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It is a common practice among humans to deduce, to explain and to make

predictions based on concepts that are not directly observable. In Bayesian

statistics, the underlying propositions of the unobserved latent variables are

summarized in the posterior distribution. With the increasing complexity of real-

world data and statistical models, fast and accurate inference for the posterior

becomes essential. Variational methods, by casting the posterior inference

problem in the optimization framework, are widely used for their flexibility and

computational efficiency. In this thesis, we develop new variational methods,

studying their theoretical properties and applications.

In the first part of the thesis, we utilize dependence structures towards

addressing fundamental problems in variational inference (VI): posterior uncer-

tainty estimation, convergence properties, and discrete optimization. Though it

is flexible, variational inference often underestimates the posterior uncertainty.
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This is a consequence of the over-simplified variational family. Mean-field

variational inference (MFVI), for example, uses a product of independent

distributions as a coarse approximation to the posterior. As a remedy, we

propose a hierarchical variational distribution with flexible parameterization

that can model the dependence structure between latent variables. With a

newly derived objective, we show that the proposed variational method can

achieve accurate and efficient uncertainty estimation.

We further theoretically study the structured variational inference in

the setting of the Stochastic Blockmodel (SBM). The variational distribution

is constructed with a pairwise structure among the nodes of a graph. We

prove that, in a broad density regime and for general random initializations,

the estimated class labels by structured VI converge to the ground truth with

high probability. Empirically, we demonstrate structured VI is more robust

compared with MFVI when the graph is sparse and the signal to noise ratio is

low.

When the latent variables are discrete, gradient descent based VI often

suffers from bias and high variance in the gradient estimation. With correlated

random samples, we propose a novel unbiased, low-variance gradient estimator.

We demonstrate that under certain constraints, such correlated sampling gives

an optimal control variates for the variance reduction. The efficient gradient

estimation can be applied to solve a wide range of problems such as the variable

selection, reinforcement learning, natural language processing, among others.

For the second part of the thesis, we apply variational methods to
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the study of generalization problems in the meta-learning. When trained

over multiple-tasks, we identify that a variety of the meta-learning algorithms

implicitly require the tasks to have a mutually-exclusive dependence structure.

This prevents the task-level overfitting problem and ensures the fast adaptation

of the algorithm in the face of a new task. However, such dependence structure

may not exist for general tasks. When the tasks are non-mutually exclusive, we

develop new meta-learning algorithms with variational regularization to prevent

the task-level overfitting. Consequently, we can expand the meta-learning to

the domains which it cannot be effective on before.
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Chapter 1

Introduction

Et toute science [...] déploie au cours des générations et des

siècles, par le délicat contrepoint de tous les thèmes apparus tour à

tour, comme appelés du néant, pour se joindre en elle et s’y entrelacer.

– Alexander Grothendieck, Récoltes et Semailles, 1986

The idea of using unobserved concepts to explain the observed phenom-

ena can date back as far as to the ancient religions. In statistics, this approach

is formalized scientifically as the latent variable models (LVM). Latent variables

provide a flexible way to model the data generating mechanism and incorporate

the unobserved quantities of interest. Extracted information about latent

variables, such as the point and uncertainty estimations, can help describe

observations and analyze the substream problems.

1.1 Variational Inference

In Bayesian statistics, the inference of latent variables is framed as a

calculation of the posterior distribution, which meets both opportunities and

challenges in this information age. We have witnessed a dramatic increase in

the scale of data and dimension of variables, which make it possible to build

1



complex statistical models but often make it intractable to compute the exact

posterior distribution. The motivation of this thesis is to find efficient and

accurate methods for the approximate posterior inference and apply them to

the new domains.

For decades, Markov chain Monte Carlo (MCMC) has achieved great

success in approximate inference, which is based on random sampling. It

approximates posterior with correlated samples, where a subsequent sample is

drawn conditional on its previous one. When the ergodic condition is satisfied

and the stationary distribution matches the posterior, these random samples

can be considered as coming from the posterior distribution asymptotically.

Though enjoy theoretical guarantees in an ideal setting, MCMC methods often

meet challenges in practice such as slow mixing, sensitivity to initialization

and requiring problem-specific design. These challenges are amplified when

dealing with large scale data and hence call for alternative approaches.

Variational inference (VI) is an efficient and flexible paradigm for pos-

terior inference, which is based on the optimization. It is widely believed to

make up for the deficiencies in MCMC. To introduce the concepts of VI, we

first define a general latent variable model as a joint density

p(x, z) = p(x|z)p(z) (1.1)

where x = {xi}ni=1 are observed data and z = {zj}mj=1 are latent variables.

Variational inference specifies a family of distribution Q and finds the one

within the family that is closest to the exact posterior, where the closeness is

2



measured by certain divergence D

q∗(z) = arg min
q∈Q

D(q(z)||p(z|x)) (1.2)

Since exact posterior is assumed unknown, Eq. (1.2) cannot be optimized

directly. When the divergence D is chosen as the Kullback-Leibler (KL) diver-

gence, defined as DKL(q(z)||p(z)) = Ez∼q(z) log[q(z)/p(z)], the log-likelihoood

of data (evidence) can be decomposed as

log[p(x)] = Ez∼q(z)log[p(x, z)/q(z)] + DKL(q(z)||p(z|x)) (1.3)

With the identity above, instead of minimizing DKL(q(z)||p(z|x)), we can

maximize the first term on the right hand side as an equivalent objective,

known as the evidence lower bound (ELBO)

L(q) =Ez∼q(z)log[p(x, z)/q(z)]. (1.4)

The q∗(z) that maximizes ELBO is a good approximation to the poterior within

family Q.

To maximize the ELBO, we need to specify the variational family Q

and the optimization rule. MFVI, for example, chooses a factorized variational

family as q(z) =
∏m

j=1 q(zj), which assumes independence between latent

variables. Moreover, each factor q(zj) is often set as an exponential family dis-

tribution. Given the local conjugacy, such independence and exponential family

assumptions make closed-form coordinate ascent feasible. Though computa-

tionally efficient, MFVI is known for its inaccurate uncertainty estimation and

3



sensitivity to the random initializations. Modern variational methods expand

the variational family by incorporating dependence structures between latent

variables and change optimize rule to the gradient ascent. However, the answer

remains elusive on how to accurately estimate the posterior uncertainty for

VI, whether the dependence structure theoretically improves the convergence

properties and how to efficiently estimate the gradient for the distribution

parameters when latent variables are discrete. This thesis provides new insights

towards answering these questions.

In Chaper 2, we introduce a flexible hierarchical distribution that can

have millions of parameters constructed by deep neural networks. The universal

approximation theory of neural network provides desired flexibility to approxi-

mate the posterior with high accuracy. Specifically, we introduce an auxiliary

random variable ψ that is the output of a deterministic transformation with

parameters φ. We use the marginal of the hierarchical model as the variational

family

Q = {qφ(z) =

∫
q(z|ψ)qφ(ψ) dψ} (1.5)

Here, the conditional distribution q(z|ψ) is required to be a simple explicit

distribution such as Gaussian distribution, while q(ψ) is allowed to be flexible

without analytic density, as long as it can generate random samples. We call

distribution in form of (1.5) as the semi-implicit distribution. The punchline

is that the marginal distribution q(z) can encode the dependency structure

between the elements of z therefore can improve the uncertainty estimation.

4



However, q(z) is not analytic in general so we cannot optimize the ELBO

directly. To cope with the computational challenge, we derive a novel surrogate

ELBO as the alternative objective function and theoretically prove that it

convergences to the ELBO monotonically and asymptotically. We show that

the semi-implicit distribution, which combines the explicit and implicit dis-

tributions, the deterministic and stochastic transformations, the conditional

independence and marginal dependence, can achieve efficient and accurate

posterior estimation.

To further understand the contribution of dependence structure in

improving variational inference, in Chapter 3 we theoretically study the conver-

gence properties of the structured VI and compare them with MFVI. We study

the community detection problem with Stochastic Blockmodel and design a

simplified pairwise dependence structure between the graph nodes. We prove

that in a broad density regime and under a fairly general random initialization

scheme, the pairwise structured VI can converge to the ground truth with

probability tending to one when the parameters are known, estimated within

a reasonable range, or updated appropriately. This is in contrast to MFVI,

where convergence only happens for a narrower range of initializations. In

addition, pairwise structured VI can escape from certain local optima that

exist in the MFVI objective. These results highlight the theoretical advantage

of the dependence structure.

When optimized with a stochastic gradient, the bias and variance of

the gradient estimation influence the optima that variational methods can
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converge to. It becomes salient when the latent variables are discrete, which

in practice, are widely used in clustering, natural language models, variable

selection, among others. This motivates our research in Chapter 4, so as to

find unbiased and low variance gradient estimator for high dimensional discrete

variables. We study an optimization objective in the form of Ez∼p(z|φ)[f(z)]

where z is a vector of Bernoulli variables and φ are the parameters. This

objective has variational inference as a special case, as it becomes the ELBO

when f(z) = log[p(x, z)/q(z)]. To construct a gradient estimator, we first

transform the expectation over Bernoulli variables to be over Uniform variables.

Utilizing the symmetric property of the uniform distribution, we draw a pair

of dependent samples to estimate the gradient at each iteration. The proposed

estimation is unbiased, low-variance and has minimal computational cost. We

prove that, under certain assumptions, such correlated sampling produces the

optimal control variates.

1.2 Variational Methods for Statistical Learning

Variational methods are widely applied to the problems where the

primary goals are to learn the model parameters. In these scenarios, the latent

variables are introduced to construct the statistical models. We consider the

data likelihood

log pθ(x) = log

∫
pθ(x|z)p(z)dz (1.6)

with data x = {xi}ni=1, latent variables z = {zj}mj=1 and model parameters

θ . The goal is to learn parameter θ that maximizes the likelihood function,
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known as the maximum likelihood estimation (MLE).

1.2.1 Expectation-Maximization Algorithm

The learning and inference problems are coupled. Pioneer variational

methods can date back to the Expectation-Maximization (EM) algorithm [26].

The EM algorithm maximizes the likelihood by iteratively computing and

maximizing a lower bound, which has the form as

θ(t+1) = arg max
θ

Ez∼p
θ(t)

(z|x)log[pθ(x, z)/pθ(t)(z|x)]. (1.7)

The expectation step of EM computes the ELBO based on the model parameters

estimation at step t; then the maximization step sets the model parameters that

maximize the ELBO as the updated estimation at step t+1. EM algorithm can

be considered as a variational method which uses the exact posterior pθ(z|x)

as the variational distribution. Such exact inference makes the ELBO tight,

which equal to the evidence at the point where the posterior is computed.

As a result, EM algorithm is monotonically nondecreasing in estimating the

likelihood, i.e. pθt+1(x) ≥ pθt(x). In the scenarios when the exact posterior is

unknown, there is a gap between evidence and ELBO which can be quantified

as DKL(q(z)||pθ(z|x)). Accurate inference of posterior can reduce this gap and

hence improve the learning of model parameters.

1.2.2 Deep Generative Model

Variational Autoencoder (VAE) [69] is a generative model that simulates

the data generating process with deep neural networks. VAE is trained by
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Figure 1.1: Demonstration of the statistical inference and learning based on
the bound optimization. The left and right panel corresponds to the exact and
approximate inference respectively.

maximizing the marginal likelihood of data. Based on the variational principles,

the optimization objective is the ELBO

max
φ,θ

Ez∼qφ(z|x) log[pθ(x|z)p(z)/qφ(z|x)] (1.8)

The qφ(z|x) is called the encoder and pθ(x|z) is called the decoder, which are

both modeled by deep neural networks, with parameters φ and θ respectively.

VAE iteratively optimizes the encoder and decoder parameters. The logic is

that by optimizing the encoder, the variational distribution gets close to the

postrior, which can reduce the gap between the lower bound and the data

log-likelihood. The tightened bound can then improve the accuracy in learning

decode parameters (see Figure 1.1). With high flexibility, VAEs are widely

used in generating images, natural languages, molecular structures, and so on.

In this thesis, we improve the quality of samples generated by VAE and learn

VAE with discrete latent variables.
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1.2.3 Multi-task Learning

In standard supervised learning, an algorithm is designed to solve a

particular task. An intelligent system, however, is expected to have versatility.

We expect a learning agent, having trained on multiple related tasks, can solve

new tasks at the test-time efficiently by leveraging the past experience. To

achieve such efficient generalization across tasks, meta-learning is a promising

paradigm. In concordance with the meta-learning nomenclature, we assume

correlated tasks Ti are sampled from a distribution p(T). For each task, we

observe a set of training data Di = (xi,yi) and a set of test data D∗i = (x∗i ,y
∗
i )

with xi = (xi1, . . . , xiK), yi = (yi1, . . . , yiK) sampled from p(x, y|Ti), and

similarly for D∗i . We denote X∗ = {x∗i }Ni=1, Y ∗ = {y∗i }Ni=1. Our goal is to

maximize the predictive likelihood for labels which is the marginal of a latent

variable model

log p(Y ∗|X∗, {Di}Ni=1) =
1

N

N∑
i=1

log
(∫

pθ(y
∗
i |x∗i ,φi)pθ(φi|Di)dφi

)
(1.9)

The variables φi are latent variables that summarize task-specific information

and θ are the model parameters to learn.

In Chaper 5, we identify two types of local optima in the landscape

of meta-learning objective (1.9): one can be reached by adapting to the task

training data D and the other can be reached by memorizing the task identities

during meta training. The former solution is desired so that meta-learner

can achieve the fast adaptation. The latter solution, however, is a task-level

overfitting problem. We call it the memorization problem.
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For example in personalized medicine, an ideal automated medical

system can suggest medication prescriptions to doctors based on the symptoms,

patients’ identity information, and also adapt to the patients’ individual medical

history. In the meta-learning framework, each patient represents a separate

task. A standard meta-learning system can memorize the patients’ identity

information, leading it to ignore the medical history and only utilize the

symptoms combined with the memorized information. As a result, it can issue

highly accurate prescriptions for the meta-training patients, but fail to use the

personalized medical history to adapt to the new patients at the test-time.

Inspired by the variational information bottleneck, we propose a meta-

regularization approach to address the memorization problem. Intuitively,

with an objective encouraging low training error and low information stored

in the meta-parameters, it forces the meta-learner to use the task training

data to make predictions, therefore it favors the adaptation solution to the

memorization solution.

In the remainder of this thesis, we will present new variational methods

and theories for statistical inference and learning. Though scattered in different

chapters, the analysis is nevertheless motivated by the dependence structures

that inherently exist in random samples, random variables, and random func-

tions. More generally, it echos the philosophy of naturalist John Muir, “when

we try to pick out anything by itself, we find it hitched to everything else in

the universe.”
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Chapter 2

Uncertainty Estimation in Variational Inference

This chapter is devoted to uncertainty estimation in variational infer-

ence, based on publication [161]. To achieve accurate posterior approximation,

we introduce semi-implicit variational inference (SIVI) to expand the commonly

used analytic variational family, by mixing the variational parameter with a

flexible distribution. This mixing distribution can assume any density function,

explicit or not, as long as independent random samples can be generated via

reparameterization. We derive a new optimization objective as a surrogate

evidence lower bound (ELBO). The tightness of the bound is demonstrated

by the asymtotic and monotonic properties. With a substantially expanded

variational family and a novel optimization algorithm, SIVI closely matches the

accuracy of MCMC in inferring the posterior in a variety of Bayesian inference

tasks.

The content in this chapter was published in [161], Yin, Mingzhang and Mingyuan Zhou.
“Semi-Implicit Variational Inference”. In International Conference on Machine Learning,
pp. 5646-5655. 2018. I designed the algorithm with Prof. Zhou, proved the theoretical
properties, implemented the simulations and wrote the draft. Prof. Zhou proposed the
problem, proposed the initial methodology, brainstormed about the experimental setting,
helped with the draft rewriting and revising.

11



2.1 Variational Inference with Dependence Structures

Variational inference (VI) is an optimization based method that is

widely used for approximate Bayesian inference. Despite its popularity, VI

has a well-known issue in underestimating the variance of the posterior, which

is often attributed to the mismatch between the representation power of the

variational family that Q is restricted to and the complexity of the posterior.

This issue is often further amplified in mean-field VI (MFVI), due to the

factorized assumption on Q that ignores the dependencies between different

factorization components [151, 16].

There exists a wide variety of VI methods that improve on MFVI by

modeling dependence structures in latent variables. A simple but powerful

approach is to construct joint ditribution of latent variables by complex deter-

ministic and/or stochastic transformations. One successful application of this

idea in VI is constructing the variational distribution with a normalizing flow,

which transforms a simple random variable through a sequence of invertible

differentiable functions with tractable Jacobians, to deterministically map a

simple PDF to a complex one [116, 70, 103].

Normalizing flows help increase the flexibility of VI, but still require

the mapping to be deterministic and invertible. Removing both restrictions,

there have been several recent attempts to define highly flexible variational

distributions with implicit model [59, 92, 146, 79, 88, 130]. A typical example is

transforming random noise via a deep neural network, leading to a non-invertible

highly nonlinear mapping and hence an implicit distribution. While an implicit
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variational distribution can be made highly flexible, it becomes necessary in

each iteration to address the problem of density ratio estimation, which is

often transformed into a problem related to learning generative adversarial

networks [41]. In particular, a binary classifier, whose class probability is used

for density ratio estimation, is trained in each iteration to discriminate the

samples generated by the model from those by the variational distribution

[92, 148, 88]. Controlling the bias and variance in density ratio estimation,

however, is in general a very difficult problem, especially in high-dimensional

settings [134].

Besides deteministic transformation, there are a variety of algorithms for

structured VI. Examples include modeling dependence between local and global

parameters [127, 55], using a mixture of variational distributions [14, 37, 122, 89],

introducing a copula to capture the dependencies between univariate marginals

[145, 52], handling non-conjugacy [102, 142], and constructing a hierarchical

variational distribution [113, 146, 82, 2].

To well characterize the posterior while maintaining simple optimization,

we introduce semi-implicit VI (SIVI) that imposes a mixing distribution on

the parameters of Q to expand the variational family with a semi-implicit

hierarchical construction. The meaning of “semi-implicit” is twofold: 1) the

original Q distribution is required to have an analytic PDF, but its mixing

distribution is not subject to such a constraint; and 2) even if both the original

Q and its mixing distribution have analytic PDFs, it is common that the

marginal is implicit, that is, having a non-analytic PDF. Our intuition behind

13



SIVI is that even if the marginal variational distribution is not tractable, its

density can be evaluated with Monte Carlo estimation under this semi-implicit

hierarchical construction, an expansion that helps model skewness, kurtosis,

multimodality, and other characteristics that are exhibited by the posterior but

failed to be captured by the original variational family. For MFVI, an evident

benefit of this expansion is restoring the dependencies between its factorization

components, as the resulted Q distribution becomes conditionally independent

but marginally dependent.

SIVI makes three major contributions: 1) a reparameterizable implicit

distribution can be used as a mixing distribution to effectively expand the

richness of the variational family; 2) an analytic conditional Q distribution

is used to sidestep the hard problem of density ratio estimation, and is not

required to be reparameterizable in conditionally conjugate models; and 3)

SIVI sandwiches the ELBO between a lower bound and an upper bound, and

derives an asymptotically exact surrogate ELBO that is amenable to direct

optimization via stochastic gradient ascent. With a flexible variational family

and novel optimization, SIVI bridges the accuracy gap of posterior estimation

between VI and Markov chain Monte Carlo (MCMC), which can accurately

characterize the posterior using MCMC samples, as will be demonstrated in a

variety of Bayesian inference tasks.
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2.2 Semi-Implicit Variational Inference

In VI, given observations x, latent variables z, model likelihood p(x | z),

and prior p(z), we approximate the posterior p(z |x) with variational distribu-

tion q(z |ψ) that is often required to be explicit. We optimize the variational

parameter ψ to mximize the evidence lower bound (ELBO) as Eq. (1.4)

ELBO = Ez∼q(z|ψ) log[p(x, z)/q(z|ψ)] (2.1)

Rather than treating ψ as the variational parameter to be inferred, SIVI regards

ψ ∼ q(ψ) as a random variable. Assuming ψ ∼ qφ(ψ), where φ denotes the

distribution parameter to be inferred, the semi-implicit variational distribution

for z can be defined in a hierarchical manner as z ∼ q(z |ψ), ψ ∼ qφ(ψ).

Marginalizing the intermediate variable ψ out, we can view z as a random

variable drawn from distribution family H indexed by variational parameter φ,

expressed as

H =
{
hφ(z) : hφ(z) =

∫
ψ
q(z |ψ)qφ(ψ)dψ

}
.

Note q(z |ψ) is required to be explicit, but the mixing distribution qφ(ψ) is

allowed to be implicit. Moreover, unless qφ(ψ) is conjugate to q(z |ψ), the

marginal Q distribution hφ(z) ∈ H is often implicit. These are the two reasons

for referring to the proposed VI as semi-implicit VI (SIVI).

SIVI requires q(z |ψ) to be explicit, and also requires it to either be

reparameterizable, which means z ∼ q(z |ψ) can be generated by transforming

random noise ε via function f(ε,ψ), or allow ELBO to be analytic. Whereas the
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mixing distribution q(ψ) is required to be reparameterizable but not necessarily

explicit. In particular, SIVI draws from q(ψ) by transforming random noise ε

via a deep neural network, which generally leads to an implicit distribution for

q(ψ) due to a non-invertible transform.

Figure 2.1: Demonstration of sampling from semi-implicit distribution.

While restricting q(z |ψ) to be explicit, SIVI introduces a mixing distri-

bution qφ(ψ) to enhance its representation power. In this paper, we construct

qφ(ψ) with an implicit distribution that generates its random samples via

a stochastic procedure but may not allow a pointwise evaluable PDF. More

specifically, an implicit distribution [92, 146], consisting of a source of ran-

domness q(ε) for ε ∈ Rg and a deterministic transform Tφ : Rg → Rd, can be

constructed as ψ = Tφ(ε), ε ∼ q(ε), with PDF

qφ(ψ) = ∂
∂ψ1

. . . ∂
∂ψd

∫
Tφ(ε)≤ψ q(ε)dε. (2.2)

When Tφ is invertible and the integration is tractable, the PDF of ψ can be

calculated with (2.2), but this is not the case in general and hence qφ(ψ) is
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often implicit. When Tφ(·) is chosen as a deep neural network, thanks to its

high modeling capacity, qφ(ψ) can be highly flexible and the dependencies

between the elements of ψ can be well captured.

Prevalently used in the study of thermodynamics, ecology, epidemiology,

and differential equation systems, implicit distributions have only been recently

introduced in VI to parameterize q(z |ψ) [79, 88, 59, 146]. Using implicit

distributions with intractable PDF increases flexibility but substantially com-

plicates the optimization problem for VI, due to the need to estimate log density

ratios involving intractable PDFs, which is particularly challenging in high

dimensions [134]. By contrast, taking a semi-implicit construction, SIVI offers

the best of both worlds: constructing a highly flexible variational distribution,

without sacrificing the key benefit of VI in converting posterior inference into

an optimization problem that is simple to solve. Below we develop a novel

optimization algorithm that exploits SIVI’s semi-implicit construction.

2.3 Optimization for SIVI

To optimize the variational parameters of SIVI, below we first derive

for the ELBO a lower bound, climbing which, however, could drive the mixing

distribution qφ(ψ) towards a point mass density. To prevent degeneracy, we

add a nonnegative regularization term, leading to a surrogate ELBO that is

monotonic and asymptotically exact, as can be further tightened by importance

reweighting. To derive a tractable optimization objective, we first show the

convexity of KL divergence
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Theorem 1 ([23]). The KL divergence from distribution q(z) to p(z), expressed

as DKL(q(z)||p(z)), is convex in the pair (q(z), p(z)).

Fixing the distribution p(z) in Theorem 1, the KL divergence can be

viewed as a convex functional in q(z). As in Appendix A, extending Jensen’s

inequality leads to

DKL(Eψq(z |ψ)||p(z)) ≤ EψDKL(q(z |ψ)||p(z)). (2.3)

Substituting hφ(z) = Eψ∼qφ(ψ)q(z |ψ) and p(x, z) into (2.3) leads to a lower

bound of SIVI’s ELBO L as

L(q(z |ψ), qφ(ψ)) = Eψ∼qφ(ψ)Ez∼q(z |ψ) log
p(x, z)

q(z |ψ)
≤ L (2.4)

A Monte Carlo estimation of L only requires q(z |ψ) to have an analytic

PDF and qφ(ψ) to be convenient to sample from. It is this nice separation of

evaluation and sampling that allows SIVI to combine an explicit q(z |ψ) with

an implicit qφ(ψ) that is as powerful as needed, while maintaining tractable

computation.

2.3.1 Degeneracy Problem

A direct optimization of the lower bound L in (2.4), however, can suffer

from degeneracy, as shown in the proposition blow. All proofs are deferred to

Appendix A.

Proposition 1. Let us denote ψ∗ = arg maxψ−DKL(q(z |ψ)||p(x, z)), then

L(q(z |ψ), qφ(ψ)) ≤ −DKL(q(z |ψ∗)||p(x, z)),
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where the equality is true if and only if qφ(ψ) = δψ∗(ψ).

Therefore, if optimizing the variational parameter on L(q(z |ψ), qφ(ψ)), with-

out stopping the optimization algorithm early, qφ(ψ) could converge to a point

mass density, making SIVI degenerate to vanilla VI.

2.3.2 Surrogate Lower Bound

To prevent degeneracy, we regularize L by adding

IK(φ) = Eψ,ψ(1),...,ψ(K)∼qφ(ψ)DKL(q(z |ψ)|| 1
K+1

[q(z |ψ) +
∑K

k=1 q(z |ψ
(k))].). (2.5)

Clearly, IK ≥ 0, with IK = 0 if and only if K = 0 or qφ(ψ) degenerates to a

point mass density. Therefore, L0 = L and maximizing LK = L + IK with

K ≥ 1 would encourage positive IK and drive q(ψ) away from degeneracy.

Combining (2.4) and (2.5), we have the final objective as SIVI-ELBO

LK = Eψ,ψ(1),...,ψ(K)∼qφ(ψ)Ez∼q(z |ψ) log p(x,z)

1
K+1

[
q(z |ψ)+

∑K
k=1 q(z |ψ

(k))
] . (2.6)

In the following proposition, we show LK is indeed a lower bound of ELBO

and thus a lower bound of evidence. We further show the bound is tightened

monotonically as K increases and asymptotically converges to the ELBO. The

proof of monotone property can be found in Molchanov et al. [93].

Proposition 2 (Lower Bound and monotonicity). Suppose L are defined as

in (2.1) and IK as in (2.5), then LK = L + IK monotonically converges from

below towards the ELBO, satisfying ∀K, L0 = L, LK ≤ LK+1 ≤ L.
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Moreover, as limK→∞ h̃K(z) = Eψ∼qφ(ψ)q(z |ψ) = hφ(z) by the strong

law of large numbers and

lim
K→∞

BK = Eψ∼qφ(ψ)DKL(q(z |ψ)||hφ(z)) = I(z;ψ) (2.7)

by interchanging two limiting operations, as discussed in detail in Appendix A,

we have the following proposition.

Proposition 3 (Asymptoticity). limK→∞LK = L

It is worth noting that the estimator IK is a lower bound of mutual infor-

mation I(z;ψ) which measures the mutual dependence between latent variable

z and auxilliary variable ψ. This estimator was independently discovered by

[100] as Noise-Contrastive Estimation (NCE).

The bound in (2.6) provides an information-theoretic decomposition of

uncertainty estimation in variational inference

LK(φ) = Ez∼hφ(z) log p(x|z)︸ ︷︷ ︸
Point estimate

−Eqφ(ψ)DKL(q(z|ψ)||p(z))

︸ ︷︷ ︸
MFVI estimation

+IK(φ)

︸ ︷︷ ︸
SIVI estimation

.

It describes the tradeoff between the computational cost and posterior inference

accuracy. Using the importance reweighting idea, Burda et al. [19] provides

a lower bound LK̃ ≥ ELBO that monotonically converges from below to the

evidence log p(x) as K̃ increases. Using the same idea, we may also tighten

the SIVI-ELBO in (2.6) using

LK̃
K = E(zi,ψi)1:K̃∼q(z,ψ)Eψ(1:K)∼qφ(ψ) log 1

K̃

∑K̃
i=1

p(x,zi)

1
K+1

[
q(zi |ψi)+

∑K
k=1 q(zi |ψ

(k))
] ,
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for which limK→∞LK̃
K = LK̃ ≥ ELBO and limK,K̃→∞LK̃

K = limK̃→∞LK̃ =

log p(x). Using LKt as the surrogate ELBO, where t indexes the number of

iterations, Kt ∈ {0, 1, . . .}, and Kt+1 ≥ Kt, we describe the stochastic gradient

ascend algorithm to optimize the variational parameter in Algorithm 1, in

which we further introduce ξ as the variational parameter of the conditional

distribution qξ(z |ψ) that is not mixed with another distribution. For Monte

Carlo estimation in Algorithm 1, we use a single random sample for each ψ(k),

J random samples for ψ, and a single sample of z for each sample of ψ. We

denote z = f(ε, ξ,ψ), ε ∼ p(ε) as the reparameterization for z ∼ qξ(z |ψ).

As for ξ, if ξ 6= ∅, one may learn it as in Algorithm 1, set it empirically, or fix

it at the value learned by another algorithm such as MFVI. In summary, SIVI

constructs a flexible variational distribution by mixing a (potentially) implicit

distribution with an explicit one, while maintaining tractable optimization via

the use of an asymptotically exact surrogate ELBO.

2.4 Experimental Results

We implement SIVI for a range of inference tasks. The toy examples

show SIVI captures skewness, kurtosis, and multimodality. A negative binomial

model shows SIVI can accurately capture the dependencies between latent

variables. A bivariate count distribution example shows for a conditionally con-

jugate model, SIVI can utilize a non-reparameterizable variational distribution,

without being plagued by the high variance of score function gradient estima-

tion. With Bayesian logistic regression, we demonstrate that SIVI can either
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Algorithm 1 Semi-Implicit Variational Inference (SIVI)
input : Data {xi}1:N , joint likelihood p(x, z), explicit variational distribution

qξ(z |ψ), implicit layer neural network Tφ(ε) and source of randomness q(ε)
output :Variational parameter ξ for the conditional distribution qξ(z |ψ), variational

parameter φ for the mixing distribution qφ(ψ)

Initialize ξ and φ randomly
while not converged do

Set LKt = 0, ρt and ηt as step sizes, and Kt ≥ 0 as a non-decreasing integer;
Sample ψ(k) = Tφ(ε

(k)), ε(k) ∼ q(ε) for k = 1, . . . ,Kt; take subsample x =
{xi}i1:iM

for j = 1 to J do
Sample ψj = Tφ(εj), εj ∼ q(ε)
Sample zj = f(ε̃j , ξ,ψj), ε̃j ∼ p(ε)
LKt = LKt+

1
J

{
log 1

Kt+1

[∑Kt
k=1 qξ(zj |ψ

(k))+qξ(zj |ψj)
]
− N
M log p(x | zj)−

log p(zj)
}

end
ξ = ξ + ρt∇ξLKt

(
{ψ(k)}1,K , {ψj}1,J , {zj}1,J

)
φ = φ+ ηt∇φLKt

(
{ψ(k)}1,K , {ψj}1,J , {zj}1,J

)
end

work alone as a black-box inference procedure for correlated latent variables,

or directly expand MFVI by adding a mixing distribution, leading to accurate

uncertainty estimation on par with that of MCMC. Last but not least, moving

beyond the canonical Gaussian based variational autoencoder (VAE), SIVI

helps construct semi-implicit VAE to improve unsupervised feature learning

and amortized inference.

2.4.1 Expressiveness of SIVI

We first show the expressiveness of SIVI by approximating various target

distributions. As listed in Table 2.1, the conditional layer of SIVI is chosen to

be as simple as an isotropic Gaussian (or log-normal) distribution N(0, σ2
0I).
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Table 2.1: Inference and target distributions for SIVI in synthetic example.

h(z) = Eψ∼q(ψ)q(z |ψ) p(z)
z ∼ N(ψ, 0.1),
ψ ∼ q(ψ)

Laplace(z;µ = 0, b = 2)
0.3N(z;−2, 1) + 0.7N(z; 2, 1)

z ∼ Log-Normal(ψ, 0.1),
ψ ∼ q(ψ)

Gamma(z; 2, 1)

z ∼ N

(
ψ,

[
0.1 0
0 0.1

])
,

ψ ∼ q(ψ)

0.5N(z;−2, I) + 0.5N(z; 2, I)
N(z1; z2

2/4, 1)N(z2; 0, 4)

0.5N

(
z; 0,

[
2 1.8

1.8 2

])
+ 0.5N

(
z; 0,

[
2 −1.8
−1.8 2

])

The implicit mixing layer is a multilayer perceptron (MLP), with layer widths

[30, 60, 30] and a ten dimensional isotropic Gaussian noise as its input. We fix

σ2
0 = 0.1 and optimize the implicit layer to minimize DKL(Eqφ(ψ)q(z |ψ)||p(z)).

As shown in Figure 2.2, despite having a fixed purposely misspecified explicit

layer, by training a flexible implicit layer, the random samples from which are

illustrated in Figure 2.3, SIVI infers a sophisticated marginal variational distri-

bution that accurately captures the skewness, kurtosis, and/or multimodality

exhibited by the target one.

2.4.2 Negative Binomial Model

We consider a negative binomial (NB) distribution with the gamma and

beta priors (a = b = α = β = 0.01) as

xi
i.i.d.∼ NB(r, p), r ∼ Gamma(a, 1/b), p ∼ Beta(α, β),

for which the posterior p(r, p | {xi}1,N) is not tractable. MFVI, which uses

q(r, p) = Gamma(r; ã, 1/b̃)Beta(p; α̃, β̃) to approximate the posterior, notably

underestimates the variance [171] . This caveat of MFVI motivates a semi-
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Figure 2.2: Approximating synthetic target distributions with SIVI

implicit variational distribution as

q(r, p |ψ) = Log-Normal(r;µr, σ2
0) · Logit-Normal(p;µp, σ2

0),

ψ = (µr, µp) ∼ q(ψ)

where an MLP based implicit q(ψ), as in Section 2.4.1, is used by SIVI to

capture the dependency between r and p.

We apply Gibbs sampling, MFVI, and SIVI to a real overdispersed count

dataset of Bliss and Fisher [17] that records the number of adult red mites

on each of the 150 randomly selected apple leaves. With K = 1000, as shown

in Figure 2.4, SIVI clearly improves MFVI in closely matching the posterior

inferred by Gibbs sampling. Moreover, the mixing distribution q(ψ) clearly

helps capture the negative correlation between r and p, as totally ignored by
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Figure 2.3: Visualization of the MLP based implicit distributions ψ ∼ q(ψ).
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Figure 2.4: Top left row: the marginal posteriors of r and p inferred by MFVI,
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q(ψ) and joint posterior of r and p. Right: Kolmogorov-Smirnov (KS) distance
and p-value between the marginal posteriors of r and p inferred by SIVI and
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MFVI. The two-sample Kolmogorov-Smirnov (KS) distances, between 2000

posterior samples generated by SIVI and 2000 MCMC ones, are 0.0185 (p-value

= 0.88) and 0.0200 (p-value = 0.81) for r and p, respectively. By contrast,

for MFVI and MCMC, they are 0.2695 (p-value = 5.26 × 10−64) and 0.2965

(p-value = 2.21 × 10−77), which significantly reject the null hypothesis that

the posterior inferred by MFVI matches that by MCMC. As further suggested

by Figure 2.4 and Figures 2.5, as K increases, the posterior inferred by SIVI

quickly approaches that inferred by MCMC.
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Figure 2.5: The marginal posterior distribution of the negative binomial
probability parameter r and p inferred by SIVI.

2.4.3 Bayesian Logistic Regression

We compare SIVI with MFVI, Stein variational gradient descent (SVGD)

of Liu and Wang [80], and MCMC on Bayesian logistic regression, expressed as

yi ∼ Bernoulli[(1 + e−x
′
iβ)−1], β ∼ N(0, α−1IV+1),
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where xi = (1, xi1, . . . , xiV )T are covariate vectors, yi ∈ {0, 1} are binary

response variables, and α is set as 0.01. With the Polya-Gamma data augmen-

tation of Polson et al. [109], we collect posterior MCMC samples of β using a

Gibbs sampling algorithm. For MFVI, the variational distribution is chosen as

a multivariate normal (MVN) N(β;µ,Σ), with a diagonal or full covariance

matrix. For SIVI, we treat Σ, diagonal or full, as a variational parameter and

mix µ with an MLP based implicit distribution. We consider three datasets:

waveform, spam, and nodal. The details on datasets and inference are deferred

to Appendix A.

Figure 2.6: Comparison of MFVI (red), MCMC (green on left), and SIVI (green
on right) with a full covariance matrix on quantifying predictive uncertainty
for Bayesian logistic regression on waveform.

We collect βj for j = 1, . . . , 1000 to represent the inferred posterior

p(β | {xi, yi}1,N). For each test data xN+i, we calculate the predictive proba-

bilities 1/(1 + e−x
T
N+iβj) for all j and compute its sample mean, and sample

standard deviation that measures the uncertainty of the predictive distribu-

27



Figure 2.7: Marginal and pairwise joint posteriors for (β0, . . . , β4) inferred
by MFVI (red), MCMC (blue), and SIVI (green, full covariance matrix) on
waveform.

tion p(yN+i = 1 |xN+i, {xi, yi}1,N). As shown in Figure 2.6, even with a full

covariance matrix, the MVN variational distribution inferred by MFVI clearly

underestimates the uncertainty in out-of-sample prediction, let alone with a

diagonal one, whereas SIVI, mixing the MVN with an MLP based implicit

distribution, closely matches MCMC in uncertainty estimation. As shown

in Figure 2.7, the underestimation of predictive uncertainty by MFVI can

be attributed to variance underestimation for both univariate marginal and

pairwise joint posteriors, which are, by contrast, well agreed on between SIVI

and MCMC.

Further examining all the univariate marginals, shown in Figure 2.9,

correlation coefficients of β, shown in Figure 2.8, and additional results, show
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Figure 2.8: Correlation coefficients of β estimated from the posterior samples
{βi}i=1:1000 on waveform, compared with MCMC results. The closer to the
dashed line the better.

in Appendix A, it is clear that SIVI well characterizes the posterior distribution

of β and is only slightly negatively affected if its explicit layer is restricted with

a diagonal covariance matrix, whereas MFVI with a diagonal/full covariance

matrix and SVGD all clearly misrepresent the variance. Note we have also tried

modified the code of variational boosting [89] for Bayesian logistic regression,

but failed to obtain satisfactory results. We attribute the success of SIVI to

its ability in better capturing the dependencies between βv and supporting a

highly expressive non-Gaussian variational distribution by mixing a MVN with

a flexible implicit distribution, whose parameters can be efficiently optimized

via an asymptotically exact surrogate ELBO.
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2.4.4 Semi-Implicit Variational Autoencoder

Variational Autoencoder (VAE) [69, 117] is a popular generative model

based approach for unsupervised feature learning and amortized inference.

VAE iteratively infers the encoder parameter φ and decoder parameter θ to

maximize the ELBO as

L(φ,θ) = Ez∼qφ(z |x)[log(pθ(x | z))]−DKL(qφ(z |x)||p(z)).

The encoder distribution qφ(z |x) is required to be reparameterizable and

analytically evaluable, which usually restricts it to a small exponential family. In

particular, a canonical encoder is qφ(z |x) = N(z |µ(x,φ),Σ(x,φ)), where the

Gaussian parameters are deterministically transformed from the observations
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x, via non-probabilistic deep neural networks parameterized by φ. Thus,

given observation xi, its corresponding code zi is forced to follow a Gaussian

distribution, no matter how powerful the deep neural networks are. The

Gaussian assumption, however, is often too restrictive to model skewness,

kurtosis, and multimodality.

To this end, rather than using a single-stochastic-layer encoder, we use

SIVI that can add multiple stochastic layers, as long as the first stochastic

layer qφ(z |x) remains to be reparameterizable and have an analytic PDF, and

the layers added after are reparameterizable and simple to sample from. More

specifically, we construct semi-implicit VAE (SIVAE) by using a hierarchical

encoder that injects random noise at M different stochastic layers as

`t = Tt(`t−1, εt,x;φ), εt ∼ qt(ε), t = 1, . . . ,M,

µ(x,φ) = f(`M ,x;φ), Σ(x,φ) = g(`M ,x;φ),

qφ(z |x,µ,Σ) = N(µ(x,φ),Σ(x,φ)), (2.8)

where `0 = ∅ and Tt, f , and g are all deterministic neural networks. Note given

data xi, µ(xi,φ), Σ(xi,φ) are now random variables rather than following

vanilla VAE to assume deterministic values. This clearly moves the encoder

variational distribution beyond a simple Gaussian form.

To benchmark the performance of SIVAE, we consider the MNIST

dataset that is stochastically banarized as in Salakhutdinov and Murray [121].

We use 55,000 for training and use the 10,000 observations in the testing set for

performance evaluation. Similar to existing VAEs, we choose Bernoulli units,
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Table 2.2: Comparison of the negative log evidence between various algorithms.

Methods − log p(x)

Results below form Burda et al. [19]
VAE + IWAE = 86.76
IWAE + IWAE = 84.78

Results below form Salimans et al. [123]
DLGM + HVI (1 leapfrog step) = 88.08
DLGM + HVI (4 leapfrog step) = 86.40
DLGM + HVI (8 leapfrog steps) = 85.51

Results below form Rezende and Mohamed [116]
DLGM+NICE [27] (k = 80) ≤ 87.2
DLGM+NF (k = 80) ≤ 85.1

Results below form Maaløe et al. [82]
Auxiliary VAE (L=1, IW=1) ≤ 84.59

Results below form Mescheder et al. [88]
VAE + IAF [70] ≈ 84.9± 0.3
AVB + AC ≈ 83.7± 0.3

SIVI (3 stochastic layers) = 84.07

SIVI (3 stochastic layers)+ IW(K̃ = 10) = 83.25

linked to a fully-connected neural network with two 500-unit hidden layers, as

the decoder. Distinct from existing VAEs, whose encoders are often restricted

to have a single stochastic layer, SIVI allows SIVAE to use MVN as its first

stochastic layer, and draw the parameters of the MVN from M = 3 stochastic

layers, whose structure is described in detail in Appendix A. As shown in Table

2.2 SIVAE achieves a negative log evidence of 84.07, which is further reduced

to 83.25 if choosing importance reweighing with K̃ = 10. In comparison to

32



other VAEs with a comparable single-stochastic-layer decoder, SIVAE achieves

state-of-the-art performance by mixing an MVN with an implicit distribution

defined as in (2.8) to construct a flexible encoder, whose marginal variational

distribution is no longer restricted to the MVN distribution. We leave it

for future study on further improving SIVAE by replacing the encoder MVN

explicit layer with a normalizing flow, and adding convolution/autoregression

to enrich the encoder’s implicit distribution and/or the decoder.

2.5 Concluding Remarks

Combining the advantages of having analytic point-wise evaluable den-

sity ratios and tractable computation via Monte Carlo estimation, semi-implicit

variational inference (SIVI) is proposed either as a black-box inference pro-

cedure, or to enrich mean-field variational inference with a flexible (implicit)

mixing distribution. By designing a surrogate evidence lower bound that is

asymptotically exact, SIVI establishes an optimization problem amenable to

gradient ascend, without compromising the expressiveness of its semi-implicit

variational distribution. Flexible but simple to optimize, SIVI approaches the

accuracy of MCMC in quantifying posterior uncertainty in a wide variety of

inference tasks, and is not constrained by conjugacy, often runs faster, and can

generate independent posterior samples on the fly via the inferred stochastic

variational inference network. The semi-implicit distribution can be applied as

a generative model [163].
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Chapter 3

Structured Variational Inference for Community
Detection

This chapter, based on the publication [166], studies the convergence

properties of structured variational inference in Stochastic Blockmodel. Mean-

field variational inference (MFVI) has been widely applied in large scale

Bayesian inference. However, the independence assumption of MFVI often

leads to objective functions with many local optima, making optimization

algorithms sensitive to initialization. In this chapter, we study the advantage

of structured VI in the context of a simple two-class Stochastic Blockmodel. To

facilitate theoretical analysis, the variational distribution is constructed to have

a simple pairwise dependency structure on the nodes of the network. We prove

that, in a broad density regime and for general random initializations, unlike

MFVI, the estimated class labels by structured VI converge to the ground truth

with high probability, when the model parameters are known, estimated within

The content in this chapter was published in [166], Yin, Mingzhang, YX Rachel Wang
and Purnamrita Sarkar. “A Theoretical Case Study of Structured Variational Inference for
Community Detection”. In International Conference on Artificial Intelligence and Statistics.
2020. I mostly proposed the problem, designed the algorithm and implemented the method-
ology. All authors worked together in the theory proof, manuscript writing and revision.
Prof. Wang and Prof. Sarkar helped in finalizing the experimental setting.
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a reasonable range or jointly optimized with the variational parameters. In

addition, empirically we demonstrate structured VI is more robust compared

with MFVI when the graph is sparse and the signal to noise ratio is low. Our

analysis takes a first step towards quantifying the role of added dependency

structure in variational inference for community detection.

3.1 Theoretical Analyisis for Variational Inference

Variational inference (VI) is a widely used technique for approximating

complex likelihood functions in Bayesian inference [65, 15, 62], and is known

for its computational scalability. Nevertheless, theoretical understanding of its

convergence properties is still an open area of research. Theoretical studies of

variational methods (and similar algorithms that involve iteratively maximizing

a lower bound) have drawn significant attention recently (see [9, 158, 159, 160,

75] for convergence properties of EM). For VI, the global optimizer of the

variational lower bound is shown to be asymptotically consistent for a number

of models including Latent Dirichlet Allocation (LDA) [15] and Gaussian

mixture models [104]. In [153] the connection between VI estimates and profile

M-estimation is explored and asymptotic consistency is established. In practice,

however, it is well known the algorithm is not guaranteed to reach the global

optimum and the performance of VI often suffers from local optima [16]. While

in some models, convergence to the global optimum can be achieved with

appropriate initialization [152, 8], understanding convergence with general

initialization and the influence of local optima is less studied with a few
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exceptions [158, 38, 95].

Mean-field variational inference (MFVI) has been widely used in prob-

abilistic models. Despite being computationally scalable, MFVI suffers from

many stability issues including symmetry-breaking, multiple local optima, and

sensitivity to initialization, which are consequences of the non-convexity of typi-

cal mean-field problems [151, 61]. The independence assumption on latent vari-

ables also leads to the underestimation of posterior uncertainty [16, 161]. To ad-

dress these problems, many studies suggest that modeling the latent dependency

structure can expand the variational family under consideration and lead to

larger ELBO and more stable convergence [157, 56, 39, 145, 113, 116, 161, 135].

However, rigorous theoretical analysis with convergence guarantees in this

setting remains largely underexplored.

In this chapter, we aim to study the effect of added dependency structure

in a MFVI framework. Since the behavior of the log-likelihood of MFVI is well

understood for the very simple two class, equal sized Stochastic Blockmodel

(SBM) [95, 168], we propose to add a simple pairwise link structure to MFVI in

the context of inference for SBMs. We study how added dependency structure

can improve MFVI. In particular, we focus on how random initialization behave

for VI with added structure.

The stochastic blockmodel (SBM) [58] is a widely used network model

for community detection in networks. There are a plethora of algorithms with

theoretical guarantees for estimation for SBMs like Spectral methods [118, 22],

semidefinite relaxation based methods [48, 108, 6], likelihood-based methods [5],
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modularity based methods [131, 99, 11]. Among these, likelihood-based methods

remain important and relevant due to their flexibility in incorporating additional

model structures. Examples include mixed membership SBM [3, 169], networks

with node covariates [115], dynamic networks [85], crowdsourced clustering [81].

Among likelihood based methods, VI provides a tractable approximation to

the log-likelihood and is a scalable alternative to more expensive methods like

Profile Likelihood [11], or MCMC based methods [131, 99]. Computationally,

VI was also shown to scale up well to very large graphs [42].

On the theoretical front, [12] proved that the global optimum of MFVI

behaves optimally in the dense degree regime. In terms of algorithm convergence,

[168] showed the batch coordinate ascent algorithm (BCAVI) for optimizing

the mean-field objective has guaranteed convergence if the initialization is

sufficiently close to the ground truth. [95] fully characterized the optimization

landscape and convergence regions of BCAVI for a simple two-class SBM with

random initializations. It is shown that uninformative initializations can indeed

converge to suboptimal local optima, demonstrating the limitations of the

MFVI objective function.

Coming back to structured variational inference, it is important to

note that, if one added dependencies between the posterior of each node, the

natural approximate inference method is the belief propagation (BP) algorithm

[105, 106, 154]. Based on empirical evidence, it has been conjectured in [24]

that BP is asymptotically optimal for a simple two-class SBM. In the sparse

setting where phase transition occurs, [94] analyzed a local variant of BP and
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showed it is optimal given a specific initialization. In other parameter regions,

rigorous theoretical understanding of BP, in particular, how adding dependence

structure can improve convergence with general initializations is still an open

problem.

Motivated by the above observations, we present a theoretical case

study of structured variational inference for SBM. We emphasize here that

our primary contribution does not lie in proposing a new estimation algorithm

that outperforms state-of-the-art methods; rather we use this algorithm as an

example to understand the interplay between a non-convex objective function

and an iterative optimization algorithm with respect to random initializations,

and compare it with MFVI. We consider a two-class SBM with equal class size,

an assumption commonly used in theoretical work [94, 95] where the analysis

for the simplest case is nontrivial.

We study structured VI by introducing a simple pairwise dependence

structure between randomly paired nodes. By carefully bounding the mean

field parameters and their logits in each iteration using a combination of con-

centration and Littlewood-Offord type anti-concentration arguments [29], we

prove that in a broad density regime and under a fairly general random initial-

ization scheme, the Variational Inference algorithm with Pairwise Structure

(VIPS) can converge to the ground truth with probability tending to one, when

the parameters are known, estimated within a reasonable range, or updated

appropriately (Section 3.3). This is in contrast to MFVI, where convergence

only happens for a narrower range of initializations. In addition, VIPS can
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escape from certain local optima that exist in the MFVI objective. These

results highlight the theoretical advantage of the added dependence structure.

Empirically, we demonstrate that VIPS is more robust compared to MFVI

when the graph is sparse and the signal to noise ratio is low (Section 3.4). We

hope that our analysis can shed light on theoretical analysis of algorithms with

more general dependence structure.

3.2 Problem Setup and Proposed Work
3.2.1 Preliminaries

The stochastic block model (SBM) is a generative network model with

community structure. A K-community SBM for n nodes is generated as follows:

each node is assigned to one of the communities in {1, . . . , K} according to a

Multinomial distribution with parameter π. These memberships are represented

by U ∈ {0, 1}n×K , where each row follows an independent Multinomial (1;π)

distribution. We have Uik = 1 if node i belongs to community k and
∑K

k=1 Uik =

1. Given the community memberships, links between pairs of nodes are

generated according to the entries in a K ×K connectivity matrix B. That is,

if A denotes the n× n binary symmetric adjacency matrix, then, for i 6= j,

P (Aij = 1|Uik = 1, Uj` = 1) = Bk`. (3.1)

We consider undirected networks, where both B and A are symmetric. Given

an observed A, the goal is to infer the latent community labels U and the model

parameters (π,B). Since the data likelihood P (A;B, π) requires summing over
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Kn possible labels, approximations such as MFVI are often needed to produce

computationally tractable algorithms.

Throughout the rest of the chaper, we will use 1n to denote the all-one

vector of length n. When it is clear from the context, we will drop the subscript

n. Let I be the identity matrix and J = 11T . 1C denotes a vector where

the i-th element is 1 if i ∈ C and 0 otherwise, where C is some index set.

Similar to [95], we consider a two-class SBM with equal class size, where K = 2,

π = 1/2, and B takes the form B11 = B22 = p, B12 = B21 = q, with p > q. We

denote the two true underlying communities by G1 and G2, where G1, G2 form

a partition of {1, 2, . . . , n} and |G1| = |G2|. (For convenience, we assume n is

even.) As will become clear, the full analysis of structured VI in this simple

case is highly nontrivial.

3.2.2 Variational Inference with Pairwise Structure (VIPS)

The well-known MFVI approximates the likelihood by assuming a

product distribution over the latent variables. In other words, the posterior

label distribution of the nodes is assumed to be independent in the variational

distribution. To investigate how introducing dependence structure can help

with the inference, we focus on a simple setting of linked pairs which are

independent of each other. To be concrete, we randomly partition the n

nodes into two sets: P1 = {z1, · · · , zm}, P2 = {y1, · · · , ym}, with m = n/2.

Here zk, yk ∈ {1, . . . , n} are the node indices. In our structured variational

distribution, we label pairs of nodes (zk, yk) using index k ∈ {1, . . . ,m} and

40



assume there is dependence within each pair. The corresponding membership

matrices for P1 and P2 are denoted by Z and Y respectively, which are both

m× 2 sub-matrices of the full membership matrix U . More explicitly, the kth

row of matrix Z encodes the membership of node zk in P1, and similarly for

Y . For convenience, we permute both the rows and columns of A based on

the node ordering in P1 followed by that in P2 to create a partitioned matrix:

A =

[
Azz Azy

Ayz Ayy

]
, where each block is an m ×m matrix. Given the latent

membership variable (Z, Y ), by Eq. (3.1) the likelihood of A is given by

P (Azzij |Z,B) =
∏

a,b[B
Azzij
ab (1−Bab)

1−Azzij ]ZiaZjb

P (Azyij |Y, Z,B) =
∏

a,b[B
Azyij
ab (1−Bab)

1−Azyij ]ZiaYjb

P (Ayyij |Y,B) =
∏

a,b[B
Ayyij
ab (1−Bab)

1−Ayyij ]YiaYjb (3.2)

where a, b ∈ {1, 2} and Azy = (Ayz)T .

A simple illustration of the partition and how ordered pairs of nodes

are linked to incorporate dependence is given in Figure 3.1, where the the true

underlying communities G1 and G2 are shaded differently. After the partition,

we have m pairs of linked nodes indexed from 1 to m. For convenience of

analysis, we define the following sets for these pairs of linked nodes, as illustrated

in Figure 3.1.

Define C1, (C ′1) as the set of indices i of pairs (zi, yi) with zi ∈ G1,

(yi ∈ G1). Similarly, C2, (C ′2) is the set of indices of pairs (zi, yi) with zi ∈ G2,

(yi ∈ G2). We will also make use of the sets Cab := Ca ∩C ′b, where a, b ∈ {1, 2}.

In Figure 3.1, as an illustrative example, the shaded nodes belong to community
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G1 and unshaded nodes belong to community G2. The nodes are randomly

partitioned into two sets P1 and P2, and pairs of nodes are linked from index 1

to m. Dependence structure within each linked pair is incorporated into the

variational distributionQ(Z, Y ). For this partition and pair linking, C1 = {4, 5},

C2 = {1, 2, 3}, C ′1 = {1, 2, 4}, C ′2 = {3, 5}; C11 = {4}, C12 = {5}, C21 = {1, 2},

C22 = {3}.

We define the variational distribution for the latent membership matrix

(Z, Y ) as Q(Z, Y ), which we assume takes the form

Q(Z, Y ) =
m∏
i=1

Q(Zi, Yi), (3.3)

where Zi denotes the ith row of Z, and Q(Zi, Yi) is a general categorical

distribution with variational parameters defined as follows.

ψcdi := Q(Zi,c+1 = 1, Yi,d+1 = 1),

for i ∈ {1, . . . ,m}, c, d ∈ {0, 1}. This allows encoding more dependence struc-

ture between the posteriors at different nodes than vanilla MFVI, since we allow

for dependence within each linked pair of nodes while keeping independence

between different pairs. We define the marginal probabilities as:

φi := Q(Zi1 = 1) = ψ10
i + ψ11

i , ξi := Q(Yi1 = 1) = ψ01
i + ψ11

i . (3.4)

Next we derive the ELBO on the data log-likelihood logP (A) using Q(Z, Y ).

For pairwise structured variational inference (VIPS), ELBO takes the form

L(Q; π,B) =EZ,Y∼Q(Z,Y ) logP (A|Z, Y )−DKL(Q(Z, Y )||P (Z, Y )),
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Figure 3.1: An illustration of a random pairwise partition, n = 10.

where P (Z, Y ) is the probability of community labels from SBM and fol-

lows independent Bernoulli (π) distribution, DKL(·||·) denotes the usual Kull-

back–Leibler divergence between two distributions. Using the likelihood in

Eq. (3.2), the ELBO becomes

L(Q; π,B) =
1

2
EQ

∑
i 6=j,a,b

[ZiaZjb(A
zz
ij αab + f(αab)) + YiaYjb(A

yy
ij αab + f(αab))]

+EQ[
∑
i 6=j,a,b

ZiaYjb(A
zy
ij αab + f(αab)) +

∑
i,a,b

ZiaYib(A
zy
ii αab + f(αab))]

−
m∑
i=1

DKL(Q(zi, yi)||P (zi)P (yi)), (3.5)

where αab = log(Bab/(1−Bab)) and f(α) = − log(1+eα). The KL regularization

term can be computed as

DKL(Q(zi, yi)||P (zi)P (yi)) =
∑

0≤c,d≤1

ψcdi log(ψcdi )/(πcπd(1− π)1−c(1− π)1−d).

(3.6)

Our goal is to maximize L(Q; π,B) with respect to the variational pa-

rameters ψcdi for 1 ≤ i ≤ m. Since
∑

c,d ψ
cd
i = 1 for each i, it suffices to consider
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ψ10
i , ψ

01
i and ψ11

i . By taking derivatives, we can derive a batch coordinate

ascent algorithm for updating ψcd = (ψcd1 , . . . , ψ
cd
m ). Detailed calculation of the

derivatives can be found in Section B.1 of the Appendix B. Recall that π = 1
2
.

Also, define

t :=
1

2
log

p/(1− p)
q/(1− q)

λ :=
1

2t
log

1− q
1− p

, θcd := log
ψcd

1− ψ01 − ψ10 − ψ11
, (3.7)

where θcd are logits, c, d ∈ {0, 1} and all the operations are defined element-wise.

Given the model parameters p, q, the current values of ψcd and the

marginals φ = ψ10 +ψ11, ξ = ψ01 +ψ11 as defined in Eq. (3.4), the updates for

θcd are given by:

θ10 =4t[Azz − λ(J − I)](φ− 1
2
1m)− 2t(diag(Azy)− λI)1m

+ 4t[Azy − λ(J − I)− diag(Azy)](ξ − 1

2
1m), (3.8)

θ01 =4t[Ayy − λ(J − I)](ξ − 1
2
1m)− 2t(diag(Ayz)− λI)1m

+ 4t[Ayz − λ(J − I)− diag(Ayz)](φ− 1

2
1m), (3.9)

θ11 =4t[Azz − λ(J − I)](φ− 1
2
1m) + 4t[Ayy − λ(J − I)](ξ − 1

2
1m)

+ 4t[Azy − λ(J − I)− diag(Azy)](ξ − 1

2
1m)

+ 4t[Ayz − λ(J − I)− diag(Ayz)](φ− 1

2
1m). (3.10)

Given θcd, we can update the current values of ψcd and the corresponding

marginal probabilities φ, ξ using element-wise operations as follows:

ψcd =
eθ
cd

1 + eθ01 + eθ11 + eθ10
, u := (φ, ξ)

φ =
eθ

10
+ eθ

11

1 + eθ10 + eθ01 + eθ11
, ξ =

eθ
01

+ eθ
11

1 + eθ10 + eθ01 + eθ11
, (3.11)
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where (c, d) = (1, 0), (0, 1), (1, 1). The marginal probabilities are concatenated

as u = (φ, ξ) ∈ [0, 1]n. Thus u can be interpreted as the estimated posterior

membership probability of all the nodes.

Since θcd determines ψcd in the categorical distribution and u represents

the corresponding marginals, one can think of θcd and u as the local and global

parameters respectively. It has been empirically shown that the structured

variational methods can achieve better convergence property by iteratively

updating the local and global parameters [15, 57, 56]. In the same spirit, in

the full optimization algorithm, we update the parameters θcd and u iteratively

by (3.8)–(3.11), following the order

θ10 → u→ θ01 → u→ θ11 → u→ θ10 · · · . (3.12)

We call a full update of all the parameters θ10, θ01, θ11, u in (3.12) as one meta

iteration which consists of three inner iterations of u updates. We use u(k)
j

(j = 1, 2, 3) to denote the update in the j-th iteration of the k-th meta iteration,

and u(0) to denote the initialization. Algorithm 2 gives the full algorithm when

the model parameters are known.
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Algorithm 2 Variational Inference with Pairwise Structure (VIPS)
input : Adjacency matrix A ∈ {0, 1}n×n, model parameter p, q, π = 1/2.
output :The estimated node membership vector u.

Initialize the elements of u i.i.d. from an arbitrary distribution fµ defined on [0, 1]
with mean µ. Initialize θ10 = θ01 = θ11 = 0;

Randomly select n/2 nodes as P1 and the other n/2 nodes as P2;
while not converged do

Update θ10 by (3.8).
Update u = (φ, ξ) by (3.11)
Update θ01 by (3.9).
Update u = (φ, ξ) by (3.11)
Update θ11 by (3.10).
Update u = (φ, ξ) by (3.11)

end

Remark 1. So far we have derived the updates and described the optimization

algorithm when the true parameters p, q are known. When they are unknown,

they can be updated jointly with the variational parameters after each meta

iteration as

p =

(1n − u)TA(1n − u) + uTAu

+ 2(1m − ψ10 − ψ01)Tdiag(Azy)1m
(1n − u)T (J − I)(1n − u)

+ uT (J − I)u+ 2(1m − ψ10 − ψ01)T1m

q =
(1n − u)TAu+ (ψ10 + ψ01)Tdiag(Azy)1m

(1n − u)T (J − I)un + (ψ10 + ψ01)T1m
(3.13)

Although it is typical to update p, q and u jointly, as shown in [95], analyzing

MFVI updates with known parameters can shed light on the convergence behavior

of the algorithm. Initializing u randomly while jointly updating p, q always leads

MFVI to an uninformative local optima. For this reason, in what follows we

will analyze Algorithm 2 in the context of both fixed and updating p, q.

46



3.3 Main Results

In this section, we present theoretical analysis of the algorithm in three

settings: (i) When the parameters are set to the true model parameters p, q;

(ii) When the parameters are not too far from the true values, and are held

fixed throughout the updates; (iii) Starting from some reasonable guesses of

the parameters, they are jointly updated with latent membership estimates.

In the following analysis, we will frequently use the eigen-decomposition

of the expected adjacency matrix P = E[A|U ] = p+q
2

1n1
T
n + p−q

2
v2v

T
2 −pI where

v2 = (v21, v22)
T = (1C1 − 1C2 ,1C′1 − 1C′2)

T is the second eigenvector. Since

the second eigenvector is just a shifted and scaled version of the membership

vector, the projection |〈u, v2〉| is equivalent to the `1 error from true label

z∗ (up-to label permutation) by ‖u− z∗‖1 = m − |〈u, v2〉|. We consider the

parametrization p � q � ρn, where the density ρn → 0 at some rate and

p− q = Ω(ρn).

When the true parameters p, q are known, it has been shown [125] that

without dependency structure, MFVI with random initializations converges

to the stationary points with non-negligible probability. When the variational

distribution has a simple pairwise dependency structure as VIPS, we show a

stronger result. To be concrete, in this setting, we establish that convergence

happens with probability approaching 1. In addition, unlike MFVI, the con-

vergence holds for general random initializations. We will first consider the

situation when u(0) is initialized from a distribution centered at µ = 1
2
and

show the results for µ 6= 1
2
in Corollary 1.
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Theorem 2 (Sample behavior for known parameters). Assume θ10, θ01, θ11

are initialized as 0 and the elements of u(0) = (φ(0), ξ(0)) are initialized i.i.d.

from Bernoulli(1
2
). When p � q � ρn, p− q = Ω(ρn), and

√
nρn = Ω(log(n)),

Algorithm 2 converges to the true labels asymptotically after the second meta

iteration, in the sense that

‖u(2)
3 − z∗‖1 = n exp(−ΩP (nρn)))

z∗ are the true labels with z∗ = 1G1 or 1G2. The same convergence holds for

all the later iterations.

Proof. We provide a proof sketch here and defer the details to Section B.2 of

the Appendix B. We assume for the first six iterations, we randomly partition

A into six A(i), i = 0, . . . , 5 by assigning each edge to one of the six subgraphs

with equal probability. For the later iterations, we can use the whole graph A.

Then A(i)’s are independent with population matrix P/6. Although not used

in Algorithm 2, the graph splitting is a widely used technique for theoretical

convenience [87, 20] and allows us to bound the noise in each iteration more

easily. The main arguments involve lower bounding the size of the projection

|〈u, v2〉| in each iteration as it increases towards n/2, at which point the

algorithm achieves strong consistency. For ease of exposition, we will scale

everything by 6 so that p, q, λ correspond to the parameters for the full un-split

matrix P . This does not affect the analysis in any way.

In each iteration, we decompose the intermediate θ10, θ01, θ11 into block-

wise constant signal and random noise using the spectral property of the
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population matrix P . As an illustration, in the first meta iteration, we write

the update in (3.8)–(3.10) as signal plus noise,

θ10
i = 4t(s11C1 + s21C2 + r

(0)
i ), θ01

i = 4t(x11C′1 + x21C′2 + r
(1)
i )

θ11
i = 4t(y11C1 + y21C2 + y11C′1 + y21C′2 + r

(2)
i )

where t is a constant and the noise has the form

r(i) = R(i)(u
(k)
j −

1

2
1) (3.14)

for appropriate j, k, where R(i) arises from the sample noise in the adjacency ma-

trix. We handle the noise from the first iteration r(0) with a Berry-Esseen bound

conditional on u(0), and the later r(i) with a uniform bound. The blockwise

constant signals s1, x1, y1 are updated as (p+q
2
− λ)(〈u,1n〉 −m) + (p−q

2
)〈u, v2〉

and s2, x2, y2 are updated as (p+q
2
− λ)(〈u,1n〉 −m)− (p−q

2
)〈u, v2〉. As 〈u, v2〉

increases throughout the iterations, the signals become increasingly separated

for the two communities. Using Littlewood-Offord type anti-concentration, we

show in the first meta iteration,

〈u(1)
1 , v2〉 = ΩP (n

√
ρn), 〈u(1)

1 ,1〉 −m = 0

〈u(1)
2 , v2〉 ≥

n

8
− oP (n), 〈u(1)

2 ,1〉 −m = 0, 〈u(1)
3 , v2〉 ≥

1

4
n+ oP (n)

− n

8
− oP (n) ≤ 〈u(1)

3 ,1〉 −m ≤ n

4
+ oP (n) (3.15)

After the second meta iteration we have

s
(2)
1 , x

(2)
1 , y

(2)
1 = ΩP (nρn), s

(2)
2 , x

(2)
2 , y

(2)
2 = −ΩP (nρn)

2y
(2)
1 − s

(2)
1 = ΩP (nρn), 2y

(2)
1 − x

(2)
1 = ΩP (nρn);

s
(2)
1 − (y

(2)
1 + y

(2)
2 ) = ΩP (nρn), x

(2)
1 − (y

(2)
1 + y

(2)
2 ) = ΩP (nρn);

(3.16)
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Plugging (3.16) to (3.11), we have the desired convergence after the second

meta iteration.

The next corollary shows the same convergence holds when we use a

general random initialization not centered at 1/2. In contrast, MFVI converges

to stationary points 0n or 1n with such initializations.

Corollary 1. Assume the elements of u(0) are i.i.d. sampled from a distribution

with mean µ 6= 0.5. Under the conditions in Theorem 2, applying Algorithm 2

with known p, q, we have ‖u(3)
1 − z∗‖1 = n exp(−ΩP (nρn))). The same order

holds for all the later iterations.

The proof relies on showing after the first iteration, u(1)
1 behaves like

nearly independent Bernoulli(1
2
), the details of which can be found in Ap-

pendix B, sectionB.2.

The next proposition focuses on the behavior of special points in the

optimization space for u. In particular, we show that Algorithm 2 enables us

to move away from the stationary points 0n and 1n, whereas in MFVI, the

optimization algorithm gets trapped in these stationary points [95].

Proposition 4 (Escaping from stationary points).

(i) (ψ00, ψ01, ψ10, ψ11) = (1m,0m,0m,0m), (0m,0m,0m,1m) are the station-

ary points of the pairwise structured ELBO when p, q are known, which

maps to u = 0n and 1n respectively.
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(ii) With the updates in Algorithm 2, when u(0) = 0n, 1n, VIPS converges to

the true labels with ‖u(3)
1 − z∗‖1 = n exp(−ΩP (nρn))).

The above results requires knowing the true p and q. The next propo-

sition shows that, even if we do not have access to the true parameters, as

long as some reasonable estimates can be obtained, the same convergence as in

Theorem 2 holds thus demonstrating robustness to misspecified parameters.

Here we hold the parameters fixed and only update u as in Algorithm 2. When

p̂, q̂ � ρn, we need p̂− q̂ = Ω(ρn) and p̂, q̂ not too far from the true values to

achieve convergence. The proof is deferred to the Appendix B.

Proposition 5 (Parameter robustness). If we replace true p, q with some

estimation p̂, q̂ in Algorithm 2, the same conclusion as in Theorem 2 holds if

1. p+q
2
> λ̂, 2. λ̂− q = Ω(ρn), 3. t̂ = Ω(1).

where t̂ = 1
2

log
p̂/(1− p̂)
q̂/(1− q̂)

, λ̂ = 1
2t̂

log
1− q̂
1− p̂

.

Finally, we consider updating the parameters jointly with u (as explained

in Remark 1) by first initializing the algorithm with some reasonable p(0), q(0).

Theorem 3 (Updating parameters and u simultaneously). Suppose we initialize

with some estimates of true (p, q) as p̂ = p(0), q̂ = q(0) satisfying the conditions

in Proposition 5 and apply two meta iterations in Algorithm 2 to update u

before updating p̂ = p(1), q̂ = q(1). After this, we alternate between updating u
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and the parameters after each meta iteration. Then

p(1) = p+OP (
√
ρn/n), q(1) = q +OP (

√
ρn/n), ‖u(2)

3 − z∗‖1 = n exp(−Ω(nρn)),

and the same holds for all the later iterations.

3.4 Experimental Results

In this section, we present some numerical results. In Figures 3.2 to 3.4

we show the effectiveness of VIPS in our theoretical setting of two equal sized

communities. In Figures 3.6 (a) and (b) we show that empirically the advantage

of VIPS holds even for unbalanced community sizes and K > 2. Our goal

is two-fold: (i) we demonstrate that the empirical convergence behavior of

VIPS coincides well with our theoretical analysis in Section 3.3; (ii) in practice

VIPS has superior performance over MFVI in both the simple setting we have

analyzed and more general settings, thus confirming the advantage of the

added dependence structure. For the sake of completeness, we also include

comparisons with other popular algorithms, even though it is not our goal to

show VIPS outperforms these methods.

In Figure 3.2, we compare the convergence property of VIPS with MFVI

for initialization from independent Bernoulli’s with means µ = 0.1, 0.5, and

0.9. We randomly generate a graph with n = 3000 nodes with parameters

p0 = 0.2, q0 = 0.01 and show results from 20 random trials. We plot min(‖u−

z∗‖1, ‖u− (1− z∗)‖1), or the `1 distance of the estimated label u to the ground

truth z∗ on the Y axis versus the iteration number on the X axis. In this
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experiments, both VIPS and MFVI were run with the true p0, q0 values. As

shown in Figure 3.2, when µ = 1
2
, VIPS converges to z∗ after two meta

iterations (6 iterations) for all the random initializations. In contrast, for

MFVI, a fraction of the random initializations converge to 0n and 1n. When

µ 6= 1
2
, VIPS converges to the ground truth after three meta iterations, whereas

MFVI stays at the stationary points 0n and 1n. This is consistent with our

theoretical results in Theorem 2 and Corollary 1, and those in [95].

Figure 3.2: `1 distance from ground truth (Y axis) vs. number of iterations
(X axis). The line is the mean of 20 random trials and the shaded area
shows the standard deviation. u is initialized from i.i.d. Bernoulli with mean
µ = 0.1, 0.5, 0.9 from the left to right.

In Figure 3.3, we show when the true p, q are unknown, the dependence

structure makes the algorithm more robust to estimation errors in p̂, q̂. The

heatmap represents the normalized mutual information (NMI) [119] between u

and z∗, with p̂ on the X axis and q̂ on the Y axis. We only examine pairs with

p̂ > q̂. Both VIPS and MFVI were run with p̂ and q̂, which were held fixed

and differ from the true values to varying extent. The dashed line represents

the true p, q used to generate the graph. For each p̂, q̂ pair, the mean NMI for

20 random initializations from i.i.d Bernoulli(1
2
) is shown. VIPS recovers the
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ground truth in a wider range of p̂, q̂ values than MFVI.

(a) MFVI (b) VIPS

Figure 3.3: NMI averaged over 20 random initializations for each p̂, q̂ (p̂ > q̂).
The true parameters are (p0, q0) = (0.2, 0.1), π = 0.5 and n = 2000. The
dashed lines indicate the true parameter values.

In Figure 3.4, we compare VIPS with MFVI under different network

sparsities and signal-to-noise ratios (SNR) as defined by r0 = p0/q0. For the

sake of completeness, we also include two other popular algorithms, Belief

Propagation (BP) [25] and Spectral Clustering [118]. We plot the mean and

standard deviation of NMI for 20 random trials in each setting. In each trial,

to meet the conditions in Theorem 3, we started VIPS with p̂ equal to the

average degree of A, and q̂ = p̂/r0. p̂ and q̂ were updated alternatingly with u

according to Eq. (3.13) after three meta iterations in Algorithm 2, a setting

similar to that of Theorem 3.

In Figure 3.4-(a), the average expected degree is fixed at 70 as the SNR

p0/q0 increases on the X axis, whereas in Figure 3.4-(b), the SNR is fixed at

2 and we vary the average expected degree on the X axis. The results show
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that VIPS consistently outperforms MFVI, indicating the advantage of the

added dependence structure. Note that we plot BP with the model parameters

initialized at true (p0, q0) , since it is sensitive to initialization setting, and

behaves poorly with mis-specified ones. Despite this, VIPS is largely comparable

to BP and Spectral Clustering. For average degree 20 (Figure 3.4-(b)), BP

outperforms all other methods, because of the correct parameter setting. This

NMI value becomes 0.4 with high variance, if we provide initial p̂, q̂ values to

match the average degree but p̂/q̂ = 10. In contrast, VIPS is much more robust

to the initial choice of p̂, q̂, which we show in Figure 3.5.

(a) (b)

Figure 3.4: Comparison of NMI under different SNR p0/q0 and network degrees
by means and standard deviations from 20 random trials, n = 2000.

We further show that VIPS with fixed mis-specified parameters (within

reasonable deviation from the truth), fixed true parameters and parameters

updated with Eq. (3.13) converge to the truth when initialized by independent

Bernoulli’s. In Figure 3.5, we compare VIPS and MFVI with and without

parameter updates. In the first scheme, for VIPS, we do parameter updates
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after 3rd meta iteration onward, and for fairness, we start parameter updates

9 iterations onward for MFVI. The other scheme has p̂, q̂ held fixed. In both

schemes, the VIPS performs better than MFVI.

Figure 3.5: Two schemes for estimating model parameters for VIPS and MFVI.
Both use the initial p̂ and q̂ as described in Figure 3.4.

3.5 Discussion and Generalizations

In this chaper, we propose a simple Variational Inference algorithm

with Pairwise Structure (VIPS) in a SBM with two equal sized communities.

VI has been extensively applied in the latent variable models mainly due to

their scalability and flexibility for incorporating changes in model structure.

However, theoretical understanding of the convergence properties is limited

and mostly restricted to the mean field setting with fully factorized variational

distributions (MFVI). Theoretically we prove that in a SBM with two equal

sized communities, VIPS can converge to the ground truth with probability

tending to one for different random initialization schemes and a range of
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graph densities. In contrast, MFVI only converges for a constant fraction of

Bernoulli(1/2) random initializations. We consider settings where the model

parameters are known, estimated or appropriately updated as part of the

iterative algorithm.

Though our main results are for K = 2, π = 0.5, we conclude with a

discussion on generalizations to unbalanced clusters and SBMs with K > 2

equal communities. To apply VIPS for d K > 2 clusters, we will have K2 − 1

categorical distribution parameters ψcd for c, d ∈ {1, 2, . . . , K} and marginal

likelihood φ1, . . . , φK−1, ξ1, . . . , ξK−1. The updates are similar to Eq. (3.10)

and Eq. (3.11). Similar to the K = 2 case, we update the local and global

parameters iteratively. As for the unbalanced case, the updates involve an

additional term which is the logit of π. We assume that π is known and fixed.

(a) (b)

Figure 3.6: Comparison of VIPS, MFVI, Spectral and BP with 20 random
trials for n = 2000, average degree 50, p0/q0 is changed on X axis. (a) π = 0.3
(b) K =3, B = (p− q)I + qJ .

In Figure 3.6-(a), we show results for unbalanced SBM with π = 0.3,
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which is assumed to be known. In Figure 3.6-(b), similar to the setting in

[95], we consider a SBM with three equal-sized communities. The parameters

are set as n = 2000, average degree 50, p0 and q0 are changed to get different

SNR values and the random initialization is from Dirichlet(1, 1, 1). For a

fair comparison of VIPS, MFVI and BP, we use the true p0, q0 values in all

three algorithms; robustness to parameter specification of VIPS is shown in

Figure 3.5. We see that for the unbalanced setting (Figure 3.6-(a)) VIPS

performs as well as BP and better than Spectral Clustering. For the K = 3

setting (Figure 3.6-(b)) VIPS performs worse than BP and Spectral for very

low SNR values, whereas for higher SNR it performs comparably to Spectral

and BP, and better than MFVI, which has much higher variance.

58



Chapter 4

Variational Inference with Discrete Latent
Variables

This chapter, based on two publications [162, 164], studies variance re-

duction for the variational inference with discrete latent variables. To estimate

the gradient of variational parameters, we propose the augment-REINFORCE-

merge (ARM) estimator that is unbiased, exhibits low variance, and has low

computational complexity. Exploiting variable augmentation, REINFORCE,

and reparameterization, the ARM estimator achieves adaptive variance reduc-

tion for Monte Carlo integration by merging two expectations via common

random numbers. The variance-reduction mechanism of the ARM estimator

can also be attributed to either antithetic sampling in an augmented space,

or the use of an optimal anti-symmetric “self-control” baseline function. Ex-

perimental results show the ARM estimator provides superior performance in

The content in this chapter was published in [162], Yin, Mingzhang, Mingyuan Zhou.
“ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks”. In Interna-
tional Conference on Learning Representations, 2019. I designed the methodology with Prof.
Zhou, mostly did the theoretical analysis, implemented the methodology and wrote the draft
paper. Prof. Zhou proposed the initial methodology, helped in the experimental design, the
rewriting and revision.
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auto-encoding variational inference and maximum likelihood estimation, for

discrete latent variable models with one or multiple stochastic binary layers.

4.1 Optimization for Discrete Latent Variable Models

Given a function f(z) of a random variable z = (z1, . . . , zV )T , which

follows a distribution qφ(z) parameterized by φ, there has been significant

recent interest in estimating φ to maximize (or minimize) the expectation of

f(z) with respect to z ∼ qφ(z), expressed as

E(φ) =
∫
f(z)qφ(z)dz = Ez∼qφ(z)[f(z)]. (4.1)

In particular, this expectation objective appears in both maximizing the evi-

dence lower bound (ELBO) for variational inference [66, 16] and approximately

maximizing the log marginal likelihood of a hierarchal Bayesian model [13],

two fundamental problems in statistical inference.

To maximize (4.1), if ∇zf(z) is tractable to compute and z ∼ qφ(z) can be

generated via reparameterization as z = Tφ(ε), ε ∼ p(ε), where ε are random

noises and Tφ(·) denotes a deterministic transform parameterized by φ, then

one may apply the reparameterization trick [69, 117] to compute the gradient

as

∇φE(φ) = ∇φEε∼p(ε)[f(Tφ(ε))] = Eε∼p(ε)[∇φf(Tφ(ε))]. (4.2)

This trick, however, is often inapplicable to discrete random variables, as

widely used to construct discrete latent variable models such as sigmoid belief
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networks [98, 128]. To maximize (4.1) for discrete z, using the score function

∇φ log qφ(z) = ∇φqφ(z)/qφ(z), one may compute ∇φE(φ) via REINFORCE

[155] as

∇φE(φ) = Ez∼qφ(z)[f(z)∇φ log qφ(z)] ≈ 1

K

∑K

k=1
f(z(k))∇φ log qφ(z(k)),

where z(k) iid∼ qφ(z) are independent, and identically distributed (iid). This

unbiased estimator is also known as (a.k.a.) the score-function [34] or likelihood-

ratio estimator [40]. While it is unbiased and only requires drawing iid random

samples from qφ(z) and computing ∇φ log qφ(z(k)), its high Monte-Carlo-

integration variance often limits its use in practice. Note that if f(z) depends

on φ, then we assume it is true that Ez∼qφ(z)[∇φf(z)] = 0. For example,

in variational inference, we need to maximize the ELBO as Ez∼qφ(z)[f(z)],

where f(z) = log[p(x | z)p(z)/qφ(z)]. In this case, although f(z) depends on

φ, as Ez∼qφ(z)[∇φ log qφ(z)] =
∫
∇φqφ(z)dz = ∇φ

∫
qφ(z)dz = 0, we have

Ez∼qφ(z)[∇φf(z)] = 0.

To address the high-variance issue, one may introduce an appropriate

baseline (a.k.a. control variate) to reduce the variance of REINFORCE [102,

112, 90, 47, 91, 73, 96, 51]. Alternatively, one may first relax the discrete random

variables with continuous ones and then apply the reparameterization trick to

estimate the gradients, which reduces the variance of Monte Carlo integration

at the expense of introducing bias [84, 64]. Combining both REINFORCE

and the continuous relaxation of discrete random variables, REBAR of Tucker

et al. [147] and RELAX of Grathwohl et al. [45] both aim to produce a low-

variance and unbiased gradient estimator by introducing a continuous relaxation
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based baseline function, whose parameters, however, need to be estimated at

each mini-batch by minimizing the sample variance of the estimator with

stochastic gradient descent (SGD). Estimating the baseline parameters often

clearly increases the computation. Moreover, the potential conflict, between

minimizing the sample variance of the gradient estimate and maximizing the

expectation objective, could slow down or even prevent convergence and increase

the risk of overfitting. Another interesting variance-control idea applicable to

discrete latent variables is using local expectation gradients, which estimates

the gradients based on REINFORCE, by performing Monte Carlo integration

using a single global sample together with exact integration of the local variable

for each latent dimension [143].

Distinct from the usual idea of introducing baseline functions and opti-

mizing their parameters to reduce the estimation variance of REINFORCE, we

propose the augment-REINFORCE-merge (ARM) estimator, a novel unbiased

and low-variance gradient estimator for binary latent variables that is also

simple to implement and has low computational complexity. We show by

rewriting the expectation with respect to Bernoulli random variables as one

with respect to augmented exponential random variables, and then expressing

the gradient as an expectation via REINFORCE, one can derive the ARM

estimator in the augmented space with the assistance of appropriate reparam-

eterization. In particular, in the augmented space, one can derive the ARM

estimator by using either the strategy of sharing common random numbers

between two expectations, or the strategy of applying antithetic sampling. Both
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strategies, as detailedly discussed in Owen [101], can be used to explain why

the ARM estimator is unbiased and could lead to significant variance reduction.

Moreover, we show that the ARM estimator can be considered as improving

the REINFORCE estimator in an augmented space by introducing an optimal

baseline function subject to an anti-symmetric constraint; this baseline function

can be considered as a “self-control” one, as it exploits the function f itself and

correlated random noises for variance reduction, and adds no extra parameters

to learn. This “self-control” feature makes the ARM estimator distinct from

both REBAR and RELAX, which rely on minimizing the sample variance of

the gradient estimate to optimize the baseline function.

We perform experiments on a representative toy optimization problem

and both auto-encoding variational inference and maximum likelihood estima-

tion for discrete latent variable models, with one or multiple binary stochastic

layers. Our extensive experiments show that the ARM estimator is unbiased,

exhibits low variance, converges fast, has low computation, and provides state-

of-the-art out-of-sample prediction performance for discrete latent variable

models, suggesting the effectiveness of using the ARM estimator for gradient

backpropagation through stochastic binary layers.

4.2 Main Result

In this section, we first present the key theorem of this chapter, and

then provide its derivation. With this theorem, we summarize ARM gradient

ascent for multivariate binary latent variables in Algorithm 3, as shown in
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Appendix C, section C.1. Let us denote σ(φ) = eφ/(1 + eφ) as the sigmoid

function and 1[·] as an indicator function that equals to one if the argument is

true and zero otherwise.

Theorem 4 (ARM). For a vector of binary random variables z = (z1, . . . , zV )′,

the gradient of

E(φ) = Ez∼∏V
v=1 Bernoulli(zv ;σ(φv))[f(z)] (4.3)

with respect to φ = (φ1, . . . , φV )T , the logits of the Bernoulli probability param-

eters, can be expressed as

∇φE(φ) = Eu∼∏Uniform(0,1)

[(
f(1[u>σ(−φ)])− f(1[u<σ(φ)])

)
(u− 1/2)

]
, (4.4)

where 1[u>σ(−φ)] :=
(
1[u1>σ(−φ1)], . . . ,1[uV >σ(−φV )]

)T .
4.2.1 Univariate ARM Estimator

Below we will first present the ARM estimator for a univariate binary

latent variable, and then generalize it to a multivariate one. In the univariate

case, we need to evaluate the gradient of E(φ) = Ez∼Bernoulli(σ(φ))[f(z)] with

respect to φ, which has an analytic expression as

∇φE(φ) = ∇φ[σ(φ)f(1) + σ(−φ)f(0)] = σ(φ)σ(−φ)[f(1)− f(0)]. (4.5)

Since
∫ σ(φ)

0
(1 − 2u)du = σ(φ)σ(−φ) and

∫ 1

σ(φ)
(1 − 2u)du = −σ(φ)σ(−φ), we

can rewrite (4.5) as

∇φE(φ) =
∫ σ(φ)

0
f(1)(1− 2u)du+

∫ 1

σ(φ)
f(0)(1− 2u)du

= Eu∼Uniform(0,1)[f(1[u<σ(φ)])(1− 2u)]. (4.6)
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We refer to (4.6) as the univariate augment-REINFORCE (AR) estimator.

Applying antithetic sampling [101] to the AR estimator in (4.6), with

ũ = 1− u, we have

∇φE(φ) = Eu(0,1)[f(1[u<σ(φ)])(1/2− u)] + Eũ(0,1)[f(1[ũ<σ(φ)])(1/2− ũ)]

= Eu∼Uniform(0,1)[f(1[u<σ(φ)])(1/2− u) + f(1[ũ<σ(φ)])(1/2− ũ)]

= Eu∼Uniform(0,1)

[(
f(1[u>σ(−φ)])− f(1[u<σ(φ)])

)
(u− 1/2)

]
, (4.7)

which provides the proof for Theorem 4 for V = 1.

Note that since Eu∼Uniform(0,1)[f(1[u<σ(φ)])(1/2 − u)] = −Eu∼Uniform(0,1)

[f(1[u>σ(−φ)])(1/2− u)], we have

Eu∼Uniform(0,1)

[(
f(1[u<σ(φ)]) + f(1[u>σ(−φ)])

)
(1/2− u)

]
= 0,

subtracted which from the AR estimator in (4.6) leads to the ARM estimator

in (4.7). For this reason, we can also consider the ARM estimator as the AR

estimator subtracted by a zero-mean baseline function as

b(u) =
(
f(1[u<σ(φ)]) + f(1[u>σ(−φ)])

)
(1/2− u).

This baseline function is distinct from previously proposed ones in being

parameterized by the function f itself over two correlated binary latent variables

and satisfying b(u) = −b(1− u). From this point of view, the ARM estimator

can be considered as a “self-control” gradient estimator that exploits the function

f itself to control the variance of Monte Carlo integration .
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4.2.2 Multivariate Generalization

Although the ARM estimator for univariate binary is of little use in

practice, as the true gradient, shown in (4.5), has an analytic expression, it

serves as the foundation for generalizing it to multivariate settings. Let us

denote (·)\v as a vector whose vth element is removed. For the expectation in

(4.3), applying the univariate ARM estimator in (4.7) together with the law of

total expectation, we have

∇φvE(φ) = Ez\v∼∏j 6=v Bernoulli(zj ;σ(φj)){∇φvEzv∼Bernoulli(σ(φv)[f(z)]}

= Ez\v∼∏j 6=v Bernoulli(zj ;σ(φj))

{
Euv∼Uniform(0,1)

[
(uv − 1/2)

×
(
f(z\v, zv = 1[uv>σ(−φv)])− f(z\v, zv = 1[uv<σ(φv)])

)]}
. (4.8)

Since z\v ∼
∏

j 6=v Bernoulli(zj;σ(φj)) can be equivalently generated as z\v =

1[u\v<σ(φ\v)] or as z\v = 1[u\v>σ(−φ\v)], where u\v ∼
∏

j 6=v Uniform(uj; 0, 1),

exchanging the order of the two expectations in (4.8) and applying reparame-

terization, we conclude the proof for (4.4) of Theorem 4 with

∇φvE(φ) = Euv∼Uniform(0,1)

{
(uv − 1/2) Ez\v∼∏j 6=v Bernoulli(zj ;σ(φj))

[
f(z\v, zv = 1[uv>σ(−φv)])− f(z\v, zv = 1[uv<σ(φv)])

]}
= Eu

[
(uv − 1/2)f(z\v = 1[u\v>σ(−φ\v)], zv = 1[uv>σ(−φv)])

]
− Eu

[
(uv − 1/2)f(z\v = 1[u\v<σ(φ\v)], zv = 1[uv<σ(φv)])

]
= Eu∼∏Uniform(0,1)

[
(uv − 1/2)

(
f(1[u>σ(−φ)])− f(1[u<σ(φ)])

)]
. (4.9)

Alternatively, instead of generalizing the univariate ARM gradient as in

(4.8) and (4.9), we can first do a multivariate generalization of the univariate
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AR gradient in (4.6) as

∇φvE(φ) = Ez\v∼∏j 6=v Bernoulli(zj ;σ(φj)){∇φvEzv∼Bernoulli(σ(φv)[f(z)]}

= Ez\v∼∏j 6=v Bernoulli(zj ;σ(φj))

{
Euv
[
(1− 2uv)f(z\v, zv = 1[uv<σ(φv)])

]}
= Eu∼∏V

v=1 Uniform(uv ;0,1)

[
(1− 2uv)f(1[u<σ(φ)])

]
. (4.10)

The same as the derivation of the univariate ARM estimator, here we can

arrive at (4.4) from (4.10) by either adding an antithetic sampling step, or

subtracting the AR estimator by a baseline function as

b(u) =
(
f(1[u<σ(φ)]) + f(1[u>σ(−φ)])

)
(1/2− u), (4.11)

which has zero mean, satisfies b(u) = −b(1−u), and is distinct from previously

proposed baselines in taking advantage of “self-control” for variance reduction

and adding no extra parameters to learn.

4.2.3 Effectiveness of ARM for Variance Reduction

For the univariate case, we show below that the ARM estimator has

smaller worst-case variance than REINFORCE does. The proof is deferred to

Appendix C, section C.2.

Proposition 6 (Univariate gradient variance). For the objective function

Ez∼Bernoulli(σ(φ))[f(z)], with a single Monte-Carlo sample u ∼ Uniform(0, 1)

or z ∼ Bernoulli(σ(φ)), the ARM gradient is expressed as gARM(u, φ) =(
f(1[u>σ(−φ)])− f(1[u<σ(φ)])

)
(u− 1/2), and the REINFORCE gradient as

gR(z, φ) = f(z)∇φ logBernoulli(z;σ(φ)) = f(z)(z − σ(φ)). Assuming f ≥ 0

(or f ≤ 0), then supφvar[gARM(u,φ)]

supφvar[gR(u,φ)]
≤ 16

25
(1− 2 f(0)

f(0)+f(1)
)2 ≤ 16

25
.
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In the general setting, with u(1), . . . ,u(K) iid∼
∏V

v=1 Uniform(0, 1), we

define the ARM estimate of ∇φvE(φ) with K Monte Carlo samples, denoted

as gARMK ,v, and the AR estimate with 2K Monte Carlo samples, denoted as

gAR2K ,v, using

gARMK ,v = 1
2K

∑K
k=1(gv(u

(k)) + gv(1− u(k))), gAR2K ,v = 1
2K

∑2K
k=1 gv(u

(k)),
(4.12)

where gv(u(k)) = f(1[u(k)<σ(φ)])(1 − 2u
(k)
v ). Similar to the analysis in Owen

[101], the amount of variance reduction brought by the ARM estimator can be

reflected by the ratio as

var[gARMK ,v]

var[gAR2K ,v]
=

var[gv(u)]− Cov(−gv(u), gv(1− u))

var[gv(u)]
= 1− ρv,

ρv = Corr(−gv(u), gv(1− u)).

Note −gv(u) = f(1[u<σ(φ)])(2uv − 1), gv(1− u) = f(1[u>σ(−φ)])(2uv − 1), and

P (1[uv<σ(φv)] = 1[uv>σ(−φv)]) = σ(|φv|)− σ(−|φv|). Therefore a strong positive

correlation (i.e., ρv → 1) and hence noticeable variance reduction are likely,

especially if φv moves far away from zero during training. Concretely, we have

the following proposition.

Proposition 7 (Variance reduction). For the ARM estimate gARMK ,v and AR

estimate gAR2K ,v shown in (4.12), the variance of gARMK ,v is guaranteed to be

lower than that of gARK ,v; moreover, if f ≥ 0 (or f ≤ 0), then the variance of

gARMK ,v is guaranteed to be lower than that of gAR2K ,v.

We show below that under the anti-symmetric constraint

b(u) = −b(1−u), which implies that Eu∼∏V
v=1 Uniform(uv ;0,1)[b(u)] is a vector of
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zeros, Equation (4.11) is the optimal baseline function to be subtracted from

the AR estimator for variance reduction. The proof is deferred to Appendix C,

section C.2.

Proposition 8 (Optimal anti-symmetric baseline). For the gradient of φ

with respect to Ez∼qφ(z)[f(z)], the optimal anti-symmetric baseline function

to be subtracted from the AR estimator gAR(u) = f(1[u<σ(φ)])(1− 2u), which

minimizes the variance of Monte Carlo integration, can be expressed as

arg min
bv(u)∈B

var[gAR,v(u)− bv(u)] =
1

2
(gAR,v(u)− gAR,v(1− u)), (4.13)

where B = {b(u) : bv(u) = −bv(1 − u) for all v} is the set of all zero-mean

anti-symmetric baseline functions. Note the optimal baseline function shown in

(4.13) is exactly the same as (4.11), which is subtracted from the AR estimator

in (4.10) to arrive at the ARM estimator in (4.4).

Corollary 2 (Lower variance than constant baseline). The optimal anti-

symmetric baseline function for the AR estimator, as shown in (4.13) and also

in (4.11), leads to lower estimation variance than any constant based baseline

function as bv(u) = cv(1/2 − uv), where cv is a dimension-specific constant

whose value can be optimized for variance reduction.

4.3 Applications in Discrete Optimization

A latent variable model with multiple stochastic hidden layers can be

constructed as

x ∼ pθ0(x | b1), b1 ∼ pθ1(b1 | b2), . . . , bt ∼ pθt(bt | bt+1), . . . , bT ∼ pθT (bT ),
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whose joint likelihood given the distribution parameters θ0:T = {θ0, . . . ,θT} is

expressed as

p(x, b1:T |θ0:T ) = pθ0(x | b1)
[∏T−1

t=1
pθt(bt | bt+1)

]
pθT (bT ). (4.14)

In comparison to deterministic feedforward neural networks, stochastic ones

can represent complex distributions and show natural resistance to overfitting

[98, 128, 136, 110, 47, 136]. However, the training of the network, especially

if there are stochastic discrete layers, is often much more challenging. Below

we show for both auto-encoding variational inference and maximum likelihood

estimation, how to apply the ARM estimator for gradient backpropagation in

stochastic binary networks.

4.3.1 ARM for Variational Auto-Encoder

For auto-encoding variational inference [69, 117], we construct a varia-

tional distribution as

qw1:T
(b1:T |x) = qw1(b1 |x)

[∏T−1

t=1
qwt+1(bt+1 | bt)

]
, (4.15)

with which the ELBO can be expressed as

E(w1:T ) = Eb1:T∼qw1:T
(b1:T |x) [f(b1:T )] , where (4.16)

f(b1:T ) = log pθ0(x | b1) + log pθ1:T (b1:T )− log qw1:T
(b1:T |x). (4.17)

Proposition 9 (ARM backpropagation). For a stochastic binary network

with T binary stochastic hidden layers, constructing a variational auto-encoder
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(VAE) defined with b0 = x and

qwt(bt | bt−1) = Bernoulli(bt;σ(Twt(bt−1))) (4.18)

for t = 1, . . . , T , the gradient of the ELBO with respect to wt is

∇wtE(w1:T ) = Eq(b1:t−1)

[
Eut [f∆(ut,Twt(bt−1), b1:t−1)(ut −

1

2
)]∇wtTwt(bt−1)

]
,

where f∆ = Ebt+1:T∼q(bt+1:T | bt), bt=1[ut>σ(−Twt (bt−1))]
[f(b1:T )]

− Ebt+1:T∼q(bt+1:T | bt), bt=1[ut<σ(Twt (bt−1))]
[f(b1:T )]. (4.19)

The gradient presented in (4.19) can be estimated with a single Monte

Carlo sample as

f̂∆(ut,Twt(bt−1), b1:t−1) =

{
0, if b(1)

t = b
(2)
t ,

f(b1:t−1, b
(1)
t:T )− f(b1:t−1, b

(2)
t:T ), otherwise,

where b(1)
t = 1[ut>σ(−Twt (bt−1))], b

(1)
t+1:T ∼ q(bt+1:T | b(1)

t ), b
(2)
t = 1[ut<σ(Twt (bt−1))],

and b(2)
t+1:T ∼ q(bt+1:T | b(2)

t ). The proof of Proposition 9 is provided in Ap-

pendix C, section C.2. Suppose the computation complexity of vanilla REIN-

FORCE for a stochastic hidden layer is O(1), which involves a single evaluation

of the function f and gradient backpropagation as ∇wtTwt(bt−1), then for

a T -stochastic-hidden-layer network, the computation complexity of vanilla

REINFORCE is O(T ). By contrast, if evaluating f is much less expensive in

computation than gradient backpropagation, then the ARM estimator also has

O(T ) complexity, whereas if evaluating f dominates gradient backpropagation

in computation, then its worst-case complexity is O(2T ).
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4.3.2 ARM for Maximum Likelihood Estimation

For maximum likelihood estimation, the log marginal likelihood can be

expressed as

log pθ0:T (x) = logEb1:T∼pθ1:T (b1:T )[pθ0(x | b1)]

≥ E(θ1:T ) = Eb1:T∼pθ1:T (b1:T )[log pθ0(x | b1)]. (4.20)

Generalizing Proposition 9 leads to the following proposition.

Proposition 10. For a stochastic binary network defined as

pθt(bt | bt+1) = Bernoulli(bt;σ(Tθt(bt+1))), (4.21)

the gradient of the lower bound in (4.20) with respect to θt can be expressed as

∇θtE(θ1:T ) = Ep(bt+1:T ) [Eut [f∆(ut,Tθt(bt+1), bt+1:T )(ut − 1/2)]∇θtTθt(bt+1)] ,

where f∆ = Eb1:t−1∼p(b1:t−1 | bt), bt=1[ut>σ(−Tθt
(bt+1))]

)[log pθ0(x | b1)]

− Eb1:t−1∼p(b1:t−1 | bt), bt=1[ut<σ(Tθt
(bt+1))]

)[log pθ0(x | b1)]. (4.22)

4.4 Experimental Results

To illustrate the working mechanism of the ARM estimator, related

to Tucker et al. [147] and Grathwohl et al. [45], we consider learning φ to

maximize

E(φ) = Ez∼Bernoulli(σ(φ))[(z − p0)2], where p0 ∈ {0.49, 0.499, 0.501, 0.51}.

The optimal solution is σ(φ) = 1[p0<0.5]. The closer p0 is to 0.5, the more

challenging the optimization becomes. We compare both the AR and ARM
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estimators to the true gradient as

gφ = (1− 2p0)σ(φ)(1− σ(φ)) (4.23)

and three previously proposed unbiased estimators, including REINFORCE,

REBAR [147], and RELAX [45]. Since RELAX is closely related to REBAR in

introducing stochastically estimated control variates to improve REINFORCE,

and clearly outperforms REBAR in our experiments for this toy problem (as

also shown in Grathwohl et al. [45] for p0 = 0.49), we omit the results of

REBAR for brevity. With a single random sample u ∼ Uniform(0, 1) for Monte

Carlo integration, the REINFORCE and AR gradients can be expressed as

gφ,REINFORCE = (1[u<σ(φ)] − p0)2(1[u<σ(φ)] − σ(φ)), gφ,AR = (1[u<σ(φ)] − p0)2(1− 2u),

while the ARM gradient can be expressed as

gφ,ARM =
[
(1[u>σ(−φ)] − p0)2 − (1[u<σ(φ)] − p0)2

]
(u− 1/2).

See Grathwohl et al. [45] for the details on RELAX.

In Figure 4.1, p0 takes values 0.49, 0.499, 0.501, 0.51; the optimal so-

lution is σ(φ) = 1(p0 < 0.5). The top two rows are the trace plots of the

true/estimated gradients ∇φE(φ) and estimated Bernoulli probability parame-

ters σ(φ), with φ updated via gradient ascent. The bottom row is the gradient

variances for p0 = 0.49, estimated using K = 5000 Monte Carlo samples at

each iteration. It demonstrates that the REINFORCE gradients have large

variances. Consequently, a REINFORCE based gradient ascent algorithm may
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Figure 4.1: Comparison of a variety of gradient estimators in maximizing
E(φ) = Ez∼Bernoulli(σ(φ))[(z − p0)2] via gradient ascent.

diverge if the gradient ascent stepsize is not sufficiently small. For example,

when p0 = 0.501, the optimal value for the Bernoulli probability σ(φ) is 0,

but the algorithm with 0.1 as the stepsize infers it to be close to 1 at the

end of 2000 iterations of a random trial. The AR estimator behaves similarly

as REINFORCE does. By contrast, both RELAX and ARM exhibit clearly

lower estimation variance. It is interesting to note that the trace plots of

the estimated probability σ(φ) with the univariate ARM estimator almost

exactly match these with the true gradients, despite that the trace plots of the

ARM gradients are distinct from these of the true gradients. More specifically,

while the true gradients smoothly evolve over iterations, the univariate ARM

gradients are characterized by zeros and random spikes; this distinct behavior

is expected by examining (C.1) in Appendix C, section C.2, which suggests

that at any given iteration, the univariate ARM gradient based on a single

Monte Carlo sample is either exactly zero, which happens with probability
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σ(|φ|)−σ(−|φ|), or taking |[f(1)− f(0)](1/2− u)| as its absolute value. These

observations suggest that by adjusting the frequencies and amplitudes of spike

gradients, the univariate ARM estimator very well approximates the behavior

of the true gradient for learning with gradient ascent.

4.4.1 Discrete Variational Auto-Encoders

To optimize a variational auto-encoder (VAE) for a discrete latent vari-

able model, existing solutions often rely on biased but low-variance stochastic

gradient estimators [10, 64], unbiased but high-variance ones [90], or unbiased

REINFORCE combined with computationally expensive baselines, whose pa-

rameters are estimated by minimizing the sample variance of the estimator

with SGD [147, 45]. By contrast, the ARM estimator exhibits low variance

and is unbiased, efficient to compute, and simple to implement.

For discrete VAEs, we compare ARM with a variety of representative

stochastic gradient estimators for discrete latent variables, including Wake-

Sleep [54], NVIL [90], LeGrad [143], MuProp [47], Concrete (Gumbel-Softmax)

[64, 84], REBAR [45], and RELAX [147]. Following the settings in Tucker

et al. [147] and Grathwohl et al. [45], for the encoder defined in (4.14) and

decoder defined in (4.15), we consider three different network architectures, as

summarized in Table C.1, including “Nonlinear” that has one stochastic but two

Leaky-ReLU [83] deterministic hidden layers, “Linear” that has one stochastic

hidden layer, and “Linear two layers” that has two stochastic hidden layers. We

consider a widely used binarization [121, 77, 161], referred to as MNIST-static,
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Table 4.1: Test negative log-likelihoods of discrete VAEs trained with a variety
of stochastic gradient estimators on MNIST-static and OMNIGLOT.

(a) MNIST-static

Linear Nonlinear Two layers

Algorithm − log p(x) Algorithm − log p(x) Algorithm − log p(x)

AR = 164.1 AR = 114.6 AR = 162.2
REINFORCE = 170.1 REINFORCE = 114.1 REINFORCE = 159.2
Wake-Sleep∗ = 120.8 Wake-Sleep∗ - Wake-Sleep∗ = 107.7

NVIL ∗ = 113.1 NVIL ∗ = 102.2 NVIL∗ = 99.8
LeGrad ≤ 117.5 LeGrad - LeGrad -
MuProp† ≤ 113.0 MuProp? = 99.1 MuProp† ≤ 100.4
Concrete? = 107.2 Concrete? = 99.6 Concrete? = 95.6
REBAR? = 107.7 REBAR? = 100.7 REBAR? = 95.7
RELAX‡ ≤ 113.6 RELAX‡ ≤ 119.2 RELAX‡ ≤ 100.9
ARM = 107.2 ± 0.1 ARM = 98.4 ± 0.3 ARM = 96.7± 0.3

(b) OMNIGLOT

Linear Nonlinear Two layers

Algorithm − log p(x) Algorithm − log p(x) Algorithm − log p(x)

NVIL∗ = 117.6 NVIL∗ = 116.6 NVIL∗ = 111.4
MuProp? = 117.6 MuProp? = 117.5 MuProp? = 111.2
Concrete? = 117.7 Concrete? = 116.7 Concrete? = 111.3
REBAR? = 117.7 REBAR? = 118.0 REBAR? = 110.8
RELAX‡ ≤ 122.1 RELAX‡ ≤ 128.2 RELAX‡ ≤ 115.4
ARM = 115.8 ± 0.2 ARM = 117.6± 0.4 ARM = 109.8 ± 0.3
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making our numerical results directly comparable to those reported in the

literature. In addition to MNIST-static, we also consider MNIST-threshold

[149], which binarizes MNIST by thresholding each pixel value at 0.5, and the

binarized OMNIGLOT dataset.

We train discrete VAEs with 200 conditionally iid Bernoulli random

variables as the hidden units of each stochastic binary layer. We maximize

a single-Monte-Carlo-sample ELBO using Adam [68], with the learning rate

selected from {5, 1, 0.5} × 10−4 by the validation set. We set the batch size

as 50 for MNIST and 25 for OMNIGLOT. For each dataset, using its default

training/validation/testing partition, we train all methods on the training set,

calculate the validation log-likelihood for every epoch, and report the test

negative log-likelihood when the validation negative log-likelihood reaches its

minimum within a predefined maximum number of iterations.

We summarize the test negative log-likelihoods in Table 4.1 for MNIST-

static. The symbols ∗, ?, †, ‡ represent the results reported in Mnih and Gregor

[90], Tucker et al. [147], Gu et al. [47], and Grathwohl et al. [45], respectively.

The results for LeGrad [143] are obtained by running the code provided by the

authors. We report the results of ARM using the sample mean and standard

deviation over five independent trials with random initializations.

We also provide trace plots of the training and validation negative

ELBOs on MNIST-static with respect to training iterations and wall clock

time (on Tesla-K40 GPU) in Figure 4.2, and these on MNIST-threshold and

OMNIGLOT in Figures 4.4 and 4.5, respectively.
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Figure 4.2: Training and validation negative ELBOs on MNIST-static with
respect to the training iterations and the wall clock time.
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Figure 4.3: Trace plots of the log variance of the gradient estimators on the
MNIST-static data for “Nonlinear” and “Linear” network architectures.
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Figure 4.4: Training and validation negative ELBOs on MNIST-threshold with
respect to the training iterationsand the wall clock time.
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Figure 4.5: Training and validation negative ELBOs on OMNIGLOT with
respect to the training iterations, shown in the top row, and with respect to
the wall clock times on Tesla-K40 GPU, shown in the bottom row.
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For these trace plots, for a fair comparison of convergence speed between

different algorithms, we use publicly available code and setting the learning

rate of ARM the same as that selected by RELAX in Grathwohl et al. [45].

Note as shown in Figures 4.2(a,d) and 4.5(a,d), both REBAR and RELAX

exhibit clear signs of overfitting on both MNIST-static and Omniglot using

the “Nonlinear” architecture; as ARM runs much faster per iteration than both

of them and do not exhibit overfitting given the same number of iterations,

we allow ARM to run more stochastic gradient ascent steps under these two

scenarios to check whether it will eventually overfit the training set.

These results show that ARM provides superior performance in de-

livering not only fast convergence, but also low negative log-likelihoods and

negative ELBOs on both the validation and test sets, with low computational

cost, for all three different network architectures. In comparison to the vanilla

REINFORCE on MNIST-static, as shown in Table 4.1 (a), ARM achieves

significantly lower test negative log-likelihoods, which can be explained by

having much lower variance in its gradient estimation, while only costing 20%

to 30% more computation time to finish the same number of iterations.

The trace plots in Figures 4.2, 4.4, and 4.5 show that ARM achieves its

objective better or on a par with the competing methods in all three different

network architectures. In particular, the performance of ARM on MNIST-

threshold is significantly better, suggesting ARM is more robust, better resists

overfitting, and has better generalization ability. On both MNIST-static and

OMNIGLOT, with the “Nonlinear” network architecture, both REBAR and
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RELAX exhibit severe overfitting, which could be caused by their training

procedure, which updates the parameters of the baseline function by minimizing

the sample variance of the gradient estimator using SGD. For less overfitting

linear and two-stochastic-layer networks, ARM overall performs better than

both REBAR and RELAX and runs significantly faster (about 6-8 times faster)

in terms of the computation time per iteration.

To understand why ARM has the best overall performance, we examine

the trace plots of the logarithm of the estimated variance of gradient estimates

in Figure 4.3. The variance of the gradient of each element is estimated by

performing exponential smoothing, with the smoothing factor as 0.999, on its

first two moments. On the MNIST-static dataset with the “Nonlinear” network,

the left subplot of Figure 4.3 shows that both REBAR and RELAX exhibit lower

variance than ARM does for their single-Monte-Carlo-sample based gradient

estimates; however, the corresponding trace plots of the validation negative

ELBOs, shown in Figure 4.2(a), suggest they both severely overfit the training

data as the learning progresses; our hypothesis for this phenomenon is that

REBAR and RELAX may favor suboptimal solutions that are associated with

lower gradient variance; in other words, they may have difficulty in converging

to local optimal solutions that are associated with high gradient variance. For

the “Linear” network architecture, the right subplot of Figure 4.3 shows that

ARM exhibits lower variance for its gradient estimate than both REBAR and

RELAX do, and Figure 4.2(b) shows that none of them exhibit clear signs

of overfitting; this observation could be used to explain why ARM results in
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the best convergence for both the training and validation negative ELBOs, as

shown in Figure 4.2(b).

4.4.2 Maximizing Likelihood for a Stochastic Binary Network

Denoting xl,xu ∈ R394 as the lower and upper halves of an MNIST

digit, respectively, we consider a standard benchmark task of estimating the

conditional distribution pθ0:2(xl |xu) [110, 10, 47, 64, 147], using a stochastic

binary network with two stochastic binary hidden layers, expressed as

xl ∼ Bernoulli(σ(Tθ0(b1))), b1 ∼ Bernoulli(σ(Tθ1(b2))), b2 ∼ Bernoulli(σ(Tθ2(xu))).

We set the network structure as 392-200-200-392, which means both b1 and

b2 are 200 dimensional binary vectors and the transformation Tθ are linear

so the results are directly comparable with those in Jang et al. [64]. We ap-

proximate log pθ0:2(xl |xu) with log 1
K

∑K
k=1 Bernoulli(xl;σ(Tθ0(b

(k)
1 ))), where

b
(k)
1 ∼ Bernoulli(σ(Tθ1(b

(k)
2 ))), b

(k)
2 ∼ Bernoulli(σ(Tθ2(xu))). We perform

training with K = 1, which can also be considered as optimizing on a single-

Monte-Carlo-sample estimate of the lower bound of the log marginal likelihood

shown in (4.20). We use Adam [68], with the learning rate set as 10−4, mini-

batch size as 100, and number of epochs for training as 2000. Given the inferred

point estimate of θ0:2 after training, we evaluate the accuracy of conditional den-

sity estimation by estimating the negative log-likelihood as − log pθ0:2(xl |xu),

averaging over the test set using K = 1000. We show example results of

predicting the activation probabilities of the pixels of xl given xu in Figure

C.1 of the Appendix C.
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Table 4.2: Comparison of the test negative log-likelihoods between ARM and
various gradient estimators, for the MNIST conditional distribution estimation
benchmark task.

Gradient estimator ARM ST DARN Annealed ST ST Gumbel-S. SF MuProp

− log p(xl |xu) 57.9 ± 0.1 58.9 59.7 58.7 59.3 72.0 58.9

As shown in Table 4.2, optimizing a stochastic binary network with the

ARM estimator, which is unbiased and computationally efficient, achieves the

lowest test negative log-likelihood, outperforming previously proposed biased

stochastic gradient estimators, as reported in [64], on similarly structured

stochastic networks, including DARN [46], straight through (ST) [10], slope-

annealed ST [21], and ST Gumbel-softmax [64], and unbiased ones, including

score-function (SF) and MuProp [47].

4.5 Concluding Remarks

To train a discrete latent variable model with one or multiple stochastic

binary layers, we propose the augment-REINFORCE-merge (ARM) estimator

to provide unbiased and low-variance gradient estimates of the parameters

of Bernoulli distributions. With a single Monte Carlo sample, the estimated

gradient is the product of uniform random noises and the difference of a

function of two vectors of correlated binary latent variables. Without relying

on estimating a baseline function with extra learnable parameters for variance

reduction, it maintains efficient computation and avoids increasing the risk of

overfitting. Applying the ARM gradient leads to not only fast convergence,
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but also low test negative log-likelihoods (and low test negative evidence lower

bounds for variational inference), on both auto-encoding variational inference

and maximum likelihood estimation for stochastic binary feedforward neural

networks. Some natural extensions of the proposed ARM estimator include

generalizing it to multivariate categorical latent variables [164], combining it

with a baseline or local-expectation based variance reduction methods, applying

it to reinforcement learning with discrete action space [137, 167], and applying

it to natural language processing [30].
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Chapter 5

Meta-Learning with Variational Regularization

This chapter, based on the publication [165], studies the generalization

problem of meta-learning. Meta-learning is a popular technique for leveraging

data from previous tasks to enable efficient learning of new tasks. However,

we find that most meta-learning algorithms implicitly require that the meta-

training tasks be mutually-exclusive, such that no single model can solve all of

the tasks at once. This requirement means that the user must take great care in

designing the tasks, for example by shuffling labels or removing task identifying

information from the inputs. In some domains, this makes meta-learning

entirely inapplicable. In this chapter, we address this challenge by designing a

meta-regularization objective using variational methods that places precedence

on data-driven adaptation. This causes the meta-learner to decide what must

The content in this chapter was published in [165], Yin, Mingzhang, George Tucker,
Mingyuan Zhou, Sergey Levine and Chelsea Finn. “Meta-Learning without Memorization”.
In International Conference on Learning Representations, 2020. I observed the problem,
formalized the problem definition and designed the algorithms with the co-authors. I provided
theoretical analysis in Section 5.4.1, implemented the methodology and wrote the draft
paper. Prof. Finn, Prof. Levine and Dr. Tucker helped in defining the problem, adjusting
the algorithm, creating the dataset, and the revision of the manuscript. Dr. Tucker provided
theoretical analysis in Section 5.4.2. Prof. Zhou helped in the draft revision.
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be learned from the task training data and what should be inferred from the

task testing input. We demonstrate its applicability to both contextual and

gradient-based meta-learning algorithms, and apply it in practical settings

where applying standard meta-learning has been difficult.

5.1 Meta-Learning and Task Overfitting

The ability to learn new concepts and skills with small amounts of data

is a critical aspect of intelligence that many machine learning systems lack.

Meta-learning [129] has emerged as a promising approach for enabling systems

to quickly learn new tasks by building upon experience from previous related

tasks [139, 71, 124, 114, 32]. Meta-learning accomplishes this by explicitly

optimizing for few-shot generalization across a set of meta-training tasks. The

meta-learner is trained such that, after being presented with a small task

training set, it can accurately make predictions on test datapoints for that

meta-training task.

While these methods have shown promising results, current methods

require careful design of the meta-training tasks to prevent a subtle form of

task overfitting, distinct from standard overfitting in supervised learning. If

the task can be accurately inferred from the test input alone, then the task

training data can be ignored while still achieving low meta-training loss. In

effect, the model will collapse to one that makes zero-shot decisions. This

presents an opportunity for overfitting where the meta-learner generalizes on

meta-training tasks, but fails to adapt when presented with training data from
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novel tasks. We call this form of overfitting the memorization problem in

meta-learning because the meta-learner memorizes a function that solves all of

the meta-training tasks, rather than learning to adapt.

Existing meta-learning algorithms implicitly resolve this problem by

carefully designing the meta-training tasks such that no single model can solve

all tasks zero-shot; we call tasks constructed in this way mutually-exclusive.

For example, for N -way classification, each task consists of examples from N

randomly sampled classes. The N classes are labeled from 1 to N , and critically,

for each task, we randomize the assignment of classes to labels {1, 2, . . . , N}.

An visualization is provided in Appendix Figure D.1. In this illustration, the

same class, such as the dog and butterfly, can be assigned different labels across

tasks which makes it impossible for one model to solve all tasks simultaneously.

This ensures that the task-specific class-to-label assignment cannot be inferred

from a test input alone. However, the mutually-exclusive tasks requirement

places a substantial burden on the user to cleverly design the meta-training

setup (e.g., by shuffling labels or omitting goal information). While shuffling

labels provides a reasonable mechanism to force tasks to be mutually-exclusive

with standard few-shot image classification datasets such as MiniImageNet [114],

this solution cannot be applied to all domains where we would like to utilize

meta-learning. For example, consider meta-learning a pose predictor that can

adapt to different objects: even if N different objects are used for meta-training,

a powerful model can simply learn to ignore the training set for each task, and

directly learn to predict the pose of each of the N objects. However, such a
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model would not be able to adapt to new objects at meta-test time.

The primary contributions of this chapter are: 1) to identify and for-

malize the memorization problem in meta-learning, and 2) to propose an

meta-regularizer (MR) using variational methods and information theory as a

general approach for mitigating this problem without placing restrictions on

the task distribution. The key insight of our variational meta-regularization

approach is that the model acquired when memorizing tasks is more complex

than the model that results from task-specific adaptation because the mem-

orization model is a single model that simultaneously performs well on all

tasks. It needs to contain all information in its weights needed to do well on

test points without looking at training points. Therefore we would expect

the information content of the weights of a memorization model to be larger,

and hence the model should be more complex. As a result, we propose an

objective that regularizes the information complexity of the meta-learned func-

tion class by variational method (motivated by Alemi et al. [4], Achille and

Soatto [1]). Furthermore, we show that meta-regularization in MAML can

be rigorously motivated by a PAC-Bayes bound on generalization. In a series

of experiments on non-mutually-exclusive task distributions entailing both

few-shot regression and classification, we find that memorization poses a signif-

icant challenge for both gradient-based [32] and contextual [36] meta-learning

methods, resulting in near random performance on test tasks in some cases.

Our meta-regularization approach enables both methods to achieve efficient

adaptation and generalization, leading to substantial performance gains across
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the board on non-mutually-exclusive tasks.

5.2 Preliminaries

We focus on the standard supervised meta-learning problem (see, e.g.,

Finn et al. [32]). As briefly stated in Chapter 1, we assume tasks Ti are sampled

from a task distribution p(T). During meta-training, for each task, we observe

a set of training data Di = (xi,yi) and a set of test data D∗i = (x∗i ,y
∗
i ) with

xi = (xi1, . . . , xiK),yi = (yi1, . . . , yiK) sampled from p(x, y|Ti), and similarly

for D∗i . We denote the entire meta-training set as M = {Di,D
∗
i }Ni=1. The goal

of meta-training is to learn a model for a new task T by leveraging what is

learned during meta-training and a small amount of training data for the new

task D. We use θ to denote the meta-parameters learned during meta-training

and use φ to denote the task-specific parameters that are computed based on

the task training data.

Following Grant et al. [44], Gordon et al. [43], given a meta-training

set M, we consider meta-learning algorithms that maximize conditional like-

lihood q(ŷ∗ = y∗|x∗, θ,D), which is composed of three distributions: q(θ|M)

that summarizes meta-training data into a distribution on meta-parameters,

q(φ|D, θ) that summarizes the per-task training set into a distribution on

task-specific parameters, and q(ŷ∗|x∗, φ, θ) that is the predictive distribution.

These distributions are learned to minimize

− 1
N

∑
i Eq(θ|M)q(φ|Di,θ)

[
1
K

∑
(x∗,y∗)∈D∗i

log q(ŷ∗ = y∗|x∗, φ, θ)
]
. (5.1)
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For example, in MAML [32], θ and φ are the weights of a predictor net-

work, q(θ|M) is a delta function learned over the meta-training data, q(φ|D, θ)

is a delta function centered at a point defined by gradient optimization, and φ

parameterizes the predictor network q(ŷ∗|x∗, φ) [44]. In particular, to determine

the task-specific parameters φ, the task training data D and θ are used in the

predictor model φ = θ + α
K

∑
(x,y)∈D∇θ log q(y|x, φ = θ).

Another family of meta-learning algorithms are contextual methods [124],

such as conditional neural processes (CNP) [36]. CNP instead defines q(φ|D, θ)

as a mapping from D to a summary statistic φ (parameterized by θ). In

particular, φ = aθ ◦ hθ(D) is the output of an aggregator aθ(·) applied to

features hθ(D) extracted from the task training data. Then θ parameterizes

a predictor network that takes φ and x∗ as input and produces a predictive

distribution q(ŷ∗|x∗, φ, θ).

In the following sections, we describe a common pitfall for a variety

of meta-learning algorithms, including MAML and CNP, and a general meta-

regularization approach to prevent this pitfall.

5.3 The Memorization Problem in Meta-Learning

The ideal meta-learning algorithm will learn in such a way that general-

izes to novel tasks. However, we find that unless tasks are carefully designed,

current meta-learning algorithms can overfit to the tasks and end up ignor-

ing the task training data (i.e., either q(φ|D, θ) does not depend on D or

q(ŷ∗|x∗, φ, θ) does not depend on φ, as shown in Figure 5.1), which can lead
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to poor generalization. This memorization phenomenon is best understood

through examples.

Consider a 3D object pose prediction problem (illustrated in Figure 5.1),

where each object has a fixed canonical pose. The (x, y) pairs for the task

are 2D grey-scale images of the rotated object (x) and the rotation angle

relative to the fixed canonical pose for that object (y). In the most extreme

case, for an unseen object, the task is impossible without using D because the

canonical pose for the unseen object is unknown. The number of objects in

the meta-training dataset is small, so it is straightforward for a single network

to memorize the canonical pose for each training object and to infer the object

from the input image (i.e., task overfitting), thus achieving a low training error

without using D. However, by construction, for a new object and canonical

orientation, the task cannot be solved without using task training data to infer

the canonical orientation. Therefore, this solution to memorize the canonical

orientation of the meta-training objects will necessarily have poor generalization

to test tasks with unseen objects.

As another example, imagine an automated medical prescription system

that suggests medication prescriptions to doctors based on patient symptoms

and the patient’s previous record of prescription responses (i.e., medical history)

for adaptation. In the meta-learning framework, each patient represents a

separate task. Here, the symptoms and prescriptions have a close relationship,

so we cannot assign random prescriptions to symptoms, in contrast to the

classification tasks where we can randomly shuffle the labels to create mutually-
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exclusiveness. For this non-mutually-exclusive task distribution, a standard

meta-learning system can memorize the patients’ identity information in the

training, leading it to ignore the medical history and only utilize the symptoms

combined with the memorized information. As a result, it may issue highly

accurate prescriptions on the meta-training set, but fail to adapt to new patients

effectively. While such a system would achieve a baseline level of accuracy for

new patients, it would be no better than a standard supervised learning method

applied to the pooled data. We formally define (complete) memorization as:

Definition 1 (Complete Meta-Learning Memorization). Complete memo-

rization in meta-learning is when the learned model ignores the task train-

ing data such that I(ŷ∗;D|x∗, θ) = 0 (i.e., q(ŷ∗|x∗, θ,D) = q(ŷ∗|x∗, θ) =

ED′|x∗ [q(ŷ∗|x∗, θ,D′)]).

Memorization describes an issue with overfitting the meta-training tasks,

but it does not preclude the network from generalizing to unseen (x, y) pairs

on the tasks similar to the training tasks. Memorization becomes an undesired

problem for generalization to new tasks when I(y∗;D|x∗)� I(ŷ∗;D|x∗, θ) (i.e.,

the task training data is necessary to achieve good performance, even with exact

inference under the data generating distribution, to make accurate predictions).

A model with the memorization problem may generalize to new data-

points in training tasks but cannot generalize to novel tasks, which distinguishes

it from typical overfitting in supervised learning. In practice, we find that

MAML and CNP frequently converge to this memorization solution (Table 5.2).
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For MAML, memorization can occur when a particular setting of θ that does

not adapt to the task training data can achieve comparable meta-training error

to a solution that adapts θ. For example, if a setting of θ can solve all of

the meta-training tasks (i.e., for all (x, y) in D and D∗ the predictive error

is close to zero), the optimization may converge to a stationary point of the

MAML objective where minimal adaptation occurs based on the task training

set (i.e., φ ≈ θ). For a novel task where it is necessary to use the task training

data, MAML can in principle still leverage the task training data because the

adaptation step is based on gradient descent. However, in practice, the poor

initialization of θ can affect the model’s ability to generalize from a small mount

of data. For CNP, memorization can occur when the predictive distribution

network q(ŷ∗|x∗, φ, θ) can achieve low training error without using the task

training summary statistics φ. On a novel task, the network is not trained to

use φ, so it is unable to use the information extracted from the task training

set to effectively generalize.

In some problem domains, the memorization problem can be avoided

by carefully constructing the tasks. For example, for N -way classification, each

task consists of examples from N randomly sampled classes. If the classes are

assigned to a random permutation of N for each task, this ensures that the

task-specific class-to-label assignment cannot be inferred from the test inputs

alone. As a result, a model that ignores the task training data cannot achieve

low training error, preventing convergence to the memorization problem. We

refer to tasks constructed in this way as mutually-exclusive. However, the
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mutually-exclusive tasks requirement places a substantial burden on the user

to cleverly design the meta-training setup (e.g., by shuffling labels or omitting

goal information) and cannot be applied to all domains where we would like to

utilize meta-learning.

Figure 5.1: Left: An example of non-mutually-exclusive pose prediction tasks,
which may lead to the memorization problem. Right: Graphical model for
meta-learning. Observed variables are shaded. The complete memorization is
the case without either one of the dashed arrows.

5.4 Meta Regularization Using Variational Methods

At a high level, the sources of information in the predictive distribution

q(ŷ∗|x∗, θ,D) come from the input, the meta-parameters, and the data. The

memorization problem occurs when the model encodes task information in the

predictive network that is readily available from the task training set (i.e., it

memorizes the task information for each meta-training task). We could resolve

this problem by encouraging the model to minimize the training error and to

rely on the task training dataset as much as possible for the prediction of y∗

(i.e., to maximize I(ŷ∗;D|x∗, θ)). Explicitly maximizing I(ŷ∗;D|x∗, θ) requires
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an intractable marginalization over task training sets to compute q(ŷ∗|x∗, θ).

Instead, we can implicitly encourage it by restricting the information flow from

other sources (x∗ and θ) to ŷ∗. To achieve both low error and low mutual

information between ŷ∗ and (x∗, θ), the model must use task training data D

to make predictions, hence increasing the mutual information I(ŷ∗;D|x∗, θ),

leading to reduced memorization. In this section, we describe two tractable

ways to achieve this.

5.4.1 Meta Regularization on Activations

Given θ, the dependency between x∗ and ŷ∗ is controlled by the direct

path from x∗ to ŷ∗ and the indirect path through D (see Figure 5.1), where the

latter is desirable because it leverages the task training data. We can control the

information flow between x∗ and ŷ∗ by introducing an intermediate stochastic

bottleneck variable z∗ such that q(ŷ∗|x∗, φ, θ) =
∫
q(ŷ∗|z∗, φ, θ)q(z∗|x∗, θ) dz∗ [4]

as shown in Figure 5.2. Now, we would like to maximize I(ŷ∗;D|z∗, θ) to prevent

memorization. It can be bounded by

I(ŷ∗;D|z∗, θ) ≥I(x∗; ŷ∗|θ, z∗)

=I(x∗; ŷ∗|θ)− I(x∗; z∗|θ) + I(x∗; z∗|ŷ∗, θ)

≥I(x∗; ŷ∗|θ)− I(x∗; z∗|θ)

=I(x∗; ŷ∗|θ)− Ep(x∗)q(z∗|x∗,θ)
[
log

q(z∗|x∗, θ)
q(z∗|θ)

]
≥I(x∗; ŷ∗|θ)− E

[
log

q(z∗|x∗, θ)
r(z∗)

]
=I(x∗; ŷ∗|θ)− E [DKL(q(z∗|x∗, θ)||r(z∗))] (5.2)
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where r(z∗) is a variational approximation to the marginal, the first in-

equality follows from the statistical dependencies in our model (see Fig-

ure 5.2 and Appendix D.2 for the proof). By simultaneously minimizing

E [DKL(q(z∗|x∗, θ)||r(z∗))] and maximizing the mutual information I(x∗; ŷ∗|θ),

we can implicitly encourage the model to use the task training data D.

Figure 5.2: Graphical model of the regularization on activations. Observed
variables are shaded and Z is bottleneck variable. The complete memorization
corresponds to the graph without the dashed arrows.

For non-mutually-exclusive problems, the true label y∗ is dependent on

x∗. Marginalizing out x∗ and D, the distribution q(ŷ∗|θ) is spread out over all

possible labels. If the model has memorization problem and I(x∗; ŷ∗|θ) = 0, we

have q(ŷ∗|x∗, θ,D) = q(ŷ∗|x∗, θ) = q(ŷ∗|θ). Hence the prediction generated from

q(ŷ∗|x∗, θ,D) has low accuracy. This suggests minimizing the training loss in

Eq. (5.1) can increase I(ŷ∗;D|x∗, θ) or I(x∗; ŷ∗|θ). Replacing the maximization

of I(x∗; ŷ∗|θ) in Eq. (5.2) with minimizing the training loss results in the
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following regularized training objective

1
N

∑
i Eq(θ|M)q(φ|Di,θ)

[
− 1
K

∑
(x∗,y∗)∈D∗i

log q(ŷ∗ = y∗|x∗, φ, θ) + βDKL(q(z∗|x∗, θ)||r(z∗))

]
(5.3)

where log q(ŷ∗|x∗, φ, θ) is estimated by log q(ŷ∗|z∗, φ, θ) with z∗ ∼ q(z∗|x∗, θ),

β modulates the regularizer and we set r(z∗) as N(z∗; 0, I). We refer to this

regularizer as meta-regularization (MR) on the activations.

As we demonstrate in Section 5.6, we find that this regularizer performs

well, but in some cases can fail to prevent the memorization problem. Our

hypothesis is that in these cases, the network can sidestep the information

constraint by storing the prediction of y∗ in a part of z∗, which incurs only a

small penalty in Eq. (5.3) and small lower bound in Eq. (5.2)

5.4.2 Meta Regularization on Weights

Alternatively, we can penalize the task information stored in the meta-

parameters θ. Here, we provide an informal argument and provide the complete

argument in Appendix D.3. Analogous to the supervised setting [1], given meta-

training dataset M, we consider θ as random variable where the randomness

can be introduced by training stochasticity. We model the stochasticity over

θ with a Gaussian distribution N(θ; θµ, θσ) with learned mean and variance

parameters per dimension [18, 1]. By penalizing I(y∗1:N ,D1:N ; θ|x∗1:N), we can

limit the information about the training tasks stored in the meta-parameters θ

and thus require the network to use the task training data to make accurate
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predictions. We can tractably upper bound it by

I(y∗1:N ,D1:N ; θ|x∗1:N) = E
[

log q(θ|M)
q(θ|x∗1:N )

]
≤ E [DKL (q(θ|M)‖r(θ))] ,

where r(θ) is a variational approximation to the marginal, which we set to

N(θ; 0, I). In practice, we apply meta-regularization to the meta-parameters

θ that are not used to adapt to the task training data and denote the other

parameters as θ̃. In this way, we control the complexity of the network that

can predict the test labels without using task training data, but we do not

limit the complexity of the network that processes the task training data. Our

final meta-regularized objective can be written as

1
N

∑
i Eq(θ;θµ,θσ)q(φ|Di,θ̃)

[
− 1
K

∑
(x∗,y∗)∈D∗i

log q(ŷ∗ = y∗|x∗, φ, θ, θ̃) + βDKL(q(θ; θµ, θσ)||r(θ))

]
(5.4)

For MAML, we apply meta-regularization to the parameters uninvolved

in the task adaptation. For CNP, we apply meta-regularization to the encoder

parameters. The detailed algorithms are shown in Algorithm 5 and 6 in the

appendix.

5.4.3 Does Meta Regularization Lead to Better Generalization?

Now that we have derived meta regularization approaches for mitigating

the memorization problem, we theoretically analyze whether meta regularization

leads to better generalization via a PAC-Bayes bound. In particular, we study

meta regularization (MR) on the weights (W) of MAML, i.e. MR-MAML (W),

as a case study.
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Meta regularization on the weights of MAML uses a Gaussian distribu-

tion N(θ; θµ, θσ) to model the stochasticity in the weights. Given a task and

task training data, the expected error is given by

er(θµ, θσ,D,T) = Eθ∼N(θ;θµ,θσ),φ∼q(φ|θ,D),(x∗,y∗)∼p(x,y|T) [L(x∗, y∗, φ)] , (5.5)

where the prediction loss L(x∗, y∗, φi) is bounded1. Then, we would like to

minimize the error on novel tasks

er(θµ, θσ) = ET∼p(T),D∼p(x,y|T) [er(θµ, θσ,D,T)] (5.6)

We only have a finite sample of training tasks, so computing er(Q) is intractable,

but we can form an empirical estimate:

êr(θµ, θσ,D1,D
∗
1, ...,Dn,D

∗
n)

=
1

n

n∑
i=1

Eθ∼N(θ;θµ,θσ),φi∼q(φ|θ,Di)

− 1

K

∑
(x∗,y∗)∈D∗i

log q(ŷ∗ = y∗|x∗, φi)


︸ ︷︷ ︸

êr(θµ,θσ ,Di,D∗i )

(5.7)

where for exposition we have assumed |D∗i | = K are the same for all tasks.

We would like to relate er(θµ, θσ) and êr(θµ, θσ,D1,D
∗
1, ...,Dn,D

∗
n), but the

challenge is that θµ and θσ are derived from the meta-training tasks D1,D
∗
1,

· · · , Dn,D
∗
n. There are two sources of generalization error: (i) error due to

the finite number of observed tasks and (ii) error due to the finite number of

examples observed per task. Closely following the arguments in [7], we apply a

1In practice, L(x∗, y∗, φi) is MSE on a bounded target space or classification accuracy.
We optimize the negative log-likelihood as a bound on the 0-1 loss.
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standard PAC-Bayes bound to each of these and combine the results with a

union bound, resulting in the following Theorem.

Theorem 5. Let P (θ) be an arbitrary prior distribution over θ that does not

depend on the meta-training data. Then for any δ ∈ (0, 1], with probability at

least 1− δ, the following inequality holds uniformly for all choices of θµ and θσ,

er(θµ, θσ) ≤ 1

n

n∑
i=1

êr(θµ, θσ,Di,D
∗
i )+ (5.8)(√

1
2(K−1)

+
√

1
2(n−1)

)√
DKL(N(θ; θµ, θσ)‖P ) + log n(K+1)

δ
,

where n is the number of meta-training tasks and K is the number of per-task
validation datapoints.

We defer the proof to the Appendix D.4. The key difference from the result

in [7] is that we leverage the fact that the task training data is split into training

and validation.

In practice, we set P (θ) = r(θ) = N(θ; 0, I). If we can achieve a low

value for the bound, then with high probability, our test error will also be

low. As shown in the Appendix D.4, by a first order Taylor expansion of the

the second term of the RHS in Eq.(A.1) and setting the coefficient of the KL

term as β =

√
1/2(K−1)+

√
1/2(n−1)

2
√

logn(K+1)/δ
, we recover the MR-MAML(W) objective

(Eq.(5.4)). β trades-off between the tightness of the generalization bound and

the probability that it holds true. The result of this bound suggests that the

proposed meta-regularization on weights does indeed improve generalization

on the meta-test set.
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5.5 Prior Work on Meta-Overfitting

Previous works have developed approaches for mitigating various forms

of overfitting in meta-learning. These approaches aim to improve generalization

in several ways: by reducing the number of parameters that are adapted in

MAML [172], by compressing the task embedding [78], through data augmen-

tation from a GAN [170], by using an auxiliary objective on task gradients [49],

and via an entropy regularization objective [63]. These methods all focus on

the setting with mutually-exclusive task distributions. We instead recognize

and formalize the memorization problem, a particular form of overfitting that

manifests itself with non-mutually-exclusive tasks, and offer a general and

principled solution. Unlike prior methods, our approach is applicable to both

contextual and gradient-based meta-learning methods. We additionally validate

that prior regularization approaches, namely TAML [63], are not effective for

addressing this problem setting.

Our derivation uses a Bayesian interpretation of meta-learning [138,

31, 28, 44, 43, 33, 67, 53]. Some Bayesian meta-learning approaches place a

distributional loss on the inferred task variables to constrain them to a prior

distribution [43, 111], which amounts to an information bottleneck on the latent

task variables. Similarly Zintgraf et al. [172], Lee et al. [78], Guiroy et al. [49] aim

to produce simpler or more compressed task adaptation processes. Our approach

does the opposite, penalizing information from the inputs and parameters, to

encourage the task-specific variables to contain greater information driven by

the per-task data.
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We use PAC-Bayes theory to study the generalization error of meta-

learning and meta-regularization. Pentina and Lampert [107] extends the

single task PAC-Bayes bound [86] to the multi-task setting, which quantifies

the gap between empirical error on training tasks and the expected error on

new tasks. More recent research shows that, with tightened generalization

bounds as the training objective, the algorithms can reduce the test error for

mutually-exclusive tasks [35, 7]. Our analysis is different from these prior works

in that we only include pre-update meta parameters in the generalization bound

rather than both pre-update and post-update parameters. In the derivation,

we also explicitly consider the splitting of data into the task training set and

task validation set, which is aligned with the practical setting.

The memorization problem differs from overfitting in conventional su-

pervised learning in several aspects. First, memorization occurs at the task

level rather than datapoint level and the model memorizes functions rather

than labels. In particular, within a training task, the model can generalize

to new datapoints, but it fails to generalize to new tasks. Second, the source

of information for achieving generalization is different. For meta-learning the

information is from both the meta-training data and new task training data

but in standard supervised setting the information is only from training data.

Finally, the aim of regularization is different. In the conventional supervised

setting, regularization methods such as weight decay [72], dropout [133], the

information bottleneck [141, 140], and Bayes-by-Backprop [18] are used to

balance the network complexity and the information in the data. The aim of
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meta-regularization is different. It governs the model complexity to avoid one

complex model solving all tasks, while allowing the model’s dependency on

the task data to be complex. We further empirically validate this difference,

finding that standard regularization do not solve the memorization problem.

5.6 Experimental Results

In the experimental evaluation, we aim to answer the following questions:

(1) How prevalent is the memorization problem across different algorithms

and domains? (2) How does the memorization problem affect the perfor-

mance of algorithms on non-mutually-exclusive task distributions? (3) Is our

meta-regularization approach effective for mitigating the problem and is it

compatible with multiple types of meta-learning algorithms? (4) Is the problem

of memorization empirically distinct from that of the standard overfitting

problem?

To answer these questions, we propose several meta-learning problems

involving non-mutually-exclusive task distributions, including two problems that

are adapted from prior benchmarks with mutually-exclusive task distributions.

We consider model-agnostic meta-learning (MAML) and conditional neural

processes (CNP) as representative meta-learning algorithms. We study both

variants of our method in combination with MAML and CNP. When comparing

with meta-learning algorithms with and without meta-regularization, we use

the same neural network architecture, while other hyperparameters are tuned

via cross-validation per-problem.
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5.6.1 Sinusoid Regression

First, we consider a toy sinusoid regression problem that is non-mutually-

exclusive. The data for each task is created in the following way: the amplitude

A of the sinusoid is uniformly sampled from a set of 20 equally-spaced points

{0.1, 0.3, · · · , 4}; u is sampled uniformly from [−5, 5] and y is sampled from

N(A sin(u), 0.12). We provide both u and the amplitude A (as a one-hot vector)

as input, i.e. x = (u,A).

Table 5.1: Test MSE for the non-mutually-exclusive sinusoid regression problem.

Methods MAML MR-MAML (A)
(ours)

MR-MAML (W)
(ours) CNP MR-CNP (A)

(ours)
MR-CNP (W)

(ours)

5 shot 0.46 (0.04) 0.17 (0.03) 0.16 (0.04) 0.91 (0.10) 0.10 (0.01) 0.11 (0.02)
10 shot 0.13 (0.01) 0.07 (0.02) 0.06 (0.01) 0.92 (0.05) 0.09 (0.01) 0.09 (0.01)

At the test time, we expand the range of the tasks by randomly sampling

the data-generating amplitude A uniformly from [0.1, 4] and use a random

one-hot vector for the input to the network. The meta-training tasks are a

proper subset of the meta-test tasks.

In Table 5.1, we compare MAML and CNP against meta-regularized

MAML (MR-MAML) and meta-regularized CNP (MR-CNP) where regulariza-

tion is either on the activations (A) or the weights (W). We report the mean

over 5 trials and the standard deviation in parentheses. Without the additional

amplitude input, both MAML and CNP can easily solve the task and generalize

to the meta-test tasks. However, once we add the additional amplitude input

which indicates the task identity, we find that both MAML and CNP converge

to the complete memorization solution and fail to generalize well to test data
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(Appendix Figures D.2 and D.3). Both meta-regularized MAML and CNP

(MR-MAML) and (MR-CNP) instead converge to a solution that adapts to

the data, and as a result, greatly outperform the unregularized methods.

As shown in Figures 5.3, D.2 and D.3, when meta-learning algorithms

converge to the memorization solution, the test tasks must be similar to the

train tasks in order to achieve low test error. For CNP, although the task

training set contains sufficient information to infer the correct amplitude, this

information is ignored and the regression curve at test-time is determined

by the one-hot vector. As a result, CNP can only generalize to points from

the curves it has seen in the training (Figure D.2 first row). On the other

hand, MAML does use the task training data (Figure 5.3, D.3 and Table 5.1),

however, its performance is much worse than in the mutually-exclusive task.

MR-MAML and MR-CNP avoid converging to a memorization solution and

achieve excellent test performance on sinusoid task.

To illustrate the intuition that the model acquired when memorizing

tasks is more complex than the model that results from task-specific adaptation,

we plot the weight matrix for both MAML and CNP, with or without meta-

regularization on the weights. The input x = (u,A) where u ∼ Unif(−5, 5), A

is 20 dimensional one-hot vector and the intermediate layer is 100 dimensional,

hence x ∈ R21 and W ∈ R21×100. For both CNP and MAML, the meta-

regularization restricts the part of weights that is connected to A close to 0.

Therefore it avoids storing the amplitude information in weights and forces the

amplitude to be inferred from the task training data D, hence preventing the
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Figure 5.3: Test MSE on the mutually-non-exclusive sinusoid problem as
function of the number of gradient steps used in the inner loop of MAML and
MR-MAML. Each trial calculates the mean MSE over 100 randomly generated
meta-testing tasks. The mean and standard deviation over 5 random trials are
reported.

memorization problem.

(a) CNP (b) MR-CNP (W) (c) MAML (d) MR-MAML (W)

Figure 5.4: Visualization of the optimized weight matrix W that is connected
to the inputs in the sinusoid regression example.

5.6.2 Pose Prediction

To illustrate the memorization problem on a more realistic task, we

create a multi-task regression dataset based on the Pascal 3D data [156] (See

Appendix D.5.1 for a complete description). We randomly select 50 objects for

meta-training and the other 15 objects for meta-testing. For each object, we
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use MuJoCo [144] to render images with random orientations of the instance

on a table, visualized in Figure 5.1. For the meta-learning algorithm, the

observation (x) is the 128 × 128 gray-scale image and the label (y) is the

orientation relative to a fixed canonical pose. Because the number of objects in

the meta-training dataset is small, it is straightforward for a single network to

memorize the canonical pose for each training object and to infer the orientation

from the input image, thus achieving a low meta-training error without using

D. However, this solution performs poorly at the test time because it has not

seen the novel objects and their canonical poses.

Optimization modes and hyperparameter sensitivity. We choose the

learning rate from {0.0001, 0.0005, 0.001} for each method, β from {10−6, 10−5,

· · · , 1} for meta-regularization and report the results with the best hyperpa-

rameters (as measured on the meta-validation set) for each method. In this

domain, we find that the convergence point of the meta-learning algorithm

is determined by both the optimization landscape of the objective and the

training dynamics, which vary due to stochastic gradients and the random ini-

tialization. In particular, we observe that there are two modes of the objective,

one that corresponds to complete memorization and one that corresponds to

successful adaptation to the task data. As illustrated in the Figure 5.5, we

find that models that converge to a memorization solution have lower training

error than solutions which use the task training data, indicating a clear need

for meta-regularization. When the meta-regularization is on the activations,

the solution that the algorithms converge to depends on the learning rate,

107



while MR on the weights consistently converges to the adaptation solution (See

Appendix for the sensitivity analysis).

MR-CNP (A) MR-CNP (A) MR-CNP (W) MR-CNP (W)

Figure 5.5: Sensitivity of activation regularization and weight regularization
with respect to the learning rate on the pose prediction problem.

This suggests that MR on the activations is not always successful at

preventing memorization. Our hypothesis is that there exists a solution in

which the bottlenecked activations encode only the prediction y∗, and discard

other information. Such a solution can achieve both low training MSE and

low regularization loss without using task training data, particularly if the

predicted label contains a small number of bits (i.e., because the activations will

have low information complexity). However, note that this solution does not

achieve low regularization error when applying MR to the weights because the

function needed to produce the predicted label does not have low information

complexity. As a result, meta-regularization on the weights does not suffer

from this pathology and is robust to different learning rates. Therefore, we will

use regularization on weights as the proposed methodology in the following

experiments and algorithms in Appendix D.1.

Quantitative results. We compare MAML and CNP with their meta-

regularized versions (Table 5.2). We report the average over 5 trials and
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standard deviation in parentheses. We additionally include fine-tuning as

baseline, which trains a single network on all the instances jointly, and then

fine-tunes on the task training data. Meta-learning with meta-regularization

(on weights) outperforms all competing methods by a large margin. We show

test error as a function of the meta-regularization coefficient β in Figure 5.6.

The curve reflects the trade-off when changing the amount of information

contained in the weights. We observe β provides us a knob with which we can

control the degree to which the algorithm adapts versus memorizes. When β

is small, we observe memorization, leading to large test error; when β is too

large, the network does not store enough information in the weights to perform

the task. Crucially, in the middle of these two extremes, meta-regularization

is effective in inducing adaptation, leading to good generalization. It gives a

knob that allows us to tune the degree to which the model uses the data to

adapt versus relying on the prior.

Figure 5.6: The performance of MAML and CNP with meta-regularization on
the weights, as a function of the regularization strength β. The plot shows the
mean and standard deviation across 5 meta-training runs.
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Table 5.2: Meta-test MSE for the pose prediction problem. We compare
MR-MAML (ours) with conventional MAML and fine-tuning (FT).

Method MAML MR-MAML (W)
(ours) CNP MR-CNP (W)

(ours) FT FT + Weight Decay

MSE 5.39 (1.31) 2.26 (0.09) 8.48 (0.12) 2.89 (0.18) 7.33 (0.35) 6.16 (0.12)

Comparison to standard regularization. We compare our meta regular-

ization with standard regularization techniques, weight decay [72] and Bayes-

by-Backprop [18], in Table 5.3. We report the mean and standard deviation

over 5 random trials. We observe that simply applying standard regularization

to all the weights, as in conventional supervised learning, does not solve the

memorization problem, which validates that the memorization problem differs

from the standard overfitting problem.

Table 5.3: Meta-test MSE for the pose prediction problem. We compare MR-
CNP (ours) with conventional CNP, CNP with weight decay, and CNP with
Bayes-by-Backprop (BbB) regularization on all the weights.

Methods CNP CNP + Weight Decay CNP + BbB MR-CNP (W) (ours)

MSE 8.48 (0.12) 6.86 (0.27) 7.73 (0.82) 2.89 (0.18)

5.6.3 Omniglot and MiniImagenet Classification

Next, we study memorization in the few-shot classification problem by

adapting the few-shot Omniglot [76] and MiniImagenet [114, 150] benchmarks to

the non-mutually-exclusive setting. In the non-mutually-exclusive N-way K-shot

classification problem, each class is (randomly) assigned a fixed classification

label from 1 to N. For each task, we randomly select a corresponding class

for each classification label and K task training data points and K task test
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data points from that class2. This ensures that each class takes only one

classification label across tasks and different tasks are non-mutually-exclusive

(See Appendix D.5.2 for details).

We evaluate MAML, TAML [63], MR-MAML (ours), fine-tuning, and a

nearest neighbor baseline on non-mutually-exclusive classification tasks (Ta-

ble 5.4). The fine-tuning and nearest-neighbor baseline results for MiniImagenet

are from [114]. We find that MR-MAML significantly outperforms previous

methods on all of these tasks. To better understand the problem, for the

MAML variants, in Table 5.5 we report the pre-update accuracy for the non-

mutually-exclusive classification experiment in Section 5.6.3. The pre-update

accuracy is obtained by the initial parameters θ instead of the task adapted

parameters φ.

Table 5.4: Meta-test accuracy on non-mutually-exclusive (NME) classification.

NME Omniglot 20-way 1-shot 20-way 5-shot

MAML 7.8 (0.2)% 50.7 (22.9)%

TAML [63] 9.6 (2.3)% 67.9 (2.3)%

MR-MAML (W) 83.3 (0.8)% 94.1 (0.1)%

NME MiniImagenet 5-way 1-shot 5-way 5-shot

Fine-tuning 28.9 (0.5))% 49.8 (0.8))%

Nearest-neighbor 41.1 (0.7)% 51.0 (0.7) %

MAML 26.3 (0.7)% 41.6 (2.6)%

TAML [63] 26.1 (0.6)% 44.2 (1.7)%

MR-MAML (W) 43.6 (0.6)% 53.8 (0.9)%

At the meta-training time, for both MAML and MR-MAML the post-

update accuracy obtained by using φ gets close to 1. High pre-update accuracy

reflects the memorization problem. For example, in 20-way 1-shot Omniglot

2We assume that the number of classes in the meta-training set is larger than N .
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example, the pre-update accuracy for MAML is 99.2% at the training time,

which means only 0.8% improvement in accuracy is due to adaptation, so

the task training data is ignored to a large extent. The pre-update training

accuracy for MR-MAML is 5%, which means 95% improvement in accuracy

during training is due to the adaptation.

Table 5.5: Meta-training pre-update accuracy on non-mutually-exclusive classi-
fication.

NME Omniglot 20-way 1-shot 20-way 5-shot

MAML 99.2 (0.2)% 45.1 (38.9)%

TAML 68.9(43.1)% 6.7 (1.8)%

MR-MAML 5.0 (0)% 5.0 (0)%

NME MiniImagenet 5-way 1-shot 5-way 5-shot

MAML 99.4 (0.1)% 21.0(1.2)%

TAML 99.4 (0.1)% 20.8(0.4)%

MR-MAML 20.0(0)% 20.2(0.1)%

The high pre-update meta-training accuracy and low meta-test accuracy

are evidence of the memorization problem for MAML and TAML, indicating

that it is learning a model that ignores the task data. In contrast, MR-MAML

successfully controls the pre-update accuracy to be near chance and encourages

the learner to use the task training data to achieve low meta-training error,

resulting in good performance at meta-test time.

Finally, we verify that meta-regularization does not degrade performance

on the standard mutually-exclusive task. We evaluate performance as a function

of regularization strength on the standard 20-way 1-shot Omniglot task in

Figure 5.7, which shows the mean and standard deviation across 5 meta-training

runs. We find that small values of β lead to slight improvements over MAML.

This indicates that meta-regularization substantially improves performance in
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the non-mutually-exclusive setting without degrading performance in other

settings. Notice the accuracy numbers are not directly comparable to previous

work (e.g., [32]) because we do not use data augmentation.

MAML 1e-07 1e-06 1e-05 5e-05 0.0001 0.001
Beta

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Mutually-exclusive Omniglot 20-way 1-shot

Figure 5.7: The test accuracy of MAML with meta-regularization on the
weights as a function of the regularization strength β on the mutually-exclusive
20-way 1-shot Omniglot problem.

5.7 Conclusion and Discussion

Meta-learning has achieved remarkable success in few-shot learning

problems. However, we identify a pitfall of current algorithms: the need

to create task distributions that are mutually exclusive. This requirement

restricts the domains that meta-learning can be applied to. We formalize the

failure mode, i.e. the memorization problem, that results from training on

non-mutually-exclusive tasks and distinguish it as a function-level overfitting

problem compared to the the standard label-level overfitting in supervised

learning.
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We illustrate the memorization problem with different meta-learning

algorithms on a number of domains. To address the problem, we propose

an algorithm-agnostic meta-regularization (MR) approach that leverages an

information-theoretic perspective of the problem. The key idea is that by

placing a soft restriction on the information flow from meta-parameters in

prediction of test set labels, we can encourage the meta-learner to use task

training data during meta-training. We achieve this by successfully controlling

the complexity of model prior to the task adaptation.

The memorization issue is quite broad and is likely to occur in a wide

range of real-world applications, for example, personalized speech recogni-

tion systems, learning robots that can adapt to different environments [97],

and learning goal-conditioned manipulation skills using trial-and-error data.

Further, this challenge may also be prevalent in other conditional prediction

problems, beyond meta-learning, an interesting direction for future study. By

both recognizing the challenge of memorization and developing a general and

lightweight approach for solving it, we believe that this work represents an

important step towards making meta-learning algorithms applicable to and

effective on any problem domain.

114



Chapter 6

Conclusion and Future Directions

In this thesis, we propose novel methodologies and theoretical analysis

for variational methods. A common gist underlying different approaches is

to utilize the dependence structures among random quantities. Modeling the

dependence between random variables, we have proposed a framework that

significantly ameliorates the uncertainty estimation of variational inference.

We have proved the convergence properties of a pairwise dependent VI in a

case study for community detection with SBM. Using the dependence between

random samples, we have shown the efficiency of an unbiased, low-variance

stochastic gradient estimation for discrete latent variables. Scrutinizing the

relationship between correlated tasks, we have identified the memorization

problem in meta-learning and proposed variational regularization as a solution.

There are active research works on variational methods. One future

direction is to bridge the performance gap between VI and MCMC. In Chaper 2,

we have shown the potential of VI to achieve accurate uncertainty estimation

without sacrificing efficiency. Yet many open questions remain to be explored.

For example, a theoretical understanding of the speed-accuracy tradeoff is es-

sential to systematically choose hyper-parameters. A possibly more challenging
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extension would be exploring alternative approaches to model the dependence

structure, when the latent variables are extremely high-dimensional or accurate

uncertainty estimation for a large number of local variables is needed.

A promising future direction is to construct the theoretical foundation for

variational methods. There has been plenty of literature in the EM algorithm,

which can shed light on the study of variational methods since both are iterative

bound optimization algorithms. Recently, theoreticians have made progress

in understanding MFVI but mainly restricted to specific models. Extracting

similarities among such analysis to form a general theoretical framework for

MFVI can be an influential direction. In practice, many studies have empirically

suggested the benefits of structured variational inference. In Chaper 3, our

preliminary analysis is in a simplified setting as a blockmodel with a pairwise

structure and two equal-sized communities. A natural extension is generalizing

to broad dependence structures, probabilistic models and related algorithms

such as Belief Propagation.

In this thesis, the dependence structures are studied as statistical as-

sociations. An important future direction is to study the causal relationship.

Causal inference in observational study estimates the treatment effects for

the target population. The fundamental problem of causal inference is that

observing all potential outcomes on a single unit is impossible. To ensure

identifiability of causal effects, assumptions are necessary such as Stable Unit

Treatment Value Assumption (SUTVA), positivity, consistency, and ignorability.

Latent variable models and variational methods can facilitate causal reasoning
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when certain assumptions are too strong to satisfy in practice. For example,

ignorability assumes no unmeasured confounding. When this condition is not

met, the unmeasured confounders can be modeled as latent variables. The

latent variable models can probabilistically specify the dependence between ob-

servations and latent variables, between observed confounders and unmeasured

confounders, while variational methods can be applied to make the inference.

Causal inference is related to the missing data problem. In this context,

the counterfactual outcome can be viewed as the latent variable. Conditional

on the observed data, the imputation of unobserved potential outcomes can

be viewed as the posterior inference. The main challenge is that the data are

missing structurally: all the potential outcomes without treatment are missing

in the treatment group while all the potential outcomes with treatment are

missing in the control group. In machine learning, such a prediction problem has

been studied as the domain adaptation. Related latent variable models, such as

the hierarchical Bayesian model and meta-learning, take advantage of globally

shared and domain-specific variables for out-of-distribution generalization.

Some encouraging preliminary results have suggested that latent variables and

variational methods can be new tools for the counterfactual prediction.
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Appendix A

Appendix for Semi-Implicit Variational
Inference

A.1 Proofs of Main Results

Proof of Inequility (2.3). To prove a functional form of Jensen’s Inequality, let

h(z) = Eψ∼qφ(ψ)q(z|ψ) and 〈f, g〉L2 =
∫
f(z)g(z)dz. From Theorem 1, we

have convexity, and according to Theorem 6.2.1. of Kurdila and Zabarankin

[74], we have an equivalent first-order definition for convexity as

DKL(q(z|ψ)||p(z)) ≥DKL(h(z)||p) + 〈q(z|ψ)− h(z),∇qDKL(q||p)|h(z)〉L2

Taking the expectation with respect to ψ ∼ qφ(ψ) on both sides, we have

Eψ∼qφ(ψ)DKL(q(z|ψ)||p(z))

≥DKL(h(z)||p(z)) + Eψ∼qφ(ψ)[〈q(z|ψ)− h(z),∇qDKL(q||p)|h(z)〉L2 ]

=DKL(Eψ∼qφ(ψ)q(z|ψ)||p(z)).

Proof of Proposition 1. We show that directly maximizing the lower bound

L of ELBO in (2.4) may drive q(ψ) towards degeneracy. For VI that uses
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q(z |ψ) as its variational distribution, supposing ψ∗ is the optimum variational

parameter, which means

ψ∗ = arg max
ψ

−DKL(q(z |ψ)||p(x, z)),

then we have

L =

∫
qφ(ψ)[−DKL(q(z |ψ)||p(x, z))]dψ

≤
∫
qφ(ψ)dψ[−DKL(q(z |ψ∗)||p(x, z))]

= −DKL(q(z |ψ∗)||p(x, z)).

The equality in the above equation is reached if and only if q(ψ) = δψ∗(ψ),

which means the mixing distribution degenerates to a point mass density and

hence SIVI degenerates to vanilla VI.

Proof of Proposition 2. I0 = 0 is trivial. Denote ψ(0) = ψv. For i.i.d. samples

ψ(k) ∼ qφ(ψ), when K → ∞, by the strong law of large numbers, h̃K(z) =∑K
k=0 q(z |ψ

(k))

K+1
converges almost surely to Eqφ(ψ)q(z |ψ) = hφ(z). To prove

(2.7), by the strong law of large numbers, we first rewrite it as the limit of a

double sequence S(K, J), where K, J ∈ {1, 2, . . . , }, and check the condition

for interchange of iterated limits [120, 50]: i) The double limit exists; ii) Fixing

one index of the double sequence, for the other index the one side limit exists.

lim
K→∞

Eψ(0),ψ(1),··· ,ψ(K)∼q(ψ) log

∑K
k=0 q(z |ψ

(k))

K + 1

= lim
K→∞

lim
J→∞

1

J

J∑
j=1

log
1

K + 1

K∑
k=0

q(z |ψ(k)
j )

=∆ lim
K→∞

lim
J→∞

S(K, J)
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Here ψ(k)
j are i.i.d. samples from q(ψ). For i) we show double limit limK,J→∞

S(K, J) = log h(z). For ∀ε > 0, ∃N(ε), when K, J > N(ε), | log 1
K+1

∑K
k=0

q(z |ψ(k)
j )− log h(z)| < ε thanks to the law of large numbers, then∣∣∣∣∣

J∑
j=1

log
1

K + 1

K∑
k=0

q(z |ψ(k)
j )− J log h(z)

∣∣∣∣∣
≤

J∑
j=1

∣∣∣∣∣log
1

K + 1

K∑
k=0

q(z |ψ(k)
j )− log h(z)

∣∣∣∣∣ ≤ Jε

Deviding both sides by J we get |S(K, J)− log h(z)| ≤ ε when K, J > N(ε).

By definition, we have limK,J→∞ S(K, J) = log h(z).

ii) for each fixed J ∈ N, limK→∞ S(K, J) = log h(z) exists; for each fixed

K ∈ N, limJ→∞ S(K, J) = Eψ(0),ψ(1),··· ,ψ(K)∼q(ψ) log
∑K
k=0 q(z |ψ

(k))

K+1
≤ log h(z)

also exists. The limitation can then be interchanged and (2.7) is proved.

Therefore, we have

lim
k→∞

Lk = L + EψDKL(q(z |ψ)||hφ(z))

=Eψ∼q(ψ)Ez∼q(z |ψ)

[
log

q(z |ψ)

hφ(z)
− log

q(z |ψ)

p(x, z)

]
=− Eψ∼q(ψ)Ez∼q(z |ψ) log

hφ(z)

p(x, z)

=−DKL(hφ(z)||p(x, z)) = L

A.2 Bayesian Logistic Regression

We consider datesets waveform (n = 5000, V = 21, and 400/4600 for

training/testing), spam (n = 3000, V = 2, and 2000/1000 for training/testing),
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and nodal (n = 53, V = 5, and 25/28 for training/testing). The training-set-size

to feature-dimension ratio ntrain/V clearly varies in these three datasets, and

we expect the posterior uncertainty to be large if this ratio is small.

The contribution of observation i to the likelihood can be expressed as

P (yi |xi,β) =
eyx

′
iβ

1 + ex
′
iβ
∝ e(y− 1

2
)x′iβEωi

[
e−

ωi(x
′
iβ)

2

2

]
,

where the expectation is taken respect to ωi ∼ PG(1, 0), and hence we have an

augmented likelihood as

P (yi, ωi |xi,β) ∝ e(y− 1
2

)x′iβ−
1
2
ωi(x

′
iβ)2 . (A.1)

A.2.1 Gibbs Sampling via Data Augmentation

Denoting X = (x1, . . . ,xN)′, y = (y1, . . . , yN)′, A = diag(α0, . . . , αV )′,

and Ω = diag(ω1, . . . , ωN), we have

(ωi | −) ∼ PG(1,x′iβ), (β | −) ∼ N(µ,Σ), (A.2)

where Σ = (A + X′ΩX)−1 and µ = ΣX′(y − 1/2).

A.2.2 Mean-Field Variational Inference with Diagonal Covariance
Matrix

We choose a fully factorized Q distribution as

Q =
[∏

i
q(ωi)

] [∏
v
q(βv)

]
. (A.3)

To exploit conjugacy, defining

q(ωi) = PG (1, λi) , q(βv) = N(µv, σ
2
v), (A.4)
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we have closed-form coordinate ascent variational inference update equations

as

λi =
√

E[(x′iβ)2] =
√
x′iE[ββ′]xi, σ2

v =
(
E[αv] +

∑
i
E[ωi]x

2
iv

)−1

µv = σ2
v

∑
i
xiv

{
yi − 1/2− E[ωi]

∑
ṽ 6=v

xiṽE[βṽ]
}
, (A.5)

where the expectations with respect to the q distributions can be expressed as

E[ββ′] = µµ′ + diag(σ2
0, . . . , σ

2
V ) and E[ωi] = tanh(λi/2)/(2λi).

A.2.3 Mean-Field Variational Inference with Full Covariance Ma-
trix

We choose a fully factorized Q distribution as

Q =
[∏

i
q(ωi)

]
q(β), q(ωi) = PG (1, λi) , q(β) = N(µ,Σ). (A.6)

We have closed-form coordinate ascent variational inference update

equations as

λi =
√

E[(x′iβ)2] =
√
x′iE[ββ′]xi, Σ = (E[A] + X′E[Ω]X)−1, µ = ΣX′(y − 1/2),

where the expectations with respect to the q distributions can be expressed as

E[ββ′] = µµ′ + Σ and E[ωi] = tanh(λi/2)/(2λi).

A.2.4 SIVI Configuration

For inputs in Algorithm 1, we choose multi-layer perceptron with layer

size [100, 200, 100] as Tφ for ψ = Tφ(ε), ε as 50 dimensional isotropic Gaussian

random variable and K = 1000, J = 50. We choose multivariate normal as
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explicit distribution qξ(z |ψ) = N(z;ψ, ξ). In this setting, ψ is the mean

variable generated from qφ(ψ) while ξ is the covariance matrix which can

be either diagonal or full. In the experiments, we update the neural network

parameter φ by Adam optimizer and update ξ by gradient descent. The implicit

layer parameter φ and explicit layer parameter ξ are updated iteratively.

A.3 Experimental Settings and Results for SIVAE

We implement SIVI with M = 3 stochastic hidden layers, with the

dimensions of hidden layers [`1, `2, `3] as [150, 150, 150] and with the dimensions

of injected noises [ε1, ε2, ε3] as [150, 100, 50]. Between two adjacent stochastic

layers there is a fully connected deterministic layer with size 500 and ReLU

activation function. We choose binary pepper and salt noise [60] for qt(ε).

The model is trained for 2000 epochs with mini-batch size 200 and step-size

0.001 ∗ 0.75epoch/100. Kt is gradually increased from 1 to 100 during the first

1500 epochs. The explicit and implicit layers are trained iteratively. Warm-up

is used during the first 300 epochs as suggested by Sønderby et al. [132] to

gradually impose the prior regularization term DKL(qφ(z |x)||p(z)). The model

is trained end-to-end using the Adam optimizer. After training process, as in

Rezende et al. [117] and Burda et al. [19], we compute the marginal likelihood

for test set by importance sampling with S = 2000:

log p(x) ≈ log
1

S

S∑
s=1

p(x | zs)p(zs)
h(zs|x)

, zs ∼ h(zs|x).
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A.4 Additional Figures
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Figure A.1: Sample means and stan-
dard deviations of predictive proba-
bilities for dataset nodal.
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Figure A.2: Boxplot of marginal pos-
teriors inferred by MCMC, SIVI, and
MFVI for dataset nodal.
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Figure A.3: Univariate marginal and pairwise joint posteriors for dataset nodal.
Blue, green, and red are for MCMC, SIVI with a full covariance matrix, and
MFVI with a full covariance matrix.
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Appendix B

Appendix for Structured Variational Inference
for Community Detection

This appendix contains detailed proofs and derivation of theoretical

results presented in the chaper 3, and additional experimental results. In

particular, Section B.1 contains the detailed derivation of updates of the

Variational Inference with Pairwise Structure (VIPS) algorithm. Section B.2

contains detailed proofs of the theoretical results presented in the chaper 3.

B.1 Detailed Derivation of the Updates of VIPS

In the chaper 3, the Evidence Lower BOund (ELBO) (3.5) for pairwise

structured variational inference is

L(Q; π,B) =
1

2
EQ

∑
i 6=j,a,b

[ZiaZjb(A
zz
ij αab + f(αab)) + YiaYjb(A

yy
ij αab + f(αab))]

+EQ[
∑
i 6=j,a,b

ZiaYjb(A
zy
ij αab + f(αab)) +

∑
i,a,b

ZiaYib(A
zy
ii αab + f(αab))]

−
m∑
i=1

DKL(Q(zi, yi)||P (zi)P (yi))

where αab = log(Bab/(1−Bab)) and f(α) = − log(1 + eα). Denote the first four

terms in ELBO as T1, T2, T3, T4, where T1, T2 correspond to the likelihood

of the blocks Azz and Ayy in the adjacency matrix, T3 corresponds to the

126



likelihood of (zi, yj), i 6= j and T4 corresponds to (zi, yi). Plugging in the

marginal density of the independent nodes in T1, T2, T3 and joint density of

the dependent nodes in T4, we have

T1 =
1

2

∑
i 6=j

{
[(1− φi)(1− φj) + φiφj](A

zz
ij log

p

1− p
+ log(1− p))+ (B.1)

[(1− φi)φj + φi(1− φj)](Azzij log
q

1− q
+ log(1− q))

}
T2 =

1

2

∑
i 6=j

{
[(1− ξi)(1− ξj) + ξiξj](A

yy
ij log

p

1− p
+ log(1− p))+ (B.2)

[(1− ξi)ξj + ξi(1− ξj)](Ayyij log
q

1− q
+ log(1− q))

}
T3 =

∑
i 6=j

{
[(1− φi)(1− ξj) + φiξj](A

zy
ij log

p

1− p
+ log(1− p))+ (B.3)

[(1− φi)ξj + φi(1− ξj)](Azyij log
q

1− q
+ log(1− q))

}
T4 =

∑
i

{
(1− ψ01

i − ψ10
i )(Azyii log

p

1− p
+ log(1− p))+ (B.4)

(ψ01
i + ψ10

i )(Azyii log
q

1− q
+ log(1− q))

}
The KL regularization term (3.6) is

DKL(Q(zi, yi)||P (zi)P (yi)) =
∑

0≤c,d≤1

ψcdi log
ψcdi

πcπd(1− π)1−c(1− π)1−d

To take the derivative of L(Q;π,B) with respect to ψcdi , cd 6= 0, we first have

the derivative of the KL term

∂

∂ψcdi
DKL(Q(zi, yi)||P (zi)P (yi)) = log

ψcdi
πc+d(1− π)2−c−d − log

ψ00
i

(1− π)2

= log
ψcdi

1− ψ01
i − ψ10

i − ψ11
i

(π =
1

2
) (B.5)
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Denote the right hand side of Eq. (B.5) as θcdi := log
ψcdi

1−ψ01
i −ψ10

i −ψ11
i
. For the

reconstruction terms, denoting T (a, p) := a log( p
1−p) + log(1− p) for simplicity,

the derivative can be computed as

∂

∂ψ10
i

(
∑

Tk) =
∑
j,j 6=i

[
(2φj − 1)T (Azzij , p)− (2φj − 1)T (Azzij , q)

]
+ (B.6)

∑
j,j 6=i

[
(2ξj − 1)T (Azyij , p)− (2ξj − 1)T (Azyij , q)

]
+
[
− T (Azyii , p) + T (Azyii , q)

]

∂

∂ψ01
i

(
∑

Tk) =
∑
j,j 6=i

[
(2ξj − 1)T (Ayyij , p)− (2ξj − 1)T (Ayyij , q)

]
+ (B.7)

∑
j,j 6=i

[
(2φj − 1)T (Azyji , p)− (2φj − 1)T (Azyji , q)

]
+
[
− T (Azyii , p) + T (Azyii , q)

]

∂

∂ψ11
i

(
∑

Tk) =
∑
j,j 6=i

[
(2φj − 1)T (Azzij , p)− (2φj − 1)T (Azzij , q)

]
+ (B.8)

∑
j,j 6=i

[
(2ξj − 1)T (Ayyij , p)− (2ξj − 1)T (Ayyij , q)

]
+

∑
j,j 6=i

[
(2ξj − 1)T (Azyij , p)− (2ξj − 1)T (Azyij , q)

]
+

∑
j,j 6=i

[
(2φj − 1)T (Azyji , p)− (2φj − 1)T (Azyji , q)

]
Setting the derivatives to 0 we get the update for θ as (3.9), (3.8), (3.10).

B.2 Proofs of Main Results

To prove Theroem 2, we first need a few lemmas. First we have the

following lemma for the parameters p, q and λ.
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Lemma 1. If p � q � ρn, ρn → 0 and p− q = Ω(ρn), then

λ− q = Ω(ρn) > 0,
p+ q

2
− λ = Ω(ρn) > 0. (B.9)

Proof. The proof follows from Proposition 2 in Sarkar et al. [126].

In the proof, we utilize the spectral property of the population matrix

P and generalize it to the finite sample case by bounding the term related to

the residual R = A− P . We use Berry-Esseen Theorem to bound the residual

terms conditioning on u.

Lemma 2 (Berry-Esseen bound). Define

ri =
n∑
j=1

(Aij − Pij)(u(j)− 1

2
),

where u and A are independent.

sup
x∈R
|P (ri/σu ≤ x | u)− Φ(x)| ≤ Cρu

σ3
u

,

where C is a general constant, Φ(·) is the CDF of standard Gaussian, ρu and

σu depend on u.

Proof. Since ri is the sum of independent, mean zero random variables, the

sum of the conditional variances is

σ2
u = Var(ri|u) =p(1− p)

∑
i∈G1

(u(i)− 1

2
)2 + q(1− q)

∑
i∈G2

(u(i)− 1

2
)2,

and the sum of the conditional absolute third central moments is

ρu = p(1− p)(1− 2p+ 2p2)
∑

i∈G1
|u(i)− 1

2
|3 + q(1− q)(1− 2q + 2q2)

∑
i∈G2
|u(i)− 1

2
|3.

The desired bound follows from the Berry-Esseen Theorem.
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The next lemma shows despite the fact that A introduces some depen-

dency among ri due to its symmetry, we can still treat ri as almost iid.

Lemma 3 (McDiarmid’s Inequality). Let ri be the noise defined in Lemma 2

and let h(ri) be a bounded function with ‖h‖∞ ≤M . Then

P

(∣∣∣∣∣ 2n∑
i∈A

h(ri)− E(h(ri)|u)

∣∣∣∣∣ > w | u

)
≤ exp

(
−c0w

2

nM

)
for some general constant c0, provided |A| = ΘP (n).

Proof. The proof follows from Lemma 20 in Sarkar et al. [126].

Lemma 4. Let ri be defined as in Lemma 2 and assume A and u are inde-

pendent, we have supi∈A |ri| = OP (
√
nρn log n) if the index set |A| = ΘP (n).

Proof. Since ri is the sum of independent bounded random variables, for all i,

ri = OP (
√
nρn). By Hoeffding inequility, we know for all t > 0

P (|ri| > t) ≤ exp(− t2

2nρn
)

and by the union bound

P (sup
i
|ri| > t) ≤ exp(C log n− t2

2nρn
)

For ∀ε > 0, let t = Cε
√
nρn log n with n

C2
ε
2
−1 > 1/ε, then by definition

supi |ri| = OP (
√
nρn log n)
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Next we have a lemma ensuring the signal in the first iteration is not

too small.

Lemma 5 (Littlewood-Offord). Let s1 = (p− λ)
∑

i∈G1
(u(0)(i)− 1/2) + (q −

λ)
∑

i∈G2
(u(0)(i)−1/2), s2 = (q−λ)

∑
i∈G1

(u(0)(i)−1/2)+(p−λ)
∑

i∈G2
(u(0)(i)−

1/2). Then

P (|s1| ≤ c) ≤ B · c

ρn
√
n

for c > 0 and B as constant. The same bound holds for |s2|, |s1 − s2|.

Proof. Noting that 2u(0)(i) − 1 ∈ {−1, 1} each with probability 1/2, and

Lemma 1, this is a direct consequence of the Littlewood-Offord bound in Erdös

[29].

Finally, we have the following upper and lower bound for some general

update φi.

Lemma 6. Assume φi has the update form φi = (a + e4t(s+ri))/(b + e4t(s+ri))

for i ∈ [m], b > a > 0 and b− a, (b− a)/b are of constant order. ri is defined

as in Lemma 2. Let set A ⊂ [m], with ∆ > 0, we have

∑
i∈A

φi ≥|A| −
b− a
b
|A|Φ(

−s+ ∆

σu
)− C ′|A|ρu

σ3
u

− C ′′|A|e−4t∆ −OP (
√
|A|),

∑
i∈A

φi ≤|A| −
b− a
b
|A|Φ(

−s−∆

σu
) + C ′|A|ρu

σ3
u

+ |A|e−4t∆ +OP (
√
|A|).
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Proof. Define the set J+ = {i : ri > −s+ ∆}, ∆ ≥ 0. For i ∈ A ∩ J+

φi =
a+ e4t(s+ri)

b+ e4t(s+ri)
≥ a+ e4t∆

b+ e4t∆
≥ 1− (b− a)e−4t∆

For i ∈ (A ∩ J+)c, φi ≥ a/b, therefore

∑
i∈A

φi ≥|A ∩ J+|(1− (b− a)e−4t∆) +
a

b
(|A| − |A ∩ J+|)

=|A ∩ J+|(b− a
b
− (b− a)e−4t∆) +

a

b
|A|

By Lemmas 2 and 3, we have

|A ∩ J+| =
∑
i∈A

1[ri > −s+ ∆]

=|A| · P (ri > −s+ ∆) +OP (
√
|A|)

≥|A| · (1− Φ(
−s+ ∆

σu
)− C0

ρu
σ3
u

) +OP (
√
|A|).

Combining the above,

∑
i∈A

φi ≥|A| −
b− a
b
|A|Φ(

−s+ ∆

σu
)− C ′|A|ρu

σ3
u

− C ′′|A|e−4t∆ −OP (
√
|A|)

Similarly, define the set J− = {i : ri < −s−∆}, ∆ ≥ 0. For i ∈ A ∩ J−,

φi =
a+ e4t(s+ri)

b+ e4t(s+ri)
≤ a+ e−4t∆

b+ e−4t∆
≤ a

b
+ e−4t∆

For i ∈ (A ∩ J−)c, φi ≤ 1, so

∑
i∈A

φi ≤|A ∩ J−|(
a

b
+ e−4t∆) + (|A| − |A ∩ J−|)

=|A| − |A ∩ J−|(1− a

b
− e−4t∆) +OP (

√
|A|)
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By Lemmas 2 and 3,

|A ∩ J−| ≥ |A| · (Φ(
−s−∆

σu
)− C0

ρu
σ3
u

)−OP (
√
|A|)

so ∑
i∈A

φi ≤|A| −
b− a
b
|A|Φ(

−s−∆

σu
) + C ′|A|ρu

σ3
u

+ |A|e−4t∆ +OP (
√
|A|)

Proof of Theorem 2. Throughout the proof, we assume A has self-loops for

convenience, which does not affect the asymptotic results.

Analysis of the first iteration in the first meta iteration:

For random initialized u(0), the initial signal |〈u(0), v2〉| = OP (
√
n).

Using the graph split A(0), we write the update of θ10 as

θ10 =4t([6(A(0))zz, 6(A(0))zy]− λJ)(u(0) − 1

2
1n)

=4t([P zz, P zy]− λJ)(u(0) − 1

2
1n)︸ ︷︷ ︸

signal

+ 4t[6(A(0))zz − P zz, 6(A(0))zy − P zy](u(0) − 1

2
1n),︸ ︷︷ ︸

noise

(B.10)

where P is the population matrix of A. Denote R(0) = 6A(0) − P and r(0) =

[(R(0))zz, (R(0))zy](u(0) − 1
2
1) Since P has singular value decomposition as P =

p+q
2

1n1
T
n + p−q

2
v2v

T
2 , the signal part is blockwise constant and we can write

θ10 = 4t(s11C1 + s21C2 + r(0)), (B.11)

where

s1 =(
p+ q

2
− λ)(〈u(0),1n〉 −m) + (

p− q
2

)〈u(0), v2〉

s2 =(
p+ q

2
− λ)(〈u(0),1n〉 −m)− (

p− q
2

)〈u(0), v2〉 (B.12)
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By (3.11), since we initialize with θ01, θ11 = 0, the marginal probabilities are

updated as

φ
(1)
1 =

1 + eθ
10

3 + eθ10
, ξ

(1)
1 =

2

3 + eθ10
(B.13)

Next we show the signal |〈u, v2〉| increases from OP (
√
n) to ΩP (n

√
ρn). (We

omit the superscript on logits s,x and y now for simplicity.) Since

〈u(1)
1 , v2〉 = 〈φ(1)

1i , v21〉+ 〈ξ(1)
1i , v22〉 =

∑
i∈C1

φ
(1)
i −

∑
i∈C2

φ
(1)
i + 〈ξ(1), v22〉

we use Lemma 6 to bound
∑

i∈C1
φ

(1)
i and

∑
i∈C2

φ
(1)
i . Since s1 and s2 depends

on u(0), we consider two cases conditioning on u(0).

Case 1 : s1 > s2. By Lemma 6, let ∆ = 1
4
(s1 − s2) with A = C1, C2,

(a, b) = (1, 3), conditioning on u(0),

∑
i∈C1

φ
(1)
1i ≥ −

n

6
Φ(−

s1 − 1
4
(s1 − s2)

σu
) +

n

4
− C ′nρu

σ3
u

− C ′′ne−t(s1−s2) −OP (
√
n),

∑
i∈C2

φ
(1)
1i ≤

n

4
− n

6
Φ(−

s2 + 1
4
(s1 − s2)

σu
) + C ′n

ρu
σ3
u

+ C ′′ne−t(s1−s2) +OP (
√
n),

where the OP (
√
n) term can be made uniform in u(0). So we have

〈φ(1)
1 , v21〉 ≥

n

6
(Φ(−

s2 + 1
4
(s1 − s2)

σu
)− Φ(−

s1 − 1
4
(s1 − s2)

σu
))

− C ′nρu
σ3
u

− C ′′ne−t(s1−s2) −OP (
√
n)

≥ n

6
√

2π
(
s1 − s2

2σu
) exp

(
−s

2
1 ∨ s2

2

2σ2
u

)
− C ′nρu

σ3
u

− C ′′ne−t(s1−s2) −OP (
√
n). (B.14)
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Here to approximate the CDF Φ, we have used

|Φ(x)− 1/2| = 1√
2π

∫ |x|
0

e−u
2/2du ≥ |x|√

2π
e−x

2/2. (B.15)

Case 2 : s1 < s2. The same analysis applies with s1 and s2 interchanged.

Combining Case 1 and Case 2, for any given u(0),

|〈φ(1)
1 , v21〉| ≥

n

6
√

2π
(
|s1 − s2|

2σu
) exp

(
−s

2
1 ∨ s2

2

2σ2
u

)
− C ′nρu

σ3
u

− C ′′ne−t|s1−s2| −OP (
√
n). (B.16)

We note that |s1|, |s2|, |s1 − s2| are of order ΩP (
√
nρn) by Lemma 5. Also

σ2
u, ρu � nρn, e−4t|s1−s2| = exp(−Ω(ρn

√
n)). We can conclude that |〈φ(1)

1 , v21〉|

= ΩP (n
√
ρn). For 〈ξ(1)

1 , v22〉 we have

|〈ξ(1)
1 , v22〉| =

∣∣∣∑
i∈C′1

ξ
(1)
i −

∑
i∈C′2

ξ
(1)
i

∣∣∣ =
∣∣∣∑
i∈C′2

φ
(1)
i −

∑
i∈C′1

φ
(1)
i + |C ′1| − |C ′2|

∣∣∣
=OP (

√
n)

Therefore we have |〈u(1)
1 , v2〉| = ΩP (n

√
ρn). By (B.13), 〈u(1)

1 ,1〉 −m = 0.

Due to the symmetry in s1 and s2, WLOG in the following analysis, we

assume 〈u(1)
1 , v2〉 > 0 (equivalently s1 > s2).

Analysis of the second iteration in the first meta iteration:
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Similar to (B.10), we can write

θ01 =4t([6(A(1))yz, 6(A(1))yy]− λJ)(u
(1)
1 −

1

2
1n)

= 4t([P yz, P yy]− λJ)(u
(1)
1 −

1

2
1n)︸ ︷︷ ︸

signal

+ 4t(R(1))yz(φ
(1)
1 −

1

2
1m) + 4t(R(1))yy(ξ

(1)
1 −

1

2
1m)︸ ︷︷ ︸

noise := 4tr
(1)
i

.

Noting the signal part is blockwise constant, we have

θ01 =4t(x11C′1 + x21C′2 + r(1)),

x1 =(
p+ q

2
− λ)(〈u(1)

1 ,1n〉 −m) + (
p− q

2
)〈u(1)

1 , v2〉

x2 =(
p+ q

2
− λ)(〈u(1)

1 ,1n〉 −m)− (
p− q

2
)〈u(1)

1 , v2〉

By (B.13), 〈u(1)
1 ,1n〉 −m = 0 and we have

x1 = (
p− q

2
)〈u(1)

1 , v2〉, x2 = −x1.

It follows then from the first iteration that x1,−x2 = ΩP (nρ
3/2
n ). The update

for u(1)
2 is

φ
(1)
2 =

1 + eθ
10

2 + eθ10 + eθ01
, ξ

(1)
2 =

1 + eθ
01

2 + eθ10 + eθ01
(B.17)

Since the signal part of θ10 and θ01 are blockwise constant on C1, C2 and C ′1,
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C ′2 respectively, 〈u(1)
2 , v2〉 can be calculated as

〈φ(1)
2 , v21〉 =

∑
i∈C11

1 + e4t(s1+r
(0)
i )

2 + e4t(s1+r
(0)
i ) + e4t(x1+r

(1)
i )

+
∑
i∈C12

1 + e4t(s1+r
(0)
i )

2 + e4t(s1+r
(0)
i ) + e4t(x2+r

(1)
i )

−
∑
i∈C21

1 + e4t(s2+r
(0)
i )

2 + e4t(s2+r
(0)
i ) + e4t(x1+r

(1)
i )
−
∑
i∈C22

1 + e4t(s2+r
(0)
i )

2 + e4t(s2+r
(0)
i ) + e4t(x2+r

(1)
i )

〈ξ(1)
2 , v22〉 =

∑
i∈C11

1 + e4t(x1+r
(1)
i )

2 + e4t(s1+r
(0)
i ) + e4t(x1+r

(1)
i )

+
∑
i∈C21

1 + e4t(x1+r
(1)
i )

2 + e4t(s2+r
(0)
i ) + e4t(x1+r

(1)
i )

−
∑
i∈C12

1 + e4t(x2+r
(1)
i )

2 + e4t(s1+r
(0)
i ) + e4t(x2+r

(1)
i )
−
∑
i∈C22

1 + e4t(x2+r
(1)
i )

2 + e4t(s2+r
(0)
i ) + e4t(x2+r

(1)
i )

In the case of 〈u(1)
1 , v2〉 > 0, we know s1 > s2 and x1 > 0 > x2. We first

show that 〈φ(1)
2 , v21〉 is positive by finding a lower bound for the summations

over C12, C21, C22 (since the sum over C11 is always positive).

For the summation over C12, note that |x2| dominates both s1 and r(0)
i ,

r
(1)
i by Lemma 4, we have∑
i∈C12

1 + e4t(s1+r
(0)
i )

2 + e4t(s1+r
(0)
i ) + e4t(x2+r

(1)
i )

=
∑
i∈C12

1 + e4t(s1+r
(0)
i )

2 + e4t(s1+r
(0)
i )

+ n exp(−ΩP (nρ3/2
n )).

To lower bound the first term, we use Lemma 6 by first conditioning on u(0),∑
i∈C12

1+e4t(s1+r
(0)
i

)

2+e4t(s1+r
(0)
i

)
≥ n

8

(
1− 1

2
Φ(−s1+∆

σu
)
)
− C ′n ρu

σ3
u
− C ′′ne−4t∆ −OP (

√
n)

(B.18)

For the summation over C22,∑
i∈C22

1 + e4t(s2+r
(0)
i )

2 + e4t(s2+r
(0)
i ) + e4t(x2+r

(1)
i )
≤
∑
i∈C22

1 + e4t(s2+r
(0)
i )

2 + e4t(s2+r
(0)
i )

≤n
8

(
1− 1

2
Φ(
−s2 −∆

σu
)

)
+ C ′n

ρu
σ3
u

+ C ′′ne−4t∆ +OP (
√
n) (B.19)
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For the summation over C21, x1 dominates s2 and r(0)
i , r

(1)
i by Lemma 4,∑

i∈C21

1 + e4t(s2+r
(0)
i )

2 + e4t(s2+r
(0)
i ) + e4t(x1+r

(1)
i )

= n exp(−ΩP (nρ3/2
n )). (B.20)

Combining (B.18) - (B.20), setting ∆ = 1
4
(s1 − s2), we have

〈φ(1)
2 , v21〉

≥ n

8

[1
2

Φ(
−s2 −∆

σu
)− 1

2
Φ(
−s1 + ∆

σu
)
]
− C ′nρu

σ3
u

− C ′′ne−4t∆ −OP (
√
n)

≥ n

16

1√
2π

(
s1 − s2

σu
) exp

(
−s

2
1 ∨ s2

2

2σ2
u

)
− C ′nρu

σ3
u

− C ′′ne−t(s1−s2) −OP (
√
n)

by the same argument as (B.14). As before, we can see that

〈φ(1)
2 , v21〉 = ΩP (n

√
ρn)

For 〈ξ(1)
2 , v22〉, since (1 + ex)/(2 + ex) ≤ 1/2 + ex, we have∑
i∈C12

1 + e4t(x2+r
(1)
i )

2 + e4t(s1+r
(0)
i ) + e4t(x2+r

(1)
i )

+
∑
i∈C22

1 + e4t(x2+r
(1)
i )

2 + e4t(s2+r
(0)
i ) + e4t(x2+r

(1)
i )

≤n
8

+
∑
i∈C′2

e4t(x2+r
(1)
i ) +OP (

√
n)

≤n
8

+OP (
√
n). (B.21)

For the other two sums, we have∑
i∈C11

1 + e4t(x1+r
(1)
i )

2 + e4t(s1+r
(0)
i ) + e4t(x1+r

(1)
i )
≥ n

8
−OP (

√
n)− n exp(−ΩP (nρ3/2

n )),

≥ n

8
−OP (

√
n) (B.22)

and ∑
i∈C21

1 + e4t(x1+r
(1)
i )

2 + e4t(s2+r
(0)
i ) + e4t(x1+r

(1)
i )
≥ n

8
−OP (

√
n) (B.23)
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Equations (B.21) - (B.23) imply

〈ξ(1)
2 , v22〉 ≥

n

8
−OP (

√
n).

Therefore 〈u(1)
2 , v2〉 ≥ n/8 − OP (

√
n). Since by (B.17), φ(1)

2 = 1m − ξ(1)
2 , the

inner product 〈u(1)
2 ,1〉 −m = 0.

Analysis of the third iteration in the first meta iteration:

Similar to the previous two iterations, we can write

θ11 = 4t(y11C1 + y21C2 + y11C′1 + y21C′2 + r(2)),

y1 = (
p− q

2
)〈u(1)

2 , v2〉, y2 = −y1

r(2) = [(R(2))zz, (R(2))zy](u2 −
1

2
1n) + [(R(2))yz, (R(2))yy](u

(1)
2 −

1

2
1n).

It follows from the second iteration that y1,−y2 = ΩP (nρn). The update for

u
(1)
3 is

φ
(1)
3 =

eθ
11

+ eθ
10

1 + eθ10 + eθ01 + eθ11
, ξ

(1)
3 =

eθ
11

+ eθ
01

1 + eθ10 + eθ01 + eθ11
(B.24)

The 〈u(1)
3 , v2〉 can be calculated as

〈u(1)
3 , v2〉 =

∑
i∈C11

2e8t(y1+r
(2)
i ) + e4t(x1+r

(1)
i ) + e4t(s1+r

(0)
i )

1 + e4t(s1+r
(0)
i ) + e4t(x1+r

(1)
i ) + e8t(y1+r

(2)
i )

+
∑
i∈C12

e4t(s1+r
(0)
i ) − e4t(x2+r

(1)
i )

1 + e4tr
(2)
i + e4t(s1+r

(0)
i ) + e4t(x2+r

(1)
i )

+
∑
i∈C21

e4t(x1+r
(1)
i ) − e4t(s2+r

(0)
i )

1 + e4tr
(2)
i + e4t(s2+r

(0)
i ) + e4t(x1+r

(1)
i )

−
∑
i∈C22

2e8t(y2+r
(2)
i ) + e4t(s2+r

(0)
i ) + e4t(x2+r

(1)
i )

1 + e4t(s2+r
(0)
i ) + e4t(x2+r

(1)
i ) + e8t(y2+r

(2)
i )

(B.25)

139



Using the order of the x and y terms and Lemma 4, we can lower bound

〈u(1)
3 , v2〉 by

〈u(1)
3 , v2〉 ≥ n

4
+
∑

i∈C12

e4t(s1+r
(0)
i

)

1+e4tr
(2)
i +e4t(s1+r

(0)
i

)
+ n

8
−
∑

i∈C22

e4t(s2+r
(0)
i

)

1+e4t(s2+r
(0)
i

)
−OP (

√
n)

≥ n
4
−OP (

√
n). (B.26)

Next we bound 〈u(1)
3 ,1n〉 −m.

〈u(1)
3 ,1n〉 =

∑
i∈C11

2e8t(y1+r
(2)
i ) + e4t(x1+r

(1)
i ) + e4t(s1+r

(0)
i )

1 + e4t(s1+r
(0)
i ) + e4t(x1+r

(1)
i ) + e8t(y1+r

(2)
i )

+
∑
i∈C12

2e4tr
(2)
i + e4t(s1+r

(0)
i ) + e4t(x2+r

(1)
i )

1 + e4tr
(2)
i + e4t(s1+r

(0)
i ) + e4t(x2+r

(1)
i )

+
∑
i∈C21

2e4tr
(2)
i + e4t(x1+r

(1)
i ) + e4t(s2+r

(0)
i )

1 + e4tr
(2)
i + e4t(s2+r

(0)
i ) + e4t(x1+r

(1)
i )

+
∑
i∈C22

2e8t(y2+r
(2)
i ) + e4t(s2+r

(0)
i ) + e4t(x2+r

(1)
i )

1 + e4t(s2+r
(0)
i ) + e4t(x2+r

(1)
i ) + e8t(y2+r

(2)
i )
, (B.27)

Then

〈u(1)
3 ,1n〉 = 3n

8
+
∑

i∈C12

2e4tr
(2)
i +e4t(s1+r

(0)
i

)

1+e4tr
(2)
i +e4t(s1+r

(0)
i

)
+
∑

i∈C22

e4t(s2+r
(0)
i

)

1+e4t(s2+r
(0)
i

)
+OP (

√
n),

〈u(1)
3 ,1n〉 ≥

3n

8
−OP (

√
n),

and

〈u(1)
3 ,1n〉 ≤

3n

8
+
∑
i∈C12

(
e4tr

(2)
i

1 + e4tr
(2)
i + e4t(s1+r

(0)
i )

+
e4tr

(2)
i + e4t(s1+r

(0)
i )

1 + e4tr
(2)
i + e4t(s1+r

(0)
i )

)

+
∑
i∈C22

e4t(s2+r
(0)
i )

1 + e4t(s2+r
(0)
i )

+OP (
√
n)

≤ 3n

4
+OP (

√
n)
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It follows then

−n/8−OP (
√
n) ≤ 〈u(1)

3 ,1n〉 −m ≤ n/4 +OP (
√
n). (B.28)

Analysis of the second meta iteration:

We first show that from the previous iteration, the signal 〈u3, v2〉 will always

dominate |〈u3,1n〉 −m| which gives desired sign and magnitude of the logits.

Then we show the algorithm converges to the true labels after the second meta

iteration. Using the same decomposition as (B.11),

s
(2)
1 = (

p+ q

2
− λ)(〈u(1)

3 ,1n〉 −m) +
p− q

2
〈u(1)

3 , v2〉 (B.29)

≥ −n
8

(
p+ q

2
− λ) +

n

4
· p− q

2
− oP (nρn)

≥ n

8
(λ− q)− oP (nρn)

s
(2)
2 = (

p+ q

2
− λ)(〈u(1)

3 ,1n〉 −m)− p− q
2
〈u(1)

3 , v2〉

≤ n

4
(
p+ q

2
− λ)− n

4
· p− q

2
+ oP (nρn)

= −n
4

(λ− q) + oP (nρn), (B.30)

where we have used Lemma 1. After the first meta iteration, the logits satisfy

s
(2)
1 ,−s(2)

2 = ΩP (nρn), x
(1)
1 ,−x(1)

2 = ΩP (nρ
3
2
n ), y

(1)
1 ,−y(1)

2 = ΩP (nρn).

Here we have added the superscripts for the first meta iteration for clarity.

In the first iteration of the second meta iteration, 〈u(2)
1 , v2〉 is computed

as (B.25) with s1 and s2 replaced with s
(2)
1 and s

(2)
2 and the noise replaced

accordingly. It is easy to see that

〈u(2)
1 , v2〉 ≥

3n

8
− oP (n).
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Similarly from (B.27),

−n
8
− oP (n) ≤ 〈u(2)

1 ,1n〉 −m ≤ oP (n).

The logits are updated as (p+q
2
− λ)(〈u(2)

1 ,1n〉 −m)± p−q
2
〈u(2)

1 , v2〉, so

x
(2)
1 ,−x(2)

2 = ΩP (nρn), (B.31)

The same analysis and results hold for u(2)
2 and (y

(2)
1 , y

(2)
2 ). We now show after

the second meta iteration, in addition to the condition (B.31), we further have

2y
(2)
1 − s

(2)
1 = ΩP (nρn), 2y

(2)
1 − x

(2)
1 = ΩP (nρn) (B.32)

To simplify notation, let

αi(s1, x1, y1) :=
2e8t(y1+r

(y)
i ) + e4t(x1+r

(x)
i ) + e4t(s1+r

(s)
i )

1 + e4t(s1+r
(s)
i ) + e4t(x1+r

(x)
i ) + e8t(y1+r

(y)
i )

where r’s are the noise associated with each signal and we have Lemma 4

bounding their order uniformly.

We first provide an upper bound on 〈u(1)
3 , v2〉. In (B.25), by Lemma 6

〈u(1)
3 , v2〉 ≤

n

4
+
∑
i∈C12

e4t(s
(1)
1 +r

(0)
i )

1 + e4t(s
(1)
1 +r

(0)
i )

+
n

8
−
∑
i∈C22

e4t(s
(1)
2 +r

(0)
i )

1 + e4t(s
(1)
2 +r

(0)
i )

+OP (
√
n)

≤ 3n
8

+ n
8

(
Φ(
−s(1)2 +∆

σu
)− Φ(

−s(1)1 −∆

σu
)

)
+ C ′n ρu

σ3
u

+ C ′′ne−4t∆ +OP (
√
n)

≤3n

8
+ oP (n). (B.33)

For u(2)
1 , based on (B.25) and (B.27),

〈u(2)
1 , v2〉 =

∑
i∈C11

αi(s
(2)
1 , x

(1)
1 , y

(1)
1 ) +

n

4
− oP (n),

〈u(2)
1 ,1n〉 −m =

∑
i∈C11

αi(s
(2)
1 , x

(1)
1 , y

(1)
1 )− n

4
− oP (n).
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Similarly, 〈u(2)
2 , v2〉 =

∑
i∈C11

αi(s
(2)
1 , x

(2)
1 , y

(1)
1 ) +

n

4
− oP (n),

〈u(2)
2 ,1n〉 −m =

∑
i∈C11

αi(s
(2)
1 , x

(2)
1 , y

(1)
1 )− n

4
− oP (n).

For convenience denote a = p+q
2
− λ and b = p−q

2
, then we have

2y
(2)
1 − s

(2)
1 = a(2〈u(2)

2 ,1n〉 − 〈u(1)
3 ,1n〉 −m) + b(2〈u(2)

2 , v2〉 − 〈u(1)
3 , v2〉)

≥ a

(
2
∑
i∈C11

αi(s
(2)
1 , x

(2)
1 , y

(1)
1 )− n

4
−m

)

+ b

(
2
∑
i∈C11

αi(s
(2)
1 , x

(2)
1 , y

(1)
1 ) +

n

2
− 3n

8

)
− oP (nρn)

= 2(a+ b)
∑
i∈C11

αi(s
(2)
1 , x

(2)
1 , y

(1)
1 )− 3an

8
+
bn

8
− oP (nρn)

by (B.33) and (B.28). Since αi(s
(2)
1 , x

(2)
1 , y

(1)
1 ) ≥ 1 + oP (1), we can conclude

2y
(2)
1 − s

(2)
1 ≥

3bn

8
− an

8
− oP (nρn) = Ω(nρn).

Similarly, we can check that

2y
(2)
1 − x

(2)
1 = a(2〈u(2)

2 ,1n〉 − 〈u(2)
1 ,1n〉 −m) + b(2〈u(2)

2 , v2〉 − 〈u(2)
1 , v2〉)

=(a+ b)
∑
i∈C11

[2αi(s
(2)
1 , x

(2)
1 , y

(1)
1 )− αi(s(2)

1 , x
(1)
1 , y

(1)
1 )]− (a− b)n

4
+ oP (nρn)

≥(b− a)n

4
− oP (nρn) = Ω(nρn) (B.34)

as αi(s
(2)
1 , x

(2)
1 , y

(1)
1 ) > αi(s

(2)
1 , x

(1)
1 , y

(1)
1 ). Thus condition (B.32) holds.

Now we need to analyze the third iteration in this meta iteration. Since

αi(s
(2)
1 , x

(2)
1 , y

(1)
1 ) ≤ 2, with (B.30)

y
(2)
1 + y

(2)
2 = 2a(〈u(2)

2 ,1n〉 −m) = oP (nρn)

s
(2)
1 − (y

(2)
1 + y

(2)
2 ) = ΩP (nρn), x

(2)
1 − (y

(2)
1 + y

(2)
2 ) = ΩP (nρn). (B.35)
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Now using the update for u(2)
3 , and defining the noise in the same way as in

the first meta iteration,

〈u(2)
3 , v2〉 =

∑
i∈C11

2e8t(y
(2)
1 +r

(5)
i ) + e4t(x

(2)
1 +r

(4)
i ) + e4t(s

(2)
1 +r

(3)
i )

1 + e4t(s
(2)
1 +r

(3)
i ) + e4t(x

(2)
1 +r

(4)
i ) + e8t(y

(2)
1 +r

(5)
i )

+
∑
i∈C12

e4t(s
(2)
1 +r

(3)
i ) − e4t(x

(2)
2 +r

(4)
i )

1 + e4t(y
(2)
1 +y

(2)
2 +r

(5)
i ) + e4t(s

(2)
1 +r

(3)
i ) + e4t(x

(2)
2 +r

(4)
i )

+
∑
i∈C21

e4t(x
(2)
1 +r

(4)
i ) − e4t(s

(2)
2 +r

(3)
i )

1 + e4t(y
(2)
1 +y

(2)
2 +r

(5)
i ) + e4t(s

(2)
2 +r

(3)
i ) + e4t(x

(2)
1 +r

(4)
i )

−
∑
i∈C22

2e8t(y
(2)
2 +r

(5)
i ) + e4t(s

(2)
2 +r

(3)
i ) + e4t(x

(2)
2 +r

(4)
i )

1 + e4t(s
(2)
2 +r

(3)
i ) + e4t(x

(2)
2 +r

(4)
i ) + e8t(y

(2)
2 +r

(5)
i )

≥
∑
i∈C11

2e8t(y
(2)
1 +r

(5)
i )

1 + e4t(s
(2)
1 +r

(3)
i ) + e4t(x

(2)
1 +r

(4)
i ) + e8t(y

(2)
1 +r

(5)
i )

+
∑
i∈C12

e4t(s
(2)
1 +r

(3)
i )

1 + e4t(y
(2)
1 +y

(2)
2 +r

(5)
i ) + e4t(s

(2)
1 +r

(3)
i ) + e4t(x

(2)
2 +r

(4)
i )

+
∑
i∈C21

e4t(x
(2)
1 +r

(4)
i )

1 + e4t(y
(2)
1 +y

(2)
2 +r

(5)
i ) + e4t(s

(2)
2 +r

(3)
i ) + e4t(x

(2)
1 +r

(4)
i )

− n exp(−ΩP (nρn))

≥ n

2
− n exp(−ΩP (nρn)),

using the conditions (B.31) (B.32) (B.35) and Lemma 4. Since ‖u− z∗‖1 =

m− |〈u, v2〉|, ||u(2)
3 − z∗||1 = n exp(−ΩP (nρn)) after the second meta iteration.
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Finally we show the later iterations conserve strong consistency. Since

〈u(2)
3 ,1〉 −m =

∑
i∈C11

e8t(y
(2)
1 +r

(5)
i ) − 1

1 + e4t(s
(2)
1 +r

(3)
i ) + e4t(x

(2)
1 +r

(4)
i ) + e8t(y

(2)
1 +r

(5)
i )

+
∑
i∈C12

e4t(y
(2)
1 +y

(2)
2 +r

(5)
i ) − 1

1 + e4t(y
(2)
1 +y

(2)
2 +r

(5)
i ) + e4t(s

(2)
1 +r

(3)
i ) + e4t(x

(2)
2 +r

(4)
i )

+
∑
i∈C21

e4t(y
(2)
1 +y

(2)
2 +r

(5)
i ) − 1

1 + e4t(y
(2)
1 +y

(2)
2 +r

(5)
i ) + e4t(s

(2)
2 +r

(3)
i ) + e4t(x

(2)
1 +r

(4)
i )

+
∑
i∈C22

e8t(y
(2)
2 +r

(5)
i ) − 1

1 + e4t(s
(2)
2 +r

(3)
i ) + e4t(x

(2)
2 +r

(4)
i ) + e8t(y

(2)
2 +r

(5)
i )

=n exp(−ΩP (nρn))

by (B.31) (B.32) (B.35) and Lemma 4, we have

s
(3)
1 =a(〈u(2)

3 ,1〉 −m) + b〈u(2)
3 , v2〉 =

p− q
4

n+ nρn exp(−ΩP (nρn)),

s
(3)
2 =a(〈u(2)

3 ,1〉 −m)− b〈u(2)
3 , v2〉 = −p− q

4
n+ nρn exp(−ΩP (nρn)).

Next we note the noise in this iteration now arises from the whole graph A,

and can be bounded by

r
(7)
i = [Rzz, Rzy]i,·(u

(2)
3 −

1

2
1n)

= [Rzz, Rzy]i,·(u
(2)
3 − z∗) + [Rzz, Rzy]i,·(z

∗ − 1

2
1n),

where the second term is OP (
√
nρn log n) uniformly for all i, applying Lemma

4. To bound the first term, note that

max
i
|[Rzz, Rzy]i,·(u

(2)
3 − z∗)| ≤ ‖[Rzz, Rzy](u

(2)
3 − z∗)‖2

≤ OP (
√
nρn)‖u(2)

3 − z∗‖1 = oP (1).
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Therefore r(7)
i is uniformly OP (

√
nρn log n) for all i. By a similar calculation

to (B.34), we can check that condition (B.32) holds for y(2)
1 and s(3)

1 , since when

s1, x1, y1 = Ω(nρn) condition (B.32) and 1− oP (1) ≤ αi(s1, x1, y1) ≤ 2 + oP (1)

guarantees each other and condition (B.32) is true in the previous iteration.

We can check that condition (B.35) also holds. The rest of the argument can

be applied to show ‖u(3)
1 − z∗‖1 = n exp(−ΩP (nρn)). At this point, all the

arguments can be repeated for later iterations.

Proof of Corollary 1. We first consider µ > 0.5. By (B.12), s1 = ΩP (nρn),

s2 = ΩP (nρn). Since r(0)
i = OP (

√
nρn log n) uniformly for all i by Lemma 4,

we have

φ
(1)
i =

1 + e4t(s1+r
(0)
i )

3 + e4t(s1+r
(0)
i )

= 1− exp(−ΩP (nρn))

for i ∈ C1. Similarly for i ∈ C2, and ξ
(1)
i = exp(−ΩP (nρn)). Define u′i = 1[i∈P1]+

1[i∈P2]. Since the partition into P1 and P2 is random, u′i ∼ iid Bernoulli(1/2),

and ‖u1 − u′‖2 =
√
n exp(−ΩP (nρn)).

In the second iteration, we can write

θ01 = 4t([Ayz, Ayy]− λJ)(u1 − 1
2
1)

= 4t([Ayz, Ayy]− λJ)(u1 − u′) + 4t([Ayz, Ayy]− λJ)(u′ − 1
2
1)

= OP (n
√
ρ exp(−ΩP (nρn))) + 4t([Ayz, Ayy]− λJ)(u′ − 1

2
1).

The signal part of the second term is 4t(x11C′1 + x21C′2) with x1 and x2 having

the form of (B.12), with u(0) replaced by u′. Since x1, x2 = ΩP (
√
nρn), the
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rest of the analysis proceeds like that of Theorem 2 restarting from the first

iteration.

If µ < 0.5, s1 = −ΩP (nρn), s2 = −ΩP (nρn). We have φ(1)
i = 1

3
+

exp(−ΩP (nρn)), ξ(1)
i = 2

3
−exp(−ΩP (nρn)). This time let u′ = 1

3
1[i∈P1]+

2
3
1[i∈P2],

then θ01 can be written as

θ01 = OP (n
√
ρ exp(−ΩP (nρn))) +

4t

3
([Ayz, Ayy]− λJ)(3u′ − 3

2
1).

Noting that 3u′i − 1 ∼ iid Bernoulli(1/2), the same argument applies.

Proof of Proposition 4. (i) We show each point is a stationary point by

checking the vector update form of (3.9), (3.8), (3.10). Similar to Theorem 2,

we have

θ10 = 4t(s11C1 + s21C2 + r
(0)
i )

where r(0)
i = OP (

√
nρn log n). Plugging u(0) = 1n in (3.8), s1 = s2 = 0.5(p+q

2
−

λ)n. Similarly

θ01 = 4t(x11C1 + x21C2 + r
(1)
i ), θ11 = 4t(y11C1 + y21C2 + r

(1)
i )

where x1 = x2 = 0.5(p+q
2
− λ)n, y1 = y2 = (p+q

2
− λ)n. Plugging in (3.11) with

p+q
2
− λ = ΩP (ρn) by Lemma 1, we have

φ
(1)
i = 1− exp(−ΩP (nρn)), ξ

(1)
i = 1− exp(−ΩP (nρn))

for all i ∈ [m]. Hence for sufficiently large n, u(0) = 1n is the stationary point.

For u(0) = 0n, similarly we have

φ
(1)
i = exp(−ΩP (nρn)), ξ

(1)
i = exp(−ΩP (nρn))
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so u(0) = 0n is also a stationary point for large n. (ii) The statement for

u(0) = 0n and u(0) = 1n follows from Corollary 1 by µ = 0 and µ = 1.

Proof of Proposition 5. Let t̂, λ̂ be constants defined in terms of p̂, q̂. First

we observe using p̂, q̂ only replaces t, λ with t̂, λ̂ everywhere in the updates of

Algorithm 2. We can check the analysis in Theorem 2 remains unchanged as

long as

i)
p+ q

2
> λ̂, ii) λ̂− q = Ω(ρn), iii) t̂ = Ω(1)

Proof of Theorem 3. Starting with p(0) and q(0) satisfying the conditions in

Corollary 5, after two meta iterations of u updates, we have ‖u(2)
3 − z∗‖1 =

n exp(−Ω(nρn)). Updating p(1), q(1) with (3.13), we first analyze the population

version of the numerator of p(1),

(1n − u)TP (1n − u) + uTPu+ 2(1m − ψ10 − ψ01)Tdiag(P zy)1m

=(1n − z∗)TP (1n − z∗) + (z∗)TPz∗ − 2(u− z∗)TP (1n − z∗)

+ 2(z∗)TP (u− z∗) + (u− z∗)TP (u− z∗) +O(nρn).

In the case of u(2)
3 , the above becomes

n2

2
p+OP (n5/2ρn exp(−Ω(nρn))) +O(nρn) =

n2

2
p+OP (nρn).

148



Next we can rewrite the noise as

(1n − u)T (A− P )(1n − u) + uT (A− P )u

=(1n − z∗)T (A− P )(1n − z∗)− 2(u− z∗)T (A− P )(1n − z∗)

+ 2(z∗)T (A− P )(u− z∗) + (u− z∗)T (A− P )(u− z∗) + (z∗)T (A− P )z∗.

Similarly in the case of u(2)
3 , the above is OP (

√
n2ρn). Therefore the numerator

of p(1) is n2

2
p+OP (

√
n2ρn). To lower bound the denominator, note that

uT (J − I)u+ (1− u)T (J − I)(1− u) ≥ n2/2− 2n,

then we have p(1) = p + OP (
√
ρn/n). The same analysis shows q(1) = q +

OP (
√
ρn/n).

Replacing p and q with p(1) and q(1) in the final analysis after the second

meta iteration of Theorem 2 does not change the order of the convergence, and

the rest of the arguments can be repeated.
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Appendix C

Appendix for Variational Inference with
Discrete Latent Variables

C.1 The ARM Gradient Ascent Algorithm

We summarize the algorithm to compute ARM gradient for binary latent

variables. Here we show the gradient with respect to the logits associated

with the probability of Bernoulli random variables. If the logits are further

generated by deterministic transform, the chain rule can be directly applied.

For stochastic transforms, the implementation of ARM gradient is discussed in

detail in Section 4.3 and summarized in Algorithm 4.

Algorithm 3 ARM gradient for a V -dimensional binary latent vector
input : Bernoulli distribution {qφv(zv)}v=1:V with probability {σ(φv)}v=1:V , target

f(z); z = (z1, · · · , zV ), φ = (φ1, · · · , φV )
output :φ and ψ that maximize E(φ,ψ) = Ez∼∏V

v=1 qφv (zv)[f(z;ψ)]

Initialize φ, ψ randomly
while not converged do

Sample a mini-batch of x from the data
Sample zv ∼ Bernoulli(σ(φv)) for v = 1, · · · , V
sample uv ∼ Uniform(0, 1) for v = 1, · · · , V , u = (u1, · · · , uV )
gψ = ∇ψf(z;ψ)
f∆(u,φ) = f

(
1[u>σ(−φ)]

)
− f

(
1[u<σ(φ)]

)
gφ = f∆(u,φ)(u− 0.5)
φ = φ+ ρtgφ, ψ = ψ + ηtgψ, with stepsizes ρt, ηt

end
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Algorithm 4 ARM gradient for a T -stochastic-hidden-layer binary network

input : Inference network qw1:T (b1:T |x) = qw1(b1 |x)
[∏T−1

t=1 qwt+1(bt+1 | bt)
]

where qwt(bt | bt−1) = Bernoulli(bt;σ(Twt(bt−1))), target f(b1:T ;ψ)
output : w1:T and ψ that maximize E(w1:T ,ψ) = Eb1:T∼qw1:T

[f(b1:T ;ψ)]

Initialize w1:T , ψ randomly
while not converged do

Sample a mini-batch of x from data for t = 1:T do
If t ≥ 2, sample bt−1 ∼ q(bt−1|bt−2), if t = 2, b1:t−1 = b1, else b1:t−1 =
[b1:t−2, bt−1]

sample ut ∼
∏

Uniform(0, 1)
b1
t = 1[ut>σ(−Twt (bt−1))], b2

t = 1[ut<σ(Twt (bt−1))]

if b1
t = b

2
t then

f∆(b1:t−1, b
1
t:T , b

2
t:T ) = 0

else
b1
t+1:T ∼ q(bt+1:T |b1

t ), b
2
t+1:T ∼ q(bt+1:T |b2

t )
f∆(b1:t−1, b

1
t:T , b

2
t:T ) = f(b1:t−1, b

1
t:T )− f(b1:t−1, b

2
t:T )

gwt = f∆(b1:t−1, b
1
t:T , b

2
t:T )(ut − 1

2)
T∇wtTwt(bt−1)

end
wt = wt + ρtgwt with step-size ρt

end
ψ = ψ + ηt∇ψf(b1:T ;ψ) with step-size ηt

end

C.2 Proofs of Main Results

Proof of Proposition 6. Since the gradients gARM(u, φ), gAR(u, φ), and gR(z, φ)

are all unbiased, their expectations are the same as the true gradient gtrue(φ) =

σ(φ)(1 − σ(φ))[f(1) − f(0)]. Denote f∆(u, φ) = f(1[u>σ(−φ)]) − f(1[u<σ(φ)]).

Since

f∆(u, φ) =


0, if σ(−|φ|) < u < σ(|φ|),
f(1)− f(0), if u > σ(|φ|),
f(0)− f(1), if u < σ(−|φ|),

(C.1)

151



The second moment of gARM(u, φ) can be expressed as

Eu∼Uniform(0,1)[g
2
ARM(u, φ)] = Eu∼Uniform(0,1)[f

2
∆(u, φ)(u− 1/2)2]

=

∫ 1

σ(|φ|)
[f(1)− f(0)]2(u− 1/2)2du+

∫ σ(−|φ|)

0

[f(0)− f(1)]2(u− 1/2)2du

=
1

12
[1− (σ(|φ|)− σ(−|φ|))3][f(1)− f(0)]2

Denoting t = σ(|φ|)−σ(−|φ|), we can re-express gtrue(φ) = 1
4
(1−t2)[f(1)−f(0)].

Thus, the variance of gARM(u, φ) can be expressed as

var[gARM(u, φ)] =
1

4

[
1

3
(1− t3)− 1

4
(1− t2)2

]
[f(1)− f(0)]2

=
1

16
(1− t)(t3 +

7

3
t2 +

1

3
t+

1

3
)[f(1)− f(0)]2 (C.2)

≤ 1

25
[f(1)− f(0)]2,

which reaches its maximum at 0.039788[f(1)− f(0)]2 when t =
√

5−1
2

.

For the REINFORCE gradient, we have

Ez∼Bernoulli(σ(φ))[g
2
R(z, φ)] =Ez∼Bernoulli(σ(φ))

[
f 2(z)(z(1− σ(φ))− σ(φ)(1− z))2

]
=σ(φ)(1− σ(φ))[(1− σ(φ))f 2(1) + σ(φ)f 2(0)].

Therefore the variance can be expressed as

var[gR(u, φ)]

=σ(φ)(1− σ(φ)) [(1− σ(φ))f 2(1) + σ(φ)f 2(0)− σ(φ)(1− σ(φ))[f(1)− f(0)]2]

=σ(φ)(1− σ(φ))[(1− σ(φ))f(1) + σ(φ)f(0)]2.

The largest variance satisfies

sup
φ

var[gR(z, φ)] ≥ var[gR(z, 0)] =
1

16
[f(1) + f(0)]2,
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and hence when f is always positive or negative, we have

supφ var[gARM(z, φ)]

supφ var[gR(z, φ)]
≤ 16

25

(
1− 2

f(0)

f(0) + f(1)

)2 ≤ 16

25
.

In summary, the ARM gradient has a variance that is bounded by 1
25

(f(1)−

f(0))2, and its worst-case variance is smaller than that of REINFORCE.

Proof of Proposition 7. We only need to prove for K = 1 and the proof for

K > 1 automatically follows. Since

Eu[f(1[u<σ(φ)])
2(uv − 1/2)2] = Eu[f(1[u>σ(−φ)])

2(uv − 1/2)2],

we have

var(gARM1,v)− var(gAR1,v)

=− 3Eu[f(1[u<σ(φ)])
2(uv − 1/2)2] + Eu[f(1[u>σ(−φ)])

2(uv − 1/2)2]

− 2Eu[f(1[u>σ(−φ)])f(1[u<σ(φ)])(uv − 1/2)2]

=− Eu[f(1[u<σ(φ)])
2(uv − 1/2)2]− Eu[f(1[u>σ(−φ)])

2(uv − 1/2)2]

− 2Eu[f(1[u>σ(−φ)])f(1[u<σ(φ)])(uv − 1/2)2]

=− Eu
[(
f(1[u>σ(−φ)]) + f(1[u<σ(φ)])

)2
(uv − 1/2)2

]
≤ 0,

which shows that the estimation variance of gARMK ,v is guaranteed to be lower

than that of the gARK ,v, unless f(1[u>σ(−φ)]) + f(1[u<σ(φ)]) = 0 almost surely.
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Furthermore, since

var(gARM1,v)− var(gAR2,v)

=Eu[(f(1[u<σ(φ)])− f(1[u>σ(−φ)]))
2(uv − 1/2)2]

− Eu(1),u(2) [(f(1[u(1)<σ(φ)])(u
(1)
v − 1/2) + f(1[u(2)<σ(φ)])(u

(2)
v − 1/2))2]

=− 2Eu(1) [f(1[u(1)<σ(φ)])(u
(1)
v − 1/2)]Eu(2) [f(1[u(2)<σ(φ)])(u

(2)
v − 1/2))]

− 2Eu[f(1[u<σ(φ)])f(1[u>σ(−φ)]))(uv − 1/2)2]

=− 2
(
Eu[f(1[u<σ(φ)])(uv − 1/2)]

)2

− 2Eu[f(1[u<σ(φ)])f(1[u>σ(−φ)]))(uv − 1/2)2],

when f is always positive or negative, the variance of gARMK ,v is lower than

that of gAR2K ,v.

Proof of Proposition 8. Denoting g(u) = gAR(u)− b(u), we have

var[gv(u)]− var[gAR,v(u)] = −2Eu[gAR,v(u)bv(u)] + Eu[b2
v(u)].

To maximize the variance reduction, it is equivalant to consider the constrained

optimization problem

min
bv(u)

− 2Eu[gAR,v(u)bv(u)] + Eu[b2
v(u)]

subject to: bv(u) = −bv(1− u),

which is the same as a Lagrangian problem as

min
bv(u),λv(u)

L(bv(u), λv(u))

=− 2Eu[gAR,v(u)bv(u)] + Eu[b2
v(u)] +

∫
λv(u)(bv(u) + bv(1− u))du.
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Setting δL
δλv

= 0 gives bv(u) + bv(1−u) = 0. By writing
∫
λv(u)(bv(u) + bv(1−

u))du =
∫

(λv(u) + λv(1− u))bv(u)du and setting δL
δbv

= 0, we have

[2gAR,v(u)− 2bv(u)]p(u) = λv(u) + λv(1− u). (C.3)

Interchange u and 1− u gives

[2gAR,v(1− u)− 2bv(1− u)]p(1− u) = λv(1− u) + λv(u). (C.4)

Solving (C.3) and (C.4) with bv(u) + bv(1− u) = 0 and p(u) = p(1− u), we

have the optimal baseline function as b∗v(u) = 1
2
(gAR,v(u)− gAR,v(1− u)). The

proof is completed by noticing that gAR(u)− b∗(u) is the same as the single

sample gradient estimate under the ARM estimator.

Proof of Corollary 2. Since bv(u) = cv(1 − 2u) satisfies the anti-symmetric

property, we can directly arrive at Corollary 2 using Proposition 8. Alter-

natively, since Eu[f(1[u<σ(φ)])
2(uv − 1/2)2] = Eu[f(1[u>σ(−φ)])

2(uv − 1/2)2]

and Eu[f(1[u<σ(φ)])(uv − 1/2)2] = Eu[f(1[u>σ(−φ)])(uv − 1/2)2], for gC,v =

(f(1[u<σ(φ)])− cv)(1− 2uv), we have

var(gC,v)− var(gARM,v)

=Eu[(f(1[u<σ(φ)])− cv)2(1− 2uv)
2]− Eu[(f(1[u<σ(φ)])− f(1[u>σ(−φ)]))

2(uv − 1/2)2]

=Eu
[(

4c2
v − 8cvf(1[u<σ(φ)]) + 2f 2(1[u<σ(φ)]) + 2f(1[u<σ(φ)])f(1[u>σ(−φ)])

)
(uv − 1/2)2

]
=Eu

[(
f(1[u>σ(−φ)]) + f(1[u<σ(φ)])− 2cv

)2
(uv − 1/2)2

]
≥ 0.
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Proof of Proposition 9. First, the gradient with respect to w1 on E(w1:T ) =

Eq(b1)Eq(b2:T | b1)[f(b1:T )], can be computed as

∇w1E(w1:T ) = Eu1∼Uniform(0,1)[f∆(u1,Tw1(x))(u1 − 1/2)]∇w1Tw1(x),

where f∆(u1,Tw1(x)) = Eb2:T∼q(b2:T | b1), b1=1[u1>σ(−Tw1 (x))])[f(b1:T )]

− Eb2:T∼q(b2:T | b1), b1=1[u1<σ(Tw1 (x))])[f(b1:T )].

Second, to compute the gradient with respect to wt, for 2 ≤ t ≤ T − 1,

E(w1:T ) = Eq(b1:t−1)Eq(bt | bt−1)Eq(bt+1:T | bt)[f(b1:T )],

the gradient is

∇wtE(w1:T )=Eq(b1:t−1)[Eut [f∆(ut,Twt(bt−1), b1:t−1)(ut − 1/2)]∇wtTwt(bt−1)] ,

with f∆(ut,Twt(bt−1), b1:t−1) = Ebt+1:T∼q(bt+1:T | bt), bt=1[ut>σ(−Twt (bt−1))]
)[f(b1:T )]

− Ebt+1:T∼q(bt+1:T | bt), bt=1[ut<σ(Twt (bt−1))]
)[f(b1:T )].

Finally, to compute the gradient with respect to wT , we have

∇wTE(w1:T ) = Eq(b1:T−1) [EuT [f∆(uT ,TwT (bT−1), b1:T−1)(uT − 1/2)]∇wTTwT (bT−1)] ,

where f∆(uT ,TwT (bT−1), b1:T−1) = f(b1:T−1, bT = 1[uT>σ(−TwT (bT−1))])

− f(b1:T−1, bT = 1[uT<σ(TwT (bT−1))]).
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C.3 Additional Experimental Results

In Table C.1, we summarize the network structures for discrete VAE.

The symbols “→”, “]”, )”, and “ ” represent deterministic linear transform,

leaky rectified linear units (LeakyReLU) [83] activation, sigmoid activation,

and random samplin respectively, in the encoder; their reversed versions are

used in the decoder.

Table C.1: The constructions of differently structured discrete variational
auto-encoders.

Nonlinear Linear Linear two layers

Encoder 784→200]→200]→200) 200 784→200) 200 784→200) 200→200) 200
Decoder 784  (784←[200←[200←200 784  (784←200 784  (784←200  (200←200

Figure C.1: Randomly selected example results of predicting the lower half of
a MNIST digit given its upper half, using a binary stochastic network, which
has two binary linear stochastic hidden layers, trained by the ARM estimator.
Red squares highlight notable variations between two random draws.
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Appendix D

Appendix for Meta-Learning with Variational
Regularization

D.1 Algorithms for Meta Regularization

We present the detailed algorithm for meta-regularization on weights

with conditional neural processes (CNP) in Algorithm 5 and with model-

agnostic meta-learning (MAML) in Algorithm 6. For CNP, we add the regular-

ization on the weights θ of encoder and leave other weights θ̃ unrestricted. For

MAML, we regularize the weights θ from input to an intermediate hidden layer

and leave the weights θ̃ for adaptation unregularized. In this way, we restrict

the complexity of the pre-adaptation model not the post-adaptation model.

D.2 Meta Regularization on Activations

We show that I(x∗; ŷ∗|z∗, θ) ≤ I(ŷ∗;D|z∗, θ). By Figure 5.2, we have

that I(ŷ∗;x∗|θ,D, z∗) = 0. By the chain rule of mutual information we have

I(ŷ∗;D|z∗, θ) =I(ŷ∗;D|z∗, θ) + I(ŷ∗;x∗|D, θ, z∗)

=I(ŷ∗;x∗,D|θ, z∗)

=I(x∗; ŷ∗|θ, z∗) + I(ŷ∗;D|θ, z∗, x∗)

≥I(x∗; ŷ∗|θ, z∗) (D.1)
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Algorithm 5 Meta-Regularized CNP
input : Task distribution p(T); Encoder weights distribution q(θ; τ) = N(θ; τ)

with Gaussian parameters τ = (θµ, θσ); Prior distribution r(θ) and
Lagrangian multiplier β; θ̃ that parameterizes feature extractor hθ̃(·)
and decoder Tθ̃(·). Stepsize α.

output :Network parameter τ , θ̃.

Initialize τ , θ̃ randomly
while not converged do

Sample a mini-batch of {Ti} from p(T)
Sample θ ∼ q(θ; τ) with reparameterization for all Ti ∈ {Ti} do

Sample Di = (xi,yi), D∗i = (x∗i ,y
∗
i ) from Ti

Encode observation zi = gθ(xi), z∗i = gθ(x
∗
i )

Compute task context φi = a(hθ̃(zi,yi)) with aggregator a(·)
end
Update θ̃ ← θ̃ + α∇θ̃

∑
Ti

log q(y∗i |Tθ̃(z∗i , φi))
Update τ ← τ + α∇τ [

∑
Ti

log q(y∗i |Tθ̃(z∗i , φi))− βDDKL(q(θ; τ)||r(θ))]
end

Algorithm 6 Meta-Regularized MAML
input : Task distribution p(T); Weights distribution q(θ; τ) = N(θ; τ) with

Gaussian parameters τ = (θµ, θσ); Prior distribution r(θ) and La-
grangian multiplier β; Stepsize α, α′.

output :Network parameter τ , θ̃.

Initialize τ , θ̃ randomly while not converged do
Sample a mini-batch of {Ti} from p(T)
Sample θ ∼ q(θ; τ) with reparameterization for all Ti ∈ {Ti} do

Sample Di = (xi,yi), D∗i = (x∗i ,y
∗
i ) from Ti

Encode observation zi = gθ(xi), z∗i = gθ(x
∗
i )

Compute task specific parameter φi = θ̃ + α′∇θ̃ log q(yi|zi, θ̃)
end
Update θ̃ ← θ̃ + α∇θ̃

∑
Ti

log q(y∗i |z∗i , φi)
Update τ ← τ + α∇τ [

∑
Ti

log q(y∗i |z∗i , φi)− βDDKL(q(θ; τ)||r(θ))]
end
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Algorithm 7 Meta-Regularized Methods in Meta-testing
input : Meta-testing task T with training data D = (x,y) and testing input

x∗, optimized parameters τ, θ̃.
output :Prediction ŷ∗

for k from 1 to K do
Sample θk ∼ q(θ; τ) Encode observation zk = gθk(x), z∗k = gθk(x

∗)
Compute task specific parameter φk = a(hθ̃(zk,y)) for MR-CNP and
φk = θ̃ + α′∇θ̃ log q(y|zk, θ̃) for MR-MAML Predict ŷ∗k ∼ q(ŷ∗|z∗k, φk, θ̃)

end
Return prediction ŷ∗ = 1

K

∑K
k=1 ŷ

∗
k

D.3 Meta Regularization on Weights

Similar to [1], we use ξ to denote the unknown parameters of the true

data generating distribution. This defines a joint distribution p(ξ,M, θ) =

p(ξ)p(M|ξ)q(θ|M). Furthermore, we have a predictive distribution

q(ŷ∗|x∗,D, θ) = Eφ|θ,D [q(ŷ∗|x∗, φ, θ)] .

The meta-training loss in Eq. 5.1 is an upper bound for the cross

entropy Hp,q(y
∗
1:N |x∗1:N ,D1:N , θ). Using an information decomposition of cross

entropy [1], we have

Hp,q(y
∗
1:N |x∗1:N ,D1:N , θ) (D.2)

=H(y∗1:N |x∗1:N ,D1:N , ξ) + I(ξ; y∗1:N |x∗1:N ,D1:N , θ)

+ E [DDKL(p(y∗1:N |x∗1:N ,D1:N , θ)||q(y∗1:N |x∗1:N ,D1:N , θ))]

+ I(D1:N ; θ|x∗1:N , ξ)− I(y∗1:N ,D1:N ; θ|x∗1:N , ξ). (D.3)

Here the only negative term is the I(y∗1:N ,D1:N ; θ|x∗1:N , ξ), which quanti-

fies the information that the meta-parameters contain about the meta-training
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data beyond what can be inferred from the data generating parameters (i.e.,

memorization). Without proper regularization, the cross entropy loss can

be minimized by maximizing this term. We can control its value by upper

bounding it

I(y∗1:N ,D1:N ; θ|x∗1:N , ξ) = E
[
log

q(θ|M, ξ)

q(θ|x∗1:N , ξ)

]
= E

[
log

q(θ|M)

q(θ|x∗1:N , ξ)

]
= E [DDKL(q(θ|M)||q(θ|x∗1:N , ξ))]

≤ E [DDKL(q(θ|M)||r(θ))] ,

where the second equality follows because θ and ξ are conditionally independent

given M. This gives the regularization in Section 5.4.2.

D.4 Proof of the PAC-Bayes Generalization Bound

First, we prove a more general result and then specialize it. The goal

of the meta-learner is to extract information about the meta-training tasks

and the test task training data to serve as a prior for test examples from the

novel task. This information will be in terms of a distribution Q over possible

models. When learning a new task, the meta-learner uses the training task

data D and a model parameterized by θ (sampled from Q(θ)) and outputs a

distribution q(φ|D, θ) over models. Our goal is to learn Q such that it performs

well on novel tasks.
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To formalize this, define

er(Q,D,T) = Eθ∼Q(θ),φ∼q(φ|θ,D),(x∗,y∗)∼p(x,y|T) [L(φ(x∗), y∗)] (D.4)

where L(φ(x∗), y∗) is a bounded loss in [0, 1]. Then, we would like to minimize

the error on novel tasks

er(Q) = min
Q

ET∼p(T),D∼p(x,y|T) [er(Q,D,T)] (D.5)

Because we only have a finite training set, computing er(Q) is intractable, but

we can form an empirical estimate:

êr(Q,D1,D
∗
1, ...,Dn,D

∗
n) = 1

n

∑n
i=1 Eθ∼Q(θ),φi∼q(φ|θ,Di)

 1

K

∑
(x∗,y∗)∈D∗i

L(φ(x∗), y∗))


︸ ︷︷ ︸

êr(Q,Di,D∗i )

(D.6)

where for exposition we assume K = |D∗i | is the same for all i. We would like

to relate er(Q) and êr(Q,D1,D
∗
1, ...,Dn,D

∗
n), but the challenge is that Q may

depend on D1,D
∗
1, ...,Dn,D

∗
n due to the learning algorithm. There are two

sources of generalization error: (i) error due to the finite number of observed

tasks and (ii) error due to the finite number of examples observed per task.

Closely following the arguments in [7], we apply a standard PAC-Bayes bound

to each of these and combine the results with a union bound.

Theorem 6. Let Q(θ) be a distribution over parameters θ and let P (θ) be a

prior distribution. Then for any δ ∈ (0, 1], with probability at least 1− δ, the

following inequality holds uniformly for all distributions Q,

er(Q) ≤ 1
n

∑n
i=1 êr(Q,Di,D

∗
i ) +

(√
1

2(K−1)
+
√

1
2(n−1)

)√
(Q‖P ) + log n(K+1)

δ

(D.7)
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Proof. To start, we state a classical PAC-Bayes bound and use it to derive

generalization bounds on task and datapoint level generalization, respectively.

Theorem 7. Let X be a sample space (i.e. a space of possible datapoints). Let
P (X) be a distribution over X (i.e. a data distribution). Let Θ be a hypothesis
space. Given a “loss function” l(θ,X) : Θ × X → [0, 1] and a collection of
M i.i.d. random variables sampled from P (X), X1, ..., XM , let π be a prior
distribution over hypotheses in Θ that does not depend on the samples but may
depend on the data distribution P (X). Then, for any δ ∈ (0, 1], the following
bound holds uniformly for all posterior distributions ρ over Θ

P
(
EXi∼P (X),θ∼ρ(·) [l(θ,Xi)] ≤ 1

M

∑M
m=1 Eθ∼ρ(·)[l(θ,Xm] +

√
1

2(M−1)

(
DKL(ρ‖π) + log M

δ

)
, ∀ρ
)

≥ 1− δ. (D.8)

Meta-level generalization First, we bound the task-level generalization, that

is we relate er(Q) to 1
n

∑n
i=1 er(Q,Di,Ti). Letting the samples be Xi = (Di,Ti),

and l(θ,Xn) = Eφi∼q(φ|Di,θ),(x∗,y∗)∼Ti [L(φ(x∗), y∗)], then Theorem 1 says that

for any δ0 ∼ (0, 1]

P

(
er(Q) ≤ 1

n

∑n
i=1 er(Q,Di,Ti) +

√
1

2(n−1)

(
DKL(Q‖P ) + log n

δ0

)
,∀Q

)
≥ 1− δ0,

(D.9)

where P is a prior over θ.

Within task generalization Next, we relate er(Q,Di,Ti) to êr(Q,Di,D
∗
i )

via the PAC-Bayes bound. For a fixed task i, task training data Di, a prior

π(φ|Ti) that only depends on the training data, and any δi ∈ (0, 1], we have

P
(
E(x∗,y∗)∼p(x,y|Ti)ρ(φi) [L(φi(x

∗), y∗)] ≤ Eρ(φi)

[
1
K

∑
(x∗,y∗)∈D∗i

L(φi(x
∗), y∗)

]
+

√
1

2(K−1)

(
DKL(ρ||π) + log K

δi

)
,∀ρ
)
≥ 1− δi.
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Now, we choose π(φ|Ti) to be
∫
P (θ)q(φ|θ,Di)dθ and restrict ρ(φ) to be of

the form
∫
Q(θ)q(φ|θ,Di)dθ for any Q. While, π and ρ may be complicated

distributions (especially, if they are defined implicitly), we know that with this

choice of π and ρ, DKL(ρ||π) ≤ DKL(Q||P ) [23], hence, we have

P

(
er(Q,Di,Ti) ≤ êr(Q,Di,D

∗
i ) +

√
1

2(K−1)

(
DKL(Q‖P ) + log K

δi

)
,∀Q

)
≥ 1− δi

(D.10)

Overall bound on meta-learner generalization Combining Eq. (D.9) and

(D.10) using the union bound, we have

P
(
er(Q) ≤ 1

n

∑n
i=1 êr(Q,Di,D

∗
i ) +

√
1

2(K−1)
DKL(Q‖P ) + log K

δi

+
√

1
2(n−1)

DKL(Q‖P ) + log n
δ0
, ∀Q

)
≥ 1− (

∑
i δi + δ0)

Choosing δ0 = δ
K+1

and δi = Kδ
n(K+1)

, then we have:

P
(
er(Q) ≤ 1

n

∑n
i=1 êr(Q,Di,D

∗
i ) +

(√
1

2(K−1)
+
√

1
2(n−1)

)√
DKL(Q‖P ) + log n(K+1)

δ
,∀Q

)
≥ 1− δ.

Because n is generally large, by Taylor expansion of the complexity

term we have(√
1

2(K−1)
+
√

1
2(n−1)

)√(
DKL(Q||P ) + log n(K+1)

δ

)
= 1

2
√

logn(K+1)/δ

(√
1

2(K−1)
+
√

1
2(n−1)

)
×
(
DKL(Q||P ) + 2 log(n(K+1)

δ
)
)

+ o(1)

Re-defining the coefficient of KL term as β and omitting the constant and

higher order term, we recover the meta-regularization bound in Eq.(5.4) when

Q(θ) = N(θ; θµ, θσ).
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D.5 Experimental Details for Meta-Learning
D.5.1 Pose Prediction

We create a multi-task regression dataset based on the Pascal 3D data

[156]. The dataset consists of 10 classes of 3D object such as “aeroplane”, “sofa”,

“TV monitor”, etc. Each class has multiple different objects and there are 65

objects in total. We randomly select 50 objects for meta-training and the other

15 objects for meta-testing. For each object, we use MuJoCo [144] to render

100 images with random orientations of the instance on a table, visualized

in Figure 5.1. For the meta-learning algorithm, the observation (x) is the

128× 128 gray-scale image and the label (y) is the orientation re-scaled to be

within [0, 10]. For each task, we randomly sample 30 (x, y) pairs for an object

and evenly split them between task training and task test data. We use a meta

batch-size of 10 tasks per iteration.

For MR-CNP, we use a convolutional encoder with a fully connected

bottom layer to map the input image to a 20-dimensional latent representation

z and z∗ for task training input x and test input x∗. The (z, y) are concatenated

and mapped by the feature extractor and aggregator which are fully connected

networks to the 200 dimensional task summary statistics φ. The decoder is a

fully connected network that maps (φ, z∗) to the prediction ŷ∗.

For MR-MAML, we use a convolutional encoder to map the input image

to a 14× 14 dimensional latent representation z and z∗. The pairs (z, y) are

used in the task adaptation step to get a task specific parameter φ via gradient

descent. Then z∗ is mapped to the prediction ŷ∗ with a convolutional predictor
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parameterized by φ. The network is trained using 5 gradient steps with learning

rate 0.01 in the inner loop for adaptation and evaluated using 20 gradient steps

at the test-time.

D.5.2 Non-mutually-exclusive Classification

The Omniglot dataset consists of 20 instances of 1623 characters from 50

different alphabets. We randomly choose 1100 characters for meta-training and

use the remaining for testing. The meta-training characters are partitioned into

60 disjoint sets for 20-way classification. The MiniImagenet dataset contains

100 classes of images including 64 training classes, 12 validation classes, and 24

test classes. We randomly partition the 64 meta-training classes into 13 disjoint

sets for 5-way classification with one label having one less class of images than

the others.

For MR-MAML we use a convolutional encoder similar to the pose

prediction problem. The dimension of z and z∗ is 14× 14 for Omniglot and

20× 20 for MiniImagenet. We use a convolutional decoder for both datasets.

Following [32], we use a meta batch-size of 16 for 20-way Omniglot classification

and meta batch-size of 4 for 5-way MiniImagenet classification. The meta-

learning rate is chosen from {0.001, 0.005} and the β for meta-regularized

methods are chosen from {10−7, 10−6, . . . , 10−3}. The optimal hyperparameters

are chosen for each method separately via cross-validation.
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D.6 Additional Figures

We show a standard few-shot classification setup in meta-learning to

illustrate a mutually-exclusive task distribution and a graphical model for the

regularization on the activations.

Figure D.1: An example of mutually-exclusive task distributions.

In Figure D.2, D.3, we show the meta-test results on the non-mutually-

exclusive sinusoid regression problem with CNP and MAML. For each row, the

amplitudes of the true curves (orange) are randomly sampled uniformly from

[0.1, 4]. For illustrative purposes, we fix the one-hot vector component of the

input. In Figure D.2, the vanilla CNP cannot adapt to new task training data at

test-time and the shape of prediction curve (blue) is determined by the one-hot

amplitude not the task training data. Adding meta-regularization on both

activation and weights enables the CNP to use the task training data at meta-

training and causes the model to generalize well at test-time. In Figure D.3, due
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to memorization, MAML adapts slowly and has large generalization error at

test-time. Adding meta-regularization on both activation and weights recovers

efficient adaptation.

(a) CNP

(b) MR-CNP (A)

(c) MR-CNP (W)

Figure D.2: Meta-test results on the non-mutually-exclusive sinusoid regression
problem with CNP.
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(a) MAML

(b) MR-MAML (A)

(c) MR-MAML (W)

Figure D.3: Meta-test results on the non-mutually-exclusive sinusoid regression
problem with MAML.
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