
IEC 61131-3 + ACPLT = Dynamic Reconfigurable Models

Liyong Yu, Gustavo Quirós, Tina Krausser and Ulrich Epple
Chair of Process Control Engineering, RWTH Aachen University, 52064 Aachen, Germany

liyong.yu@plt.rwth-aachen.de

1. Introduction
IEC 61131 [3] is a well-established international standard
for programmable logic controllers (PLCs). Programming
environments applying the IEC 61131 follow the “tradi-
tional” development cycle: edit-compile-load-execute. In
case execution code needs to be modified, interruption of
the execution is necessary. In this paper, we present an ap-
proach that combines object oriented ACPLT technologies
with the standard IEC 61131-3 languages Function Block
Diagram (FBD) and Sequential Function Chart (SFC). In
contrast to traditional systems, the entire object-oriented
meta-model of FBDs and SFCs is available on the runtime
system. A great advantage of this design is the possibil-
ity of online exploration of meta-information and dynamic
reconfiguration of the system without interruption. This is
especially useful for maintenance and re-engineering tasks
for chemical and metallurgical plants, where interruption
is often associated with high economic loss.

We first present a general description of the IEC 61131
and the ACPLT technologies. After this, our approach will
be explained in more detail. A description of ongoing and
future work concludes this paper.

2. IEC 61131-3
Part 3 of the IEC 61131 standard defines programming
languages for the implementation of automation logic
on PLCs. The standard defines the textual languages
Structured Text (ST) and Instruction List (IL), as well
as the graphical languages Ladder Diagram (LD), Func-
tion Block Diagram (FBD) and Sequential Function Chart
(SFC). This paper will focus on FBD and SFC.

Function blocks are one kind of program organization
unit (POU). They provide an interface in the form of in-
put and output variables, and their state is kept in internal
variables. An internal algorithm is executed periodically
- commonly cyclically -, where the inputs are read, com-
putations are performed, and internal and output variables
are then updated. The internal algorithm is implemented
in one of the standard languages. Function blocks can be
connected with each other by signal connections and com-
pose a FBD. FBD is also known as Continuous Function
Chart (CFC).

SFC represents the sequential execution of steps and ac-
tions, therefore an activity flow. Conditional transitions
between steps determine the conditions for the activation
and deactivation of steps.

3. ACPLT Function Chart
ACPLT1 technologies are reference models and software
implementations that target application areas within the
field of process automation. They are designed and im-
plemented in a vendor- and platform-independent manner.
ACPLT Function Chart (ACPLT/FC) has been developed
with the goal of obtaining a general description language
base for continuous functions and sequential processes in
the field of automation. Due to the expressive graphical
representation and the native support of existing automa-
tion hardware, CFC and SFC were chosen and further de-
veloped. By doing this, the position of CFC and SFC
in classic basic automation can be strengthened. They
can also be well-established in further application areas,
e.g. engineering, batch-control, logistics, diagnostics and
maintenance. The ACPLT/FC concept has been introduced
in [6] in more details. Improvements of definitions in the
standard have been suggested in [7].

Figure 1. Function blocks

Figure 2. SFC

In the design of ACPLT/FC, the languages CFC and
SFC were adapted from the “compilation model” assumed

1Aachener Prozessleittechnik: German expression for Aachener pro-
cess control technique.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36547641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


in the standard to “configuration model”. In ACPLT/FC,
function blocks are defined as basic program organization
units. As shown in Figure 1, two general kinds of function
blocks have been conceived: compiled or native function
blocks, which are defined by a specific object class, and
configured or compound function blocks - also named as
function charts in this work -, which are defined by a single
class and contain a control logic which is defined by an un-
derlying object structure. A CFC is a function chart nest-
ing variable objects, internal function blocks and connec-
tions. The internal function blocks are executed following
a fixed execution order which is given by an internal task
list. An SFC is a function chart with variables, steps, tran-
sitions and actions. As shown in Figure 2, the execution
of every step is divided in three phases: entry, do and exit.
Actions can be implemented as function blocks.

4. Dynamic Reconfigurable Models
The ACPLT/FC has been prototypically implemented as
class libraries in the object management system AC-
PLT/OV [1]. This approach presents several novel and
distinctive features when compared to the common pro-
gramming environments based on IEC 61131-3. These are
shown in shown in Figure 3 and explained in the following.

Complete meta-model available on the runtime sys-
tem: In traditional systems based on IEC 61131-3, the
machine code running on the PLC lacks meta-information
about the loaded instances, such as their type and the
structure of their interconnection. In ACPLT/FC, the in-
stance models and their meta-models are also present in
the target system, meaning that this runtime system is self-
descriptive. This is especially useful for maintenance tasks
and reengineering tasks, and supports the development of
adaptive systems and self-X technologies.

Instantiate-parameterize instead of compile-load:
Instead of compiling diagrams and code into executable
machine code to be loaded in a PLC, the user of AC-
PLT/FC performs the design of the control logic by in-
stantiating and parameterizing objects - such as function
blocks, connections, steps, transitions and actions - di-
rectly in the controller. This can be accomplished through
an engineering client which communicates with the run-
time system. In this manner, there is no distinction be-
tween design and implementation of the control logic, and
the running system can be edited and redesigned at any
point in time during its operation.

Online model exploration: The instance model and
meta-model of ACPLT/FC may be explored and edited by
local or remote clients. This allows great flexibility in per-
forming engineering, operation and monitoring tasks. In
our present implementation, clients supporting the com-
munication protocol APLCT/KS[2] have been developed.
ACPLT/KS has a similar philosophy to OPC UA [4].

Dynamic reconfiguration via runtime model trans-
formation: A great advantage of having the instance
model and the meta-model of the system available at run-
time is the possibility of performing dynamic reconfigura-
tion of the system in an automatic manner. The active ob-

Figure 3. Dynamic reconfigurable models

jects of the system are able to explore and modify the sys-
tem’s instance model in order to adapt the system to spe-
cific situations. This may occur internally in the system,
and may also be carried out by an external client which
connects to the system in order to perform the dynamic
reconfiguration tasks.

5. Ongoing and Future Work
ACPLT Function Chart presented in this paper is being ap-
plied in the automation of a metallurgical melting furnace.
In this project, all continuous functions and sequential pro-
cesses are formally described and realized with the uni-
versal language base established by FBD and SFC. Dur-
ing a production of several days, the dynamic reconfig-
urability of instance models allows the user to load new
batch recipes and modify plant start-up and shut-down pro-
cesses. Functionalities of diagnosis, engineering and data
archiving can also be extended online without production
interruption.

A future topic we have addressed is the safety during
modification, meaning that the running control program
should never be led to critical situations. Additionally, an
approach for Rule-based Engineering [5] is being devel-
oped for the implementation of dynamic system reconfig-
uration and system restructuring in a guided and safe man-
ner.

References
[1] D. Meyer. Objektverwaltungskonzept für die operative

Prozessleittechnik. PhD thesis, RWTH Aachen University,
2001.

[2] H. Albrecht. On Meta-Modeling for Communication in Op-
erational Process Control Engineering. PhD thesis, RWTH
Aachen University, 2003.

[3] IEC. IEC 61131 Programmable Controllers (2nd Edition)
Part 3: Programming Languages, 2003.

[4] IEC. IEC 62541 OPC Unified Architecture - Part 1:
Overview and Concepts, 2010.

[5] T. Krausser, G. Quirós, and U. Epple. An IEC-61131-based
Rule System for Integrated Automation Engineering: Con-
cept and Case Study. In INDIN 2011, Lisbon, July 2011.
IEEE.

[6] L. Yu, T. Krausser, G. Quirós, and U. Epple. SFC und FBD
- Ein durchgängiges Beschreibungsmittel über die Grenzen
der Basisautomatisierung hinaus. In VDI-Berichte 2143, Au-
tomation 2011, Düsseldorf, June 2011. VDI Verlag.

[7] L. Yu, G. Quirós, S. Grüner, and U. Epple. SFC-based Pro-
cess Description for Complex Automation Functionalities.
In EKA 2012, Magdeburg, May 2012. ifak.


