 1
2 )

0 1 2 3 𝑧 𝑧 + 1

𝑉 = [𝑛]0

𝑦

𝑜1, 𝑜2, 𝑜3

𝑒 = {⌊ 𝑦+𝑜𝑖𝑧+1 𝑛⌋ | 𝑖 ∈ [𝑘]}

Figure 2.2 In the construction from Definition 2.4, the vertex set 𝑉 = [𝑛]0 is arranged linearly
along the “coupling dimension” 𝑋 = [0, 𝑧 + 1). Thus each vertex has a position 𝑥 ∈ 𝑋 .
Each hyperedge 𝑒 is randomly obtained as follows. First, pick a random position
𝑦 ←− 𝑌 = [ 12 , 𝑧 + 1

2 ). Then pick the 𝑘 incidences of 𝑒 uniformly at random from the
vertices with positions in [𝑦 − 1

2 , 𝑦 + 1
2 ].

In Figure 2.2 we sketch aspects of the construction. Note that for technical reasons the
hyperedge density is |𝐸 |/|𝑉 | = 𝑐 𝑧

𝑧+1 and only approaches 𝑐 for large 𝑧. We now state our
related theorem.

▶ Theorem A. Let 𝑘, ℓ ∈ N, with 𝑘 ≥ 2 and 𝑘 + ℓ ≥ 4. Then we have:

(i) 𝑐 < 𝑐∗
𝑘,ℓ
⇒ ∀𝑧 ∈ R+ : Pr[𝐹𝑛 is ℓ-peelable] 𝑛→∞−→ 1.

(ii) 𝑐 > 𝑐∗
𝑘,ℓ
⇒ ∃𝑧∗ ∈ R+ : ∀𝑧 ≥ 𝑧∗ : Pr[𝐹𝑛 is ℓ-orientable] 𝑛→∞−→ 0.

Let us distil the main takeaways from these claims.

▶ Theorem A’. Let 𝑘, ℓ ∈ N with 𝑘 ≥ 2 and 𝑘 + ℓ ≥ 4. For 𝑧 ∈ R+ consider the family

(𝐹 (𝑛, 𝑘, 𝑐, 𝑧))𝑐∈R+0 ,𝑛∈N. Let 𝑓𝑘,ℓ,𝑧 be its threshold for ℓ-peelability and 𝑓 ∗
𝑘,ℓ,𝑧

its threshold for

ℓ-orientability. Then we have:

(i) ∀𝑧 ∈ R+ : 𝑓𝑘,ℓ,𝑧 ≥ 𝑐∗
𝑘,ℓ
.

(ii) lim sup𝑧→∞ 𝑓 ∗
𝑘,ℓ,𝑧
≤ 𝑐∗

𝑘,ℓ
.

(iii) Let 𝑓𝑘,ℓ = lim𝑧→∞ 𝑓𝑘,ℓ,𝑧 and 𝑓 ∗
𝑘,ℓ

= lim𝑧→∞ 𝑓 ∗
𝑘,ℓ,𝑧

. Then 𝑓𝑘,ℓ = 𝑓 ∗
𝑘,ℓ

= 𝑐∗
𝑘,ℓ
.

(iv) The “diagonal” family (𝐹𝑘,ℓ𝑛,𝑐𝑛 B 𝐹 (𝑛, 𝑘, 𝑐 𝑧+1𝑧 , 𝑧 = 2ℓ/(𝑐∗
𝑘,ℓ
− 𝑐)))𝑐∈[0,𝑐∗

𝑘,ℓ
),𝑛∈N of random

hypergraphs has ℓ-peelability threshold
3 𝑐∗

𝑘,ℓ
. Note that 𝐹𝑘,ℓ𝑛,𝑐𝑛 has 𝑛 vertices and 𝑐𝑛 i.i.d.

hyperedges of size 𝑘 .

Proof of Theorem A’. Claims (i) and (ii) are immediate consequences of the claims from
Theorem A. Since 𝑓𝑘,ℓ,𝑧 ≤ 𝑓 ∗

𝑘,ℓ,𝑧
(using Fact 2.2 (i)) we conclude (iii).

Lastly for (iv), let 𝑐 = 𝑐∗
𝑘,ℓ
− Y for some Y > 0 and 𝑧 = 2ℓ/Y. Observe that 𝑐 𝑧+1𝑧 =

𝑐 2ℓ/Y+1
2ℓ/Y = 𝑐 (1+ Y/(2ℓ)) < 𝑐∗

𝑘,ℓ
− Y/2 ≤ 𝑓𝑘,ℓ,𝑧 − Y/2 using (i). Therefore 𝐹𝑘,ℓ𝑛,𝑐𝑛 is ℓ-peelable with

probability tending to 1 by definition of 𝑓𝑘,ℓ,𝑧 . ◀

3 This requires a natural extension of Definition 2.3 since the considered family is not monotone in 𝑐 , and 𝑐 is
restricted to a subset of R+0 .
We remark that (𝐹𝑘,ℓ𝑛,𝑐𝑛)𝑐,𝑛 is mostly of theoretical interest. We do not claim that our choice of 𝑧 = Y/2 is
particularly practical. The fact that the number of hyperedges has an effect on the underlying parameter 𝑧 is
also inconvenient in applications to dynamic data structures.



2.2. Peelable Hypergraphs at High Densities 17

Discussion. Our construction is in the spirit of a technique from coding theory. Namely,
our hypergraphs arise from the fully random hypergraphs via spatial coupling, see [KRU15;
KRU13], along the one-dimensional coupling dimension 𝑋 = [0, 𝑧 + 1). Doing so, we
achieve threshold saturation. In Section 6.1 we give more background information on this
remarkable phenomenon.

Constructions similar to ours can already be found in [HMU13] and [GMU12], however,
the goals of these papers are very different. Relative to these results, we can offer: (1) A
generalisation to ℓ > 1. (2) A more elegant construction using the updated tools from
[KRU15] (continuous4 coupling dimension). (3) A framing with data structures in mind
and a demonstration of practical benefits for data structures, as found in Chapter 3.

2.2.2. Previous Constructions of Peelable Hypergraphs

For the applications in Chapter 3, we require hypergraph families with i.i.d. random
hyperedges, small average hyperedge size 𝑘 and large ℓ-peelability threshold 𝑐∗. The
trade-offs achieved by the family (𝐹𝑘,ℓ𝑛,𝑐𝑛)𝑐∈[0,𝑐∗𝑘,ℓ ),𝑛∈N with ℓ-peelability threshold 𝑐∗

𝑘,ℓ
from

Theorem A’ surpass all known constructions. Concerning ℓ > 1, to our knowledge, only the
fully random families (𝐻𝑘

𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N for 𝑘 ≥ 2 where studied, with much lower thresholds
𝑐△
𝑘,ℓ
, see Table 2.5. For 1-peelability, see Figure 2.3.

𝑘

𝑐∗

0.7

0.8

0.9

3 4 5 6 7

1
peelability: (𝐻𝑘

𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N for 𝑘 ∈ N
peelability: non-uniform families from [Lub+01]
peelability: non-uniform families from [Rin13]
orientability: (𝐻𝑘

𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N for 𝑘 ∈ N
solvability: (𝐻𝑘

𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N for 𝑘 ∈ N
peelability: “diagonal” families from Theorem A’

Figure 2.3 Trade-offs between the hyperedge size and threshold density of hypergraph families
with respect to 1-peelability, solvability or 1-orientability.
A dot at (𝑘, 𝑐∗) ∈ R2 indicates a family (𝐻𝑐,𝑛)𝑐∈R+0 ,𝑛∈N of random hypergraphs where
𝐻𝑐,𝑛 has 𝑛 vertices, ⌊𝑐𝑛⌋ random independent hyperedges and expected hyperedge
size 𝑘 . The value 𝑐∗ is the threshold.

The thresholds 𝑐△
𝑘,1 of the families (𝐻𝑘

𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N for 𝑘 ≥ 3 ( ) [Mol05] are decreasing
in 𝑘 and thus only 𝑘 = 3 is of interest. The threshold 𝑐∗(𝑘) of a non-uniform construction ( )
[Lub+01], well-known in coding theory, approaches 1 for 𝑘 →∞. However, the maximum
hyperedge size is exponential in the average hyperedge size𝑘 , which is problematic for some
applications. Further trade-offs ( ) were examined by [Rin13], for example, a hyperedge
size of 3 for ≈ 89% of the hyperedges and a size of 21 for the rest in an otherwise fully
random construction yields an average hyperedge size of ≈ 5.03 and a threshold value of
≈ 0.92. For 𝑘 ≥ 3, the threshold of the family (𝐹𝑘,1𝑛,𝑐𝑛)𝑐∈[0,𝑐∗𝑘,1),𝑛∈N ( ) is the 1-orientability

4 In [HMU13] the coupling dimension is discrete. In our terms, this means that the set of admissible positions
of a hyperedge is 𝑌 ∩ ( 1

𝑤Z) for some constant 𝑤 ∈ N. Our construction arises for 𝑤 →∞.



18 2. Random Hypergraphs: Peeling, Solving, Orienting

threshold 𝑐∗
𝑘,1 of (𝐻𝑘

𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N. The solvability threshold of (𝐻𝑘
𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N is known to

be equal to 𝑐∗
𝑘,1 as well [DM02; Die+10; PS16].

We remark that, even for 1-orientability, no known hypergraph family with i.i.d. random
hyperedges and average hyperedge size at most 𝑘 exceeds a threshold of 𝑐∗

𝑘,1.

2.3. Solvability and Good Locality at High Densities

We now deal directly with the transposed incidence matrix 𝐴 ∈ {0, 1}𝑚×𝑛 of hypergraphs,
a matrix over the field F2 = {0, 1}, with i.i.d. random rows. For the applications from
Chapter 3 the following is desirable:
(1) 𝐻 should be solvable, i.e. 𝐴 should have rank𝑚.
(2) 𝑐 =𝑚/𝑛 ≤ 1 should be as close to 1 as possible.
(3) The scalar product ⟨®𝑒, ®𝑧⟩ of a row ®𝑒 ∈ F𝑛2 of 𝐴 and any ®𝑧 ∈ F𝑛2 should be efficient to

compute. To avoid discussing algorithms for now, we approximate this with the strictly
weaker demand that the entropy of ®𝑒 (viewed as a random variable) should be small,
ideally O(log𝑛).

(4) For any ®𝑏 ∈ {0, 1}𝑚 , the linear system 𝐴®𝑧 = ®𝑏 should be efficient to solve, ideally in
time O(𝑛).

Note that if 𝐴 is the incidence matrix of a 1-peelable hypergraph, then (1) is automatically
satisfied and for (4) we obtain a running time of O(𝜓 ) where𝜓 is the number of 1-entries
of 𝐴 (c.f. Fact 2.2 (ii)). Indeed, our 1-peelable hypergraphs from Section 2.2 work well in
some applications.

2.3.1. New Construction with Two Random Blocks per Row

▶ Definition 2.5 (RandomMatrix with Two Aligned Blocks per Row). Let 𝑛,𝑚, 𝐿 ∈ N with

𝑚 ≤ 𝑛 and 𝐿 a divisor of 𝑛. For a block index 𝑏 ∈ [𝑛/𝐿] and a pattern 𝑝 ∈ {0, 1}𝐿 we let

𝐵𝑏,𝑝 = 0𝑏𝐿−𝐿 ◦ 𝑝 ◦ 0𝑛−𝑏𝐿 ∈ {0, 1}𝑛 where “◦” denotes concatenation of bit strings. To obtain

the random matrix 𝐴𝐿
𝑚,𝑛 ∈ {0, 1}𝑚×𝑛 , each row is independently sampled as 𝐵𝑏1,𝑝1 ⊕ 𝐵𝑏2,𝑝2

where 𝑏1, 𝑏2 ←− [𝑛/𝐿] and 𝑝1, 𝑝2 ←− {0, 1}𝐿 .
We define 𝐴𝐿∗

𝑚,𝑛 the same way, except for 𝑝1, 𝑝2 ←− {0, 1}𝐿 \ {0𝐿} the all-zero pattern is

forbidden.

An example is given in Figure 2.4 (a). The entropy of a row of 𝐴𝐿
𝑚,𝑛 is O(𝐿 + log(𝑛/𝐿))

which is O(log𝑛) for 𝐿 = O(log𝑛). The following theorem states that 𝐴𝐿
𝑚,𝑛 also satisfies

(1) and (2) under suitable conditions. We cannot satisfy (4), and will require a work-around
in our applications, see Section 3.4.2.

▶ Theorem B. Let 𝛽 = 39, 𝛾 = 1/4 and 𝛿 > 0 constants. Then we have:

(i) If 𝐿 = 𝐿(𝑛) ≥ 𝛽 log2(𝑛) then 𝐴𝐿
𝑛,𝑛 is regular with probability Θ(1).

(ii) If 2𝐿 = 2𝐿(𝑛) ≥ (1 + 𝛿) log2 𝑛 and 1 − 𝑐 ≥ max{2−𝛾𝐿, 𝛽 log2(𝑛)/𝑛} then 𝐴𝐿
𝑐𝑛,𝑛 has

independent rows with probability at least 1 − Õ(𝑛−min(1,𝛿) ).
(iii) If 1 − 𝑐 ≥ max{2−𝛾𝐿, 𝛽 log2(𝑛)/𝑛} then 𝐴𝐿∗

𝑐𝑛,𝑛 has independent rows with probability at

least 1 − O(max(𝑛−1, 𝐿2−𝐿)).



2.3. Solvability and Good Locality at High Densities 19

(a) (b)
©«

0
1
10

2
1
3
10

4

100 110
111 010
010 110

111 001
001

ª®®®®®®®¬

©«

1 2 3
0

4
1

5
1

6
0

7
0

8 9 10 11 12 13

1 0 1 0 0
1 0 0 0 1

1 0 1 0 1
0 1 0 1 1

1 1 1 0 0

ª®®®®®®®¬
Figure 2.4 (a) Possible outcome for𝐴3

6,12 from Definition 2.5. There are 𝑛/𝐿 = 12/3 = 4 (aligned)
blocks and in each row two randomly chosen blocks are populated with random
patterns. Since the same block may be selected twice, rows with only one populated
block can occur.
(b) Possible outcome for𝑀5

6,9 from Definition 2.6. There are 𝑛 +𝐿 − 1 = 9+ 5− 1 = 13
columns. In each row, one randomly chosen (unaligned) block of size 𝐿 is populated
with a random pattern.

2.3.2. New Construction with One Random Block per Row

To simplify some notation down the line, in the following definition, the number of matrix
columns exceeds 𝑛 by 𝐿 − 1 “auxiliary columns”, which will always be negligible.

▶ Definition 2.6 (Random Matrix with One Unaligned Block per Row). Let 𝑛,𝑚, 𝐿 ∈ N
with 𝑚 ≤ 𝑛. For a starting position 𝑠 ∈ [𝑛] and a pattern 𝑝 ∈ {0, 1}𝐿 we let 𝐵𝑠,𝑝 =
0𝑠−1 ◦ 𝑝 ◦ 0𝑛−𝑠 ∈ {0, 1}𝑛+𝐿−1

. To obtain the random matrix𝑀𝐿
𝑚,𝑛 ∈ {0, 1}𝑚×(𝑛+𝐿−1)

, each row

is independently sampled as 𝐵𝑠,𝑝 where 𝑠 ←− [𝑛] and 𝑝 ←− {0, 1}𝐿 .
An example is given in Figure 2.4 (b). In contrast to Definition 2.5, each row contains

only one random pattern, which is not aligned to a multiple of the pattern length.
The row entropy is O(𝐿 + log𝑛). The following theorem illuminates how 𝑀𝐿

𝑚,𝑛 fares
with respect to (1), (2) and (4).

▶ Theorem C. Let 0 < Y < 1
2 be a constant, 𝑛 ∈ N and 𝑚 = (1 − Y)𝑛. For some 𝐿 =

O((log𝑛)/Y) the matrix𝑀𝐿
𝑚,𝑛 has independent rows with probability 1 − O(1/𝑛).

Moreover, a simple algorithm computes a solution ®𝑧 to𝑀𝐿
𝑚,𝑛®𝑧 = ®𝑏 for an arbitrary right

hand side
®𝑏 ∈ {0, 1}𝑚 . Its expected running time is dominated by O(𝑛/Y) row additions. Each

row is always zero outside of a block of length 𝐿.

2.3.3. Previous Constructions of Matrices with Full Rank

Table 2.1 lists known constructions of random matrices with independent rows and com-
pares them to our own with respect to the criteria (1) – (4) defined above. Constructions
previously introduced as hypergraphs should now be interpreted as constructions of cor-
responding (transposed incidence) matrices.

As a baseline, we consider 𝐶𝑘
𝑛 ∈ {0, 1}𝑛×𝑛 for 𝑛 ∈ N, 0 ≤ 𝑘 ≤ 𝑛, a special case of

a class of matrices studied by Cooper [Coo00]. All entries of 𝐶𝑘
𝑛 are i.i.d. random bits

and equal to 1 with probability 𝑘/𝑛. For 𝑘 = 𝑛/2 we obtain fully random matrices, but
𝑘 = log𝑛+𝜔 (1) suffices for𝐶𝑘

𝑛 to have full rank with probability approaching 𝜙 ( 12 ) ≈ 0.289,
where 𝜙 (𝑞) = ∏∞

𝑘=1(1 − 𝑞𝑘 ) is known as the Euler function [Coo00].



20 2. Random Hypergraphs: Peeling, Solving, Orienting

construction source (1): probability (2): 𝑐 = 𝑚
𝑛 (3): row entropy (4) time to solve

𝐶𝑛/2
𝑛 [Coo00] Θ(1) 𝑐 = 1 𝑛 Õ(𝑛3)

𝐶
log𝑛+𝜔 (1)
𝑛 [Coo00; DP08] Θ(1) 𝑐 = 1 ≥ log2 𝑛 Õ(𝑛2)

𝐻𝑘
𝑛,𝑐𝑛 [PS16; Die+10] 1 − 𝑜 (1) 𝑐 < 𝑐∗

𝑘,1 ≈ 𝑘 log(𝑛) Õ(𝑛2)
𝐴
Θ(log𝑛)
𝑛,𝑛 Theorem B (i) Θ(1) 𝑐 = 1 Θ(log(𝑛)) Õ(𝑛2)

𝐴
Θ(log𝑛)
𝑐𝑛,𝑛 Theorem B (ii) 1 − 𝑜 (1) 𝑐 = 1−O( log𝑛

𝑛 ) Θ(log(𝑛)) Õ(𝑛2)
𝑀

Θ(log(𝑛)/Y)
𝑐𝑛,𝑛 Theorem C 1 − 𝑜 (1) 𝑐 = 1 − Y Θ(log(𝑛)/Y) Õ(𝑛/Y2)

𝐻 3
𝑛,𝑐𝑛 [Maj+96; BPZ13] 1 − 𝑜 (1) 𝑐 < 𝑐△3,1 ≈ 3 log𝑛 Õ(𝑛)

𝐹𝑘,1𝑛,𝑐𝑛 Theorem A’ 1 − 𝑜 (1) 𝑐 < 𝑐∗
𝑘,1 ≈ 𝑘 log𝑛 Õ(𝑛)

Table 2.1 Performance of certain random matrices with respect to the criteria defined in Sec-
tion 2.3.

Compared to 𝐶𝑘
𝑛 , which contains 𝑘 ones per row in expectation, 𝐻𝑘

𝑛,𝑛 contains exactly
𝑘 ones per row5. The similarity for 𝑘 = Ω(log𝑛) is discussed in [DP08]. For 𝑘 < log𝑛,
all-zero rows are likely occurrences in 𝐶𝑘

𝑛 , but not in 𝐻𝑘
𝑛,𝑛 .

Our constructions𝐴𝐿/2
𝑐𝑛,𝑛 and𝑀𝐿

𝑐𝑛,𝑛 can be seen as variations on𝐻𝐿
𝑐𝑛,𝑛 where the 1-entries

are concentrated in 1 or 2 randomly placed blocks, which reduces the row entropy from
≈ 𝐿 · log𝑛 to ≈ 𝐿 + log𝑛.

When using 𝐹𝑘,1𝑛,𝑐𝑛 fromTheoremA’ and𝐻𝑘
𝑛,𝑐𝑛 below their respective peelability thresholds,

the linear systems can be solved by peeling in O(𝑘𝑛) time, see the proof of Fact 2.2 (ii).
All quadratic solving times are achieved using Wiedemann’s algorithm, explained in Sec-
tion 4.4.1. We use Õ-notation to avoid a discussion about bit-level parallelism for now.

2.4. Orientability of Variations of

Fully Random Hypergraphs

The fully random hypergraph 𝐻𝑘
𝑛,𝑐𝑛 directly underlies many hashing-based data structures,

see Chapter 3. It is natural to study variations of it, hoping for improvements in practically
relevant metrics.

Our first variation improves upon the orientability threshold. The second one uses
double hashing to reduce the entropy per hyperedge from 𝑘 log𝑛 to 2 log𝑛 without affecting
the orientability threshold. The third one studies intermediate hypergraphs that arise
naturally in dynamic settings, where the vertex set should grow smoothly.

2.4.1. Higher Thresholds using Unaligned Blocks

To clearly expose the following idea, we first reconceptualise what ℓ-orientability of 𝐻𝑘
𝑛,𝑚

means.

5 Strictly speaking, the 𝑘 positions 𝑣1, . . . , 𝑣𝑘 ←− [𝑛] may not be distinct. In such rare cases, there are less
than 𝑘 ones per row.



2.4. Orientability of Variations of Fully Random Hypergraphs 21

▶ Definition 2.7 (Random Hypergraph with Aligned Blocks). Let 𝑛,𝑚, 𝑘, ℓ ∈ N with 𝑛 a

multiple of ℓ . The random hypergraph with 𝑘 aligned blocks of size ℓ is given as

𝐵𝑘,ℓ𝑛,𝑚 B ( [𝑛]0, {𝑒 ′1, . . . , 𝑒 ′𝑚}), where 𝑒𝑖 ←− [ [𝑛/ℓ ]0𝑘
]

and 𝑒 ′𝑖 =
⋃
𝑗 ∈𝑒𝑖
{ 𝑗ℓ, . . . , ( 𝑗 + 1)ℓ − 1} for 𝑖 ∈ [𝑚] .

Each hyperedge is the union of 𝑘 aligned blocks chosen uniformly at random from the
set of all blocks. By aligned blocks we mean the 𝑛/ℓ intervals of size ℓ in [𝑛]0 that start at a
multiple of ℓ .

We can think of 𝐵𝑘,ℓ𝑛,𝑚 as arising from 𝐻𝑘
𝑛/ℓ,𝑚 by splitting each of the 𝑛/ℓ vertices of

𝐻𝑘
𝑛/ℓ,𝑚 into ℓ vertices as seen in Figure 2.5 (a) and (b). With this coupling between the

probability spaces, 𝐻𝑘
𝑛/ℓ,𝑚 is ℓ-orientable if and only if 𝐵𝑘,ℓ𝑛,𝑚 is 1-orientable. In particular

the 1-orientability threshold of (𝐵𝑘,ℓ𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N is 𝑐∗
𝑘,ℓ
/ℓ . These “normalised” load thresholds

(see Table 2.4) are a natural measure of space efficiency on a scale of [0, 1] and will play a
role in Chapter 3.

(a) (b) (c)

Figure 2.5 Drawing of corresponding outcomes for the hypergraphs 𝐻𝑘
𝑛/ℓ,𝑚 and 𝐵𝑘,ℓ𝑛,𝑚 in (a) and

(b), as well as an outcome for𝑊 𝑘,ℓ
𝑛,𝑚 in (c), with parameters 𝑛 = 30,𝑚 = 5, 𝑘 = 3 and

ℓ = 2. Each hyperedge is drawn as a point and connected to all incident vertices,
which are arranged in a circle. In the case of 𝐵𝑘,ℓ𝑛,𝑚 , thick lines indicate borders
between blocks.

From 𝐵𝑘,ℓ𝑛,𝑚 a slight modification yields the following construction.

▶ Definition 2.8 (Random Hypergraph with Unaligned Blocks). Let 𝑛,𝑚, 𝑘, ℓ ∈ N. The
random hypergraph with 𝑘 unaligned blocks of size ℓ is given as

𝑊 𝑘,ℓ
𝑛,𝑚 B (Z𝑛, {𝑒 ′1, . . . , 𝑒 ′𝑚}), where 𝑒𝑖 ←− [Z𝑛𝑘 ] and 𝑒 ′𝑖 =

⋃
𝑗 ∈𝑒𝑖
{ 𝑗, . . . , 𝑗 + ℓ − 1} for 𝑖 ∈ [𝑚] .

In𝑊 𝑘,ℓ
𝑛,𝑚 , each hyperedge is the union of 𝑘 intervals chosen uniformly at random from

the set of all 𝑛 intervals of size ℓ in the cyclic group Z𝑛 = ( [𝑛]0, +), this time without
alignment restriction. Note that intervals wrap around at the ends of the set [𝑛]0 with no
awkward “border intervals”. An example is given in Figure 2.5 (c).

We provide precise 1-orientability thresholds of (𝑊 𝑘,ℓ
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N for all 𝑘, ℓ ≥ 2. In

particular this solves the case of 𝑘 = 2 considered in [DW07; LP09].

▶ Theorem D. Let 𝑘, ℓ ≥ 2. The 1-orientability threshold 𝛾𝑘,ℓ of (𝑊 𝑘,ℓ
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N is charac-

terised by Equation (9.8) in Chapter 9. It exceeds the threshold of (𝐵𝑘,ℓ𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N, at least for
(𝑘, ℓ) ∈ {2, . . . 7} × {2, . . . , 10}.



22 2. Random Hypergraphs: Peeling, Solving, Orienting

The thresholds when using unaligned blocks seem to be significantly closer to 1 than
when blocks are aligned. For instance, in the case of 𝑘 = ℓ = 2 the threshold is at roughly
96.5% instead of at roughly 89.7%. We provide some values of 𝛾𝑘,ℓ in Table 2.6. A direct
visual comparison to 𝑐∗

𝑘,ℓ
/ℓ is given in Figure 2.6. While we belief that 𝛾𝑘,ℓ > 𝑐∗

𝑘,ℓ
/ℓ holds

for all 𝑘, ℓ ≥ 2, we cannot think of a way to prove this inequality in general.

𝑘

threshold

2 3 4 5 60

0.9

0.99

0.999

2

2

2

2

3

3

3

4

4

5

5

6
7
8
9
10
11
12
13
14

1

1

1

1

1

2

2

2

3

3

4

5

Figure 2.6 Comparison between the thresholds 𝑐∗
𝑘,ℓ
/ℓ when using 𝑘 aligned blocks of size ℓ ( )

and the thresholds 𝛾𝑘,ℓ when using 𝑘 unaligned blocks of size ℓ ( ). The value of ℓ is
given next to each plot point. Since 𝐵𝑘,1𝑛,𝑚

d=𝑊 𝑘,1
𝑛,𝑚 , there is no difference for ℓ = 1.

When using unaligned blocks for a fixed value of 𝑘 , smaller block sizes ℓ suffice to
achieve the same orientability threshold. See also Tables 2.4 and 2.6.

2.4.2. Less Randomness using Double Hashing

Randomness—be it “true” randomness or pseudo-random bits produced by hash func-
tions—can be a costly resource in practice. The technique of double hashing (we give some
background in Section 4.2), when applied to the fully random hypergraph 𝐻𝑘

𝑛,𝑚 , yields the
double hashing hypergraph.

▶ Definition 2.9 (Double Hashing Hypergraph). Let 𝑛,𝑚, 𝑘 ∈ N with 𝑘 ≥ 3.

𝐷𝑘
𝑛,𝑚 B (Z𝑛, {𝑒1, 𝑒2, . . . , 𝑒𝑚}), where 𝑒𝑖 = {𝑎𝑖 + 𝑗𝑏𝑖 mod 𝑛 | 𝑗 ∈ [𝑘]0},

with 𝑎𝑖 ←− Z𝑛, 𝑏𝑖 ←− [𝑛 − 1] for 𝑖 ∈ [𝑚] .

If 𝑛 is prime, a nice side effect is that each hyperedge is guaranteed to have size 𝑘 . For
convenience, we assume this is the case.

For 𝑘 ≥ 3 and compared to 𝐻𝑘
𝑛,𝑐𝑛 , the amount of entropy (and thus “randomness”) per

hyperedge decreases from ≈ 𝑘 log𝑛 to ≈ 2 log𝑛. Yet, the ℓ-orientability threshold remains
the same:

▶ Theorem E. For any 𝑘 ≥ 3, ℓ ≥ 1, the ℓ-orientability threshold of (𝐷𝑘
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N is 𝑐∗

𝑘,ℓ
.



2.4. Orientability of Variations of Fully Random Hypergraphs 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

𝑘 = 3

𝑁 = 16

𝑛 = 22

𝑒 = {10, 19, 24} ←− [ [2𝑁 ]3 ]
↩→ 𝑒 ′ = {10, 19, 8} ∈ 𝐸

phase: \ = 𝑛−𝑁
𝑁 = 6

16

Figure 2.7 Illustration of 𝐻𝑘
𝑛,𝑁 ,𝑚 for 𝑛 = 22 and 𝑁 = 16. The generation of one edge 𝑒 ′ is shown.

Each vertex 𝑗 ∈ {7, . . . , 16} is twice as likely to occur as an incidence compared to
the other vertices and would be split into vertices 𝑗 and 𝑗 + 𝑁 for 𝑛 ≥ 𝑗 + 𝑁 .

At this point, it should be noted that previous work has come close to this theorem, but
completing the argument has proven to be difficult.

Concretely, for 𝑑 ∈ N let us say a hypergraph 𝐻 = (𝑉 , 𝐸) is 𝑑-almost ℓ-orientable if
there is 𝐸 ′ ⊆ 𝐸 of size |𝐸 ′ | = |𝐸 | − 𝑑 such that 𝐻 ′ = (𝑉 , 𝐸 ′) is ℓ-orientable. A theorem
by Leconte [Lec13] demonstrates that for 𝑐 < 𝑐∗

𝑘,ℓ
, the hypergraph 𝐷𝑘

𝑛,𝑐𝑛 is 𝑜 (𝑛)-almost
ℓ-orientable. The main difficulty in our proof of Theorem E thus concerns this pesky gap
of 𝑜 (𝑛) hyperedges.

2.4.3. Orientability Considerations for Dynamic Settings

Tomotivate the following theorem, we must hint at an application explained in Section 3.3.1,
but will only do so briefly and vaguely.

Bear in mind that the hypergraph 𝐻𝑘
𝑛,𝑚 models data structures, where𝑚 is a number

of objects to be stored in a table of size 𝑛. A dynamic data structure must allow for
𝑛 and 𝑚 to change. If the corresponding operations are to be efficient, we should see
correspondingly simple and local changes in our model as 𝑛 and𝑚 changes. For changes in
𝑚 this is clearly the case: If 𝐻𝑘

𝑛,𝑚 and 𝑒 ←− [ [𝑛]
𝑘
] are independent, then 𝐻𝑘

𝑛,𝑚 + 𝑒 d= 𝐻𝑘
𝑛,𝑚+1

where “+” denotes adding 𝑒 to the hypergraph and “ d=” asserts equality in distribution. The
relationship between 𝐻𝑘

𝑛+1,𝑚 and 𝐻𝑘
𝑛,𝑚 is not as simple. For the data structure, this might

mean that increasing the table size by 1 prompts an unacceptably expensive rebuild of
the data structure. Consider therefore the following construction implicit in [MS17], and
illustrated in Figure 2.7.

▶ Definition 2.10 (DySECT Hypergraph). Let 𝑘, 𝑛, 𝑁 ,𝑚 ∈ N with 𝑁 ≤ 𝑛 ≤ 2𝑁 .

𝐻𝑘
𝑛,𝑁 ,𝑚 B ( [𝑛], 𝐸), with |𝐸 | =𝑚 and each 𝑒 ′ ∈ 𝐸 chosen i.i.d. as follows:

𝑒 ′ = {𝑓 ( 𝑗) | 𝑗 ∈ 𝑒} where 𝑒 ←− [ [2𝑁 ]
𝑘
] and 𝑓 ( 𝑗) =

{
𝑗 − 𝑁 𝑗 > 𝑛

𝑗 otherwise.

It is easy to see that 𝐻𝑘
𝑁,𝑁,𝑚

d= 𝐻𝑘
𝑁,𝑚 and 𝐻𝑘

2𝑁,𝑁,𝑚
d= 𝐻𝑘

2𝑁,𝑚 . Definition 2.10 therefore
generalises fully random hypergraphs. Moreover, if 𝑁 < 𝑛 ≤ 2𝑁 and 𝐻𝑘

𝑛,𝑁 ,𝑚/[𝑛 ≡
𝑛 − 𝑁 ] denotes the hypergraph obtained by merging vertices 𝑛 and 𝑛 − 𝑁 in 𝐻𝑘

𝑛,𝑁 ,𝑚 , then
𝐻𝑘
𝑛,𝑁 ,𝑚/[𝑛 ≡ 𝑛 − 𝑁 ] d= 𝐻𝑘

𝑛−1,𝑁 ,𝑚 . The reverse step can be described as a randomised de-
contraction. Therefore, a step by step transformation from 𝐻𝑘

𝑁,𝑚 to 𝐻𝑘
2𝑁,𝑚 is possible. Each

step is a simple operation and adds one vertex.



24 2. Random Hypergraphs: Peeling, Solving, Orienting

To analyse a corresponding hashing scheme that dynamically scales the table size, it is
important to get a grip on corresponding thresholds. The parameter \ = 𝑛−𝑁

𝑁 ∈ [0, 1] will
turn out to be useful and we call it the phase.

▶ Theorem F. Let 𝑘, ℓ ∈ N with 𝑘 + ℓ ≥ 4 and \ ∈ [0, 1]. The ℓ-orientability threshold [𝑘,ℓ,\
of (𝐻𝑘

𝑛,𝑛/(1+\ ),𝑐𝑛)𝑐∈R+,𝑛∈N is characterised by Equation (11.3) in Chapter 11.

Figure 3.4 depicts the load thresholds [𝑘,ℓ,\/ℓ ∈ [0, 1] that capture the memory efficiency
of the hashing scheme.

2.4.4. Previous Work on ℓ-orientability Thresholds

Table 2.2 lists work on thresholds relating to hypergraphs relevant for this thesis. There are
three groups: The first group deals with ordinary orientability questions on fully random
hypergraphs. The second generalises the notion of orientability. The third relates to
different random hypergraphs.

reference hypergraph threshold type symbol

[ER60; PR04] 𝐻 2
𝑛,𝑐𝑛 1-orientability 𝑐∗2,1

[Die+10; FM12; FP12] 𝐻𝑘
𝑛,𝑐𝑛 1-orientability for 𝑘 ≥ 3 𝑐∗

𝑘,1
[FR07; CSW07] 𝐻 2

𝑛,𝑐𝑛 ℓ-orientability for ℓ ≥ 2 𝑐∗2,ℓ
[FKP16] 𝐻𝑘

𝑛,𝑐𝑛 ℓ-orientability for 𝑘 ≥ 3, ℓ ≥ 2 𝑐∗
𝑘,ℓ

[GW10; GW15] 𝐻𝑘
𝑛,𝑐𝑛 (ℓ, 𝑘 ′)-orientability for ℓ ≥ ℓ0 (𝑘, 𝑘 ′)

[Lel12] 𝐻𝑘
𝑛,𝑐𝑛 (ℓ, 𝑘 ′)-orientability for (ℓ, 𝑘 ′) ≠ (1, 𝑘 − 1)

[LP14] 𝐻𝑘
𝑛,𝑐𝑛 (1, 𝑘 − 1)-orientability for 𝑘 ≥ 3

[LLM13] 𝐻𝑘
𝑛,𝑐𝑛 (ℓ, 𝑘 ′, 𝑟 )-orientability for (ℓ, 𝑘 ′) ≠ (𝑟, (𝑘 − 1)𝑟 )

[LP09] 𝑊 2,ℓ
𝑛,𝑐𝑛 1-orientability for ℓ ≥ 2 (asymptotic lower bound) 𝛾2,ℓ

Theorem D 𝑊 𝑘,ℓ
𝑛,𝑐𝑛 1-orientability for 𝑘, ℓ ≥ 2 𝛾𝑘,ℓ

[Lec13] 𝐷𝑘
𝑛,𝑐𝑛 𝑜 (𝑛)-almost ℓ-orientability for 𝑘 ≥ 3, ℓ ≥ 1 𝑐∗

𝑘,ℓ

Theorem E 𝐷𝑘
𝑛,𝑐𝑛 ℓ-orientability for 𝑘 ≥ 3, ℓ ≥ 1 𝑐∗

𝑘,ℓ

Theorem F 𝐻𝑘
𝑛,𝑛/(1+\ ),𝑐𝑛 ℓ-orientability for \ ∈ [0, 1], 𝑘 ≥ 2, ℓ ≥ 1, (𝑘, ℓ) ≠ (2, 1) [𝑘,ℓ,\

cl
as
si
c

ge
ne
ra
lis
ed

or
ie
nt
ab
ili
ty

ot
he

r
hy

pe
rg
ra
ph

s

Table 2.2 Known orientability thresholds of various hypergraphs and notions of orientability.

Classic Results. The 1-orientability threshold for fully random graphs, i.e. 𝑐∗2,1 is already
implicit in classical results on the emergence of giant components due to Erdős and
Renyi [ER60]. Precise values of 𝑐∗

𝑘,1 for 𝑘 ≥ 3 were derived independently by three
groups [Die+10; FM12; FP10] and values for 𝑐∗2,ℓ for ℓ ≥ 2 independently by [FR07;
CSW07]. The general case, i.e. the remaining thresholds 𝑐∗

𝑘,ℓ
for any 𝑘 ≥ 3, ℓ ≥ 2 are

due to [FKP16].
Generalised Orientability. Consider the following generalisation: For a 𝑘-uniform hy-

pergraph 𝐻 = (𝑉 , 𝐸) and ℓ ≥ 1, 1 ≤ 𝑘 ′ < 𝑘, 𝑟 ≤ min{𝑘 ′, ℓ}, an (ℓ, 𝑘 ′, 𝑟 )-orientation is
a multi-set 𝜎 containing pairs from 𝐸 × 𝑉 . Each 𝑣 ∈ 𝑉 may occur in at most ℓ pairs
while each 𝑒 ∈ 𝐸 must occur in exactly 𝑘 ′ pairs. The multiplicity of the pairs in 𝜎 must
not exceed 𝑟 . If 𝑟 = 1, then 𝜎 ⊆ 𝐸 ×𝑉 is a set and we call it an (ℓ, 𝑘 ′)-orientation. If
𝑟 = 𝑘 ′ = 1 then 𝜎 : 𝐸 → 𝑉 is a function and an ℓ-orientation in the ordinary sense. As
seen in Table 2.2, almost all corresponding thresholds have by now been determined.



2.4. Orientability of Variations of Fully Random Hypergraphs 25

The techniques in the cited papers are highly heterogeneous and often specific to
the cases at hand. A notable exception is an approach by Lelarge [Lel12; LLM13]
using techniques from statistical physics that seem to grasp more directly at the core
phenomena. Not only are almost all cases relating to 𝐻𝑘

𝑛,𝑐𝑛 handled with one unified
approach, the main theorem in [LLM13] is much more general still, dealing with a wide
range of hypergraph families that have certain Benjamini-Schramm limits [BS11]. The
technique is a crucial ingredient for proving Theorems D, E and F and is discussed in
detail in Chapter 5.

Other Hypergraphs. Lehman and Panigrahy [LP09] analysed 𝐵2,ℓ
𝑛,𝑐𝑛 and𝑊 2,ℓ

𝑛,𝑐𝑛 showing
that, asymptotically, the 1-orientability thresholds are 1 − (2/𝑒 + 𝑜ℓ (1))ℓ and 1 − (1/𝑒 +
𝑜ℓ (1))1.59ℓ , respectively, with no implication for constant ℓ . Beyer [Bey12] showed in
his master’s thesis that the orientability threshold of𝑊 2,2

𝑛,𝑐𝑛 satisfies 0.829 ≤ 𝛾2,2 ≤ 0.981.
As already mentioned in Section 2.4.2, the ℓ-orientability thresholds for 𝐷𝑘

𝑛,𝑐𝑛 were
already considered in [Lec13], but the proof remained incomplete.
Our Theorem F is a highly specialised result for Dynamic Space Efficient Cuckoo Tables
(see Section 3.3.1) with no predecessors in the literature.



26 2. Random Hypergraphs: Peeling, Solving, Orienting

ℓ\𝑘 2 3 4 5 6 7

1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 1.7940237365 1.9764028279 1.9964829679 1.9994487201 1.9999137473 1.9999866878
3 2.8774628058 2.9918572178 2.9993854302 2.9999554360 2.9999969384 2.9999997987
4 3.9214790971 3.9970126256 3.9998882644 3.9999962949 3.9999998884 3.9999999969
5 4.9477568093 4.9988732941 4.9999793407 4.9999996871 4.9999999959 ≈ 5
6 5.9644362395 5.9995688805 5.9999961417 5.9999999733 5.9999999998 ≈ 6

Table 2.3 The ℓ-orientability thresholds 𝑐∗
𝑘,ℓ

of the fully random 𝑘-uniform hypergraphs
(𝐻𝑘

𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N, as obtained by [PR04; CSW07; FR07; Die+10; FM12; FP12; FKP16].

ℓ\𝑘 2 3 4 5 6 7

1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 0.8970118682 0.9882014140 0.9982414840 0.9997243601 0.9999568737 0.9999933439
3 0.9591542686 0.9972857393 0.9997951434 0.9999851453 0.9999989795 0.9999999329
4 0.9803697743 0.9992531564 0.9999720661 0.9999990737 0.9999999721 0.9999999992
5 0.9895513619 0.9997746588 0.9999958681 0.9999999374 0.9999999992 ≈ 1
6 0.9940727066 0.9999281468 0.9999993570 0.9999999956 ≈ 1 ≈ 1

Table 2.4 Load thresholds 𝑐∗
𝑘,ℓ
/ℓ for 𝑘-ary cuckoo hashing with buckets of size ℓ , as obtained by

[PR04; CSW07; FR07; Die+10; FM12; FP12; FKP16].

ℓ\𝑘 2 3 4 5 6 7

1 0 0.8184691608 0.7722798398 0.7017802665 0.6370811273 0.5817751770
2 1.6754594358 1.5528299396 1.3336365241 1.1577691116 1.0216304657 0.9145757127
3 2.5747013735 2.1744920259 1.8108662162 1.5456982483 1.3487892629 1.1976611907
4 3.3996377443 2.7467258764 2.2497675711 1.9021610989 1.6491970269 1.4574480793
5 4.1826703850 3.2893534383 2.6654433095 2.2394560137 1.9332573430 1.7029657970
6 4.9376453624 3.8116594555 3.0650876889 2.5634847034 2.2059844373 1.9385792322

Table 2.5 The ℓ-peelability thresholds 𝑐△
𝑘,ℓ

of the fully random 𝑘-uniform hypergraphs
(𝐻𝑘

𝑛,𝑐𝑛)𝑐∈R+0 ,𝑛∈N, see [Mol05; Coo04; PSW96; JL07] and [MM09, Chapter 18].

ℓ\𝑘 2 3 4 5 6 7

1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 0.9649949234 0.9968991072 0.9996335076 0.9999529036 0.9999937602 0.9999991631
3 0.9944227538 0.9998255112 0.9999928198 0.9999996722 0.9999999843 0.9999999992
4 0.9989515932 0.9999896830 0.9999998577 0.9999999977 ≈ 1 ≈ 1
5 0.9997922174 0.9999993863 0.9999999972 ≈ 1 ≈ 1 ≈ 1
6 0.9999581007 0.9999999635 0.9999999999 ≈ 1 ≈ 1 ≈ 1

Table 2.6 The 1-orientability thresholds 𝛾𝑘,ℓ for (𝑊 𝑘,ℓ
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N from Definition 2.8, or equi-

valently, load thresholds for 𝑘-ary cuckoo hashing with unaligned blocks of size ℓ ,
see Theorem D1. The row for ℓ = 1 corresponds to plain 𝑘-ary cuckoo hashing,
reproduced for comparison.



27

3. Hashing-Based Data Structures:

Cuckoo Tables, Retrieval and Beyond

This chapter concerns variations of dictionary data structures. We explain their specific-
ation as well as general implementation strategies that use hashing and the “power of
multiple choices” paradigm as an essential component. None of the general strategies is
new. However, they have flexibilities in certain details, in particular the distribution of
underlying hash functions. Depending on these, different families of hypergraphs model the
behaviour of the data structure. The (likely) properties of the hypergraph then imply (likely)
performance characteristics of the data structure operations. Using such connections, we
translate our Theorems A to F from Chapter 2 about improved hypergraph constructions
into theorems about improved data structures.

An overview is given in Figure 3.1. Note that only hashing-based data structures
relevant for this thesis are shown, and many connections leading “outside” of the diagram
are omitted. We say some words about the bigger picture in Section 4.6.

peelabilitysolvabilityorientability

cuckoo
hash table

retrieval via
linear systems

minimum perfect
hash function

Dictionary Retrieval AMQ-filter Simple IBF

⇐⇐

3.7

static
3.6

static 3.4

dynamic
3.5

static
3.5

dynamic
3.3

3.4.2 3.4
3.3

3.5

3.6
dy
na
m
ic

Figure 3.1 At the top, we list variations of dictionary data structures, some of which come in
“static” and “dynamic” versions (see Section 3.1.2). At the bottom, we list properties
that the hypergraphs we constructed in Chapter 2 are designed to have. An arrow
a→ b indicates a reduction, meaning a can be built if b is available. Corresponding
section numbers are given in grey.

3.1. The Dictionary and its Modest Siblings

A dictionary, sometimes called associative array, map or symbol table, is a fundamental
data type. There are many different ways of explaining what it is (see e.g. [San+19, Chapter
4] [Cor+09, Chapter 11]). We choose to give a mathematical model as follows.



28 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

3.1.1. The Ideal Dictionary

LetU be a set called universe with elements called keys and 𝑅 a set called range. A state of
an ideal dictionary is a function 𝑓 : 𝑆 → 𝑅 where 𝑆 ⊆ U is finite. As is usual, we often treat
𝑓 ⊆ 𝑆 × 𝑅 as a set of pairs. We now list the operations supported by a dictionary, starting
with its creation.

construct(𝒇 : 𝑺 → 𝑹): Creates a dictionary with state 𝑓 .

Some implementations of constructmay require additional arguments that determine how
the dictionary should be configured. Others may not have 𝑓 as a parameter and initialise
the dictionary to the empty state. The following query operations return information
about 𝑓 .

member(𝒙 ∈ U): Returns 1 if 𝑥 ∈ 𝑆 and 0 if 𝑥 ∉ 𝑆 .
lookup(𝒙 ∈ U): Returns 𝑓 (𝑥) if 𝑥 ∈ 𝑆 and ⊥ if 𝑥 ∉ 𝑆 .

eval(𝒙 ∈ U): Returns 𝑓 (𝑥) if 𝑥 ∈ 𝑆 and arbitrary 𝑟 ∈ 𝑅 if 𝑥 ∉ 𝑆 .
listMembers(): Returns 𝑓 as a list of pairs ((𝑥, 𝑓 (𝑥))𝑥 ∈𝑆 .

Finally, the following operations modify the state 𝑓 , yielding a new state 𝑓 ′ : 𝑆 ′→ 𝑅.

insert(𝒙 ∈ U \ 𝑺, 𝒗 ∈ 𝑹): Yields 𝑓 ′ = 𝑓 ∪ {(𝑥, 𝑣)}.
delete(𝒙 ∈ 𝑺): Yields 𝑓 ′ = 𝑓 \ {(𝑥, 𝑓 (𝑥)}.

update(𝒙 ∈ 𝑺, 𝒗 ∈ 𝑹): Yields 𝑓 ′ = (𝑓 \ {(𝑥, 𝑓 (𝑥))}) ∪ {(𝑥, 𝑣)}.
We make the following important remarks:

The set of operations is intentionally not minimal. For instance, lookup is a combination
of member and eval, and update can be built from delete and insert. The larger
operation set is useful for discussing data structures that only support a strict subset of
the dictionary operations, see below.
Some operations may only be executed with certain parameters. For instance, an insert

with 𝑥 ∈ 𝑆 or a delete with 𝑥 ∉ 𝑆 has unspecified behaviour. Of course the desirable
behaviour would be that nothing happens or that an error is reported, but we want to
permit data structures that do not support member and cannot react so gracefully in
this case.
If 𝑅 is trivial, i.e. |𝑅 | = 1, then we obtain a set data structure representing 𝑆 . In this case
the operations eval and update are meaningless.

3.1.2. Less Powerful Variations

We now define interfaces that contain a subset of the dictionary operations listed above.

Dictionary. construct, member, lookup, listMembers, update, insert, delete.
Retrieval. construct, eval, update.
AMQ-Filter. construct, member*, insert, delete
Simple-IBF. construct, insert, delete, listMembers*

set data structures,
i.e. |𝑅 | = 1.

An operation written in italics indicates that a dynamic implementation supports it, while
a static implementation does not. For instance, a static retrieval data structure does not
support update.



3.1. The Dictionary and its Modest Siblings 29

An asterisk (*) indicates that a query operation of that kind may fail to output the
correct result. Of course, the circumstances and probabilities for such failures will have to
be discussed in detail.

To highlight the salient properties of the non-standard variations: Retrieval data struc-
tures forget the key set and do not support member. Approximate membership query filters
(AMQ-Filters) represent sets, butmember may falsely report “true” when the right answer
is “false” but not vice versa. An invertible Bloom filter (IBF) is a set data structure that has a
space utilisation not growing with 𝑆 . It temporarily loses the ability to list the elements of
𝑆 while it is too full, but recovers that ability when sufficiently many elements are deleted.

3.1.3. When Less Power is Sufficient

As we shall see, the less powerful dictionary variations tend to admit more efficient imple-
mentations in terms of memory usage or running time. Of course, this is only relevant if
there are important applications that make do with the more restricted set of operations.
We shall list a few and provide corresponding references.

Static Dictionaries. Use cases for dictionaries with a static key set 𝑆 are very common.
Think of any computational task that has two phases: One where a large amount of
data 𝑆 is acquired and a second distinct phase where information about 𝑆 is (repeatedly)
extracted. The data structure that stores 𝑆 during the second phase need not support
operations that modify 𝑆 .
To give just one example, in [ZTR20] information about the human genome is stored in
a large cuckoo hash table. The resulting (static) data structure can then very efficiently
decide whether a sequence of base pairs is of human origin.

AMQ-Filters. In situations where memory is scarce (e.g. in cache) an AMQ-filter can re-
place a more memory-intensive set data structure whenever false positives are harmless
or easily mitigated. In a classical example by Bloom [Blo70], an AMQ-filter 𝐷𝑆 stores
a set 𝑆 of English words for which heuristics fail to produce the correct hyphenation
(“hy-phen-ation”). Given a word 𝑤 for which member(𝐷𝑆 , 𝑤) reports “false”, it is safe
to use the heuristic, and a costly access to a large data structure containing the correct
hyphenation is avoided. If𝑤 ∉ 𝑆 butmember(𝐷𝑆 , 𝑤) incorrectly reports “true”, a costly
(but otherwise harmless) access to the data structure is made, even though the heuristic
would have produced the right hyphenation.
To give a second example, assume Alice and Bob hold sets 𝑆𝐴 and 𝑆𝐵 and wish to
compute the intersection 𝑆𝐴 ∩𝑆𝐵 . Instead of sending 𝑆𝐴, Alice sends only an AMQ-filter
𝐷𝑆𝐴 to Bob. Bob then determines𝑇 = {𝑥 ∈ 𝑆𝐵 | member(𝐷𝑆𝐴 , 𝑥)} and sends𝑇 to Alice
(note 𝑆𝐴 ∩ 𝑆𝐵 ⊆ 𝑇 ⊆ 𝑆𝐵) who can then determine 𝑆𝐴 ∩ 𝑆𝐵 . This can significantly reduce
the amount of information that needs to be transferred. For details on this and many
other applications, see [BM03].

Retrieval. Retrieval data structures or “static functions” are mainly used as an auxiliary
data structure within other data structures. Using them we can construct perfect hash
functions, see Section 3.5, and AMQ-filters, see Section 3.6. In [Bel+10] they are applied
to the weak prefix search problem. To take a toy example for retrieval as a stand-alone
data structure from [DP08]: Assume there is a database 𝑓 of 𝑛 names annotated to be
either boy’s names or girl’s names. From this, we can build a retrieval data structure
𝐷 𝑓 that correctly reproduces the gender of any name in the database and a random



30 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

output for names not in the database. The size of 𝐷 𝑓 is only (1 + Y)𝑛 bits for a small
Y > 0, much less than any representation of 𝑓 as a set of pairs.

Simple-IBF. The restricted versions of IBFs we introduced above have limited applicability.
To borrow an example from [EG11]: Assume a security guard of a building sees every
person that enters (insert) or exits (delete) throughout a day. Late at night, when
almost everyone has gone home, the guard should be able to list the small number of
stragglers that are still in the building. Surprisingly, the guard can use a data structure
with a size linear in the number of stragglers, even when the peak number of people in
the building is vastly greater.
In Section 3.7 we list common extensions to IBFs that widen their applicability consid-
erably, for instance to the set reconciliation problem, explained there.

3.2. Modelling Hashing-Based Data Structures

via Random Hypergraphs

In the standard word RAM model (see Section 4.1), we have to work with memory that
presents itself as a linear sequence of memory cells or buckets that we index by [𝑛] =
{1, . . . , 𝑛}. We assume 𝑛 to be proportional to the size𝑚 of the key set 𝑆 ⊆ U to be stored.
But in which buckets should the information on 𝑥 ∈ 𝑆 be stored and how can it be located
later on? In general, the universeU is unbounded, so clearly not every 𝑥 ∈ U can have its
private designated location.

There are many ways of approaching this problem, and we get back to some of them in
Section 4.6. This thesis deals with approaches that exploit the “power of multiple choices”
paradigm [Mit91]. In this setting, each 𝑥 ∈ U is associated with several buckets 𝑒 (𝑥) ⊆ [𝑛]
via a function 𝑒 : U → 2[𝑛] with the convention that the information about 𝑥 ∈ 𝑆 should
be stored exclusively in the buckets with indices from 𝑒 (𝑥). For any set 𝑆 ⊆ U the situation
is modelled by the hypergraph 𝐻 = ( [𝑛], {𝑒 (𝑥) | 𝑥 ∈ 𝑆}). If 𝑒 is a random function, then 𝐻
is a random hypergraph.

Often there is a constant number 𝑘 ≥ 2 of random functions ℎ1, . . . , ℎ𝑘 : U → [𝑛]
and 𝑒 (𝑥) = {ℎ1(𝑥), . . . , ℎ𝑘 (𝑥)}. For instance, if ℎ1, . . . , ℎ𝑘 ←− [𝑛]U are fully random and
independent, then 𝐻

d= 𝐻𝑘
𝑛,𝑚 , i.e. 𝐻 is the fully random hypergraph from Equation (2.1).

The functions ℎ1, . . . , ℎ𝑘 and 𝑒 are called hash functions, indicating that we have no control
over the random values they produce (though we do control the distribution of the values).

We will soon see how the properties of peelability, solvability and orientability of 𝐻
from Definition 2.1 come into play.

Independence of the Hyperedges. In Chapter 2, we exclusively considered random
hypergraphs with stochastically independent random hyperedges. The corresponding
assumption we make now is that the family {𝑒 (𝑥) | 𝑥 ∈ 𝑆} of sets produced by the hash
function 𝑒 is stochastically independent. Note that the elements of 𝑒 (𝑥) for any 𝑥 ∈ 𝑆 may
still be correlated.

There are two immediate reasons to be worried about this independence assumption.
Firstly, it is unclear how it could be satisfied by efficient, practical hash functions. We shall
address this problem in Section 4.3. Secondly, one might fear that we unnecessarily narrow
our focus. This second worry is readily dispelled with the following well-known argument:



3.3. Dictionaries via Cuckoo Hash Tables 31

Recall that we do not control the key set 𝑆 ⊆ U and the evaluation of 𝑒 : U → 2[𝑛] needs
to be efficient. If 𝑒 were specifically tailored to 𝑆 , it is unclear how evaluating 𝑒 could be
achieved without the need for another data structure relating to 𝑆 (precluding that we build
a fundamental data structure). Now assume 𝑒 to be independent of 𝑆 and consider the use
case where |U| ≫ |𝑆 | and the elements of 𝑆 are chosen independently at random fromU
(we may assume repetitions do not occur). Then the hyperedges of 𝐻 are stochastically
independent with a distribution implicit in 𝑒 . So the use case with i.i.d. random hyperedges
is unavoidable. We simplify our job by turning all use cases into this case by assuming
{𝑒 (𝑥) | 𝑥 ∈ 𝑆} to be an independent family with a distribution we control.

Assumptions on the Computational Model. In following theorems, we make claims
about the performance characteristics of algorithms. These only make sense in the context
of a computational model. We make the following assumptions on it.

Word RAM with O(1) parity. We work on a word RAM, which can perform common
arithmetic operations on words of 𝑤 = Θ(log𝑛) bits in O(1) time, see Section 4.1.
For any bit string 𝑥 = 𝑏1𝑏2 . . . 𝑏𝑤 ∈ {0, 1}𝑤, the (slightly less common) parity(𝑥) =
(𝑏1 + · · · + 𝑏𝑤) mod 2 can also be computed in O(1) time.

Keys and Values fit into Words. The elements ofU and 𝑅 can be read, copied and com-
pared in O(1) time. Otherwise, our running times are correspondingly scaled or stand-
ard mitigation techniques such as fingerprinting can be used [KR87; FAK13; Mül+14].

Fully Random Hashing is Free. We assume we can obtain for any range 𝑋 a fully ran-
dom function ℎ ←− 𝑋U in time Θ(1) and ℎ(𝑥) can then be evaluated in time Θ(1) for
any 𝑥 ∈ U, by an “oracle” that only requires 𝑥 and (a description of) 𝑋 . If we draw
several functions ℎ0, ℎ1, ℎ2, . . . ←− 𝑋U then evaluating ℎ𝑠 (𝑥) requires only 𝑥,𝑋 and
the seed value 𝑠 . As we explain in Section 4.3, this assumption is vindicated in practice
by good pseudo-random hash functions, and theoretical techniques to weaken it exist
as well.

Counting Cache Misses. Modern computers use a hierarchical memory architecture (see
e.g. [HP12]) and designing algorithms to be cache efficient is important in practice.
While the word RAM model is unaware of such effects, we do not want to leave aside
such considerations completely. We take the (simplistic) stance that a cache miss is a
discontinuity in the sequence of memory accesses, in other words, reading a sequence of
𝑘 consecutive memory words for 𝑘 ∈ N takes Θ(𝑘) time and causes exactly 1 cache miss.
Accessing auxiliary data structures, program code and temporary variables, together
occupying an 𝑜 (1)-fraction of the total memory used, never causes a cache miss.

With these general remarks out of the way, we are ready to review and revise variations of
dictionary data structures, starting with cuckoo hash tables.

3.3. Dictionaries via Cuckoo Hash Tables

A cuckoo hash table implements a dictionary and thus represents a function 𝑓 : 𝑆 → 𝑅 for
a set 𝑆 ⊆ U of size𝑚 ∈ N. We use an array 𝑇 with space for 𝑛 ∈ N elements ofU. The
space efficiency 𝑐 = 𝑚

𝑛 ∈ [0, 1] is called the load of the table. Each array cell𝑇 [𝑖] for 𝑖 ∈ [𝑛]
can usually hold only one pair (𝑥, 𝑟 ) ∈ U × 𝑅 and for each 𝑥 ∈ 𝑆 the pair (𝑥, 𝑓 (𝑥)) must be
placed in𝑇 [𝑖𝑥 ] for some 𝑖𝑥 ∈ 𝑒 (𝑥) ⊆ [𝑛] where 𝑒 (𝑥) is generated from 𝑥 via hash functions.



32 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

The distribution of 𝑒 : U → 2[𝑛] is given by the cuckoo hashing scheme and affects the
distribution of the cuckoo hypergraph 𝐻 = ( [𝑛], {𝑒 (𝑥) | 𝑥 ∈ 𝑆}). We say the scheme works
if all key/value pairs can be placed, which clearly corresponds to a 1-orientation of 𝐻 . Thus,
the notion of orientability thresholds from Chapter 2 for hypergraph families translates
into a notion of load thresholds of cuckoo hashing schemes. We now list the most popular
schemes.

In standard cuckoo hashing [PR04], we have 𝑒 (𝑥) = {ℎ1(𝑥), ℎ2(𝑥)} for ℎ1, ℎ2 ←−
[𝑛]U , meaning each key 𝑥 is associated with two independent and uniformly random
cells. The cuckoo hypergraph is 𝐻 d= 𝐻 2

𝑛,𝑚 from Equation (2.1).
In 𝒌-ary cuckoo hashing, due to Fotakis et al. [Fot+05], any constant number 𝑘 ≥ 2
of hash functions is used, i.e. 𝑒 (𝑥) = {ℎ1(𝑥), . . . , ℎ𝑘 (𝑥)} for ℎ1, . . . , ℎ𝑘 ←− [𝑛]U and
𝐻

d= 𝐻𝑘
𝑛,𝑚 .

Dietzfelbinger and Weidling [DW07] propose cuckoo hashing with aligned blocks
of size ℓ where the table 𝑇 is partitioned into 𝑛

ℓ contiguous blocks of ℓ cells each
for a constant ℓ ≥ 1. Two random blocks are assigned to each 𝑥 ∈ U via two hash
functions, allowing the pair (𝑥, 𝑓 (𝑥)) to reside anywhere within those blocks. In our
terms, 𝑒 (𝑥) = ⋃

𝑖=1,2{ℓℎ𝑖 (𝑥) + 1, . . . , (ℓ + 1)ℎ𝑖 (𝑥)} where ℎ1, ℎ2 ←− [𝑛/ℓ]U and the
cuckoo hypergraph is 𝐻 d= 𝐵2,ℓ

𝑛,𝑚 from Definition 2.7.
An equivalent way to express the same idea assumes that every table cell of 𝑇 can hold
up to ℓ pairs, but reduces the number of table cells to 𝑛/ℓ to compensate. In this case
we say cuckoo hashing with buckets of size ℓ is used. Then 𝑒 (𝑥) = {ℎ1(𝑥), ℎ2(𝑥)}
for ℎ1, ℎ2 ←− [𝑛/ℓ]U and a placement of all keys corresponds to an ℓ-orientation of
the cuckoo hypergraph 𝐻

d= 𝐻 2
𝑛/ℓ,𝑚 . [CSW07; FR07]

The approach can be generalised in the obvious way to 𝒌-ary cuckoo hashing with
aligned blocks or buckets of size ℓ with cuckoo hypergraphs 𝐵𝑘,ℓ𝑛,𝑚 or 𝐻𝑘

𝑛/ℓ,𝑚 , respec-
tively. [FKP16; Lel12]
By cuckoo hashing with unaligned blocks of size ℓ we mean a related idea—
proposed in Lehman and Panigrahy [LP09] and the appendix in [DW07]—where
(𝑥, 𝑓 (𝑥)) may reside in any cell from 𝑒 (𝑥) = ⋃

𝑖=1,2{ℎ𝑖 (𝑥), . . . , ℎ𝑖 (𝑥) + ℓ − 1} where
ℎ1, ℎ2 ←− [𝑛]U0 (all indices understood modulo𝑛). The cuckoo hypergraph is𝐻 d=𝑊 𝑘,ℓ

𝑛,𝑚

from Definition 2.8. Note that blocks can overlap and do not form a partition of [𝑛]0
and there is no obvious corresponding concept of a “bucket”.
Again a generalisation to a “𝒌-ary” variant is immediate.
Porat and Shalem [PS12] and independently Dietzfelbinger, Mitzenmacher and Rink
[DMR11] consider variants of cuckoo hashing with |𝑒 (𝑥) | = 𝑘 where memory is parti-
tioned into pages and 𝑒 (𝑥) is scattered over only two (or few) pages to guarantee good
cache efficiency.

General implementations of the dictionary operations construct, lookup, insert and
delete using cuckoo hash tables are given in Figure 3.2 (neglecting the cases with buckets
of size ℓ ≥ 2). A few comments are in order.

construct. The 1-orientability threshold of the cuckoo hypergraph (or the ℓ-orientability
threshold in the case of buckets of size ℓ) dictates which loads can be achieved with
high probability and thus how 𝑛 should be chosen given𝑚. We summarise the known
thresholds in Table 3.1 (but see also Table 2.2). For cuckoo hashing with pages, lower
bounds on thresholds were given in [PS12].



3.3. Dictionaries via Cuckoo Hash Tables 33

1 Algorithm construct(𝑓 : 𝑆 → 𝑅):
2 pick table size 𝑛 ∈ N
3 repeat
4 pick 𝑒 : U → 2[𝑛] // depends on scheme

5 until 𝐻 ( [𝑛], {𝑒 (𝑥) | 𝑥 ∈ 𝑆}) is
1-orientable

6 𝜎 ← 1-orientation of 𝐻
7 𝑇 ← [⊥,⊥, . . . ,⊥] // empty array of size 𝑛

8 for 𝑥 ∈ 𝑆 do
9 𝑇 [𝜎 (𝑒 (𝑥))] ← (𝑥, 𝑓 (𝑥))

10 return (𝑒,𝑇 )

1 Algorithm lookup(𝑥 ∈ U):
2 for 𝑖 ∈ 𝑒 (𝑥) do
3 (𝑦, 𝑟 ) ← 𝑇 [𝑖]
4 if 𝑦 = 𝑥 then
5 return 𝑟

6 return ⊥ // not found

1 Algorithm insert(𝑥 ∈ U \ 𝑆, 𝑟 ∈ 𝑅):
2 repeat // todo: graceful failure
3 for 𝑖 ∈ 𝑒 (𝑥) do
4 if 𝑇 [𝑖] = ⊥ then
5 𝑇 [𝑖] ← (𝑥, 𝑟 )
6 return

7 𝑗 ←− 𝑒 (𝑥)
8 swap((𝑥, 𝑟 ),𝑇 [ 𝑗])

1 Algorithm delete(𝑥 ∈ 𝑆):
2 for 𝑖 ∈ 𝑒 (𝑥) do
3 (𝑦, 𝑟 ) ← 𝑇 [𝑖]
4 if 𝑦 = 𝑥 then
5 𝑇 [𝑖] ← ⊥
6 return

Figure 3.2 Implementations of four dictionary operations with cuckoo hash tables. For cuckoo
hashing schemes using buckets, i.e. when table cells have a capacity for ℓ ≥ 2
elements, corresponding adjustments are needed.

It should be noted that the thresholds tend to predict the orientability of 𝐻 for relevant
finite values of 𝑛 very well. For instance, experiments for 𝑛 = 106 suggest that the
probability for 𝐻 3

𝑛,𝑐𝑛 to be 1-orientable drops from well above 99% to well below 1%
when 𝑐 changes from 𝑐∗3,1 − 0.01 to 𝑐∗3,1 + 0.01.
To compute an orientation in general, the bipartite matching algorithms due to Hopcroft
and Karp [HK73] gives a guaranteed running time of O(𝑛3/2), which is not satisfactory.
In the simple case where the underlying hypergraph is peelable an orientation can be
obtained in linear time. In the case of 2-ary cuckoo hashing with buckets of size ℓ at a
load 𝑐 < 𝑐∗2,ℓ/ℓ the selfless algorithm [CSW07] and excess degree reduction [FR07] both
find an orientation in linear time with high probability. For 𝑘-ary cuckoo hashing and
𝑐 = 𝑐∗

𝑘,1 − Y, the local search allocation (LSA) algorithm [Kho13] always succeeds if an
orientation exists. Its expected running time is linear in 𝑛 but also depends on Y. It
is plausible but not proven that the selfless algorithm and LSA algorithm give linear
running times on more general classes of random hypergraphs [Rin15; Kho13; KA19].
It should be noted that some authors introduce a quality measure on orientations that
they try to optimise. In cuckoo hashing with pages [DMR11] all but one element from
𝑒 (𝑥) are options in the primary page of 𝑥 . The other option is on the backup page and
should be avoided if possible. For [ZTR20] the elements of 𝑒 (𝑥) are ordered and using
the 𝑖-th option incurs a cost of 𝑖 . In both cases, the goal is to reduce the number of
cache misses caused by (successful) lookup operations.

lookup. It is an important advantage of cuckoo hashing that the running time of lookup
is bounded and independent of 𝑛. For 𝑘-ary cuckoo hashing with buckets of size ℓ or



34 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

cuckoo hashing scheme 𝐻 #cache miss
lookup

#key comp.
lookup

construct

in O(𝑛) ? threshold

standard 𝐻 2
𝑛,𝑐𝑛 2 2 ✓ 𝑐∗2,1 =

1
2

𝑘-ary 𝐻𝑘
𝑛,𝑐𝑛 𝑘 𝑘 ✓ 𝑐∗

𝑘,1
buckets of size ℓ 𝐻 2

𝑛/ℓ,𝑐𝑛 2 2ℓ ✓ 𝑐∗1,ℓ/ℓ
aligned blocks of size ℓ 𝐵2,ℓ

𝑛,𝑐𝑛 2 2ℓ ✓ 𝑐∗1,ℓ/ℓ
𝑘-ary, buckets of size ℓ 𝐻𝑘

𝑛/ℓ,𝑐𝑛 𝑘 𝑘ℓ ✗ 𝑐∗
𝑘,ℓ
/ℓ

using double hashing 𝐷𝑘
𝑛/ℓ,𝑐𝑛 𝑘 𝑘ℓ ✗ 𝑐∗

𝑘,ℓ
/ℓ

using spatial coupling 𝐹 (𝑛ℓ , 𝑘, 𝑐, 𝑧) 𝑘 𝑘ℓ ✓ ≈ 𝑐∗
𝑘,ℓ
/ℓ

𝑘-ary, unaligned blocks of size ℓ 𝑊 𝑘,ℓ
𝑛,𝑐𝑛 𝑘 𝑘ℓ ✗ 𝛾𝑘,ℓ

Table 3.1 Overview of cuckoo hashing schemes and the corresponding cuckoo hypergraphs 𝐻 ,
including results from Section 3.3.1 (grey). With respect to construction times, we
treat 𝑘 as constant, i.e. O(𝑘𝑛) = O(𝑛).

blocks of size ℓ the worst-case number of key comparisons is 𝑘ℓ and the worst-case
number of cache misses is 𝑘 . Since cache misses are normally more costly than key
comparisons, one rarely sees values of 𝑘 larger than 3, while ℓ = 8 is not uncommon
(see, e.g. [MS17]).

insert. Figure 3.2 shows the random walk insertion algorithm for cuckoo hash tables
because it is simple, popular and explains the name cuckoo hashing. When a key/value
pair (𝑥, 𝑟 ) ∈ U × 𝑅 should be inserted and some free position 𝑇 [𝑖] = ⊥ with 𝑖 ∈ 𝑒 (𝑥)
exists, then it is used. Otherwise, (𝑥, 𝑟 ) takes the place 𝑇 [ 𝑗] for a random 𝑗 ←− 𝑒 (𝑥)
and evicts the pair that currently resides in 𝑇 [ 𝑗], reminiscent of a cuckoo fledgling that
upon hatching evicts other eggs from its nest. The happy twist compared to nature
is that the evicted key/value pair will then search for a new “nest” using the same
insertion algorithm. A common optimisation (omitted for clarity) is not to allow a pair
to immediately go back to the position it was just evicted from.

Note that an insertion may not terminate. In practice, an implementation should fail
gracefully, i.e. it should limit the number of evictions and react by picking a new hash
function or by increasing the size of the table if the limit is exceeded.

Even though simulations indicate that randomwalk insertion can give expected constant
insertion time and logarithmic insertion time with high probability (as long as the load
of the table is bounded away from the threshold) [Fot+05; Mit09; FMM11], a rigorous
analysis has only succeeded in special cases [FMM11; FJ19]. Note that this thesis has
nothing to add in that regard.

Breadth-first search insertion that systematically searches for a shortest augmenting

path in the cuckoo hypergraph is known to yield expected constant insertion time
in a wider range of situations [Fot+05]. Some authors claim that breadth-first search
insertion is less efficient than random walk insertion in practice [Mit09; FMM11], but
the opposite has been observed as well [MSW19].



3.3. Dictionaries via Cuckoo Hash Tables 35

3.3.1. Results on Cuckoo Hash Tables

Cuckoo Hashing with Unaligned Blocks. We present the analogue of Theorem D
from Section 2.4.1. Translated to the present application, it yields load thresholds for
cuckoo hashing with unaligned blocks.

▶ Theorem D1. Let 𝑘, ℓ ≥ 2. Consider 𝑘-ary cuckoo hashing with blocks of size ℓ . When

using unaligned blocks rather than aligned blocks, the load threshold changes from 𝑐∗
𝑘,ℓ
/ℓ

to 𝛾𝑘,ℓ . This is an improvement at least for the values (𝑘, ℓ) ∈ {2, . . . 7} × {2, . . . , 10}. The
worst-case number of cache misses and key comparisons per lookup remain unaffected.

Cuckoo Hashing with Double Hashing. We present the analogue of Theorem E from
Section 2.4.2. Recall that 𝑘-ary cuckoo hashing with buckets of size ℓ uses 𝑘 hash functions
ℎ1, . . . , ℎ𝑘 ←− [𝑛/ℓ]U0 (for a zero-based array 𝑇 ). A popular technique to save evaluations
of hash functions for 𝑘 ≥ 3 is double hashing. We give some background in Section 4.2.
Assuming 𝑛′ = 𝑛/ℓ ≥ 3 is prime, we choose ℎ𝑎 ←− [𝑛′]U0 , ℎ𝑏 ←− [𝑛′ − 1]U and1 define
ℎdh𝑖 (𝑥) B ℎ𝑎 (𝑥) + (𝑖 − 1)ℎ𝑏 (𝑥) (mod 𝑛) ′ for 𝑖 ∈ [𝑘] and 𝑥 ∈ U. With this definition,
the sequence ℎdh1 (𝑥), . . . , ℎdh𝑘 (𝑥) is a fully random arithmetic progression in the integers
modulo 𝑛′ and obtained from only 2 evaluations of hash functions. Our theorem is:

▶ Theorem E1. Let 𝑘 ≥ 3, ℓ ≥ 1. Consider 𝑘-ary cuckoo hashing with buckets of size ℓ .
Instead of using 𝑘 independent, fully random hash functions, consider using 2 hash functions

and double hashing. This neither affects the load threshold, nor the worst-case number of cache

misses and key comparisons per query.

This strengthens [Lec13] and proves [MT12, Conjecture 6].

Cuckoo Hashing with Spatial Coupling. We present an analogue of Theorem A from
Section 2.2. Again we consider a variation of 𝑘-ary cuckoo hashing with buckets of size ℓ ,
where for a parameter 𝑧 ∈ R+ the hash functions ℎ1, . . . , ℎ𝑘 are defined differently, namely

𝑛′ = ⌈𝑛/ℓ⌉, 𝑛′′ = ⌈𝑛′/(𝑧 + 1)⌉, ℎ𝑦 ←− [𝑛′ − 𝑛′′]U0 , ℎ𝑜1, . . . ℎ𝑜𝑘 ←− [𝑛′′]U0 for 𝑖 ∈ [𝑘],
and finally ℎ𝑖 (𝑥) B ℎ𝑦 (𝑥) + ℎ𝑜𝑖 (𝑥) for 𝑖 ∈ [𝑘].

We call the resulting scheme cuckoo hashing with spatial coupling (and parameters 𝑘, ℓ, 𝑧).

▶ Theorem A1. Let 𝑘, ℓ ∈ N, 𝑘 ≥ 2, ℓ ≥ 1, (𝑘, ℓ) ≠ (2, 1) and 𝑧 ∈ R+. Consider 𝑘-ary
cuckoo hashing with buckets of size ℓ using spatially coupling with parameter 𝑧 ∈ R+. There
exists an Y = Y (𝑧) with Y (𝑧) 𝑧→∞−→ 0 such that the load threshold of the scheme is at most

𝑐∗
𝑘,ℓ
/ℓ − Y. Moreover, at loads 𝑐 < 𝑐∗

𝑘,ℓ
/ℓ − Y construct can be carried out successfully by a

peeling algorithm in time O(𝑘𝑛) whp.

Cuckoo Hashing with Dynamic Space Efficiency By space efficiency of a dictionary
data structure we mean the quotient between ideal memory usage and actual memory
usage. A particular strength of cuckoo hashing schemes lies in settings where good space

1 It is easy to see that ℎ𝑏 ←− [𝑛
′−1
2 ]U is equivalent. Each arithmetic progression is then enumerated in a

canonical “forward” way.



36 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

efficiency is desired, see Section 4.6. Up to this point, we have implicitly assumed that the
hash table is static or that an estimate of the largest number𝑚max of elements that are
simultaneously contained in the dictionary at some point during its lifetime is available
beforehand. Only then can we make an informed choice for the capacity 𝑛 = 𝑚max

𝑐max
of the

hash table during construction, where 𝑐max ∈ [0, 1] is the highest load we aim for.
In other cases, the table has to grow dynamically as elements are inserted. When

migrating the elements to a larger table of size (1 + Y)𝑛 for some Y > 0, the price is twofold.
Firstly, if both tables exist simultaneously during the migration, then the space efficiency is
temporarily at most 1

2+Y < 1
2 . If the table can be extended in-place, then space efficiency is

at most 1
1+Y . Secondly, rescaling is a time-intensive operation if all elements are reinserted

into the larger table from scratch. Since large Y sacrifices space efficiency and small Y leads
to frequent rescaling, achieving the best of both worlds seems impossible.

Maier and Sanders addressed this by developing Dynamic Space Efficient Cuckoo Tables

(DySECT) [MS17]. For some 𝑘 ≥ 2, ℓ ≥ 1 (e.g. 𝑘 = 3, ℓ = 8), they use a variation of 𝑘-ary
cuckoo hashing with buckets of size ℓ . The hash table consists of 𝑡 = 2𝑎 subtables for 𝑎 ∈ N
(e.g. 𝑡 = 256), see Figure 3.3. During the 𝑏-th growth epoch, 𝑏 ∈ N, there is always some
0 ≤ 𝑗 < 𝑡 such that 𝑗 subtables have size 2𝑏+1 while 𝑡 − 𝑗 subtables have size 2𝑏 . Each of
the 𝑘 hash functions maps elements ofU to bit strings. The most significant 𝑎 bits indicate
a subtable index 𝑟 ∈ [𝑡]0. Depending on whether 𝑟 < 𝑗 or 𝑟 ≥ 𝑗 , the next 𝑏 + 1 bits or
the next 𝑏 bits indicate a position in table 𝑡 . To grow the hash table, the 𝑗-th subtable is
doubled in size and 𝑗 is increased by 1. Only the entries that reside in table 𝑗 need to be
reinserted by considering a previously unused bit in the relevant hash values. Each entry
in table cell 0 ≤ 𝑖 < 2𝑏 of subtable 𝑗 , will thus be moved to either table cell 2𝑖 or 2𝑖 + 1
of the resized subtable. Once 𝑗 reaches 𝑡 , we reset it to 0 and growth epoch 𝑏 + 1 begins.
Many more details on how this hashing scheme can be implemented efficiently are found
in [MS17; MSW19], including strategies for shrinking and in-place growing of tables using
the operation system’s virtual memory system.

2𝑏+1

2𝑏+1

2𝑏+1

2𝑏+1

2𝑏+1

2𝑏

2𝑏

2𝑏

𝑡
=
2𝑎

su
bt
ab
le
s 𝑗 large

subtables

𝑡 − 𝑗 small subtables

↩→ \ := 𝑗
𝑡

ℎ(𝑥) =

𝑎 bits to select subtable 𝑟 (𝑥) ∈ [𝑡]0

ℎ(𝑥) =
{
𝑏 + 1 bits to select 𝑖 (𝑥) ∈ [2𝑏+1]0 if 𝑟 (𝑥) < 𝑗

𝑏 bits to select 𝑖 (𝑥) ∈ [2𝑏 ]0 if 𝑟 (𝑥) ≥ 𝑗

ℎ(𝑥) =
unused in current growth epoch

Figure 3.3 Schematic representation of how elements are hashed to table cells in a Dynamic
Space Efficient Cuckoo Table (DySECT).

For 𝑗 = 0, the hashing scheme is clearly identical to ordinary 𝑘-ary cuckoo hashing
with buckets of size ℓ . For 0 < 𝑗 < 𝑡 , however, hash values are uniformly distributed
among tables of unequal size with non-obvious implications for the achievable loads. We
let 𝑛 = 2𝑏 (𝑡 + 2 𝑗) and call \ B 𝑗/𝑡 the phase of the growth. Then the situation with𝑚 table
entries is modelled by the hypergraph 𝐻𝑘

𝑛,𝑛/(1+\ ),𝑚 from Definition 2.10, and we now state



3.4. Static Retrieval via Linear Systems 37

the analogue of Theorem F.

▶ Theorem F1. Let 𝑘, ℓ ∈ N with 𝑘 + ℓ ≥ 4 and \ ∈ [0, 1]. Consider the DySECT hashing

scheme with 𝑘 hash functions, buckets of size ℓ at growth phase \ . The load threshold [𝑘,ℓ,\/ℓ
is characterised by Equation (11.3) in Chapter 11.

Experiments by Tobias Maier [MSW19] show that these load thresholds accurately
predict up to what loads a DySECT hash table works for practical set and table sizes, see
Figure 3.4.

\

load threshold [𝑘,ℓ,\/ℓ (logarithmic scale)

0.9

0.99

0.999

0.9999

0.99999

0 0.2 0.4 0.6 0.8 1

𝑘 = 2, ℓ = 4

𝑘 = 3, ℓ = 4
𝑘 = 2, ℓ = 8

𝑘 = 3, ℓ = 8

Figure 3.4 Plot of the load thresholds [𝑘,ℓ,\/ℓ of the 𝑘-ary DySECT hashing scheme with buckets
of size ℓ , for four combinations of (𝑘, ℓ) that are useful in practice (see Section 3.3.1).
The dashed lines are the corresponding load thresholds 𝑐∗

𝑘,ℓ
/ℓ of ordinary 𝑘-ary

cuckoo hashing with buckets of size ℓ . As expected, for phases \ = 0 and \ = 1 we
have [𝑘,ℓ,\/ℓ = 𝑐∗

𝑘,ℓ
/ℓ . For intermediate phases \ ∈ (0, 1), the threshold is smaller,

but still close enough to 1 for practical purposes.
The grey lines (that barely deviate from the asymptotic predictions) are experimental
results obtained by Tobias Maier [MSW19] and show maximum achievable loads in
(finite) DySECT tables.

3.4. Static Retrieval via Linear Systems

Recall from Section 3.1.2 that a static retrieval data structure 𝐷 𝑓 represents a function
𝑓 : 𝑆 → 𝑅 where 𝑆 ⊆ U is a set of𝑚 keys, but other than construct, only the operation
eval needs to be supported. As we shall see, there are implementations where 𝐷 𝑓 does not
store 𝑆 . It is by design that member is not supported and eval returns unspecified2 values
from 𝑅 when called with 𝑥 ∉ 𝑆 . The central performance characteristics of a retrieval data
structure are:

2 Some applications may benefit from eval(𝐷 𝑓 , 𝑥) yielding a fully random value if 𝑥 ∉ 𝑆 . This behaviour can
easily be retrofitted: For 𝑅 = F𝑟2, pick a fully random hash function 𝑔 : U → 𝑅 and store {(𝑥, 𝑓 (𝑥) ⊕ 𝑔(𝑥)) |
𝑥 ∈ 𝑆} in a retrieval data structure 𝐷 𝑓 ⊕𝑔 . Then eval(𝐷 𝑓 ⊕𝑔, 𝑥) yields 𝑓 (𝑥) for 𝑥 ∈ 𝑆 and a fully random
value for 𝑥 ∈ U \ 𝑆 .



38 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

The space taken up by 𝐷 𝑓 . We aim for (1 + Y)𝑟𝑚 bits of memory where 𝑟 = log2 |𝑅 | and
Y ≥ 0 is O(1). Note that storing all pairs (𝑥, 𝑓 (𝑥)) for 𝑥 ∈ 𝑆 requires Ω(𝑚(log |U| + 𝑟 ))
bits of memory. This misses the goal in the relevant setting where an element of U
occupies Ω(log𝑚) bits and 𝑟 = 𝑜 (log𝑛).
The running time of construct. The fastest approaches achieve the best possible time
of O(𝑚), but even construction times of O(𝑚3) are no deal breaker as we will see
general compensation strategies in Section 3.4.2.
The running time of eval. We aim for small constants (possibly dependent on Y) and a
small number of cache misses.

The basic setup of the data structure is well known and well studied, see e.g. [DP08;
GOV16; ADR09; Por09; Cha+04; BPZ13]. In the following we assume 𝑅 = F𝑟2 for some
1 ≤ 𝑟 = O(log𝑚) where F2 = {0, 1} is the two elements field. (This will be generalised
when discussion Theorem A2.)

Assume Y ≥ 0 and 𝑛 = (1 + Y)𝑚. As in Section 3.2, a hash function 𝑒 associates a set
𝑒 (𝑥) ⊆ [𝑛] to each 𝑥 ∈ U, yielding a hypergraph 𝐻 = ( [𝑛], {𝑒 (𝑥) | 𝑥 ∈ 𝑆}). Assume
𝑆 = {𝑥1, . . . , 𝑥𝑚} is arbitrarily ordered. The transposed incidence matrix of 𝐻 is denoted by
𝐴 ∈ F𝑚×𝑛2 , its 𝑖-th row, for 𝑖 ∈ [𝑚], being the incidence vector ®𝑒 (𝑥𝑖) ∈ F𝑛2 of the hyperedge
𝑒 (𝑥𝑖), i.e. ®𝑒 (𝑥𝑖) 𝑗 = 1⇔ 𝑗 ∈ 𝑒 (𝑥𝑖) for 𝑗 ∈ [𝑛].

The data structure 𝐷 𝑓 consists of a description of the hash function 𝑒 and a matrix
𝑍 ∈ F𝑛×𝑟2 where 𝑍 satisfies ®𝑒 (𝑥) · 𝑍 = 𝑓 (𝑥) for all 𝑥 ∈ 𝑆 . If 𝐵 ∈ F𝑚×𝑟2 is the matrix whose
𝑖-th row is 𝑓 (𝑥𝑖) for 𝑖 ∈ [𝑚], then we may write this compactly as 𝐴 · 𝑍 = 𝐵.

For a given 𝑥 ∈ U, an eval operation on such a data structure simply computes the
vector-matrix product ®𝑒 (𝑥) · 𝑍 which yields 𝑓 (𝑥) if 𝑥 ∈ 𝑆 . We give two implementations,
see Figure 3.5. In eval1 we assume that 𝑍 is stored row-wise with rows 𝑧1, . . . , 𝑧𝑛 ∈ F𝑟2.
The running time is O(|𝑒 (𝑥) |). In eval2, we assume 𝑍 is stored column-wise with columns
𝑧 (1) , . . . , 𝑧 (𝑟 ) ∈ F𝑛2 . The running time is then dominated by 𝑟 evaluations of scalar products
with ®𝑒 (𝑥). Depending on 𝑟 and the structure of ®𝑒 either approach may or may not make
good use of bit parallelism. Note that eval2 can be faster than eval1, e.g. if |𝑒 (𝑥) | = Θ(log𝑛)
and scalar products with ®𝑒 (𝑥) can be evaluated in O(1) time.

1 Algorithm construct(𝑓 : 𝑆 → {0, 1}𝑟 ):
2 pick Y ≥ 0 and 𝑛 = (1 + Y) |𝑆 |
3 repeat
4 pick ®𝑒 : U → {0, 1}𝑛
5 try to find solution 𝑍 ∈ {0, 1}𝑛×𝑟 to(

®𝑒 (𝑥) · 𝑍 = 𝑓 (𝑥)
)
𝑥 ∈𝑆

6 until solution found

7 return (®𝑒, 𝑍 )

1 Algorithm eval1(𝑥 ∈ U):
2 let 𝑒 (𝑥) = {𝑖 ∈ [𝑛] | ®𝑒 (𝑥)𝑖 = 1}
3 return

⊕
𝑖∈𝑒 (𝑥)

𝑧𝑖

1 Algorithm eval2(𝑥 ∈ U):
2 return

(
⟨®𝑒 (𝑥), 𝑧 ( 𝑗)⟩

)
𝑗 ∈[𝑟 ]

Figure 3.5 Operations for static retrieval data structures. Details on how to efficiently solve the
linear system in construct depend on the hashing scheme. We give two implement-
ations of eval. Which is faster depends on |𝑒 (𝑥) |, 𝑟 and the time to evaluate a scalar
product with ®𝑒 (𝑥).

The crux of the matter lies in obtaining 𝑍 in construct. A sufficient condition for the
existence of a solution 𝑍 to 𝐴 · 𝑍 = 𝐵 is that 𝐴 has linearly independent rows, in other



3.4. Static Retrieval via Linear Systems 39

words, that 𝐻 is solvable. Otherwise, a solution exists only for some values of 𝐵.

3.4.1. Pure Results on Retrieval Data Structures

To obtain efficient retrieval data structures from the above “pure” framework (it will be
augmented in Section 3.4.2), we require choices for the hash function ®𝑒 such that 𝐴 has full
rank whp even when Y is small, the system 𝐴 · 𝑍 = 𝐵 is efficiently solvable and eval1 or
eval2 is fast to evaluate. This is considered in Section 2.3 and Table 2.1 , but only for the
special case where 𝑟 = 1, i.e. 𝑍 and 𝐵 have only one column. For 𝑟 > 1 a trivial option is to
compute the columns 𝑧 (1) , . . . , 𝑧 (𝑟 ) of 𝑍 by solving the systems 𝐴𝑧 ( 𝑗) = 𝑏 ( 𝑗) individually for
each 𝑗 ∈ [𝑟 ], where 𝑏 ( 𝑗) is the 𝑗-th column of 𝐵. However, for “Gauss-like” linear system
solvers (see Section 4.4), choosing 𝑟 > 1 typically incurs no significant additional cost. The
main cost comes from row operations on (𝐴 | 𝐵) to bring𝐴 into echelon form and the effect
of a row operation on 𝐵 can be computed in O(1) time for 𝑟 = 𝑂 (log𝑚).

Retrieval with Two Random Blocks per Row. The following theorem follows from
Theorem B (i+ii) and is proved in Chapter 7. Note the extremely small overhead of Y =
O( log𝑚

𝑟𝑚 ) in (i).

▶ Theorem B1. We aim to build a retrieval data structure for 𝑓 : 𝑆 → {0, 1}𝑟 where |𝑆 | =𝑚.

(i) When using 𝐴 = 𝐴𝐿
𝑚,𝑚 as in Theorem B (i) for suitable 𝐿 = O(log𝑚) in the retrieval

framework from Section 3.4, then the following can be achieved:

One trial of construct takes time O( 𝑚3

𝑤 log𝑚 ) and succeeds with probability Θ(1).
The number of trials 𝑠 until the first trial succeeds has expectation E[𝑠] = O(1).
The data structure consists of 𝑍 ∈ {0, 1}𝑚×𝑟 ,𝑚 and 𝑠 , occupying 𝑟𝑚 bits, O(log𝑚)
bits and O(log 𝑠) bits, respectively.
An eval-operation (using eval2) takes time O(𝑟 ) and causes two cache misses when

𝑍 is stored appropriately.

(ii) Using Wiedemann’s algorithm (see Section 4.4.1), the expected construction time in (i)
can be reduced to Õ(𝑟𝑚2).

(iii) Using 𝐴𝐿
𝑚,𝑛 as in Theorem B (ii) for suitable 𝑛 and 𝐿 instead, increases the size of 𝐷 𝑓 by

O(𝑟 log𝑚) bits. The implementation is more convenient and each trial of construct

succeeds whp.

Retrieval with One Random Block per Row. Similarly, Theorem C implies the fol-
lowing result, proved in Chapter 8.

▶ Theorem C1. We aim to build a retrieval data structure for 𝑓 : 𝑆 → {0, 1}𝑟 where |𝑆 | =𝑚.

Let Y > 0. When using 𝐴 = 𝑀𝐿
𝑚,𝑛 from Theorem C for suitable 𝑛 and 𝐿 = O( log𝑚

Y ) in the

retrieval framework from Section 3.4, then the following holds.

(i) One trial of construct succeeds whp and has expected running time O(𝑚/Y2 + 𝑟𝑚/Y).
(ii) The resulting data structure occupies at most (1 + Y)𝑟𝑚 bits whp.

(iii) An eval-operation (using eval2) takes time O(𝑟/Y) and causes one cache miss when 𝑍 is

stored appropriately.



40 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

Retrieval Based on Peeling. The following lemma shows that we can drop the restric-
tion that |𝑅 | is a power of two (or any prime power if other fields are used) if the underlying
hypergraph is peelable. We consider this folklore; for instance, it is implicit in [Maj+96]. It
holds for any group 𝑅, with slight notational inconveniences for non-Abelian groups. Not
much is lost by sticking to a special case.

▶ Lemma 3.1. Let 𝑅 = Z𝑑 be the integers modulo 𝑑 ∈ N and 𝑓 : 𝑆 → 𝑅 for some 𝑆 ⊆ U
of size𝑚. The basic idea from Section 3.4 can still be used to build a retrieval data structure

for 𝑓 if the hypergraph 𝐻 = ( [𝑛], {𝑒 (𝑥) | 𝑥 ∈ 𝑆}) is 1-peelable. Construction takes time

O(∑𝑥 ∈𝑆 |𝑒 (𝑥) |) and yields 𝐷 𝑓 = (𝑒 : U → 2[𝑛], 𝑧 ∈ 𝑅𝑛). An eval on 𝐷 𝑓 for 𝑥 ∈ 𝑆 takes time

O(|𝑒 (𝑥) |).

Proof. Similarly as before, the idea is to find a vector 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ 𝑅𝑛 that satisfies
the equation ®𝑒 (𝑥) · 𝑧 = 𝑓 (𝑥) for all 𝑥 ∈ 𝑆 . Then eval-operations can simply evaluate the
left-hand side. However, since the “unknowns” and “right-hand sides” come from the group
𝑅 while the coefficients come from F2, we do not have a linear system in the traditional
sense. For instance the “scalar product” ®𝑒 (𝑥) · 𝑧, which we take to mean

∑
𝑖∈𝑒 (𝑥) 𝑧𝑖 , is not

bilinear.3
But since 𝐻 is 1-peelable, there is a vertex 𝑖 incident to only one hyperedge 𝑒 (𝑥). Thus

there is a variable 𝑧𝑖 , 𝑖 ∈ [𝑛], involved only in the equation for one 𝑥 ∈ 𝑆 . We can solve
all other equations by induction (using that 𝐻 ′ = ( [𝑛] − {𝑖}, 𝐸 \ {𝑒 (𝑥)}) is 1-peelable) and
then choose 𝑧𝑖 = 𝑓 (𝑥) − ∑

𝑖′∈𝑒 (𝑥)\{𝑖 } 𝑧𝑖′ which satisfies the remaining equation and only
exploits the group structure of 𝑅. The claimed running times are easily verified. ◀

Given Lemma 3.1, we can turn the 1-peelable hypergraph family from Theorem A’ into
a retrieval data structure with corresponding parameters.

▶ Theorem A2. Let 𝑅 = Z𝑑 for 𝑑 ∈ N, 𝑘 ≥ 3, 𝑐 < 𝑐∗
𝑘,1 and Y B

1−𝑐
𝑐 . When using 𝐻 = 𝐹𝑘,1

𝑚/𝑐,𝑚
from Theorem A’ to build a retrieval data structure for 𝑓 : 𝑆 → 𝑅 with |𝑆 | =𝑚 as in Lemma 3.1,

then the following holds.

(i) One trial of construct succeeds whp and has expected running time O(𝑘𝑚).
(ii) The resulting data structure 𝐷 𝑓 needs space to store 𝑧 ∈ 𝑅 (1+Y)𝑚 , plus O(log𝑚) bits whp.
(iii) An eval takes time O(𝑘) and causes 𝑘 cache misses.

Note that if𝑑 is not a power of 2, then storing 𝑧 ∈ Z𝑛
𝑑
using 𝑛⌈log𝑑⌉ bits may be wasteful

compared to the lower bound ⌈𝑛 log𝑑⌉. For 𝑑 = 3 the overhead is ≈ 26%. A simple trick in
this case would be to store 5 values (35 = 243 possibilities) in a byte (28 = 256 possibilities)
with lookup tables for decoding and encoding which reduce the overhead to < 1%. Of
course, such tricks work for other values of 𝑑 as well.

3.4.2. Input Partitioning for Faster Construction

Assume we have a retrieval data structure where construct takes 𝑡 (𝑚) = 𝜔 (𝑚) on input
𝑓 : 𝑆 → 𝑅 with |𝑆 | =𝑚. A common and well-explored trick [BKZ05; DR09; Por09; GOV16;
GOV20; EGV20] for improving this running time is to split the function 𝑓 into “chunks” of
approximately 𝐶 key/value pairs each, for a desired chunk size 𝐶 chosen later.

3 For instance (®𝑒 (𝑥) ⊕ ®𝑒 (𝑥 ′)) · 𝑧 = (®𝑒 (𝑥) · 𝑧) + (®𝑒 (𝑥 ′) · 𝑧) does not hold in general.



3.4. Static Retrieval via Linear Systems 41

Concretely, pick a fully random “partitioning” hash function ℎ0 ←− [𝑚/𝐶]U and
obtain the chunks 𝑓𝑖 B {(𝑥, 𝑓 (𝑥)) ∈ 𝑓 | ℎ0(𝑥) = 𝑖} for 𝑖 ∈ [𝑚/𝐶]. For each 𝑖 ∈ [𝑚/𝐶] build
an individual retrieval data structure 𝐷 𝑓𝑖 that stores 𝑓𝑖 . Since the actual chunk sizes are
tightly concentrated around 𝐶 , the expected construction time is, under weak conditions
on 𝑡 , reduced from 𝑡 (𝑚) to 𝑚

𝐶 𝑡 (𝐶) + O(𝑚). For instance, if Gaussian elimination is used,
𝑡 (𝑚) = Õ(𝑚3) becomes Õ(𝑚𝐶2). An eval of 𝑥 ∈ 𝑆 simply evaluates 𝑖 = ℎ0(𝑥) and then
performs an eval on 𝐷 𝑓𝑖 . We consider two ways of applying this trick.

The Flexible Way. The slight fluctuations in the chunk sizes |𝑓𝑖 | for 𝑖 ∈ [𝑚/𝐶] lead
to corresponding fluctuations in the sizes of the data structures 𝐷 𝑓1, . . . , 𝐷 𝑓𝑚/𝐶 , which are
stored sequentially. We therefore need to store for each 𝑖 ∈ [𝑚/𝐶] a pointer or offset 𝑜𝑖
indicating where 𝐷 𝑓𝑖 starts in memory. This takes O((𝑚/𝐶) log𝑚) bits4. Moreover we
need to store a seed for each chunk, indicating the hash function with which construction
succeeded for that chunk. Even when a chunk’s construction attempt succeeds only with
constant probability, whp no chunk requires more than O(log𝑚) attempts, so a total of
O((𝑚/𝐶) log𝑚) bits suffice for all seeds.

When combining Theorem B1 with this we obtain immediately:

▶ Theorem B2. We aim to build a retrieval data structure for 𝑓 : 𝑆 → {0, 1}𝑟 where |𝑆 | =𝑚.

(i) For 𝐶 =𝑚𝛼
with 𝛼 ∈ (0, 1), the following performance characteristics can be achieved:

Construction takes time O( 𝑚𝐶2

𝑤 log𝐶 ) whp.
The data structure occupies at most (1 + Y)𝑟𝑚 bits of memory whp, with overhead

Y = O( log𝑚
𝐶 ).

An eval takes time O(𝑟 ) and causes two cache misses
5
.

(ii) Using Wiedemann’s algorithm (see Section 4.4.1), the expected construction time in (i)
can be reduced to Õ(𝑟𝑚𝐶).

In a similar way, Theorem C1 can be strengthened. A short proof is given in Chapter 8.

▶ Theorem C2. We aim to build a retrieval data structure for 𝑓 : 𝑆 → {0, 1}𝑟 where |𝑆 | =𝑚.

For Y > 0 and chunks of size𝐶 =𝑚Y
, the following performance characteristics can be achieved.

(i) One trial of construct succeeds whp and has expected running time O(𝑚/Y + 𝑟𝑚).
(ii) The resulting data structure occupies at most (1 + Y)𝑟𝑚 bits whp.

(iii) An eval takes time O(𝑟 ) and causes one cache miss.

The Rigid Way. Now assume the same amount of memory is allocated for each 𝐷 𝑓𝑖 ,
𝑖 ∈ [𝑚/𝐶]. In this case, no pointers are required to locate 𝐷 𝑓𝑖 in memory (the chunks are
stored at regular offsets), but random fluctuations in the chunk sizes can cause chunks to
“overflow”. Thus, a fall-back data structure is used to accommodate “bad” pairs (𝑥, 𝑓 (𝑥)) ∈ 𝑓
from chunks where construction failed more than a certain number of times. To ensure
that only 𝑜 (𝑚) pairs are bad, the space for 𝐷 𝑓𝑖 is larger than would be required for the

4 For small values of 𝐶 more compact encodings of 0 = 𝑜1 ≤ . . . ≤ 𝑜𝑚/𝐶 = O(𝑚) can be pursued. In [EGV20]
a customised Elias-Fano encoding is used.

5 Note that navigating to the retrieval data structure of an element’s chunk requires accessing an array of
pointers. Since this array has size Õ(𝑚1−𝛼 ), this is not counted as a cache miss by assumptions from
Section 3.2.



42 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

expected number 𝐶 of key/value pairs. Roughly speaking, the standard deviation for the
number of keys in a chunk is

√
𝐶 , so 𝐷 𝑓𝑖 should be appropriate for 𝐶 + Ω(√𝐶) keys. An

overhead of Y = Ω(𝐶−1/2) is then unavoidable.

3.4.3. Comparison of Static Retrieval Data Structures

In Table 3.2, we compare the performance of various approaches to build static retrieval
data structures. We identify three groups, and one approach very different from all others.

Two sources for overhead Y are distinguished. “Design overhead” comes from the
hashing scheme, i.e. from considerations about when matrices are likely to have full rank.
The “partition overhead” comes from using a strategy from Section 3.4.2. Note that retrieval
data structures with no overhead of either kind still need O(log𝑚) bits to store their size
and a global seed value. Such “other overhead” of order O( log𝑚

𝑚 ) is not counted here.

Reference 𝑡eval
#cache miss

eval 𝑡construct “design overhead” + “partition overhead”

(1) [DP08] O(𝑘) 𝑘 O(𝑚3) or Õ(𝑚2) e−𝑘 + 𝑜 (e−𝑘 ) + 0
(2) [DP08; Por09] O(log𝑚) log𝑚 O(𝑚3) or Õ(𝑚2) 0 + 0
(3) Theorem B1 O(𝑟 ) 2 Õ(𝑚3) or Õ(𝑚2) 0 + 0
(4) Theorem C2 O(𝑟 ) 1 O(𝑚/Y + 𝑟𝑚) Y + Ω( log𝑚

𝑚Y )
(5) [DP08] O(𝑘) 1 O(𝑚) e−𝑘 + 𝑜 (e−𝑘 ) + Ω((log𝑚)−1/4)
(6) [Por09] O(1) 1 O(𝑚) 0 + Ω( log log𝑚√

log𝑚
)

(7) [BPZ13; Maj+96] O(1) 3 O(𝑚) 0.23 + 0
(8) [Rin13] O(1) ≈ 5∗ O(𝑚) 0.087 + 0
(9) [Lub+97] O(𝑘)∗ 𝑘∗ O(𝑚𝑘) O(𝑒−𝑘 ) + 0
(10) Theorem A2 O(𝑘) 𝑘 O(𝑚𝑘) e−𝑘 + 𝑜 (e−𝑘 ) + 0

(11) [ADR09] O(𝑘) 𝑘 O(𝑚𝐶2) or Õ(𝑚𝐶) e−𝑘 + 𝑜 (e−𝑘 ) + Ω(𝐶−1/2)
(12) [GOV16] O(1) 3 [or 4] O(𝑚𝐶2

𝑤 ) or Õ(𝑚𝐶) 0.09 [or 0.024] + Θ( log𝑚
𝐶 )

(13) Theorem B2 O(𝑟 ) 2 O( 𝑚𝐶2

𝑤 log𝐶 ) or Õ(𝑚𝐶) Θ( log𝑚
𝐶 ) + Θ(

log𝑚
𝐶 )

(14) Theorem C1 O(𝑟/Y) 1 O(𝑚/Y2 + 𝑟𝑚/Y) Y + 0

(15) [Mül+14] O(1) O(1) O(𝑚) O(1)

Im
pr
ac
ti
ca
l

Pe
el
in
g

G
au

ss
ia
n

el
im

in
at
io
n

Table 3.2 Comparison of various retrieval data structures. If 𝑡construct reports two alternatives,
the second can be achieved by using Wiedemann’s algorithm (see Section 4.4.1). Two
sources of overhead are distinguished, see Section 3.4.3. An asterisk indicates that an
expectation of a random quantity with high variance is given.

The Impractical ones. Approaches (1), (2) and (3) use 𝑘 random 1’s per row, (1+𝛿) log𝑚
random 1’s per row (for 𝛿 > 0) and 2 random blocks of O(log𝑚) bits per row (c.f. the
hypergraphs 𝐻𝑘

𝑛,𝑐𝑛 , 𝐻
(1+𝛿) log𝑚
𝑛,𝑐𝑛 and the matrix 𝐴𝐿

𝑛,𝑛 in Section 2.3.3). With no good way
of solving the linear systems, they remain theoretical. Still (2) and (3) are interesting
as they avoid essentially all overhead and (1) inspired (5) and (11).
Approach (5) uses a “rigid” partitioning strategy (see Section 3.4.2) with𝐶 = O(

√︁
log𝑚).

The resulting tiny linear systems can then be solved using lookup tables. Experiments
in [ADR09] show that this does not work well in practice. Approaches (4) and (6)

suffer from a similar problem. The partition overhead is simply not small in practice
for reasonable values of𝑚.



3.5. (Minimum) Perfect Hash Functions via Retrieval 43

The ones that Peel. If the underlying hypergraph is peelable, then by Lemma 3.1, the
linear system can be solved in linear time (in the number of incidences). We list the
four peelable constructions from Section 2.2.2. Approach (7) from [BPZ13] was highly
influential due to its simplicity and good practical performance. Approaches (9) and
(10) both allow to increase 𝑘 for larger eval times but smaller overhead. Among the
two, (9) offers a worse trade-off for small 𝑘 and has worst-case eval times of O(e𝑘 ),
much larger than the reported average eval times.

The ones that Gauss. In an attempt to implement (5), approach (11) forgoes the use of
lookup tables for linear system solving in favour of Gaussian elimination. On practical
input sizes with𝐶 = 100, it beats (5) in terms of overhead. In (12), flexible partitioning6,
bit-level parallelism and structured Gaussian elimination are combined to achieve
significant practical improvements over (11) and (5) using 𝑘 ∈ {3, 4}.
Both (13) and (14) aim for extreme cache efficiency in eval operations. Since they
spend their “bit parallelism budget” for this, eval times scale with 𝑟 . Consequently,
they are most interesting if 𝑟 is small. To foreshadow experimental results, in our
implementations (13) achieves the lowest overhead, and a compromise between (4)

and (14) achieves the fastest construction time, due to excellent cache efficiency.

Approach (15) is completely unrelated to linear system solving and has a wildly different
focus. On the one hand, its overhead is much higher: It can barely achieve Y < 1 for 𝑟 = 8
and gets significantly worse for smaller 𝑟 . On the other hand, it has excellent running
times, supports update and can even support insert and delete if 𝑓 is available on (slow
but abundant) background memory.

Lastly we should mention that the retrieval problem has also been studied in situations
where the values 𝑓 (𝑥) are drawn from a non-uniform distributionD on 𝑅 [GOV20; HKP09].
In this case, compression techniques can be used and the lower bound on the memory
requirement is no longer 𝑚 log2 |𝑅 | bits but 𝑚 · 𝐻 (D) bits, where 𝐻 (D) is the entropy
of D.

3.5. (Minimum) Perfect Hash Functions via Retrieval

For 𝑆 ⊆ U of size𝑚, a perfect hash function (phf) is an injective function 𝑝 : 𝑆 → [𝑚′]0 for
some𝑚′ ≥ 𝑚. If𝑚′ =𝑚, then 𝑝 is a minimum perfect hash function (mphf). From a phf 𝑝
for 𝑆 , we immediate obtain a dynamic retrieval data structures for 𝑓 : 𝑆 → 𝑅, i.e. one with
an update operation, by keeping 𝑓 (𝑥) in cell𝑇 [𝑝 (𝑥)] of an array𝑇 [0 . . .𝑚′ − 1]. Similarly,
when storing (𝑥, 𝑓 (𝑥)) in𝑇 [𝑝 (𝑥)] we obtain a static dictionary, i.e. one without insert and
delete. In both cases, the space requirement is minimal except for the𝑚′ −𝑚 unused table
cells (if 𝑝 is not perfect) and the space for storing 𝑝 .

There is a huge body of work on perfect hashing [FKS84; CHM92; Maj+96; CHM97;
HT01; BPZ07; Bot08; BBD09; BPZ13; Bel+14; GOV16; Lim+17; EGV20]. For an overview see
[Rin15] or [Die07], and for an up-to-date comparison of practical techniques, see [EGV20].

Some approaches rely on peelable or solvable hypergraphs [CHM92; Maj+96; BPZ13;
Bel+14; GOV16]. Plugging our spatially coupled hypergraphs into the framework by
[Bot08], described below, yields:

6 Technically, this requires admitting that 𝐶 = Ω(log𝑚). Construction time is therefore super-linear.



44 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

▶ Theorem A3. For any 𝛼 > 2/𝑐∗3,1 ≈ 2.18 a simple algorithm computes for 𝑆 ⊆ U of size𝑚
a mphf 𝑝 : 𝑆 → [𝑚] occupying 𝛼𝑚 +𝑜 (𝑚) bits of memory in expected time O(𝑚). Evaluating
𝑝 takes O(1) time and causes 3 cache misses.

For comparison, note that 𝛼 = log2 𝑒 ≈ 1.44 is a known lower bound [FKS84], achieved
only by theoretical constructions [HT01]. The currently best practical algorithm achieves
𝛼 = 1.8 comfortably and 𝛼 = 1.56 with high sacrifices in running time [EGV20].

While we are not breaking new ground in terms of space efficiency, we suspect that
among the known constructions that achieve 𝛼 = 2.2 or better, ours is the simplest and
possibly the fastest.

The BPZ Framework [BPZ13]. To build a mphf 𝑝 for a set 𝑆 ⊆ U of size𝑚, follow
these steps:

Step 1. Pick a constant 𝑘 ∈ N, a suitable number 𝑚′ ≥ 𝑚, with 𝑚′ = Θ(𝑚) and hash
functions ℎ0, . . . , ℎ𝑘−1 : U → [𝑚′] such that for 𝑒 (𝑥) B {ℎ𝑖 (𝑥) | 𝑖 ∈ [𝑘]0} the
hypergraph 𝐻 = ( [𝑚′]0, 𝐸 B {𝑒 (𝑥) | 𝑥 ∈ 𝑆}) is 1-orientable whp. Let 𝜎 : 𝐸 →
[𝑚′]0 be a 1-orientation and let 𝜑 : 𝑆 → [𝑘]0 describe which option is realised for
each key, i.e. 𝜎 (𝑒 (𝑥)) = ℎ𝜑 (𝑥) (𝑥) for 𝑥 ∈ 𝑆 .

Step 2. Build a retrieval data structure 𝐷𝜑 for 𝜑 . Note that 𝑝 ′ : 𝑆 → [𝑚′]0 with 𝑝 ′(𝑥) =
ℎ𝜑 (𝑥) (𝑥) is a phf and Θ(𝑚 log(𝑘)) bits suffice to store 𝐷𝜑 .

Step 3. Let rank(𝑖) B |𝑝 ′−1({0, . . . , 𝑖 − 1}) | for 𝑖 ∈ [𝑚′] be the number of “used” hash
values less than 𝑖 . Use standard techniques for building a rank data structure 𝐷rank
that occupies 𝑚′ + 𝑜 (𝑚′) bits and allows to evaluate rank in time O(1), see e.g.
[Pag01; OS07; RRS07; Vig08; FPS16]. Now 𝑝 : 𝑆 → [𝑚]0 with 𝑝 (𝑥) B rank(𝑝 ′(𝑥))
is a mphf and given by ℎ0, . . . , ℎ𝑘−1, 𝐷𝜑 and 𝐷rank.

Proof of Theorem A3. The authors of [BPZ13] present an instantiation of the above
framework that allows for clever optimisations. We follow their idea but have substituted
the underlying hypergraph for one with a higher peelability threshold. Pseudo-code is
given in Figure 3.6. The memory requirement is 2(𝑧+1)

𝑧𝑐 𝑚 + 𝑜 (𝑚) bits where 𝑧 and 𝑐 are
chosen in line 2. For 𝑧 →∞ and 𝑐 → 𝑐∗3,1 this achieves the promised result.

In lines 3-7 we generate a hypergraph 𝐻
d= 𝐹 (𝑚′, 3, 𝑐, 𝑧) as in Definition 2.4. It contains

𝑚′ vertices and is 1-peelable whp by Theorem A. Thus, a suitable 𝜑 : 𝑆 → {0, 1, 2} for
Step 1 can be found in linear time (lines 8–13). For Step 2, we base the retrieval data
structure 𝐷𝜑 on the same hypergraph 𝐻 and obtain, conceptually, a vector 𝑧 ∈ F𝑚′3 with
(∑𝑖∈𝑒 (𝑥) 𝑧 [𝑖]) mod 3 = 𝜑 (𝑥) for all 𝑥 ∈ 𝑆 . However, we use two bits for the entries
of 𝑧 and initialise them to 3. Lines 15–16 overwrite an entry 𝑧 [𝑖] with a value from
{0, 1, 2} if 𝑖 = ℎ𝜑 (𝑥) (𝑥) for some 𝑥 ∈ 𝑆 and 𝑧 [𝑖] remains 3 otherwise. We therefore have
rank(𝑖) = #{𝑖 ′ ∈ [𝑚′]0 | 𝑖 ′ < 𝑖 ∧ 𝑧 [𝑖 ′] ≠ 3} in Step 3. As it turns out, this makes it possible
to reuse 𝑧 as a component in 𝐷rank and only 𝑜 (𝑚′) additional bits are needed. All in all, 𝑧
requires 2𝑚′ bits of memory while ℎ0, ℎ1, ℎ2 and 𝐷rank require 𝑜 (𝑚) bits of memory. ◀



3.6. Approximate Membership via Retrieval and Cuckoo Tables 45

1 Algorithm constructMPHF(𝑆 ⊆ U):
2 pick 𝑐 < 𝑐∗3,1 and 𝑧 ∈ R+ // e.g. 𝑧 = 100, 𝑐 = 0.9 for |𝑆 | = 107

3 let𝑚 = |𝑆 |,𝑚′ = ⌊ 𝑧+1𝑧𝑐 𝑚⌋, 𝑁 = ⌊ 𝑚′𝑧+1⌋
4 ℎ ←− [𝑚′ − 𝑁 ]U0 , 𝑜0, 𝑜1, 𝑜2 ←− [𝑁 ]U0
5 let ℎ𝜑 (𝑥) = ℎ(𝑥) + 𝑜𝜑 (𝑥), for 𝜑 ∈ {0, 1, 2} and 𝑥 ∈ 𝑆
6 let 𝑒 (𝑥) = {ℎ𝜑 (𝑥) | 𝜑 ∈ {0, 1, 2}}, for 𝑥 ∈ 𝑆
7 let 𝐻 = ( [𝑚′]0, {𝑒 (𝑥) | 𝑥 ∈ 𝑆}) // 1-peelable whp, assume this is the case

8 stack← ∅
9 while 𝐻 is not empty do
10 pick 𝑖 ∈ [𝑚′]0 with deg𝐻 (𝑖) = 1
11 identify 𝑥 ∈ 𝑆 and 𝜑 ∈ {0, 1, 2} with ℎ𝜑 (𝑥) = 𝑖
12 remove 𝑒 (𝑥) from 𝐻
13 push (𝑥, 𝜑) to stack
14 𝑧 ← [3, 3, . . . , 3] ∈ {0, 1, 2, 3}𝑚′ // 2𝑚′ bits
15 for (𝑥, 𝜑) ∈ stack do // reversed order

16 𝑧 [ℎ𝜑 (𝑥)] ← (𝜑 −
∑

𝜑′∈{0,1,2}\{𝜑 }) 𝑧 [ℎ𝜑′ (𝑥)]) mod 3
17 let rank(𝑖) B |{𝑖 ′ < 𝑖 | 𝑧 [𝑖 ′] ≠ 3}| for 𝑖 ∈ [𝑚′]
18 build succinct data structure 𝐷rank for rank-queries // takes 𝑜 (𝑚) bits, given 𝑧

19 return (ℎ0, ℎ1, ℎ2, 𝑧, 𝐷rank)

1 Algorithm evaluateMPHF(𝑥 ∈ 𝑆):
2 𝜑 ← (∑𝜑′∈{0,1,2} 𝑧 [ℎ𝜑′ (𝑥)]) mod 3
3 return rank(ℎ𝜑 (𝑥))

todo: to reduce the memory footprint
and running time of peeling use:

xor-trick [Bel+14, Section 4.1]

single-stack-peeling
[GOV20, Section 6.3]

Figure 3.6 A simple algorithm to compute, for a set 𝑆 ⊆ U of size𝑚, a minimum perfect hash
functions 𝑝 : 𝑆 → [𝑚]0. For 𝑧 → ∞ and 𝑐 → 𝑐∗3,1 the number of required bits per
element approaches 2/𝑐∗3,1 ≈ 2.18 bits.

3.6. Approximate Membership via Retrieval

and Cuckoo Tables

Recall that an AMQ-Filter represents a set 𝑆 ⊆ U of size𝑚. It supportsmember-queries
that may erroneously return “true” for 𝑥 ∉ 𝑆 with probability Y ∈ [0, 1), called the false
positive rate. The operations insert and delete may or may not be support. We briefly
mention three types of AMQ-Filters, compared in Table 3.3, two of which are intimately
related to the subject of this thesis.

Bloom Filter. The elephant in the room is the venerable Bloom filter [Blo70]. We will not
explain it here. Instead, we refer to a self-contained introduction including standard
tricks and applications [BM03], as well as to an up to date survey covering countless
Bloom filter variations [Luo+19].
We only mention that standard Bloom filters require at least log2(e) log2(1/Y) ≈
1.44 log2(1/Y) bits per element of 𝑆 and that insert can be supported while delete

cannot.
xor Filter. The following construction was introduced and analysed in [CC08; DP08]. In



46 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

Filter Type bits
element

#cache misses
query insert delete builds on

Bloom Filter ≥ 1.44 log 1/Y log 1/Y ✓ ✗ –
xor Filter ≥ log 1/Y O(1) ✗ ✗ retrieval data structure

Cuckoo Filter ≥ log 1/Y 2 ✓ ✓ cuckoo hash table

Table 3.3 Comparison of basic approximate membership data structures in terms of (tight) space
lower bounds, number of cache-misses permember-query and supported dynamic
operations.

[GL19] it was appropriately dubbed xor filter.

To represent 𝑆 in a xor filter, we pick a “fingerprint” function 𝑓 : U → {0, 1}𝑟 uniformly
at random where 𝑟 = log2 1/Y. Let 𝑓𝑆 : 𝑆 → {0, 1}𝑟 denote the restriction of 𝑓 to domain
𝑆 . The filter is given by 𝑓 and a retrieval data structure 𝐷 𝑓𝑆 for 𝑓𝑆 . As usual, we assume
that the hash function 𝑓 requires essentially no space to store. Amember query for
𝑥 ∈ U simply performs an eval of 𝑥 on 𝐷 𝑓𝑆 and returns true if the result equals 𝑓 (𝑥).
For 𝑥 ∈ 𝑆 this is clearly the correct result. For 𝑥 ∉ 𝑆 , note that (𝑥, 𝐷 𝑓𝑆 ) is stochastically
independent of the fully random value 𝑓 (𝑥) ∈ {0, 1}𝑟 , so Pr[member(𝑥) = true] =
Pr[eval(𝐷 𝑓𝑆 , 𝑥) = 𝑓 (𝑥)] = 1/2𝑟 = Y.

The xor filter directly inherits the performance characteristics from the underlying
retrieval data structure, see Table 3.2, some constructions taking little more than𝑚𝑟
bits of space. Note that insert and delete cannot be supported. For an experimental
evaluation for particular choices of the retrieval data structure, highlighting advantages
over cuckoo filters, see [GL19]. See also [WRS18].

Cuckoo Filter. Cuckoo Filters were introduced in [FAK13] and have since gained wide-
spread popularity.

Again, a fully random fingerprint function 𝑓 : U → {0, 1}𝑟 is used, for 𝑟 = log 1/Y and
𝑓𝑆 : 𝑆 → {0, 1}𝑟 denotes the restriction from 𝑓 to domain 𝑆 . To store 𝑓𝑆 in a (2-ary)
cuckoo dictionary with buckets of size ℓ ∈ N, we would pick ℎ1, ℎ2 : U → [𝑛/ℓ]U and
store (𝑥, 𝑓𝑆 (𝑥)) in bucket ℎ1(𝑥) or ℎ2(𝑥). To build a cuckoo filter we do just that, except
we only store fingerprints without keys. As should be expected, amember query for
𝑥 ∈ U returns true if the buckets ℎ1(𝑥) and ℎ2(𝑥) contain at least one copy of 𝑓 (𝑥). As
ℓ increases, the hash table admits loads close to 1, i.e. requires little more than 𝑟 bits
per element.

Since cuckoo filters support insert (and delete), there is, however, a major complication.
When evicting a key 𝑥 ∈ 𝑆 from its bucket ℎ𝑖 (𝑥) (𝑖 ∈ {1, 2}), its alternative bucket
ℎ2−𝑖 (𝑥) must now be computed from 𝑓 (𝑥) and ℎ𝑖 (𝑥) alone, as 𝑥 itself is not stored. In
[Fan+14] this is solved by defining ℎ2(𝑥) B ℎ1(𝑥) ⊕ ℎ(𝑓 ) where ℎ : {0, 1}𝑟 → [𝑛/ℓ] is
a hash function on the fingerprints and [𝑛/ℓ] is assumed to be a power of 2. Note that
ℎ1(𝑥) = ℎ2(𝑥) ⊕ℎ(𝑓 ) holds as well. Unfortunately, this trick breaks the existing analysis
of cuckoo hashing. Empirically, cuckoo filters work well and a simplified version has
been successfully analysed [Epp16].



3.7. Straggler Identification via Invertible Bloom Filters 47

3.7. Straggler Identification via Invertible Bloom Filters

Assume the universeU = ({0, 1}𝑤, ⊕) is a set of bit strings with bitwise xor. The straggler
identification problem [EG11] asks for a set data structure that can, after 𝑁 insertions and
𝑁 −𝑚 deletions of previously inserted elements, identify the𝑚 stragglers that were inserted
but not deleted. The interesting case is when only O(𝑚) memory words are used at all
times, despite the possibility for intermediate sets of size O(𝑁 ).

Adapting the presentation in [GM11; EG11; Epp+11], an invertible Bloom filter (IBF)
uses a hash table of size 𝑛 = (1 + Y)𝑚 and a hash function 𝑒 : U → 2[𝑛] of the form
𝑒 (𝑥) = {ℎ1(𝑥), . . . , ℎ𝑘 (𝑥)}. To store 𝑆 ⊆ U in the table, each 𝑥 ∈ 𝑆 is stored in all table
cells 𝑖 ∈ 𝑒 (𝑥), however, if 𝑆𝑖 ⊆ 𝑆 is stored in cell 𝑖 then only

⊕
𝑥 ∈𝑆𝑖 𝑥 and the count |𝑆𝑖 |

are represented. In particular, if |𝑆𝑖 | > 1, then it is impossible to reconstruct 𝑆𝑖 from the
information in cell 𝑖 alone.

Pseudo-code for constructing an empty IBF, insertion, deletion and listing all element
(in a destructive variant) is provided in Figure 3.7. The listMembers operation repeatedly
identifies table cells with counts of 1 and subsequently deletes the identified element and
has an O(𝑘𝑛) time implementation. It succeeds if and only if the underlying hypergraph
𝐻 = ( [𝑛], {𝑒 (𝑥) | 𝑥 ∈ 𝑆}) is 1-peelable. For instance, if 𝑘 = 3,𝑚/𝑛 = 𝑐 < 𝑐△3,1 ≈ 0.81, and
ℎ1, ℎ2, ℎ3 ←− [𝑛]U , then this is the case whp.

1 Algorithm construct():
2 allocate table 𝑇 of size 𝑛
3 pick 𝑒 : U → 2[𝑛]
4 for 𝑖 ∈ [𝑛] do
5 𝑇 [𝑖] .val← 0𝑤
6 𝑇 [𝑖] .count← 0
7 return (𝑒,𝑇 )

1 Algorithm insert(𝑥 ∈ U):
2 for 𝑖 ∈ 𝑒 (𝑥) do
3 𝑇 [𝑖] .val← 𝑇 [𝑖] .val ⊕ 𝑥
4 𝑇 [𝑖] .count← 𝑇 [𝑖] .count + 1

1 Algorithm delete(𝑥 ∈ U):
2 for 𝑖 ∈ 𝑒 (𝑥) do
3 𝑇 [𝑖] .val← 𝑇 [𝑖] .val ⊕ 𝑥
4 𝑇 [𝑖] .count← 𝑇 [𝑖] .count − 1

1 Algorithm listMembers():
2 𝐷 ← ∅
3 while ∃𝑖 ∈ [𝑛] : 𝑇 [𝑖] .count = 1 do
4 𝐷 ← 𝐷 ∪ {𝑇 [𝑖] .val}
5 delete(𝑇 [𝑖] .val)
6 if ∃𝑖 ∈ [𝑛] : 𝑇 [𝑖] .count > 0 then
7 return Failure
8 else
9 return 𝐷

Figure 3.7 Operations of a simple invertible Bloom filter (IBF). Slightly deviating from Sec-
tion 3.1.2, construct can only produce empty IBFs, and listMembers is destructive.

By substituting the underlying hypergraph for our spatially coupled construction from
Theorem A’, we obtain a slight improvement:

▶ Theorem A4. In the above setting, let 𝑘 ∈ N and 𝑐 < 𝑐∗
𝑘,1. If ℎ1, . . . , ℎ𝑘 are such that

𝐻
d= 𝐹𝑘,1𝑛,𝑐𝑛 , then listMembers succeeds in time O(𝑘𝑛) whp.
The IBFs in [EG11; Epp+11] and the invertible Bloom lookup table (IBLT) in [GM11] en-

rich the above construction as follows. There is no interaction with the concrete hypergraph
choice so Theorem A4 could be extended in similar ways.



48 3. Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond

Firstly [EG11; Epp+11; GM11] all solve the generalised problem where some elements
𝑋1 ⊆ U are inserted, some elements 𝑋2 ⊆ U are deleted and 𝑋2 is not necessarily a
subset of 𝑋1. Both 𝑋1 \ 𝑋2 and 𝑋2 \ 𝑋1 should be computed and both are known to
be small. This can be used to solve the set reconciliation problem, where two parties
hold similar data sets 𝑋1 and 𝑋2 and both should compute the union 𝑋1 ∪ 𝑋2 with
communication overhead linear in the symmetric difference of 𝑋1 and 𝑋2.
Using the same approach, it is then cells with a count of 1 or −1 that might hold a single
element of 𝑋1 \ 𝑋2 or 𝑋2 \ 𝑋1, respectively, but additional checksums are needed. For
instance, a count of 1 might be produced by an interaction of 2 elements from 𝑋1 \ 𝑋2
and one element from 𝑋2 \ 𝑋1.
Both [EG11] and [GM11] handle the case where 𝑋1 and 𝑋2 are multisets.
In [GM11], keys are associated with values, making IBLTs a variant of dictionaries.
However, a delete needs to know the value associated with the key that is to be deleted.
The authors point out that lookup can be supported, though only with a certain
probability for success. The case of the same key appearing with different associated
values can be addressed to a limited degree.
In [Epp+11], auxiliary algorithms such as IBF-subtraction and an estimation of𝑚 – and
thus the problem choosing 𝑛 – are discussed.



49

Part II.

Background



50



51

4. Fundamental Models, Techniques

and Algorithms

4.1. The Word RAMModel vs. Real Computers

The computation model underlying our theorems is a unit-cost word RAMmodel, explained,
e.g. in [MS08, Chapter 2.2]. There is word size 𝑤 ∈ N, and a word is a sequence of 𝑤 bits.
Arithmetic operations (such as +, −, ·, /, div, mod) as well as simple bit operations (such as
and, or, xor) can be executed on words in one unit of time. Memory consists of up to 2𝑤
words with random access, meaning the content of a word may be used to address another
word in memory. We assume 𝑤 ≥ 𝐶 log𝑛 such that an amount of memory polynomial in
the input size can be addressed.

There exist word RAM algorithms that exploit the computational model in questionable
ways, sometimes assuming very powerful constant-time operations on words, sometimes
requiring unrealistically large values of 𝑤 in an asymptotic analysis. We promise that the
algorithms in this thesis do not stretch the word RAM model in such ways and admit
efficient implementations on real computers with running times similar to what one would
expect from the analysis.

We use one slightly uncommon operation where a few comments are in order.

4.1.1. The Parity Operation

The operation parity(𝑥) for 𝑥 ∈ {0, 1}𝑤 counts the number of 1 bits in 𝑥 , modulo 2. We
assume it can be evaluated in time O(1) despite the fact that many programming languages,
including c++ do not support it as a primitive at the time of writing this thesis1. Of course
the operations can be implemented manually, see Figure 4.1 for an implementation for 32
bit words. However, these implementations take time O(𝑤) and O(log𝑤) instead of O(1)
as desired.

bool parity_w(uint32_t x) {
bool c = 0;
for (; x != 0; x >>= 1)

c ^= x & 1;
return c & 1;

}

bool parity_logw(uint32_t x) {
for(int i = 16; i != 0; i >>= 1)

x ^= x >> i;
return x & 1;

}

Figure 4.1 Possible implementation of parity for word size 𝑤 = 32 in c/c++. Generalising to
arbitrary word sizes yields O(𝑤) and O(log𝑤) algorithms, respectively.

1 We ignore a detour via std::bitset.



52 4. Fundamental Models, Techniques and Algorithms

One solution is to precompute parity values for (sub)words as shown in Figure 4.2.
The best solution by far is, however, to simply use the popcnt instruction provided by

vector<bool> table(0x10000,false);
void precalc_parity() {

for(int i = 1; i < 0x10000; ++i) {
table[i] = !table[i & (i-1)];

}
}

bool parity_by_table(uint32_t x) {
return table[x & 0xFFFF]

^ table[x >> 16 ];
}

Figure 4.2 Implementation of parity for 32 bit words using precomputed values for 16 bit
words (taking 8 KiB or space). The precomputation uses the standard trick that i &
(i-1) clears the least significant bit from a number i ≠ 0.

many modern processors [Int07; AMD08] which counts the number of bits set in a word.2
Compilers like gcc and msvc have since defined built-in functions that are translated into
the popcnt instruction on compilation. Moreover, it is expected that with the upcoming
standard c++20 a popcount function will become an official part of the c++ language
[Mau19]. We provide corresponding code in Figure 4.3.

#if __cplusplus >= 202005L // C++20 expected in May 2020
#include<bit>
bool parity(uint32_t x) {

return std::popcount(x) & 1;
}

#elif defined __GNUC__ // gnu compiler
bool parity(uint32_t x) {

return __builtin_parityl(x);
}

#elif defined _MSC_VER // microsoft compiler
#include <intrin.h>
bool parity(uint32_t x) {

return __popcnt(x) & 1;
}

#endif

Figure 4.3 c++ code that makes use of the popcnt instruction available on Intel and AMD
CPUs, when compiled with a corresponding compiler.

All in all, the assumption that parity takes time “O(1)”, i.e. about the same as other
kinds of operations, is perfectly justified in practice.

4.1.2. Use Case: Scalar Product of Bit Vectors

In the context of Theorems B and C we will frequently assume that the scalar product⊕
𝑖∈[𝐿] 𝑎𝑖𝑏𝑖 of two bit sequences 𝑎, 𝑏 ∈ {0, 1}𝐿 can be computed in time O(𝐿/𝑤). We

provide corresponding code using xor operations and a parity operation in Figure 4.4.

2 Intel implements popcnt since the Nehalem Architecture (2008) and AMD since AMD 10h (2007).



4.2. Double Hashing and its Uses 53

bool scalarProduct(uint32_t* a, uint32_t* b, size_t numWords) {
uint32_t result = 0;
for(size_t i = 0; i < numWords; ++i) {

result ^= a[i] & b[i];
}
return parity(result);

}

Figure 4.4 Implementation of the scalar product of two bit strings 𝑎, 𝑏 ∈ {0, 1}𝐿 . If 𝑎 and 𝑏 do
not start at a 32-bit word boundary or if numWords = 𝐿/32 is not an integer, slight
adjustments are needed.

4.2. Double Hashing and its Uses

Quite a few data structures associate a given key 𝑥 with a sequence ℎ1(𝑥), ℎ2(𝑥), ℎ3(𝑥), . . . ∈
[𝑛]0 of hash values that are assumed to be independent in the analysis. In such cases one
can try to use double hashing, which means using an arithmetic progression modulo 𝑛 of
the form ℎ1(𝑥), ℎ1(𝑥) + ℎ2(𝑥), ℎ1(𝑥) + 2ℎ2(𝑥), . . . , ℎ1(𝑥) + 𝑘ℎ2(𝑥), . . . ∈ [𝑛]0 instead. The
empirical observation is that, in many cases, the overall behaviour of the data structure
does not significantly change. Running time, on the other hand, is improved since only
two hash function evaluations are required for each key. Of course, proving that this is the
case is an entirely different matter. We list a few settings where double hashing has been
considered.

Hash Tables with Open Addressing. Double hashing as a probing strategy for hash
tables with open addressing is basic textbook material, for instance [Cor+09, Chapter
11.4] or [Knu98, Chapter 6.4]. A partial proof that search times are unaffected is given
in [GS78] (for loads 𝛼0 ≤ 0.31). The proof was completed in [LM93; SS90].

Bloom Filters. Double hashing does not affect the false positive rate of Bloom filters
[KM08].

Balanced Allocations. Double hashing does not affect the maximum load in balanced
allocation settings [Mit14; Mit16].

Hypergraph Peeling. A partial proof that double hashing does not affect peeling thresholds
of random hypergraphs is found in [MT12].

Cuckoo Hashing. Experiments in [MT12] suggest that double hashing does not affect
the load threshold of cuckoo hash tables. An incomplete proof is found in [Lec13]. It is
the topic of Chapter 10 and Theorems E and E1 to complete the argument.

4.3. Full Randomness Assumption

As described in Section 3.2 we rely on the full randomness assumption, which gives us
access to functions ℎ ←− 𝑅U “for free”, for any range 𝑅 and universeU. “For free” means
such functions can be selected and evaluated in constant time and require no memory to
store.

This is, of course, a gross simplification as such functions would require at least
|U| log |𝑅 | bits to store, a completely unacceptable amount. To defend the practical relev-
ance of our results in light of this problem, the following three strategies come to mind:



54 4. Fundamental Models, Techniques and Algorithms

1. Review our arguments to base them on weaker assumptions on ℎ that can be fulfilled
in practice.

2. “Bite the bullet” and construct random functions ℎ : U → [𝑛], but save space by only
making them fully random on relevant subsets ofU.

3. Replace the full randomness assumption with the cryptographic assumption that ran-
dom functions exist that are computationally indinstinguishable from the fully random
functions we need. While we cannot hope to prove such an assumption, promising
candidate functions exist.

We say a few words about all three strategies.

4.3.1. Building on Weaker Assumptions

Instead of sampling a hash function ℎ from the set of all functions 𝑅U , we can sample
ℎ ←− H for a smaller family H ⊂ 𝑅U . In that case ℎ is not fully random, but may
satisfy the weaker properties of universality [CW79], meaning Pr[ℎ(𝑥) = ℎ(𝑦)] ≤ 1/|𝑅 |
for 𝑥 ≠ 𝑦 ∈ U or 𝑘-wise independence [WC81], meaning for distinct 𝑥1, . . . , 𝑥𝑘 ∈ U and
arbitrary 𝑟1, . . . , 𝑟𝑘 ∈ 𝑅 we have Pr

[∀𝑖 ∈ [𝑘] : ℎ(𝑥𝑖) = 𝑟𝑖
]
= |𝑅 |−𝑘 . Universal and 2-wise

independent families with highly efficient evaluation times in practice are described in
[Tho15], for instance multiply-shift hashing [Die+97].

For some hashing-based data structures, it is known that universality or 𝑘-wise inde-
pendence for some 𝑘 is sufficient to achieve the same asymptotic behaviour as when using
fully random functions. This includes some results on standard cuckoo hashing. A good
overview is given in [Rin15, Section 5.2]. For generalised cuckoo hashing and most other
data structures discussed in this thesis, not much seems to be known and this thesis does
not pursue this line of research.

If the hash function and the input data are both random, more can be said. Indeed,
if each element of the input contains a sufficient amount of entropy given all previous
elements, then universal hashing is sufficient to achieve the same performance as with fully
random hashing in a wide range of applications, as was shown in [CMV13]. The result goes
a long way in explaining “Why Simple Hash Functions Work”. However, it does not help
with getting rid of the full randomness assumption. We can only trade it for an assumption
on randomness in the inputs limits, which uncomfortably limits the scope of applicability
of our data structure.

4.3.2. Constructing Fully Random Functions: Split and Share

A slightly simplified formulation of a theorem from [DR09] reads as follows.

▶ Theorem 4.1 (Dietzfelbinger and Rink [DR09]). For any 𝑐 > 0, 𝑁 ∈ N and any range 𝑅
a random hash function ℎ : U → 𝑅 with evaluation time O(𝑐) and occupying O(𝑁 log |𝑅 |)
bits can be constructed such that the following holds. For any 𝐷 ⊆ U of size 𝑁 , conditioned

under an event 𝐸𝐷 with Pr[𝐸𝐷 ] = 1 − O(𝑁 −𝑐), the function ℎ is fully random on 𝐷 .

Assume we wish to build a dictionary-type data structure for a set 𝑆 ⊆ U of size𝑚. When
applying this theorem directly for 𝑁 =𝑚 and 𝐷 = 𝑆 we obtain a hash function ℎ : U → 𝑅
that is fully random on 𝑆 whp. However, storing ℎ requires O(𝑚 log |𝑅 |) bits which is less
than O(|U| log |𝑅 |) but still very large.



4.3. Full Randomness Assumption 55

The splitting trick [DR09] is to first choose a desired chunk size 𝐶 =𝑚Y and partition
the set 𝑆 via an outer hash function ℎ0 : U → [𝑚/𝐶] into chunks 𝑆1, . . . , 𝑆𝑚/𝐶 . We require
that ℎ0 ←− H is chosen from universal class of hash functions H (see above), which
guarantees that the maximum chunk size is 𝐶 = O(𝐶) whp. Applying Theorem 4.1 for
𝑁 = 𝐶 and 𝑐 = 2/Y yields a hash function ℎ : U → 𝑅 that requires O(𝑚Y log |𝑅 |) bits to
store. Crucially, using a first moment argument, ℎ is whp fully random on all chunks
𝑆1, . . . , 𝑆𝑚/𝐶 simultaneously (but not fully random on 𝑆 as a whole). Thus ℎ can be shared
among the chunks. For each chunk, a data structure of the desired type is constructed
based on the full randomness assumption using ℎ.

From a theoretical point of view, this is a satisfying solution since the overhead for
saving ℎ can be made arbitrarily small. Moreover, input partitioning can be useful for other
reasons as well, see Section 3.4.2.

From a practical perspective, however, the overhead seems unnecessary, given that
pseudo-random hash functions seem to exist, as we discuss now.

4.3.3. Hoping for Indistinguishability from Randomness

There are quite a few functions that are fast to evaluate in practice and behave like random
functions in many ways. The test suite SMHasher by Appleby [App12] tests the perfor-
mance and statistical properties of non-cryptographic hash functions in that sense. Any
fast hash function that does not exhibit any of the weaknesses for which a test is imple-
mented might be a good general-purpose hash function. Some popular non-cryptographic
hash functions that perform well are MurmurHash, CityHash and xxHash. Experience
shows that the behaviour of many hashing-based data structures and algorithms does not
noticeably change when using these hash functions instead of fully random functions.

One notable exception is adversarial settings, where an attacker tries to compromise
the performance of a data structure by carefully crafting malicious input data. Since the
attacker is granted (partial) knowledge about the data structures internals, any performance
guarantees relying on the independence of hash function and input are void, and non-
cryptographic hash functions have limited utility. The topic has recently gained some
attention, in particular in the context of Bloom filters [MNS11; NY19; GKL15; CPS19],
but the problem is far more fundamental. So-called hash-flooding is a realistic denial of
service attack on systems that insert user-selected key/value pairs into a hash table. If
many or all keys share the same hash value, then a hash table using linear chaining or
linear probing will exhibit linear running time per operation, crippling system performance
[LN93; CW03].

A corresponding vulnerability in the widely used hash functions MurmurHash2 and
MurmurHash3 was demonstrated in [AB12a], fabricating arbitrary multi-collisions that
work for all seed values. Conveniently, the authors simultaneously propose an alternative
hash function SipHash [AB12b] that combines good performance with cryptographic
security claims. Previously, cryptographic hash functions were mostly shunned by the data
structure community due to their significantly slower evaluation time. SipHash has since
found its way into several standard libraries (including Python, Ruby, Rust, Haskell) and an
improved implementation HighwayHash is described in [ACW16].

The author of this thesis has little expertise in these matters, but the development
seems promising. If SipHash (or HighwayHash) really is a pseudo-random function



56 4. Fundamental Models, Techniques and Algorithms

in a cryptographic sense3, meaning it is (when given a secret key/seed) computationally
indistinguishable from a fully random function, then no efficient hashing-based algorithm
that relies on a fully random function behaves noticeably different when used with such a
hash function instead (otherwise that algorithm would be a distinguisher). In that happy
case, the need for full randomness and the need for fast, practical hash functions would not
be at odds.

4.4. Solving Linear Systems

Constructing retrieval data structures as explained in Section 3.4 requires finding solutions
®𝑧 ∈ F𝑛2 to linear systems 𝐴 · ®𝑧 = ®𝑏 for given 𝐴 ∈ F𝑚×𝑛2 and ®𝑏 ∈ F𝑚2 . In the cases we consider
𝑚 = Θ(𝑛) and 𝐴 contains only Õ(𝑛) many 1-entries. Since the cubic running time of naive
Gaussian elimination is infeasible already for moderately large𝑚, and since the technique
of input partitioning we discussed in Section 3.4.2 is not without disadvantages, we need
better algorithms for solving sparse linear systems over F2. In this section we consider the
following three:

1. Wiedemann’s randomised algorithm [Wie86] with expected running time Õ(𝑛2).
2. Clever variants of Gaussian elimination called structured [LO90] or lazy [GOV16]

Gaussian elimination performing row operations in an order that preserves the
sparsity of the system as long as possible.
None of our theorems mentions these techniques since, as far as we know, there is no
mathematical analysis of them. In our experiments, on the other hand, they drastically
reduce the running time of naive Gaussian elimination on sparse random matrices,
outperforming Wiedemann’s algorithm for small to medium inputs.

3. TheMethod of Four Russians improves upon Gaussian elimination by precomputing
certain row sums, achieving a speedup by a factor of Θ(log𝑚).

In all cases, there are opportunities to exploit bit parallelism improving running times by
another factor of 𝑤.

4.4.1. Wiedemann’s Algorithm

In Section 3.4 and Chapter 7 we apply the following theorem by Wiedemann in cases with
𝑞 = 2 and 𝜓 = Õ(𝑛), concluding that solutions to sparse linear systems with 𝑛 variables
can be computed in time Õ(𝑛2).
▶ Theorem 4.2 (Wiedemann’s Algorithm [Wie86]). Let F𝑞 be the finite field with𝑞 elements,

𝐴 ∈ F𝑚×𝑛𝑞 a matrix with𝜓 non-zero entries,𝑚,𝑛,𝜓 ∈ N and
®𝑏 ∈ F𝑚𝑞 .

(i) If𝑚 = 𝑛 and 𝐴 is regular, then a solution ®𝑧 ∈ F𝑛𝑞 to 𝐴®𝑧 = ®𝑏 can be computed with O(𝑛𝜓 )
field operations ([Wie86, Algorithm 1]).

(ii) If𝑚 < 𝑛 and 𝐴 has rank𝑚, then a solution ®𝑧 ∈ F𝑛𝑞 to 𝐴®𝑧 = ®𝑏 can be computed with

O(𝑛(𝜓 + 𝑛 log𝑛)) field operations ([Wie86, Theorem 1’]).

3 Note that the existence of pseudo-random functions is an open question in cryptography. By extension no
prove for this claim exists.



4.4. Solving Linear Systems 57

While we use this interesting result in some of our theorems, there seems to be no good
niche for it in our experiments: For large 𝑛, the quadratic running time is still prohibitive,
and if input partitioning techniques are used (see Section 3.4.2), we can decrease the size of
linear systems to regimes where asymptotically cubic approaches with small constants and
high cache efficiency are faster – at least in our implementations.

We remark that there are opportunities for shaving logarithmic factors fromWiedemann’s
algorithm:
(1) Running time for setting (i) is dominated by multiplications of 𝐴 with a vector, each

multiplication taking time O(𝜓 ). If the 𝜓 non-zero entries of 𝐴 are concentrated in
blocks, for instance, if 𝐴 is a matrix from Definition 2.5, this can be reduced to O(𝜓/𝑤),
where 𝑤 is the word length of our word RAM.

(2) The proof of (ii) relies on a reduction to (i) that appends random rows to 𝐴, hoping
for the resulting square matrix to be regular. There is a strategy where the added rows
have O(𝑛 log𝑛) non-zero entries and attempts succeed with constant probability. It
seems plausible that, at least for some𝐴, a smaller number of non-zero entries suffices,g
which improves running time of (ii) if𝜓 = 𝑜 (𝑛 log𝑛).

(3) Occasionally we wish to solve 𝐴 · 𝑍 = 𝐵 where 𝑍 and 𝐵 have 𝑟 = O(log𝑛) columns.
This can be done more quickly than by using Wiedemann’s algorithm independently 𝑟
times. With word-level parallelism, the author suspects, a factor of O(log 𝑟 ) suffices.

Since we wish to side-step such details, we use Õ-notation when providing running times
for Wiedemann’s algorithm.

4.4.2. Heuristic Presolving: Lazy Gaussian Elimination

Lazy Gaussian Elimination is best understood as a presolver that takes a sparse linear
system 𝐴 as input and outputs a dense linear system 𝐴′ with significantly fewer equations
and variables. The transformed system 𝐴′ is solvable if and only if 𝐴 is solvable and any
solution for 𝐴′ can be extended to a solution for 𝐴 by initialising the “presolved” variables
using back substitution.

We adapt the descriptions from [LO90; GOV16] to linear systems 𝐴 · ®𝑧 = ®𝑏 where
𝐴

d= 𝐴𝐿
𝑚,𝑛 is the random matrix from Definition 2.5. An experimental evaluation of the

substantial benefits this provides is found in Section 12.2.6.
During the algorithm, the intermediate linear systems have the form shown in Figure 4.5.

The 𝐵 ∈ N light blocks have individual sizes 𝐿1, . . . , 𝐿𝐵 ∈ N meaning the 𝑖-th light block
contains 𝐿𝑖 light variables. Each equation 𝑒 is incident to 0, 1 or 2 light blocks and has a
vector of coefficients of appropriate length for each. Moreover, there is a single heavy block
of 𝐿0 heavy variables, for which every equation has a coefficient vector.

Note that the initial system 𝐴𝐿
𝑚,𝑛 · ®𝑧 = ®𝑏 fits this description with 𝑛/𝐿 uniformly sized

light blocks (𝐿1 = . . . = 𝐿𝑛/𝐿 = 𝐿) and an empty heavy block (𝐿0 = 0). The algorithm will
terminate with a matrix containing only the heavy block and no light blocks.

We assume that light blocks of size 0, light blocks not incident to any equation, and
incidences between light blocks and equations with coefficient vector ®0 are implicitly
removed. Each step of the algorithm modifies the linear system in one of two ways.

Case 1: Each equation is incident to 0 or 2 light blocks. If no light block is left, the
algorithm ends. Otherwise, denote by deg(𝑖) the number of equations incident to the



58 4. Fundamental Models, Techniques and Algorithms

©«

𝐿0=6

011010
𝐿1=3

110
𝐿2=2

11
𝐿3=4 𝐿4=3

1
101100 01 1010 1
011001 1110 001 0
000111 110 0010 1
010100 10 1111 0
000101 101 110 0
101011 0110 011 1
110111 010 100 1
010110 110 11 0

ª®®®®®®®®®®®®®¬

→

©«

𝐿0=8

01101011
𝐿1=3

110
𝐿2=4 𝐿3=3

1
10110001 1010 1
01100100 1110 001 0
00011100 110 0010 1
01010010 1111 0
00010100 101 110 0
10101100 0110 011 1
11011100 010 100 1
01011011 110 0

ª®®®®®®®®®®®®®¬

→

©«

𝐿0=8

01101011
𝐿1=3

110
𝐿2=4 𝐿3=3

1
10110001 1010 1
01100100 1110 001 0
01110111 0010 0
01010010 1111 0
01111111 011 110 1
10101100 0110 011 1
11011100 010 100 1
00110000 1

ª®®®®®®®®®®®®®¬

→

©«

𝐿0=8

10110001
𝐿1=2 𝐿2=4

1010
𝐿3=3

1
01100100 1110 001 0
01110111 0010 0
01010010 1111 0
01111111 11 110 1
10101100 0110 011 1
11011100 10 100 1
00110000 1

ª®®®®®®®®®®®¬

⊕

⊕

⊕

(a) (b)

(c) (d)

Figure 4.5 Example for two steps of lazy Gaussian elimination. Case 1 applies to (a) and the
second block of variables is made heavy by migrating the variables to the heavy
block. This yields (b) where Case 2 applies because the first equation is incident
only to the first light block. One variable, here the first, is eliminated from all other
equations, yielding (c). Removing the equation and the eliminated variable yields (d).

𝑖-th light block and pick 𝑖 ∈ [𝐵] that maximises deg(𝑖)/𝐿𝑖 .4
Consider the step from (a) to (b) in Figure 4.5 where 𝑖 = 2. The 𝐿𝑖 variables of block 𝑖 are
made heavy, meaning 𝐿0 increases by 𝐿𝑖 , block 𝑖 is removed, the coefficients associated
with block 𝑖 are moved to the heavy block and the equations not previously incident to
block 𝑖 are assigned zero coefficients for the new heavy variables.
Note that the equations that were incident to block 𝑖 are now incident to only 1 light
block, meaning Case 2 applies to them.

Case 2: An equation 𝒆 is incident to precisely one light block 𝒊. Consider Figure 4.5
(b) to (c) where 𝑒 is the first equation. Pick a variable 𝑣 from block 𝑖 for which 𝑒
has coefficient 1. Then eliminate this variable from all other equations by adding 𝑒
if necessary. This exclusively affects equations that were already incident to block 𝑖
and only by changing their coefficients for block 𝑖 and the heavy block (as well as the
right-hand side). Crucially, no new incidences are created (though incidences may

4 This heuristic makes sense if deg(𝑖) is conceptualised as utility, as it is the number of equations that can
then be removed using Case 2, and 𝐿𝑖 as a price, as the number of heavy variables should be kept small.
Picking 𝑖 ←− [𝐵] at random has slightly worse performance.



4.4. Solving Linear Systems 59

vanish).
Now consider Figure 4.5 (c) to (d). Equation 𝑒 and the column of 𝑣 are removed (this
decrements 𝐿𝑖 ). Clearly, by initialising 𝑣 to the right value from F2, any solution to the
reduced system can be extended to a solution also satisfying 𝑒 .

Implementation and Running Time. To track applicability of Case 2, we keep a queue
of equations incident to 1 light block. To quickly settle on a block in Case 1, we maintain a
priority queue of light blocks (the key of 𝑖 ∈ [𝐵] being deg(𝑖)/𝐿𝑖 ).

Proving that the algorithm is useful would require getting a grip on the size of the
remaining system, which we cannot provide. To see that it “cannot hurt”, we consider its
running time. The main cost lies in eliminating variables. Eliminating a variable from a
light block 𝑖 requires at most deg(𝑖) − 1 additions of equations, which is dominated by
adding coefficients of the 𝐿0 = O(𝑛) variables in the heavy block, 𝑤 bits at a time. Since
each variable is eliminated at most once, the total running time is

∑
𝑖 𝐿𝑖 deg(𝑖)O(𝑛/𝑤) =∑

𝑖 deg(𝑖)O(𝑛𝐿/𝑤) = 2𝑚O(𝑛𝐿/𝑤) = O(𝑚𝑛𝐿/𝑤). For 𝐿 = O(log𝑛) this is O(𝑚𝑛) and
therefore faster than any linear system solver we consider.

4.4.3. The Method of Four Russians

The name “Method of Four Russians” goes back to a paper on computing the transitive
closure of a directed graph [Arl+70] but is used for various ideas that exploit precomputation
to shave logarithmic factors frommatrix algorithms, including matrix multiplication [AH74,
Chapter 6], edit distance [MP80] and linear system solvers [Bar09, Chapter 9].

We give our own version for linear system solving, since, compared to [Bar09] our
algorithm is slightly simpler as it does not require Gray Codes and makes no assumption
on the input matrix being random. We claim:

▶ Lemma 4.3. Let 𝐴 ∈ {0, 1}𝑚×𝑛 be a matrix of rank𝑚.

(i) 𝐴 can be brought into row echelon form in O( 𝑚𝑛2

𝑤 log𝑚 ) word operations.
(ii) Let 𝑟 < 𝑛 and 𝐵 ∈ {0, 1}𝑚×𝑟 . A solution 𝑍 ∈ {0, 1}𝑛×𝑟 to 𝐴 · 𝑍 = 𝐵 can be computed in

O( 𝑚𝑛2

𝑤 log𝑚 ) word operations.
Proof. (i) In the first pass of the algorithm we transform

𝐴 ∈ {0, 1}𝑚×𝑛 into 𝐴′ =
(
𝐴′1 ∈ {0, 1}𝑑×𝑘 𝐴′2 ∈ {0, 1}𝑑×(𝑛−𝑘)

0 𝐴′3 ∈ {0, 1} (𝑚−𝑑)×(𝑛−𝑘)
)

via row operations where 𝑘 is a parameter chosen later, 𝑑 ≤ 𝑘 and𝐴′1 is in row echelon
form. Subsequent passes then transform𝐴′3 into row echelon form. Note that Gaussian
elimination corresponds to 𝑘 = 1. In the following we only describe the first pass.
For a row 𝑣 ∈ {0, 1}𝑛 call 𝑣 [1 . . . 𝑘] ∈ {0, 1}𝑘 the prefix of 𝑣. The rows of𝐴 are examined
one by one. We maintain the vector-space 𝑃 ⊆ {0, 1}𝑘 spanned by the prefixes of all
examined rows and a table 𝑇 that assigns to each 𝑝 ∈ 𝑃 a vector 𝑇 [𝑝] ∈ {0, 1}𝑛 with
prefix 𝑝 that is a linear combination of examined rows. Let 𝑑 be the dimension of 𝑃 .
Initially we have 𝑑 = 0, 𝑃 = {0𝑘 } and 𝑇 [0𝑘 ] = 0𝑛 . When row 𝑣 ∈ {0, 1}𝑛 with prefix
𝑝 is examined, there are two cases. If 𝑝 ∈ 𝑃 then 𝑇 [𝑝] is added to 𝑣 which yields a
transformed row 𝑣 ′ with prefix 0. If 𝑝 ∉ 𝑃 then we set 𝑃 ′ = 𝑃 ⊕ {0𝑘 , 𝑝} and for 𝑝 ′ ∈ 𝑃
we set 𝑇 [𝑝 ′ ⊕ 𝑝] = 𝑇 [𝑝] ⊕ 𝑣, maintaining the invariant.



60 4. Fundamental Models, Techniques and Algorithms

We end up with a modified matrix where all rows have prefix 0𝑘 , except for the
𝑑 = dim(𝑃) ≤ 𝑘 rows that increased the dimension of 𝑃 . We bring them to the top
of 𝐴 by swapping rows. It is easy to see that instead of using Gaussian elimination
on these 𝑑 rows to bring them into echelon form, we may instead select appropriate
rows from 𝑇 to replace the first 𝑑 rows. The full algorithm is given as Figure 4.6.
One pass of the algorithm requires O(2𝑑𝑛) = O(2𝑘𝑛) bit operations to build 𝑇 and
O((𝑚 − 𝑑)𝑛) = O(𝑚𝑛) bit operations for adding the precomputed rows from 𝑇 to
rows from 𝐴. Choosing 𝑘 = log𝑚 this sums to O(𝑚𝑛). Since O(𝑛𝑘 ) passes are needed
and since all relevant operations admit bit-parallel execution, the claim follows.
One can check that 𝑘 = log𝑚 − log log𝑚 minimises the constant factor.

1 Algorithm MethodOfFourRussians(𝐴 ∈ {0, 1}𝑚×𝑛):
2 (𝑟, 𝑐) ← (1, 1) // next row and column index to consider

3 while 𝑟 ≤ 𝑚 and 𝑐 ≤ 𝑛 do
// todo: exploit that the first 𝑐 − 1 bits of all rows are zero in this pass

4 𝑘 ← if 𝑚 − 𝑟 + 1 ≤ 4 then 1 else ⌊log(𝑚 − 𝑟 + 1) − log log(𝑚 − 𝑟 + 1)⌋
5 (𝑑, 𝑃0,𝑇 [0𝑘 ]) ← (0, {0𝑘 }, 0𝑛) // trivial space of prefixes
6 for 𝑟 ′ = 𝑟, . . . ,𝑚 do
7 𝑝 ← 𝐴[𝑟 ′] [𝑐 . . . 𝑐+𝑘−1]
8 if 𝑝 = 0𝑘 then
9 continue

10 else if 𝑝 ∈ 𝑃𝑑 then
11 𝐴[𝑟 ′] ← 𝐴[𝑟 ′] ⊕ 𝑇 [𝑝]
12 else
13 𝑃𝑑+1 ← 𝑃𝑑 ⊕ {0, 𝑝}
14 for 𝑝 ′ ∈ 𝑃𝑑 do
15 𝑇 [𝑝 ⊕ 𝑝 ′] ← 𝐴[𝑟 ′] ⊕ 𝑇 [𝑝 ′]
16 𝐴[𝑟 ′] ← 𝐴[𝑟 + 𝑑]
17 𝐴[𝑟 + 𝑑] ← empty // create a gap to be filled later

18 𝑑 ← 𝑑 + 1

// 𝐴[𝑟 . . . 𝑟+𝑑−1] are empty. replace with echelon-shaped basis of equations in 𝑇

19 𝑟 ′← 𝑟
20 lastLZ← 0
21 for 𝑝 ∈ 𝑃𝑑 \ {0𝑘 }, lexicographically descending do
22 if leadingZeroes(𝑝) > lastLZ then
23 lastLZ← leadingZeroes(𝑝)
24 𝐴[𝑟 ′] ← 𝑇 [𝑝]
25 𝑟 ′← 𝑟 ′ + 1

26 (𝑟, 𝑐) ← (𝑟 + 𝑑, 𝑐 + 𝑘)
27 return A

Figure 4.6 Transforms the input matrix 𝐴 into row echelon form using the Method of Four
Russians. By adding right hand sides and a back substitution step, we obtain a linear
system solver.



4.5. Connection to Coding Theory 61

(ii) Simply generate the matrix 𝐴′ = (𝐴 | 𝐵) ∈ {0, 1}𝑚×(𝑛+𝑟 ) and bring it into row echelon
form using (i). The solution matrix 𝑍 can then be obtained by back substitution in
O(𝑚𝑛𝑟/𝑤) word operations. In the untypical case of large 𝑟 , say 𝑟 = Θ(𝑛), where
back substitution would dominate the running time, similar techniques as in (i) save
a factor of log𝑚. ◀

4.5. Connection to Coding Theory

The core of our proof of TheoremA is a technique from coding theory. The connection is not
at all surprising. To explain why, we briefly introduce the binary erasure channel and point
out the relationship to our notions on hypergraphs from Definition 2.1. Afterwards, we
examine how closely the task of constructing good codes aligns with the task of constructing
good hashing-based data structures.

4.5.1. The Binary Erasure Channel and Low Density Parity Check Codes

The binary erasure channel (BEC) is a simple but important setting. We recommend [RU08,
Chapter 3] for an excellent introduction to this subject. When a sequence (𝑥1, . . . , 𝑥𝑚) ∈
{0, 1}𝑚 is sent over the BEC, the receiver sees a sequence (𝑦1, . . . , 𝑦𝑚) ∈ {0, 1, ?}𝑚 where
for each 𝑖 ∈ [𝑚] independently, the 𝑖-th bit is erased (𝑦𝑖 = ?) with probability Y ∈ [0, 1] and
unchanged (𝑦𝑖 = 𝑥𝑖 ) with probability 1 − Y. For reliable communication over such channels,
redundancy is introduced. In linear codes, several parity conditions are each specified by a
set 𝑃 ⊆ [𝑚] and dictate that

⊕
𝑖∈𝑃 𝑥𝑖 is zero. The set of admissible messages (codewords)

then forms a linear subspace of {0, 1}𝑚 .
To relate this to hypergraphs, let 𝑉 be the set of all parity conditions and let 𝐸+ =

{𝑒1, . . . , 𝑒𝑚} where 𝑣 ∈ 𝑒𝑖 if 𝑥𝑖 is involved in parity condition 𝑣. The incidence graph of
𝐻+ = (𝑉 , 𝐸+) is known as the Tanner graph [Tan81]. In low density parity check (ldpc) codes

the Tanner graph is sparse.
After transmission, bits corresponding to some set 𝐸 ⊆ 𝐸+ are erased and we consider

𝐻 = (𝑉 , 𝐸). When decoding, we seek an assignment 𝑥dec : 𝐸 → {0, 1} such that for 𝑣 ∈ 𝑉
we have

⊕
𝑒∈𝐸,𝑒∋𝑣 𝑥dec(𝑒) = 𝑐𝑣 where 𝑐𝑣 is the parity of the successfully transferred bits

involved in parity condition 𝑣. The existence of a solution is guaranteed by construction,
namely 𝑥dec(𝑒𝑖) = 𝑥𝑖 for 𝑒𝑖 ∈ 𝐸. Uniqueness of the solution and thus success of the
ideal maximum a posteriori probability decoder (MAP-decoder) requires the kernel of the
incidence matrix of 𝐻 to be trivial – which is equivalent to 𝐻 being solvable.

Success of the linear time belief propagation decoder (BP-decoder) requires 1-peelability
of𝐻 . This decoder iteratively identifies a parity condition, where all but one of the involved
bits are known, and then decodes the unknown bit.

4.5.2. Good Codes vs. Good Data Structures

We now know two perspectives for evaluating the properties of random hypergraphs. The
first is that of constructing hashing-based data structures (hbds) such as cuckoo dictionaries
and retrieval data structures. The second is that of decoding ldpc codes.

There is substantial alignment concerning the issue of what makes a “good” hypergraph,
see e.g. [MV12a; MV12b].



62 4. Fundamental Models, Techniques and Algorithms

Hyperedge Size. The (average) hyperedge size 𝑘 is, in hbds, related to (average) query
time and (average) number of cache faults per query. In ldpc codes, 𝑘 is the (average)
number of parity conditions relating to each message bit and contributes to overall
encoding and decoding time. Thus, small 𝑘 is good.

Density. In hbds, a high edge density 𝑐 = |𝐸 |/|𝑉 | means accommodating many objects
in little space (high load), while in ldpc codes it means recovering many erased bits
from little redundancy (high rate). Thus, large 𝑐 is good. In both cases, 𝑐 = 1 is often an
obvious information-theoretic upper bound.

Peelability, Solvability, Orientability. As far as we are aware, among the properties
from Definition 2.1 important in hbds, only 1-peelability and solvability play a role for
ldpc codes. Luckily, in the context of Theorem A, the thresholds for solvability and
1-orientability coincide and the generalisations to ℓ > 1 are easily established.

The role of randomness. An ldpc code is given by a fixed hypergraph 𝐻+ that we are
free to design. For instance, we might give all vertices the same degree. Since 𝐻 arises
from a random Y-fraction of the hyperedges of 𝐻+, this gives us control (proportional
to Y) on 𝐻 as well.
When building a hbds, we are essentially restricted to i.i.d. random hyperedges as
explained in Section 3.2. The general techniques from ldpc codes still apply in this
special case.

4.6. Dictionaries not Building on Random Hypergraphs

This thesis throws a very specific solution strategy (involving random hypergraphs) at
various dictionary-type data structures. It should be noted that, in particular in the case of
general-purpose dictionaries, the cuckoo-type approaches we discussed are not the most
widespread in practice. We now take a moment to widen our perspective and mention some
well-known approaches briefly, without explaining them. Needless to say, the literature on
the topic is vast, and any one-page account of the field is necessarily incomplete.

The Big Players. Consider dictionaries storing𝑚 key/value pairs of O(log𝑚) bits each,
usingmemory sufficient for (1+Y)𝑚 pairs with Y ≥ 0, and average lookup times independent
of𝑚. Note that this already excludes search trees that store elements in sorted order, due
to lookup times of Ω(log𝑚).

The simplest data structure fulfilling the requirements is a hash table with linear

chaining. With a table of 𝑛 buckets the expected lookup time is O(1 +𝑚/𝑛) [Cor+09, Chap.
11.3.3]. The overhead is due to O(𝑚 + 𝑛) pointers, that are often as large as key/value pairs
themselves. Note that for 𝑛 = Θ(𝑚) the approach is optimal “up to constants”. The logical
next step is to make Y a variable and optimize running times as Y → 0.

This can be done for open addressing schemes where data is stored in a large table
without pointers. Access times now depend on the probing strategy and whether a lookup is
successful (faster) or unsuccessful (slower). In the case of linear probing, the average lookup
times are O(1/Y) and O(1/Y2), respectively [Cor+09, Chap. 11.4], in the case of uniform
probing, they are O(log(1/Y)) and O(1/Y) [Sed03, Section 14.3]. To reduce the average times
of unsuccessful lookups (without affecting average times of successful lookups) Robin Hood

hashing can be used [CLM85]. One potential problem remains, however: The maximum



4.6. Dictionaries not Building on Random Hypergraphs 63

lookup times depend on𝑚, in the case of Robin Hood hashing with uniform probing it is
still O(log log𝑚) whp [DMV04].

In cuckoo hashing, in contrast, the worst-case lookup times are independent of𝑚. By
considering the relationship between the number of options per key and the load threshold,
we see that the average and worst-case lookup times are both O(log(1/Y)).

We remark that this is not the end of the line for theory on dictionary data structures.
For instance, Arbitman, Naor and Segev [ANS10] achieve fully dynamic dictionaries with
constant time operations in the worst case and Y = O((log log𝑚/log𝑚)1/2), though it
seems unlikely that such a dictionary is competitive in practice.

Practical Perspective. The reason why cuckoo hashing does not cast a larger shadow
in practice is at least in part because very high memory efficiency (Y close to 0) and good
worst-case lookup times (as opposed to average lookup times) often play a limited role.

The c++11 standard specifies that the default dictionary data structure std::un-
ordered_map uses linear chaining5. As far as the author can tell, the most success-
ful attempts at improving upon the standard use linear probing, sometimes including
Robin Hood hashing. A highly optimised hash table absl::flat_hash_map provided
by Google [Goo18] uses a variant of linear probing (without a Robin Hood component),
probes 16 positions at a time using SIMD instructions and has load factors between 43%
and 88%.

So when it comes to general-purpose dictionaries, the algorithmically simplest ap-
proaches (be it with significant engineering effort added) seem to be the favoured choice.
The niche for cuckoo hashing seems to be high static loads, and high dynamic loads, as
explained in Section 3.3.1.

5 Technically it only specifies that an iteration over a “bucket” of elements with the same hash value is possible
in time proportional to that bucket.



64

Notation of Chapter 5

Local Weak Limit

G∗ space of rooted locally finite graphs (possibly weighted)
(𝐺)𝑡 ∈ G∗ for 𝐺 ∈ G∗ and 𝑡 ∈ N, the 𝑡-neighbourhood of the root
GWTPo(_) ∈ G∗ Galton-Watson tree with offspring distribution Po(_)
` probability measure on G∗
(`𝑛)𝑛∈N⇝ ` weak limit of probability measures,

we also write (𝑋𝑛)𝑛∈N⇝ 𝑋 when 𝑋𝑛 ∼ `𝑛 and 𝑋 ∼ `
𝐺 (◦) ∈ G∗ obtained from unrooted graph 𝐺 by making ◦ ∈ 𝑉 (𝐺) the root
𝑈 (𝐺) distribution of 𝐺 (◦) ∈ G∗ when ◦ ←− 𝑉 (𝐺)
(𝐺𝑛)𝑛∈N lwl−→ ` the local weak limit of the unrooted graphs (𝐺𝑛)𝑛∈N is `

equivalent to (𝑈 (𝐺𝑛))𝑛∈N⇝ `; we write (𝐺𝑛)𝑛∈N lwl−→ 𝐺 if 𝐺 ∼ `

Lelarge’s Theorem

𝐺 an unrooted bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸)
[ vertex weights [ : 𝐴 ∪ 𝐵 → N
Z edge weights Z : 𝐸 → N
𝑀 (𝐺) size of a maximum matching or allocation in 𝐺
Φ𝐴 (and Φ𝐵) distributions describing degree of 𝐴-vertices (𝐵-vertices),

sometimes including vertex weight and weights of incident edges
GWTΦ𝐴,Φ𝐵 bipartite Galton-Watson tree based on distributions Φ𝐴, Φ𝐵

M(Φ𝐴,Φ𝐵) the value lim
𝑛→∞𝑀 (𝐺𝑛)/|𝐴𝑛 | characterised by Lelarge’s Theorem

General

1[𝑝] 1 if the predicate 𝑝 is true and 0 otherwise
𝛿𝑥 Dirac measure with 𝛿𝑥 (𝐴) = 1[𝑥 ∈ 𝐴] for measurable sets 𝐴
Po(_) Poisson distribution with parameter _
Bin(𝑛, 𝑝) Binomial distribution with parameters 𝑛 and 𝑝



65

5. Local Weak Limits and

Lelarge’s Theorem

As mentioned in Section 2.4.4, Lelarge [Lel12] and later Leconte, Lelarge and Massoulié
[LLM13] have unified and extended previous results on orientability of random hypergraphs.
We refer to both results [Lel12, Thm. 4.1] [LLM13, Thm. 2.1] as Lelarge’s Theorem. It is
crucial in our proofs of Theorems D and F, implicit in the proof of Theorem E and also
used, though less prominently, for proving Theorem A.

The Form of Lelarge’s Theorem. Consider the simplest case where (𝐻𝑛 = (𝑉𝑛, 𝐸𝑛))𝑛∈N
is a family of hypergraphs and we wish to know whether 𝐻𝑛 is 1-orientable whp. Note that
a 1-orientation 𝜎 : 𝐸𝑛 → 𝑉𝑛 of 𝐻𝑛 is simply a matching 𝜎 ⊆ 𝐸𝑛 ×𝑉𝑛 of size |𝜎 | = |𝐸𝑛 | in
the bipartite incidence graph 𝐺𝑛 = (𝐸𝑛,𝑉𝑛, “∋”) of 𝐻𝑛 . By 𝑀 (𝐺𝑛) we denote the size of a
maximum matching in 𝐺𝑛 . In this context, Lelarge’s Theorem asserts:

If (𝐺𝑛)𝑛∈N lwl−→ GWTΦ𝐴,Φ𝐵 then lim
𝑛→∞

𝑀 (𝐺𝑛)
|𝐸𝑛 | =M(Φ𝐴,Φ𝐵) .

Here, lwl−→ stands for local weak limit [Lec13; LLM13] also known as Benjamini-Schramm

limit [BS11] or random weak limit [Lel12; Bor16; AL07]. Roughly speaking, the limit
captures the distribution of the 𝑘-hop neighbourhood of a random vertex of 𝐺𝑛 , for any
constant 𝑘 as 𝑛 →∞.

The random variable GWTΦ𝐴,Φ𝐵 is a bipartite Galton-Watson tree depending on two
distributions Φ𝐴,Φ𝐵 and naturally occurs in the cases we consider. The theorem character-
ises the asymptotic proportion𝑀 (𝐺𝑛)/|𝐸𝑛 | of elements from 𝐸𝑛 that can be matched as a
functionM of Φ𝐴 and Φ𝐵 , the details of which we ignore for now.

Applying Lelarge’s Theorem. If we wish to apply Lelarge’s Theorem to decide whether
𝐻𝑛 is 1-orientable whp, three things remain to be done.
1. Identify the distribution Φ𝐴 and Φ𝐵 and prove that (𝐺𝑛)𝑛∈N has local weak limit

GWTΦ𝐴,Φ𝐵 .
2. ComputeM(Φ𝐴,Φ𝐵). Typically 𝐻𝑛 , 𝐺𝑛 , Φ𝐴 and Φ𝐵 depend on a density parameter

𝑐 ∈ R+ and we are really interested in a threshold 𝑐∗ = max{𝑐 ∈ R+ | M(Φ𝐴
𝑐 ,Φ

𝐵
𝑐 ) = 1}.

Finding 𝑐∗ may be hard to do analytically, but is easy numerically in all cases we
consider.

3. IfM(Φ𝐴,Φ𝐵) < 1 we conclude𝑀 (𝐺𝑛) < |𝐸𝑛 | whp, meaning𝐻𝑛 is not 1-orientable whp.
IfM(Φ𝐴,Φ𝐵) = 1 we only get𝑀 (𝐺𝑛) = |𝐸𝑛 | − 𝑜 (𝑛) at first, leaving a gap to the desired
result “𝑀 (𝐺𝑛) = |𝐸𝑛 | whp”, which has to be bridged with an independent argument.

This chapter is structured as follows.

Section 5.1. Definition of the notion of local weak limit.



66 5. Local Weak Limits and Lelarge’s Theorem

Section 5.2. Statement of Lelarge’s Theorem.
Section 5.3. Prototypical case for a proof of “(𝐺𝑛)𝑛∈N lwl−→ GWTΦ𝐴,Φ𝐵 ”. Explanation of

how proofs of “𝐺𝑛
lwl−→ GWTΦ𝐴,Φ𝐵 ” can be structured in general.

5.1. Defining the Local Weak Limit

A precise and accessible definition of the local weak limit can be found in lecture notes by
Bordenave [Bor16, Chapter 3]. In the following, we shall be more brief, give more examples
but omit many measure-theoretic details.

The Space G
∗
of Rooted Graphs. We consider the space G∗ of connected rooted graphs

with finite degree at every vertex but possibly infinitely many vertices. Except for the
root, vertices are unlabeled and therefore indistinguishable.

A Metric on G∗
. For 𝐺 ∈ G∗ and 𝑡 ∈ N0 let (𝐺)𝑡 be the rooted subgraph of 𝐺 induced by

vertices with hop-distance at most 𝑡 from the root of 𝐺 .
The distance of 𝐺1,𝐺2 ∈ G∗ is 𝑑 (𝐺1,𝐺2) = 1/(𝑡 + 1) where 𝑡 = max{𝑡 ∈ N0 ∪ {∞} |
(𝐺1)𝑡 = (𝐺2)𝑡 }. With this metric, G∗ is complete. For instance, the Cauchy sequence
𝐶3,𝐶4, . . . ,𝐶𝑛, . . . ∈ G∗ of rooted circles with 𝑛 vertices satisfies lim𝑛→∞𝐶𝑛 = 𝐶∞ where
𝐶∞ is the bi-infinite rooted path, see Figure 5.1. Indeed, for 3 ≤ 𝑛1 < 𝑛2 ≤ ∞ we have
𝑑 (𝐶𝑛1,𝐶𝑛2) = 1/⌊𝑛1/2⌋.

𝐶3 : 𝐶2𝑛 :
. . .
. . .

𝐶4 : 𝐶∞ :
. . .
. . .

Figure 5.1 A sequence 𝐶3,𝐶4, . . . ∈ G∗ of rooted graphs with lim𝑛→∞𝐶𝑛 = 𝐶∞ ∈ G∗.

Via themetric, we also obtain the usual “Y-𝛿”-notion of continuous functions 𝑓 : G∗ → R.
Intuitively a continuous function can capture local properties expressed in the root’s
vicinity but is insensitive to distant changes. For instance 𝑓1(𝐺) B deg(root(𝐺)) is
continuous, while, as seen in the previous example, 𝑓2(𝐺) B 1[𝐺 is acyclic] is not.

Probability Measures on G
∗
. Introducing the Borel 𝜎-algebra on G∗, we consider ran-

dom variables 𝐺 with values in G∗ and the corresponding probability measures `𝐺 .
An example important in the sequel is the Galton-Watson tree GWTPo(_) with parameter
_ ∈ R+. In this random, possibly infinite tree, every vertex 𝑣 has a Poisson distributed
number of children 𝑋𝑣 ∼ Po(_), see Figure 5.2. Formally, we could define GWTPo(_)
to be the unique tree in G∗ where, in a breadth first traversal starting from the root,
the 𝑖-th visited vertex has 𝑋𝑖 children (if it exists) where 𝑋1, 𝑋2, . . . ∼ Po(_) are i.i.d.
random variables. It is a classical result that GWTPo(_) is almost surely finite for _ ≤ 1.

Weak Convergence of Measures on G∗
. Having a topology and 𝜎-algebra on G∗, we

can define weak convergence of measures. We say a sequence (`𝑛)𝑛∈N of measures
on G∗ has the measure ` as weak limit and write (`𝑛)𝑛∈N ⇝ ` if for every bounded
continuous function 𝑓 : G∗ → R we have lim𝑛→∞

∫
𝑓 d`𝑛 =

∫
𝑓 d`. Intuitively, for

every local property the probability under `𝑛 is asymptotically equal to the probability
under `.



5.1. Defining the Local Weak Limit 67

Figure 5.2 A possible outcome of a Galton-Watson tree GWTPo(_) . The probability for this
outcome is 12𝑝7

0𝑝
3
1𝑝2𝑝3𝑝4 where 𝑝𝑖 = Pr[Po(_) = 𝑖] = e−_ _𝑖

𝑖! . The factor of 12 is
needed because 12 distinct trees with ordered children are isomorphic to this tree.

We give a very simple example illustrated in Figure 5.3. Let 𝑇𝑛 be the random binary
search tree obtained by inserting the keys {1, . . . , 𝑛} in random order into an initially
empty binary search tree. Let 𝑇 ∗𝑛 ∈ G∗ be the equivalence class of 𝑇𝑛 (forgetting keys
and child orderings) and `𝑇 ∗𝑛 the corresponding distribution. Finally, let 𝑇 ∈ G∗ be the
infinite complete binary tree and 𝛿𝑇 the corresponding Dirac measure. It is easy to see
that (`𝑇 ∗𝑛 )𝑛∈N ⇝ 𝛿𝑇 . We also write 𝑇 ∗𝑛 ⇝ 𝑇 . Intuitively this just means that for any
constant 𝑘 the probability that the 𝑘-th level of 𝑇𝑛 is full converges to 1.

𝑇𝑛 : 𝑇 :
3

1

2

8

4

6

5 7

9

10

. . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . .

Figure 5.3 Random binary search tree 𝑇𝑛 obtained by inserting the keys 1, . . . , 𝑛 in random
order, here possibly 3, 8, 9, 1, 4, 6, 7, 2, 10, 5 with 𝑛 = 10.
The corresponding random tree 𝑇 ∗𝑛 ∈ G∗ converges weakly to the complete binary
tree 𝑇 .

Weak Convergence of Randomly Rooted Graphs. To capture the local characterist-
ics of an unrooted graph 𝐺 , we select ◦ ←− 𝑉 (𝐺) uniformly at random and let
𝐺 (◦) ∈ G∗ be the connected component of ◦ in 𝐺 with ◦ as root. The distribution of
𝐺 (◦) is denoted by 𝑈 (𝐺). For a sequence (𝐺𝑛)𝑛∈N of graphs, we often consider the
weak limit of𝑈 (𝐺𝑛). We give a few examples that should be intuitively plausible.
Regular Graphs. If 𝐺𝑛 is a random 𝑘-regular graph on vertex set [2𝑛] then we have
(𝐺𝑛 (◦))𝑛∈N⇝ 𝑇𝑘 for the rooted 𝑘-regular tree𝑇𝑘 . This is a way of asserting that𝐺𝑛

is unlikely to contain too many short cycles.
Erdős-Renyi Graphs. Let 𝐺 (𝑛, _/𝑛) be the random graph with vertex set [𝑛] where

each of the
(𝑛
2
)
potential edges is independently included with probability _/𝑛. Then

(𝐺 (𝑛, _/𝑛) (◦))𝑛∈N ⇝ GWTPo(_) , see e.g. [Bor16]. The same holds if 𝐺𝑛,_𝑛/2 is a
random graph with 𝑛 vertices and exactly _𝑛/2 random edges.

Grimmett’s Lemma [Gri80]. To give a non-obvious example, let 𝐺𝑛 be a random
tree on vertex set [𝑛].1 Then (𝐺𝑛 (◦))𝑛∈N⇝ 𝑆 where 𝑆 is the skeleton tree consisting
of an infinite path and an independent copy of the Galton-Watson tree GWT1 at
every vertex of the path, see Figure 5.4.

1 To get the right distribution, it is important that 𝐺𝑛 is a random labelled tree. The labels are forgotten when
considering 𝐺𝑛 (◦).



68 5. Local Weak Limits and Lelarge’s Theorem

. . .

Figure 5.4 Sketch of the skeleton tree 𝑆 obtained by sampling an infinite sequence (𝑇𝑖 )𝑖∈N of
independent copies of GWT1 (black) and connecting the roots on an infinite path
(grey). The root of the skeleton tree is the root of 𝑇1. The name “skeleton tree” is
taken from [AS04].

Local Weak Limit. Making the transition from𝐺𝑛 to𝐺𝑛 (◦) implicit, we say a sequence of
graphs (𝐺𝑛)𝑛∈N has a distribution ` on G∗ as local weak limit and write (𝐺𝑛)𝑛∈N lwl−→ `

for (𝑈 (𝐺𝑛))𝑛∈N⇝ `. We also write (𝐺𝑛)𝑛∈N lwl−→ 𝐺 if 𝐺 ∼ `.
An important subtlety is that the notion treats (𝐺𝑛)𝑛∈N as a fixed sequence. If (𝐺𝑛)𝑛∈N
is a random sequence then {𝐺𝑛

lwl−→ `} is a random event. Due to Kolmogorov’s zero-
one law, it has probability 0 or 1 if (𝐺𝑛)𝑛∈N is an independent family, and we could
claim “(𝐺𝑛)𝑛∈N lwl−→ ` almost surely”. In addition to the weak convergence of the
average measures (E𝐺𝑛 [𝑈 (𝐺𝑛)])𝑛∈N⇝ ` this implies that the randommeasures𝑈 (𝐺𝑛)
(random over the choice of𝐺𝑛) are tightly concentrated around their mean E𝐺𝑛 [𝑈 (𝐺𝑛)].
This should be become clearer in Section 5.3.

Extension to Weighted Graphs. All notions effortlessly carry over to the case where
graphs have vertex and edge weights in N. Real weights can also be considered, see,
e.g. [AS04], but natural weights suffice for our purposes.

5.2. The Objective Method and Lelarge’s Theorem

To quote Aldous and Steele who coined the term “objective method”:

A characteristic element of the method is that it often calls for one to introduce a
new, infinite, probabilistic object whose local properties inform us about the limiting
properties of a sequence of finite problems. [AS04]

Lelarge’s Theorem is an exemplification of the method, where the finite problems are
the sizes (𝑀 (𝐺𝑛))𝑛∈N of (generalised) maximum matchings in finite graphs (𝐺𝑛)𝑛∈N with
limiting property lim𝑛→∞𝑀 (𝐺𝑛)/|𝐸𝑛 |. The limiting object is the local weak limit of (𝐺𝑛)𝑛∈N,
assuming it exists.

Before we can state the theorem, we have to import generalisations of matchings and
Galton-Watson trees from [LLM13], namely allocations and bipartite Galton-Watson trees.

Allocations. Let 𝐺 = (𝐴, 𝐵, 𝐸, [, Z ) be a bipartite graph with vertex set 𝑉 = 𝐴 ∪ 𝐵, edge
set 𝐸 ⊆ 𝐴 × 𝐵, vertex weights [ : 𝑉 → N and edge weights Z : 𝐸 → N. An allocation for 𝐺
is a function 𝜎 : 𝐸 → N satisfying

∀𝑒 ∈ 𝐸 : 𝜎 (𝑒) ≤ Z (𝑒) and ∀𝑣 ∈ 𝑉 :
∑︁
𝑒∋𝑣

𝜎 (𝑒) ≤ [ (𝑣) .

The size of an allocation is |𝜎 | = ∑
𝑒∈𝐸 𝜎 (𝑒) and𝑀 (𝐺) is the largest size of an allocation for

𝐺 . Note that if all vertex weights are 1 an allocation corresponds to a matching {𝑒 ∈ 𝐸 |
𝜎 (𝑒) = 1}.



5.2. The Objective Method and Lelarge’s Theorem 69

Bipartite Galton-Watson Trees. For the following discussion, a star (𝐷,𝑊 , {𝐶𝑖}𝑖∈[𝐷 ])
is a centre vertex of degree 𝐷 and weight𝑊 attached to 𝐷 dangling edges with weights
given by the multiset {𝐶𝑖 ∈ N}𝑖∈[𝐷 ] as shown in Figure 5.5 (a). A dangling edge can
be joined with a dangling edge of the same weight attached to a different star to form a
weighted edge between the star centres.

We consider two distributions Φ𝐴 and Φ𝐵 on stars and corresponding random variables

(𝐷𝐴,𝑊 𝐴, {𝐶𝐴
𝑖 }𝑖∈[𝐷𝐴 ]) ∼ Φ𝐴 and (𝐷𝐵,𝑊 𝐵, {𝐶𝐵

𝑖 }𝑖∈[𝐷𝐵 ]) ∼ Φ𝐵 .

To sample a weighted bipartite graph𝐺 = (𝐴, 𝐵, 𝐸, [, Z ) that reflects the distributions Φ𝐴

and Φ𝐵 for vertices from 𝐴 and 𝐵, one could proceed as follows. Sample stars from Φ𝐵

and Φ𝐴 at a ratio of E[𝐷𝐴]/E[𝐷𝐵]. Now randomly match dangling edges of the 𝐴-stars to
dangling edges of the 𝐵-stars with the same weight, and join them, see Figure 5.5 (b) and
(c). Since this requires that the same number of dangling edges of each weight is generated
on both sides, we demand that

∀𝑐 ∈ N : 1
E[𝐷𝐴 ] E

[|{𝑖 ∈ [𝐷𝐴] | 𝐶𝐴
𝑖 = 𝑐}|] = 1

E[𝐷𝐵 ] E
[ |{𝑖 ∈ [𝐷𝐵] | 𝐶𝐵

𝑖 = 𝑐}|]
and (in the finite case) condition on the event that the actual numbers (not just the expecta-
tions) match.

(a) (b) (c)

Figure 5.5 (a) A star with weights represented by drawing styles.
(b) Two collections of stars where each edge weight occurs equally often in both
collections.
(c) Bipartite graph obtained from the collections from (b) by randomly joining
dangling edges of equal weight.

The infinite analogue (and local weak limit) of 𝐺 is the bipartite Galton-Watson tree

GWTΦ𝐴,Φ𝐵 that we describe now. During construction, we keep track of whether we are on
the𝐴-side or 𝐵-side. With probability E[𝐷𝐵]/(E[𝐷𝐴] +E[𝐷𝐵]) the root of GWTΦ𝐴,Φ𝐵 is an
𝐴-vertex, otherwise a 𝐵-vertex, at the centre of a star sampled from Φ𝐴 or Φ𝐵 , respectively.
We then grow a tree by joining random stars to dangling edges as long as dangling edges
remain, possibly infinitely often.

When attaching a star 𝑆 = (𝑑,𝑤, {𝑐1, . . . , 𝑐𝑑 }) to a dangling edge 𝑒 of weight 𝑐 ∈ N
at an 𝐴-vertex, the selection of 𝑆 is biased to each outcome in proportion to the number
|{𝑖 ∈ [𝑑] | 𝑐𝑖 = 𝑐}| of dangling edges of weight 𝑐 occurring in that outcome. Note that 𝑆
contains at least one dangling edge 𝑒 ′ of weight 𝑐 to be joined with 𝑒 , and for convenience,
we consider the distribution Φ̃𝐵 (· | 𝑐) describing only 𝑤 and the 𝑑 − 1 additional dangling
edges of 𝑆 as follows (Φ̃𝐴 (· | 𝑐) is defined similarly):

Φ̃𝐵 (𝑑 − 1, 𝑤, {𝑐1, ..., 𝑐𝑑−1} | 𝑐) = 1
𝑍 Φ

𝐵 (𝑑,𝑤, {𝑐1, . . . , 𝑐𝑑−1, 𝑐}) ·
(
1 +

𝑑−1∑︁
𝑖=1

1[𝑐𝑖 = 𝑐]) (5.1)



70 5. Local Weak Limits and Lelarge’s Theorem

where𝑍 is the appropriate normalisation factor. We denote corresponding random variables
by

(�̃�𝐴,�̃� 𝐴, (𝐶𝐴
𝑖 )𝑖∈[�̃�𝐴 ]) ∼ Φ̃𝐴 (· | 𝑐) and (�̃�𝐵,�̃� 𝐵, (𝐶𝐵

𝑖 )𝑖∈[�̃�𝐵 ]) ∼ Φ̃𝐵 (· | 𝑐) .

Theorem Statement. With the additional notation [𝑧]𝑥𝑦 B max(min(𝑧, 𝑥), 𝑦) (where 𝑥
and 𝑦 can be omitted if they are −∞ or∞, respectively) we can now finally state Lelarge’s
Theorem in its general from.

▶ Theorem 5.1 ([LLM13]). Let (𝐺𝑛 = (𝐴𝑛, 𝐵𝑛, 𝐸𝑛, [𝑛, Z𝑛))𝑛∈N be a sequence of weighted

bipartite graphs with (𝐺𝑛)𝑛∈N lwl−→ GWTΦ𝐴,Φ𝐵 . If E[𝑊 𝐴] and E[𝑊 𝐵] are finite, then the limit

M(Φ𝐴,Φ𝐵) B lim𝑛→∞𝑀 (𝐺𝑛)/|𝐴𝑛 | exists and equals

M(Φ𝐴,Φ𝐵) = inf
𝑋,𝑌

{
E

[
min{𝑊 𝐴,

𝐷𝐴∑︁
𝑖=1

𝑋𝑖 (𝐶𝐴
𝑖 )}

]

+ E[𝐷𝐴 ]
E[𝐷𝐵 ] E

[ [
𝑊 𝐵 −

𝐷𝐵∑︁
𝑖=1

[
𝑊 𝐵 −

∑︁
𝑗≠𝑖

𝑌𝑗 (𝐶𝐵
𝑗 )

]𝐶𝐵
𝑖

0

]
0
1[𝑊 𝐵 <

𝐷𝐵∑︁
𝑖=1

𝐶𝐵
𝑖 ]

]}

where for each 𝑐 ∈ N the random variables𝑋1(𝑐), 𝑋2(𝑐), . . . and𝑌1(𝑐), 𝑌2(𝑐), . . . are independ-
ent copies of 𝑋 (𝑐) and 𝑌 (𝑐), respectively, and the infimum is taken over all (𝑋 (𝑐), 𝑌 (𝑐))𝑐∈N
satisfying the distributional equations:

𝑌 (𝑐) d=
[
�̃� 𝐴 −

�̃�𝐴∑︁
𝑖=1

𝑋𝑖 (𝐶𝐴
𝑖 )

]𝑐
0 𝑋 (𝑐) d=

[
�̃� 𝐵 −

�̃�𝐵∑︁
𝑖=1

𝑌𝑖 (𝐶𝐵
𝑖 )

]𝑐
0.

Note that the right hand sides involve random variables drawn from Φ̃𝐴 (· | 𝑐) and Φ̃𝐵 (· | 𝑐)
that depend on 𝑐 .

The theorem looks quite intimidating, but with some intuition on a belief propagation
process on GWTΦ𝐴,Φ𝐵 they emerge quite naturally, see [Lel12, Section 2] and Section 9.4 of
this thesis.

Special Cases. We only need the feature of edge weights in the case of Theorem D and
even there not as capacities restricting allocations but to distinguish two edge types for
technical reasons. The numerical values of the weights will exceed all vertex weights. In
this case, we can simplify the equation forM(Φ𝐴,Φ𝐵) to:

M(Φ𝐴,Φ𝐵) = inf
𝑋,𝑌

{
E

[
min{𝑊 𝐴,

𝐷𝐴∑︁
𝑖=1

𝑋𝑖 (𝐶𝐴
𝑖 )}

]
(5.2)

+ E[𝐷𝐴 ]
E[𝐷𝐵 ] E

[ [
𝑊 𝐵 −

𝐷𝐵∑︁
𝑖=1

[
𝑊 𝐵 −

∑︁
𝑗≠𝑖

𝑌𝑗 (𝐶𝐵
𝑗 )

]
0

]
0
1[𝐷𝐵 > 0]

]}

where 𝑌 (𝑐) d=
[
�̃� 𝐴 −

�̃�𝐴∑︁
𝑖=1

𝑋𝑖 (𝐶𝐴
𝑖 )

]
0 𝑋 (𝑐) d=

[
�̃� 𝐵 −

�̃�𝐵∑︁
𝑖=1

𝑌𝑖 (𝐶𝐵
𝑖 )

]
0.



5.3. Proving Local Weak Convergence 71

For Theorems A and F we do not need the edge weights at all, meaning all edge weights
are also equal. Moreover, all vertices from 𝐴 have weight 1 and degree 𝑘 ∈ N, and all
vertices from 𝐵 have weight ℓ ∈ N. In this case Φ̃𝐴 and Φ̃𝐵 have no parameter and the
distributions 𝑋 and 𝑌 on [0, 1] can simply be represented by probabilities 𝑝 = Pr[𝑋 = 1]
and 𝑞 = Pr[𝑌 = 1]. We then obtain:

M(𝛿𝑘,1,1̄,Φ𝐵) = inf
𝑝,𝑞∈[0,1]

{
1 − (1 − 𝑝)𝑘 + 𝑘

E[𝐷𝐵 ] ℓ Pr
[

Bin(𝐷𝐵, 𝑞) > ℓ
]}

(5.3)

where 𝑞 = (1 − 𝑝)𝑘−1 𝑝 = Pr[Bin(�̃�𝐵, 𝑞) < ℓ] .

5.3. Proving Local Weak Convergence

Our proofs require knowing the local weak limits of the incidence graphs (𝐺𝑛)𝑛∈N of the
hypergraph families (𝐻𝑘

𝑛,𝑐𝑛)𝑛∈N and (𝐻𝑘
𝑛,𝑛/(1+\ ),𝑐𝑛)𝑛∈N as well as the family (�̂� 𝑘,ℓ

𝑛,𝑐𝑛)𝑛∈N from
Chapter 9 and the family (𝐹 (𝑛, 𝑘, 𝑐, 𝑧))𝑛∈N from Chapter 6.

In all four cases, the claimed convergence is intuitively plausible, but a full-fledged proof
would nevertheless have to go through lengthy arguments with only minor variations. A
general theorem that handles all cases simultaneously would likely be annoyingly technical.
Unhappy with either option, the author opted for an easy way out: (i) Provide a high-level
view of the proof for the simplest case. (ii) For each of the other cases (considered in their
respective chapters) outline why none of the key steps of the proof breaks.

Prototypical Case: The Fully Random Hypergraph. Let 𝐺𝑛 = (𝐴𝑛, 𝐵𝑛, 𝐸𝑛) be the
bipartite incidence graph of𝐻𝑘

𝑛,𝑐𝑛 , where𝐴𝑛 and𝐵𝑛 correspond to hyperedges and vertices of
𝐻𝑘
𝑛,𝑐𝑛 , respectively. Moreover, let GWT𝛿𝑘 ,Po(𝑐𝑘) be the unweighted bipartite Galton-Watson

tree with constant degree 𝑘 at 𝐴-vertices and Poisson distributed degree at 𝐵-vertices.

▶ Theorem 5.2 ([Kim06]). Let 𝑘 ∈ N and 𝑐 ∈ R+ be constants. Then almost surely over the

randomness in (𝐻𝑘
𝑛,𝑐𝑛)𝑛∈N, we have (𝐺𝑛)𝑛∈N lwl−→ GWT𝛿𝑘 ,Po(𝑐𝑘) .

The proof is standard and partly implicit in [Kim06]. We heavily lean on the structure
found in [Bor16, Section 3] and [Lec13], but gloss over many details. For a full account, we
recommend [Bor16] where 7 pages are spent to prove a similar claim.

Proof. Let us write 𝑇 = GWT𝛿𝑘 ,Po(𝑐𝑘) and ` for the distribution of 𝑇 . Then the claim can
be decomposed into the claim (E𝐺𝑛 𝑈 (𝐺𝑛))𝑛∈N ⇝ ` that the measures 𝑈 (𝐺𝑛) averaged
over the choices for 𝐺𝑛 have weak limit ` and the claim that𝑈 (𝐺𝑛) is highly concentrated
around its mean E𝐺𝑛 𝑈 (𝐺𝑛). With generic arguments involving the Portmanteau Theorem,
the proof of Theorem 5.2 is thus reduced to showing that for all 𝑡 ∈ N and all trees 𝐻 ∈ G∗
with (𝐻 )𝑡 = 𝐻 (in 𝐻 all vertices have distance at most 𝑡 from the root):
(i) lim

𝑛→∞ Pr
𝐺𝑛,◦
[(𝐺𝑛 (◦))𝑡 = 𝐻 ] = Pr

𝑇
[(𝑇 )𝑡 = 𝐻 ]

(ii) lim
𝑛→∞

��� Pr◦ [(𝐺𝑛 (◦))𝑡 = 𝐻 ] − E𝐺𝑛

[
Pr◦ [(𝐺𝑛 (◦))𝑡 = 𝐻 ]] ��� = 0 almost surely(𝐺𝑛)𝑛∈N .

Indices at “Pr”, “E” and “almost surely” indicate the scope of the random variables.
To prove (i) we reveal a random coupling between 𝐺𝑛 (◦) and 𝑇 (i.e. embed them in a

common probability space without affecting their individual distributions) such that when
we perform breadth first searches (BFSs) on both graphs up to depth 𝑡 , we will have explored



72 5. Local Weak Limits and Lelarge’s Theorem

graphs isomorphic to 𝐻 with asymptotically equal probability. First note that for both
𝐺𝑛 (◦) and 𝑇 , the root is a vertex from 𝐴 with probability 𝑐

1+𝑐 and from 𝐵 with probability
1

1+𝑐 , so the root types can be made to always agree in a coupling. From now on, the node
types alternate from level to level in both𝐺𝑛 (◦) and𝑇 by construction. When the BFS visits
a vertex 𝑣, we assume it first reveals the number and then the identities of the successors
of 𝑣, defined as the neighbours of 𝑣 except for the parent vertex of 𝑣 from which 𝑣 was
discovered (assuming 𝑣 is not the root). Note that the number of successors of 𝐴-vertices
is deterministic. A root vertex from 𝐴 has 𝑘 successors, other vertices from 𝐴 have 𝑘 − 1
successors (in the case of 𝑇 one may check Equation (5.1) to see that Φ𝐴 = 𝛿𝑘 implies
Φ̃𝐴 = 𝛿𝑘−1). A root vertex from 𝐵 has, in the case of 𝑇 , degree 𝑋 ∼ Po(𝑐𝑘) and in the case
of 𝐺𝑛 (◦) degree 𝑌 ∼ Bin(𝑐𝑘𝑛, 1

𝑛 ) since 𝑐𝑛 vertices from 𝐴 each choose 𝑘 (not necessarily
distinct) neighbours from the 𝑛 vertices from 𝐵 independently and uniformly at random.
Identifying a coupling between 𝑋 and 𝑌 with Pr[𝑋 ≠ 𝑌 ] = O(1/𝑛) is easy. Concerning
successors for a non-root vertex 𝑣 ∈ 𝐵, their number has, in the case of 𝑇 distribution
�̃� ∼ Po(𝑐𝑘) (check that Φ𝐵 = Po(_) implies Φ̃𝐵 = Po(_) via Equation (5.1)). The case of
𝐺𝑛 (◦) is slightly more complicated. We may assume that the BFS has so far produced results
in agreement with 𝐻 . In that case, let 𝑖 be the number of edges from𝐺𝑛 (◦) that are already
revealed and 𝑗 the number of 𝐵-vertices in 𝐺𝑛 (◦) that were already visited. The number of
successors of 𝑣 then has distribution �̃� ∼ Bin(𝑐𝑘𝑛 − 𝑖, 1

𝑛−𝑗 ). Since 𝑖 and 𝑗 are both bounded
by the constant |𝑉 (𝐻 ) |, it is again quite easy to see that the coupling can be extended
such that Pr[�̃� ≠ �̃� ] = O(1/𝑛). Concerning the identities of successors, for 𝐺𝑛 (◦) we may
find that a successor has already been discovered from a different vertex revealing a cycle.
However, the probability for this is at most |𝑉 (𝐻 ) |/(min(1, 𝑐)𝑛) = O(1/𝑛) in each case.
Extending the coupling along the finite sequence of events that reveal (𝐺𝑛 (◦))𝑡 = (𝑇 )𝑡 = 𝐻
we get Pr

[
1[(𝐺𝑛 (◦))𝑡 = 𝐻 ] ≠ 1[(𝑇 )𝑡 = 𝐻 ]] = O(1/𝑛) which proves (i).

To prove (ii), we consider 𝐹 (𝐺𝑛) = |{𝑣 ∈ 𝑉 (𝐺𝑛) | (𝐺𝑛 (𝑣))𝑡 = 𝐻 }|. Intuitively, this is
the number of copies of 𝐻 in 𝐺𝑛 . While (i) showed that 𝐹 (𝐺𝑛)/𝑛 has the right expectation,
namely Pr[(𝑇 )𝑡 = 𝐻 ], we now show that 𝐹 (𝐺𝑛) only strays by 𝑜 (𝑛) from this expectation.
Recall that𝐺𝑛 is obtained fromΘ(𝑛) independent random variables𝑍1, . . . , 𝑍𝑐𝑘𝑛 , namely the
neighbours chosen by the 𝑐𝑛 vertices in𝐴. We may therefore write 𝐹 (𝐺𝑛) = 𝐹 (𝑍1, . . . , 𝑍𝑐𝑘𝑛).
Let 𝑑 be the maximum degree of 𝐻 . If 𝑣 is a vertex with (𝐺𝑛 (𝑣))𝑡 = 𝐻 then for any edge 𝑒
with distance at most 𝑡 from 𝑣 (i.e. for each edge contained in (𝐺𝑛 (𝑣))𝑡 ) we say 𝑒 affects 𝑣.
Since this means there is a path from 𝑒 to 𝑣 traversing at most 𝑡 − 1 vertices each of degree
at most 𝑑 , any edge can affect at most 2𝑑𝑡−1 vertices. This shows that changing a single
variable 𝑍𝑖 affects 𝐹 by at most a constant 𝑐𝐻 depending on 𝐻 . From the Azuma-Hoeffding
inequality, we obtain that Pr[𝐹 (𝐺𝑛) − E[𝐹 (𝐺𝑛)] > 𝑠] ≤ exp(−O(𝑠2/𝑛𝑐2

𝐻 )). For 𝑠 = 𝑛2/3

we find that
∑

𝑛∈N Pr[𝐹 (𝐺𝑛) − E[𝐹 (𝐺𝑛)] ≥ 𝑛2/3] = O(1) and the Borel-Cantelli Lemma
implies that {𝐹 (𝐺𝑛) − E[𝐹 (𝐺𝑛)] ≤ 𝑛2/3} holds for all but a finite number of 𝑛 ∈ N almost
surely. This implies (ii) and concludes the proof of Theorem 5.2. ◀



73

Part III.

Proofs



74

Relevant Definition and Theorem for Chapter 6

(Originally on Pages 15 and 16)

▶ Definition 2.4 (Spatially Coupled Hypergraph Family). For 𝑘 ∈ N, 𝑧, 𝑐 ∈ R+0 and 𝑛 ∈ N,
let 𝐹𝑛 = 𝐹 (𝑛, 𝑘, 𝑐, 𝑧) be the random 𝑘-uniform hypergraph with vertex set 𝑉 = [𝑛]0 and edge
set 𝐸 of size𝑚 = ⌊𝑐𝑛 𝑧

𝑧+1⌋. Each edge 𝑒 ∈ 𝐸 is independently obtained as

𝑒 =
{⌊ 𝑦+𝑜𝑖

𝑧+1 𝑛
⌋ | 𝑖 ∈ [𝑘]} where 𝑦 ←− [ 12 , 𝑧 + 1

2 ), 𝑜1, . . . , 𝑜𝑘 ←− [− 1
2 ,

1
2 ] .

We call 𝑦 ∈ 𝑌 B [ 12 , 𝑧 + 1
2 ) the position of 𝑒 and 𝑣 (𝑧+1)

𝑛 ∈ 𝑋 = [0, 𝑧 + 1) the position of 𝑣 ∈ 𝑉 .

𝑋 = [0, 𝑧 + 1)

𝑌 = [ 12 , 𝑧 + 1
2 )

0 1 2 3 𝑧 𝑧 + 1

𝑉 = [𝑛]0

𝑦

𝑜1, 𝑜2, 𝑜3

𝑒 = {⌊ 𝑦+𝑜𝑖𝑧+1 𝑛⌋ | 𝑖 ∈ [𝑘]}

▶ Theorem A. Let 𝑘, ℓ ∈ N, with 𝑘 ≥ 2 and 𝑘 + ℓ ≥ 4. Then we have:

(i) 𝑐 < 𝑐∗
𝑘,ℓ
⇒ ∀𝑧 ∈ R+ : Pr[𝐹𝑛 is ℓ-peelable] 𝑛→∞−→ 1.

(ii) 𝑐 > 𝑐∗
𝑘,ℓ
⇒ ∃𝑧∗ ∈ R+ : ∀𝑧 ≥ 𝑧∗ : Pr[𝐹𝑛 is ℓ-orientable] 𝑛→∞−→ 0.

Corollaries (Originally on Pages 35, 40, 44 and 47)

▶ Theorem A1. Let 𝑘, ℓ ∈ N, 𝑘 ≥ 2, ℓ ≥ 1, (𝑘, ℓ) ≠ (2, 1) and 𝑧 ∈ R+. Consider 𝑘-ary
cuckoo hashing with buckets of size ℓ using spatially coupling with parameter 𝑧 ∈ R+. There
exists an Y = Y (𝑧) with Y (𝑧) 𝑧→∞−→ 0 such that the load threshold of the scheme is at most

𝑐∗
𝑘,ℓ
/ℓ − Y. Moreover, at loads 𝑐 < 𝑐∗

𝑘,ℓ
/ℓ − Y construct can be carried out successfully by a

peeling algorithm in time O(𝑘𝑛) whp.
▶ Theorem A2. Let 𝑅 = Z𝑑 for 𝑑 ∈ N, 𝑘 ≥ 3, 𝑐 < 𝑐∗

𝑘,1 and Y B
1−𝑐
𝑐 . When using 𝐻 = 𝐹𝑘,1

𝑚/𝑐,𝑚
from Theorem A’ to build a retrieval data structure for 𝑓 : 𝑆 → 𝑅 with |𝑆 | =𝑚 as in Lemma 3.1,

then the following holds.

(i) One trial of construct succeeds whp and has expected running time O(𝑘𝑚).
(ii) The resulting data structure 𝐷 𝑓 needs space to store 𝑧 ∈ 𝑅 (1+Y)𝑚 , plus O(log𝑚) bits whp.
(iii) An eval takes time O(𝑘) and causes 𝑘 cache misses.

▶ Theorem A3. For any 𝛼 > 2/𝑐∗3,1 ≈ 2.18 a simple algorithm computes for 𝑆 ⊆ U of size𝑚
a mphf 𝑝 : 𝑆 → [𝑚] occupying 𝛼𝑚 +𝑜 (𝑚) bits of memory in expected time O(𝑚). Evaluating
𝑝 takes O(1) time and causes 3 cache misses.

▶ Theorem A4. In the above setting, let 𝑘 ∈ N and 𝑐 < 𝑐∗
𝑘,1. If ℎ1, . . . , ℎ𝑘 are such that

𝐻
d= 𝐹𝑘,1𝑛,𝑐𝑛 , then listMembers succeeds in time O(𝑘𝑛) whp.



75

6. Peeling Close to the Orientability

Threshold – Spatial Coupling in

Hashing-Based Data Structures

The goal of this chapter is to prove Theorem A, restated on the facing page. A precursor to
this result was published in [DW19b]. Thanks to a valuable comment byDjamal Belazzougui,
we have since learned that the key underlying idea is actually well-known in coding theory
(see also Section 4.5) and that the existing theorems can be applied in our data structure
setting. The presentation here follows the correspondingly revised account from [Wal20b].

6.1. Threshold Saturation by Spatial Coupling

The hypergraph 𝐹𝑛 arises by “spatial coupling” of 𝐻𝑘
𝑛,𝑐𝑛 along the “coupling dimension”

𝑋 = [0, 𝑧 + 1). In the peeling process on 𝐹𝑛 , vertices with a position close to the borders 0
or 𝑧 + 1 tend to be deleted early on, while many vertices in the denser, central parts remain.
But gradually, deletions at the border “expose” vertices further on the inside and the whole
hypergraph “erodes” from the outside in. The effect is shown in Figure 6.1. This does not
happen in the more symmetric construction when 𝑋 is glued into a circle, i.e. if for all
Y ∈ [0, 1) the positions Y and 𝑧 + Y are identified.

The authors of [Krz+12; KRU13] liken the phenomenon to water that is super-cooled to
below 0°C in a smooth container. It will not freeze unless a nucleus for crystallization is
introduced. Once this is done all water crystallizes quickly, starting from that nucleus. In
this sense, a nucleus raises the temperature at which water freezes. In our construction, the
borders play the role of a nucleus and get the peeling process (rather than the crystallization
process) started.

When introducing a linear geometry in the way we did, the 1-peelability threshold
of the resulting (coupled) hypergraph family approaches the solvability thresholds of the
underlying uncoupled construction, in a wide range of cases. This phenomenon is known
as threshold saturation.

We leave a summary of the field to the experts [KRU15; KRU13]. Put briefly, the
phenomenon was discovered in the form of convolutional codes [FZ99], then rigorously
explained, first in a special case [KRU10], then more generally [KRU13], later accounting
for continuous coupling dimensions (and even multiple dimensions) [KRU15], a form we
will exploit in this chapter.

6.2. The Peeling Process and Idealised Peeling Operators

This section mimics and expands upon similar discussions in the literature where the
existence or sizes of cores of random hypergraphs are analysed, see for instance [PSW96;



76 6. Peeling Close to the Orientability Threshold

𝑥

𝑞 (𝑟 ) (𝑥)

0 1 2 3 4 5 6 7 8
0

1

Figure 6.1 The “layers” of a hypergraph sampled according to Definition 2.4 with parameters
𝑘 = 3, 𝑐 = 0.85, 𝑧 = 7 and𝑚 = 108.
It happens to be peelable in 48 rounds, that are assigned shades of gray in a round-
robin fashion. For each round 𝑟 ∈ {0, . . . , 48} and each position 𝑥 ∈ 𝑋 = [0, 8], the
picture shows the fraction 𝑞 (𝑟 ) (𝑥) ∈ [0, 1] of vertices close to 𝑥 that “survive” 𝑟
rounds of the parallel peeling process.

Coo04; Mol04; Mol05; Die+10] and [MM09, Ch. 18].
We examine how the probabilities for vertices of 𝐹𝑛 to “survive” 𝑟 ∈ N rounds of peeling

change from one round to the next. In the classical setting, this could be described by a
function, mapping the old survival probability to the new one [Mol05]. In our case, however,
there are distinct survival probabilities 𝑞(𝑥) depending on the position 𝑥 of the vertex.
Thus we need a corresponding operator P̂ that acts on such functions 𝑞.

We almost always suppress 𝑘, ℓ, 𝑐, 𝑧 in notation outside of definitions. Big-O notation
refers to 𝑛 →∞ while 𝑘, ℓ, 𝑐, 𝑧 are constant.

Consider the parallel peeling process peel(𝐹𝑛, ℓ) on 𝐹𝑛 = 𝐹 (𝑛, 𝑘, 𝑐, 𝑧). In each round of
peel(𝐹𝑛), all vertices of degree at most ℓ are determined and then deleted simultaneously.
Deleting a vertex implicitly deletes all incident hyperedges. We also define the 𝑟 -round
rooted peeling process peel𝑣,𝑟 (𝐹𝑛, ℓ) for any vertex 𝑣 ∈ 𝑉 and 𝑟 ∈ N. In round 1 ≤ 𝑟 ′ ≤ 𝑟−1 of
peel𝑣,𝑟 (𝐹𝑛), only vertices with distance 𝑟 − 𝑟 ′ from 𝑣 are considered for deletion. Moreover,
in round 𝑟 , the root vertex 𝑣 is only deleted if it has degree at most ℓ − 1, not if it has
degree ℓ .

For any vertex position 𝑥 ∈ 𝑋 = [0, 𝑧 + 1) and 𝑟 ∈ N we let 𝑞 (𝑟 ) (𝑥) = 𝑞 (𝑟 ) (𝑥, 𝑛, 𝑘, ℓ, 𝑐, 𝑧)
be the probability that the vertex 𝑣 = ⌊ 𝑥

𝑧+1𝑛⌋ survives peel𝑣,𝑟 (𝐹𝑛), i.e. is not deleted. It
is convenient to define 𝑞 (0) (𝑥) = 1 for all 𝑥 ∈ 𝑋 , i.e. every vertex survives the “0-round
peeling process”. To get an intuition for how 𝑞 (𝑟 ) (𝑥) evolves with 𝑟 , consider Figure 6.1
Even though 𝑞 (𝑟 ) is discrete in 𝑥 by definition, we will later see that it has a continuous
limit for 𝑛 →∞.

Whether a vertex 𝑣 at position 𝑥 survives peel𝑣,𝑟 is a function of its 𝑟 -neighbourhood
𝐹𝑛 (𝑥, 𝑟 ), i.e. the subhypergraph of 𝐹𝑛 that can be reached from 𝑣 by traversing at most 𝑟
hyperedges.

It is natural to consider the distributional limit of 𝐹𝑛 (𝑥, 𝑟 ) to get a grip on 𝑞 (𝑟 ) (𝑥). In
the spirit of the objective method [AS04], we identify a (possibly infinite) random tree 𝑇𝑥
that captures the local characteristics of 𝐹𝑛 (𝑥, 𝑟 ) for 𝑛 →∞. In the following Po(_) refers
to the Poisson distribution with mean _ ∈ R+.
▶ Definition 6.1 (Limiting Tree). Let 𝑘 ∈ N, 𝑐, 𝑧 ∈ R+, 𝑋 = [0, 𝑧 + 1), 𝑌 = [ 12 , 𝑧 + 1

2 ) and
𝑥 ∈ 𝑋 . The random (possibly infinite) hypertree 𝑇𝑥 = 𝑇𝑥 (𝑘, 𝑐, 𝑧) is distributed as follows.



6.2. The Peeling Process and Idealised Peeling Operators 77

𝑇𝑥 has a root vertex root(𝑇𝑥 ) at position 𝑥 , which for 𝑌𝑥 B [𝑥 − 1
2 , 𝑥 + 1

2 ] ∩ 𝑌 has

𝑑𝑥 ∼ Po(𝑐𝑘 |𝑌𝑥 |) child hyperedges with positions uniformly distributed in 𝑌𝑥 .
1
Each child

hyperedge at position 𝑦 is incident to 𝑘 − 1 (fresh) child vertices of its own, each with a

uniformly random position 𝑥 ′ ∈ [𝑦 − 1
2 , 𝑦 + 1

2 ]. The sub-hypertree at such a child vertex at

position 𝑥 ′ is distributed recursively (and independently of its sibling-subtrees) according to

𝑇𝑥′ .

For 𝑥 ∈ 𝑋 and 𝑟 ∈ N, let 𝐹𝑛 (𝑥, 𝑟 ) and 𝑇𝑥 (𝑟 ) denote the 𝑟 -neighbourhoods of vertex
𝑣 = ⌊ 𝑥

𝑧+1𝑛⌋ in 𝐹𝑛 and root(𝑇𝑥 ) in 𝑇𝑥 , respectively. In the following, 𝐻 is an arbitrary fixed
rooted hypergraph and equality of hypergraphs indicates a root-preserving isomorphism.

▶ Lemma 6.2. ∀𝑥 ∈ 𝑋, 𝑟 ∈ N, 𝐻 : lim
𝑛→∞ Pr[𝐹𝑛 (𝑥, 𝑟 ) = 𝐻 ] = Pr[𝑇𝑥 (𝑟 ) = 𝐻 ].

When put in terms of the notions from Chapter 5, this claims the weak convergence
(𝐹𝑛 (𝑥, 𝑟 ))𝑛∈N ⇝ 𝑇𝑥 (𝑟 ) for all 𝑥 ∈ 𝑋 and 𝑟 ∈ N. We could even make the stronger claim
that (𝐹𝑛)𝑛∈N lwl−→ 𝑇𝑥 where 𝑇𝑥 is obtained by first sampling 𝑥 ←− 𝑋 and then sampling a
corresponding random tree.

While the more light-weight statement is sufficient, the proof is similar to the first part
of the proof of Theorem 5.2. We omit a few details because the arguments are standard.

Sketch of Proof. We construct for fixed 𝑟, 𝑥 and 𝐻 a random coupling2 between 𝐹𝑛 (𝑥, 𝑟 )
and 𝑇𝑥 (𝑟 ) such that the symmetric difference between the events {𝐹𝑛 (𝑥, 𝑟 ) = 𝐻 } and
{𝑇𝑥 (𝑟 ) = 𝐻 } has probability 𝑜 (1). We do so inductively, by following a sequence of events.
The 𝑖-th event expresses, firstly, that 𝐹𝑛 (𝑥, 𝑟 ) and 𝑇𝑥 (𝑟 ) agree with 𝐻 concerning the first 𝑖
rounds of a breadth-first search traversal and, secondly, that corresponding active vertices
in 𝐹𝑛 (𝑥, 𝑟 ) and 𝑇𝑥 (𝑟 ) have positions with distance O(1/𝑛).

For the first step, consider the root 𝑣 of 𝐹𝑛 (𝑥, 𝑟 ). By construction, any hyperedge
containing 𝑣 must have a position 𝑦 ∈ [𝑥 − 1

2 , 𝑥 + 1
2 ]. For 𝑥 ∈ [0, 1) or 𝑥 ∈ [𝑧, 𝑧 + 1) the

potential positions are further restricted by the upper and lower bounds on hyperedge
positions, i.e. we have 𝑦 ∈ 𝑌𝑥 B [𝑥 − 1

2 , 𝑥 + 1
2 ] ∩ 𝑌 . In order for a random hyperedge 𝑒 to

contain 𝑣, two things have to work out:
(1) The position of 𝑒 must fall within 𝑌𝑥 . The probability for this is |𝑌𝑥 |/|𝑌 | = |𝑌𝑥 |/𝑧.
(2) At least one of the 𝑘 incidences of 𝑒 must turn out to be to 𝑣. The probability for this is

1 − (1 − 𝑧+1
𝑛 )𝑘 .

With 𝑐𝑛 𝑧
𝑧+1 hyperedges in total, we obtain a binomial distribution deg(𝑣) ∼ Bin

(
𝑐𝑛 𝑧

𝑧+1 ,
|𝑌𝑥 |/𝑧 (1 − (1 − 𝑧+1

𝑛 )𝑘 )
)
. This distribution converges, for 𝑛 → ∞, to Po(𝑐𝑘 |𝑌𝑥 |), which

is the distribution of deg(root(𝑇𝑥 )). The positions of the neighbours of 𝑣 are uniformly
distributed in the discrete set |𝑌𝑥 | ∩ ( 𝑧+1𝑛 Z), the positions of the neighbours of root(𝑇𝑥 )
uniformly in the interval |𝑌𝑥 |. It should now be easy to see how a coupling between 𝐹𝑛 (𝑥, 1)
and 𝑇𝑥 (1) could look like.

1 In other words: The positions of the child hyperedges are a Poisson point field on 𝑌𝑥 with intensity 𝑐𝑘 . By
|𝐼 | for an interval 𝐼 = [𝑎, 𝑏] we mean 𝑏 − 𝑎.
Note also that the position is now a property of a vertex, not an identifying feature. Possibly (though with
probability 0) the tree 𝑇𝑥 may contain several vertices with the same position.

2 There is no relation to the term spatial coupling. We refer to the standard technique where several random
variables are realised on the same probability space.



78 6. Peeling Close to the Orientability Threshold

There are three complications when continuing the argument: (i) The discrepancies
between vertex positions of 𝐹𝑛 (𝑥, 𝑟 ) and 𝑇𝑥 (1) need to be kept in check. (ii) 𝐹𝑛 (𝑥, 𝑟 ) may
contain cycles3. (iii) There are slight dependencies between vertex degrees in 𝐹𝑛 (𝑥, 𝑟 ). It
should be intuitively plausible that these problems vanish in the limit in a similar way as
in Theorem 5.2. ◀

We now consider the idealised peeling processes (peelroot(𝑇𝑥 ),𝑟 (𝑇𝑥 ))𝑥 ∈𝑋 . Their survival
probabilities are easier to analyse than those of peel𝑣,𝑟 (𝐹𝑛).

▶ Lemma 6.3. Let 𝑟 ∈ N0 be constant and 𝑞
(𝑟 )
𝑇 (𝑥) = 𝑞 (𝑟 )𝑇 (𝑥, 𝑘, ℓ, 𝑐, 𝑧) be the probability that

root(𝑇𝑥 ) survives peelroot(𝑇𝑥 ),𝑟 (𝑇𝑥 , ℓ) for 𝑥 ∈ 𝑋 . Then

𝑞 (𝑟+1)𝑇 (𝑥) = 𝑄

(
𝑐𝑘

∫
[𝑥− 1

2 ,𝑥+ 1
2 ]∩𝑌

( ∫ 𝑦+ 1
2

𝑦− 1
2

𝑞 (𝑟 )𝑇 (𝑥 ′)𝑑𝑥 ′
)𝑘−1

𝑑𝑦, ℓ

)
for 𝑥 ∈ 𝑋 .

where 𝑄 (_, ℓ) = 1 −∑
𝑖<ℓ

_𝑖

𝑖! = Pr[Po(_) ≥ ℓ], the latter term slightly abusing notation.

Proof. Let 𝑥 ∈ 𝑋 and 𝑣 = root(𝑇𝑥 ). Assume 𝑦 ∈ [𝑥 − 1
2 , 𝑥 + 1

2 ] ∩ 𝑌 is the type of some
hyperedge 𝑒 incident to 𝑣. Hyperedge 𝑒 survives 𝑟 rounds of peel𝑣,𝑟+1(𝑇𝑥 ) if and only if all
of its incident vertices survive these 𝑟 rounds. Since 𝑣 itself may only be deleted in round
𝑟 + 1, the relevant vertices are the 𝑘 − 1 child vertices𝑤1, . . . , 𝑤𝑘−1 with positions uniformly
distributed in [𝑦 − 1

2 , 𝑦 + 1
2 ]. Let𝑊𝑖 be the subtree rooted at 𝑤𝑖 for 1 ≤ 𝑖 < 𝑘 . Consider

the peeling process peel𝑤𝑖 ,𝑟
(𝑊𝑖). Assume the process deletes 𝑤𝑖 in round 𝑟 , meaning 𝑤𝑖

has degree at most ℓ − 1 at the start of round 𝑟 . Then 𝑤𝑖 has degree at most ℓ at the
start of round 𝑟 in peel𝑣,𝑟+1(𝑇𝑥 ), meaning peel𝑣,𝑟+1(𝑇𝑥 ) deletes 𝑒 in round 𝑟 . Conversely,
if none of peel𝑤1,𝑟 (𝑊1), . . . , peel𝑤𝑘−1,𝑟

(𝑊𝑘−1) delete their root vertex within 𝑟 rounds, then
𝑤1, . . . , 𝑤𝑘−1 have degree at least ℓ + 1 after round 𝑟 of peel𝑣,𝑟+1(𝑇𝑥 ) and 𝑒 survives round
𝑟 of peel𝑣,𝑟+1(𝑇𝑥 ). Since the position of each 𝑤𝑖 is independent and uniformly distributed
in [𝑦 − 1

2 , 𝑦 + 1
2 ), the probability for 𝑒 to survive is 𝑝𝑦 B (

∫ 𝑦+ 1
2

𝑦− 1
2
𝑞 (𝑟 )𝑇 (𝑥 ′)𝑑𝑥 ′)𝑘−1. Since the

positions of the hyperedges incident to 𝑣 are a Poisson point field on [𝑥 − 1
2 , 𝑥 + 1

2 ] ∩ 𝑌
with intensity 𝑐𝑘 , the number of incident hyperedges surviving round 𝑟 of peel𝑣,𝑟+1(𝑇𝑥 ) has
Poisson distribution with mean _ B

∫
[𝑥− 1

2 ,𝑥+ 1
2 ]∩𝑌

𝑐𝑘𝑝𝑦𝑑𝑦.
The claim now follows by observing that 𝑣 survives 𝑟 + 1 rounds of peel𝑣,𝑟+1(𝑇𝑥 ) if it is

incident to at least ℓ hyperedges surviving 𝑟 rounds. The probability for this is 𝑄 (_, ℓ). ◀

For convenience, we define the operator P = P(𝑘, ℓ, 𝑐, 𝑧), which maps any (measurable4)
𝑞 : 𝑋 → [0, 1] to P𝑞 : 𝑋 → [0, 1] with

(P𝑞) (𝑥) = 𝑄

(
𝑐𝑘

∫
[𝑥− 1

2 ,𝑥+ 1
2 ]∩𝑌

( ∫ 𝑦+ 1
2

𝑦− 1
2

𝑞(𝑥 ′)𝑑𝑥 ′
)𝑘−1

𝑑𝑦, ℓ

)
for 𝑥 ∈ 𝑋 .

Together Lemmas 6.2 and 6.3 imply that P can be used to approximate survival probabilities.

3 This can actually already occur for 𝑟 = 1.
4 All functions that play a role in our analysis are measurable. We refrain from pointing this out from now on.



6.3. Analysis of Iterated Peeling 79

▶ Corollary 6.4. Let 𝑟 ∈ N0 be constant. Then for all 𝑥 ∈ 𝑋

P𝑟𝑞 (0) (𝑥) def= P𝑟𝑞 (0)𝑇 (𝑥)
Lem 6.3
= 𝑞 (𝑟 )𝑇 (𝑥)

Lem 6.2
= 𝑞 (𝑟 ) (𝑥) ± 𝑜 (1).

To obtain upper bounds on survival probabilities, we may remove the awkward restriction
“∩𝑌 ” in the definition of P. We define P̂ = P̂(𝑘, ℓ, 𝑐) as mapping any 𝑞 : R → [0, 1] to
P̂𝑞 : R→ [0, 1] as follows (soon to be rewritten using convolutions)

(P̂𝑞) (𝑥) = 𝑄

(
𝑐𝑘

∫ 𝑥+ 1
2

𝑥− 1
2

( ∫ 𝑦+ 1
2

𝑦− 1
2

𝑞(𝑥 ′)𝑑𝑥 ′
)𝑘−1

𝑑𝑦, ℓ

)
for 𝑥 ∈ R.

Note that P̂ does not depend on 𝑧 or 𝑛. To simplify notation, we assume that the old
operator P also acts on functions 𝑞 : R→ [0, 1], ignoring 𝑞(𝑥) for 𝑥 ∉ 𝑋 , and producing
P𝑞 : R→ [0, 1] with P𝑞(𝑥) = 0 for 𝑥 ∉ 𝑋 . We also extend 𝑞 (0) to be 1[𝑥 ∈ 𝑋 ] : R→ [0, 1],
i.e. the characteristic function on 𝑋 , essentially introducing vertices at positions 𝑥 ∉ 𝑋
which are, however, already deleted with probability 1 before the first round begins. Note
that while 𝑞 (𝑟 ) (𝑥) and 𝑞 (𝑟 )𝑇 (𝑥) are by definition non-increasing in 𝑟 , this is not the case
for (P̂𝑟𝑞 (0) ) (𝑥). For instance, P̂𝑟𝑞 (0) has support (−𝑟, 𝑧 + 1 + 𝑟 ), which grows with 𝑟 .5
The following lemma lists a few easily verified properties of P̂. All inequalities between
functions should be interpreted point-wise.

▶ Lemma 6.5. (i) ∀𝑞 : R→ [0, 1] : P𝑞 ≤ P̂𝑞.
(ii) P and P̂ are monotonic, i.e. ∀𝑞, 𝑞′ : R→ [0, 1] : 𝑞 ≤ 𝑞′⇒ P𝑞 ≤ P𝑞′ ∧ P̂𝑞 ≤ P̂𝑞′.
(iii) P and P̂ are continuous, i.e. pointwise convergence of (𝑞𝑖)𝑖∈N to 𝑞∗ implies pointwise

convergence of (P𝑞𝑖)𝑖∈N and (P̂𝑞𝑖)𝑖∈N to P𝑞∗ and P̂𝑞∗, respectively.

6.3. Analysis of Iterated Peeling

The goal of this section is to prove the following proposition.

▶ Proposition 6.6.

(i) For 𝑐 < 𝑐∗
𝑘,ℓ

and any 𝑧 ∈ R+, we have (P𝑟𝑞0) (𝑥) 𝑟→∞−→ 0 for all 𝑥 ∈ 𝑋 .

(ii) For 𝑐 > 𝑐∗
𝑘,ℓ

and large 𝑧, we have (P𝑟𝑞0) (𝑥) 𝑟→∞−→ 𝑞∗(𝑥) for all 𝑥 ∈ 𝑋 and some 𝑞∗ ≠ 0.
The intuition is that for 𝑐 > 𝑐∗

𝑘,ℓ
the peeling process gets stuck, while for 𝑐 < 𝑐∗

𝑘,ℓ
all vertices

are eventually peeled.
Conveniently, iterations such as the one given by P and P̂ were extensively studied in a

stunning paper by Kudekar, Richardson and Urbanke [KRU15]. For some initial function
𝑓 (0) : R → [0, 1] and non-decreasing functions ℎ𝑓 , ℎ𝑔 : [0, 1] → [0, 1] they study the
sequence of functions

𝑔 (𝑟 ) (𝑦) B ℎ𝑔 ((𝑓 (𝑟 ) ⊗ 𝜔) (𝑦)) (6.1)
𝑓 (𝑟+1) (𝑥) B ℎ𝑓 ((𝑔 (𝑟 ) ⊗ 𝜔) (𝑥))

5 It is still possible to interpret P̂𝑟𝑞 (0) (𝑥) as survival probabilities in more symmetric, extended versions 𝑇𝑥 of
the tree 𝑇𝑥 , but we will not pursue this.



80 6. Peeling Close to the Orientability Threshold

u

v

φ(u, v) = + −

hg(v)

hf (u)

0 1

1

(u1, v1)

(u2, v2)

Figure 6.2 A plot of the curves 𝑢 ↦→ (𝑢,ℎ𝑓 (𝑢)) and 𝑣 ↦→ (ℎ𝑔 (𝑣), 𝑣) for 𝑢, 𝑣 ∈ [0, 1] with 𝑘 = 3,
ℓ = 2 and 𝑐 = 𝑐∗

𝑘,ℓ
. The three crossing points of the curves are the solutions (0, 0),

(𝑢1, 𝑣1) and (𝑢2, 𝑣2) to Equation (6.3). The potential 𝜙 (𝑢, 𝑣) can be visualised as the
sum of three areas as shown. The significance of the threshold 𝑐∗

𝑘,ℓ
is that the two

areas enclosed by the two curves have exactly the same size, or put differently,
𝜙 (𝑢2, 𝑣2) = 0.

where 𝜔 is an averaging kernel, i.e. an even non-negative function with integral 1 and ⊗ is
the convolution operator. To apply the theory to our case, we use:

ℎ𝑓 (𝑢) B 𝑄 (𝑐𝑘𝑢, ℓ) ℎ𝑔 (𝑣) B 𝑣𝑘−1 𝜔 (𝑥) = 1[|𝑥 | ≤ 1
2 ] (6.2)

With these substitutions the iteration (6.1) satisfies P̂𝑓 (𝑟 ) = 𝑓 (𝑟+1) . If we force the functions
𝑔 (𝑟 ) , 𝑟 ∈ N, to be zero outside of 𝑌 = [ 12 , 𝑧 + 1

2 ) by replacing (6.1) with 𝑔 (𝑟 ) (𝑦) B min{1[𝑦 ∈
𝑌 ], ℎ𝑔 ((𝑓 (𝑟 ) ⊗ 𝜔) (𝑦))} we get the system with two-sided termination. In this case P𝑓 (𝑟 ) =
𝑓 (𝑟+1) . The system with one-sided termination is defined similarly with 𝑌 = [ 12 ,∞).

We remark that nothing in the following depends on the choice of 𝜔 .6

6.3.1. Unleashing Heavy Machinery from Coding Theory

We plan to delegate the proof of Proposition 6.6 to theorems from [KRU15]. For this, we
need to examine the potential 𝜙 (𝑢, 𝑣) = 𝜙 (ℎ𝑓 , ℎ𝑔, 𝑢, 𝑣) given as:

𝜙 (𝑢, 𝑣) =
∫ 𝑢

0
ℎ−1
𝑔 (𝑢 ′)𝑑𝑢 ′ +

∫ 𝑣

0
ℎ−1
𝑓 (𝑣 ′)𝑑𝑣 ′ − 𝑢𝑣 for 0 ≤ 𝑢 ≤ ℎ𝑔 (1), 0 ≤ 𝑣 ≤ ℎ𝑓 (1).

A visualisation is given in Figure 6.2. Consider the equation

(𝑢, 𝑣) = (ℎ𝑔 (𝑣), ℎ𝑓 (𝑢)) . (6.3)

Clearly it has the trivial solution (𝑢, 𝑣) = (0, 0). By monotonicity of ℎ𝑔 and ℎ𝑓 , any two
solutions (𝑢1, 𝑣1) and (𝑢2, 𝑣2) are component-wise ordered. We write (𝑢1, 𝑣1) < (𝑢2, 𝑣2) for
𝑢1 < 𝑢2 ∧ 𝑣1 < 𝑣2.

6 There is a corresponding flexibility in Definition 2.4. Instead of a hyperedge at position 𝑦 choosing its
incident vertices uniformly at random from [𝑦 − 1

2 , 𝑦 + 1
2 ], incidences can be chosen according to an almost

arbitrary bounded density function that is symmetric around 𝑦. For details consider [KRU15, Definition 2].



6.3. Analysis of Iterated Peeling 81

▶ Lemma 6.7. (i) Every local minimum (𝑢, 𝑣) of 𝜙 is a solution to Equation (6.3).
(ii) If Equation (6.3) has at least one non-trivial solution, then the smallest non-trivial solution

(𝑢1, 𝑣1) has potential 𝜙 (𝑢1, 𝑣1) > 0.
(iii) Equation (6.3) has at most two non-trivial solutions.

(iv) For 𝑐 = 𝑐∗
𝑘,ℓ

there is a non-trivial solution (𝑢2, 𝑣2) of Equation (6.3) with 𝜙 (𝑢2, 𝑣2) = 0. In
this case, (0, 0) and (𝑢2, 𝑣2) are the only minima of 𝜙 .

(v) For 𝑐 < 𝑐∗
𝑘,ℓ

we have 𝜙 (𝑢, 𝑣) > 0 for (𝑢, 𝑣) ≠ (0, 0).
(vi) For 𝑐 > 𝑐∗

𝑘,ℓ
Equation (6.3) has two non-trivial solutions (𝑢1, 𝑣1) < (𝑢2, 𝑣2). They satisfy

𝜙 (𝑢2, 𝑣2) < 𝜙 (0, 0) = 0 < 𝜙 (𝑢1, 𝑣1).
Proof. (i) The partial derivatives of 𝜙 are ∇𝜙 (𝑢, 𝑣) = (ℎ−1

𝑔 (𝑢) − 𝑣, ℎ−1
𝑓
(𝑣) −𝑢). Therefore,

the only candidates for local minima of 𝜙 are the solutions to Equation (6.3) (it is easy
to check that, except for (𝑢, 𝑣) = (0, 0), there are no local minima at the borders).

(ii) Assume (𝑢1, 𝑣1) is the smallest non-trivial solution to Equation (6.3). Considering
Figure 6.2, we see that |𝜙 (𝑢1, 𝑣1) | is the area enclosed by ℎ𝑓 (𝑢) and ℎ−1

𝑔 (𝑢) for 𝑢 ∈
[0, 𝑢1]. To see that the sign of 𝜙 (𝑢1, 𝑣1) is positive, observe that for small values of𝑢 we
have ℎ𝑓 (𝑢) = 𝑄 (𝑐𝑘𝑢, ℓ) = O(𝑢ℓ ) while ℎ−1

𝑔 (𝑢) = Ω(𝑢1/(𝑘−1) ) and thus ℎ𝑓 (Y) < ℎ−1
𝑔 (Y)

for Y ∈ (0, 𝑢1). This uses ℓ ≥ 1, 𝑘 ≥ 2 and (𝑘, ℓ) ≠ (2, 1).
(iii) By expanding ℎ𝑓 and ℎ𝑔 and substituting b = 𝑐𝑘𝑣𝑘−1 we get for 𝑣 ≠ 0:

(𝑢, 𝑣) = (ℎ𝑔 (𝑣), ℎ𝑓 (𝑢)) ⇒ 𝑣 = 𝑄 (𝑐𝑘𝑣𝑘−1, ℓ) ⇔ b
𝑐𝑘 = 𝑄 (b, ℓ)𝑘−1 ⇔ b

𝑄 (b,ℓ)𝑘−1 = 𝑐𝑘.

To show that the right-most equation has at most two solutions it suffices to show
that b

𝑄 (b,ℓ)𝑘−1 has at most one local extremum. If b is such an extremum, we get

𝑑
𝑑b

b
𝑄 (b,ℓ)𝑘−1 = 0⇒ 𝑄 (b, ℓ)𝑘−1 − b (𝑘 − 1)𝑄 (b, ℓ)𝑘−2𝑄 ′(b, ℓ) = 0

⇒ 𝑄 (b, ℓ) − b (𝑘 − 1)𝑄 ′(b, ℓ) = 0⇒
∑︁
𝑖≥ℓ

b𝑖

𝑖! − (𝑘 − 1)b ℓ (ℓ − 1)! = 0

⇒
∑︁
𝑖≥0

b𝑖

(𝑖+ℓ)! = (𝑘 − 1) (ℓ − 1)!

Since the left hand side is increasing in b for b > 0 while the right hand side is constant,
there is exactly one solution b as claimed.

(iv) Recall that 𝑐 occurs in the definition of ℎ𝑓 and note that 𝜙 is monotonically decreasing
in 𝑐 . It is easy to see that 𝜙 is nowhere negative for small values of 𝑐 , and negative for
some (𝑢, 𝑣) if 𝑐 is large. For continuity reasons and because 𝜙 (𝑢, 𝑣) ≥ 0 for 𝑢, 𝑣 ∈ [0, Y]
with Y = Y (𝑐) small enough (using similar arguments as in (ii)), there must be some
intermediate value 𝑐 where 𝜙 (𝑢2, 𝑣2) = 0 for a local minimum (𝑢2, 𝑣2) ≠ (0, 0) of 𝜙 .
By (i), (𝑢2, 𝑣2) is a solution of Equation (6.3). By (ii) there must be a smaller solution
(𝑢1, 𝑣1) with 𝜙 (𝑢1, 𝑣1) > 0. Now by (i), and (iii), there cannot be minima of 𝜙 in
addition to (0, 0) and (𝑢2, 𝑣2). The only thing left to show is 𝑐 = 𝑐∗

𝑘,ℓ
.

We rewrite the potential at (𝑢2, 𝑣2), using Equation (6.3)

𝜙 (𝑢2, 𝑣2) =
∫ 𝑢2

0
ℎ−1
𝑔 (𝑢)𝑑𝑢 +

∫ 𝑣2

0
ℎ−1
𝑓 (𝑣)𝑑𝑣 − 𝑢2𝑣2

=
(
𝑢2𝑣2 −

∫ 𝑣2

0
ℎ𝑔 (𝑣)𝑑𝑣

)
+

(
𝑢2𝑣2 −

∫ 𝑢2

0
ℎ𝑓 (𝑢)𝑑𝑢

)
− 𝑢2𝑣2

= 𝑣2ℎ𝑔 (𝑣2) − 𝐻𝑔 (𝑣2) − 𝐻𝑓 (ℎ𝑔 (𝑣2)),



82 6. Peeling Close to the Orientability Threshold

where 𝐻𝑔 and 𝐻𝑓 are antiderivatives of ℎ𝑔 and ℎ𝑓 , i.e:

𝐻𝑔 (𝑣) =
∫

ℎ𝑔 (𝑣)𝑑𝑣 = 1
𝑘 𝑣

𝑘 𝐻𝑓 (𝑢) =
∫

ℎ𝑓 (𝑢)𝑑𝑢 = 𝑢 − 1
𝑐𝑘

ℓ∑︁
𝑖=1

𝑄 (𝑐𝑘𝑢, 𝑖).

The fact that
∫ _

0 𝑄 (𝑥, ℓ)𝑑𝑥 = _ −∑ℓ
𝑖=1 𝑄 (_, 𝑖) can be seen by induction on ℓ . We now

examine the implications of 𝜙 (𝑢2, 𝑣2) = 0. In the following calculation let b B 𝑐𝑘𝑣𝑘−1
2

which implies 𝑄 (b, ℓ) = 𝑣2.

0 = 𝜙 (𝑢2, 𝑣2) = 𝑣2ℎ𝑔 (𝑣2) − 𝐻𝑔 (𝑣2) − 𝐻𝑓 (ℎ𝑔 (𝑣2))

= 𝑣𝑘2 − 𝑣𝑘2/𝑘 − 𝑣𝑘−1
2 + 1

𝑐𝑘

ℓ∑︁
𝑖=1

𝑄 (𝑐𝑘𝑣𝑘−1
2 , 𝑖)

⇒ 0 = b𝑣2 − b𝑣2/𝑘 − b +
ℓ∑︁

𝑖=1
𝑄 (b, 𝑖) = b𝑄 (b, ℓ) − b𝑄 (b, ℓ)/𝑘 − b +

ℓ∑︁
𝑖=1

𝑄 (b, 𝑖)

⇒ b𝑄 (b, ℓ)/𝑘 = b (𝑄 (b, ℓ) − 1) +
ℓ∑︁

𝑖=1
𝑄 (b, 𝑖) = −e−b

ℓ−1∑︁
𝑗=0

b 𝑗+1

𝑗 ! +
ℓ∑︁

𝑖=1

(
1 − e−b

𝑖−1∑︁
𝑗=0

b 𝑗

𝑗 !
)

= ℓ − 𝑒−b
ℓ−1∑︁
𝑗=0
( b

𝑗+1

𝑗 ! + (ℓ − 𝑗) b
𝑗

𝑗 ! ) = ℓ − 𝑒−b
(

b ℓ

(ℓ − 1)! +
ℓ−1∑︁
𝑗=0

ℓ
b 𝑗

𝑗 !

)

= ℓ − ℓ𝑒−b
ℓ∑︁
𝑗=0

b 𝑗

𝑗 ! = ℓ𝑄 (b, ℓ + 1) ⇒ 𝑘ℓ =
b𝑄 (b, ℓ)

𝑄 (b, ℓ + 1) .

The last equation characterises the threshold 𝑐∗
𝑘,ℓ

for ℓ-orientability of random 𝑘-
uniform hypergraphs, see for instance [FKP16]. Thus 𝑐 = 𝑐∗

𝑘,ℓ
follows.

(v) We now make the dependence of 𝜙𝑐 (𝑢, 𝑣) on 𝑐 explicit. For monotonicity reasons we
have 𝜙𝑐 (𝑢, 𝑣) > 𝜙𝑐′ (𝑢, 𝑣) whenever 𝑐 < 𝑐 ′ and 𝑣 ≠ 0. Since 𝜙𝑐∗

𝑘,ℓ
is positive except for

its two roots at (0, 0) and (𝑢2, 𝑣2), for 𝑐 < 𝑐∗
𝑘,ℓ

the potential 𝜙𝑐 is positive except at
(0, 0).

(vi) Since 𝜙𝑐∗
𝑘,ℓ

has a non-trivial root, 𝜙𝑐 attains negative values for monotonicity reasons.
By (i), the potential attains its (negative) minimum at a non-trivial solution to Equa-
tion (6.3), and by (ii) it attains a positive value at the smallest non-trivial solution.
Thus, the claim follows.

◀

We are now ready to prove Proposition 6.6 by recruiting help from [KRU15].

Proof of Proposition 6.6. First note that we have 𝑞0 ≥ P𝑞0 by definition, which implies
P𝑟𝑞0 ≥ P𝑟+1𝑞0 by monotonicity of P and induction on 𝑟 . Thus, P𝑟𝑞0 is pointwise bounded
and decreasing and must converge to a limit 𝑞∗. As P is continuous (see Lemma 6.5) we
have P𝑞∗ = 𝑞∗.
(i) Let 1 : R → {1} be the 1-function. First note that for any 𝑥 ∈ 𝑋 we have, using

properties from Lemma 6.5 and monotonicity of ℎ𝑓 and ℎ𝑔

(P𝑟𝑞0) (𝑥) ≤ (P̂𝑟1) (𝑥) = (ℎ𝑓 ◦ℎ𝑔)𝑟 (1) 𝑟→∞−→ max{𝑢 ∈ [0, 1] | ℎ𝑓 (ℎ𝑔 (𝑢)) = 𝑢}. (6.4)



6.4. Peelability of 𝐹𝑛 below 𝑐∗
𝑘,ℓ

83

So if the only solution of ℎ𝑓 (ℎ𝑔 (𝑢)) = 𝑢 is 𝑢 = 0, then we get P𝑟𝑞0(𝑥) 𝑟→∞−→ 0 from this
alone. Otherwise, by Lemma 6.7 (iii), there are one or two non-trivial solutions, the
larger of which we denote by (𝑢2, 𝑣2).
We now apply [KRU15, Thm. 10]7. It requires 𝜙 (𝑢, 𝑣) > 0 for 0 ≠ (𝑢, 𝑣) ∈ [0, 𝑢2] ×
[0, 𝑣2], which we have shown in Lemma 6.7 (v). The theorem asserts pointwise con-
vergence of 𝑓 (𝑟 ) to zero for any 𝑓 (0) : R→ [0, 𝑢2] in the case of one-sided termination.
Clearly this implies convergence to zero in the case of two-sided termination as well,
i.e. P𝑟 𝑓 (0)

𝑟→∞−→ 0. Choosing 𝑓 (0) = 1 · 𝑢2 we get

lim
𝑟→∞(P

𝑟𝑞0) = lim
𝑟→∞ P𝑟 lim

𝑠→∞ P𝑠𝑞0
(6.4)≤ lim

𝑟→∞ P𝑟 𝑓 (0) = 0.

(ii) Using Lemma 6.7 (vi) and (iii), we know there are exactly three solutions (0, 0) <
(𝑢1, 𝑣1) < (𝑢2, 𝑣2) to Equation (6.3) and the signs of their potentials are zero, positive
and negative, respectively. This is sufficient to apply [KRU15, Thm. 14]8. The theorem
asserts the existence of a solution 𝑞∗ : 𝑋 → [0, 𝑢2] of P𝑞∗ = 𝑞∗ with 𝑞∗( 𝑧+12 ) = 𝑢2 − Y
for any Y > 0, assuming 𝑧 = 𝑧 (Y) is large enough.
By monotonicity of P we have lim𝑟→∞ P𝑟𝑞0 ≥ lim𝑟→∞ P𝑟𝑞∗ = 𝑞∗. ◀

6.4. Peelability of 𝑭𝒏 below 𝒄∗𝒌,ℓ

We now connect the behaviour of system (6.1) to the survival probabilities 𝑞 (𝑅) (𝑥) we were
originally interested in. For 𝑐 < 𝑐∗

𝑘,ℓ
and any 𝑧 ∈ N, they can be made smaller than any

𝛿 > 0 in 𝑅 = 𝑅(𝛿, 𝑘, ℓ, 𝑧, 𝑐) rounds.
▶ Lemma 6.8. If 𝑐 < 𝑐∗

𝑘,ℓ
then ∀𝑧 ∈ R+, 𝛿 > 0 : ∃𝑅, 𝑁 ∈ N : ∀𝑛 ≥ 𝑁, 𝑥 ∈ 𝑋 : 𝑞 (𝑅) (𝑥) < 𝛿 .

Proof. Let 𝑧 ∈ R+ and 𝛿 > 0 be arbitrary constants. At first, Proposition 6.6 (i) implies only
pointwise convergence P𝑟𝑞 (0) (𝑥) 𝑟→∞−→ 0 for all 𝑥 ∈ 𝑋 . However, since 𝑋 is compact, since
P𝑟𝑞 (0) is continuous for 𝑟 > 0 and since the all-zero limit is obviously continuous, basic
calculus9 implies uniform convergence, i.e. there is a constant 𝑅 such that P𝑅𝑞 (0) (𝑥) ≤ 𝛿/2
for all 𝑥 ∈ 𝑋 . Therefore for 𝑥 ∈ 𝑋 :

𝑞 (𝑅) (𝑥) Cor 6.4= (P𝑅𝑞 (0) ) (𝑥) + 𝑜 (1) ≤ 𝛿/2 + 𝑜 (1) ≤ 𝛿.

In the last step we simply choose 𝑁 ∈ N large enough. ◀

Lemma 6.2 only allows us to track𝑞 (𝑅) via P𝑅𝑞0 for a constant number of rounds𝑅. Therefore,
we need to accompany Lemma 6.8 with the following combinatorial argument that shows
that if all but a 𝛿-fraction of the vertices are peeled, then with high probability (whp) the
rest is peeled as well. Arguments such as these are standard, many similar ones can be
found for instance in [FKP16; FP12; JL07; Lel12; Luc91; MPW18; Mol05].

7 Strictly speaking, the theorem requires functions ℎ𝑓 and ℎ𝑔 with ℎ𝑓 (0) = ℎ𝑔 (0) = 0 and ℎ𝑓 (1) = ℎ𝑔 (1) = 1.
As the authors of [KRU15] point out themselves, this is purely to simplify notation. We can apply the theorem
to our ℎ𝑓 : [0, 𝑢2] → [0, 𝑣2] and ℎ𝑔 : [0, 𝑣2] → [0, 𝑢2] with ℎ𝑓 (0) = ℎ𝑔 (0) = 0 and ℎ𝑓 (𝑢2) = 𝑣2, ℎ𝑔 (𝑣2) = 𝑢2
after rescaling the axes so (𝑢2, 𝑣2) becomes (1, 1). We will not do so explicitly.

8 See previous footnote.
9 Sometimes referred to as Dini’s Theorem after Ulisse Dini (1848 – 1918).



84 6. Peeling Close to the Orientability Threshold

▶ Lemma 6.9. Let 𝑐 ∈ [0, ℓ]. There exists 𝛿 = 𝛿 (𝑘, ℓ, 𝑧) > 0 such that, whp, any subhyper-

graph of 𝐹𝑛 = 𝐹 (𝑛, 𝑘, 𝑐, 𝑧) induced by at most 𝛿𝑛 vertices has minimum degree at most ℓ .

Proof. In the course of the proof, we will implicitly encounter positive upper bounds on
𝛿 in terms of 𝑘 , ℓ and 𝑧. Any 𝛿 > 0 small enough to respect these bounds is suitable. We
consider the bad events𝑊𝑠,𝑡 that some small set 𝑉 ′ ⊆ [𝑛]0 of size 𝑠 induces 𝑡 hyperedges
for 1 ≤ 𝑠 ≤ 𝛿𝑛, (ℓ+1)𝑠𝑘 ≤ 𝑡 ≤ |𝐸 |. If none of these events occur, then all such 𝑉 ′ induce less
than (ℓ + 1) |𝑉 ′ |/𝑘 hyperedges and therefore induce hypergraphs with average degree less
than ℓ + 1, so a vertex of degree at most ℓ exists in each of them.

We will show Pr[⋃𝑠
⋃

𝑡𝑊𝑠,𝑡 ] = O(1/𝑛) using a first moment argument. It is conveni-
ent to assume that hyperedges are 𝑘-tuples, possibly with repetition. First note that 𝐹𝑛
then contains three copies of the same hyperedge with probability at most

(𝑚
3
) ( 𝑧+1𝑛 )−2𝑘 =

O(𝑛−2𝑘+3) = O(𝑛−1), so we restrict our attention to 𝐹𝑛 with at most two copies of the
same hyperedge. Given 𝑠 and 𝑡 there are

(𝑛
𝑠

)
ways to choose 𝑉 ′. Since there are 𝑠𝑘 ways to

form 𝑘-tuples from vertices of 𝑉 ′ and each hyperedge occurs at most twice, there are at
most

(2𝑠𝑘
𝑡

)
multisets of hyperedges that 𝑉 ′ could induce. The probability that any given

𝑘-tuple occurs as a hyperedge is either zero if the 𝑘 vertices are too far apart or at most
1 − (1 − ( (𝑧+1)𝑛 )𝑘 )𝑐𝑧𝑛 ≤ (𝑧+1)𝑘 ℓ

𝑛𝑘−1 . Similarly, it occurs as a duplicate hyperedge with prob-
ability at most ( (𝑧+1)𝑘 ℓ

𝑛𝑘−1 )2. Since the presence of hyperedges is negatively correlated, we
may obtain an upper bound on the probability of the event that a set of hyperedges are
all simultaneously present by taking the product of the events for the presence of the
individual hyperedges. Thus, using constants 𝐶,𝐶 ′,𝐶 ′′ ∈ R+ (that may depend on 𝑘, ℓ and
𝑧) where precise values do not matter, we get

Pr[
𝛿𝑛⋃
𝑠=1

|𝐸 |⋃
𝑡=(ℓ+1)𝑠/𝑘

𝑊𝑠,𝑡 ] ≤
𝛿𝑛∑︁
𝑠=1

|𝐸 |∑︁
𝑡=(ℓ+1)𝑠/𝑘

Pr[𝑊𝑠,𝑡 ] ≤
𝛿𝑛∑︁
𝑠=1

|𝐸 |∑︁
𝑡=(ℓ+1)𝑠/𝑘

(
𝑛

𝑠

) (
2𝑠𝑘
𝑡

) ( (𝑧 + 1)𝑘ℓ
𝑛𝑘−1

)𝑡

≤
𝛿𝑛∑︁
𝑠=1

|𝐸 |∑︁
𝑡=(ℓ+1)𝑠/𝑘

(
e𝑛
𝑠

)𝑠 (2e(𝑧 + 1)𝑘ℓ𝑠𝑘
𝑡𝑛𝑘−1

)𝑡
≤

𝛿𝑛∑︁
𝑠=1

|𝐸 |∑︁
𝑡=(ℓ+1)𝑠/𝑘

(
𝐶
𝑛

𝑠

)𝑠 (
𝐶 ′

𝑠𝑘−1

𝑛𝑘−1

)𝑡

≤ 2
𝛿𝑛∑︁
𝑠=1

(
𝐶
𝑛

𝑠

)𝑠 (
𝐶 ′

𝑠𝑘−1

𝑛𝑘−1

) ⌈(ℓ+1)𝑠/𝑘 ⌉
= 2

𝛿𝑛∑︁
𝑠=1

(
𝐶 ′′ 𝑠𝑛

) ⌈( (𝑘−1) (ℓ+1)−𝑘) 𝑠𝑘 ⌉ ≤ 2
𝛿𝑛∑︁
𝑠=1

(
𝐶 ′′ 𝑠𝑛

) ⌈ 𝑠𝑘 ⌉ .
To get rid of the summation over 𝑡 , we assumed (𝑠/𝑛)𝑘−1 ≤ 𝛿𝑘−1 ≤ 1

2𝐶′ , in the last step we
used 𝑘 ≥ 2, ℓ ≥ 1 and (𝑘, ℓ) ≠ (2, 1). Elementary arguments show that in the resulting
bound, the contribution of summands for 𝑠 ∈ {1, . . . , 2𝑘} is of order O( 1

𝑛 ), the contribution
of the summands with 𝑠 ∈ {2𝑘 + 1, . . . ,𝑂 (log𝑛)} is of order O( log𝑛

𝑛2 ) (using 𝑠
𝑛 ≤

log𝑛
𝑛 ) and

the contribution of the remaining terms with 𝑠 ≥ 3 log2 𝑛 is of order O(2− log2 𝑛) = O( 1
𝑛 )

(using 𝐶 ′′ 𝑠𝑛 ≤ 𝐶 ′′𝛿 ≤ 1
2 ). This gives Pr[⋃𝑠,𝑡𝑊𝑠,𝑡 ] = O(𝑛−1), proving the claim. ◀

We are now ready to prove the first half of Theorem A.

Proof of Theorem A (i). Let 𝑐 < 𝑐∗
𝑘,ℓ

and 𝑧 ∈ R+. We need to show that 𝐹𝑛 is ℓ-peelable
whp.

First, let 𝛿 = 𝛿 (𝑘, ℓ, 𝑧) be the constant from Lemma 6.9 and 𝑅 = 𝑅(𝛿/2) as well as 𝑁 the
corresponding constants from Lemma 6.8.



6.5. Non-Orientability of 𝐹𝑛 above 𝑐
∗
𝑘,ℓ

85

Assuming 𝑛 ≥ 𝑁 we have 𝑞 (𝑅) (𝑥) ≤ 𝛿/2 for all 𝑥 ∈ 𝑋 , meaning any vertex 𝑣 from 𝐹𝑛
is not deleted within 𝑅 rounds of peel𝑣,𝑅 (𝐹𝑛) with probability at most 𝛿/2. Since peel(𝐹𝑛)
deletes in 𝑅 rounds at least the vertices that any peel𝑣,𝑅 (𝐹𝑛) for 𝑣 ∈ 𝑉 deletes in 𝑅 rounds,
the expected number of vertices not deleted by peel(𝐹𝑛) within 𝑅 rounds is at most 𝛿𝑛/2.

Now standard arguments using Azuma’s inequality (see, e.g. [MU17, Thm. 13.7] but
also Theorem 5.2 in this thesis) suffice to conclude that whp at most 𝛿𝑛 vertices are not
deleted by peel(𝐹𝑛) within 𝑅 rounds.

By Lemma 6.9, whp, neither the remaining 𝛿𝑛 vertices, nor any subset induces a
hypergraph of minimum degree ℓ + 1. Therefore peel(𝐹𝑛) deletes all vertices whp. ◀

6.5. Non-Orientability of 𝑭𝒏 above 𝒄∗𝒌,ℓ

To show that 𝐹𝑛 is not ℓ-peelable whp for 𝑐 > 𝑐∗
𝑘,ℓ
, we argue that 𝐹𝑛 is even not ℓ-orientable

whp.10 Our proof relies on the notion of local weak convergence and Lelarge’s Theorem, as
discussed in Chapter 5. There are three ingredients.

Ingredient 1: Identical weak limits. Let 𝐻𝑘
𝑛,𝑐𝑛 be the fully random hypergraph (see

Equation (2.1)) and let 𝐺𝐻
𝑛 be the incidence graph of 𝐻𝑘

𝑛,𝑐𝑛 . By Theorem 5.2 we have
(𝐺𝐻

𝑛 )𝑛∈N
lwl−→ 𝑇 almost surely for 𝑇 B GWT𝛿𝑘 ,Po(𝑐𝑘) .

Now let 𝐹𝑛 = 𝐹 (𝑛, 𝑘, 𝑐, 𝑧) be the random hypergraph from Definition 2.4. We define
𝐹𝑛 to be a “borderless” version of 𝐹𝑛 where the vertices 𝑖 and 𝑖 + 𝑛𝑧

𝑧+1 for all 𝑖 ∈ [ 𝑛
𝑧+1 ]0 are

merged, “glueing” the right-most 𝑛
𝑧+1 vertices of 𝐹𝑛 on top of the left-most 𝑛

𝑧+1 vertices of
𝐹𝑛 . Moreover, let 𝐺𝐹

𝑛 be the incidence graph of 𝐹𝑛 .
It is unsurprising and not hard to prove that (𝐺𝐹

𝑛 )𝑛∈N and (𝐺𝐻
𝑛 )𝑛∈N have the same

local weak limit, i.e. that (𝐺𝐹
𝑛 )𝑛∈N

lwl−→ 𝑇 holds almost surely as well. Indeed, the proof of
Theorem 5.2 works with very few changes.

Ingredient 2: Lelarge’s Theorem [Lel12]. The following is an immediate consequence
of Lelarge’s Theorem stated as Theorem 5.1 in Section 5.2. For a bipartite graph𝐺 = (𝐴, 𝐵, 𝐸)
let the number𝑀 (𝐺) denote the maximum size of a set 𝐸 ′ ⊆ 𝐸 with deg𝐸′ (𝑎) ≤ 1 for 𝑎 ∈ 𝐴
and deg𝐸′ (𝑏) ≤ ℓ for 𝑏 ∈ 𝐵.

▶ Corollary 6.10 (To Lelarge’s Theorem). Let (𝐺 (𝑖)𝑛 = (𝐴 (𝑖)𝑛 , 𝐵 (𝑖)𝑛 , 𝐸 (𝑖)𝑛 ))𝑛∈N for 𝑖 ∈ {1, 2} be
two sequences of bipartite graphs with |𝐸 (𝑖)𝑛 | = 𝑂 ( |𝐴 (𝑖)𝑛 |). Let 𝑇 is a bipartite Galton-Watson

tree.

If (𝐺 (𝑖)𝑛 )𝑛∈N
lwl−→ 𝑇 holds almost surely for 𝑖 ∈ {1, 2}, then lim

𝑛→∞
𝑀 (𝐺 (1)𝑛 )
|𝐴𝑛 | = lim

𝑛→∞
𝑀 (𝐺 (2)𝑛 )
|𝐴𝑛 |

holds almost surely.

10 Alternatively, one could try to base a proof on Proposition 6.6 (ii), possibly by going through similar motions
as [Mol05, Lemma 4]. If successful, this might give a detailed characterisation of the (ℓ + 1)-core of 𝐹𝑛 – the
largest subhypergraph of 𝐹𝑛 with minimum degree ℓ + 1. Presumably, the (ℓ + 1)-core contains roughly a
𝑞∗ (𝑥)-fraction of the vertices with position roughly at 𝑥 ∈ 𝑋 . We leave this aside. Our approach has the
upside of establishing a connection between orientability thresholds and peelability thresholds.



86 6. Peeling Close to the Orientability Threshold

Recall that if 𝐻 = (𝑉 , 𝐸) is a hypergraph and 𝐺 = (𝐸,𝑉 , “∋”) its incidence graph,
then 𝑀 (𝐺) is the size of a largest set 𝐸 ′ ⊆ 𝐸 such that the subhypergraph (𝑉 , 𝐸 ′) of 𝐻 is
ℓ-orientable. In other words,𝑀 (𝐺) is the size of the largest partial ℓ-orientation of 𝐻 .

Ingredient 3: Orientability-Gap above the threshold. Assume 𝑐 = 𝑐∗
𝑘,ℓ
+ Y for Y > 0.

By definition, it is not the case that 𝐻𝑛 is ℓ-orientable whp. More strongly however, it is
known [FKP16; Lel12] that there exists a constant 𝛿 = 𝛿 (Y) > 0 such that the largest partial
ℓ-orientation of 𝐻𝑛 has size (1−𝛿)𝑐𝑛 +𝑜 (𝑛) whp. In the terms of Corollary 6.10, this means
lim
𝑛→∞𝑀 (𝐺

𝐻
𝑛 )/|𝑐𝑛 | = 1 − 𝛿 almost surely. We now put all three ingredients together.

Proof of Theorem A (ii). Let 𝑐 = 𝑐∗
𝑘,ℓ
+ Y and 𝛿 = 𝛿 (Y) as above. We pick 𝑧 ≥ 𝑧∗ B 2ℓ

𝛿𝑐 .
Since (𝐺𝐻

𝑛 )𝑛∈N and (𝐺𝐹
𝑛 )𝑛∈N almost surely share the random weak limit𝑇 , we conclude

from Theorem 5.1 that the orientability gap carries over from𝐻𝑛 to 𝐹𝑛 , i.e. lim
𝑛→∞𝑀 (𝐺

𝐹
𝑛 )/𝑚 =

1 − 𝛿 almost surely, where𝑚 = 𝑐𝑧𝑛
𝑧+1 is the number of hyperedges in 𝐹𝑛 and 𝐹𝑛 .

In particular, the size of the largest partial ℓ-orientation of 𝐹𝑛 is (1 − 𝛿)𝑚 + 𝑜 (𝑛) whp.
Switching from 𝐹𝑛 back to 𝐹𝑛 splits 𝑛

𝑧+1 vertices and can increase the size of a largest partial
ℓ-orientation by at most ℓ𝑛

𝑧+1 to (1− 𝛿 + ℓ
𝑐𝑧 )𝑚 + 𝑜 (𝑛) ≤ (1− 𝛿

2 )𝑚 + 𝑜 (𝑛) whp. Thus 𝐹𝑛 is not
ℓ-orientable whp. ◀



87



88

Relevant Definition and Theorems for Chapter 7

(Originally stated on Pages 18 and 39)

▶ Definition 2.5 (RandomMatrix with Two Aligned Blocks per Row). Let 𝑛,𝑚, 𝐿 ∈ N with

𝑚 ≤ 𝑛 and 𝐿 a divisor of 𝑛. For a block index 𝑏 ∈ [𝑛/𝐿] and a pattern 𝑝 ∈ {0, 1}𝐿 we let

𝐵𝑏,𝑝 = 0𝑏𝐿−𝐿 ◦ 𝑝 ◦ 0𝑛−𝑏𝐿 ∈ {0, 1}𝑛 where “◦” denotes concatenation of bit strings. To obtain

the random matrix 𝐴𝐿
𝑚,𝑛 ∈ {0, 1}𝑚×𝑛 , each row is independently sampled as 𝐵𝑏1,𝑝1 ⊕ 𝐵𝑏2,𝑝2

where 𝑏1, 𝑏2 ←− [𝑛/𝐿] and 𝑝1, 𝑝2 ←− {0, 1}𝐿 .
We define 𝐴𝐿∗

𝑚,𝑛 the same way, except for 𝑝1, 𝑝2 ←− {0, 1}𝐿 \ {0𝐿} the all-zero pattern is

forbidden.

©«

0
1
10

2
1
3
10

4

100 110
111 010
010 110

111 001
001

ª®®®®®®®¬
Possible outcome for 𝐴3

6,12.

▶ Theorem B. Let 𝛽 = 39, 𝛾 = 1/4 and 𝛿 > 0 constants. Then we have:

(i) If 𝐿 = 𝐿(𝑛) ≥ 𝛽 log2(𝑛) then 𝐴𝐿
𝑛,𝑛 is regular with probability Θ(1).

(ii) If 2𝐿 = 2𝐿(𝑛) ≥ (1 + 𝛿) log2 𝑛 and 1 − 𝑐 ≥ max{2−𝛾𝐿, 𝛽 log2(𝑛)/𝑛} then 𝐴𝐿
𝑐𝑛,𝑛 has

independent rows with probability at least 1 − Õ(𝑛−min(1,𝛿) ).
(iii) If 1 − 𝑐 ≥ max{2−𝛾𝐿, 𝛽 log2(𝑛)/𝑛} then 𝐴𝐿∗

𝑐𝑛,𝑛 has independent rows with probability at

least 1 − O(max(𝑛−1, 𝐿2−𝐿)).
▶ Theorem B1. We aim to build a retrieval data structure for 𝑓 : 𝑆 → {0, 1}𝑟 where |𝑆 | =𝑚.

(i) When using 𝐴 = 𝐴𝐿
𝑚,𝑚 as in Theorem B (i) for suitable 𝐿 = O(log𝑚) in the retrieval

framework from Section 3.4, then the following can be achieved:

One trial of construct takes time O( 𝑚3

𝑤 log𝑚 ) and succeeds with probability Θ(1).
The number of trials 𝑠 until the first trial succeeds has expectation E[𝑠] = O(1).
The data structure consists of 𝑍 ∈ {0, 1}𝑚×𝑟 ,𝑚 and 𝑠 , occupying 𝑟𝑚 bits, O(log𝑚)
bits and O(log 𝑠) bits, respectively.
An eval-operation (using eval2) takes time O(𝑟 ) and causes two cache misses when

𝑍 is stored appropriately.

(ii) Using Wiedemann’s algorithm (see Section 4.4.1), the expected construction time in (i)
can be reduced to Õ(𝑟𝑚2).

(iii) Using 𝐴𝐿
𝑚,𝑛 as in Theorem B (ii) for suitable 𝑛 and 𝐿 instead, increases the size of 𝐷 𝑓 by

O(𝑟 log𝑚) bits. The implementation is more convenient and each trial of construct

succeeds whp.



89

7. Constant - Time Retrieval

with O(log𝒎) Extra Bits

The purpose of this chapter is to prove Theorems B and B1, relating to the matrix 𝐴𝐿
𝑚,𝑛

from Definition 2.5 (see facing page).
We start with the proof of Theorem B, establishing lower bounds on the probability

that𝐴𝐿
𝑐𝑛,𝑛 has full rank, which is the main ingredient for the proof of Theorem B1, provided

afterwards. Note that variation (iii) of Theorem B concerning 𝐴𝐿∗
𝑐𝑛,𝑛 is not required for

Theorem B1, but may be of independent interest.
Our practical implementation in Section 12.2 is in the spirit of Theorem B2, which

combines Theorem B1 (iii) with input partitioning.

7.1. Proof of Theorem B

Before we start, we make a few high-level remarks about the theorem statement.

For 2𝐿 = log𝑛 the matrix 𝐴𝐿
𝑐𝑛,𝑛 contains an all-zero row with constant probability,

which explains why 𝛿 > 0 is required in (ii). One may interpret (iii) as a continuation
of (ii) to 2𝐿 < log𝑛, achieved by switching to 𝐴𝐿∗

𝑐𝑛,𝑛 where all-zero rows are far less
likely.
An all-zero row in 𝐴𝐿∗

𝑐𝑛,𝑛 requires an element 𝑥 with hash values 𝑏1(𝑥) = 𝑏2(𝑥) and
𝑝1(𝑥) = 𝑝2(𝑥). The probability for this is Θ(𝐿 · 2−𝐿), explaining the term in the failure
probability in (iii).
We have not tried to optimise the constants 𝛾 and 𝛽 . We remark that in (i) a rough
calculation concerning the event that each block occurs in at least 𝐿 rows suggests a
lower bound of 𝛽 ≥ 1/(log(𝑒) − 1) ≥ 2.25. In particular, the requirement on 𝐿 cannot
be weakened to the one in (ii).
It is reasonable to suspect that for each 𝐿 ≥ 2 there is a threshold value 𝑐∗𝐿 ∈ (0, 1) such
that for 𝑐 < 𝑐∗𝐿 the matrix 𝐴𝐿∗

𝑐𝑛,𝑛 has independent rows with probability at least 1/2 and
for 𝑐 > 𝑐∗𝐿 it has dependent rows whp.
Assuming the values 𝑐∗𝐿 are well-defined, approximations (obtained for 𝑛 = 104) are
given in table Table 7.1. To obtain each 𝑐∗𝐿 , we generated 100 copies of 𝐴𝐿∗

𝑐 ·104,104 for each
𝑐 using the pseudo random number generator std::mt19937 with distinct seeds, and
counted the number 0 ≤ 𝑠𝐿𝑐 ≤ 100 of systems with independent rows. We reported
𝑐∗𝐿 B argmin𝑐∗ #{𝑐 ∈ {0, 1

𝑛 , . . . , 1} | (𝑐 < 𝑐∗ ∧ 𝑠𝐿𝑐 < 50) ∨ (𝑐 > 𝑐∗ ∧ 𝑠𝐿𝑐 > 50}.

7.1.1. General Considerations

Let 𝑛 ∈ N be a multiple of 𝐿, and𝑚 = 𝑐𝑛 for some 0 < 𝑐 ≤ 1. Recall Definition 2.5 for
𝐴 = 𝐴𝐿

𝑚,𝑛 . We use 𝑏1(𝑖), 𝑏2(𝑖) ∈ [𝑛/𝐿] and 𝑝1(𝑖), 𝑝2(𝑖) ∈ {0, 1}𝐿 to denote the random block
indices and patterns selected for a row 𝑖 ∈ [𝑚]. If 𝐴 does not have independent rows, then



90 7. Constant - Time Retrieval with O(log𝒎) Extra Bits

this is witnessed by a non-trivial subset𝑊 ⊆ [𝑚] of elements such that the corresponding
rows of 𝐴 sum to zero. We use a first moment calculation to bound the probability for the
existence of an inclusion-minimal witness𝑊 . We fix two parameters of candidate sets𝑊 :
The number 𝑠 = |𝑊 | of rows, with 1 ≤ 𝑠 ≤ 𝑚 = 𝑐𝑛, and the number 𝑡 = |𝐵 | ∈ [𝑛/𝐿], where
𝐵 =

⋃
𝑤∈𝑊 {𝑏1(𝑤), 𝑏2(𝑤)} is the set of variable blocks involved in at least one of the rows.

There are
(𝑚
𝑠

)
ways to choose𝑊 , and

(𝑛/𝐿
𝑡

)
ways to choose 𝐵. The probability that the

rows corresponding to𝑊 involve exactly the blocks from 𝐵 is

Pr[𝐵 =
⋃
𝑤∈𝑊
{𝑏1(𝑤), 𝑏2(𝑤)}] ≤

∏
𝑤∈𝑊

Pr[𝑏1(𝑤) ∈ 𝐵 ∧ 𝑏2(𝑤) ∈ 𝐵] = ( 𝑡
𝑛/𝐿 )2𝑠 .

The event that the rows corresponding to𝑊 sum to zero is the intersection of the in-
dependent events that the rows sum to zero within each block 𝑏 ∈ 𝐵. Its probability is
therefore∏

𝑏∈𝐵
Pr

[ ⊕
𝑤∈𝑊,𝑖∈{0,1}

𝑏𝑖 (𝑤)=𝑏

𝑝𝑖 (𝑤) = 0𝐿
��� ∃𝑤 ∈𝑊, 𝑖 ∈ {0, 1} : 𝑏𝑖 (𝑤) = 𝑏

]
=

∏
𝑏∈𝐵

2−𝐿 = 2−𝐿𝑡 .

In the following, it is often convenient to deal with the fraction 𝜎 = 𝑠/𝑚 of rows and
the fraction 𝜏 = 𝑡/(𝑛/𝐿) = 𝐿𝑡/𝑛 of blocks involved in a witness. Accordingly, we define
O(𝑛2/𝐿) values 𝑝𝜎,𝜏 , where 𝑝𝜎,𝜏 is the probability that some set of equations involving 𝜎𝑚
rows and 𝜏𝑛/ℓ blocks is a minimal witness. This gives

𝑝𝜎,𝜏 ≤
(
𝑚

𝑠

) (
𝑛/𝐿
𝑡

)
( 𝑡
𝑛/𝐿 )2𝑠2−𝐿𝑡 =

(
𝑚

𝜎𝑚

) (
𝑛/𝐿
𝜏𝑛/𝐿

)
𝜏2𝜎𝑚2−𝜏𝑛 . (7.1)

We now list a few bounds that will be useful later. Throughout, 𝜎 ∈ { 1
𝑚 , . . . , 𝑚𝑚 = 1},

𝜏 ∈ { 1
𝑛/ℓ , . . . ,

𝑛/ℓ
𝑛/ℓ = 1}, logarithms have base 2 and 𝑥 is a shorthand for 1 − 𝑥 .

▶ Lemma 7.1. Let 𝐻 (𝑥) = −𝑥 log𝑥 − 𝑥 log𝑥 be the binary entropy function. Then

(a)
𝐿
𝑛 log(𝑝𝜎,𝜏 ) ≤ 𝑐𝐿𝐻 (𝜎) + 𝐻 (𝜏) + 2𝜎𝑐𝐿 log𝜏 − 𝐿𝜏 = 𝑐𝐿(𝐻 (𝜎) + 𝜎 log𝜏2) + 𝐻 (𝜏) − 𝐿𝜏 .

(b)
𝐿
𝑛 log(𝑝𝜎,𝜏 ) ≤ 𝐿(𝑐 log(1 + 𝜏2) − 𝜏) + 𝐻 (𝜏).

(c) All minimal witnesses satisfy 𝑡 ≤ 𝑠 + 1.

(d) log(1 + 𝜏2) ≤


𝜏 · 2 log 5

4 ≤ 2
3𝜏 if 0 ≤ 𝜏 ≤ 1

2 ,

1 − 2𝜏 · (1 − log 5
4 ) ≤ 1 − 4

3𝜏 if
1
2 ≤ 𝜏 ≤ 1,

𝜏 if 0 ≤ 𝜏 ≤ 1.

(e) − log𝜏 ≤ 2𝜏 if 1
2 ≤ 𝜏 ≤ 1.

𝐿 1 2 3 4 5 6 7 8

𝑐∗𝐿 0.4712 0.6943 0.8531 0.9223 0.9564 0.9752 0.9834 0.9902

𝐿 9 10 11 12 13 14 15 16

𝑐∗𝐿 0.9942 0.9963 0.9976 0.9985 0.9991 0.9994 0.9996 0.9998

Table 7.1 Approximations of the conjectured thresholds 𝑐∗𝐿 for full rank of 𝐴𝐿∗
𝑐𝑛,𝑛 .



7.1. Proof of Theorem B 91

(f) −𝜏1 log𝜏1 ≤ −𝜏2 log𝜏2 for 0 < 𝜏1 < 𝜏2 < 1
4 .

(g) 𝐻 (𝜏) ≤ −𝜏 log𝜏 + 2𝜏 if 0 < 𝜏 ≤ 1
2 .

(h) 𝐻 (𝜏1) < 𝐻 (𝜏2) for 0 < 𝜏1 < 𝜏2 ≤ 1
2 and 𝐻 (𝜏) = 𝐻 (𝜏) for 0 < 𝜏 ≤ 1.

(j) Without loss of generality, we may assume 𝐿 ≥ 𝐿0 for any absolute constant 𝐿0 ∈ N.
(k) If 𝑠 ≥ 𝑡 and 0 < 𝜏 < 1/𝐿 then

𝐿
𝑛 log(𝑝𝜎,𝜏 ) ≤ −𝜏𝐿/2.

The claims of Lemma 7.1 can be verified with simple calculations, given in Section 7.1.5.
We now consider various ranges of 𝜏 and derive bounds for the sum of all 𝑝𝜎,𝜏 that fall

within these ranges. The proofs in Sections 7.1.2 to 7.1.4 will profit from these preparations.
We refer to parts of Lemma 7.1 by their labels.

Case 1:
1
2 ≤ 𝒄 ≤ 𝝉 ≤ 1 assuming 𝒄 ≥ max{2−𝑳/4, 15 log(𝒏)/𝒏}.

𝐿
𝑛 log(𝑝𝜎,𝜏 )

(b,d)≤ 𝐿(𝑐𝜏 − 𝜏) + 𝐻 (𝜏) (h)≤ −𝐿𝜏𝑐 + 𝐻 (𝑐)
(g)

≤ −𝐿𝑐/2 − 𝑐 log 𝑐 + 2𝑐

≤ −𝐿𝑐/2 + 𝑐𝐿/4 + 2𝑐 = −𝑐 (𝐿/2 − 𝐿/4 − 2)
(j)

≤ −𝑐𝐿/5.
This gives a bound of:

𝑝𝜎,𝜏 ≤ 2−𝑐𝑛/5 ≤ 𝑛−3.

Multiplying with O(𝑛2) choices for 𝜎 and 𝜏 , this is still O(𝑛−1).
Case 2: 1/2 ≤ 𝝉, 𝝉 ≥ max{2−𝑳/4, 39 log(𝒏)/𝒏}.

𝐿
𝑛 log(𝑝𝜎,𝜏 )

(b,d)≤ 𝐿(𝑐 (1 − 4
3𝜏) − 𝜏) + 𝐻 (𝜏)

(g,h)

≤ 𝐿(𝜏 − 4
3𝜏) − 𝜏 log𝜏 + 2𝜏

≤ 𝜏 (−𝐿/3 − log𝜏 + 2) ≤ 𝜏 (−𝐿/3 + 𝐿/4 + 2)
(j)

≤ −𝜏𝐿/13.

From this we obtain a bound 𝑝𝜎,𝜏 = 𝑛−39/13 for an aggregated O(𝑛−1) as in Case 1.
Case 3: 𝝉 ≤ 1/2, 𝝉 ≥ max{2−𝑳/4, 39 log(𝒏)/𝒏}.

𝐿
𝑛 log(𝑝𝜎,𝜏 )

(b,d)≤ 𝐿( 23𝜏 − 𝜏) + 𝐻 (𝜏)
(g)

≤ −𝜏𝐿/3 − 𝜏 log𝜏 + 2𝜏 = 𝜏 (−𝐿/3 − log𝜏 + 2)
We may proceed as in Case 2 with 𝜏 instead of 𝜏 .

Case 4: 8 log(𝒏)/𝒏 < 𝝉 < 1/𝑳. Assuming 𝑠 ≥ 𝑡 for the moment, we may apply (k) to
obtain 𝐿

𝑛 log(𝑝𝜎,𝜏 ) ≤ −𝜏𝐿/2. This gives 𝑝𝜎,𝜏 = 2−𝜏𝑛/2 ≤ 2−4 log𝑛 ≤ 𝑛−4. Summing over
all admissible 𝜎 and 𝜏 gives a bound of O(𝑛−2)
Inconveniently, (c) only gives 𝑠 ≥ 𝑡 −1 instead of 𝑠 ≥ 𝑡 and the O(𝑛) cases with 𝑠 = 𝑡 −1
are not yet handled. Luckily, decreasing 𝑠 by 1 (or equivalently 𝜎 by 1/𝑚) raises the
upper bound in Equation (7.1) by at most O(𝑛2) and the combined contribution of the
cases in question is bounded by O(𝑛) · O(𝑛2) · 𝑛−4 = O(𝑛−1).

Case 5: 2 ≤ 𝒕 and 𝑳2𝒕2 ≤ 𝒏
2e . We refine Equation (7.1) to get (recall 𝜎 = 𝑠

𝑚 , 𝜏 = 𝐿𝑡
𝑛 )

𝑝𝜎,𝜏 ≤
(
𝑚

𝑠

) (
𝑛/𝐿
𝑡

) (
𝑡

𝑛/𝐿
)2𝑠

2−𝐿𝑡 ≤
(𝑚e
𝑠

)𝑠 (
e𝑛/𝐿
𝑡

)𝑡 (
𝑡

𝑛/𝐿

)2𝑠
2−𝐿𝑡

=

(
𝑐e𝐿2𝑡2

𝑠𝑛

)𝑠 ( e𝑛
𝑡𝐿2𝐿

)𝑡
=

(
𝑐e𝐿2𝑡2

𝑠𝑛

)1+(𝑠−𝑡+1)+(𝑡−2) ( e𝑛
𝑡𝐿2𝐿

)2+(𝑡−2)

=

(
𝑐e𝐿2𝑡2

𝑠𝑛

) ( e𝑛
𝑡𝐿2𝐿

)2
(
𝑐e2𝐿𝑡

𝑠2𝐿

)𝑡−2 (
𝑐e𝐿2𝑡2

𝑠𝑛

)𝑠−𝑡+1

≤ 𝑐e3𝑛

22𝐿 ( 12 )𝑡−2( 12 )𝑠−𝑡+1 =
𝑐e3𝑛

22𝐿 ( 12 )𝑠−1



92 7. Constant - Time Retrieval with O(log𝒎) Extra Bits

where the last inequality used 𝐿/2𝐿 ≤ 𝑐e2/4 (due to (j)), 𝑡/𝑠 ≤ 2 and the upper bound
on 𝐿2𝑡2. It is crucial that the exponents 𝑡 − 2 and 𝑠 − 𝑡 + 1 are nonnegative; for the latter
exponent this is because of (c). The sum over all applicable 𝑠 and 𝑡 is dominated by the
contribution for 𝑡 = 2 and 𝑠 = 1, i.e.

∑︁
𝑠≥1

∑︁
2≤𝑡 ≤𝑠+1

𝑝𝜎,𝜏 ≤
∑︁
𝑠≥1

∑︁
2≤𝑡 ≤𝑠+1

𝑐e3𝑛

22𝐿 ( 12 )𝑠−1 =
𝑐e3𝑛

22𝐿

∑︁
𝑠≥1

𝑠 · ( 12 )𝑠−1 =
4𝑐e3𝑛

22𝐿 = O(𝑛2−2𝐿) .

Case 6: 1 = 𝒕 and 𝑳2 = 𝒐(𝒏). The argument from Case 5 essentially works, but the trivial
bound 𝑠 ≥ 𝑡 − 1 = 0 needs to be replaced with 𝑠 ≥ 1. We get

∑︁
𝑠≥1

𝑝𝜎,𝜏 ≤
∑︁
𝑠≥1

(
𝑚

𝑠

)
𝑛
𝐿

(𝐿
𝑛

)2𝑠 2−𝐿 ≤
∑︁
𝑠≥1

𝑛
𝐿 ·2𝐿

(
𝑚e𝐿2

𝑠𝑛2

)𝑠

= 𝑐e𝐿
2𝐿

∑︁
𝑠≥1

(
𝑐e𝐿2

𝑠𝑛

)𝑠−1
≤ O(𝐿2−𝐿)

∑︁
𝑠≥1
( 12 )𝑠−1 = O(𝐿2−𝐿) .

7.1.2. Proof of Theorem B (i)

For the cases with 𝑐 = 1 and 𝜏 = 1, we need the following lemma.

▶ Lemma 7.2. In the situation of Section 7.1.1 with 𝑐 = 1, let 𝑤 be the number of witness

sets𝑊 with parameter 𝜏 = 1 (and arbitrary 𝜎). There is an absolute constant Y > 0 such that

Pr[𝑤 > 0] ≤ 1 − Y.
Proof. Simplifying Equation (7.1) using 𝑛 =𝑚 and 𝑡 = 𝑛/𝐿 we get 𝑝𝜎,1 ≤

(𝑛
𝑠

)
2−𝑛 . Clearly

only contributions for 𝑠 close to 𝑛
2 are substantial, in particular

∑
0<𝜎< 2

5
𝑝𝜎,1+

∑
3
5<𝜎≤1 𝑝𝜎,1 =

𝑜 (1/𝑛).
We call a witness with parameters 𝜏 = 1 and 2

5 ≤ 𝜎 ≤ 3
5 bad and denote by 𝑤∗ the

number of bad witnesses. We have just seen Pr[𝑤 > 0] = Pr[𝑤∗ > 0] + 𝑜 (1). We aim for an
Y-improvement of the union bound Pr[𝑤∗ > 0] ≤ E[𝑤∗] ≤ ∑

2
5 ≤𝜎≤ 3

5

(𝑛
𝑠

)
2−𝑛 ≤ 1. Now let

𝑤∗1 and 𝑤∗2 be the number of bad witnesses𝑊 with𝑊 ∩ {1, 2} = {1} and𝑊 ∩ {1, 2} = {2},
respectively. Due to the symmetry between all rows of 𝐴𝐿

𝑛,𝑛 and the size restriction on bad
witnesses, we have

Pr[𝑤∗1 > 0] = Pr[𝑤∗2 > 0] ≥ ( 25 )2 Pr[𝑤∗ > 0] .

Note that once all rows with indices {3, . . . , 𝑛} are fixed, the values of 𝑤∗1 and 𝑤∗2 are
stochastically independent. LetZ be the set of all possibilities for the rows with indices
{3, . . . , 𝑛}, or more precisely, the corresponding events. Then

Pr[𝑤∗1 > 0 ∧𝑤∗2 > 0] =
∑︁
𝑧∈Z

Pr[𝑤∗1 > 0 ∧𝑤∗2 > 0 | 𝑧] · Pr[𝑧]

=
∑︁
𝑧∈Z

Pr[𝑤∗1 > 0 | 𝑧]2 · Pr[𝑧] ≥ Pr[𝑤∗1 > 0]2

where the last inequality uses the convexity of 𝑥 ↦→ 𝑥2. Putting both together we obtain

Pr[𝑤∗ > 1] ≥ Pr[𝑤∗1 > 0 ∧𝑤∗2 > 0] ≥ Pr[𝑤∗1 > 0]2 ≥ ( 25 )4 Pr[𝑤∗ > 0]2.



7.1. Proof of Theorem B 93

We can now conclude

1 ≥ E[𝑤∗] =
∑︁
𝑖∈N0

Pr[𝑤∗ > 𝑖] ≥ Pr[𝑤∗ > 0] + Pr[𝑤∗ > 1]

≥ Pr[𝑤∗ > 0] (1 + ( 25 )4 Pr[𝑤∗ > 0]) .

In particular there is an absolute constant Y (roughly Y = ( 25 )4) such that Pr[𝑤∗ > 0] ≤ 1− Y
which implies the claim. ◀

The proof of Theorem B (i) is now immediate. By Lemma 7.2, 𝐴𝐿
𝑛,𝑛 admits a witness

with parameter 𝜏 = 1 with probability at most 1 − Y. Since 𝐿 ≥ 𝛽 log𝑛, whenever 𝜏 ≠ 1 we
have 𝜏 ∈ [𝛽 log(𝑛)/𝑛, 1 − 𝛽 log(𝑛)/𝑛]. By Cases 2 and 3 from Section 7.1.1, witnesses with
𝜏 ≠ 1 therefore occur with probability at most O(𝑛−1). The probability for no witness to
exist, and thus for 𝐴𝐿

𝑛,𝑛 to be regular, is therefore at least Y − O(𝑛−1) = Θ(1).

7.1.3. Proof of Theorem B (ii)

Let b B max{2−𝛾𝐿, 𝛽 log(𝑛)/𝑛}. We have 𝑐 ≥ b by assumption. To bound 𝑝𝜎,𝜏 for 𝜏 ∈
[1− b, 1], for 𝜏 ∈ [1/2, 1− b] and for 𝜏 ∈ [b, 1/2] we may apply Cases 1,2 and 3, respectively.
If 𝐿 = 𝜔 (log𝑛) then 𝑡 = 1 corresponds to 𝜏 = 𝐿/𝑛 ≥ 𝛽 log(𝑛)/𝑛 = b meaning the entire
range of 𝜏 is already covered. For more interesting values of 𝐿 = Θ(log𝑛), we require Cases
4,5 and 6. Note that 1/𝐿 ≥ b , so the domains of applicability of Cases 3 and 4 overlap. The
domains of Cases 4 and 5 overlap since 𝐿2𝑡2 ≤ 𝑛

2e corresponds to 𝜏 = 𝐿𝑡/𝑛 = O(𝑛−1/2).
The probability for the existence of a witness summed over all six cases is

O(𝑛−1) + O(𝑛−1) + O(𝑛−1) + O(𝑛−1) + O(𝑛2−2𝐿) + O(𝐿2−𝐿)) .

Using the assumption 2𝐿 ≥ (1 + 𝛿) log𝑛, and thus 22𝐿 ≥ 𝑛1+𝛿 this is Õ(𝑛−min(1,𝛿) ) as
required. The ‘∼’ accounts for the log-factor in the special case 𝛿 = 1, where the bound is
O(log(𝑛)/𝑛).

7.1.4. Proof of Theorem B (iii)

We only outline the required adjustments to previous arguments instead of giving a stand-
alone proof. Recall that 𝐴𝐿∗

𝑐𝑛,𝑛 differs from 𝐴𝐿
𝑐𝑛,𝑛 only in that all-zero patterns are forbidden.

Inconveniently, the probability for uniformly random patterns 𝑝1, . . . , 𝑝𝑘 ∈ {0, 1}𝐿 − {0𝐿}
to sum to zero is now

Pr[𝑝1 ⊕ . . . ⊕ 𝑝𝑘 = ®0]
= Pr[𝑝𝑘 = 𝑝1 ⊕ . . . ⊕ 𝑝𝑘−1 | 𝑝1 ⊕ . . . ⊕ 𝑝𝑘−1 ≠ ®0] · Pr[𝑝1 ⊕ . . . ⊕ 𝑝𝑘−1 ≠ ®0]
≤ Pr[𝑝𝑘 = 𝑝1 ⊕ . . . ⊕ 𝑝𝑘−1 | 𝑝1 ⊕ . . . ⊕ 𝑝𝑘−1 ≠ ®0] = 1/(2𝐿 − 1)

instead of 2−𝐿 . It is however easy to check that this change is too insignificant to make a
qualitative difference in the calculations from Section 7.1.1.

The big upside of𝐴𝐿∗
𝑐𝑛,𝑛 is that (c) can be strengthened from 𝑡 ≤ 𝑠 +1 to 𝑡 ≤ 𝑠 . Essentially,

since a minimal witness must involve each block at least twice, the extremal cases are then
not tree-like with 𝑠 = 𝑡 − 1, but cycle-like with 𝑠 = 𝑡 . The dominating term in Case 5 is then
not the one for 𝑠 = 1 and 𝑡 = 2 but the one for 𝑠 = 𝑡 = 2 and bounded by 2𝑐2e4𝐿2

(2𝐿−1)2 .



94 7. Constant - Time Retrieval with O(log𝒎) Extra Bits

Otherwise, we use Cases 1,2,3,4 and 6 essentially unchanged. The probability for the
existence of a witness summed over all six cases is

O(𝑛−1) + O(𝑛−1) + O(𝑛−1) + O(𝑛−1) + O(𝐿22−2𝐿) + O(𝐿2−𝐿)

which implies the claim.

7.1.5. Proof of Lemma 7.1

Proof. (a) This follows from Equation (7.1) after taking logarithms and multiplying by
𝐿/𝑛 on both sides, using the standard approximation log

(𝑛
𝑘

) ≤ 𝑛𝐻 ( 𝑘𝑛 ).
(b) This is obtained from (a) by observing that 𝐻 (𝜎) + 𝜎 log𝜏2 is concave as a function of

𝜎 and assumes its unique maximum value at 𝜎∗ = 𝜎∗(𝜏) = 𝜏2

1+𝜏2 .
(c) Consider the graph 𝐺 = (𝐵, {{𝑏1(𝑤), 𝑏2(𝑤)} | 𝑤 ∈𝑊 }) with 𝑡 vertices and 𝑠 edges. If

𝑡 > 𝑠 + 1 then𝐺 has (at least) two connected components (𝐵1,𝑊1) and (𝐵2,𝑊2). Clearly,
if the rows corresponding to𝑊 sum to zero then the rows corresponding to𝑊1 and𝑊2
do so individually, as they involve disjoint sets of variable blocks. In that case,𝑊 is not
a minimal witness.

(d) Since 𝑔(𝜏) = log(1 + 𝜏2) is convex on [0, 1], we may the obtain upper bounds on 𝑔 by
linearly interpolating between the values 𝑔(0) = 0, 𝑔( 12 ) = log 5

4 and 𝑔(1) = 1.
(e) Using that 𝑔(𝜏) = − log𝜏 is convex we may obtain bounds on 𝑔 by linearly interpolating

between the values 𝑔(1/2) = 1, 𝑔(1) = 0.
(f) The function 𝑔(𝜏) = −𝜏 log𝜏 is clearly continuous and its unique maximum is easily

determined to be at 𝜏 = 1/e > 1/4, which implies the claim.

(g) 𝐻 (𝜏) = −𝜏 log𝜏 − 𝜏 log𝜏 ≤ −𝜏 log𝜏 − log𝜏
(e)≤ −𝜏 log𝜏 + 2𝜏 .

(h) These properties of the entropy function are well known and easily checked.
(j) We are in the process of proving Theorem B. The claims (i) and (ii) require 𝐿 = Ω(log𝑛).

In claim (iii) the upper bound O(𝐿 · 2−𝐿) on the failure probability is trivial for constant
𝐿.

(k) From 𝜎𝑐𝑛 = 𝑠 ≥ 𝑡 = 𝜏𝑛/𝐿 we get 𝜎 ≥ 𝜏
𝑐𝐿 . Using the upper bound on 𝜏 we continue

with 𝜎 ≥ 𝜏2

𝑐 ≥ 𝜏2

1+𝜏2 . This means that all values permitted for 𝜎 exceed the argument
𝜎∗ = 𝜏2

1+𝜏2 from (b) that maximises 𝐻 (𝜎) + 𝜎 log𝜏2. Again by concavity of this function
we may refine the upper bound from (a) by substituting the smallest admissible value
𝜎 = 𝜏

𝑐𝐿 . This yields:

𝐿
𝑛 log(𝑝𝜎,𝜏 ) ≤ 𝑐𝐿𝐻 ( 𝜏𝑐𝐿 ) + 2𝜏 log𝜏 + 𝐻 (𝜏) − 𝐿𝜏

(g)

≤ −𝜏 log( 𝜏𝑐𝐿 ) + 2𝜏 + 𝜏 log𝜏 + 2𝜏 − 𝐿𝜏

= 𝜏 log(𝑐𝐿) + 4𝜏 − 𝐿𝜏 = 𝜏 (log(𝑐𝐿) − 𝐿 + 4)
(j)

≤ −𝜏𝐿/2. ◀

7.2. Proof of Theorem B1

To derive Theorem B1 from Theorem B, we follow the general strategy from Section 3.4.

Proof of Theorem B1. (i) Let 𝑆 ⊆ U of size 𝑚 = |𝑆 | and 𝑓 : 𝑆 → {0, 1}𝑟 be given.
We pick 𝐿 B ⌈𝛽 log𝑚⌉, 𝑛 = 𝑚 and fully random hash functions 𝑏1, 𝑏2 ←− [𝑛/𝐿]U



7.2. Proof of Theorem B1 95

and 𝑝1, 𝑝2 ←− ({0, 1}𝐿)U which defines another hash function ®𝑒 : U → {0, 1}𝑛 via
®𝑒 (𝑥) = 𝐵𝑏1 (𝑥),𝑝1 (𝑥) ⊕ 𝐵𝑏2 (𝑥),𝑝2 (𝑥) using notation from Definition 2.5. The matrix𝐴 with
rows ®𝑒 (𝑥) for 𝑥 ∈ 𝑆 has distribution 𝐴

d= 𝐴𝐿
𝑛,𝑛 . By Theorem B (i) 𝐴 has full rank with

constant probability. (At first, this requires that 𝐿 divides 𝑛. If 𝐿 does not divide 𝑛,
we may mix blocks of sizes 𝐿 and 𝐿 + 1. It is intuitively clear that Theorem B (i) still
applies.) If 𝐴 has full rank, we can solve the linear system arising in construct (see
Figure 3.5) for 𝑍 ∈ {0, 1}𝑛×𝑟 . If 𝐴 does not have full rank, construction may fail and
may have to be restarted with fresh hash functions an expected constant number of
times. Let 𝑠 be the number of failed trials.
We store 𝑍 , the number 𝑛 =𝑚 and 𝑠 . Note that 𝑛 and 𝑠 cannot be omitted as they are
implicit parameters of the hash function ®𝑒 .
The time for a construction attempt is dominated by the time to solve the linear
system. We use the Method of Four Russians described in Section 4.4.3 which takes
time O( 𝑚3

𝑤 log𝑚 ). An eval2 (see Figure 3.5) has to evaluate ®𝑒 and access two blocks of
size 𝐿 × 𝑟 in 𝑍 . Two cache misses per eval suffice if blocks of 𝑍 of size 𝐿 × 𝑟 are stored
contiguously.
A sequence of 𝐿 bits fits into ⌈𝐿/𝑤⌉ = O(1) memory words. Each bit in the output
can be computed by eval2 with O(1) bit-wise and operations as well as a parity
operation, assuming that the 𝐿 × 𝑟 blocks of 𝑍 are stored column-wise. The running
time of eval2 is thus O(𝑟 ).

(ii) We proceed as in (i), but use Wiedemann’s algorithm (see Section 4.4.1) to solve the
system 𝐴 ®𝑍 = (𝑓 (𝑥))𝑥 ∈𝑆 . For 𝑟 = 1 the running time is Õ(𝑚2) by Theorem 4.2. For
𝑟 > 1, the algorithm must be repeated 𝑟 times.

(iii) We proceed as in (i), but use 𝐿 B 4⌈log𝑚⌉ and let𝑛 be the least multiple of 𝐿 exceeding
𝑚 + (𝛽 + 1) log𝑚. We obtain a matrix distributed like 𝐴𝐿

𝑚,𝑛 which has full rank whp
by Theorem B (ii).
This introduces an overhead of 𝑟 (𝑛−𝑚) ≤ 𝑟 (𝛽 +5) log𝑚 bits. On the upside, all blocks
have the same size, the block size is smaller (by a constant factor), and construction
does not have to be restarted whp. ◀



96

Relevant Definition and Theorems for Chapter 8

(Originally on Pages 19, 39 and 41)

▶ Definition 2.6 (Random Matrix with One Unaligned Block per Row). Let 𝑛,𝑚, 𝐿 ∈ N
with 𝑚 ≤ 𝑛. For a starting position 𝑠 ∈ [𝑛] and a pattern 𝑝 ∈ {0, 1}𝐿 we let 𝐵𝑠,𝑝 =
0𝑠−1 ◦ 𝑝 ◦ 0𝑛−𝑠 ∈ {0, 1}𝑛+𝐿−1

. To obtain the random matrix𝑀𝐿
𝑚,𝑛 ∈ {0, 1}𝑚×(𝑛+𝐿−1)

, each row

is independently sampled as 𝐵𝑠,𝑝 where 𝑠 ←− [𝑛] and 𝑝 ←− {0, 1}𝐿 .

©«

1 2 3
0

4
1

5
1

6
0

7
0

8 9 10 11 12 13

1 0 1 0 0
1 0 0 0 1

1 0 1 0 1
0 1 0 1 1

1 1 1 0 0

ª®®®®®®®¬
Possible outcome for𝑀5

6,9.

▶ Theorem C. Let 0 < Y < 1
2 be a constant, 𝑛 ∈ N and 𝑚 = (1 − Y)𝑛. For some 𝐿 =

O((log𝑛)/Y) the matrix𝑀𝐿
𝑚,𝑛 has independent rows with probability 1 − O(1/𝑛).

Moreover, a simple algorithm computes a solution ®𝑧 to𝑀𝐿
𝑚,𝑛®𝑧 = ®𝑏 for an arbitrary right hand

side
®𝑏 ∈ {0, 1}𝑚 . Its expected running time is dominated by O(𝑛/Y) row additions. Each row

is always zero outside of a block of length 𝐿.

▶ Theorem C1. We aim to build a retrieval data structure for 𝑓 : 𝑆 → {0, 1}𝑟 where |𝑆 | =𝑚.

Let Y > 0. When using 𝐴 = 𝑀𝐿
𝑚,𝑛 from Theorem C for suitable 𝑛 and 𝐿 = O( log𝑚

Y ) in the

retrieval framework from Section 3.4, then the following holds.

(i) One trial of construct succeeds whp and has expected running time O(𝑚/Y2 + 𝑟𝑚/Y).
(ii) The resulting data structure occupies at most (1 + Y)𝑟𝑚 bits whp.

(iii) An eval-operation (using eval2) takes time O(𝑟/Y) and causes one cache miss when 𝑍 is

stored appropriately.

▶ Theorem C2. We aim to build a retrieval data structure for 𝑓 : 𝑆 → {0, 1}𝑟 where |𝑆 | =𝑚.

For Y > 0 and chunks of size𝐶 =𝑚Y
, the following performance characteristics can be achieved.

(i) One trial of construct succeeds whp and has expected running time O(𝑚/Y + 𝑟𝑚).
(ii) The resulting data structure occupies at most (1 + Y)𝑟𝑚 bits whp.

(iii) An eval takes time O(𝑟 ) and causes one cache miss.



97

8. Efficient Gauss Elimination for

Near-Quadratic Matrices with

One Short Random Block per Row,

with Applications

The purpose of this chapter is to prove Theorems C, C1 and C2 (see facing page).
Throughout this section 0 < Y < 1

2 is a constant,𝑚,𝑛 ∈ N satisfy𝑚 = (1−Y)𝑛 and 𝐿 ∈ N
is a number later chosen to be O((log𝑚)/Y). The random matrix𝑀𝐿

𝑚,𝑛 from Definition 2.6
is denoted simply by 𝐴 = (𝑎𝑖 𝑗 )𝑖∈[𝑚], 𝑗 ∈[𝑛+𝐿−1] . The random starting position of the 𝑖-th row
is denoted by 𝑠𝑖 ∈ [𝑛]. The entries 𝑎𝑖 𝑗 , 𝑠𝑖 ≤ 𝑗 < 𝑠𝑖 + 𝐿 form a block of fully random bits, all
other entries in row 𝑖 are 0.

In asymptotic considerations, Y is constant and𝑚 and 𝑛 tend to∞, but O-notation only
hides absolute constants that do not depend on Y.

Most of this chapter is spent proving Theorem C, i.e. that for a proper choice of 𝐿,
the matrix 𝐴 has full row rank whp and a corresponding systems 𝐴®𝑧 = ®𝑏 is solvable very
efficiently whp. Theorems C1 and C2 are fairly simple consequences. Before giving a sketch
of the main ideas of the proof, we review a simple but useful technique.

Technique: Coupling of random variables. A standard notion frequently used in this
chapter (and sporadically used previously) is that of a coupling of random variables 𝑋
and 𝑌 (or of processes (𝑋𝑖)𝑖≥1 and (𝑌𝑖)𝑖≥1). A coupling is a single probability space on
which 𝑋 and 𝑌 are defined, so that there are interesting pointwise relations between them,
like 𝑋 ≤ 𝑌 . Sometimes these relations hold only conditioned on some (large) part of the
probability space. We will make use of the following observation. If we have random
variables𝑈0, . . . ,𝑈𝑘 and for each ℓ ∈ [𝑘] a coupling, i.e. a joint distribution, of𝑈ℓ−1 and𝑈ℓ ,
then there is a common probability space on which all these random variables are defined
and all couplings are simultaneously realised. 1

8.1. Proof Sketch for Theorem C

We start by formulating a special version of Gaussian elimination for solving linear systems
𝐴®𝑧 = ®𝑏 as just described. The algorithm sorts the rows of 𝐴 by the starting position of their

1 We do not prove this formally since arguments like this belong to basic probability theory or measure theory.
The principle used is that the pairwise couplings give rise to conditional expectations E[𝑈ℓ | 𝑈ℓ−1]. Arguing
inductively, given a common probability space for 𝑈1, . . . ,𝑈ℓ−1 and E[𝑈ℓ | 𝑈ℓ−1], one can obtain a common
probability space for 𝑈1, . . . ,𝑈ℓ so that (𝑈1, . . . ,𝑈ℓ−1) is distributed as before and E[𝑈ℓ | 𝑈1, . . . ,𝑈ℓ−1] =
E[𝑈ℓ | 𝑈ℓ−1]. – This is practically the same as the standard argument that shows that a sequence of
conditional expectations gives rise to a corresponding Markov chain on a joint probability space.



98 8. Near-Quadratic Matrices with One Short Random Block per Row

block. The resulting matrix resembles a band matrix, and standard Gaussian elimination is
applied to it, treating the rows in order of their starting position. Conveniently, there is no
“proliferation of 1’s”, i.e. we never produce a 1-entry outside of any row’s original block. In
the round for row 𝑖 , the entries 𝑎𝑖 𝑗 for 𝑗 = 𝑠𝑖 , . . . , 𝑠𝑖 + 𝐿 − 1 are scanned. If column 𝑗 has
been previously chosen as pivot then 𝑎𝑖 𝑗 = 0. Otherwise, 𝑎𝑖 𝑗 is a random bit. While this bit
may depend in a complex way on the original entries of rows 1, . . . , 𝑖 (apart from position
(𝑖, 𝑗)), for the analysis we may simply imagine that 𝑎𝑖 𝑗 is only chosen now by flipping a
fair coin. This means that we consider eligible columns from left to right, and the first 𝑗
for which the coin flip turns up 1 becomes the pivot column for row 𝑖 . This view makes it
possible to regard choosing pivot columns for the rows as probabilistically equivalent to a
slightly twisted version of Robin Hood hashing. Here this means that𝑚 keys 𝑥1, . . . , 𝑥𝑚
with random hash values in [𝑛] are given and, in order of increasing hash values, are
inserted in a linear probing fashion into a table, meaning that for 𝑥𝑖 cells 𝑠𝑖 , 𝑠𝑖+1, . . . are
inspected. The twist is that, whenever a key probes an empty table cell, flipping a fair coin
decides whether it is placed in the cell or moves on to the next. The resulting position
of key 𝑥𝑖 is the same as the position of the pivot for row 𝑖 . As is standard in the precise
analysis of linear probing hashing, we switch perspective and look at the process from the
point of view of cells 1, 2, . . . , 𝑛 + 𝐿 − 1. Associated with position (“time”) 𝑗 is the set of
keys that probe cell 𝑗 (the “queue”), and the quantity to study is the length of this queue. It
turns out that the average queue length determines the overall cost of the row additions of
the Gaussian elimination process, and that the probability for the maximum queue length
to become too large is decisive for bounding the success probability. The first and routine
step in the analysis of the queue length is to “Poissonise” arrivals such that the evolution
of the queue length becomes a Markov chain. A second step is needed to deal with the
somewhat annoying possibility that in a cell, all keys that are eligible for this cell reject it
because of their coin flips. We end up with a standard queue (an “M/D/1 queue” in Kendall
notation) and can use existing results from queuing theory to obtain bounds regarding the
queue length, which are needed to complete the analysis.

The following sections give the details.

8.2. A Simple Gaussian Solver

We now describe the algorithm to solve linear systems involving the random matrices
described above. This is done by a variant or Gauss elimination, which will bring the matrix
into echelon form (up to column exchanges) and then apply back substitution.

Given 𝐴 = (𝑎𝑖 𝑗 )𝑖∈[𝑚], 𝑗 ∈[𝑛+𝐿−1] as defined above, with blocks of length 𝐿 starting at
positions 𝑠𝑖 , for 𝑖 ∈ [𝑚], as well as some ®𝑏 ∈ {0, 1}𝑚 , we wish to find a solution ®𝑧 to the
system 𝐴®𝑧 = ®𝑏. Consider algorithm SGAUSS (Figure 8.1). If 𝐴 has linearly independent
rows, SGAUSS returns a solution ®𝑧 and produces intermediate values (piv𝑖)𝑖∈[𝑚] , which will
be important in the analysis. If the rows of 𝐴 are linearly dependent, the algorithm fails.

Algorithm SGAUSS starts by sorting the rows of the system (𝐴, ®𝑏) by their starting
positions 𝑠𝑖 in linear time, e.g. using counting sort [Cor+09, Chapter 8.2]. We suppress
the resulting permutation in the notation, assuming 𝑠1 ≤ 𝑠2 ≤ · · · ≤ 𝑠𝑚 . Rows are then
processed sequentially. When row 𝑖 is treated, its leftmost 1-entry is determined, if it exists,
and the corresponding column index is called the pivot piv𝑖 of row 𝑖 . Row additions are used
to eliminate 1-entries from column piv𝑖 in subsequent rows. Note that this operation never



8.3. Coin-Flipping Robin Hood Hashing 99

1 Algorithm SGAUSS(𝐴 = (𝑎𝑖 𝑗 )𝑖∈[𝑚], 𝑗 ∈[𝑛+𝐿−1], (𝑠𝑖)𝑖∈[𝑚], ®𝑏 ∈ {0, 1}𝑚):
2 sort the rows of the system (𝐴, ®𝑏) by 𝑠𝑖 (in time O(𝑚))
3 relabel such that 𝑠1 ≤ 𝑠2 ≤ · · · ≤ 𝑠𝑚
4 piv1, piv2, . . . , piv𝑚 ← 0
5 for 𝑖 = 1, . . . ,𝑚 do
6 for 𝑗 = 𝑠𝑖 , . . . , 𝑠𝑖 + 𝐿 − 1 do
7 if 𝑎𝑖 𝑗 = 1 then
8 piv𝑖 ← 𝑗
9 for 𝑖 ′ with 𝑖 ′ > 𝑖 ∧ 𝑠𝑖′ ≤ piv𝑖 do
10 if 𝑎𝑖′,piv𝑖 = 1 then
11 𝑎𝑖′ ← 𝑎𝑖′ ⊕ 𝑎𝑖 // row addition (= subtraction)

12 𝑏𝑖′ ← 𝑏𝑖′ ⊕ 𝑏𝑖
13 break

14 if piv𝑖 = 0 then // row 𝑖 is 0

15 return Failure

// back substitution:

16 ®𝑧 ← ®0
17 for 𝑖 =𝑚, . . . , 1 do
18 ®𝑧piv𝑖 ← ⟨®𝑧, 𝑎𝑖⟩ ⊕ 𝑏𝑖 // note: 𝑎𝑖 𝑗 = 0 for 𝑗 outside of {𝑠𝑖 , . . . , 𝑠𝑖 + 𝐿 − 1}
19 return ®𝑧 // solution to 𝐴®𝑧 = ®𝑏

// search for leftmost 1 in row 𝑖 . Can be done

// in time O(𝐿/log𝑚) on a word RAM.

Figure 8.1 A simple Gaussian solver for the One-Block construction.

produces non-zero entries outside of any row’s original block, i.e. for no row 𝑖 are there
ever any 1’s outside of the positions {𝑠𝑖 , . . . , 𝑠𝑖 +𝐿 − 1}. To see this, we argue inductively on
the number of additions performed. Assume 1 ≤ 𝑖 ≤ 𝑖 ′ ≤ 𝑚 and row 𝑖 is added to row 𝑖 ′.
By choice of piv𝑖 and the induction hypothesis, non-zero entries of row 𝑖 can reside only in
positions piv𝑖 , . . . , 𝑠𝑖 + 𝐿 − 1. Again by induction and since row 𝑖 ′ contains a 1 in position
piv𝑖 , we have 𝑠𝑖′ ≤ piv𝑖 . Due to sorting, we have 𝑠𝑖 +𝐿− 1 ≤ 𝑠𝑖′ +𝐿− 1. Thus, row 𝑖 contains
no 1’s outside of the block of row 𝑖 ′, and the row addition maintains the invariant.

If an all-zero row is encountered, the algorithm fails (and returns Failure). This happens
if and only if the rows of 𝐴 are linearly dependent2. Otherwise, we say that the algorithm
succeeds. In this case a solution ®𝑧 to 𝐴®𝑧 = ®𝑏 is obtained by back-substitution. It is not hard
to see that the expected running time of SGAUSS is dominated by the expected cost of row
additions.

8.3. Coin-Flipping Robin Hood Hashing

Let {𝑥1, . . . , 𝑥𝑚} ⊆ U be some set of keys to be stored in a hash table 𝑇 . Each key 𝑥𝑖 has a
uniformly random hash value ℎ𝑖 ←− [𝑛]. An (injective) placement of the keys in 𝑇 fulfils

2 Depending on ®𝑏, the system 𝐴®𝑧 = ®𝑏 may still be solvable. We will not pursue this.



100 8. Near-Quadratic Matrices with One Short Random Block per Row

the linear probing requirement if each 𝑥𝑖 is stored in a cell 𝑇 [pos𝑖] with pos𝑖 ≥ ℎ𝑖 and all
cells 𝑇 [ 𝑗] for ℎ𝑖 ≤ 𝑗 < pos𝑖 are non-empty. In Robin Hood hashing there is the additional
requirement that ℎ𝑖 > ℎ𝑖′ implies pos𝑖 > pos𝑖′ . Robin Hood hashing is interesting because
it minimises the variance of the displacements pos𝑖 − ℎ𝑖 . It has been studied in detail in
several papers [CLM85; DMV04; Jan05; JV16; Vio05].

Given the hash values (ℎ𝑖)𝑖∈[𝑚] , a placement of the keys obeying the Robin Hood linear
probing conditions can be obtained as follows: Insert the keys in the order of increasing
hash values, by the usual linear probing insertion procedure, which probes (i.e. inspects)
cells 𝑇 [ℎ𝑖],𝑇 [ℎ𝑖 + 1], . . . until the first empty cell is found, and places 𝑥𝑖 in this cell. We
consider a slightly “broken” variation of this method, which sometimes delays placements.
In the placing procedure for 𝑥𝑖 , when an empty cell 𝑇 [ 𝑗] is encountered, it is decided by
flipping a fair coin whether to place 𝑥𝑖 in cell𝑇 [ 𝑗] or move on to the next cell. Note that the
resulting placement may violate the Robin Hood requirement and even the linear probing
requirement. For this insertion method we assume we have an (idealised) unbounded array
𝑇 [1, 2, . . . ]. The position in which key 𝑥𝑖 is placed is called pos𝑖 . In the end, the algorithm
checks whether any of the displacements pos𝑖 −ℎ𝑖 is larger than 𝐿, in which case it reports
Failure.3 Figure 8.2 gives a precise description of this algorithm, which we term CFRH.

1 Algorithm CFRH ({𝑥1, . . . , 𝑥𝑚} ⊆ U):
2 sort 𝑥1, . . . , 𝑥𝑚 by hash value ℎ1, . . . , ℎ𝑚
3 relabel such that ℎ1 ≤ · · · ≤ ℎ𝑚
4 𝑇 ← [⊥,⊥, . . . ] // infinite array of empty cells

5 pos1, . . . , pos𝑚 ← 0
6 for 𝑖 = 1, . . . ,𝑚 do
7 for 𝑗 = ℎ𝑖 , ℎ𝑖 + 1, . . . do
8 if 𝑇 [ 𝑗] = ⊥ ∧ coinFlip() = 1 then // empty cell and “heads”

9 pos𝑖 ← 𝑗
10 𝑇 [ 𝑗] ← 𝑥𝑖
11 break

12 if ∃𝑖 ∈ [𝑚] : pos𝑖 − ℎ𝑖 ≥ 𝐿 then return Failure
13 return 𝑇

Figure 8.2 The Coin-Flipping Robin Hood hashing algorithm. Without the condition “coinFlip()
= 1”, it would compute a Robin Hood placement with maximum displacement 𝐿, if
one exists.

8.4. Connection between SGAUSS and CFRH

We now establish a close connection between the behaviour of the algorithms SGAUSS
and CFRH, thus reducing the analysis of SGAUSS to that of CFRH. The algorithms have
been formulated in such a way that some structural similarity is immediate. A run of

3 The reason we postpone checking for Failure until the very end of the execution is that it is technically
convenient to have the values (pos𝑖 )𝑖∈[𝑚] even if a failure occurs.



8.4. Connection between SGAUSS and CFRH 101

SGAUSS on a matrix with random starting positions (𝑠𝑖)𝑖∈[𝑚] and random entries yields a
sequence of pivots (piv𝑖)𝑖∈[𝑚] ; a run of CFRH on a key set with random hash values (ℎ𝑖)𝑖∈[𝑚]
performing random coin flips yields a sequence of positions (pos𝑖)𝑖∈[𝑚] . We will see that
the distributions of (piv𝑖)𝑖∈[𝑚] and (pos𝑖)𝑖∈[𝑚] are essentially the same and that moreover
two not so obvious parameters of the two random processes are closely connected. For this,
we will show that outside the Failure events, we can use the probability space underlying
SGAUSS to describe the behaviour of CFRH. This yields a coupling of the underlying random
processes.

The first step is to identify 𝑠𝑖 = ℎ𝑖 for 𝑖 ∈ [𝑚] (both sequences are assumed to be sorted
and then renamed). The connection between pos𝑖 and piv𝑖 is achieved by connecting the
coin flips of CFRH to certain events in applying SGAUSS to matrix 𝐴. We construct this
correspondence by induction on 𝑖 . Assume rows 1, . . . , 𝑖 − 1 have been treated, 𝑥1, . . . , 𝑥𝑖−1
have been placed, and piv𝑖′ = pos𝑖′ for all 1 ≤ 𝑖 ′ < 𝑖 .

Now row 𝑎𝑖 (transformed by previous row additions) is treated. It contains a 0 in
columns that were previously chosen as pivots, so possible candidates for piv𝑖 are only
indices from 𝐽𝑖 B {𝑠𝑖 , . . . , 𝑠𝑖+𝐿−1}\{piv1, . . . , piv𝑖−1}. For each 𝑗 ∈ 𝐽𝑖 , the initial value of 𝑎𝑖 𝑗
was a random bit. The bits added to 𝑎𝑖 𝑗 in rounds 1, . . . , 𝑖 − 1 are determined by the original
entries of rows 1, . . . , 𝑖 − 1 alone. We order the entries of 𝐽𝑖 as 𝑗 (1) < 𝑗 (2) < · · · < 𝑗 ( | 𝐽𝑖 |) .
Then, conditioned on all random choices in rows 1, . . . , 𝑖 − 1 of 𝐴, the current values
𝑎𝑖, 𝑗 (1) , . . . , 𝑎𝑖, 𝑗 (𝑘 ) still form a sequence of fully random bits. We use these random bits to
run round 𝑖 of CFRH, in which 𝑥𝑖 is placed. Since each cell can only hold one key, and by
excluding runs where finally failure is declared, we may focus on the empty cells with
indices in {ℎ𝑖 , . . . , ℎ𝑖 +𝐿−1}\{pos1, . . . , pos𝑖−1} = {𝑠1, . . . , 𝑠𝑖 +𝐿−1}\{piv1, . . . , piv𝑖−1} = 𝐽𝑖 .
We use (the current value)𝑎𝑖 𝑗 as the value of the coin flip for cell 𝑗 , for 𝑗 = 𝑗 (1) , 𝑗 (2) , . . . , 𝑗 ( | 𝐽𝑖 |) .
The minimal 𝑗 in this sequence (if any) with 𝑎𝑖 𝑗 = 1 equals piv𝑖 and pos𝑖 . If all these bits
are 0, algorithm SGAUSS will fail immediately, and key 𝑥𝑖 will be placed in a cell 𝑇 [ 𝑗] with
𝑗 ≥ ℎ𝑖 + 𝐿, so CFRH will eventually fail as well.

Thus we have established that the random variables needed to run algorithm CFRH
(outside of Failure) can be taken to belong to the probability space defined by (𝑠𝑖)𝑖∈[𝑚] and
the entries in the blocks of𝐴 for algorithm SGAUSS, so that (outside of Failure) the random
variables pos𝑖 and piv𝑖 are the same. In the following lemma, we state this connection as
Claim (i). In addition, we consider other random variables central to the analysis to follow.
First, we define the height of position 𝑗 ∈ [𝑛 + 𝐿 − 1] in the hash table as

𝐻 𝑗 B #{𝑖 ∈ [𝑚] | ℎ𝑖 ≤ 𝑗 < pos𝑖}.
This is the number of keys probing table cell 𝑗 without being placed in it, either because
the cell is occupied or because it is rejected by the coin flip. Claim (ii) in the next lemma
shows that

∑
𝑗 ∈[𝑛+𝐿−1] 𝐻 𝑗 essentially determines the running time of SGAUSS, so that we

can focus on bounding (𝐻 𝑗 ) 𝑗 ∈N from here on. Finally, with Claim (iii), we get a handle
on the question of how large we have to choose 𝐿 in order to keep the failure probability
small.

▶ Lemma 8.1. With the coupling just described, we get

(i) SGAUSS succeeds iff CFRH succeeds. On success we have piv𝑖 = pos𝑖 for all 𝑖 ∈ [𝑚].
(ii) A successful run of SGAUSS performs at most

∑
𝑗 ∈[𝑛+𝐿−1] 𝐻 𝑗 row additions.

(iii) Conditioned on the event max𝑗 ∈[𝑛] 𝐻 𝑗 ≤ 𝐿 − 2 log𝑚, the algorithms succeed with

probability 1 − O(1/𝑚).



102 8. Near-Quadratic Matrices with One Short Random Block per Row

Proof. (ii) (Note that a similar statement with a different proof can be found in [Jan08,
Lemma 2.1].) Consider the sets Add B {(𝑖, 𝑖 ′) ∈ [𝑚]2 | SGAUSS adds row 𝑖 to row 𝑖 ′} and
Displ B {(𝑖, 𝑗) ∈ [𝑚] × [𝑛 + 𝐿 − 1] | ℎ𝑖 ≤ 𝑗 < pos𝑖}. Since 𝐻 𝑗 simply counts the pairs
(𝑖, 𝑗) ∈ Displ with 𝑖 ∈ [𝑚], we have |Displ| = ∑

𝑗 ∈[𝑛+𝐿−1] 𝐻 𝑗 . To prove the claim, we exhibit
an injection from Add into Displ.

Assume (𝑖, 𝑖 ′) ∈ Add. If pos𝑖 < pos𝑖′ , we map (𝑖, 𝑖 ′) to (𝑖 ′, pos𝑖). This is indeed an
element of Displ, since ℎ𝑖′ = 𝑠𝑖′ ≤ piv𝑖 = pos𝑖 < pos𝑖′ (if piv𝑖 were smaller than 𝑠𝑖′ , row 𝑖
would not be added to row 𝑖 ′). On the other hand, if pos𝑖 > pos𝑖′ , we map (𝑖, 𝑖 ′) to (𝑖, pos𝑖′).
This is in Displ since ℎ𝑖 = 𝑠𝑖 ≤ 𝑠 ′𝑖 ≤ pos𝑖′ < pos𝑖 (recall that rows are sorted by starting
position).

The mapping is injective since from the image of (𝑖, 𝑖 ′) ∈ Add we can recover {𝑖, 𝑖 ′}
with the help of the injective mapping 𝑖 ↦→ pos𝑖 , 𝑖 ∈ [𝑚]. The fact that 𝑖 < 𝑖 ′ fixes the
ordering in the pair.

(iii) In CFRH, for an arbitrary 𝑖 ∈ [𝑚], consider the state before key 𝑥𝑖 probes its first
position 𝑗 B ℎ𝑖 . Any previous key 𝑥𝑖′ with 𝑖 ′ < 𝑖 has a hash value ℎ𝑖′ ≤ ℎ𝑖 . Hence, it either
was inserted in a cell 𝑗 ′ < 𝑗 or it has probed cell 𝑗 . Since at most 𝐻 𝑗 keys have probed cell
𝑗 , at most 𝐻 𝑗 positions in 𝑇 [ 𝑗, . . . , 𝑗 + 𝐿 − 1] are occupied and at least 2 log𝑚 are free. The
probability that 𝑥𝑖 is not placed in this region is therefore at most 2−2 log𝑚 =𝑚−2. By the
union bound we obtain a failure probability of O(1/𝑚). ◀

8.5. Bounding Heights in CFRH by a Markov Chain

Lemma 8.1 tells us that we must analyse the heights in the hashing process CFRH. In this
subsection, we use “Poissonisation” of the hashing positions to majorise the heights in CFRH
by a Markov chain, i.e. a process that is oblivious to the past, apart from the current height.
Poissonisation is a common step in the analysis of linear probing hashing, see e.g. [Vio05].
Further, we wish to replace randomized placement by deterministic placement: Whenever
a key is available for a position, one is put there (instead of flipping coins for all available
keys). By this, the heights may decrease, but only by a bounded amount whp. The details
of these steps are given in this subsection.

In analysing CFRH (without regard for the event Failure), it is inconvenient that the
starting positions ℎ𝑖 are determined by random choices with subsequent sorting. Position 𝑗
is hit by a number of keys given by a binomial distribution Bin(𝑚, 1

𝑛 ) with expectation 𝑚
𝑛 =

1− Y, but there are dependencies. We approximate this situation by “Poissonisation” [MU05,
Sect. 5.4]. Here this means that we assume that cell 𝑗 ∈ [𝑛] is hit by 𝑘 𝑗 keys, independently
for 𝑗 = 1, . . . ,𝑚, where 𝑘 𝑗 ∼ Po(1 − Y ′) is Poisson distributed, for Y ′ = Y/2. Then the total
number𝑚′ =

∑
𝑗 ∈[𝑛] 𝑘 𝑗 of keys is distributed as𝑚′ ∼ Po((1 − Y ′)𝑛). Given 𝑘1, . . . , 𝑘𝑛 , we

can imagine we have𝑚′ keys with nondecreasing hash values (ℎ𝑖)𝑖∈[𝑚′] , and we can apply
algorithm CFRH to obtain key positions (pos′𝑖 )𝑖∈[𝑚′] and cell heights (𝐻 ′𝑗 ) 𝑗≥1.

Conveniently, with Poissonisation, the heights (𝐻 ′𝑗 ) 𝑗 ∈[𝑛] turn out to form a Markov
chain. This can be seen as follows. Recall that 𝐻 ′𝑗−1 is the number of keys probing cell 𝑗 − 1
without being placed there. Hence the number of keys probing cell 𝑗 is 𝐻 ′𝑗−1 + 𝑘 𝑗 . One of
these keys will be placed in cell 𝑗 , unless 𝐻 ′𝑗−1 + 𝑘 𝑗 coin flips all yield 0, so if 𝑔 𝑗 ∼ Geom( 12 )
is a random variable with geometric distribution with parameter 1

2 (number of fair coin
flips needed until the first 1 appears) and 𝑏 𝑗 = 1[𝑔 𝑗 > 𝐻 ′𝑗−1 + 𝑘 𝑗 ] is an indicator random
variable, we have 𝐻 ′𝑗 = 𝐻 ′𝑗−1 + 𝑘 𝑗 − 1 + 𝑏 𝑗 . (Note that the case 𝐻 ′𝑗−1 + 𝑘 𝑗 = 0 is treated



8.5. Bounding Heights in CFRH by a Markov Chain 103

correctly by this description. Conditioned on 𝐻 ′𝑗−1 +𝑘 𝑗 , the value 𝑏 𝑗 is a Bernoulli variable.)
The Markov property holds since 𝐻 ′𝑗 depends only on 𝐻 ′𝑗−1 and the two “fresh” random
variables 𝑘 𝑗 and 𝑔 𝑗 .

The following lemma allows us to shift our attention from (𝐻 𝑗 ) 𝑗 ∈[𝑛+𝐿−1] to (𝐻 ′𝑗 ) 𝑗 ∈[𝑛+𝐿−1] .

▶ Lemma 8.2. Let𝑚 = (1 − Y)𝑛 and𝑚′ ∼ Po((1 − Y ′)𝑚) for Y ′ = Y/2. There is a coupling
between an ordinary run of CFRH (with𝑚, 𝑛 and 𝐻 𝑗 ) and a Poissonised run (with𝑚′, 𝑛 and

𝐻 ′𝑗 ) such that conditioned on the high probability event 𝐸≥𝑚 = {𝑚′ ≥ 𝑚} we have 𝐻 ′𝑗 ≥ 𝐻 𝑗

for all 𝑗 ∈ [𝑛 + 𝐿 − 1].

Proof. Because Y and Y ′ = Y/2 are constants, the event 𝐸≥𝑚 has high probability, as can
be seen by well-known concentration bounds for the Poisson distribution (e.g. [MU05, Th.
5.4]). For𝑚0 ≥ 𝑚 fixed, the distribution of the number of hits in the cells in 𝑇 [1, . . . , 𝑛]
conditioned on {𝑚′ =𝑚0} is the same as what we get by throwing𝑚0 balls randomly into
𝑛 bins [MU05, Th. 5.6]. Thus, we may assume the Poissonised run has to deal with the𝑚
keys of the ordinary run plus𝑚′ −𝑚 additional keys with random hash values in [𝑛]. We
apply algorithm CFRH to both inputs. After sorting, the new keys are inserted in some
interleaved way with the ordinary keys. Now if one of the ordinary keys 𝑥 probes an empty
cell 𝑇 [ 𝑗], we use the same coin flip in both runs to decide whether to place it there; for the
probing of the additional keys, we use new, independent coin flips. With this coupling, it is
clear that for all ordinary keys 𝑥 the displacement “(position of 𝑥) − (hash value of 𝑥)” in
the Poissonized run is at least as big as in the ordinary run. As the additional keys can only
increase heights, 𝐻 ′𝑗 ≥ 𝐻 𝑗 follows. ◀

It is natural and convenient to prepend 𝐻 ′0 = 0 to the sequence of heights and remove the
“termination” at 𝑛, making (𝐻 ′𝑗 ) 𝑗≥0 an infinite Markov chain (we refrain from changing the
symbol). As a further simplification, we eliminate the geometrically distributed variable 𝑔 𝑗
and the derived variable 𝑏 𝑗 . For this, let (𝑋 𝑗 ) 𝑗≥0 be the Markov chain defined as

𝑋0 B 0 and 𝑋 𝑗 B max(0, 𝑋 𝑗−1 + 𝑑 𝑗 − 1) for 𝑗 ≥ 1, (8.1)

where 𝑑 𝑗 ∼ Po(1 − Y ′/2) are independent random variables.

▶ Lemma8.3. There is a coupling between (𝑋 𝑗 ) 𝑗≥0 and (𝐻 ′𝑗 ) 𝑗≥0 such that𝑋 𝑗+log(4/Y ′) ≥ 𝐻 ′𝑗
for all 𝑗 ≥ 0.

Proof. Assume wlog that log(1/Y ′) is an integer. Let 𝑏 ′𝑗 ∼ Po(Y ′/2) be a random variable
on the same probability space as 𝑔 𝑗 such that 𝑔 𝑗 > log(4/Y ′) implies 𝑏 ′𝑗 ≥ 1. This is possible
because

Pr[𝑔 𝑗 > log(4/Y ′)] = 2− log(4/Y′) = Y ′/4 ≤ 1 − 𝑒−Y′/2 = Pr[𝑏 ′𝑗 ≥ 1] .

We then define 𝑑 𝑗 B 𝑘 𝑗 + 𝑏 ′𝑗 which gives 𝑑 𝑗 ∼ Po(1 − Y ′/2). Proceeding by induction, and
using (8.1), we can define (𝑋 𝑗 ) 𝑗≥0 and (𝐻 ′𝑗 ) 𝑗≥0 on a common probability space. Then we
check 𝑋 𝑗 + log(4/Y ′) ≥ 𝐻 ′𝑗 , also by induction: In the case 𝐻 ′𝑗−1 + 𝑘 𝑗 ≤ log(4/Y ′) we simply
get

𝑋 𝑗 + log(4/Y ′) ≥ log(4/Y ′) ≥ 𝐻 ′𝑗−1 + 𝑘 𝑗 ≥ 𝐻 ′𝑗−1 + 𝑘 𝑗 + 𝑏 𝑗 − 1 = 𝐻 ′𝑗 .



104 8. Near-Quadratic Matrices with One Short Random Block per Row

Otherwise we can use the inequality 𝑏 𝑗 = 1[𝑔 𝑗 > 𝐻 ′𝑗−1 + 𝑘 𝑗 ] ≤ 1[𝑔 𝑗 > log(4/Y ′)] ≤ 𝑏 ′𝑗 to
obtain

𝑋 𝑗 + log(4/Y ′) ≥ 𝑋 𝑗−1 + 𝑑 𝑗 − 1 + log(4/Y ′)
(Ind.Hyp.)
≥ 𝐻 ′𝑗−1 + 𝑑 𝑗 − 1

= 𝐻 ′𝑗−1 + 𝑘 𝑗 + 𝑏 ′𝑗 − 1 ≥ 𝐻 ′𝑗−1 + 𝑘 𝑗 + 𝑏 𝑗 − 1 = 𝐻 ′𝑗 . ◀

8.6. EnterQueuing Theory

It turns out that, in essence, the behaviour of the Markov chain (𝑋 𝑗 ) 𝑗≥0 has been studied in
the literature under the name “M/D/1 queue”, which is Kendall notation [Ken53] for queues
with “Markovian arrivals, Deterministic service times and 1 server”. We will exploit what
is known about this simple queuing situation in order to finish our analysis.

Formally, an M/D/1 queue is a Markov process (𝑍𝑡 )𝑡 ∈R≥0 in continuous time and discrete
space N0 = {0, 1, 2, . . . }. The random variable 𝑍𝑡 is usually interpreted as the number of
customers waiting in a FIFO queue at time 𝑡 ∈ R≥0. Initially the queue is empty (𝑍0 = 0).
Customers arrive independently, i.e. arrivals are determined by a Poisson process with a
rate we set to 𝜌 = 1 − Y ′/2 (which implies that the number of customers arriving in a time
interval of length 1 is Po(𝜌)-distributed). The server requires one time unit to process a
customer which means that if 𝑡 ∈ R≥0 is the time of the first arrival, then customers will
leave the queue at times 𝑡 + 1, 𝑡 + 2, . . . until the queue is empty again.

Now consider the discretisation (𝑍 𝑗 ) 𝑗 ∈N0 of the M/D/1 queue. For 𝑗 ≥ 1, the number 𝑑 𝑗

of arrivals in between two observations 𝑍 𝑗−1 and 𝑍 𝑗 has distribution 𝑑 𝑗 ∼ Po(𝜌), and one
customer was served in the meantime if and only if 𝑍 𝑗−1 > 0. We can therefore write

𝑍 𝑗 =

{
𝑑 𝑗 if 𝑍 𝑗−1 = 0,
𝑍 𝑗−1 + 𝑑 𝑗 − 1 if 𝑍 𝑗−1 > 0.

By reusing the variables (𝑑 𝑗 ) 𝑗≥1 that previously occurred in the definition of (𝑋 𝑗 ) 𝑗≥0,
we already established a coupling between the processes (𝑋 𝑗 ) 𝑗≥0 and (𝑍 𝑗 ) 𝑗≥0. A simple
induction shows

𝑋 𝑗 = max(0, 𝑍 𝑗 − 1), for all 𝑗 ≥ 0. (8.2)

Intuitively, the server in the 𝑋 -process is ahead by one customer because customers are
processed at integer times “just in time for the observation”.

The following results are known in queuing theory:

▷ Fact 8.4. (i) The average number of customers in the 𝑍 -queue at time 𝑡 ∈ R≥0 is

E[𝑍𝑡 ] ≤ lim
𝜏→∞E[𝑍𝜏 ] = 𝜌 + 1

2

(
𝜌2

1−𝜌
)
= Θ(1/Y) .

(Precise values are known even for general service-time distributions, see [Coo90, Ch.
5.4].)

(ii) [EZB06, Prop 3.4] We have the following tail bound for the event {𝑍𝑡 > 𝑘} for any
𝑘 ∈ N:

Pr[𝑍𝑡 > 𝑘] ≤ lim
𝜏→∞ Pr[𝑍𝜏 > 𝑘] = e−𝑘 ·Θ(Y) , for all 𝑡 ≥ 0.



8.7. Putting the Pieces Together – Proof of Theorem C 105

8.7. Putting the Pieces Together – Proof of Theorem C

We now have everything in place to prove Theorem C.

Proof of Theorem C. For 0 < Y < 1
2 , 𝑚 = (1 − Y)𝑛, ®𝑏 ∈ {0, 1}𝑚 and 𝐿 chosen later,

consider an application of SGAUSS to a linear system 𝐴 · ®𝑧 = ®𝑏 where 𝐴 d= 𝑀𝐿
𝑚,𝑛 .

By the observation made at the start of this chapter, we may assume that the random
variables (piv𝑖)𝑖∈[𝑚] , (pos𝑖)𝑖∈[𝑚] , (𝐻 𝑗 ) 𝑗 ∈[𝑛+𝐿−1] , (𝐻 ′𝑗 ) 𝑗 ∈[𝑛+𝐿−1] , (𝑋 𝑗 ) 𝑗≥0 and (𝑍 𝑗 ) 𝑗≥0 and the
corresponding couplings are realized on one common probability space.

By Fact 8.4 (ii) it is possible to choose 𝐿 = Θ((log𝑛)/Y) while guaranteeing Pr[𝑍 𝑗 >
𝐿/2] = O(𝑛−2) for all 𝑗 ≥ 0. By the union bound, the event 𝐸max𝑍 = {∀𝑗 ∈ [𝑛+𝐿−1] : 𝑍 𝑗 ≤
𝐿/2} then occurs with probability 1−O(𝑛−1). Conditioned on 𝐸max𝑍 and the high probability
event 𝐸≥𝑚 from Lemma 8.2 we have for 𝑗 ∈ [𝑛 + 𝐿 − 1]

𝐻 𝑗
Lem. 8.2≤ 𝐻 ′𝑗

Lem. 8.3≤ 𝑋 𝑗 + log(4/Y ′)
Eq. 8.2
≤ 𝑍 𝑗 + log(4/Y ′) 𝐸max𝑍≤ 𝐿/2+ log(4/Y ′) ≤ 𝐿−2 log𝑚.

By using Lemma 8.1 (iii) we conclude that SGAUSS succeeds with probability 1 − O(𝑚−1).
Since SGAUSS only succeeds if 𝐴 has independent rows, this establishes the first claim of
Theorem C.

Along similar lines we get, for each 𝑗 ∈ [𝑛 + 𝐿 − 1]:

𝐸 [𝐻 𝑗 ]
Lem. 8.2≤ E[𝐻 ′𝑗 | 𝐸≥𝑚] ≤ 1

Pr[𝐸≥𝑚 ] E[𝐻
′
𝑗 ]

Lem. 8.3≤ 1
Pr[𝐸≥𝑚 ] E[𝑋 𝑗 + log(4/Y ′)]

Eq. 8.2
≤ 1

Pr[𝐸≥𝑚 ] E[𝑍 𝑗 + log(4/Y ′)] Fact 8.4 (i)≤ 1
Pr[𝐸≥𝑚 ] (O(1/Y) + log(4/Y ′)) = O(1/Y) .

By Lemma 8.1 (ii) the expected number of row additions performed by a successful run of
SGAUSS is therefore at most E[∑𝑗 ∈[𝑛+𝐿−1] 𝐻 𝑗 ] = O(𝑚/Y). Since unsuccessful runs happen
with probability O(1/𝑚) and can perform at most 𝑚𝐿 additions (each row can only be
the target of 𝐿 row additions), the overall expected number of additions is not skewed by
unsuccessful runs, hence is also in O(𝑚/Y). This finishes the proof of Theorem C. ◀

▶ Remark. The analysis described in this section works in exactly the same way if instead
of F2 a larger finite field F is used. A row in the random matrix is determined by a random
starting position and a block of 𝐿 random elements from F. A row operation during
Gaussian elimination consists of a division, a multiplication of a block with a scalar and
a row addition. The running time of the algorithm will increase at least by a factor of
log( |F|) (the bitlength of a field element), and further increases depend on how well word
parallelism can be utilized for operations like row additions and scalar multiplications.
(In [GOV16], efficient methods are described for F3.) The queue length will become a little
smaller, but not significantly since even the M/D/1 queue with arrivals with a Poisson(1−Y)
distribution will lead to average queue length Θ(1/Y).

8.8. A New Retrieval Data Structure – Proof of Theorem C1

With Theorem C in place we are ready to carry out the analysis of the retrieval data
structure following the general strategy from Section 3.4.



106 8. Near-Quadratic Matrices with One Short Random Block per Row

Proof of Theorem C1. Let 0 < Y < 1
2 , 𝑆 ⊆ U of size𝑚 = |𝑆 | and 𝑓 : 𝑆 → {0, 1}𝑟 be given

and let 𝐿 = Θ( log𝑚
Y ) be the number from Theorem C. We pick fully random hash functions

𝑠 ←− [𝑛]U and 𝑝 ←− ({0, 1}𝐿)U which define another hash function ®𝑒 : U → {0, 1}𝑛+𝐿−1

via ®𝑒 (𝑥) = 𝐵𝑠 (𝑥),𝑝 (𝑥) using notation from Definition 2.6. The matrix 𝐴 with rows ®𝑒 (𝑥) for
𝑥 ∈ 𝑆 has distribution 𝐴

d= 𝑀𝐿
𝑚,𝑛 .

Assume 𝑟 = 1 for now. By Theorem C, 𝐴 has full rank with probability 1 − O(1/𝑛)
and, in that case, SGAUSS solves the linear system arising in construct (see Figure 3.5)
for ®𝑧 ∈ {0, 1}𝑛+𝐿−1 by performing O(𝑚/Y) row additions. Since additions affect only
𝐿 = O( log𝑚

Y ) consecutive bits, and since a word RAM can deal with O(log𝑚) bits at once,
a single row addition takes time O(1/Y). Back substitution has to evalute one inner product
of vectors of length 𝐿 for each element of ®𝑧, which takes time O(𝑚/Y). The total expected
running time is then O(𝑚/Y2).

For 𝑟 ≥ 2 we make the obvious changes to SGAUSS to apply all row transformations
simultaneously to 𝑟 right-hand sides, which incurs no additional cost using bit parallelism.
The back substitution to obtain 𝑍 ∈ {0, 1} (𝑛+𝐿−1)×𝑟 is done separately for each column, for
a total construction time of O(𝑚/Y2 + 𝑟𝑚/Y), which establishes (i).

The data structure 𝐷 𝑓 stores 𝑍 , which takes ( 1
1−Y𝑚 + 𝐿 − 1)𝑟 bits, as well as a seed,

which takes O(1) bits whp, giving at most (1 + 3Y)𝑟𝑚 bits whp. Replacing Y with Y/3 yields
the literal result (ii).

We store 𝑍 ∈ {0, 1} (𝑛+𝐿−1)×𝑟 by dividing it into submatrices of dimension 𝑤 × 𝑟 (where
𝑤 is the word size) that are stored consecutively. Each submatrix is stored column-wise
using 𝑟 consecutive memory words. An eval2 operation accesses a submatrix of 𝑍 of size
𝐿 × 𝑟 . It is easy to see that the required data is contained in at most (𝐿/𝑤 + 1)𝑟 = O(𝑟/Y)
consecutive memory words and the computation in eval2 can be carried out using O(𝑟/Y)
word operations, including bit-shift, and and parity. This establishes (iii). ◀

8.9. Input Partitioning – Proof of Theorem C2

We now apply input partitioning to Theorem C1, using a desired chunk size of 𝐶 = 𝑚Y .
This reduces the time bounds for construct and eval by a factor of 1/Y. The reason is that
we can use smaller block sizes 𝐿, which makes row additions and inner products cheaper.
We remark that 𝐶 = 𝑚Y is unlikely to be a good choice in practice. In the argument, we
make use of log𝑚

𝑚Y ≪ Y which holds for sufficiently large𝑚. While the left term is indeed
𝑜 (1) and the right a constant, even for moderate values of Y = 0.05 implausibly large
values of𝑚 are needed to satisfy log𝑚

𝑚Y < Y. In this sense, Theorem C2 taken literally is of
theoretical value only. Still, the general idea is sound, and it can give improvements in
practice when partitioning less aggressively, say with 𝐶 ≈ √𝑚. Indeed, the running times
reported in Section 12.2 are achieved with input partitioning.

Proof of Theorem C2. We use flexible input partitioning from Section 3.4.2 with 𝐶 =𝑚Y

and construct an individual retrieval data structure for each chunk with 𝐿 = O( log𝐶
Y ) =

O(log𝑚). Arguing similarly as in Theorem C1, such a construction succeeds in expected
time O(𝐶/Y+𝑟𝐶) with probability 1−O(1/𝐶). In case the construction fails for a chunk, it is
repeated with a different seed. In the end, we save the concatenation of all𝑚/𝐶 retrieval data
structures and an auxiliary array containing for each chunk the offset of the corresponding
retrieval data structure in the concatenation and the seed used for the chunk. It is easy



8.9. Input Partitioning – Proof of Theorem C2 107

to check that the auxiliary array occupies O((log𝑚)/𝑚1−Y) bits which is asymptotically
negligible. The total expected construction time is O((𝑚/𝐶) · (𝐶/Y + 𝑟𝐶) = O(𝑚/Y + 𝑟𝑚).
Since 𝐿 = O(log𝑚), an eval can be carried out in time O(𝑟 ). It causes one cache miss, not
counting the access to the auxiliary array (see Section 3.2). ◀



108

Relevant Definitions and Theorems for Chapter 9

(Originally on Pages 20, 21 and 35)

▶ Definition 2.7 (Random Hypergraph with Aligned Blocks). Let 𝑛,𝑚, 𝑘, ℓ ∈ N with 𝑛 a

multiple of ℓ . The random hypergraph with 𝑘 aligned blocks of size ℓ is given as

𝐵𝑘,ℓ𝑛,𝑚 B ( [𝑛]0, {𝑒 ′1, . . . , 𝑒 ′𝑚}), where 𝑒𝑖 ←− [ [𝑛/ℓ ]0𝑘
]

and 𝑒 ′𝑖 =
⋃
𝑗 ∈𝑒𝑖
{ 𝑗ℓ, . . . , ( 𝑗 + 1)ℓ − 1} for 𝑖 ∈ [𝑚] .

▶ Definition 2.8 (Random Hypergraph with Unaligned Blocks). Let 𝑛,𝑚, 𝑘, ℓ ∈ N. The
random hypergraph with 𝑘 unaligned blocks of size ℓ is given as

𝑊 𝑘,ℓ
𝑛,𝑚 B (Z𝑛, {𝑒 ′1, . . . , 𝑒 ′𝑚}), where 𝑒𝑖 ←− [Z𝑛𝑘 ] and 𝑒 ′𝑖 =

⋃
𝑗 ∈𝑒𝑖
{ 𝑗, . . . , 𝑗 + ℓ − 1} for 𝑖 ∈ [𝑚] .

possible outcome of 𝐵3,2
30,5 possible outcome of𝑊 3,2

30,5

▶ Theorem D. Let 𝑘, ℓ ≥ 2. The 1-orientability threshold 𝛾𝑘,ℓ of (𝑊 𝑘,ℓ
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N is charac-

terised by Equation (9.8) in Chapter 9. It exceeds the threshold of (𝐵𝑘,ℓ𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N, at least for
(𝑘, ℓ) ∈ {2, . . . 7} × {2, . . . , 10}.
▶ Theorem D1. Let 𝑘, ℓ ≥ 2. Consider 𝑘-ary cuckoo hashing with blocks of size ℓ . When

using unaligned blocks rather than aligned blocks, the load threshold changes from 𝑐∗
𝑘,ℓ
/ℓ

to 𝛾𝑘,ℓ . This is an improvement at least for the values (𝑘, ℓ) ∈ {2, . . . 7} × {2, . . . , 10}. The
worst-case number of cache misses and key comparisons per lookup remain unaffected.



109

9. Load Thresholds for Cuckoo Hashing

with Unaligned Blocks

The purpose of this chapter is to prove TheoremD (restated on the facing page) and compute
the corresponding thresholds 𝛾𝑘,ℓ . Theorem D1 is then an immediate consequence.

9.1. Outline of the Proof

Step 1: A tidier problem. The elements of a hyperedge 𝑒 of 𝐵𝑛 = 𝐵𝑘,ℓ𝑛,𝑚 and𝑊𝑛 =𝑊 𝑘,ℓ
𝑛,𝑚

are not independent, as 𝑒 is the union of 𝑘 intervals of size ℓ . This poorly reflects the actual
tidiness of the probabilistic object. We may obtain a model with independent elements in
hyperedges, by switching to a more general notion of what it means to orient a hypergraph.

Formally, given a weighted hypergraph 𝐻 = (𝑉 , 𝐸, [) with weight function [ : 𝑉 ∪ 𝐸 →
N, an [-orientation 𝜎 of 𝐻 assigns to each pair (𝑒, 𝑣) of a hyperedge and an incident vertex
a number 𝜎 (𝑒, 𝑣) ∈ N0 such that

∀𝑒 ∈ 𝐸 :
∑︁
𝑣∈𝑒

𝜎 (𝑒, 𝑣) = [ (𝑒), and ∀𝑣 ∈ 𝑉 :
∑︁
𝑒∋𝑣

𝜎 (𝑒, 𝑣) ≤ [ (𝑣) . (9.1)

We will still say that a hyperedge 𝑒 is oriented to a vertex 𝑣 (possibly several times) if
𝜎 (𝑒, 𝑣) > 0. One may be inclined to call [ (𝑣) a capacity for 𝑣 ∈ 𝑉 and [ (𝑒) a demand for
𝑒 ∈ 𝐸, but we use the same letter in both cases as the distinction is dropped later anyway.
If all hyperedge weights are 1 and all vertex weights are ℓ , we recover the notion of an
ℓ-orientation.

(a) →
[ ( ) = ℓ
[ ( ) = 1

(b) →
[ ( ) = ℓ
[ ( ) = 1
[ ( ) = ℓ−1

Figure 9.1 (a) In 𝑘-ary cuckoo hashing with aligned blocks of size ℓ (here 𝑘 = ℓ = 3), we can
contract each block into a single vertex of weight ℓ to obtain a simpler but equivalent
representation of the orientation problem.
(b) In 𝑘-ary cuckoo hashing with windows of size ℓ , a similar idea works, but addi-
tional helper hyperedges (drawn as ) of weight ℓ−1 are needed (see Proposition 9.1).

A simplified representation of 𝐵𝑘,ℓ𝑛,𝑚 is readily obtained as 𝐻𝑘
𝑛/ℓ,𝑚 , as explained in Sec-

tion 2.4.1 and illustrated in Figures 2.5 and 9.1 (a). In 𝐻𝑘
𝑛/ℓ,𝑚 , each group of ℓ vertices of



110 9. Load Thresholds for Cuckoo Hashing with Unaligned Blocks

𝐵𝑘,ℓ𝑛,𝑚 representing one aligned block is now contracted into a single vertex of weight ℓ and
hyperedges contain 𝑘 independent vertices representing blocks instead of 𝑘ℓ dependent
vertices. It is clear that 𝐵𝑘,ℓ𝑛,𝑚 is 1-orientable if and only if 𝐻𝑘

𝑛/ℓ,𝑚 is ℓ-orientable.
In a similar spirit we identify a transformed version �̂�𝑛 for𝑊𝑛 . However, this time the

details are more complicated as the vertex set has an intrinsic linear geometry, whereas 𝐵𝑛
featured essentially an unordered collection of internally unordered blocks. The ordinary
hyperedges in �̂�𝑛 also have size 𝑘 instead of size 𝑘ℓ , but we need to introduce additional
helper hyperedges that capture the linear geometry of Z𝑛 , see Figure 9.1 (b). We define:

�̂�𝑛 B �̂� 𝑘,ℓ
𝑛,𝑚 B (Z𝑛,𝐶𝑛 ∪ {𝑒1, . . . , 𝑒𝑚}, [) (9.2)

with ordinary hyperedges 𝑒𝑖 ←− [Z𝑛𝑘 ],
helper hyperedges 𝐶𝑛 = {ℎ𝑖 B (𝑖, 𝑖 + 1) | 𝑖 ∈ Z𝑛},
vertex weight [ (𝑣) = ℓ for 𝑣 ∈ Z𝑛,
and hyperedge weights [ (ℎ) = ℓ − 1, [ (𝑒) = 1 for ℎ ∈ 𝐶𝑛, 𝑒 ∈ {𝑒1, . . . , 𝑒𝑚}.

Note that formally the hypergraphs𝑊𝑛 and �̂�𝑛 are random variables on a common probab-
ility space. An outcome 𝜔 = (𝑒𝑖)𝑖∈[𝑚] from this space determines both hypergraphs.

The following proposition justifies the definition. It is proved in Section 9.2.

▶ Proposition 9.1. �̂�𝑛 is orientable if and only if𝑊𝑛 is orientable.

An important merit of �̂�𝑛 that will be useful in Step 3 is that it is locally tree-like, meaning
each vertex has a probability of 𝑜 (1) to be involved in a constant-length cycle. Here, by a
cycle in a hypergraph we mean a sequence of distinct hyperedges 𝑒1, 𝑒2, . . . , 𝑒 𝑗 such that
two consecutive hyperedges share a vertex and 𝑒 𝑗 and 𝑒1 share a vertex.

Note the interesting special case�̂� 2,2
𝑛,𝑚 , which is a cycle of length𝑛with𝑚 random chords,

unit edge weights and vertices of weight 2. Understanding the orientability thresholds for
this graph seems interesting in its own right, not just as a means to understand𝑊 2,2

𝑛,𝑚 .

Step 2: Incidence Graph and Allocations. The next step is by no means difficult or
creative. We merely perform the necessary preparations needed to apply Lelarge’s Theorem
[LLM13], recalling their concept of an allocation in the process (see also Chapter 5).

This will effectively get rid of the asymmetry between the roles of vertices and hy-
peredges in the problem of orienting �̂�𝑛 , by switching perspective in two simple ways.
The first is to consider the incidence graph 𝐺𝑛 of �̂�𝑛 instead of �̂�𝑛 itself, i.e. the weighted
bipartite graph

𝐺𝑛 = 𝐺𝑘,ℓ
𝑛,𝑚 = ( 𝐶𝑛︸︷︷︸

𝐴𝐶

∪ {𝑒1, . . . , 𝑒𝑚}︸        ︷︷        ︸
𝐴𝑅

, Z𝑛︸︷︷︸
𝐵

, “∋”︸︷︷︸
𝐸 (𝐺𝑛)

, [ ). (9.3)

We use 𝐴 = 𝐴𝐶 ∪ 𝐴𝑅 to denote those vertices of 𝐺𝑛 that were hyperedges in �̂�𝑛 , and 𝐵
for those vertices of 𝐺𝑛 that were vertices in �̂�𝑛 . Vertices 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 are adjacent
in 𝐺𝑛 if 𝑏 ∈ 𝑎 in �̂�𝑛 . The weights [ on vertices and hyperedges in �̂�𝑛 are now vertex
weights with [ (𝑎𝐶 ) = ℓ − 1, [ (𝑎𝑅) = 1, [ (𝑏) = ℓ for 𝑎𝐶 ∈ 𝐴𝐶 , 𝑎𝑅 ∈ 𝐴𝑅 , 𝑏 ∈ 𝐵. The
notion of 𝜎 being an [-orientation translates to 𝜎 being a map 𝜎 : 𝐸 (𝐺𝑛) → N0 such that∑

𝑏∈𝑁 (𝑎) 𝜎 (𝑎, 𝑏) = [ (𝑎) for all 𝑎 ∈ 𝐴 and
∑

𝑎∈𝑁 (𝑏) 𝜎 (𝑎, 𝑏) ≤ [ (𝑏) for all 𝑏 ∈ 𝐵. Note that



9.1. Outline of the Proof 111

vertices from 𝐴 need to be saturated (“= [ (𝑎)” for 𝑎 ∈ 𝐴) while vertices from 𝐵 need not be
(“≤ [ (𝑏)” for 𝑏 ∈ 𝐵). This leads to the second switch in perspective.

Dropping the saturation requirement for 𝐴, we say 𝜎 is an allocation (with respect to [)
if

∑
𝑢∈𝑁 (𝑣) 𝜎 (𝑢, 𝑣) ≤ [ (𝑣) for all 𝑣 ∈ 𝐴 ∪ 𝐵.
Clearly, any [-orientation is an allocation, but not vice versa; for instance, the trivial

map 𝜎 ≡ 0 is an allocation. Let |𝜎 | denote the size of an allocation, i.e. |𝜎 | = ∑
𝑒∈𝐸 𝜎 (𝑒). By

bipartiteness, no allocation can have a size larger than the total weight of 𝐴, i.e.

for all allocations 𝜎 : |𝜎 | ≤ [ (𝐴) =
∑︁
𝑎∈𝐴

[ (𝑎) = |𝐴𝐶 | · (ℓ − 1) + |𝐴𝑅 | · 1 = (ℓ − 1)𝑛 +𝑚

and the [-orientations of 𝐺𝑛 are precisely the allocations of size [ (𝐴). From now on let
𝑚 = 𝑐𝑛. We conclude:
▶ Proposition 9.2. Let𝑀 (𝐺𝑛) denote the maximal size of an allocation of 𝐺𝑛 . Then

𝑀 (𝐺𝑛)
𝑛 = ℓ − 1 + 𝑐 if and only if �̂�𝑛 is orientable.

Step 3: The Limit 𝑻 of 𝑮𝒏. Reaping the benefits of step 1, we find that 𝐺𝑛 = 𝐺𝑘,ℓ
𝑛,𝑐𝑛 has

O(1) cycles of length O(1) whp. To capture the local appearance of𝐺𝑛 even more precisely,
let the 𝑟 -ball around a vertex 𝑣 in a graph be the subgraph induced by the vertices of
distance at most 𝑟 from 𝑣. Then the 𝑟 -ball around a random vertex of𝐺𝑛 is distributed, as 𝑛
gets large, more and more like the 𝑟 -ball around the root of a random infinite rooted tree
𝑇 = 𝑇𝑘,ℓ

𝑐 . The tree 𝑇 is distributed as follows, with weighted nodes of types 𝐴𝐶 , 𝐴𝑅 or 𝐵.
The root of 𝑇 is of type 𝐴𝐶 , 𝐴𝑅 or 𝐵 with probability 1

2+𝑐 ,
𝑐

2+𝑐 and 1
2+𝑐 , respectively.

If the root is of type𝐴𝐶 , it has two children of type 𝐵. If it is of type𝐴𝑅 , it has 𝑘 children
of type 𝐵. If it is of type 𝐵, it has two children of type 𝐴𝐶 and a random number 𝑋 of
children of type 𝐴𝑅 , where 𝑋 ∼ Po(𝑘𝑐). Here Po(_) denotes the Poisson distribution
with parameter _.
A vertex of type 𝐴𝐶 that is not the root has one child of type 𝐵. A vertex of type 𝐴𝑅

that is not the root has 𝑘 − 1 children of type 𝐵.
A vertex of type 𝐵 that is not the root has a random number 𝑋 of children of type
𝐴𝑅 , where 𝑋 ∼ Po(𝑘𝑐). If its parent is of type 𝐴𝐶 , then it has one child of type 𝐴𝐶 .
Otherwise, it has two children of type 𝐴𝐶 .
Vertices of type 𝐴𝐶 , 𝐴𝑅 and 𝐵 have weight ℓ−1, 1 and ℓ , respectively.

All random decisions should be understood to be independent. A type is also treated as a
set containing all vertices of that type. In Section 9.3 we argue that:
▶ Proposition 9.3. Almost surely, (𝐺𝑛)𝑛∈N = (𝐺𝑘,ℓ

𝑛,𝑐𝑛)𝑛∈N has local weak limit 𝑇 = 𝑇𝑘,ℓ
𝑐 .

The concept of local weak limit is explained in Section 5.1. With notation from
Section 5.2 and distributions given in Figure 9.2, 𝑇 is a bipartite Galton-Watson tree
𝑇

d= GWTΦ𝐴,Φ𝐵 .

Step 4: The Method of Lelarge. We are now in a position to apply Lelarge’s The-
orem [LLM13] that characterises lim𝑛→∞

𝑀 (𝐺𝑛)
𝑛 in terms of solutions to belief propagation

equations for 𝑇 . Put abstractly: The numerical limit of a function of 𝐺𝑛 is expressed as a
function of the graph limit of 𝐺𝑛 . We elaborate on details and deal with the equations in
Section 9.4. After condensing the results into a characterisation of 𝛾𝑘,ℓ ∈ (0, 1) in terms of
“well-behaved” functions we obtain:



112 9. Load Thresholds for Cuckoo Hashing with Unaligned Blocks

𝚽
𝑨 : Sketch Formal Outcome Probability

(𝐷𝐴,𝑊 𝐴, {𝐶𝐴
𝑖 }𝑖∈[𝐷𝐴 ]) Φ𝐴 (𝐷𝐴,𝑊 𝐴, {𝐶𝐴

𝑖 }𝑖∈[𝐷𝐴 ])
(𝑘, 1, {𝑅, 𝑅, . . . , 𝑅}) 𝑐

1+𝑐

(2, ℓ − 1, {𝐶,𝐶}) 1
1+𝑐

𝚽
𝑩 : Sketch Formal Outcome Probability

(𝐷𝐵,𝑊 𝐵, {𝐶𝐵
𝑖 }𝑖∈[𝐷𝐵 ]) Φ𝐵 (𝐷𝐵,𝑊 𝐵, {𝐶𝐵

𝑖 }𝑖∈[𝐷𝐵 ])
(2, ℓ, {𝐶,𝐶}) Pr[Po(𝑐𝑘) = 0]
(3, ℓ, {𝐶,𝐶, 𝑅}) Pr[Po(𝑐𝑘) = 1]

...
...

...

(𝑑, ℓ, {𝐶,𝐶, 𝑅, . . . , 𝑅}) Pr[Po(𝑐𝑘) = 𝑑 − 2]
...

...
...

Figure 9.2 Distributions Φ𝐴 = Φ𝐴
𝑐,𝑘,ℓ

and Φ𝐵 = Φ𝐵
𝑐,𝑘,ℓ

on stars (in the sense of Section 5.2)
such that GWTΦ𝐴,Φ𝐵

d= 𝑇 . This slightly more technical terminology is closer to
Lelarge’s Theorem [LLM13] and we use distinct constants 𝑅,𝐶 ≥ ℓ as edge weights
to distinguish edges incident to 𝐴𝑅 and 𝐴𝐶 .

▶ Proposition 9.4.

lim
𝑛→∞

𝑀 (𝐺𝑛,𝑐𝑛)
𝑛

{
= ℓ − 1 + 𝑐 almost surely if 𝑐 < 𝛾𝑘,ℓ

< ℓ − 1 + 𝑐 almost surely if 𝑐 > 𝛾𝑘,ℓ .

Step 5: Closing the Gap. It is important to note that we are not done, as

lim
𝑛→∞

𝑀 (𝐺𝑛,𝑐𝑛)
𝑛 = ℓ − 1 + 𝑐 a.s. does not imply 𝑀 (𝐺𝑛,𝑐𝑛) = 𝑛 · (ℓ − 1 + 𝑐) whp. (9.4)

We still have to exclude the possibility of a gap of size 𝑜 (𝑛) on the right hand side; imagine
for instance 𝑀 (𝐺𝑛,𝑐𝑛) = (ℓ − 1 + 𝑐)𝑛 − √𝑛 to appreciate the difference. In the setting of
cuckoo hashing with double hashing in Chapter 10, the analogue of this pesky distinction
requires a somewhat lengthy case analysis. We should therefore treat this carefully.

Luckily the line of reasoning by Lelarge [Lel12] can be adapted to our more general
setting. The key is to prove that if no orientation exists, then the configuration causing
this problem has size Θ(𝑛) and those large overfull structures do not go unnoticed on the
left side of (9.4).

▶ Lemma 9.5. There is a constant 𝛿 > 0 such that whp no set of 0 < 𝑡 < 𝛿𝑛 vertices in �̂�𝑛

(of weight ℓ𝑡 ) induces hyperedges of total weight ℓ𝑡 or more, provided 𝑐 ≤ 1.

The proof of this Lemma (using first moment methods) and the final steps towards The-
orem D are found in Section 9.5.

The following sections provide the details of the technical argument.



9.2. Equivalence of𝑊𝑛 and �̂�𝑛 with respect to orientability 113

9.2. Equivalence of𝑾𝒏 and �̂�𝒏 with respect to orientability

In this section we prove Proposition 9.1, i.e. we show that𝑊𝑛 is orientable if and only
if �̂�𝑛 is orientable. Recall the relevant notions from Definition 2.8 and Equations (9.1)
and (9.2). Some ideas are illustrated in Figure 9.3. We start with the hypergraph𝑊𝑛 in
(a). From this, (b) is obtained by introducing one “broker-vertex” ( ) for each interval
of size ℓ in the table, through which the incidences of the hyperedges ( ) are “routed” as
shown. The purpose of each broker-vertex is to “claim” part of its interval on behalf of
incident hyperedges. To manage these claims, we imagine a “separator” ( ) between each
pair of adjacent broker-vertices that, by pointing between two table cells, indicates where
the claim of one broker-vertex ends and the claim of the next broker-vertex begins, see
(c). There are ℓ possible “settings” for each separator. The separators can be modelled as
(hyper-)edges of size 2 and weight ℓ − 1 with ℓ possible ways to distribute this weight
among the two incident broker-vertices that have weight ℓ . The table is then fully implicit,
which gives �̂�𝑛 in (d).

(a) (b)

(c) (d) [ ( ) = ℓ
[ ( ) = 1
[ ( ) = ℓ−1

Figure 9.3 Drawing of (a part of)𝑊𝑛 in (a) and �̂�𝑛 in (d) with two intermediate ideas implicit
in the proof of Proposition 9.1.

Proof of Proposition 9.1. For this proof, let 𝔴𝑖 B {𝑖, . . . , 𝑖 + ℓ − 1}.
⇒ Let 𝜎 be a 1-orientation of𝑊𝑛 . We will define an [-orientation �̂� of �̂�𝑛 . Recall from

Definition 2.8 and Equation (9.2) how a hyperedge 𝑒 ′ =
⋃

𝑗 ∈𝑒 𝔴𝑗 of𝑊𝑛 is defined in
terms of a hyperedge 𝑒 of �̂�𝑛 . If 𝜎 assigns 𝑒 ′ to 𝑥 ∈ Z𝑛 , we pick 𝑗 ∈ 𝑒 with 𝑥 ∈ 𝔴𝑗 . We
let �̂� assign 𝑒 to 𝑗 and also assign to 𝑥 the label 𝔴𝑗 .
Note that, since 𝜎 is a 1-orientation, each 𝑥 ∈ Z𝑛 receives at most one label this way,
and that the label stems from {𝔴𝑥−ℓ+1, . . . ,𝔴𝑥 }.
We still have to orient the helper hyperedges ℎ𝑖 = (𝑖, 𝑖 + 1) of weight ℓ−1. For this, we
count the number 𝑟𝑖 of elements in 𝔴𝑖 ∩𝔴𝑖+1 with a label that is to the right, i.e. stems
from {𝔴𝑖+1,𝔴𝑖+2, . . . ,𝔴𝑖+ℓ−1}. We then set �̂� (ℎ𝑖 , 𝑖) = 𝑟𝑖 and �̂� (ℎ𝑖 , 𝑖 + 1) = ℓ−1 − 𝑟𝑖 .
We now check that the weight of any vertex 𝑖 ∈ Z𝑛 is respected, i.e. we check that

�̂� (ℎ𝑖 , 𝑖) + �̂� (ℎ𝑖−1, 𝑖) +
∑︁

ordinary hyperedge 𝑒
𝑖∈𝑒

�̂� (𝑒, 𝑖) !≤ ℓ .

From ordinary hyperedges, the contribution is 1 for each 𝑥 ∈ 𝔴𝑖 with label 𝔴𝑖 . From
ℎ𝑖 the contribution is the number of 𝑥 ∈ 𝔴𝑖 ∩𝔴𝑖+1 with label in {𝔴𝑖+1, . . . ,𝔴𝑖+ℓ−1} and
from ℎ𝑖−1, the contribution is the number of 𝑥 ∈ 𝔴𝑖−1 ∩ 𝔴𝑖 not having a label from



114 9. Load Thresholds for Cuckoo Hashing with Unaligned Blocks

{𝔴𝑖 , . . . ,𝔴𝑖+ℓ−2}. The three conditions are clearly mutually exclusive, so each 𝑥 ∈ 𝔴𝑖

can contribute at most 1, giving a total contribution of at most |𝔴𝑖 | = ℓ as required.
⇐ Let �̂� be an [-orientation of �̂�𝑛 . Define 𝑠𝑖 B �̂� (ℎ𝑖−1, 𝑖) and 𝑡𝑖 B �̂� (ℎ𝑖 , 𝑖). Let further

�̄�𝑖 B {𝑖 + 𝑠𝑖 , . . . , 𝑖 + ℓ − 𝑡𝑖 − 1} ⊆ 𝔴𝑖 .
Crucially, {�̄�𝑖 | 𝑖 ∈ Z𝑛} forms a partition of Z𝑛 . This follows from the following
properties:

max(�̄�𝑖) = 𝑖 + ℓ − 𝑡𝑖 − 1, min(�̄�𝑖+1) = 𝑖 + 1 + 𝑠𝑖+1
and 𝑡𝑖 + 𝑠𝑖+1 = �̂� (ℎ𝑖 , 𝑖) + �̂� (ℎ𝑖 , 𝑖 + 1) = [ (ℎ𝑖) = ℓ − 1.

Here, if cyclic intervals span the “seam” of the cycle, max and min should be reinter-
preted in the natural way. Now let 𝑒 (𝑖)1 , . . . , 𝑒 (𝑖)𝜌𝑖 be the ordinary hyperedges directed to
𝑖 by �̂� . Since �̂� respects [ (𝑖) = ℓ we have 𝜌𝑖 + 𝑠𝑖 + 𝑡𝑖 ≤ ℓ , so 𝜌𝑖 ≤ ℓ − 𝑠𝑖 − 𝑡𝑖 = |�̄�𝑖 |. We
can now define the 1-orientation 𝜎 of𝑊𝑛 to direct each 𝑒 (𝑖)𝑗 to 𝑖 + 𝑠𝑖 + 𝑗 − 1 ∈ Z𝑛 for
𝑗 ∈ [𝜌𝑖] and 𝑖 ∈ Z𝑛 . ◀

9.3. Local weak convergence of 𝑮𝒏 to 𝑻

Recall the definitions of the finite graph 𝐺𝑛 in Equation (9.3) and the infinite rooted tree
𝑇 in Step 3 of Section 9.1. As in Chapter 5, we obtain the rooted graph 𝐺𝑛 (◦) from 𝐺𝑛 by
distinguishing one vertex—the root—uniformly at random. For any rooted graph 𝑅 and
𝑑 ∈ N, let (𝑅)𝑑 denote the rooted subgraph of 𝑅 induced by the vertices at distance at most
𝑑 from the root. We treat two rooted graphs as equal if there is an isomorphism between
them that preserves root and vertex types. Refer to Figure 9.4 for a possible outcome of
(𝑇 )3 and (𝐺𝑛 (◦))3.

As in Theorem 5.2, the local weak convergence claim of Proposition 9.3 can be simplified
using the Portmanteau Theorem. What was stated separately as (i) and (ii) in Theorem 5.2
can also be stated together as:

∀𝑑 ∈ N : ∀ rooted graph 𝐻 : lim
𝑛→∞ Pr◦ [(𝐺𝑛 (◦))𝑑 = 𝐻 ] = Pr

𝑇
[(𝑇 )𝑑 = 𝐻 ] almost surely(𝐺𝑛)𝑛∈N .

(9.5)

Here “almost surely” refers to the randomness in choosing the sequence (𝐺𝑛)𝑛∈N while Pr◦
refers to the randomness in choosing ◦ ←− 𝑉 (𝐺𝑛).

The concentration aspect of (9.5) is proved in the same way as in Theorem 5.2. We will
take the time to sketch a proof of the other ingredient, namely the weak convergence of
the “average” measures, which was (i) in Theorem 5.2:

∀𝑑 ∈ N : ∀ rooted graph 𝐻 : lim
𝑛→∞ Pr

𝐺𝑛,◦
[(𝐺𝑛 (◦))𝑑 = 𝐻 ] = Pr

𝑇
[(𝑇 )𝑑 = 𝐻 ] . (9.5’)

Note that in (9.5) the probability in the limit is a random variable (depending on (𝐺𝑛)𝑛∈N),
while the probability in (9.5’) is not.

Proof of Equation (9.5’). For simplicity, we shall assume that child vertices of the same
type are ordered (for 𝐺𝑛 (◦) and 𝑇 just fix an ordering at random). Correspondingly, we
prove the more fine-grained version of (9.5’) where equality indicates the existence of an
isomorphism preserving roots, types and child orderings.



9.3. Local weak convergence of 𝐺𝑛 to 𝑇 115

𝑟1

𝑟2𝑟3

𝑟4

𝑟5
𝑟6

𝑡1

𝑡2

are from 𝐵
are from 𝐴𝑅

are from 𝐴𝐶

Figure 9.4 One possibility of what (𝑇 )3 may look like for 𝑘 = 3. Since the infinite random
tree 𝑇 is designed to reflect the local characteristics of𝐺𝑛 , it is also a possibility for
(𝐺𝑛 (◦))3. Actually, the distributions of (𝐺𝑛 (◦))3 and (𝑇 )3 are asymptotically equal.

Let 𝐻 be a possible outcome of (𝑇 )𝑑 , let 𝑡 ∈ {𝐴𝐶 , 𝐴𝑅, 𝐵} be the type of the root of 𝐻
and let 𝑣1, . . . , 𝑣𝑠 be the vertices of type 𝐵 in 𝐻 , except for leaves, in breadth-first-search
ordering. Let further 𝑥𝑖 ∈ N0 denote the number of 𝑣𝑖 ’s children of type 𝐴𝑅 for 𝑖 ∈ [𝑠].
Checking the definition of𝑇 , the sequence (𝑡, 𝑥1, . . . , 𝑥𝑠) contains all random decisions that
𝑇 has to “get right” in order for (𝑇 )𝑑 to coincide with 𝐻 , i.e.

Pr[(𝑇 )𝑑 = 𝐻 ] = Pr[root(𝑇 ) ∈ 𝑡] ·
𝑠∏
𝑖=1

Pr[𝑋𝑖 = 𝑥𝑖]

where𝑋𝑖 ∼ Po(𝑐𝑘) for 𝑖 ∈ N are the independent random variables used in the construction
of 𝑇 , in breadth-first-search order.

To compare this to Pr𝐺𝑛,◦∈𝐺𝑛 [(𝐺𝑛 (◦))𝑑 = 𝐻 ], we shall reveal the type of ◦ and then
the neighbourhoods of vertices from (𝐺𝑛 (◦))𝑑 one by one in breadth-first-search order
and check equality with 𝐻 . Let 𝑤1, 𝑤2, . . . be the vertices of type 𝐵 in breadth-first-search
ordering and 𝐶 (𝑤𝑖) B 𝑁 (𝑤𝑖) \ parent(𝑤𝑖) the successors 𝑤𝑖 , i.e. 𝑤𝑖 ’s neighbours except
for the vertex from which 𝑤𝑖 was discovered (if 𝑤𝑖 ≠ ◦). Recall that the 𝑐𝑛 vertices
from 𝐴𝑅 each choose 𝑘 among the 𝑛 vertices of 𝐵 uniformly at random, so for 𝑣 ∈ 𝐵
we have |𝑁 (𝑣) ∩ 𝐴𝑅 | ∼ Bin(𝑐𝑘𝑛, 1

𝑛 ). However, when revealing 𝑌𝑖 B |𝐶 (𝑤𝑖) ∩ 𝐴𝑅 |, then
a constant number 𝛼𝑖 of incidences of vertices from 𝐴𝑅 are already revealed and the
full neighbourhoods of a constant number 𝛽𝑖 of vertices of type 𝐵 are already revealed.
Thus, conditioned on 𝐺𝑛 (◦) matching with 𝐻 until before 𝑁 (𝑤𝑖) is revealed, we have
𝑌𝑖 ∼ Bin(𝑐𝑘𝑛−𝛼𝑖 , 1

𝑛−𝛽𝑖 ). A second complication is that𝐺𝑛 (◦) can contain cycles. Therefore,
whenever we reveal the identity of a vertex of type 𝐴𝑅 we shall assume that it is not one of
the vertices already seen and when we reveal the identity of a vertex of type 𝐵 found as a
child of a vertex of type 𝐴𝑅 , we shall assume that its position in Z𝑛 is not within distance 𝑑
of a vertex of type 𝐵 already seen. The probability of these events is clearly 1 − 𝑜 (1) since
only a constant number of vertices are forbidden. It is important to note that, since 𝐻 is a
possible outcome for (𝑇 )𝑑 , all remaining aspects of 𝐻 and 𝐺𝑛 (◦) coincide by construction
(e.g. the degree of vertices of types 𝐴𝑅 and 𝐴𝐶 ). We get

Pr
𝐺𝑛,◦∈𝑉 (𝐺𝑛)

[(𝐺𝑛 (◦))𝑑 = 𝐻 ] = (1−𝑜 (1)) Pr[◦ ∈ 𝑡]·
𝑠∏
𝑖=1

Pr[𝑌𝑖 = 𝑥𝑖 | 𝐺𝑛 (◦) matches with 𝐻 up to 𝑣𝑖] .



116 9. Load Thresholds for Cuckoo Hashing with Unaligned Blocks

Since Pr[◦ ∈ 𝑡] = Pr[root(𝑇 ) ∈ 𝑡] by construction and due to the convergence of Binomial
to Poisson random variables, we get lim

𝑛→∞ Pr𝐺𝑛,◦ [(𝐺𝑛 (◦))𝑑 = 𝐻 ] = Pr[(𝑇 )𝑑 = 𝐻 ] as desired.
◀

9.4. Belief Propagation on the Limiting Tree 𝑻

Before applying Lelarge’s Theorem, we try to give some intuition on the underlying belief
propagation equations.

Recall the definition and relevance of large allocations from Proposition 9.2 and consider
the task of finding a large allocation 𝜎 for 𝐺𝑛 . Imagine the vertices as agents in a parallel
endeavour that proceeds in rounds and that is designed to yield information useful for
constructing 𝜎 . In each round, every vertex sends a message to each of its neighbours.
Since two messages are sent between two adjacent vertices 𝑢 and 𝑣—one in each direction—
it is convenient to distinguish the directed edges (𝑢, 𝑣) and (𝑣,𝑢), the message from 𝑢
to 𝑣 being sent along (𝑢, 𝑣) and vice versa. Along 𝑒 = (𝑢, 𝑣) the message is a number
𝐼𝑒 ∈ [0,min([ (𝑢), [ (𝑣))]. We interpret this as the vertex 𝑢 suggesting that 𝜎 ({𝑢, 𝑣}) be
set to 𝐼𝑒 . To determine 𝐼𝑒 , the vertex 𝑢 sums up the messages it received from its other
neighbours in the previous round, obtaining a value b . If b < [ (𝑢), then, assuming the
suggestions of the neighbours of 𝑢 were all followed, 𝑢 would want 𝜎 (𝑒) = [ (𝑢) − b in order
to fully utilise its weight[ (𝑢). Taking into account theweight of 𝑣,𝑢 sends 𝐼𝑒 = [[ (𝑢)−b][ (𝑣)0
where [𝑥] 𝑗𝑖 B max(𝑖,min( 𝑗, 𝑥)) is our shorthand for the “clamp function” (which we also
occasionally use for one-sided clamping, leaving out the upper or lower index). Let 𝑃 be
the operator that takes an assignment 𝐼 : ®𝐸 (𝐺𝑛) → N0 of messages to directed edges and
computes the messages 𝑃 (𝐼 ) : ®𝐸 (𝐺𝑛) → N0 of the next round.

On finite trees, iterated application of 𝑃 can easily be seen to converge to a unique
fixed point 𝐼 ∗ of 𝑃 , regardless of the initial assignment of messages. From 𝐼 ∗, the size of the
maximum allocation can be obtained by local computations. It is plausible but non-trivial
that the asymptotic behaviour of a largest allocation of𝐺𝑛 is similarly linked to fixed points
of 𝑃 on the random weak limit 𝑇 of 𝐺𝑛 .

Let (𝑢, 𝑣) be an edge of𝑇 where 𝑣 is closer to the root than 𝑢 and let𝑇𝑢 be the subtree of
𝑇 containing 𝑣, 𝑢 and all descendants of 𝑢. If we apply 𝑃 to 𝑇 repeatedly (starting with, say,
the all-zero message assignment 𝐼 ≡ 0), the message 𝐼 (𝑢,𝑣) in later rounds will depend on
ever larger parts of 𝑇𝑢 but nothing else. Assume there was a magical (measurable) function
𝑓 that finds, by looking at all of𝑇𝑢 , the message 𝑓 (𝑇𝑢) that is sent along (𝑢, 𝑣) in some fixed
point of 𝑃 . In particular, if 𝑢1, . . . , 𝑢𝑖 are the children of 𝑢, locally, the fixed point equation is

𝑓 (𝑇𝑢) = [[ (𝑢) −
𝑖∑︁
𝑗=1

𝑓 (𝑇𝑢 𝑗 )][ (𝑣)0 .

Assume we have yet to reveal anything about 𝑇𝑢 and only know the types 𝑡𝑢 and 𝑡𝑣 of 𝑢
and 𝑣. Then the random variable 𝐼𝑡𝑢→𝑡𝑣 B 𝑓 (𝑇𝑢) has a well-defined distribution. The four
possible combinations of types yield random variables 𝐼𝐴𝐶→𝐵, 𝐼𝐴𝑅→𝐵, 𝐼𝐵→𝐴𝐶 , 𝐼𝐵→𝐴𝑅 , which
must fulfil certain distributional equations.

Consider for instance 𝑒 = (𝑢, 𝑣) with 𝑢 ∈ 𝐵 and 𝑣 ∈ 𝐴𝐶 . On the one hand the message
𝑓 (𝑇𝑢) is distributed like 𝐼𝐵→𝐴𝐶 . On the other hand, looking one layer deeper, 𝑢 has children
𝑢1, . . . , 𝑢𝑋 of type𝐴𝑅 , with𝑋 ∼ Po(𝑐𝑘) as well as one child 𝑎′ ≠ 𝑎 of type𝐴𝐶 . The messages



9.4. Belief Propagation on the Limiting Tree 𝑇 117

𝑓 (𝑇𝑢1), . . . , 𝑓 (𝑇𝑢𝑋 ) and 𝑓 (𝑇𝑎′) are independent (since the subtrees are independent) and
distributed like 𝐼𝐴𝑅→𝐵 or 𝐼𝐴𝐶→𝐵 , respectively, implying:

𝐼𝐵→𝐴𝐶

d=
[
ℓ − 𝐼𝐴𝐶→𝐵 −

𝑋∑︁
𝑗=1

𝐼 ( 𝑗)𝐴𝑅→𝐵

] ℓ−1
0 . (★3)

where a superscript in parentheses indicates an independent copy of a random variable
and “ d=” denotes equality in distribution.

Leconte, Lelarge, and Massoulié [LLM13] show that, remarkably, the solutions to a
system of such equations are essentially all we require to capture the asymptotics of
maximum allocations. Readers deterred by the measure theory may find Section 2 of
[Lel12] illuminating, which gives a high-level description of the argument for a simpler
case.

We now apply Lelarge’s Theorem to our family (𝐺𝑛)𝑛∈N, which is a fairly straightfor-
ward matter with one twist: In [LLM13] allocations were restricted not only by vertex
constraints (our [ : 𝑉 (𝐺𝑛) → N) but also by edge constraints giving an upper bound on
𝜎 (𝑒) for every edge 𝑒 . We do not require them in this sense and make all edge constraints
large enough to never get in the way. We repurpose them for something else, however,
namely to tell apart the subtypes 𝐴𝐶 and 𝐴𝑅 within the vertex set 𝐴. This is because the
distribution of the children of 𝑢 ∈ 𝐴 depends on this distinction and while [LLM13] knows
no subtypes of 𝐴 out of the box, the constraint on the edge to the parent may influence the
child distribution.

Concretely, we use Lelarge’s Theorem in the specialised form of Equation (5.2), the
distributions Φ𝐴 and Φ𝐵 from Figure 9.2 and the substitutions

𝑋 (𝐶) = 𝐼𝐴𝐶→𝐵, 𝑋 (𝑅) = 𝐼𝐴𝑅→𝐵, 𝑌 (𝐶) = 𝐼𝐵→𝐴𝐶 , 𝑌 (𝑅) = 𝐼𝐵→𝐴𝑅 .

▶ Lemma 9.6 (Special case of [LLM13, Theorem 2.1]).

lim
𝑛→∞

𝑀 (𝐺𝑛,𝑐𝑛)
𝑛 = inf

{
𝐹 (𝐼𝐴𝐶→𝐵, 𝐼𝐵→𝐴𝐶 , 𝐼𝐴𝑅→𝐵, 𝐼𝐵→𝐴𝑅 , 𝑐)

}
almost surely, where

𝐹 (𝐼𝐴𝐶→𝐵, 𝐼𝐵→𝐴𝐶 , 𝐼𝐴𝑅→𝐵, 𝐼𝐵→𝐴𝑅 , 𝑐) = E
[
[𝐼 (1)𝐵→𝐴𝐶

+ 𝐼 (2)𝐵→𝐴𝐶
]ℓ−1

0 + 𝑐 · [
𝑘∑︁
𝑗=1

𝐼 ( 𝑗)𝐵→𝐴𝑅
]10

+[ℓ −∑︁
𝑖=1,2
[ℓ − 𝐼 (𝑖)𝐴𝐶→𝐵 −

𝑋∑︁
𝑗=1

𝐼 ( 𝑗)𝐴𝑅→𝐵]0 −
𝑋∑︁
𝑖=1
[ℓ − 𝐼 (1)𝐴𝐶→𝐵 − 𝐼

(2)
𝐴𝐶→𝐵 −

∑︁
𝑗≠𝑖

𝐼 ( 𝑗)𝐴𝑅→𝐵]0
]

0

]

and the infimum is taken over distributions of 𝐼𝐴𝐶→𝐵, 𝐼𝐴𝑅→𝐵, 𝐼𝐵→𝐴𝐶 , 𝐼𝐵→𝐴𝑅 fulfilling

𝐼𝐴𝐶→𝐵
d= ℓ − 1 − 𝐼𝐵→𝐴𝐶 , (★1)

𝐼𝐴𝑅→𝐵
d=

[
1 −

𝑘−1∑︁
𝑗=1

𝐼 ( 𝑗)𝐵→𝐴𝑅

]
0, (★2)

𝐼𝐵→𝐴𝐶

d=
[
ℓ − 𝐼𝐴𝐶→𝐵 −

𝑋∑︁
𝑗=1

𝐼 ( 𝑗)𝐴𝑅→𝐵

] ℓ−1
0 , (★3)

𝐼𝐵→𝐴𝑅

d=
[
ℓ − 𝐼 (1)𝐴𝐶→𝐵 − 𝐼

(2)
𝐴𝐶→𝐵 −

𝑋∑︁
𝑗=1

𝐼 ( 𝑗)𝐴𝑅→𝐵

]1
0, (★4)

where 𝑋 ∼ Po(𝑘𝑐) and superscripts in parentheses indicate independent copies.



118 9. Load Thresholds for Cuckoo Hashing with Unaligned Blocks

To appreciate the usefulness of Lemma 9.6, understanding its form is more important
than understanding the significance of the individual terms.

If 𝑋 is a random variable on a finite set 𝐷 , then the distribution of 𝑋 is captured by real
numbers (Pr[𝑋 = 𝑖])𝑖∈𝐷 ∈ [0, 1] |𝐷 | that sum to 1. In this sense, the four distributions of
𝐼𝐴𝐶→𝐵 , 𝐼𝐴𝑅→𝐵 , 𝐼𝐵→𝐴𝐶 , 𝐼𝐵→𝐴𝑅 are given by numbers ®𝜌 ∈ [0, 1]ℓ−1×[0, 1]2×[0, 1]ℓ−1×[0, 1]2 =
[0, 1]2ℓ+2. We say ®𝜌 ∈ [0, 1]2ℓ+2 is a solution to the system (★) if the four groups of numbers
belonging to the same distribution each sum to 1 and if setting up the four random variables
according to ®𝜌 satisfies (★1),(★2),(★3) and (★4).

If we treat 𝑐 as a variable instead of as a constant, we obtain the relaxed system (★𝑐)
where solutions are pairs ( ®𝜌, 𝑐) ∈ [0, 1]2ℓ+2 × (0,∞). The value ®𝜌triv that corresponds to

1 = Pr[𝐼𝐴𝐶→𝐵 = 0] = Pr[𝐼𝐴𝑅→𝐵 = 0] = Pr[𝐼𝐵→𝐴𝐶 = ℓ − 1] = Pr[𝐼𝐵→𝐴𝑅 = 1]

is easily checked to give rise to a solution ( ®𝜌triv, 𝑐) of the relaxed system for any 𝑐 > 0, we
call such a solution trivial. Evaluating 𝐹 for a trivial solution yields ℓ − 1 + 𝑐 so Lemma 9.6
implies the trivial assertion lim 𝑀 (𝐺𝑛)

𝑛 ≤ ℓ − 1 + 𝑐 for all 𝑐 > 0.
We now give a “nice” characterisation of the space of non-trivial solutions for (★𝑐).

▶ Lemma 9.7. For any 𝑘, ℓ ≥ 2, there is a bijective map _ ↦→ ( ®𝜌_, 𝑐_) from (0,∞) to the set
of non-trivial solutions for (★𝑐).

Moreover, (each component of) this map is an explicit real analytic function.

Proof. Note that 𝑌 B
∑𝑋

𝑗=1 𝐼
( 𝑗)
𝐴𝑅→𝐵 is the sum of𝑋 independent indicator random variables,

where 𝑋 ∼ Po(𝑘𝑐) and Pr[𝐼 ( 𝑗)𝐴𝑅→𝐵 = 1] = 𝑞 for some 𝑞 ∈ [0, 1] and all 1 ≤ 𝑗 ≤ 𝑋 , with
𝑞 = 0 only occurring in trivial solutions. It is well known that such a “thinned out” Poisson
distribution is again Poisson distributed and we have 𝑌 ∼ Po(_) for _ = 𝑘𝑐𝑞. Thus, each
non-trivial solution to (★𝑐) has such a parameter _ > 0. We will now show that, conversely,
_ uniquely determines this solution. From (★1) and (★3) we obtain:

𝐼𝐵→𝐴𝐶

d=
[
ℓ − (ℓ − 1 − 𝐼𝐵→𝐴𝐶 ) − 𝑌

] ℓ−1
0 =

[
𝐼𝐵→𝐴𝐶 + 1 − 𝑌 ] ℓ−1

0 .

With 𝑝𝑖 B Pr[𝐼𝐵→𝐴𝐶 = 𝑖] for 0 ≤ 𝑖 ≤ ℓ − 1 we can write this equation in matrix form as

©«

𝑝0
𝑝1
...

𝑝ℓ−1

ª®®®®¬
= 𝑒−_ ·

©«

∗ ∗ ∗ . . . ∗
1 _ _2/2 . . . _ℓ−1

(ℓ−1)!
. . .

. . .
...

1 _ _2/2
1 _ + 1

ª®®®®®®®¬

©«

𝑝0
𝑝1
...

𝑝ℓ−1

ª®®®®¬
(9.6)

This uses Pr[𝑌 = 𝑗] = 𝑒−__ 𝑗/ 𝑗 ! for 𝑗 ∈ N0. Each “∗” is such that the columns of the matrix
sum to (𝑒_, . . . , 𝑒_), which is implicit in the fact that we deal with distributions. The unique
solution for a fixed _ can be obtained by using the equations from bottom to top to express
𝑝ℓ−2, 𝑝ℓ−3, . . . , 𝑝0 in terms of 𝑝ℓ−1 and then choosing 𝑝ℓ−1 such that the probabilities sum to
1. This yields a closed expression 𝑝 𝑗 = 𝑝 𝑗 (_) for 0 ≤ 𝑖 ≤ ℓ − 1.

Using first (★1), then (★4) (with the definition of 𝑌 ) and finally (★2) the distributions of
𝐼𝐴𝐶→𝐵 , 𝐼𝐵→𝐴𝑅 and 𝐼𝐴𝑅→𝐵 fall into place, completing the unique solution candidate ®𝜌_ . The
only loose end is the definition of _, which gives a final equation: If 𝑞(_) = Pr[𝐼𝐴𝑅→𝐵 = 1] is



9.5. Closing the Gap – Proof of the Main Theorem 119

the value we computed after choosing _, we need _ = 𝑘𝑐 · 𝑞(_), which uniquely determines
a value 𝑐_ = _

𝑘 ·𝑞 (_) (it is easy to check that _ > 0 guarantees 𝑞(_) > 0). Thus ( ®𝜌_, 𝑐_) is
the unique solution with parameter _. Retracing our steps it is easy to verify that we only
composed real analytic functions. ◀

With the parametrisation of the solutions of (★𝑐), we can, with a slight stretch of notation,
rewrite Lemma 9.6. For any 𝑐 > 0 we have

lim
𝑛→∞

𝑀 (𝐺𝑛,𝑐𝑛)
𝑛 = inf ({𝐹 ( ®𝜌_, 𝑐_) | _ ∈ (0,∞), 𝑐_ = 𝑐} ∪ {ℓ − 1 + 𝑐}) almost surely. (9.7)

We now define the value 𝛾𝑘,ℓ and by proving Proposition 9.4 demonstrate its significance.

𝛾𝑘,ℓ B inf
_>0
{𝑐_ | 𝐹 ( ®𝜌_, 𝑐_) < ℓ − 1 + 𝑐_}. (9.8)

Proof of Proposition 9.4. Case 𝒄 < 𝜸𝒌,ℓ . By definition of 𝛾𝑘,ℓ there is no parameter _
with 𝑐_ = 𝑐 and 𝐹 ( ®𝜌_, 𝑐_) < ℓ − 1 + 𝑐 . Thus, Equation (9.7) implies lim𝑛→∞ 1

𝑛𝑀 (𝐺𝑛,𝑐𝑛) =
ℓ − 1 + 𝑐 almost surely.

Case 𝒄 > 𝜸𝒌,ℓ . By definition of 𝛾𝑘,ℓ , for 𝑐 = 𝛾𝑘,ℓ + Y there is some _ with 𝑐_ ∈ [𝛾𝑘,ℓ , 𝑐) and
𝐹 ( ®𝜌_, 𝑐_) ≤ ℓ−1+𝑐_−Y ′ for some Y ′ > 0. This implies lim𝑛→∞ 1

𝑛𝑀 (𝐺𝑛,𝑐_𝑛) ≤ ℓ−1+𝑐_−Y ′
almost surely.
Since 𝐺𝑛,𝑐𝑛 can be obtained from 𝐺𝑛,𝑐_𝑛 by adding (𝑐 − 𝑐_)𝑛 vertices of weight 1 with
random connections, and this can increase the size of a maximum allocation by at most
(𝑐 − 𝑐_)𝑛, we also have lim𝑛→∞ 1

𝑛𝑀 (𝐺𝑛,𝑐𝑛) ≤ ℓ − 1 + 𝑐 − Y ′ almost surely. ◀

9.5. Closing the Gap – Proof of the Main Theorem

The key ingredient still missing to prove Theorem D is Lemma 9.5, stated on page 112.

Proof of Lemma 9.5. Call a set𝑋 ⊂ Z𝑛 = 𝑉 (�̂�𝑛) a bad set if it induces hyperedges of total
weight ℓ |𝑋 | or more. We now consider each possible size 𝑡 of 𝑋 and each possible number
𝛼𝑡 (0 < 𝛼 ≤ 1) of contiguous segments of 𝑋 separately, using the first-moment method to
bound the probability that a bad set 𝑋 with such parameters exists, later summing over all
𝑡 and 𝛼 .

For now, let 𝑡 and 𝛼 be fixed and write 𝑋 as the disjoint union of non-empty, non-
touching1 intervals 𝑋 = 𝑋1 ∪𝑋2 ∪ . . . ∪𝑋𝛼𝑡 arranged on the cycle Z𝑛 in canonical ordering
and with 𝑋1 being the interval containing min𝑋 . We write the complement Z𝑛 − 𝑋 =
𝑌1 ∪ 𝑌2 ∪ . . . ∪ 𝑌𝛼𝑡 in a similar way. It is almost possible to reconstruct 𝑋 from the sets
{𝑥1, . . . , 𝑥𝛼𝑡 } and {𝑦1, . . . , 𝑦𝛼𝑡 } where 𝑥𝑖 B |𝑋1 ∪ . . . ∪ 𝑋𝑖 | and 𝑦𝑖 B |𝑌1 ∪ . . . ∪ 𝑌𝑖 |, we
just do not know where 𝑋1 starts. To fix this, we exploit that 𝑥𝛼𝑡 and 𝑦𝛼𝑡 are always 𝑡
and 𝑛 − 𝑡 , respectively, and do not really encode information. In the case 0 ∈ 𝑋 , we set
𝑥 ′𝛼𝑡 B max𝑋1 ∈ [0, . . . , 𝑥1) and 𝑦 ′𝛼𝑡 B 𝑦𝛼𝑡 ; if 0 ∉ 𝑋 we set 𝑦 ′𝛼𝑡 B max𝑌1 ∈ [0, . . . , 𝑦1) and
𝑥 ′𝛼𝑡 B 𝑥𝛼𝑡 . The sets {𝑥1, . . . , 𝑥𝛼𝑡−1, 𝑥

′
𝛼𝑡 } ⊆ {0, . . . , 𝑡} and {𝑦1, . . . , 𝑦𝛼𝑡−1, 𝑦

′
𝛼𝑡 } ⊆ {0, . . . , 𝑛−𝑡}

now uniquely identify 𝑋 , meaning there are at most
(𝑡+1
𝛼𝑡

) (𝑛−𝑡+1
𝛼𝑡

)
choices for 𝑋 . No matter

the choice, 𝑋 induces helper hyperedges of weight precisely (ℓ − 1) · (𝑡 − 𝛼𝑡), since for

1 Two intervals touch if their union is an interval, i.e. if there is no gap in between them.



120 9. Load Thresholds for Cuckoo Hashing with Unaligned Blocks

each 𝑥 ∈ 𝑋 the hyperedge (𝑥, 𝑥 + 1) is induced, except if 𝑥 is the right endpoint of one of
the 𝛼𝑡 intervals. In order for 𝑋 to induce a total weight of ℓ𝑡 or more another

ℓ𝑡 − (ℓ − 1) (𝑡 − 𝛼𝑡) = 𝑡 + (ℓ − 1)𝛼𝑡 ≥ 𝑡 + 𝛼𝑡

ordinary hyperedges (of weight 1) need to be induced. There are
( 𝑐𝑛
𝑡+𝛼𝑡

)
ways to choose such

a set of hyperedges and each hyperedge has all endpoints in𝑋 with probability ( 𝑡𝑛 )𝑘 ≤ ( 𝑡𝑛 )2.
Together we obtain the following upper bound on the probability that a bad set of size

𝑡 with 𝛼𝑡 contiguous regions exists:(
𝑡 + 1
𝛼𝑡

) (
𝑛 − 𝑡 + 1

𝛼𝑡

)
︸                ︷︷                ︸

choices for 𝑋

(
𝑐𝑛

𝑡 + 𝛼𝑡

)
︸   ︷︷   ︸

choices for hyperedges

( 𝑡
𝑛

)2(𝑡+𝛼𝑡 )
≤ 2𝑡+1

(
𝑛

𝛼𝑡

) (
𝑛

𝑡 + 𝛼𝑡

) ( 𝑡
𝑛

)2(𝑡+𝛼𝑡 )

≤ 2𝑡+1
(𝑛𝑒
𝛼𝑡

)𝛼𝑡 ( 𝑛𝑒

𝑡 + 𝛼𝑡
)𝑡+𝛼𝑡 ( 𝑡

𝑛

)2(𝑡+𝛼𝑡 )
≤ 2

(
2
(𝑛𝑒
𝛼𝑡

)𝛼 ( 𝑛𝑒

𝑡 + 𝛼𝑡
)1+𝛼 ( 𝑡

𝑛

)2(1+𝛼) )𝑡

≤ 2
(

2
( 𝑒
𝛼

)𝛼 ( 𝑒

1 + 𝛼
)1+𝛼

︸                  ︷︷                  ︸
≤𝐶 for some𝐶 = O(1)

(𝑛
𝑡

)𝛼 (𝑛
𝑡

)1+𝛼 ( 𝑡
𝑛

)2(1+𝛼) )𝑡
≤ 2

(
𝐶

( 𝑡
𝑛

))𝑡
.

We used that 𝛼𝛼 is bounded (has limit 1) for 𝛼 → 0. The resulting term is 𝑜 (1) for 𝑡 = 1, 2, 3
(and only 1, 2 or 3 choices for 𝛼 are possible). For 4 ≤ 𝑡 ≤ √𝑛, it is

2
(
𝐶

( 𝑡
𝑛

))𝑡
≤ 2

(
𝐶√
𝑛

)𝑡
≤ 2

(
𝐶√
𝑛

)4
= O(𝑛−2) .

Summing over all combinations of O(√𝑛 · √𝑛) choices for 𝛼 and 𝑡 , we get a sum of O(𝑛−1).
For
√
𝑛 ≤ 𝑡 ≤ 𝛿𝑛 with 𝛿 = 1

2𝐶 we get

2
(
𝐶

( 𝑡
𝑛

))𝑡
≤ 2

(
1
2

)𝑡
≤ 2 · 2−

√
𝑛,

which is clearly 𝑜 (1) even if we sum over all O(𝑛2) combinations for choosing 𝑡 and 𝛼 . ◀

Proof of Theorem D. It suffices to show that 𝛾𝑘,ℓ is the threshold for the event {𝑀 (𝐺𝑛) =
𝑛(ℓ − 1 + 𝑐)} since by Propositions 9.1 and 9.2 this event coincides with the events that �̂�𝑛

and𝑊𝑛 are orientable.

𝒄 > 𝜸𝒌,ℓ . If 𝑐 = 𝛾𝑘,ℓ + Y for Y > 0, then by Proposition 9.4 we have lim𝑛→∞
𝑀 (𝐺𝑛,𝑐𝑛)

𝑛 =
ℓ−1+𝑐−Y ′ almost surely for some Y ′ > 0. This clearly implies that𝑀 (𝐺𝑛,𝑐𝑛) < 𝑛(ℓ−1+𝑐)
whp.

𝒄 < 𝜸𝒌,ℓ . Let 𝑐 = 𝛾𝑘,ℓ − Y for some Y > 0 and define 𝑐 ′ B 𝛾𝑘,ℓ − Y
2 . We generate 𝐺𝑛,𝑐𝑛 from

𝐺𝑛,𝑐′𝑛 by removing Y
2𝑛 vertices from 𝐴𝑅 . The idea is to derive orientability of𝐺𝑛,𝑐𝑛 from

Lemma 9.5 and “almost-orientability” of 𝐺𝑛,𝑐′𝑛 .
More precisely, let 𝐺 (0) B 𝐺𝑛,𝑐′𝑛 = (𝐴 = 𝐴𝐶 ∪ 𝐴𝑅, 𝐵, “∋”) and let 𝐺 (𝑖+1) be obtained
from 𝐺 (𝑖) by removing a vertex from 𝐴𝑅 ∩𝑉 (𝐺 (𝑖) ) uniformly at random, 0 ≤ 𝑖 < Y

2𝑛.
By Proposition 9.4 we have lim𝑛→∞

𝑀 (𝐺𝑛,𝑐′𝑛)
𝑛 = ℓ − 1 + 𝑐 ′ almost surely, which implies

𝑀 (𝐺𝑛,𝑐′𝑛) = 𝑛(ℓ − 1 + 𝑐 ′) −𝑜 (𝑛) = [ (𝐴) −𝑜 (𝑛) whp. For any subgraph𝐺 of𝐺 (0) , define



9.6. Numerical approximations of the Thresholds. 121

gap(𝐺) B [ (𝐴∩𝑉 (𝐺))−𝑀 (𝐺) whichmeasures how far𝐺 is away from being orientable.
This ensures gap(𝐺 (0) ) = 𝑜 (𝑛) whp as well as gap(𝐺 (𝑖+1) ) ∈ {gap(𝐺 (𝑖) ), gap(𝐺 (𝑖) ) − 1}.
We say a vertex 𝑎 ∈ 𝑉 (𝐺 (𝑖) ) ∩𝐴𝑅 is good for 𝐺 (𝑖) if gap(𝐺 (𝑖) − 𝑎) = gap(𝐺 (𝑖) ) − 1.
Assume gap(𝐺 (𝑖) ) > 0. We now show that Θ(𝑛) vertices are good for 𝐺 (𝑖) whp. Let
𝑎 ∈ 𝐴 be one vertex of𝐺 (𝑖) that is not saturated in a maximum allocation 𝜎 of 𝐺 (𝑖) . Let
𝑋 ⊆ 𝐵 and 𝑌 ⊆ 𝐴 be the vertices from 𝐴 and 𝐵 reachable from 𝑎 via an alternating path,
i.e. a path of the form (𝑎 = 𝑎1, 𝑏1, 𝑎2, 𝑏2, . . . ) such that 𝜎 (𝑏 𝑗 , 𝑎 𝑗+1) > 0 for all 𝑗 .
It is easy to check that all vertices from 𝑋 are saturated in 𝜎 (otherwise 𝜎 could be
increased), 𝑌 exceeds 𝑋 in total weight and every vertex from 𝑌 ∩𝐴𝑅 is good for 𝐺 (𝑖) .
Moreover, when viewed as a subset of 𝑉 (�̂�𝑛,𝑐′𝑛), 𝑋 induces at least 𝑌 . Discounting the
low probability event that Lemma 9.5 does not apply to �̂�𝑛,𝑐′𝑛 , we conclude |𝑋 | > 𝛿𝑛,
and taking into account |𝑌 ∩ 𝐴𝐶 | ≤ |𝑋 | (clear from definition of 𝐴𝐶 ) together with
(ℓ − 1) |𝑌 ∩𝐴𝐶 | + |𝑌 ∩𝐴𝑅 | = [ (𝑌 ) > [ (𝑋 ) = ℓ |𝑋 | we obtain |𝑌 ∩𝐴𝑅 | > 𝛿𝑛.
This means that whp on the way from 𝐺 (0) to 𝐺 ( Y2𝑛) , we start with a gap of 𝑜 (𝑛) and
have up to Y

2𝑛 = Ω(𝑛) chances to reduce a non-zero gap by 1, namely by choosing
a good vertex for removal, and the probability is at least 𝛿 = Ω(1) every time. Now
simple Chernoff bounds imply that the gap vanishes whp meaning 𝐺 ( Y2𝑛) is orientable
whp. Since the distributions of 𝐺𝑛,𝑐𝑛 and 𝐺 ( Y2𝑛) coincide, we are done. ◀

9.6. Numerical approximations of the Thresholds.

Rewriting the definition of 𝛾𝑘,ℓ in Equation (9.8) we get

𝛾𝑘,ℓ = inf
_>0
{𝑓𝑘,ℓ (_) | 𝑔𝑘,ℓ (_) < 0}

where 𝑓𝑘,ℓ (_) = 𝑐_ and 𝑔𝑘,ℓ (_) = 𝐹 ( ®𝜌_, 𝑐_) − ℓ + 1 − 𝑐_ . We give the plots of 𝑓2,2 and 𝑔2,2 in
Figure 9.5.

0. 5 1. 0 1. 5 2. 0 2. 5

−0. 5

0. 5

1. 0

1. 5

Figure 9.5 The functions 𝑓2,2 (_) and 𝑔2,2 (_), with 𝛾2,2 = inf_>0{𝑓2,2 (_) | 𝑔2,2 (_) < 0}.

It looks as though {_ | 𝑔2,2(_) < 0} is an interval (_∗ ≈ 1.74,∞) on which 𝑓2,2 is mono-
tonically increasing, meaning 𝛾2,2 = 𝑓2,2(_∗) ≈ 0.965. Here is a semi-rigorous argument



122 9. Load Thresholds for Cuckoo Hashing with Unaligned Blocks

that properly done plots cannot be misleading: Regardless of 𝑘, ℓ ≥ 2 it is fairly easy to
see that 𝑐_ = Ω(_−(𝑘−1)ℓ+1) for _ → 0 and 𝑐_ = Ω(_) for _ → ∞. In particular, for fixed
𝑘, ℓ it is easy to obtain bounds 0 < _0 < _1 < ∞ such that for _ ∈ (0, _0) ∪ (_1,∞) we
can guarantee 𝑓𝑘,ℓ (_) > 1. Because 𝛾𝑘,ℓ < 1, only the interval [_0, _1] can be relevant.
Being real analytic, the functions 𝑓𝑘,ℓ and 𝑔𝑘,ℓ have bounded first and second derivatives on
[_0, _1] which vindicates plots of sufficient resolution: There cannot be unexpected zeroes
in between sampled positions and what looks strictly monotonic in the plot actually is. So
starting with a golden ratio search close to the apparent root of 𝑔2,2 we are guaranteed to
find _∗ and 𝛾2,2 = 𝑓2,2(_∗). This can be made formal.

Handling it this way saves us the trouble of having to deal with unwieldy functions.
However, our lack of analytical insight means we have to consider each pair (𝑘, ℓ) separately
to make sure that 𝑓𝑘,ℓ and 𝑔𝑘,ℓ do not exhibit qualitatively different behaviour. We did this
for ℓ ≤ 6 and 𝑘 ≤ 7, i.e. for the values we provided in table Table 2.6.



123



124

Relevant Definition and Theorems for Chapter 10

(Originally on Pages 22 and 35)

▶ Definition 2.9 (Double Hashing Hypergraph). Let 𝑛,𝑚, 𝑘 ∈ N with 𝑘 ≥ 3.

𝐷𝑘
𝑛,𝑚 B (Z𝑛, {𝑒1, 𝑒2, . . . , 𝑒𝑚}), where 𝑒𝑖 = {𝑎𝑖 + 𝑗𝑏𝑖 mod 𝑛 | 𝑗 ∈ [𝑘]0},

with 𝑎𝑖 ←− Z𝑛, 𝑏𝑖 ←− [𝑛 − 1] for 𝑖 ∈ [𝑚] .

▶ Theorem E. For any 𝑘 ≥ 3, ℓ ≥ 1, the ℓ-orientability threshold of (𝐷𝑘
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N is 𝑐∗

𝑘,ℓ
.

▶ Theorem E1. Let 𝑘 ≥ 3, ℓ ≥ 1. Consider 𝑘-ary cuckoo hashing with buckets of size ℓ .
Instead of using 𝑘 independent, fully random hash functions, consider using 2 hash functions

and double hashing. This neither affects the load threshold, nor the worst-case number of cache

misses and key comparisons per query.



125

10. Load Thresholds for Cuckoo Hashing

with Double Hashing

The purpose of this chapter is to prove Theorem E, restated on the facing page. In other
words, the ℓ-orientability thresholds of (𝐻𝑘

𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N and (𝐷𝑘
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N coincide. The-

orem E1 is then an immediate consequence.
Previous work has come close to this theorem as shown in Figure 10.1. Recall that for

𝑑 ∈ N we say a hypergraph 𝐻 = (𝑉 , 𝐸) is 𝑑-almost ℓ-orientable if there is 𝐸 ′ ⊆ 𝐸 of size
|𝐸 ′ | = |𝐸 | − 𝑑 such that 𝐻 ′ = (𝑉 , 𝐸 ′) is ℓ-orientable.

threshold for (perfect) ℓ-orientability of 𝑯𝑘
𝑛,𝑐𝑛

threshold for 𝒐(𝒏)-almost ℓ-orientability of 𝑯𝑘
𝑛,𝑐𝑛

threshold for 𝒐(𝒏)-almost ℓ-orientability of 𝑫𝑘
𝑛,𝑐𝑛

threshold for (perfect) ℓ-orientability of 𝑫𝑘
𝑛,𝑐𝑛

easily seen to be equal with
combinatorial methods, see [Lel12]

equality shown by Leconte [Lec13]:
the local weak limit coincides

equality shown in this chapter,
using combinatorial methods

obtained with tailored
combinatorial counting
arguments in [FKP16]

Lelarge [Lel12]: Such Thresholds
are functions of the local
weak limit of the family.

previously unknown

Figure 10.1 Two out of three steps for proving Theorem E are already done.

Leconte [Lec13] showed that, for all 𝑐 ∈ R+, the families (𝐻𝑘
𝑛,𝑐𝑛)𝑛∈N and (𝐷𝑘

𝑛,𝑐𝑛)𝑛∈N
have the same Galton-Watson tree as local weak limit. Lelarge [Lel12] showed that whether
or not a family of hypergraphs is 𝑜 (𝑛)-almost ℓ-orientability only depends on the local
weak limit of the family. It is fairly easy to reconcile ℓ-orientability and 𝑜 (𝑛)-almost ℓ-
orientability for (𝐻𝑘

𝑛,𝑐𝑛)𝑛∈N (see [Lel12]), showing that the thresholds are the same for that
family. In order to establish Theorem E, all we need to prove is an analogous result for
(𝐷𝑘

𝑛,𝑐𝑛)𝑛∈N, which is done in the following proposition. Note that ℓ-orientability trivially
implies 𝑜 (𝑛)-almost ℓ-orientability, so only the non-trivial direction is given.

▶ Proposition 10.1. Let 𝑘 ≥ 3 and ℓ ≥ 1 be fixed constants and 𝑐∗
𝑘,ℓ

the 𝑜 (𝑛)-almost

ℓ-orientability threshold for (𝐷𝑘
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N. Then for any 𝑐 < 𝑐∗

𝑘,ℓ
, 𝐷𝑘

𝑛,𝑐𝑛 is ℓ-orientable whp.

The proof uses two lemmas that are proved in Sections 10.1 and 10.2, respectively. To
understand them, we need another concept. In the context of discussing ℓ-orientability
of a hypergraph 𝐻 = (𝑉 , 𝐸), we call 𝑉 ′ ⊆ 𝑉 a Hall-witness if the set 𝐸 (𝑉 ′) of hyperedges



126 10. Load Thresholds for Cuckoo Hashing with Double Hashing

induced by 𝑉 ′ has size |𝐸 (𝑉 ′) | > ℓ · |𝑉 ′ |. By Hall’s Theorem (restated in Section 10.2), 𝐻 is
ℓ-orientable if and only if no Hall-witness exists.

The lemmas we utilize are as follows:

▶ Lemma 10.2. Let 𝑘 ≥ 3, ℓ ≥ 1 and 𝑐 > 0 be fixed constants. Then there exists a constant

𝛿 > 0 such that, whp, no Hall-witness of size less than 𝛿𝑛 exists for 𝐷𝑘
𝑛,𝑐𝑛 .

▶ Lemma 10.3. If 𝐻 = (𝑉 , 𝐸) is 𝑑-almost ℓ-orientable and 𝑒 ∈ 𝐸 is contained in some

minimal Hall-witness, then 𝐻 (𝑒) = (𝑉 , 𝐸 − {𝑒}) is (𝑑−1)-almost ℓ-orientable.

Given these lemmas, we prove Proposition 10.1, following [Lel12].

Proof of Proposition 10.1. Let 𝑐 = 𝑐∗
𝑘,ℓ
− Y for some Y > 0. We may sample 𝐷𝑘

𝑛,𝑐𝑛 by first
sampling 𝐷𝑘

𝑛,𝑐′𝑛 for 𝑐 ′ = 𝑐∗
𝑘,ℓ
− Y/2 and then removing Y𝑛/2 hyperedges. More precisely,

we set 𝐷 (0) B 𝐷𝑘
𝑛,𝑐′𝑛 and obtain 𝐷 (𝑖) from 𝐷 (𝑖−1) by removing a hyperedge uniformly at

random for 𝑖 ∈ [Y𝑛/2]. Then 𝐷 (Y𝑛/2) is distributed as 𝐷𝑘
𝑛,𝑐𝑛 .

For 0 ≤ 𝑖 ≤ Y𝑛/2, let 𝑑𝑖 be the smallest 𝑑 such that 𝐷 (𝑖) is 𝑑-almost ℓ-orientable. By
definition of 𝑐∗

𝑘,ℓ
we have 𝑑0 = 𝑜 (𝑛) whp. We take 𝛿 from Lemma 10.2 and condition on the

high probability event that any Hall-witness of 𝐷 (0) has size at least 𝛿𝑛. Since removing
hyperedges cannot create new Hall-witnesses, the same bound applies to Hall-witnesses of
the subgraphs 𝐷 (𝑖) with 𝑖 > 1.

Let 𝑖 be an index with 𝑑𝑖 > 0. Then 𝐷 (𝑖) is not ℓ-orientable and a minimal Hall-witness
exists. Its size is at least 𝛿𝑛, and it induces at least 𝛿ℓ𝑛 + 1 hyperedges. In particular, the
probability that a random hyperedge of 𝐷 (𝑖) is contained in this minimal Hall-witness is
at least 𝛿ℓ𝑛+1

𝑐′𝑛 ≥ 𝛿ℓ/𝑐 ′ = Θ(1). If such a hyperedge is chosen for removal, then by Lemma
10.3 we have 𝑑𝑖+1 = 𝑑𝑖 − 1. Until we reach 𝐷 (Y𝑛/2) , there are Y𝑛/2 = Θ(𝑛) opportunities
to reduce the 𝑑-value by 1, and each opportunity is realized with probability Θ(1). Since
the initial gap is 𝑜 (𝑛), the probability that we have 𝑑Y𝑛/2 > 0 is Pr[𝑋 < 𝑜 (𝑛)] where
𝑋 ∼ Bin(Θ(𝑛),Θ(1)). Simple concentration bounds on binomial random variables prove
that this is an 𝑜 (1)-probability event, so we have 𝑑Y𝑛/2 = 0 whp. Thus 𝐷 (Y𝑛/2) d= 𝐷𝑘

𝑛,𝑐𝑛 is
(perfectly) ℓ-orientable whp as desired. ◀

10.1. No small Hall-witness exists

In this section, we prove Lemma 10.2. We argue first that it is enough to prove the statement
in the case 𝑘 = 3 and ℓ = 1. Indeed, if 𝐷𝑘

𝑛,𝑐𝑛 contains no 𝑉 ′ ⊆ 𝑉 inducing more than |𝑉 ′ |
hyperedges, then certainly no such 𝑉 ′ induces more than ℓ |𝑉 ′ | hyperedges. Moreover, let
us write 𝑒 = {𝑎𝑒 + 𝑖𝑏𝑒 : 0 ≤ 𝑖 < 𝑘} for a hyperedge 𝑒 of 𝐷𝑘

𝑛,𝑐𝑛 . We project each hyperedge 𝑒
in𝐷𝑘

𝑛,𝑐𝑛 to 𝑒 ′ = {𝑎𝑒 +𝑖𝑏𝑒 : 0 ≤ 𝑖 < 3}; then the resulting 3-uniform hypergraph is distributed
like 𝐷3

𝑛,𝑐𝑛 , and each 𝑉 ′ ⊆ 𝑉 induces at least as many hyperedges as in 𝐷𝑘
𝑛,𝑐𝑛 . It therefore

suffices to show the unlikeliness of small Hall witnesses in the case of 𝑘 = 3, ℓ = 1, and
fixed 𝑐 ∈ R+.

To assess the probability that a set 𝑆 ⊆ Z𝑛 is a Hall-witness, the size 𝑠 = |𝑆 | of 𝑆 and the
number 𝑡 of arithmetic triples modulo 𝑛 contained in 𝑆 are both important. We call a set
with corresponding parameters an (𝑠, 𝑡)-set, for 3 ≤ 𝑠 ≤ 𝑛, 1 ≤ 𝑡 ≤ (𝑠

2
)
. The upper bound(𝑠

2
)
comes from the fact that the first two terms of the arithmetic progression determine the

third and each arithmetic progression can be enumerated in two directions.



10.1. No small Hall-witness exists 127

Our plan is to use first moment methods and bound the sum:∑︁
(𝑠,𝑡 )

𝑄𝑠,𝑡𝑝𝑠,𝑡

where 𝑄𝑠,𝑡 is the number of (𝑠, 𝑡)-sets that could be minimal Hall-witnesses, and 𝑝𝑠,𝑡 is an
upper bound on the probability that an (𝑠, 𝑡)-set actually is a minimal Hall-witness in 𝐷3

𝑛,𝑐𝑛 .
We separately deal with the following ranges of the parameters 𝑠 and 𝑡 .

Case 1: Small 𝒔. If 𝑠 = 𝑜 (𝑛1/2) we show that
∑

𝑡 𝑄𝑠,𝑡 is sufficiently small by direct counting.
Case 2: Medium 𝒔, small-ish 𝒕 . For 𝑠 = 𝜔 (𝑛2/5) and 𝑡 ≤ 𝑠2

4𝑐e2 , the probability 𝑡/
(𝑛
2
) ≈ 2𝑡

𝑛2

that random hyperedges are contained in such an (𝑠, 𝑡)-set is small enough to find a
good bound on 𝑝𝑠,𝑡 .

Case 3: Medium 𝒔, large 𝒕 . For 𝛿𝑛 ≥ 𝑠 = 𝜔 (𝑛2/5) (for a small 𝛿 chosen later) and 𝑡 > 𝑠2

4𝑐e2

it turns out that 𝑡 far exceeds the number of arithmetic triples that would be expected
from a random set of size 𝑠 . A concentration bound by Warnke [War17] then gives a
useful bound on 𝑄𝑠,𝑡 .

We deal with these three cases below. We use the following simple bounds on 𝑝𝑠,𝑡 . For
ℓ = 1, a set of size 𝑠 is a Hall-witness, if it induces at least 𝑠 + 1 hyperedges. We therefore
find:

𝑝𝑠,𝑡 ≤
(
𝑡(𝑛
2
) )𝑠+1 ( 𝑐𝑛

𝑠 + 1

)
≤

(
2𝑡
𝑛2

)𝑠+1 (𝑐𝑛e
𝑠

)𝑠+1
=

(
2𝑐e𝑡
𝑠𝑛

)𝑠+1
(10.1)

≤
(
𝑐e𝑠
𝑛

)𝑠+1
. (10.2)

The bound is derived by taking the probability that for a set of 𝑠 + 1 hyperedges, each
hyperedge turns out to be one of the 𝑡 arithmetic triples contained in 𝑆 . This is multiplied
with the number of ways to choose 𝑠 + 1 out of the 𝑐𝑛 hyperedges of 𝐷3

𝑛,𝑐𝑛 . For the second
line we used the trivial bound 𝑡 ≤ (𝑠

2
) ≤ 𝑠2

2 .

Case 1: 𝒔 = 𝒐(
√
𝒏). Assume 𝑆 ⊆ Z𝑛 is a minimal Hall-witness for 𝐷3

𝑛,𝑐𝑛 inducing a
set 𝑃 of hyperedges. As a hypergraph, (𝑆, 𝑃) is spanning, i.e. each vertex is contained in a
hyperedge, otherwise the isolated vertex can be removed for a smaller Hall-witness. Also,
(𝑆, 𝑃) is connected, i.e. for any 𝑥,𝑦 ∈ 𝑆 there is a sequence 𝑒1, . . . , 𝑒 𝑗 ∈ 𝑃 with 𝑥 ∈ 𝑒1, 𝑦 ∈ 𝑒 𝑗
and 𝑒𝑖 ∩ 𝑒𝑖+1 ≠ ∅ for 1 ≤ 𝑖 < 𝑗 ). Otherwise, at least one connected component forms a
smaller Hall-witness.

So for fixed 𝑠 , we can count all (𝑠, 𝑡)-sets (with arbitrary 𝑡 ) that might be minimal
Hall-witnesses by counting vertex sets that can support connected spanning hypergraphs.
We do this by counting annotated depth-first-search-runs (dfs-runs), associated with such
(𝑠, 𝑡)-sets, in the following way. A dfs-run through 𝑆 starts at a root vertex 𝑟 ∈ 𝑆 and puts
it on the stack, whose topmost element is referred to as top. Then a sequence of steps
follow, each of which either removes top from the stack (backtrack) or finds new vertices
in 𝑆 that are then put on the stack. More precisely, new vertices are found by specifying
an arithmetic triple that is contained in 𝑆 and involves top. The two vertices other than
top may either both be new (find2), or only one vertex is new, and a third vertex 𝑣 was
already found in a previous step (find1). The following data about the dfs-run is needed to
reconstruct 𝑆 from it:



128 10. Load Thresholds for Cuckoo Hashing with Double Hashing

The root vertex 𝑟 . There are 𝑛 possibilities.
The type of each step, which can be backtrack, find1 or find2. Since there are at most
2𝑠 steps, there are at most 32𝑠 possibilities in total.
For each step of type find1, the vertex 𝑣 that was previously found and that together with
top and the new vertex forms an arithmetic triple. There are less than 𝑠 possibilities.
In addition we need the position of top and 𝑣 in the arithmetic triple (essentially four
possibilities). The newly discovered vertex can then be computed from top and 𝑣.
For each step of type find2, the difference between adjacent elements of the arithmetic
triple – there are 𝑛/2 possibilities (considering that a “forward” difference of 𝑖 corres-
ponds to a “backward” difference of 𝑛− 𝑖). Also, the position of top in that triple – there
are 3 possibilities.

If 𝑓1 and 𝑓2 count the number of times the steps find1 and find2 are used in the dfs-run
through 𝑆 of size 𝑠 , then we have 𝑓1 + 2𝑓2 = 𝑠 − 1. For 𝑠 = 𝑜 (√𝑛), the find2-steps yield a
significantly higher number of possibilities per found vertex compared to find1-steps, so
we compute:

∑︁
𝑡

𝑄𝑠,𝑡 ≤ 𝑛 · 32𝑠 · (4𝑠) 𝑓1 (3𝑛/2) 𝑓2 ≤ 𝑛 · 32𝑠 · (3𝑛/2) (𝑠−1)/2 ≤ 𝑐𝑠1𝑛
(𝑠+1)/2

where 𝑐1 is a constant. Using Equation (10.2) we get:

𝑜 (√𝑛)∑︁
𝑠=3

∑︁
𝑡

𝑄𝑠,𝑡𝑝𝑠,𝑡 ≤
𝑜 (√𝑛)∑︁
𝑠=3
(
∑︁
𝑡

𝑄𝑠,𝑡 ) (max
𝑡

𝑝𝑠,𝑡 ) ≤
𝑜 (√𝑛)∑︁
𝑠=3

𝑐𝑠1𝑛
(𝑠+1)/2

(
𝑐e𝑠
𝑛

)𝑠+1
≤

𝑜 (√𝑛)∑︁
𝑠=3

(
𝑐2𝑠√
𝑛

)𝑠+1

for a new constant 𝑐2. Since each term in the sum is O(𝑛−2) and since there are 𝑜 (𝑛1/2)
terms, the sum is clearly 𝑜 (𝑛−3/2) = 𝑜 (1), closing this case.

Case 2: 𝒔 = 𝝎 (𝒏2/5) and 𝒕 ≤ 𝒔2

4𝒄e2 . Combining the trivial bound of 𝑄𝑠,𝑡 ≤
(𝑛
𝑠

)
, Equa-

tion (10.1), and our assumption on 𝑡 we obtain:

𝑄𝑠,𝑡 · 𝑝𝑠,𝑡 ≤
(
𝑛

𝑠

)
·
(
2𝑐e𝑡
𝑠𝑛

)𝑠+1
≤

(
𝑛e
𝑠

)𝑠
·
(
𝑠

2𝑛e

)𝑠+1
≤

(
1
2

)𝑠
.

This is clearly 𝑜 (1), even after summing over all O(𝑛) admissible choices for 𝑠 and all O(𝑛2)
choices for 𝑡 .

Case 3: 𝝎 (𝒏2/5) ≤ 𝒔 ≤ 𝜹𝒏 and 𝒕 > 𝒔2

4𝒄e2 . A random set 𝑆 ⊆ Z𝑛 of size 𝑠 in this range
behaves very much like a random set 𝑇 that is obtained by picking each element of Z𝑛
independently with probability 𝑝 = 𝑠

𝑛 . Let 𝑋 be the number of arithmetic triples in 𝑇 . We
have ` B E[𝑋 ] = (𝑛

2
)
𝑝3 ≤ 𝑠3

2𝑛 . In particular, the case 𝑋 > 𝑠2

4𝑐e2 is very rare if 𝑠 < 𝛿𝑛 for
sufficiently small 𝛿 . We can therefore expect the number 𝑄𝑠,𝑡 to be significantly less than(𝑛
𝑠

)
. Formally we write:

𝑄𝑠,𝑡 ≤
(
𝑛

𝑠

)
Pr[𝑆 contains 𝑡 a.p.] =

(
𝑛

𝑠

)
Pr[𝑋 = 𝑡 | |𝑇 | = 𝑠] ≤

(
𝑛

𝑠

)
Pr[𝑋 = 𝑡]O(√𝑛)



10.2. The significance of Hall-witnesses 129

where O(√𝑛) is the inverse of the probability of the event |𝑇 | = 𝑠 . Using Theorem 1 from
[War17] with 𝑘 = 3, 𝑝 = 𝑠/𝑛, we get positive constants 𝑏, 𝐵 > 0 such that for sufficiently
large 𝑛

Pr[𝑋 = 𝑡] ≤ Pr[𝑋 ≥ (1 + 𝑡−`
` )`]

[War17]≤ exp(−𝑏
√︃

𝑡−`
`

√
` log(1/𝑝))

Using our bound on 𝑡 and assuming 𝛿 ≤ 1
4𝑐𝑒2we can bound the negated exponent by:

𝑏
√︁
𝑡 − ` log( 1

𝑝 ) ≥ 𝑏
√︃

𝑠2

4𝑐e2 − 𝑠3

2𝑛 log( 1
𝛿 ) ≥ 𝑏𝑠

√︃
1

4𝑐e2 − 𝛿
2 log( 1

𝛿 ) ≥ 𝑏𝑠
√︃

1
8𝑐e2 log( 1

𝛿 ) = 𝑠𝑐3 log( 1
𝛿 )

for some constant 𝑐3 > 0 which yields Pr[𝑋 = 𝑡] ≤ (𝛿𝑐3)𝑠 . Combining this with Equa-
tion (10.2), this time assuming 𝛿𝑐3 ≤ 1

2𝑐e2 , we can write

𝑄𝑠,𝑡 · 𝑝𝑠,𝑡 ≤
(
𝑛

𝑠

)
Pr[𝑋 = 𝑡]O(√𝑛) · 𝑝𝑠,𝑡 ≤

(
𝑛e
𝑠

)𝑠
(𝛿𝑐3)𝑠O(√𝑛)

(
𝑐e𝑠
𝑛

)𝑠+1

≤ O(√𝑛)
(
𝑐e2𝛿𝑐3

)𝑠
≤ O(√𝑛) · 2−𝑠

which is𝑜 (1), evenwhen summing over allΘ(𝑛) admissible values 𝑠 and allΘ(𝑛2) admissible
values for 𝑡 . This concludes the proof of Lemma 10.2.

10.2. The significance of Hall-witnesses

To understand how Hall’s Theorem relates to our situation, consider the incidence graph
𝐺 = (𝐸,𝑉 , “∋”) of a hypergraph 𝐻 = (𝑉 , 𝐸). A (1, ℓ)-matchings in 𝐺 is a set 𝑀 ⊆ 𝐸 × 𝑉
of edges in 𝐺 such that any 𝑒 ∈ 𝐸 has degree at most 1 in 𝑀 and any 𝑣 ∈ 𝑉 has degree
at most ℓ in 𝑀 . An ℓ-orientation 𝜎 of 𝐻 , viewed as a set of pairs 𝜎 ⊆ 𝐸 × 𝑉 , is then
precisely a hyperedge-perfect (1, ℓ)-matching (each 𝑒 ∈ 𝐸 has degree precisely 1). We call
the corresponding notion of a vertex-perfect (1, ℓ)-matching (each 𝑣 ∈ 𝑉 has degree ℓ in
𝑀) an ℓ-saturation.

Hall’s Theorem is easily generalized as follows, where 𝑁 (𝑋 ) denotes the direct neigh-
bours of 𝑋 in the incidence graph (note that 𝑋 ⊆ 𝑉 and 𝑋 ⊆ 𝐸 are both allowed) and 𝐸 (𝑉 ′)
to denote the set of hyperedges contained in 𝑉 ′ ⊆ 𝑉 .

▶ Theorem 10.4 (Hall’s Theorem).
(i) 𝐻 has an ℓ-orientation⇔ �𝐸 ′ ⊆ 𝐸 with ℓ |𝑁 (𝐸 ′) | < |𝐸 ′ |
⇔ �𝑉 ′ ⊆ 𝑉 with ℓ |𝑉 ′ | < |𝐸 (𝑉 ′) | ⇔ : No Hall-witness exists.

(ii) 𝐻 has an ℓ-saturation⇔ �𝑉 ′ ⊆ 𝑉 with |𝑁 (𝑉 ′) | < ℓ |𝑉 ′ |.
We are now ready to prove Lemma 10.3.

Proof of Lemma 10.3. Let 𝐻 = (𝑉 , 𝐸) be a non-ℓ-orientable hypergraph and let 𝑆 ⊆ 𝑉
be a minimal Hall-witness to this fact, which exists by Theorem 10.4 (i). Consider 𝐻𝑆 =
(𝑆, 𝐸 (𝑆)), the sub-hypergraph of 𝐻 induced by 𝑆 . Within 𝐻𝑆 we have |𝑁𝐻𝑆 (𝑆 ′) | > ℓ |𝑆 ′ | for
any ∅ ≠ 𝑆 ′ ⊆ 𝑆 , as otherwise, i.e. assuming |𝑁𝐻𝑆 (𝑆 ′) | ≤ ℓ |𝑆 ′ |, we have

|𝐸 (𝑆 − 𝑆 ′) | = |𝐸 (𝑆) − 𝑁𝐻𝑆 (𝑆 ′) | = |𝐸 (𝑆) | − |𝑁𝐻𝑆 (𝑆 ′) | > ℓ |𝑆 | − ℓ |𝑆 ′ | = ℓ |𝑆 − 𝑆 ′ |



130 10. Load Thresholds for Cuckoo Hashing with Double Hashing

which would make 𝑆 − 𝑆 ′ a smaller Hall-witness than 𝑆 , contradicting minimality.
Now let 𝑒 ∈ 𝐸 (𝑆). For 𝐻 (𝑒)𝑆 B (𝑆, 𝐸 (𝑆) − {𝑒}) we have (replacing “>” with “≥”)

|𝑁
𝐻 (𝑒 )𝑆
(𝑆 ′) | ≥ ℓ |𝑆 ′ | for any 𝑆 ′ ⊆ 𝑆 (the claim is trivial for 𝑆 ′ = ∅). By Theorem 10.4 (ii),

there is an ℓ-saturation𝑀 (𝑒)𝑆 of 𝐻 (𝑒)𝑆 .
Now assuming 𝐻 is 𝑑-almost ℓ-orientable and 𝑀 ⊆ 𝐸 × 𝑉 is a corresponding (1, ℓ)-

matching of size |𝐸 | − 𝑑 , our task is to obtain a (1, ℓ)-matching 𝑀 ′ with |𝑀 | = |𝑀 ′ | in
𝐻 (𝑒) = (𝑉 , 𝐸 − {𝑒}) where a hyperedge 𝑒 ∈ 𝐸 (𝑆) was removed. This will imply that 𝐻 (𝑒) is
(𝑑 − 1)-almost ℓ-orientable as desired.

Constructing𝑀 ′ is easy: Simply remove all hyperedges from 𝐸 (𝑆) from𝑀 (this certainly
gets rid of 𝑒 if it was used) and re-saturate the vertices from 𝑆 by adding an appropriate
subset 𝑌 ⊆ 𝑀 (𝑒)𝑆 . Then𝑀 ′ B (𝑀 \ 𝐸 (𝑆)) ∪ 𝑌 has the same size as𝑀 . ◀



131



132

Relevant Definition and Theorems for Chapter 11

(Originally on Pages 23, 24 and 37)

▶ Definition 2.10 (DySECT Hypergraph). Let 𝑘, 𝑛, 𝑁 ,𝑚 ∈ N with 𝑁 ≤ 𝑛 ≤ 2𝑁 .

𝐻𝑘
𝑛,𝑁 ,𝑚 B ( [𝑛], 𝐸), with |𝐸 | =𝑚 and each 𝑒 ′ ∈ 𝐸 chosen i.i.d. as follows:

𝑒 ′ = {𝑓 ( 𝑗) | 𝑗 ∈ 𝑒} where 𝑒 ←− [ [2𝑁 ]
𝑘
] and 𝑓 ( 𝑗) =

{
𝑗 − 𝑁 𝑗 > 𝑛

𝑗 otherwise.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

𝑘 = 3

𝑁 = 16

𝑛 = 22

𝑒 = {10, 19, 24} ←− [ [2𝑁 ]3 ]
↩→ 𝑒 ′ = {10, 19, 8} ∈ 𝐸

phase: \ = 𝑛−𝑁
𝑁 = 6

16

▶ Theorem F. Let 𝑘, ℓ ∈ N with 𝑘 + ℓ ≥ 4 and \ ∈ [0, 1]. The ℓ-orientability threshold [𝑘,ℓ,\
of (𝐻𝑘

𝑛,𝑛/(1+\ ),𝑐𝑛)𝑐∈R+,𝑛∈N is characterised by Equation (11.3) in Chapter 11.

▶ Theorem F1. Let 𝑘, ℓ ∈ N with 𝑘 + ℓ ≥ 4 and \ ∈ [0, 1]. Consider the DySECT hashing

scheme with 𝑘 hash functions, buckets of size ℓ at growth phase \ . The load threshold [𝑘,ℓ,\/ℓ
is characterised by Equation (11.3) in Chapter 11.

Phase-Dependent Load Thresholds (originally in Figure 3.4)

\

load threshold [𝑘,ℓ,\/ℓ (logarithmic scale)

0.9

0.99

0.999

0.9999

0.99999

0 0.2 0.4 0.6 0.8 1

𝑘 = 2, ℓ = 4

𝑘 = 3, ℓ = 4
𝑘 = 2, ℓ = 8

𝑘 = 3, ℓ = 8



133

11. Dynamic Space Efficient Hashing

The goal of this chapter is to prove Theorem F, restated on the facing page. Recall that it is
motivated by dynamically growing cuckoo tables as explained abstractly in Section 2.4.3 and
concretely in Section 3.3.1. Throughout this chapter, we have 𝑘, 𝑛, 𝑁 ∈ N with 𝑁 ≤ 𝑛 ≤ 2𝑁
and a phase \ = 𝑛−𝑁

𝑁 ∈ [0, 1]. It is helpful to imagine that 𝐻𝑘
𝑛,𝑁 ,𝑚 arises from the fully

random hypergraph 𝐻𝑘
𝑁,𝑚 by splitting \𝑁 = 𝑛 − 𝑁 vertices of 𝐻𝑘

𝑁,𝑚 . For each vertex 𝑣 that
is split into 𝑣1 and 𝑣2 this way, each incidence of 𝑣 is moved to either 𝑣1 or 𝑣2 by flipping a
fair coin. We shall call 𝑣1 and 𝑣2 light vertices in contrast to heavy vertices that have not
been split.

The theorem characterises the ℓ-orientability threshold of (𝐻𝑘
𝑛,𝑛/(1+\ ),𝑐𝑛)𝑛∈N,𝑐∈R+ in

terms of 𝑘, ℓ and \ . In practice, 𝑁 is a power of 2 implying that \ is a function of
log2 𝑛 − ⌊log2 𝑛⌋ and DySECT tables exhibit corresponding performance fluctuations that
are periodic in log2 𝑛.
▶ Remark 11.1. As pointed out in [MSW19], there is an intuitive partial explanation why
0 < \ < 1 yields smaller thresholds than \ = 0 (or \ = 1). While in 𝐻𝑘

𝑛,𝑐𝑛 every vertex
has expected degree 𝑐𝑘 , in 𝐻𝑘

𝑛,𝑛/(1+\ ),𝑐𝑛 the light and heavy vertices have expected degree
𝑘𝑐 (1+\ )/2 < 𝑘𝑐 and𝑘𝑐 (1+\ ) > 𝑘𝑐 , respectively, meaning degrees are less evenly distributed.
This leads to a higher number of bucket defects, defined as

∑
𝑣∈[𝑛] max{0, deg(𝑣) − ℓ}. The

number is an obvious lower bound on “unused vertex capacity” when ℓ-orientability is
concerned. We leave this aside here, directly aiming for exact thresholds.

We heavily use notions from Chapter 5 and assume the reader is familiar with them.
More so than usual, we abuse the notations Po(_) and Bin(𝑛, 𝑝) to not only denote Poisson
and Binomial distributions but also corresponding random variables.

11.1. The Limiting Bipartite Galton-Watson Tree

Let 𝑘 ≥ 2, 𝑐 ∈ R+ and \ ∈ [0, 1] be constants. Let 𝐺𝑐
𝑛 = 𝐺 (𝑛, 𝑘, \, 𝑐) be the incidence graph

of 𝐻𝑘
𝑛,𝑛/(1+\ ),𝑐𝑛 . Recall the notions of local weak convergence and how two distributions Φ𝐴

and Φ𝐵 on stars give rise to a bipartite Galton-Watson tree GWTΦ𝐴,Φ𝐵 . Ignoring weights for
now, Φ𝐴 and Φ𝐵 are simply distributions on natural numbers (degrees of the stars).

▶ Lemma 11.2 (Local Weak Limit). (𝐺𝑐
𝑛)𝑛∈N

lwl−→ GWT𝛿𝑘 ,Φ𝐵 , where

Φ𝐵 (𝑖) = 1−\
1+\ Pr[Po(𝑐𝑘 (1 + \ )) = 𝑖] + 2\

1+\ Pr[Po(𝑐𝑘 (1 + \ )/2) = 𝑖] for 𝑖 ∈ N0.

The proof is similar to that of Theorem 5.2 and we only point out two key points
relating to Φ𝐵 . Let us write 𝐺𝑐

𝑛 = (𝐴𝑛, 𝐵𝑛, 𝐸𝑛) and consider a random vertex 𝑏 ←− 𝐵𝑛 ,
corresponding to a random vertex of 𝐻𝑘

𝑛,𝑛/(1+\ ),𝑐𝑛 . The vertex 𝑏 is heavy with probability
(1 − \ )/(1 + \ ) and light with probability 2\/(1 + \ ). Assume 𝑏 is heavy. Each of the 𝑐𝑛
vertices in 𝐴𝑛 has 𝑘 random incidences to 𝐵-vertices and each heavy vertex is chosen with



134 11. Dynamic Space Efficient Hashing

probability 1
𝑁 = 1+\

𝑛 , meaning deg(𝑏) ∼ Bin(𝑘𝑐𝑛, 1+\
𝑛 ). If 𝑏 is light on the other hand, we

get deg(𝑏) ∼ Bin(𝑘𝑐𝑛, 1+\
2𝑛 ). Standard arguments on the convergence of Binomial random

variables to Poisson random variables show that Φ𝐵 is the limiting distribution of deg(𝑏).
At some point in the proof we consider vertices 𝑏 ∈ 𝐵𝑛 reached in a breadth first search

from a random vertex of 𝐺𝑐
𝑛 after a constant number of steps and need to identify the

distribution of the number deg(𝑏) − 1 of successors of 𝑏 in the BFS tree, conditioned on
what has already been revealed about 𝐺𝑛 . The first thing to note is that, disregarding error
terms of order O(1/𝑛), 𝑏 is a heavy or light vertex with probabilities 1−\ and \ , respectively
— not 2\

1+\ and 1−\
1+\ — because 𝑏 was reached by a random edge. Depending on whether

𝑏 is heavy or light we get the distributions deg(𝑏) − 1 ∼ Bin(𝑘𝑐𝑛 − O(1), 1+\
𝑛 − O(𝑛−2))

or deg(𝑏) − 1 ∼ Bin(𝑘𝑐𝑛 − O(1), 1+\
2𝑛 − O(𝑛−2)), respectively, where the error terms are

needed since a small number of edges in 𝐺𝑐
𝑛 are already revealed. The distribution is easily

seen to converge to Φ̃𝐵 with

Φ̃𝐵 (𝑖) = (1 − \ ) · Pr[Po(𝑐𝑘 (1 + \ )) = 𝑖] + \ · Pr[Po(𝑐𝑘 (1 + \ )/2) = 𝑖] for 𝑖 ∈ N0.

Simple calculations suffice to show that this is identical to the offspring distribution pre-
scribed for non-root vertices of type 𝐵 in the Galton-Watson tree, see Equation (5.1).

11.2. Applying Lelarge’s Theorem

Now assume the𝐴 and 𝐵 vertices of𝐺𝑛 and GWT𝛿𝑘 ,Φ𝐵 have weights of 1 and ℓ , respectively,
as is appropriate to analyse ℓ-orientability of 𝐻𝑛,𝑛/(1+\ ),𝑐𝑛 .

With Lemma 11.2 in place, we apply Lelarge’s Theorem in the special case from Equa-
tion (5.3). For the size𝑀 (𝐺𝑐

𝑛) of the largest allocation of 𝐺𝑐
𝑛 we get:

lim
𝑛→∞

𝑀 (𝐺𝑐
𝑛)

𝑐𝑛 =M(𝛿𝑘 ,Φ𝐵) = inf
𝑝,𝑞∈[0,1]

𝐹 (𝑝, 𝑞, 𝑐) almost surely, for

F(𝑝, 𝑞, 𝑐) = 1 − (1 − 𝑝)𝑘 + 1
𝑐 ℓ Pr[Bin(𝐷𝐵, 𝑞) > ℓ]

where𝐷𝐵 ∼ Φ𝐵 , �̃�𝐵 ∼ Φ̃𝐵 and the infimum is taken over the solutions (𝑝, 𝑞) of the equations

𝑞 = (1 − 𝑝)𝑘−1 𝑝 = Pr[Bin(�̃�𝐵, 𝑞) < ℓ] . (11.1)

To simplify this, we use the distributional equation Bin(Po(_1), _2) d= Po(_1_2). The
underlying identity

Pr[Bin(Po(_1), _2) = 𝑖] =
∑︁
𝑗≥𝑖

𝑒−_1
_ 𝑗

1
𝑗 !

(
𝑗

𝑖

)
_𝑖2(1 − _2) 𝑗−𝑖 = 𝑒−_1_2 (_1_2)𝑖

𝑖!

is easily verified. Applying this to the equation for 𝑝 after substituting the definition of Φ̃𝐵

we obtain

𝑝 = (1 − \ ) · Pr[Bin(Po(𝑐𝑘 (1 + \ )), 𝑞) < ℓ] + \ · Pr[Bin(Po(𝑐𝑘 (1 + \ )/2), 𝑞) < ℓ]
= (1 − \ ) · Pr[Po(𝑐𝑞𝑘 (1 + \ )) < ℓ] + \ · Pr[Po(𝑐𝑞𝑘 (1 + \ )/2) < ℓ] . (11.2)



11.3. The (implicit) Threshold Function 135

11.3. The (implicit) Threshold Function

To derive a threshold[, we treat \, 𝑘, ℓ as constants and 𝑝, 𝑞, 𝑐 as variables. The set of solution
triples (𝑝, 𝑞, 𝑐) to Equation (11.1) can be parametrised by _ B 𝑐𝑞. Using Equation (11.2) we
obtain the corresponding value 𝑝 (_) and Equation (11.1) yields 𝑞(_) = (1 − 𝑝 (_))𝑘−1. The
definition of _ gives 𝑐 (_) = _/𝑞(_). Lastly we write 𝐹 (_) = 𝐹 (𝑝 (_), 𝑞(_), 𝑐 (_)). The only
solutions not of this form are the trivial solutions with (𝑝, 𝑞) = (1, 0) that do not affect the
following discussion.

We now propose a candidate for the threshold [ = [𝑘,ℓ,\ and immediately rewrite it
using the above considerations:

[ = inf{𝑐 ∈ [0, ℓ] | lim
𝑛→∞

𝑀 (𝐺𝑐
𝑛)

𝑐𝑛 < 1} = inf{𝑐 (_) | _ > 0, 𝐹 (_) < 1}. (11.3)

Proof of Theorem F. We show that the left-hand side of Equation (11.3) really is the
threshold, which implies that the right hand side is the desired characterisation.

The proof is standard. Recall that ℓ-orientability of𝐻𝑘
𝑛,𝑛/(1+\ ),𝑐𝑛 is equivalent to𝑀 (𝐺𝑐

𝑛) =
𝑐𝑛. For 𝑐 > [ there is 𝑐 ′ ∈ ([, 𝑐) such that lim𝑛→∞

𝑀 (𝐺𝑐
𝑛)

𝑐𝑛 < 1 almost surely, which implies
𝑀 (𝐺𝑐′

𝑛 ) < 𝑐𝑛 whp. By monotonicity this carries over to the higher load 𝑐 > 𝑐 ′.
For 𝑐 < [ we have lim𝑛→∞

𝑀 (𝐺𝑐
𝑛)

𝑐𝑛 = 1 almost surely which, at first, does not guarantee
𝑀 (𝐺𝑐

𝑛) = 𝑐𝑛 whp. We only obtain 𝑀 (𝐺𝑐
𝑛) = 𝑐𝑛 − 𝑜 (𝑛) whp. Luckily this discrepancy can

be reconciled with standard arguments, very similar to the one provided in Section 9.5 and
[Lel12]. Essentially, one has to show that if 𝐻𝑘

𝑛,𝑛/(1+\ ),𝑐𝑛 is not ℓ-orientable, then a large set
𝑋 of vertices is overloaded in the sense that every maximum partial ℓ-orientation saturates
each vertex in 𝑋 . Adding a single random hyperedge then increases the gap 𝑐𝑛 −𝑀 (𝐺𝑐

𝑛)
with positive probability, namely if all incidences of the new hyperedge are within 𝑋 . This
excludes the possibility that there is a non-trivial interval of values for 𝑐 in which the “gap”
𝑛 −𝑀 (𝐺𝑐

𝑛) is positive but 𝑜 (𝑛).
Put differently, we have to show that there exists a small 𝛿 ∈ (0, 1) such that no set

of 𝑠 ≤ 𝛿𝑛 vertices is overloaded whp. This can be achieved with a simple union bound
argument. ◀

11.4. Obtaining Numerical Approximations

Equation 11.3 is not an explicit characterization of [ = [𝑘,ℓ,\ , but easily solved numerically.
The functions 𝑐 (_) and 𝐹 (_) are smooth and after noting that lim_→0 𝑐 (_) = lim_→∞ 𝑐 (_) =
∞, we can restrict our attention to values _ from a compact interval [Y, 1/Y] where both
functions have bounded derivatives. Evaluating the functions with sufficient resolution
permits to approximate [ with arbitrary precision (see Section 9.6 for the discussion of a
similar case).

Actually, we claim without proof that 𝐹 (_) −1 has a unique positive root _0 and 𝐹 (_) −1
is negative precisely for _ ∈ (_0,∞). Moreover, 𝑐 (_) is increasing on this interval. This
implies _0 can be found efficiently, for instance with golden ratio search and [ is simply
𝑐 (_0).

A plot of [𝑘,ℓ,\ for some combinations of 𝑘, ℓ and all \ ∈ [0, 1] is given in Figure 3.4,
together with matching experimental approximations of the thresholds for finite 𝑛.



136



137

Part IV.

Evaluation



138



139

12. Experiments

In this chapter, we consider the practical performance of the data structures discussed
in our theorems. This is relevant for the following reasons.

The theorems hide constants and offer no guidance when comparing, say, two ap-
proaches that both have “O(1)” times for executing eval operations.
The theorems make asymptotic claims with limited implications for relevant finite
input sizes. Especially in the cases of Theorems B2 and C2, where the input is parti-
tioned into chunks of size 𝑛𝛼 such that 𝛼 ∈ (0, 1) is a “small constant” but 𝑛𝛼 is still
“large”, it is unclear which 𝛼 balances the conflicting requirements for, say, 𝑛 = 107.
Some immediate follow-up questions remain untouched by all theoretical consider-
ations, for instance, construction and insertion times of cuckoo hash tables and the
benefits of lazy Gaussian elimination (see Section 4.4.2) when solving linear systems
arising from Theorem B2.

For the convenience of the reader, we distil the main experimental results of this chapter
into compact empirical claims.

12.1. Empirical Claims

Claims 𝛼 , 𝛽 and𝛾 relate to retrieval data structures from Theorems A2, B2 and C2 and
their overhead, eval time (i.e. time to execute an eval operation) and construction time. They
are supported by detailed experiments in Section 12.2. We use the approach gov from
[GOV16] as a basis for comparison.

▶ Empirical Claim 𝜶 . The retrieval data structure from Theorem A2 significantly beats

gov in terms of construction time with comparable overhead and eval time.

A good choice for 𝑧 is 𝑧 = Θ(𝑛1/3).

▶ Empirical Claim 𝜷 . In the case of 1-bit retrieval1 the approach from Theorem B2 can be

tuned to have, compared to gov, significantly smaller overhead, similar eval times and slightly

larger construction times.

▶ Empirical Claim𝜸 . In the case of 1-bit retrieval2 the approach from Theorem C2 with

larger chunk size achieves, compared to the strategy from Claim 𝛼 , even faster construction

times at similar trade-offs between eval times and overhead.

1 Our experiment are for 1-bit retrieval only. Concerning 𝑟 -bit retrieval for 𝑟 > 1, Table 3.2 shows that the
eval times of the approaches from Theorems B2 and C2 are sensitive to 𝑟 , while gov and the approach from
Theorem A2 are not. We suspect that Claims 𝛽 and 𝛾 still hold for, say, 2-bit and 3-bit retrieval, but the
underlying approaches may ultimately become less attractive as 𝑟 grows much larger.

2 See previous footnote.



140 12. Experiments

Alternatively, the approach can be tuned for significantly smaller overhead when signific-

antly larger eval and construction times are tolerable.

Claims 𝛿 and Y are addressed in Sections 12.3 and 12.4 and concern the cuckoo hash
tables from Theorems D1 and E1, answering some simple follow-up questions. Claim𝜑
is related to Theorem F1 and states the main result from [MSW19]. This thesis does not
provide independent justification in this case.

▶ Empirical Claim 𝜹 . Concerning cuckoo hashing with unaligned blocks and its threshold

𝛾𝑘,ℓ from Theorems D and D1, we claim

1. For 𝑐 = 𝛾𝑘,ℓ − 𝜔 (1/
√
𝑛) the scheme works whp (not just for 𝑐 = 𝛾𝑘,ℓ − Θ(1)).

2. For 𝑐 = 𝛾𝑘,ℓ−Y a placement of all key/value pairs can be constructed with the LSA algorithm

[Kho13] in expected time O(𝑛 · 𝑓 (Y)) for some function 𝑓 not depending on 𝑛.
3. If elements are inserted sequentially using random walk insertion, then an insertion at

load 𝑐 = 𝛾𝑘,ℓ − Y has expected running time O(𝑔(Y)) where 𝑔 does not depend on 𝑛.

▶ Empirical Claim 𝜺 . Using double hashing instead of fully random hashing in 𝑘-ary
cuckoo tables with buckets of size ℓ does not affect the expected number of evictions during

random walk insertion.

▶ Empirical Claim 𝝋 . If a hash table must dynamically grow (and shrink) to maintain

high memory efficiency (> 90%) at every point of its lifetime, DySECT beats all competing

strategies in relevant benchmarks. [MSW19, Section 7]

12.2. Benchmarks for Retrieval Data Structures

Let the names coupled, 2-block and 1-block denote our new approaches for building
retrieval data structures from Theorems A2, B2 and C2, respectively. We have implemented
those, and for comparison also the existing approaches bpz [BPZ13], gov [GOV16] and
lmss [Lub+01] discussed in Section 3.4.3. Some approaches achieve several relevant perfor-
mance trade-offs for different parameters. Let us call an approach with fixed parameters
a configuration. A list of all configurations we have attempted and their performance is
given in Figure 12.1, which we shall now discuss in detail. The space overheads are plotted
against each of the three measured running times, namely construction time and eval times
in an “in-cache” and “out-of-cache” setting (see below).

We shall have to provide some context. Before going into the individual approaches,
we say a few words about the testing framework.

12.2.1. Testing Framework

A C++ implementation of the experiments is available online [Wal20a]. The general setup
is as follows.
Input size. The input size is𝑚 = 107. Some configurations are tuned for this size and

parameters would have to be adapted for smaller values of𝑚.
Universe of Keys. We use a set 𝑆 of random distinct 64-bit integers as keys. Using “real

data”, namely URLs from the eu-2015-host dataset gathered by [Bol+14], does not
produce qualitatively different results, only diluting them somewhat due to the univer-
sally increased cost for hashing large keys.



12.2. Benchmarks for Retrieval Data Structures 141

in-cache eval time [𝑛𝑠]

Y
2−22−32−42−52−62−72−82−92−10

10
20
30
40
50
60
70
80

B

G
G

G
G

L

L
L

CC
C22

1
11

11

out-of-cache eval time [𝑛𝑠]

Y
2−22−32−42−52−62−72−82−92−10

50

100

150

200

250

300

B

G
GG G

LL
L

C
C

C

2
2

11

1
11

construction time / key [`𝑠]

Y
2−22−32−42−52−62−72−82−92−10

0.1

0.5

1

2

3
4
5

B

G

G

G

G

LLL

CCC

2

2

111
1

1

B bpz [BPZ13]
G gov [GOV16]
L lmss [Lub+01]
C coupled / Theorem A2
2 2-block / Theorem B2
1 1-block / Theorem C2

construct cached uncached
Approach Parameters Overhead [µs/key] eval[ns] eval[ns]

bpz(𝑐 = 0.81) 23.46% 0.40 32 209
gov(𝑘 = 3, 𝑐 = 0.91,𝐶 = 10000) 10.24% 1.74 40 278
gov(𝑘 = 3, 𝑐 = 0.90,𝐶 = 1000) 12.91% 1.02 44 292
gov(𝑘 = 4, 𝑐 = 0.97,𝐶 = 10000) 3.44% 2.78 37 287
gov(𝑘 = 4, 𝑐 = 0.96,𝐶 = 1000) 5.97% 1.43 39 295
lmss(𝐷 = 12, 𝑐 = 0.90) 11.12% 0.88 55 277
lmss(𝐷 = 150, 𝑐 = 0.99) 1.06% 0.97 64 285
lmss(𝐷 = 800, 𝑐 = 0.997) 0.56% 1.05 69 313

coupled(𝑘 = 3, 𝑧 = 120, 𝑐 = 0.91) 11.42% 0.27 33 198
coupled(𝑘 = 4, 𝑧 = 120, 𝑐 = 0.96) 5.04% 0.30 35 212
coupled(𝑘 = 7, 𝑧 = 120, 𝑐 = 0.98) 3.00% 0.37 40 259
2-block(ℓ = 16, 𝑐 = 0.9995,𝐶 = 10000) 0.25% 2.98 37 220
2-block(ℓ = 16, 𝑐 = 0.9995,𝐶 = 20000) 0.14% 5.03 37 192
1-block(𝐿 = 64, 𝑐 = 0.93,𝐶 = 10000) 8.79% 0.10 33 242
1-block(𝐿 = 64, 𝑐 = 0.96,𝐶 = 10000) 5.43% 0.14 36 244
1-block(𝐿 = 128, 𝑐 = 0.98,𝐶 = 20000) 2.99% 0.19 35 214
1-block(𝐿 = 192, 𝑐 = 0.99,𝐶 = 50000) 1.52% 0.33 41 186
1-block(𝐿 = 1024, 𝑐 = 0.9960,𝐶 = 𝑛) 0.41% 2.36 42 191

Figure 12.1 Experimental overheads and running times of the retrieval approaches we imple-
mented, in various configurations. Plots and table display the same data.



142 12. Experiments

The Function to be Stored. The function 𝑓 : 𝑆 → {0, 1} to be stored is simply the parity
𝑓 (𝑠) B 𝑠 mod 2. Since the number and type of operations performed by construct and
eval is (mostly) independent of 𝑓 , this trivial choice does not affect the measurements.

Hash function. We use xxhash [Col20] to produce a 128-bit hash value, the usage of
which depends on the approach. Unless stated otherwise, configurations that need addi-
tional hash bits use techniques resembling double-hashing to avoid further evaluations
of the hash function.
Note that using xxhash departs from the full randomness assumption made by our
theorems.

Storing Chunk Offsets and Seeds. The approaches gov, 1-block and 2-block use input
partitioning as explained in Section 3.4.2 and for each chunk, an offset and a seed value
has to be stored. We implement two strategies for doing so. The default packing strategy
uses 26 bits for the offset and 6 bits for the seed, packing both into a 32-bit word for
each chunk. The alternative compression strategy is more compact. Instead of actual
offsets, it stores for the 𝑖-th chunk the deviation of its offset from its expected offset,
which is the offset the 𝑖-th chunk would have if all chunks had the expected size. The
maximum seed and the maximum deviation determine the number of bits used for each
chunk and each seed, and all values are concatenated into one large array of bits. The
resulting data structure is smaller, but recovering offset and seed of a chunk is slightly
slower due to an unaligned load and additional computation.

Chosen Seeds. When choosing parameters aggressively, we occasionally see a failure in
a construction of approaches not using input partitioning. In this case, construction
would be repeated with a new seed and construction time almost doubles. We hide this
effect in the data3.

Data Dependency Between Evals. Reported eval times are obtained by performing eval
operations for many keys in a for-loop and dividing the time for the execution of the
loop by the number of operations. To prevent the processor from parallelising calls
internally, we introduce an artificial dependence of each operation on the result of the
previous one. This affects the measurements significantly.

In-Cache vs Out-Of-Cache. With 𝑚 = 107, the retrieval data structures occupy 𝑛 =
(1 + Y) · 107 bits and comfortably fit into the processor’s (L3-)cache even for the largest
overhead Y = 0.23% we encounter. We therefore assume to see “in-cache” performance
by default. For the “out-of-cache” setting, we make 1024 copies of the retrieval data
structure and perform evals in a round-robin fashion on these copies.

Overhead measurement. By the space overhead of a configuration wemean 𝑁
𝑚 −1 where

𝑁 is the total number of bits owned by the data structure, including all auxiliary data.
A complete account of what contributes to 𝑁 is given below for the case of 2-block.

Parallel Construction. All constructions using input partition could be parallelised in a
straightforward way. We have not pursued this.

Averaging. All reported numbers are averages of 10 executions.
Testing Machine. Experiments are performed on a Microsoft Surface Pro 6 with an Intel

Core i5-8250U Processor with a maximum single-core frequency of 3.40GHz. This is

3 We hard-code seeds that we know to work. Occasionally prescribing a seed of 1 instead of 0 is sufficient.



12.2. Benchmarks for Retrieval Data Structures 143

clearly not the fastest conceivable setup but should suffice for assessing the relative
performance of the implemented approaches.

12.2.2. On the Experiments with bpz

The approach is based on peeling the hypergraph 𝐻 3
𝑚/𝑐,𝑚 for 𝑐 < 𝑐△3,1 ≈ 0.81. We chose

a straightforward implementation. Had we used input partitioning, we might have seen
improvements in construction times for cache efficiency reasons, cf. [Bel+14].

12.2.3. On the Experiments with gov

The approach is based on solving the linear system underlying the hypergraph 𝐻𝑘
𝑚/𝑐,𝑚 for

𝑐 < 𝑐∗
𝑘,1 and 𝑘 ∈ {3, 4} (though other values of 𝑘 are theoretically possible).

We implemented the LazyGauss algorithm suggested by the authors but solve the
residual dense linear system using the Method of Four Russians discussed in Section 4.4.3
instead of ordinary Gaussian elimination. Input partitioning is required for feasible con-
struction times. To demonstrate the effect of the chunk size 𝐶 we provide configurations
with 𝐶 = 1000 and 𝐶 = 10000.

When using the smaller chunk size, we use a slightly smaller load 𝑐 to keep the fraction
of chunks for which the first construction attempt fails at a low level, since keys in such
chunks require an additional (costly) hash function evaluation during evals. Since, for
𝐶 = 1000, one 32-bit word of meta-data per chunk would mean an additional overhead of
3.2%, we switch to the compression strategy for storing offsets and seeds.

12.2.4. On the Experiments with lmss

The approach is based on peeling a hypergraph with maximum hyperedge size 𝐷 + 4,
average hyperedge size ≈ ln(𝐷) and hyperedge density at most 1− 1/𝐷 . To our knowledge,
these hypergraphs have not been considered in the context of retrieval. The configuration
with𝐷 = 800 and 𝑐 = 0.997 is an attempt to test how far our implementation of the approach
can be stretched in terms of overhead for𝑚 = 107. Construction attempts with 𝑐 = 0.998
have failed, even for much larger values of 𝐷 .

12.2.5. On the Experiments with coupled

Recall that the approach is based on peeling 𝐹𝑛 = 𝐹 (𝑛, 𝑘, 𝑐, 𝑧). The choice of 𝑘 affects
the upper bound 𝑐∗

𝑘,1 on the achievable hyperedge density we denote by 𝑐 =𝑚/𝑛. Recall
that the logical density parameter 𝑐 = 𝑐 𝑧+1𝑧 is slightly higher. We provide experiments for
𝑘 ∈ {3, 4, 7}.

OnChoosing 𝒛. Our theoretical considerations treat 𝑧 as a constant and offer no guidance
in how 𝑧 = 𝑧 (𝑛) should be chosen in practice. But consider the following heuristic argument,
suggesting that 𝑧 = Θ(𝑛1/3) maximises 𝑐 .

For finite 𝑧 and 𝑛, two things keep us from achieving 𝑐 = 𝑐∗
𝑘,1. Firstly, vertices with

positions 𝑥 ∈ [0, 1] ∪ [𝑧, 𝑧 + 1] at the borders have on average half the expected degree
compared to other vertices. This leads to an overhead of Y1 = 𝑐 −𝑐 ≈ 1/𝑧. Secondly, we need
to choose 𝑐 = 𝑐∗

𝑘,1 − Y2 slightly smaller than 𝑐∗
𝑘,1. To see why, imagine the peeling process



144 12. Experiments

(a) (b)

𝑧

𝑐

0 15 30 45 60 75
0.75

0.80

0.85

0.90

𝑧

𝑐

0 15 30 45 60 75
0.75

0.80

0.85

0.90

Figure 12.2 (a) Hyperedge densities 𝑐 such that 𝐹 (𝑛, 3, 𝑐 𝑧+1𝑧 , 𝑧) is 1-peelable with probability 1
2 ,

for different choices of 𝑧. The three plot lines correspond, from bottom to top, to
𝑛 = 104, 𝑛 = 105, 𝑛 = 106.
(b) Using the idea of folding the hypergraph, slightly larger maximum hyperedge
densities can be achieved.

working linearly through the coupling dimension 𝑋 . What happens around 𝑥 ∈ 𝑋 should
mostly depend on the expected O(𝑛/𝑧) hyperedges with positions close to 𝑥 . The standard
deviation of their number is O(

√︁
𝑛/𝑧). If the local density is correspondingly increased

by O(
√︁
𝑛/𝑧/(𝑛/𝑧)) = O(

√︁
𝑧/𝑛), this should not lead to the local density exceeding 𝑐∗

𝑘,1
(otherwise we might get stuck), which calls for Y2 = 𝑐∗

𝑘,1 − 𝑐 ≥ O(
√︁
𝑧/𝑛). Balancing Y1 and

Y2 yields our recommendation of 𝑧 = Θ(𝑛1/3).
Supporting experiments are found in Figure 12.2 (a). There we estimate, for 𝑛 ∈

{104, 105, 106} and various 𝑧 the value 𝑐 (𝑛, 𝑧) for which 𝐹 (𝑛, 3, 𝑐 (𝑛, 𝑧) 𝑧+1𝑧 , 𝑧) is 1-peelable
with probability exactly 1/2. To do so, we construct 500 hypergraphs with distribution
𝐻

d= 𝐹 (𝑛, 3, 1, 𝑧). Let the hyperedge set be 𝐸 = {𝑒1, . . . , 𝑒𝑚}. We then determine the values

𝑚∗ = max
𝑚′∈[𝑚]

{𝐻 ′ = ( [𝑛], {𝑒1, . . . , 𝑒𝑚′}) is 1-peelable}.

This can be done by a customised peeling process on 𝐻 that, whenever no vertex of degree
1 exists, deletes the hyperedge with highest index. Then𝑚∗ + 1 is the highest index of a
hyperedge that was deleted using the special rule. The median of the values 𝑚∗

𝑛 over the
500 runs is our approximation of 𝑐 (𝑛, 𝑧). The 𝑧 values maximising 𝑐 (104, 𝑧), 𝑐 (105, 𝑧) and
𝑐 (106, 𝑧) differ by a factor of roughly 2, close to the factor of 101/3 ≈ 2.15 predicited by the
argument above.

The choice of 𝑧 = 120 for𝑚 = 107 is extrapolated from these observations.

Additional Space Savings by Folding. The coupling dimension 𝑋 = [0, 𝑧 + 1] has two
border regions [0, 1] and [𝑧, 𝑧 + 1] and 𝐹𝑛 has two regions with correspondingly reduced
density. Intuitively, just one border is required for the peeling process to get going.

The following trick was found by Thomas Mueller Graf (personal communication):
We start with 𝐹 (2𝑛, 𝑘, ·, 2𝑧) and identify for 𝑖 ∈ {0, . . . , 𝑛 − 1} the vertices 𝑖 and 2𝑛 − 𝑖 − 1.
This folds the hypergraph in the middle, with the borders landing on top of each other.
As shown in Figure 12.2 (b), slightly higher densities can be achieved this way. In the
experiments of Figure 12.1, this trick is not used.



12.2. Benchmarks for Retrieval Data Structures 145

12.2.6. On the Experiments with 2-block

Recall that the approach is based on solving several linear systems of the form𝐴𝐿
𝑚,𝑚/𝑐 · ®𝑧 = ®𝑏.

The choices 𝐿 = 16 and 𝑐 = 0.9995 turned out to work well in practice. We try out chunk
sizes 𝐶 = 10000 and 𝐶 = 20000. The latter achieves a smaller overhead but has a larger
construction time.

The Benefits of Lazy Gaussian Elimination. We use the Lazy Gauss algorithm as
described in Section 4.4.2 to act as a presolver for the linear systems. While we can give
no theoretical guarantees, in the experiments for 𝐿 = 16 and independently of 𝑛, about
85% of variables and equations are removed as shown in Figure 12.3. This considerably
reduces the running time of the subsequent step, which uses the Method of Four Russians
Section 4.4.3. In Figure 12.4 we show the relative contribution of the Lazy-Gauss and the
Four-Russian phases.4

(a) (b)

5 10 15 20 25 300

0.05

0.1

0.15

0.2

fra
ct
io
n
of

re
m
ai
ni
ng

va
ria

bl
es

block size 𝐿
10000 20000 30000 40000 50000 600000

0.05

0.1

0.15

0.2
fra

ct
io
n
of

re
m
ai
ni
ng

va
ria

bl
es

system size 𝑛

Figure 12.3 Fraction of variables that remain in the dense system after applying the Lazy Gauss
presolver to a linear system 𝐴𝐿

𝑛,𝑛 ®𝑥 = ®𝑏. (a) is for 𝑛 = 10000 and variable 𝐿 while
(b) is for 𝐿 = 16 and variable 𝑛. Each data point is the average of 25 independent
executions.

Breakdown of the Overhead. Let us see where the overhead of ≈ 0.25% in the experi-
ments with 𝐶 = 104 comes from.

For 𝑖 ∈ [𝑚/𝐶], let 𝑚𝑖 be the actual chunk sizes that randomly fluctuate around the
desired chunk size𝐶 . The choice of 𝑐 = 0.9995 dictates that (1+ Y)𝑚𝑖 bits should be used for
the 𝑖-th chunk where Y = 1/𝑐 ≈ 0.0005. Let 𝑛𝑖 be the least multiple of 𝐿 = 16 that is at least
(1 + Y)𝑚𝑖 . Note that 𝑛𝑖 − (1 + Y)𝑚𝑖 has an expectation of roughly 𝐿−1

2 = 7.5. Generating
and solving a system 𝐴𝐿

𝑚𝑖 ,𝑛𝑖 ®𝑧𝑖 = ®𝑏𝑖 yields ®𝑧𝑖 ∈ {0, 1}𝑛𝑖 . Construction is repeated with a new
seed if necessary. Let 𝑠𝑖 be the seed of the first successful construction for chunk 𝑖 .

The vectors ®𝑧𝑖 are concatenated into one bit string ®𝑧. Let 𝑜𝑖 =
∑

𝑗<𝑖 𝑛𝑖/𝐿 be the offset
(counted in blocks) of 𝑧𝑖 within 𝑧. Using the compression strategy for storing offsets and

4 The data may have been obtained with an older (but not substantially different) version of the code, possibly
on a different machine.



146 12. Experiments

10000 20000 30000 40000 50000 60000

5

10

15
tim

e
in

[µ
s/
ke
y]

chunk size 𝐶
5 10 15 20 25 30

0.5

1

1.5

2

2.5

tim
e
in

[µ
s/
ke
y]

block size 𝐿

Figure 12.4 Contributions to construction time per key in the 2-block approach. is the
time for the Lazy-Gauss phase, the time for the Four-Russian phase and the
sum. On the left the block size is 𝐿 = 16 and the chunk size 𝐶 varies. On the right
𝐶 = 104 is fixed and 𝐿 varies.

seeds, we actually store 𝑑𝑖 = 𝑜𝑖 − ⌊ 𝑖−1
𝑚/𝐶 |®𝑧 |/𝐿⌋ ≈ 𝑜𝑖 − E[𝑜𝑖] instead of 𝑜𝑖 as the binary

representation of 𝑑𝑖 is typically only half as long.
Finally, let 𝑑 B max𝑖 𝑑𝑖 and 𝑠 B max𝑖 𝑠𝑖 . In addition to ®𝑧,𝑚,𝐶 , 𝑑 and 𝑠 we need to store

the meta data ((𝑠𝑖 , 𝑑𝑖))𝑖∈[𝑚/𝐶 ] for the chunks using (⌈log(𝑑 + 1)⌉ + ⌈log(𝑠 + 1)⌉)𝑚/𝐶 bits.
A full account of everything that needs to be stored with concrete numbers is given in
Table 12.1.

Number of bits bits used for per element

𝑚 entropy lower bound 1.00000
Y𝑚 planned overhead 0.00050∑

𝑖 𝑛𝑖 − (1 + Y)𝑚 padding ensuring 𝐿 | 𝑛𝑖 0.00072
⌈log(1 +max𝑖 𝑠𝑖)⌉ ·𝑚/𝐶 seed for each chunk 0.00030
⌈log(1 +max𝑖 𝑑𝑖)⌉ ·𝑚/𝐶 offset info for each chunk 0.00100

everything 1.00253

Table 12.1 Overview of the space usage of the 2-block approach. The concrete values on the
right correspond to a run on a data set with𝑚 = 107 keys, chunk size𝐶 = 104, 𝐿 = 16
and 𝑐 = 0.9995. In that run ⌈log(1 +max𝑖 𝑠𝑖 )⌉ = 3 and ⌈log(1 +max𝑖 𝑑𝑖 )⌉ = 10.

12.2.7. On the Experiments with 1-block

Recall that the approach is based on solving several linear systems of the form𝑀𝐿
𝑚,𝑚/𝑐 · ®𝑧 = ®𝑏.

On a 64-bit machine, there is little reason not to choose 𝐿 as a multiple of 64. The closer 𝑐 is
to 1, the higher the construction time becomes due to the higher number of row additions
and—if we are forced to increase 𝐿—the higher cost of each row addition.

The configuration with the extremely high value of 𝐿 = 1024 demonstrates that very
small overheads are possible with this approach, albeit with high construction times. Input
partitioning is not needed in this case.

The first two 64-bit words of each 𝐿-bit pattern are generated with xxhash (prompting
one call to xxhash in addition to the call used for all approaches) and the remaining words



12.3. Experiments on Cuckoo Hashing with Unaligned Blocks 147

are generated from these two using double hashing, i.e. the 𝐿/64 words form an arithmetic
progression modulo 264. Using arithmetic progressions modulo 232 would have saved one
call to xxhash but failed to produce linearly independent rows reliably.

12.2.8. Discussion

From Figure 12.1 we see that, if extremely small overhead is a priority, 2-block and, possibly,
1-block seem to be the best choices. If eval times are the main concern, then lmss is worse
than the other approaches and has the additional disadvantage of high variance in eval times
since, in the underlying hypergraph, the largest hyperedge size is exponential in the average
hyperedge size. Among the other approaches, results are too close to confidently call a
clear winner. When construction time is also taken into account, 1-block and coupled
have a clear advantage over the other approaches, with 1-block being faster than coupled.

On the downside, coupled can achieve small overheads only for relatively large values
of𝑚 as seen in Figure 12.2, and 1-block may lose some of its relative advantage when 𝑟 -bit
retrieval for 𝑟 > 1 is needed.

Concerning ease of implementation, the peeling approaches bpz, coupled and – with
some reservations – lmss are the simplest, gov and especially 2-block are the most
challenging and 1-block is somewhere in between.

Overall we believe coupled is our most promising contribution. However, more re-
search is required to explore the complex space of possible input sizes, configurations and
achievable trade-offs between overhead and running times. A full exploration is beyond
the scope of this more theoretically oriented thesis.

12.3. Experiments on Cuckoo Hashing

with Unaligned Blocks

12.3.1. Speed of Convergence and Practical Table Sizes

It is natural to wonder to what degree the asymptotic results on𝑊 𝑘,ℓ
𝑛,𝑐𝑛 predict the behaviour

of corresponding hash tables for realistic values of 𝑛, say a hash table of size 𝑛 = 105.
Formally, for 𝑘, ℓ ≥ 2 and 𝑡 ∈ [0, 1] we define the functions

𝑝𝑘,ℓ𝑛 (𝑐) B Pr[𝑊 𝑘,ℓ
𝑛,𝑐𝑛 is not 1-orientable] and step𝑡 (𝑐) =




0 if 𝑐 < 𝑡
1
2 if 𝑐 = 𝑡

1 if 𝑐 > 𝑡

Theorem D shows that 𝑝𝑘,ℓ𝑛 : [0, 1] → [0, 1] converges point-wise to step𝛾𝑘,ℓ , except,
possibly, at the threshold 𝑐 = 𝛾𝑘,ℓ itself. To give an idea of the speed of this convergence,
we plotted approximations of 𝑝𝑘,ℓ𝑛 for 𝑛 ∈ {104, 105, 106} and (𝑘, ℓ) ∈ {(2, 2), (2, 3), (3, 2)} in
Figure 12.5.

To obtain the data, we carried out 1000 trials. In each trial, a copy of𝑊 𝑘,ℓ
𝑛,𝑛 was generated

by adding random hyperedges one by one as long as the hypergraph remained 1-orientable.
The number of hyperedges𝑚 where 1-orientability was lost corresponds to a load 𝑐 = 𝑚

𝑛 .
As an estimate for 𝑝𝑘,ℓ𝑛 (𝑐) we take the fraction of the 1000 trials where 1-orientability was
lost at a value less than 𝑐 .



148 12. Experiments

0.960 0.965 0.970
0

0.5

1

0.992 0.994 0.996
0

0.5

1

0.996 0.997 0.998
0

0.5

1

Figure 12.5 Approximate probabilities for𝑊 𝑘,ℓ
𝑛,𝑐𝑛 to not be orientable depending on 𝑐 . From left

to right, the plots correspond to (𝑘, ℓ) ∈ {(2, 2), (2, 3), (3, 2)}. In each plot, the three
curves correspond to 𝑛 ∈ {104, 105, 106}, with curves for larger 𝑛 visibly getting
closer to the step function that we know is the limit for 𝑛 →∞. Details are given
in the text.

The plots suggest that, at the threshold, 𝑝𝑘,ℓ𝑛 assumes a value of 1
2 and rises from almost

zero to almost one within an interval of size O(1/√𝑛).

12.3.2. Linear Time Construction of an Orientation

The following paragraphs concern the construction of a 1-orientation of𝑊 𝑘,ℓ
𝑛,𝑐𝑛 and therefore

the construction of a cuckoo hash table with unaligned blocks. However, they are stated in
the equivalent form involving �̂� 𝑘,ℓ

𝑛,𝑐𝑛 , introduced in Section 9.2.
Algorithms to orient random hypergraphs include the selfless algorithm analysed by

Cain, Sanders and Wormald [CSW07] and an algorithm by Fernholz and Ramachandran
[FR07] involving so-called excess degree reduction. While Dietzfelbinger et al. [Die+10] have
suggested a generalisation of the selfless algorithm, the algorithm that seemed easiest to
adapt to our particular hypergraph setting is the Local Search Allocation (LSA) algorithm
by Khosla [Kho13] (with improved analysis in [KA19]).

0.8 0.85 0.9 0.95 1
0
5

10
15
20
25
30
35
40

Figure 12.6 Average number of balls touched (one plus the number of evictions) to insert a new
ball at a certain load using Khosla’s LSA algorithm (each point in the plot being the
average of 10000 insertions). The blue, red and orange curves correspond to 𝑘-ary
cuckoo hashing with unaligned blocks of size ℓ for (𝑘, ℓ) ∈ {(2, 2), (2, 3), (3, 2)},
respectively, and a table of size 𝑛 = 107. The corresponding thresholds are shown as
vertical lines. Analogous plots for 𝑛 = 106 are visually indistinguishable, suggesting
the plots are stable as 𝑛 varies.



12.4. Experiments on Cuckoo Hashing with Double Hashing 149

The Algorithm. Following Khosla’s terminology, we describe the task of orienting �̂� 𝑘,ℓ
𝑛,𝑐𝑛

as a problem of placing balls into bins. There are 𝑛 bins of capacity ℓ arranged in a circle,
and for each pair of adjacent bins, there are (ℓ − 1) helper balls that may be placed into one
of those two bins. Moreover, there are ordinary balls, each of which has 𝑘 random bins it
may be placed into.

We start with all helper balls placed in their “left” option. In particular, all bins have
room for just one more ball. Now the ordinary balls are placed one by one. We maintain a
label for each bin. All labels are natural numbers, initially zero. We place a ball simply by
putting it in the admissible bin with least label. If placing a ball results in an overloaded
bin 𝑏, one ball must be evicted from 𝑏 and inserted again. The ball to be evicted is chosen
to have, among all balls in 𝑏, an alternative bin of least label.

Whenever the content of a bin 𝑏 changes (after insertion or insertion + eviction), its
label is updated. The new label is one more than the least label of a bin that is the alternative
bin of a ball currently placed in 𝑏.

Analysis. Labels can be thought of as lower bounds on the distance of a bin to the closest
non-full bin in the directed hypergraph where bins are vertices and a hyperedge from 𝑏1
to 𝑏2 indicates that a ball in 𝑏1 has 𝑏2 as an alternative bin. It is fairly easy to see that this
algorithm finds a placement in quadratic time whenever a placement exists. To show that
running time is linear whp, it suffices to show that the running time is linear in the sum of
all labels in the end and that the sum of the distances mentioned above is linear whp. We
do not attempt a proof here, although we expect it to be possible with Khosla’s techniques.

Experiments. The results from Figure 12.6 suggest that the expected number of evictions
per insertion is bounded by a constant as long as the load 𝑐 is bounded away from the
threshold. Eviction counts sharply increase close to the threshold.

12.3.3. RandomWalk Insertion

Even though no complete analysis of randomwalk insertion (see Figure 3.2) for cuckoo hash
tables is known, the algorithm is widely believed to achieve expected constant insertion
time as long as the hash table’s load is bounded away from the underlying hashing scheme’s
threshold. For cuckoo hashing with unaligned blocks, this seems to be no different as shown
in Figure 12.7 (a).

To obtain the data, we have inserted random keys using random walk insertion into an
initially empty hash table. For each insertion, we count the number of evictions it caused.
For 𝑖 ∈ [100]0 a plot point ( 𝑖

100 , 𝑒) shows the average number 𝑒 of evictions caused by the
insertions at loads between 𝑖

100 and 𝑖+1
100 , averaged over 10 runs of the experiment.

The curves for 𝑛 ∈ {104, 105, 106, 107} are almost indistinguishable, suggesting the
expected number of evictions is independent of 𝑛.

12.4. Experiments on Cuckoo Hashing with Double Hashing

We have proved that the families of fully random hypergraphs (𝐻𝑘
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N and double

hashing hypergraphs (𝐷𝑘
𝑛,𝑐𝑛)𝑐∈R+,𝑛∈N share an ℓ-orientability threshold, but the similarities

go much further. This is hardly surprising since the families share a random weak limit



150 12. Experiments

(a) (b)

𝑐

# evictions per insert

0 0.2 0.4 0.6 0.8 1

1

2

3

4

𝑐

# evictions per insert

0 0.2 0.4 0.6 0.8 1

1

2

3

4

Figure 12.7 (a) For 𝑘 = ℓ = 2, 𝑛 ∈ {104, 105, 106, 107} and varying load 𝑐 , we show the average
number of evictions caused by random walk insertion into a cuckoo hash table
using unaligned blocks. The curves for different 𝑛 are almost identical.
(b) For 𝑘 = 4, ℓ = 2 and 𝑛 = 106 we perform an analogous experiment for 𝑘-ary
cuckoo hashing with buckets of size 2. A curve for fully random hashing and
another for double hashing are visually indistinguishable.

as Leconte [Lec13] has shown. Mitzenmacher and Thaler [MT12] conjectured and partly
proved that the families have equally sized ℓ-cores (for ℓ > 2) and behave almost identical
in experiments on cuckoo hashing with a stash.

We performed a simple experiment of our own, comparing the performance of random
walk insertion using 4-ary cuckoo hashing with buckets of size 2 with and without double
hashing. The setup corresponds to the experiment in Section 12.3.3. The resulting curves in
Figure 12.7 (b) are visually indistinguishable, suggesting essentially identical performance.



151

13. Conclusion

This thesis studied implementations of dictionaries and related data types that offer constant
worst-case access times, combined with small memory overhead and good cache efficiency.
Most of the ideas and corresponding algorithms are simple. The main challenge was the
mathematical analysis, including the derivation of load thresholds for peelability, solvability
and orientability of underlying random hypergraphs. The results fall into three groups.

Results on Cuckoo Hashing. Theorems D, E and F provide theoretical justification for
previously observed experimental findings concerning cuckoo hashing schemes.

We proved that unaligned blocks yield higher load thresholds than aligned blocks of
the same size, by determining the thresholds exactly. This confirms and strengthens
existing results [DW07; LP09]. Whether or not unaligned blocks can lead to superior
performance overall remains doubtful, however, see for instance [DW07, Figs. 7+8].
While aligned blocks call for a larger block size (say, 8 instead of 4), the performance
impact of scanning the longer blocks is small. Moreover, the alignment can be chosen
in agreement with the alignment of cache lines or the alignment required for SIMD
instructions for benefits on modern CPU architectures. One could consider alignment
to a non-trivial divisor of the block size, e.g. using blocks of size 8 aligned to multiples
of 4. Such a compromise may benefit from the advantages of both approaches.
When considering balls-into-bins settings detached from the application of cuckoo
hashing, it could be of theoretical interest to study the effects of a geometric structure
on the bins more generally. Imagine each ball chooses two random positions in a metric
space and must be put into a bin that is close to one of the two positions. Theorem D
considers this in the special case of offline load balancing for a one-dimensional ar-
rangement of bins. Higher dimensions could be interesting, but would likely require
completely different methods.
Using double hashing in cuckoo tables improves running time and simplifies imple-
mentation in practice. We are happy to have completed the proof from [Lec13] that the
load thresholds remain unaffected. We thereby extended the family of results saying
that double hashing exhibits, in some setting, the same behaviour as fully random hash-
ing. It is unfortunate that each proof so far required a specialised argument. Unifying
the existing results and exposing a central reason why double hashing works in a wide
range of cases would be a worthwhile project. This could also settle the question for
ℓ-peelability thresholds for 2 ≤ ℓ < 𝑘 , where equality is still not proven, see [MT12].
Lastly, we derived the load thresholds for Dynamic Space Efficient Cuckoo Tables
[MSW19], settling the main theoretical question of the approach.

New Static Retrieval Data Structures. Theorems B and C examine a new kind of ran-
dom matrix to be used in static retrieval data structures. In contrast to previous approaches



152 13. Conclusion

where the 1-entries are scattered, in the new approach, they are concentrated in one block
or two blocks of O(log𝑛) random bits per row. The resulting constructions profit from
bit-parallel processing and good cache-efficiency.

The approach from Theorem B achieves constant query times and negligible over-
head, though construction times are on the higher end. It seems that the approach from
Theorem C balances the three performance characteristics most convincingly. This latter
point is also supported by a very recent1 implementation by Peter Dillinger [Dil20]. His
Ribbon-Filter is an AMQ-Filter data structure building on the retrieval data structure from
Theorem C1. However, the Ribbon-filter uses a different linear system solver, improving
construction time by relevant constant factors, and a novel partitioning strategy that has,
to the author’s knowledge, not yet been analysed. Ribbon filters will soon be incorporated
into the codebase of the widely used data storage engine RocksDB. We are happy to see
our theoretical insights to be so quickly translated into practical progress.

Peeling at High Densities. The author’s favourite result is Theorem A, which estab-
lishes that𝑘-uniform spatially coupled hypergraphs have peelability thresholds that coincide
with the orientability thresholds of fully random hypergraphs.

The construction can serve as a drop-in replacement in data structures that work by
peeling random hypergraphs. Thereby the memory efficiency of these data structures
improves. For the most part, the improvement comes “for free”. Small caveats are a higher
number of rounds taken by the peeling process, issues with downscaling to small input
sizes (see Figure 12.2) and, by extension, issues with parallelisation.

We conjecture that the achieved thresholds are best possible, i.e. no family of 𝑘-uniform
hypergraphs with i.i.d. random hyperedges has an ℓ-peelability threshold exceeding 𝑐∗

𝑘,ℓ
.

Indeed, even achieving ℓ-orientability beyond 𝑐∗
𝑘,ℓ

seems unlikely.
The construction exploits the phenomenon of “threshold saturation via spatial coupling”

that was discovered in coding theory, and our proof borrows the powerful methods that
were developed in the area.

What’s next? Many results of this thesis rest on ideas and theorems imported from
other areas, such as belief propagation (via [Lel12]), spatial coupling (via [KRU15]) and
queuing theory (via [Coo90; EZB06]). In the early days of cuckoo hashing some of these
fruitful connections have been dimly visible at best. It therefore makes sense, or so the
author believes, to revisit some questions to which early works could not provide satisfying
answers. One of these questions concerns the analysis of dynamic cuckoo hash tables, in
particular the performance of random walk insertion. Despite some progress [FMM11;
FPS13; FJ19], the question of whether the insertion time is constant in expectation is open
(except for very small loads). Equipped with the versatile toolkit that has become available
since, it may be worthwhile to take another stab at this. Moreover, when taking into account
Theorem A, an analysis can exploit peelability without sacrificing memory efficiency, which
may offer new avenues of attack as well.

1 The relevant talk by Peter Dillinger was given a week prior to this thesis’s defence. This new developement
is therefore not reflected in the main part of this thesis.



153

Bibliography

[AB12a] Jean-Philippe Aumasson and Daniel J. Bernstein.Hash-flooding DoS reloaded: at-
tacks and defenses. 2012. url: https://131002.net/siphash/siphashdos_
29c3_slides.pdf (visited on 27/02/2020) (cited on p. 55).

[AB12b] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast Short-Input
PRF. In: Proc. 13th INDOCRYPT. 2012, pp. 489–508. doi: 10.1007/978-3-642-
34931-7_28 (cited on p. 55).

[ACW16] Jyrki Alakuijala, Bill Cox and JanWassenberg. Fast keyed hash/pseudo-random
function using SIMDmultiply and permute. In:CoRR (2016). arXiv: 1612.06257
(cited on p. 55).

[ADR09] Martin Aumüller, Martin Dietzfelbinger and Michael Rink. Experimental Vari-
ations of a Theoretically Good Retrieval Data Structure. In: Proc. 17th ESA. 2009,
pp. 742–751. doi: 10.1007/978-3-642-04128-0_66 (cited on pp. 2, 38, 42).

[AH74] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer

Algorithms. 1st. Addison-Wesley Longman Publishing Co., Inc., 1974. isbn:
0201000296 (cited on p. 59).

[AL07] David Aldous and Russell Lyons. Processes on Unimodular Random Networks.
In: Electron. J. Probab. 12 (2007), pp. 1454–1508. doi: 10.1214/EJP.v12-463
(cited on p. 65).

[AMD08] AMD. AMD Developer Guides, Manuals & ISA Documents. 2008. url: https:
//developer.amd.com/resources/developer-guides-manuals/ (visited
on 27/02/2020) (cited on p. 52).

[ANS10] Yuriy Arbitman,Moni Naor and Gil Segev. Backyard CuckooHashing: Constant
Worst-Case Operations with a Succinct Representation. In: Proc. 51th FOCS.
2010, pp. 787–796. doi: 10.1109/FOCS.2010.80 (cited on p. 63).

[App12] Austin Appleby. SMHasher test suite designed to test the distribution, collision,

and performance properties of non-cryptographic hash functions. 2012. url:
https://github.com/aappleby/smhasher/wiki (visited on 27/02/2020)
(cited on p. 55).

[Arl+70] V. Arlazarov, E. Dinic, M. Kronrod and I. Faradzev. On economical construction
of the transitive closure of a directed Graph. In: Dokl. Akad. Nauk SSSR, 194
(1970) (cited on p. 59).

[AS04] David Aldous and J. Michael Steele. The Objective Method: Probabilistic Com-
binatorial Optimization and LocalWeak Convergence. In: Probability on Discrete
Structures. Springer, 2004, pp. 1–72. isbn: 978-3-662-09444-0. doi: 10.1007/97
8-3-662-09444-0_1 (cited on pp. 6, 7, 68, 76).

[Bar09] Gregory V. Bard. In: Algebraic Cryptanalysis. Springer, 2009. Chap. The Method
of Four Russians, pp. 133–158. isbn: 978-0-387-88757-9. doi: 10.1007/978-0-
387-88757-9_9 (cited on p. 59).

https://131002.net/siphash/siphashdos_29c3_slides.pdf
https://131002.net/siphash/siphashdos_29c3_slides.pdf
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-642-34931-7_28
https://arxiv.org/abs/1612.06257
https://doi.org/10.1007/978-3-642-04128-0_66
https://doi.org/10.1214/EJP.v12-463
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/
https://doi.org/10.1109/FOCS.2010.80
https://github.com/aappleby/smhasher/wiki
https://doi.org/10.1007/978-3-662-09444-0_1
https://doi.org/10.1007/978-3-662-09444-0_1
https://doi.org/10.1007/978-0-387-88757-9_9
https://doi.org/10.1007/978-0-387-88757-9_9


154 Bibliography

[BBD09] Djamal Belazzougui, Fabiano C. Botelho and Martin Dietzfelbinger. Hash,
Displace, and Compress. In: Proc. 17th ESA. 2009, pp. 682–693. doi: 10.1007/9
78-3-642-04128-0_61 (cited on p. 43).

[Bel+10] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh and Sebastiano Vigna. Fast
Prefix Search in Little Space, with Applications. In: Proc. 18th ESA. 2010, pp. 427–
438. doi: 10.1007/978-3-642-15775-2_37 (cited on p. 29).

[Bel+14] Djamal Belazzougui, Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini and
Sebastiano Vigna. Cache-Oblivious Peeling of Random Hypergraphs. In: Proc.
DCC. 2014, pp. 352–361. doi: 10.1109/DCC.2014.48 (cited on pp. 43, 45, 143).

[Bey12] Stephan Beyer. Analysis of the Linear Probing Variant of Cuckoo Hashing.
MA thesis. Technische Universität Ilmenau, 2012. url: http://gso.gbv.de/
DB=2.1/PPNSET?PPN=685166759 (cited on p. 25).

[BKZ05] Fabiano C. Botelho, Yoshiharu Kohayakawa and Nivio Ziviani. A Practical
Minimal Perfect Hashing Method. In: Proc. 4th WEA. 2005, pp. 488–500. doi:
10.1007/11427186_42 (cited on pp. 2, 40).

[Blo70] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
In: Commun. ACM 13.7 (1970), pp. 422–426. doi: 10.1145/362686.362692
(cited on pp. 3, 29, 45).

[BM03] Andrei Z. Broder and Michael Mitzenmacher. Network Applications of Bloom
Filters: A Survey. In: Internet Mathematics 1.4 (2003), pp. 485–509. doi: 10.108
0/15427951.2004.10129096 (cited on pp. 3, 29, 45).

[Bol+14] Paolo Boldi, Andrea Marino, Massimo Santini and Sebastiano Vigna. BUbiNG:
Massive Crawling for the Masses. In: Proc. 23rd WWW’14. 2014, pp. 227–228.
doi: 10.1145/2567948.2577304 (cited on p. 140).

[Bor16] Charles Bordenave. Lecture notes on random graphs and probabilistic combin-

atorial optimization. 2016. url: https://www.math.univ-toulouse.fr/
~bordenave/coursRG.pdf (visited on 09/03/2020) (cited on pp. 6, 65–67, 71).

[Bot08] Fabiano C. Botelho. Near-Optimal Space Perfect Hashing Algorithms. PhD
thesis. Federal University ofMinas Gerais, 2008.url: http://cmph.sourceforge.
net/papers/thesis.pdf (cited on p. 43).

[BPZ07] Fabiano C. Botelho, Rasmus Pagh and Nivio Ziviani. Simple and Space-Efficient
Minimal Perfect Hash Functions. In: Proc. 10th WADS. 2007, pp. 139–150. doi:
10.1007/978-3-540-73951-7_13 (cited on p. 43).

[BPZ13] Fabiano C. Botelho, Rasmus Pagh and Nivio Ziviani. Practical Perfect Hashing
in Nearly Optimal Space. In: Inf. Syst. 38.1 (2013), pp. 108–131. doi: 10.1016/
j.is.2012.06.002 (cited on pp. 2, 20, 38, 42–44, 140, 141).

[BS11] Itai Benjamini and Oded Schramm. Recurrence of Distributional Limits of
Finite Planar Graphs. In: Selected Works of Oded Schramm. Springer New York,
2011, pp. 533–545. doi: 10.1007/978-1-4419-9675-6_15 (cited on pp. 6, 25,
65).

[CC08] Denis Xavier Charles and Kumar Chellapilla. Bloomier Filters: A Second Look.
In: Proc. 16th ESA. 2008, pp. 259–270. doi: 10.1007/978-3-540-87744-8_22
(cited on pp. 3, 45).

[Cha+04] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld and Ayellet Tal. The Bloomier
Filter: An Efficient Data Structure for Static Support Lookup Tables. In: Proc.

https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1007/978-3-642-15775-2_37
https://doi.org/10.1109/DCC.2014.48
http://gso.gbv.de/DB=2.1/PPNSET?PPN=685166759
http://gso.gbv.de/DB=2.1/PPNSET?PPN=685166759
https://doi.org/10.1007/11427186_42
https://doi.org/10.1145/362686.362692
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1145/2567948.2577304
https://www.math.univ-toulouse.fr/~bordenave/coursRG.pdf
https://www.math.univ-toulouse.fr/~bordenave/coursRG.pdf
http://cmph.sourceforge.net/papers/thesis.pdf
http://cmph.sourceforge.net/papers/thesis.pdf
https://doi.org/10.1007/978-3-540-73951-7_13
https://doi.org/10.1016/j.is.2012.06.002
https://doi.org/10.1016/j.is.2012.06.002
https://doi.org/10.1007/978-1-4419-9675-6_15
https://doi.org/10.1007/978-3-540-87744-8_22


Bibliography 155

15th SODA. 2004, pp. 30–39. url: http://dl.acm.org/citation.cfm?id=9
82792.982797 (cited on p. 38).

[CHM92] Zbigniew J. Czech, George Havas and Bohdan S. Majewski. An optimal al-
gorithm for generating minimal perfect hash functions. In: Inf. Process. Lett.
43.5 (1992), pp. 257–264. doi: 10.1016/0020-0190(92)90220-P (cited on
p. 43).

[CHM97] Zbigniew J. Czech, George Havas and Bohdan S. Majewski. Perfect Hashing.
In: Theor. Comput. Sci. 182.1-2 (1997), pp. 1–143. doi: 10.1016/S0304-3975(9
6)00146-6 (cited on p. 43).

[CLM85] Pedro Celis, Per-Åke Larson and J. Ian Munro. Robin Hood Hashing. In: Proc.
26th FOCS. 1985, pp. 281–288. doi: 10.1109/SFCS.1985.48 (cited on pp. 62,
100).

[CMV13] Kai-Min Chung, Michael Mitzenmacher and Salil P. Vadhan. Why Simple
Hash Functions Work: Exploiting the Entropy in a Data Stream. In: Theory of

Computing 9 (2013), pp. 897–945. doi: 10.4086/toc.2013.v009a030 (cited
on p. 54).

[Col20] Yann Collet. xxHash - Extremely fast hash algorithm. 2020. url: https://
github.com/Cyan4973/xxHash (visited on 24/03/2020) (cited on p. 142).

[Coo00] Colin Cooper. On the rank of random matrices. In: Random Structures & Al-

gorithms 16.2 (2000), pp. 209–232. doi: 10.1002/(SICI)1098-2418(200003)
16:2<209::AID-RSA6>3.0.CO;2-1 (cited on pp. 19, 20).

[Coo04] Colin Cooper. The Cores of Random Hypergraphs with a Given Degree Se-
quence. In: Random Struct. Algorithms 25.4 (2004), pp. 353–375. doi: 10.1002/
rsa.20040 (cited on pp. 14, 26, 76).

[Coo90] Robert B. Cooper. Introduction to queueing theory. 3rd. George Washington
University, 1990. isbn: 978-0941893039 (cited on pp. 7, 104, 152).

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009. isbn: 978-0-262-03384-
8. url: http://mitpress.mit.edu/books/introduction-algorithms
(cited on pp. 27, 53, 62, 98).

[CPS19] David Clayton, Christopher Patton and Thomas Shrimpton. Probabilistic Data
Structures in Adversarial Environments. In: Proc. 26th CCS. 2019, pp. 1317–1334.
doi: 10.1145/3319535.3354235 (cited on p. 55).

[CSW07] Julie A. Cain, Peter Sanders and Nicholas C. Wormald. The Random Graph
Threshold for𝑘-orientiability and a Fast Algorithm for OptimalMultiple-Choice
Allocation. In: Proc. 18th SODA. 2007, pp. 469–476. url: http://dl.acm.org/
citation.cfm?id=1283383.1283433 (cited on pp. 2, 14, 24, 26, 32, 33, 148).

[CW03] Scott A. Crosby and Dan S. Wallach. Denial of Service via Algorithmic Com-
plexity Attacks. In: Proc. 12th USENIX. 2003. url: https://www.usenix.
org/conference/12th-usenix-security-symposium/denial-service-

algorithmic-complexity-attacks (cited on p. 55).
[CW79] Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions. In: J.

Comput. Syst. Sci. 18.2 (1979), pp. 143–154. doi: 10.1016/0022-0000(79)900
44-8 (cited on p. 54).

http://dl.acm.org/citation.cfm?id=982792.982797
http://dl.acm.org/citation.cfm?id=982792.982797
https://doi.org/10.1016/0020-0190(92)90220-P
https://doi.org/10.1016/S0304-3975(96)00146-6
https://doi.org/10.1016/S0304-3975(96)00146-6
https://doi.org/10.1109/SFCS.1985.48
https://doi.org/10.4086/toc.2013.v009a030
https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash
https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1
https://doi.org/10.1002/rsa.20040
https://doi.org/10.1002/rsa.20040
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/3319535.3354235
http://dl.acm.org/citation.cfm?id=1283383.1283433
http://dl.acm.org/citation.cfm?id=1283383.1283433
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8


156 Bibliography

[Die+10] MartinDietzfelbinger, Andreas Goerdt,MichaelMitzenmacher, AndreaMontanari,
Rasmus Pagh and Michael Rink. Tight Thresholds for Cuckoo Hashing via
XORSAT. In: Proc. 37th ICALP (1). 2010, pp. 213–225. doi: 10.1007/978-3-
642-14165-2_19 (cited on pp. 14, 18, 20, 24, 26, 76, 148).

[Die+97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen and Martti Pent-
tonen. A Reliable Randomized Algorithm for the Closest-Pair Problem. In: J.
Algorithms 25.1 (1997), pp. 19–51. doi: 10.1006/jagm.1997.0873 (cited on
p. 54).

[Die07] Martin Dietzfelbinger. Design Strategies for Minimal Perfect Hash Functions.
In: Proc. 4th SAGA. 2007, pp. 2–17. doi: 10.1007/978-3-540-74871-7_2
(cited on p. 43).

[Dil20] Peter C. Dillinger. RIBBON: A practical and near-optimal static Bloom altern-

ative for RocksDB. Oct. 2020. url: https://www.youtube.com/watch?v=
XfwxUBL8xT8&t=1h16m10s (visited on 01/11/2020) (cited on p. 152).

[DM02] Olivier Dubois and Jacques Mandler. The 3-XORSAT Threshold. In: Proc. 43rd
FOCS. 2002, pp. 769–778. doi: 10.1109/SFCS.2002.1182002 (cited on pp. 14,
18).

[DMR11] Martin Dietzfelbinger, Michael Mitzenmacher and Michael Rink. Cuckoo Hash-
ing with Pages. In: Proc. 19th ESA. 2011, pp. 615–627. doi: 10.1007/978-3-
642-23719-5_52 (cited on pp. 2, 32, 33).

[DMV04] LucDevroye, PatMorin andAlfredo Viola. OnWorst-Case RobinHoodHashing.
In: SIAM J. Comput. 33.4 (2004), pp. 923–936. doi: 10.1137/S0097539702403
372 (cited on pp. 63, 100).

[DP08] Martin Dietzfelbinger and Rasmus Pagh. Succinct Data Structures for Retrieval
and Approximate Membership (Extended Abstract). In: Proc. 35th ICALP (1).
2008, pp. 385–396. doi: 10.1007/978-3-540-70575-8_32 (cited on pp. 2, 3,
20, 29, 38, 42, 45).

[DR09] Martin Dietzfelbinger and Michael Rink. Applications of a Splitting Trick. In:
Proc. 36th ICALP (1). 2009, pp. 354–365. doi: 10.1007/978-3-642-02927-
1_30 (cited on pp. 2, 40, 54, 55).

[DW07] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dic-
tionaries with tightly packed constant size bins. In: Theor. Comput. Sci. 380.1-2
(2007), pp. 47–68. doi: 10.1016/j.tcs.2007.02.054 (cited on pp. 2, 6, 21, 32,
151).

[DW19a] MartinDietzfelbinger and StefanWalzer. Constant-Time Retrieval with𝑂 (log𝑚)
Extra Bits. In: Proc. 36th STACS. 2019, 24:1–24:16. isbn: 978-3-95977-100-9. doi:
10.4230/LIPIcs.STACS.2019.24 (cited on p. 8).

[DW19b] Martin Dietzfelbinger and Stefan Walzer. Dense Peelable Random Uniform
Hypergraphs. In: Proc. 27th ESA. 2019, 38:1–38:16. doi: 10.4230/LIPIcs.ESA.
2019.38 (cited on pp. iv, 8, 75).

[DW19c] Martin Dietzfelbinger and Stefan Walzer. Efficient Gauss Elimination for Near-
Quadratic Matrices with One Short Random Block per Row, with Applications.
In: Proc. 27th ESA. 2019, 39:1–39:18. doi: 10.4230/LIPIcs.ESA.2019.39
(cited on pp. iv, 8).

https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1006/jagm.1997.0873
https://doi.org/10.1007/978-3-540-74871-7_2
https://www.youtube.com/watch?v=XfwxUBL8xT8&t=1h16m10s
https://www.youtube.com/watch?v=XfwxUBL8xT8&t=1h16m10s
https://doi.org/10.1109/SFCS.2002.1182002
https://doi.org/10.1007/978-3-642-23719-5_52
https://doi.org/10.1007/978-3-642-23719-5_52
https://doi.org/10.1137/S0097539702403372
https://doi.org/10.1137/S0097539702403372
https://doi.org/10.1007/978-3-540-70575-8_32
https://doi.org/10.1007/978-3-642-02927-1_30
https://doi.org/10.1007/978-3-642-02927-1_30
https://doi.org/10.1016/j.tcs.2007.02.054
https://doi.org/10.4230/LIPIcs.STACS.2019.24
https://doi.org/10.4230/LIPIcs.ESA.2019.38
https://doi.org/10.4230/LIPIcs.ESA.2019.38
https://doi.org/10.4230/LIPIcs.ESA.2019.39


Bibliography 157

[EG11] David Eppstein andMichael T. Goodrich. Straggler Identification in Round-Trip
Data Streams via Newton’s Identities and Invertible Bloom Filters. In: IEEE
Trans. Knowl. Data Eng. 23.2 (2011), pp. 297–306. doi: 10.1109/TKDE.2010.1
32 (cited on pp. 30, 47, 48).

[EGV20] Emmanuel Esposito, Thomas Mueller Graf and Sebastiano Vigna. RecSplit:
Minimal Perfect Hashing via Recursive Splitting. In: Proc. ALENEX20. 2020,
pp. 175–185. doi: 10.1137/1.9781611976007.14 (cited on pp. 2, 40, 41, 43,
44).

[Epp+11] David Eppstein, Michael T. Goodrich, Frank Uyeda and George Varghese.
What’s the difference?: efficient set reconciliation without prior context. In:
Proc. SIGCOMM ’11. 2011, pp. 218–229. doi: 10.1145/2018436.2018462 (cited
on pp. 47, 48).

[Epp16] David Eppstein. Cuckoo Filter: Simplification and Analysis. In: Proc. 15th SWAT.
2016, 8:1–8:12. doi: 10.4230/LIPIcs.SWAT.2016.8 (cited on p. 46).

[ER60] Paul Erdős and Alfréd Rényi. On the Evolution of Random Graphs. In: Publ.
Math. Inst. Hung. Acad. Sci. (1960). url: http://www.renyi.hu/~p_erdos/1
961-15.pdf (cited on p. 24).

[EZB06] Regina Egorova, Bert Zwart and Onno Boxma. Sojourn Time Tails in the M/D/1
Processor Sharing Queue. In: Probability in the Engineering and Informational

Sciences 20 (2006), pp. 429–446. doi: 10.1017/S0269964806060268 (cited on
pp. 7, 104, 152).

[FAK13] Bin Fan, David G. Andersen and Michael Kaminsky. Cuckoo Filter: Better Than
Bloom. In: ;login: 38.4 (2013).url: https://www.usenix.org/publications/
login/august-2013-volume-38-number-4/cuckoo-filter-better-

bloom (cited on pp. 3, 31, 46).
[Fan+14] Bin Fan, David G. Andersen, Michael Kaminsky and Michael Mitzenmacher.

Cuckoo Filter: Practically Better Than Bloom. In: Proc. 10th CoNEXT. 2014,
pp. 75–88. doi: 10.1145/2674005.2674994 (cited on p. 46).

[FB99] Ehud Friedgut and Jean Bourgain. Sharp Thresholds of Graph Properties, and
the 𝑘-SAT Problem. In: Journal of the American Mathematical Society 12.4
(1999), pp. 1017–1054. issn: 08940347, 10886834. url: http://www.jstor.
org/stable/2646096 (cited on p. 15).

[FJ19] Alan M. Frieze and Tony Johansson. On the insertion time of random walk
cuckoo hashing. In: Random Struct. Algorithms 54.4 (2019), pp. 721–729. doi:
10.1002/rsa.20808 (cited on pp. 34, 152).

[FKP11] Nikolaos Fountoulakis, Megha Khosla and Konstantinos Panagiotou. The
Multiple-Orientability Thresholds for Random Hypergraphs. In: Proc. 22nd
SODA. 2011, pp. 1222–1236. url: https://dl.acm.org/doi/10.5555/2133
036.2133129 (cited on p. 15).

[FKP16] Nikolaos Fountoulakis, Megha Khosla and Konstantinos Panagiotou. The
Multiple-Orientability Thresholds for Random Hypergraphs. In: Combinatorics,

Probability & Computing 25.6 (2016), pp. 870–908. doi: 10.1017/S096354831
5000334 (cited on pp. 14, 15, 24, 26, 32, 82, 83, 86, 125).

[FKS84] Michael L. Fredman, János Komlós and Endre Szemerédi. Storing a Sparse Table
with 𝑂 (1) Worst Case Access Time. In: J. ACM 31.3 (1984), pp. 538–544. doi:
10.1145/828.1884 (cited on pp. 43, 44).

https://doi.org/10.1109/TKDE.2010.132
https://doi.org/10.1109/TKDE.2010.132
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1145/2018436.2018462
https://doi.org/10.4230/LIPIcs.SWAT.2016.8
http://www.renyi.hu/~p_erdos/1961-15.pdf
http://www.renyi.hu/~p_erdos/1961-15.pdf
https://doi.org/10.1017/S0269964806060268
https://www.usenix.org/publications/login/august-2013-volume-38-number-4/cuckoo-filter-better-bloom
https://www.usenix.org/publications/login/august-2013-volume-38-number-4/cuckoo-filter-better-bloom
https://www.usenix.org/publications/login/august-2013-volume-38-number-4/cuckoo-filter-better-bloom
https://doi.org/10.1145/2674005.2674994
http://www.jstor.org/stable/2646096
http://www.jstor.org/stable/2646096
https://doi.org/10.1002/rsa.20808
https://dl.acm.org/doi/10.5555/2133036.2133129
https://dl.acm.org/doi/10.5555/2133036.2133129
https://doi.org/10.1017/S0963548315000334
https://doi.org/10.1017/S0963548315000334
https://doi.org/10.1145/828.1884


158 Bibliography

[FM12] Alan M. Frieze and Páll Melsted. Maximum Matchings in Random Bipartite
Graphs and the Space Utilization of Cuckoo Hash Tables. In: Random Struct.

Algorithms 41.3 (2012), pp. 334–364. doi: 10.1002/rsa.20427 (cited on pp. 24,
26).

[FMM11] Alan M. Frieze, Páll Melsted and Michael Mitzenmacher. An Analysis of
Random-Walk Cuckoo Hashing. In: SIAM J. Comput. 40.2 (2011), pp. 291–
308. doi: 10.1137/090770928 (cited on pp. 34, 152).

[Fot+05] Dimitris Fotakis, Rasmus Pagh, Peter Sanders and Paul G. Spirakis. Space Effi-
cient Hash Tables with Worst Case Constant Access Time. In: Theory Comput.

Syst. 38.2 (2005), pp. 229–248. doi: 10.1007/s00224-004-1195-x (cited on
pp. 2, 32, 34).

[FP10] Nikolaos Fountoulakis and Konstantinos Panagiotou. Orientability of Random
Hypergraphs and the Power of Multiple Choices. In: Proc. 37th ICALP (1). 2010,
pp. 348–359. doi: 10.1007/978-3-642-14165-2_30 (cited on pp. 14, 24).

[FP12] Nikolaos Fountoulakis and Konstantinos Panagiotou. Sharp Load Thresholds
for Cuckoo Hashing. In: Random Struct. Algorithms 41.3 (2012), pp. 306–333.
doi: 10.1002/rsa.20426 (cited on pp. 24, 26, 83).

[FPS13] Nikolaos Fountoulakis, Konstantinos Panagiotou and Angelika Steger. On the
Insertion Time of Cuckoo Hashing. In: SIAM J. Comput. 42.6 (2013), pp. 2156–
2181. doi: 10.1137/100797503 (cited on p. 152).

[FPS16] Guy Feigenblat, Ely Porat and Ariel Shiftan. Linear Time Succinct Indexable
Dictionary Construction with Applications. In: Proc. DCC16. 2016, pp. 13–22.
doi: 10.1109/DCC.2016.70 (cited on p. 44).

[FR07] Daniel Fernholz and Vijaya Ramachandran. The 𝑘-orientability Thresholds
for 𝐺𝑛,𝑝 . In: Proc. 18th SODA. 2007, pp. 459–468. url: http://dl.acm.org/
citation.cfm?id=1283383.1283432 (cited on pp. 2, 14, 24, 26, 32, 33, 148).

[FZ99] Alberto J. Feltström and Kamil Sh. Zigangirov. Time-varying periodic convolu-
tional codes with low-density parity-check matrix. In: IEEE Trans. Information

Theory 45.6 (1999), pp. 2181–2191. doi: 10.1109/18.782171 (cited on p. 75).
[GKL15] Thomas Gerbet, Amrit Kumar and Cédric Lauradoux. The Power of Evil Choices

in Bloom Filters. In: Proc. 45th DSN. 2015, pp. 101–112. doi: 10.1109/DSN.201
5.21 (cited on p. 55).

[GL19] Thomas Mueller Graf and Daniel Lemire. Xor Filters: Faster and Smaller Than
Bloom and Cuckoo Filters. In: CoRR (2019). arXiv: 1912.08258 (cited on pp. 3,
46).

[GM11] Michael T. Goodrich and Michael Mitzenmacher. Invertible bloom lookup
tables. In: Proc. 49st Allerton. 2011, pp. 792–799. doi: 10.1109/Allerton.201
1.6120248 (cited on pp. 47, 48).

[GMU12] Andrei Giurgiu, Nicolas Macris and Rüdiger L. Urbanke. How to prove the
Maxwell conjecture via spatial coupling - A proof of concept. In: Proc. ISIT.
2012, pp. 458–462. doi: 10.1109/ISIT.2012.6284230 (cited on p. 17).

[Goo18] Google. Swiss Tables and absl::Hash. 2018. url: https://abseil.io/blog/2
0180927-swisstables (visited on 03/03/2020) (cited on p. 63).

[GOV16] Marco Genuzio, Giuseppe Ottaviano and Sebastiano Vigna. Fast Scalable Con-
struction of (Minimal Perfect Hash) Functions. In: Proc. 15th SEA. 2016, pp. 339–

https://doi.org/10.1002/rsa.20427
https://doi.org/10.1137/090770928
https://doi.org/10.1007/s00224-004-1195-x
https://doi.org/10.1007/978-3-642-14165-2_30
https://doi.org/10.1002/rsa.20426
https://doi.org/10.1137/100797503
https://doi.org/10.1109/DCC.2016.70
http://dl.acm.org/citation.cfm?id=1283383.1283432
http://dl.acm.org/citation.cfm?id=1283383.1283432
https://doi.org/10.1109/18.782171
https://doi.org/10.1109/DSN.2015.21
https://doi.org/10.1109/DSN.2015.21
https://arxiv.org/abs/1912.08258
https://doi.org/10.1109/Allerton.2011.6120248
https://doi.org/10.1109/Allerton.2011.6120248
https://doi.org/10.1109/ISIT.2012.6284230
https://abseil.io/blog/20180927-swisstables
https://abseil.io/blog/20180927-swisstables


Bibliography 159

352. doi: 10.1007/978-3-319-38851-9_23 (cited on pp. 2, 38, 40, 42, 43, 56,
57, 105, 139–141).

[GOV20] Marco Genuzio, Giuseppe Ottaviano and Sebastiano Vigna. Fast scalable con-
struction of ([compressed] static | minimal perfect hash) functions. In: Inform-

ation and Computation (2020). issn: 0890-5401. doi: 10.1016/j.ic.2020.104
517 (cited on pp. 2, 40, 43, 45).

[Gri80] Geoffrey R. Grimmett. Random labelled trees and their branching networks.
In: Journal of the Aust MS 30.2 (1980), pp. 229–237. doi: 10.1017/S144678870
0016517 (cited on p. 67).

[GS78] Leonidas J. Guibas and Endre Szemerédi. The Analysis of Double Hashing. In:
J. Comput. Syst. Sci. 16.2 (1978), pp. 226–274. doi: 10.1016/0022-0000(78)9
0046-6 (cited on p. 53).

[GW10] Pu Gao and Nicholas C. Wormald. Load Balancing and Orientability Thresholds
for Random Hypergraphs. In: Proc. 42nd STOC. 2010, pp. 97–104. doi: 10.1145
/1806689.1806705 (cited on pp. 14, 24).

[GW15] Pu Gao and Nicholas C. Wormald. Orientability Thresholds for Random Hy-
pergraphs. In: Combinatorics, Probability & Computing 24.5 (2015), pp. 774–824.
doi: 10.1017/S096354831400073X (cited on p. 24).

[Hal35] Philip Hall. On Representatives of Subsets. In: Journal of the London Mathem-

atical Society (1935). doi: 10.1112/jlms/s1-10.37.26 (cited on p. 14).
[HK73] John E. Hopcroft and Richard M. Karp. An 𝑛5/2 Algorithm for MaximumMatch-

ings in Bipartite Graphs. In: SIAM J. Comput. 2.4 (1973), pp. 225–231. doi:
10.1137/0202019 (cited on p. 33).

[HKP09] Jóhannes B. Hreinsson, Morten Krøyer and Rasmus Pagh. Storing a Compressed
Function with Constant Time Access. In: Proc. 17th ESA. 2009, pp. 730–741. doi:
10.1007/978-3-642-04128-0_65 (cited on p. 43).

[HMU13] S. Hamed Hassani, Nicolas Macris and Rüdiger L. Urbanke. The space of solu-
tions of coupled XORSAT formulae. In: Proc. ISIT. 2013, pp. 2453–2457. doi:
10.1109/ISIT.2013.6620667 (cited on p. 17).

[HP12] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantit-

ative Approach, 5th Edition. Morgan Kaufmann, 2012. isbn: 978-0-12-383872-8
(cited on p. 31).

[HT01] Torben Hagerup and Torsten Tholey. Efficient minimal perfect hashing in
nearly minimal space. In: Proc. 18st STACS. 2001, pp. 317–326. doi: 10.1007/3-
540-44693-1_28 (cited on pp. 43, 44).

[Int07] Intel. Intel 64 and IA-32 Architectures Software Developer Manuals. 2007. url:
https://software.intel.com/en-us/articles/intel-sdm (visited on
27/02/2020) (cited on p. 52).

[Jan05] Svante Janson. Individual displacements for linear probing hashing with differ-
ent insertion policies. In: ACM Trans. Algorithms 1.2 (2005), pp. 177–213. doi:
10.1145/1103963.1103964 (cited on p. 100).

[Jan08] Svante Janson. Individual Displacements in Hashing with Coalesced Chains.
In: Comb. Probab. Comput. 17.6 (2008), pp. 799–814. doi: 10.1017/S09635483
08009395 (cited on p. 102).

https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1016/j.ic.2020.104517
https://doi.org/10.1016/j.ic.2020.104517
https://doi.org/10.1017/S1446788700016517
https://doi.org/10.1017/S1446788700016517
https://doi.org/10.1016/0022-0000(78)90046-6
https://doi.org/10.1016/0022-0000(78)90046-6
https://doi.org/10.1145/1806689.1806705
https://doi.org/10.1145/1806689.1806705
https://doi.org/10.1017/S096354831400073X
https://doi.org/10.1112/jlms/s1-10.37.26
https://doi.org/10.1137/0202019
https://doi.org/10.1007/978-3-642-04128-0_65
https://doi.org/10.1109/ISIT.2013.6620667
https://doi.org/10.1007/3-540-44693-1_28
https://doi.org/10.1007/3-540-44693-1_28
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1145/1103963.1103964
https://doi.org/10.1017/S0963548308009395
https://doi.org/10.1017/S0963548308009395


160 Bibliography

[JL07] Svante Janson and Malwina J. Luczak. A simple solution to the 𝑘-core problem.
In: Random Struct. Algorithms 30.1-2 (2007), pp. 50–62. doi: 10.1002/rsa.201
47 (cited on pp. 14, 26, 83).

[JV16] Svante Janson and Alfredo Viola. A Unified Approach to Linear Probing Hash-
ing with Buckets. In: Algorithmica 75.4 (2016), pp. 724–781. doi: 10.1007/s00
453-015-0111-x (cited on p. 100).

[KA19] Megha Khosla and Avishek Anand. A Faster Algorithm for Cuckoo Insertion
and Bipartite Matching in Large Graphs. In: Algorithmica 81.9 (2019), pp. 3707–
3724. doi: 10.1007/s00453-019-00595-4 (cited on pp. 33, 148).

[Ken53] David G. Kendall. Stochastic Processes Occurring in the Theory of Queues and
their Analysis by the Method of the Imbedded Markov Chain. In: Ann. Math.

Statist. 24.3 (Sept. 1953), pp. 338–354. doi: 10.1214/aoms/1177728975 (cited
on p. 104).

[Kho13] Megha Khosla. Balls into Bins Made Faster. In: Proc. 21st ESA. 2013, pp. 601–612.
doi: 10.1007/978-3-642-40450-4_51 (cited on pp. 33, 140, 148).

[Kim06] Jeong Han Kim. Poisson cloning model for random graphs. In: Proc. ICM, Vol.

III. 2006, pp. 873–898. url: https://www.mathunion.org/fileadmin/ICM/
Proceedings/ICM2006.3/ICM2006.3.ocr.pdf (cited on p. 71).

[KM08] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance:
Building a better Bloomfilter. In: Random Struct. Algorithms 33.2 (2008), pp. 187–
218. url: https://dl.acm.org/doi/10.5555/1400123.1400125 (cited on
p. 53).

[Knu98] Donald E. Knuth. Sorting and Searching. 2nd. Addison-Wesley, 1998. url: http:
//dl.acm.org/citation.cfm?id=280635 (cited on p. 53).

[KR87] Richard M. Karp and Michael O. Rabin. Efficient Randomized Pattern-Matching
Algorithms. In: IBM Journal of Research and Development 31.2 (1987), pp. 249–
260. doi: 10.1147/rd.312.0249 (cited on p. 31).

[KRU10] Shrinivas Kudekar, Tom Richardson and Rüdiger L. Urbanke. Threshold sat-
uration via spatial coupling: Why convolutional LDPC ensembles perform so
well over the BEC. In: Proc. ISIT. 2010, pp. 684–688. doi: 10.1109/ISIT.2010.
5513587 (cited on pp. 7, 75).

[KRU11] Shrinivas Kudekar, Tom Richardson and Rüdiger L. Urbanke. Threshold Sat-
uration via Spatial Coupling: Why Convolutional LDPC Ensembles Perform
So Well over the BEC. In: IEEE Trans. Inf. Theory 57.2 (2011), pp. 803–834. doi:
10.1109/TIT.2010.2095072 (cited on p. 7).

[KRU13] Shrinivas Kudekar, Tom Richardson and Rüdiger L. Urbanke. Spatially Coupled
Ensembles Universally Achieve Capacity Under Belief Propagation. In: IEEE
Trans. Information Theory 59.12 (2013), pp. 7761–7813. doi: 10.1109/TIT.201
3.2280915 (cited on pp. 17, 75).

[KRU15] Shrinivas Kudekar, Tom Richardson and Rüdiger L. Urbanke. Wave-Like Solu-
tions of General 1-D Spatially Coupled Systems. In: IEEE Trans. Inf. Theory 61.8
(2015), pp. 4117–4157. doi: 10.1109/TIT.2015.2438870 (cited on pp. 7, 17,
75, 79, 80, 82, 83, 152).

[Krz+12] Florent Krzakala, Marc Mézard, François Sausset, Yifan Sun and Lenka Zde-
borová. Statistical-Physics-Based Reconstruction in Compressed Sensing. In:
Phys. Rev. X 2 (2 2012) (cited on p. 75).

https://doi.org/10.1002/rsa.20147
https://doi.org/10.1002/rsa.20147
https://doi.org/10.1007/s00453-015-0111-x
https://doi.org/10.1007/s00453-015-0111-x
https://doi.org/10.1007/s00453-019-00595-4
https://doi.org/10.1214/aoms/1177728975
https://doi.org/10.1007/978-3-642-40450-4_51
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2006.3/ICM2006.3.ocr.pdf
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2006.3/ICM2006.3.ocr.pdf
https://dl.acm.org/doi/10.5555/1400123.1400125
http://dl.acm.org/citation.cfm?id=280635
http://dl.acm.org/citation.cfm?id=280635
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1109/ISIT.2010.5513587
https://doi.org/10.1109/ISIT.2010.5513587
https://doi.org/10.1109/TIT.2010.2095072
https://doi.org/10.1109/TIT.2013.2280915
https://doi.org/10.1109/TIT.2013.2280915
https://doi.org/10.1109/TIT.2015.2438870


Bibliography 161

[Lec13] Mathieu Leconte. Double hashing thresholds via local weak convergence. In:
Proc. 51st Allerton. 2013, pp. 131–137. doi: 10.1109/Allerton.2013.6736515
(cited on pp. 6, 23–25, 35, 53, 65, 71, 125, 150, 151).

[Lel12] Marc Lelarge. A New Approach to the Orientation of Random Hypergraphs.
In: Proc. 23rd SODA. 2012, pp. 251–264. doi: 10.1137/1.9781611973099.23
(cited on pp. 6, 7, 14, 15, 24, 25, 32, 65, 70, 83, 85, 86, 112, 117, 125, 126, 135, 152).

[Lim+17] Antoine Limasset, Guillaume Rizk, Rayan Chikhi and Pierre Peterlongo. Fast
and Scalable Minimal Perfect Hashing for Massive Key Sets. In: Proc. 16th SEA.
2017, 25:1–25:16. isbn: 978-3-95977-036-1. doi: 10.4230/LIPIcs.SEA.2017.
25 (cited on p. 43).

[LLM13] Mathieu Leconte, Marc Lelarge and Laurent Massoulié. Convergence of Mul-
tivariate Belief Propagation, with Applications to Cuckoo Hashing and Load
Balancing. In: Proc. 24th SODA. 2013, pp. 35–46. url: http://dl.acm.org/
citation.cfm?id=2627817.2627820 (cited on pp. 6, 24, 25, 65, 68, 70, 110–
112, 117).

[LM93] George S. Lueker and Mariko Molodowitch. More analysis of double hashing.
In: Combinatorica 13.1 (1993), pp. 83–96. doi: 10.1007/BF01202791 (cited on
p. 53).

[LN93] Richard J. Lipton and Jeffrey F. Naughton. Clocked Adversaries for Hashing.
In: Algorithmica 9.3 (1993), pp. 239–252. doi: 10.1007/BF01190898 (cited on
p. 55).

[LO90] Brian A. LaMacchia and Andrew M. Odlyzko. Solving large sparse linear sys-
tems over finite fields. In: Proc. 10th CRYPTO. 1990, pp. 109–133. doi: 10.1007
/3-540-38424-3_8 (cited on pp. 56, 57).

[LP09] Eric Lehman and Rina Panigrahy. 3.5-Way Cuckoo Hashing for the Price of
2-and-a-Bit. In: Proc. 17th ESA. 2009, pp. 671–681. doi: 10.1007/978-3-642-
04128-0_60 (cited on pp. 2, 6, 21, 24, 25, 32, 151).

[LP14] Po-Shen Loh and Rasmus Pagh. Thresholds for Extreme Orientability. In: Al-
gorithmica 69.3 (2014), pp. 522–539. doi: 10.1007/s00453-013-9749-4 (cited
on p. 24).

[Lub+01] Michael Luby, Michael Mitzenmacher, M. Amin Shokrollahi and Daniel A.
Spielman. Efficient Erasure Correcting Codes. In: IEEE Trans. Inf. Theory 47.2
(2001), pp. 569–584. doi: 10.1109/18.910575 (cited on pp. 17, 140, 141).

[Lub+97] Michael Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A. Spiel-
man and Volker Stemann. Practical Loss-Resilient Codes. In: Proc. 29th STOC.
1997, pp. 150–159. doi: 10.1145/258533.258573 (cited on p. 42).

[Luc91] Tomasz Luczak. Size and connectivity of the 𝑘-core of a random graph. In:
Discrete Mathematics 91.1 (1991), pp. 61–68. doi: 10.1016/0012-365X(91)90
162-U (cited on p. 83).

[Luo+19] Lailong Luo, Deke Guo, Richard T. B. Ma, Ori Rottenstreich and Xueshan
Luo. Optimizing Bloom Filter: Challenges, Solutions, and Comparisons. In:
IEEE Communications Surveys and Tutorials 21.2 (2019), pp. 1912–1949. doi:
10.1109/COMST.2018.2889329 (cited on p. 45).

[Maj+96] Bohdan S. Majewski, Nicholas C. Wormald, George Havas and Zbigniew J.
Czech. A Family of Perfect HashingMethods. In: Comput. J. 39.6 (1996), pp. 547–
554. doi: 10.1093/comjnl/39.6.547 (cited on pp. 20, 40, 42, 43).

https://doi.org/10.1109/Allerton.2013.6736515
https://doi.org/10.1137/1.9781611973099.23
https://doi.org/10.4230/LIPIcs.SEA.2017.25
https://doi.org/10.4230/LIPIcs.SEA.2017.25
http://dl.acm.org/citation.cfm?id=2627817.2627820
http://dl.acm.org/citation.cfm?id=2627817.2627820
https://doi.org/10.1007/BF01202791
https://doi.org/10.1007/BF01190898
https://doi.org/10.1007/3-540-38424-3_8
https://doi.org/10.1007/3-540-38424-3_8
https://doi.org/10.1007/978-3-642-04128-0_60
https://doi.org/10.1007/978-3-642-04128-0_60
https://doi.org/10.1007/s00453-013-9749-4
https://doi.org/10.1109/18.910575
https://doi.org/10.1145/258533.258573
https://doi.org/10.1016/0012-365X(91)90162-U
https://doi.org/10.1016/0012-365X(91)90162-U
https://doi.org/10.1109/COMST.2018.2889329
https://doi.org/10.1093/comjnl/39.6.547


162 Bibliography

[Mau19] Jens Maurer. P0553R4: Bit operations. 2019. url: http://www.open- std.
org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html (visited on
27/02/2020) (cited on p. 52).

[Mit09] Michael Mitzenmacher. Some Open Questions Related to Cuckoo Hashing. In:
Proc. 17th ESA. 2009, pp. 1–10. doi: 10.1007/978-3-642-04128-0_1 (cited
on p. 34).

[Mit14] Michael Mitzenmacher. Balanced allocations and double hashing. In: Proc. 26th
ACM SPAA. ACM. 2014, pp. 331–342. doi: 10.1145/2612669.2612684 (cited
on p. 53).

[Mit16] Michael Mitzenmacher. More Analysis of Double Hashing for Balanced Alloca-
tions. In: Proc. ANALCO16. 2016, pp. 1–9. doi: 10.1137/1.9781611974324.1
(cited on p. 53).

[Mit91] Michael Mitzenmacher. The Power of Two Choices in Randomized Load Balan-
cing. PhD thesis. Harvard University, 1991. url: http://www.eecs.harvard.
edu/~michaelm/postscripts/mythesis.pdf (cited on p. 30).

[MM09] Marc Mezard and Andrea Montanari. Information, Physics, and Computation.
USA: Oxford University Press, Inc., 2009. isbn: 019857083X (cited on pp. 26,
76).

[MNS11] IlyaMironov, Moni Naor and Gil Segev. Sketching in Adversarial Environments.
In: SIAM J. Comput. 40.6 (2011), pp. 1845–1870. doi: 10.1137/080733772 (cited
on p. 55).

[Mol04] Michael Molloy. The pure literal rule threshold and cores in random hyper-
graphs. In: Proc. 15th SODA. 2004, pp. 672–681. url: http://dl.acm.org/
citation.cfm?id=982792.982896 (cited on p. 76).

[Mol05] Michael Molloy. Cores in random hypergraphs and Boolean formulas. In:
Random Struct. Algorithms 27.1 (2005), pp. 124–135. doi: 10.1002/rsa.20061
(cited on pp. 14, 15, 17, 26, 76, 83, 85).

[MP80] William J. Masek and Michael S. Paterson. A faster algorithm computing string
edit distances. In: J. Comput. Syst. Sci. 20.1 (1980), pp. 18–31. doi: 10.1016/00
22-0000(80)90002-1 (cited on p. 59).

[MPW18] Michael Mitzenmacher, Konstantinos Panagiotou and Stefan Walzer. Load
Thresholds for Cuckoo Hashing with Double Hashing. In: Proc. 16th SWAT.
2018, 29:1–29:9. doi: 10.4230/LIPIcs.SWAT.2018.29 (cited on pp. iv, 8, 83).

[MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic

Toolbox. Springer, 2008. isbn: 978-3-540-77977-3. doi: 10.1007/978-3-540-
77978-0 (cited on p. 51).

[MS17] Tobias Maier and Peter Sanders. Dynamic Space Efficient Hashing. In: Proc.
25th ESA. 2017, 58:1–58:14. doi: 10.4230/LIPIcs.ESA.2017.58 (cited on
pp. 6, 23, 34, 36).

[MSW19] Tobias Maier, Peter Sanders and Stefan Walzer. Dynamic Space Efficient Hash-
ing. In: Algorithmica 81.8 (2019), pp. 3162–3185. doi: 10.1007/s00453-019-
00572-x (cited on pp. iv, 8, 34, 36, 37, 133, 140, 151).

[MT12] Michael Mitzenmacher and Justin Thaler. Peeling Arguments and Double
Hashing. In: Proc. 50th Allerton. 2012, pp. 1118–1125. doi: 10.1109/Allerton.
2012.6483344 (cited on pp. 6, 35, 53, 150, 151).

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html
https://doi.org/10.1007/978-3-642-04128-0_1
https://doi.org/10.1145/2612669.2612684
https://doi.org/10.1137/1.9781611974324.1
http://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf
https://doi.org/10.1137/080733772
http://dl.acm.org/citation.cfm?id=982792.982896
http://dl.acm.org/citation.cfm?id=982792.982896
https://doi.org/10.1002/rsa.20061
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.4230/LIPIcs.SWAT.2018.29
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.1007/978-3-540-77978-0
https://doi.org/10.4230/LIPIcs.ESA.2017.58
https://doi.org/10.1007/s00453-019-00572-x
https://doi.org/10.1007/s00453-019-00572-x
https://doi.org/10.1109/Allerton.2012.6483344
https://doi.org/10.1109/Allerton.2012.6483344


Bibliography 163

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized

Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. url:
http://dl.acm.org/citation.cfm?id=1076315 (cited on pp. 102, 103).

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomiza-

tion and Probabilistic Techniques in Algorithms and Data Analysis. 2nd. New
York, NY, USA: Cambridge University Press, 2017. isbn: 978-1107154889 (cited
on p. 85).

[Mül+14] Ingo Müller, Peter Sanders, Robert Schulze andWei Zhou. Retrieval and Perfect
Hashing Using Fingerprinting. In: Experimental Algorithms. Ed. by Joachim
Gudmundsson and Jyrki Katajainen. 2014, pp. 138–149. doi: 10.1007/978-3-
319-07959-2_12 (cited on pp. 31, 42).

[MV12a] Michael Mitzenmacher and George Varghese. Biff (Bloom Filter) Codes: Fast
Error Correction for Large Data Sets. In: Proc. ISIT. 2012, pp. 483–487. doi:
10.1109/ISIT.2012.6284236 (cited on p. 61).

[MV12b] Michael Mitzenmacher and George Varghese. The complexity of object recon-
ciliation, and open problems related to set difference and coding. In: Proc. 50th
Allerton. 2012, pp. 1126–1132. doi: 10.1109/Allerton.2012.6483345 (cited
on p. 61).

[NY19] Moni Naor and Eylon Yogev. Bloom Filters in Adversarial Environments. In:
ACM Trans. Algorithms 15.3 (2019), 35:1–35:30. doi: 10.1145/3306193 (cited
on p. 55).

[OS07] Daisuke Okanohara and Kunihiko Sadakane. Practical Entropy-Compressed
Rank/Select Dictionary. In: Proc. ALENEX07. 2007. doi: 10.1137/1.97816119
72870.6 (cited on p. 44).

[Pag01] Rasmus Pagh. Low Redundancy in Static Dictionaries with Constant Query
Time. In: SIAM J. Comput. 31.2 (2001), pp. 353–363. doi: 10.1137/S00975397
00369909 (cited on p. 44).

[Por09] Ely Porat. An Optimal Bloom Filter Replacement Based on Matrix Solving. In:
Proc. 4th CSR. 2009, pp. 263–273. doi: 10.1007/978-3-642-03351-3_25
(cited on pp. 2, 38, 40, 42).

[PR04] Rasmus Pagh and Flemming F. Rodler. Cuckoo Hashing. In: J. Algorithms 51.2
(2004), pp. 122–144. doi: 10.1016/j.jalgor.2003.12.002 (cited on pp. 2,
24, 26, 32).

[PS12] Ely Porat and Bar Shalem. A Cuckoo Hashing Variant with Improved Memory
Utilization and Insertion Time. In: Proc. 22nd DCC. 2012, pp. 347–356. doi:
10.1109/DCC.2012.41 (cited on pp. 2, 32).

[PS16] Boris Pittel and Gregory B. Sorkin. The Satisfiability Threshold for 𝑘-XORSAT.
In: Combinatorics, Probability & Computing 25.2 (2016), pp. 236–268. doi: 10.1
017/S0963548315000097 (cited on pp. 14, 18, 20).

[PSW96] Boris Pittel, Joel Spencer and Nicholas C. Wormald. Sudden Emergence of
a Giant k-Core in a Random Graph. In: J. Comb. Theory, Ser. B 67.1 (1996),
pp. 111–151. doi: 10.1006/jctb.1996.0036 (cited on pp. 26, 75).

[Rin13] Michael Rink. Mixed Hypergraphs for Linear-Time Construction of Denser
Hashing-Based Data Structures. In: Proc. 39th SOFSEM. 2013, pp. 356–368. doi:
10.1007/978-3-642-35843-2_31 (cited on pp. 17, 42).

http://dl.acm.org/citation.cfm?id=1076315
https://doi.org/10.1007/978-3-319-07959-2_12
https://doi.org/10.1007/978-3-319-07959-2_12
https://doi.org/10.1109/ISIT.2012.6284236
https://doi.org/10.1109/Allerton.2012.6483345
https://doi.org/10.1145/3306193
https://doi.org/10.1137/1.9781611972870.6
https://doi.org/10.1137/1.9781611972870.6
https://doi.org/10.1137/S0097539700369909
https://doi.org/10.1137/S0097539700369909
https://doi.org/10.1007/978-3-642-03351-3_25
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1109/DCC.2012.41
https://doi.org/10.1017/S0963548315000097
https://doi.org/10.1017/S0963548315000097
https://doi.org/10.1006/jctb.1996.0036
https://doi.org/10.1007/978-3-642-35843-2_31


164 Bibliography

[Rin15] Michael Rink. Thresholds for Matchings in Random Bipartite Graphs with
Applications to Hashing-Based Data Structures. PhD thesis. Technische Uni-
versität Ilmenau, Germany, 2015. url: http://www.db-thueringen.de/
servlets/DocumentServlet?id=25985 (cited on pp. iv, 33, 43, 54).

[RRS07] Rajeev Raman, Venkatesh Raman and Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encoding k-ary trees, prefix sums and multis-
ets. In: ACM Trans. Algorithms 3.4 (2007), p. 43. doi: 10.1145/1290672.1290
680 (cited on p. 44).

[RU08] Thomas J. Richardson and Rüdiger L. Urbanke. Modern Coding Theory. Cam-
bridge University Press, 2008. isbn: 978-0-521-85229-6. doi: 10.1017/cbo978
0511791338 (cited on p. 61).

[San+19] Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger and Roman Dementiev.
Sequential and Parallel Algorithms and Data Structures - The Basic Toolbox.
Springer, 2019. isbn: 978-3-030-25208-3. doi: 10.1007/978-3-030-25209-0
(cited on p. 27).

[Sci14] SciShow. How to Supercool Water: A SciShow Experiment. 2014. url: https:
//www.youtube.com/watch?v=NMSxuORKynI (visited on 25/04/2020) (cited
on p. 7).

[Sed03] Robert Sedgewick. Algorithms in Java Parts 1–4: Fundamentals, Data Structures,

Sorting, Searching. 3rd. Addison Wesley, 2003 (cited on p. 62).
[SS90] Jeanette P. Schmidt and Alan Siegel. The Analysis of Closed Hashing under Lim-

ited Randomness (Extended Abstract). In: Proc. 22nd Annual ACM Symposium

on Theory of Computing. 1990, pp. 224–234. doi: 10.1145/100216.100245
(cited on p. 53).

[Tan81] R. Michael Tanner. A recursive approach to low complexity codes. In: IEEE
Trans. Information Theory 27.5 (1981), pp. 533–547. doi: 10.1109/TIT.1981.
1056404 (cited on p. 61).

[Tho15] Mikkel Thorup. High Speed Hashing for Integers and Strings. In: CoRR (2015).
arXiv: 1504.06804 (cited on p. 54).

[TTK12] Keigo Takeuchi, Toshiyuki Tanaka and Tsutomu Kawabata. A Phenomenolo-
gical Study on Threshold Improvement via Spatial Coupling. In: IEICE Trans.

95-A.5 (2012), pp. 974–977. doi: 10.1587/transfun.E95.A.974 (cited on
p. 7).

[Vig08] Sebastiano Vigna. Broadword Implementation of Rank/Select Queries. In: Proc.
7th WEA. 2008, pp. 154–168. doi: 10.1007/978-3-540-68552-4_12 (cited
on p. 44).

[Vio05] Alfredo Viola. Exact distribution of individual displacements in linear probing
hashing. In: ACM Trans. Algorithms 1.2 (2005), pp. 214–242. doi: 10.1145/110
3963.1103965 (cited on pp. 100, 102).

[Wal18] Stefan Walzer. Load Thresholds for Cuckoo Hashing with Overlapping Blocks.
In: Proc. 45th ICALP. 2018, 102:1–102:10. doi: 10.4230/LIPIcs.ICALP.2018.
102 (cited on p. 8).

[Wal20a] Stefan Walzer. Experimental Comparison of Retrieval Data Structures. 2020.
url: https://github.com/sekti/retrieval-test (visited on 01/04/2020)
(cited on p. 140).

http://www.db-thueringen.de/servlets/DocumentServlet?id=25985
http://www.db-thueringen.de/servlets/DocumentServlet?id=25985
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1017/cbo9780511791338
https://doi.org/10.1017/cbo9780511791338
https://doi.org/10.1007/978-3-030-25209-0
https://www.youtube.com/watch?v=NMSxuORKynI
https://www.youtube.com/watch?v=NMSxuORKynI
https://doi.org/10.1145/100216.100245
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/TIT.1981.1056404
https://arxiv.org/abs/1504.06804
https://doi.org/10.1587/transfun.E95.A.974
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1145/1103963.1103965
https://doi.org/10.1145/1103963.1103965
https://doi.org/10.4230/LIPIcs.ICALP.2018.102
https://doi.org/10.4230/LIPIcs.ICALP.2018.102
https://github.com/sekti/retrieval-test


Bibliography 165

[Wal20b] Stefan Walzer. Peeling Close to the Orientability Threshold: Spatial Coupling
in Hashing-Based Data Structures. In: CoRR (2020). arXiv: 2001.10500 (cited
on pp. iv, 8, 75).

[War17] Lutz Warnke. Upper tails for arithmetic progressions in random subsets. In:
Israel Journal of Mathematics (July 2017), pp. 1–49. issn: 1565-8511. doi: 10.10
07/s11856-017-1546-3 (cited on pp. 127, 129).

[WC81] Mark N. Wegman and Larry Carter. New Hash Functions and Their Use in
Authentication and Set Equality. In: J. Comput. Syst. Sci. 22.3 (1981), pp. 265–279.
doi: 10.1016/0022-0000(81)90033-7 (cited on p. 54).

[Wie86] Douglas H. Wiedemann. Solving Sparse Linear Equations Over Finite Fields.
In: IEEE Trans. Inf. Theory 32.1 (1986), pp. 54–62. doi: 10.1109/TIT.1986.10
57137 (cited on p. 56).

[WRS18] Sean A. Weaver, Hannah J. Roberts and Michael J. Smith. XOR-Satisfiability Set
Membership Filters. In: Proc. 21st SAT. 2018, pp. 401–418. doi: 10.1007/978-
3-319-94144-8_24 (cited on p. 46).

[ZTR20] Jens Zentgraf, Henning Timm and Sven Rahmann. Cost-optimal assignment
of elements in genome-scale multi-way bucketed Cuckoo hash tables. In: Proc.
ALENEX20. 2020, pp. 186–198. doi: 10.1137/1.9781611976007.15 (cited on
pp. 29, 33).

https://arxiv.org/abs/2001.10500
https://doi.org/10.1007/s11856-017-1546-3
https://doi.org/10.1007/s11856-017-1546-3
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1007/978-3-319-94144-8_24
https://doi.org/10.1007/978-3-319-94144-8_24
https://doi.org/10.1137/1.9781611976007.15

	Introduction
	Contributions
	Techniques
	Thesis Outline

	Results
	Random Hypergraphs: Peeling, Solving, Orienting
	Three Hypergraph Properties
	Peelable Hypergraphs at High Densities
	Spatially Coupled Hypergraphs
	Previous Constructions of Peelable Hypergraphs

	Solvability and Good Locality at High Densities
	New Construction with Two Random Blocks per Row
	New Construction with One Random Block per Row
	Previous Constructions of Matrices with Full Rank

	Orientability of Variations of Fully Random Hypergraphs
	Higher Thresholds using Unaligned Blocks
	Less Randomness using Double Hashing
	Orientability Considerations for Dynamic Settings
	Previous Work on -orientability Thresholds


	Hashing-Based Data Structures: Cuckoo Tables, Retrieval and Beyond
	The Dictionary and its Modest Siblings
	The Ideal Dictionary
	Less Powerful Variations
	When Less Power is Sufficient

	Modelling Hashing-Based Data Structures via Random Hypergraphs
	Dictionaries via Cuckoo Hash Tables
	Results on Cuckoo Hash Tables

	Static Retrieval via Linear Systems
	Pure Results on Retrieval Data Structures
	Input Partitioning for Faster Construction
	Comparison of Static Retrieval Data Structures

	(Minimum) Perfect Hash Functions via Retrieval
	Approximate Membership via Retrieval and Cuckoo Tables
	Straggler Identification via Invertible Bloom Filters


	Background
	Fundamental Models, Techniques and Algorithms
	The Word RAM Model vs. Real Computers
	The Parity Operation
	Use Case: Scalar Product of Bit Vectors

	Double Hashing and its Uses
	Full Randomness Assumption
	Building on Weaker Assumptions
	Constructing Fully Random Functions: Split and Share
	Hoping for Indistinguishability from Randomness

	Solving Linear Systems
	Wiedemann's Algorithm
	Heuristic Presolving: Lazy Gaussian Elimination
	The Method of Four Russians

	Connection to Coding Theory
	The Binary Erasure Channel and Low Density Parity Check Codes
	Good Codes vs. Good Data Structures

	Dictionaries not Building on Random Hypergraphs

	Local Weak Limits and Lelarge's Theorem
	Defining the Local Weak Limit
	The Objective Method and Lelarge's Theorem
	Proving Local Weak Convergence


	Proofs
	Peeling Close to the Orientability Threshold
	Threshold Saturation by Spatial Coupling
	The Peeling Process and Idealised Peeling Operators
	Analysis of Iterated Peeling
	Unleashing Heavy Machinery from Coding Theory

	Peelability of Fn below ckl*
	Non-Orientability of Fn above ckl*

	Constant - Time Retrieval with O(log m) Extra Bits
	Proof of Theorem B
	General Considerations
	Proof of Theorem B (i)
	Proof of Theorem B (ii)
	Proof of Theorem B (iii)
	Proof of Lemma 7.1

	Proof of Theorem B1

	Near-Quadratic Matrices with One Short Random Block per Row
	Proof Sketch for Theorem C
	A Simple Gaussian Solver
	Coin-Flipping Robin Hood Hashing
	Connection between SGAUSS and CFRH
	Bounding Heights in CFRH by a Markov Chain
	Enter Queuing Theory
	Putting the Pieces Together – Proof of Theorem C
	A New Retrieval Data Structure – Proof of Theorem C1
	Input Partitioning – Proof of Theorem C2

	Load Thresholds for Cuckoo Hashing with Unaligned Blocks
	Outline of the Proof
	Equivalence of Wn and Wn hat with respect to orientability
	Local weak convergence of Gn to T
	Belief Propagation on the Limiting Tree T
	Closing the Gap – Proof of the Main Theorem
	Numerical approximations of the Thresholds.

	Load Thresholds for Cuckoo Hashing with Double Hashing
	No small Hall-witness exists
	The significance of Hall-witnesses

	Dynamic Space Efficient Hashing
	The Limiting Bipartite Galton-Watson Tree
	Applying Lelarge's Theorem
	The (implicit) Threshold Function
	Obtaining Numerical Approximations


	Evaluation
	Experiments
	Empirical Claims
	Benchmarks for Retrieval Data Structures
	Testing Framework
	On the Experiments with bpz
	On the Experiments with gov
	On the Experiments with lmss
	On the Experiments with coupled
	On the Experiments with 2-block
	On the Experiments with 1-block
	Discussion

	Experiments on Cuckoo Hashing with Unaligned Blocks
	Speed of Convergence and Practical Table Sizes
	Linear Time Construction of an Orientation
	Random Walk Insertion

	Experiments on Cuckoo Hashing with Double Hashing

	Conclusion
	Bibliography




