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Abstract. 

In this work, crystallochemical indexes and geothermobarometric calculations are 

used together to estimate the P-T condition in low-grade metamorphic units of the San Luis 

Formation from Sierra de San Luis (Eastern Sierras Pampeanas of Argentina). Phyllites and 

slates from this formation record at least two episodes of white mica (Wm) and chlorite (Chl) 

growth associated with main D1-S1 (Wm2-Chl1) and local D2-S2 (Wm3-Chl2) stages. Mean 

KICIS values of 0.30 (Western Belt) and 0.23 Δ°2θ (Eastern Belt) were determined for the <2 

µm fraction. Moreover, since the average grain size of the Wm2 exceeds 10 µm, KICIS values 

were also measured for the 10-20 µm fraction ranging between 0.22 and 0.24 Δ°2θ for both 

belts. For those fractions, the KICIS values indicate epizone conditions, associated with 

temperatures higher than 300º C. These values are comparable to temperatures obtained from 

chlorite thermometers, 316º-416º C in Western Belt and 261º-403º C in the Eastern Belt. 

Pressure values for D1 stage constrained from chlorite – white mica – quartz – H2O 

equilibrium are 2.5-5.1 kbar in the Western Belt, and at 3.3-4.7 kbar in Eastern Belt. The 

pressures are consistent with white mica b parameter values measured in samples from 

Western Belt (9.006 to 9.025 Å) and Eastern Belt (9.003 to 9.020 Å), linked to intermediate 

thermal gradients (25-35ºC/km). 

The identification of increasing P-T condition paths in low-grade metasedimentary 

successions is not easy in the absence of higher grade rocks; in these situations, a systematic 

sampling and analysis of dozens of samples must be carried out. The very good correlation 

between crystallochemical index values (Kübler index and white mica b parameter) and 

thermobarometric calculations (empirical and semi-empirical chlorite thermometers and 

thermobarometry for chlorite – white mica – quartz – H2O equilibrium) presented in this 

work argues in favor of the development of a multiproxy study strategy in this type of low-

grade metasedimentary successions that involve: (1) a systematic sampling of metapelite 
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levels for X-ray diffraction study (mineralogical and crystallochemical indexes with a rapid 

implementation allowing a dense systematic samplig); (2) the recognition of variations in the 

P-T conditions from KI and b parameter values and the consequent selection of metapelitic 

samples for analyzing mineral chemistry and thermobarometric calculations. In order to 

facilitate these calculations, a user-friendly spreadsheet for crystallochemical indexes and 

chlorite thermometry calculations is also provided.  

 

Keywords: Kübler Index; white mica b parameter; chlorite thermometry; multi-equilibrium 

thermobarometry; Central-Western Argentina.  
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1. Introduction 

The thermobarometric determination in quartz-phyllosilicate metapelites or phyllites 

from low-temperature metamorphism is a great challenge. In this sense, a multiproxy 

approach, with X-ray diffraction (XRD) measurements and thermobarometric calculations (cf. 

Warr and Ferreiro Mählmann, 2015; Vidal et al., 2016), could be very helpful. The XRD 

methods include the measuring of cristallochemical indexes, such as the white mica b 

parameter (Sassi and Scolari, 1974; Guidotti and Sassi, 1986; Guidotti et al., 1989), the 

Kübler index in white micas (Kübler, 1964; Warr and Rice, 1994; Warr and Ferreiro 

Mählmann, 2015) or the Árkai index in chlorites (Árkai, 1991). These methods are strongly 

dependent on the size of the studied fractions, textural features (e.g., small scale bedding 

composed by quartz plagioclase- and phyllosilicates-rich layers), small scale compositional 

variations (e.g., Lanari et al. 2012; Cantarero et al. 2014; Scheffer et al. 2016; Airaghi et al. 

2017) and experimental parameters, such as shape and material of the sample holder, age of 

the X-ray tube, geometry of the diffractometer, among others (Kübler and Jaboyedoff, 2000; 

Abad, 2007). On the other hand, the thermobarometric calculations included empirical and 

semi-empirical approaches (see summary in Yavuz et al., 2015; Vidal et al., 2016). Chlorite 

empirical thermometers are commonly based on Al content, tschermak substitution, and 

octahedral vacancies, showing a systematic behaviour with variation of temperature (e.g., 

Cathelineau and Nieva, 1985; Jowett, 1991, Hillier and Velde; 1991), even though these 

thermometers are constrained to low-pressure series (<6 kbar; e.g., Vidal et al., 2001). The 

semi-empirical calculations incorporate thermodynamic and theoretical approaches, which 

can be applied in “inverse” and “forward” methods (e.g., Powell and Holland, 2008). In low-

grade, the inverse methods allow constraining the formation conditions from the chlorite 

and/or white mica equilibria in quartz-bearing rocks (see Vidal et al., 2001, 2005, 2006; 

Inoue et al., 2009, 2018; Dubacq et al., 2010; Bourdelle et al., 2013; Lanari et al., 2014); 
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however, most of them require knowing the XFe
+3

 ratio in the phyllosilicate composition (e.g., 

Vidal et al., 2016). On the other hand, the phase equilibria modelling should be the best way 

to determine the P-T conditions; however, it requires adequate solution models for 

phyllosilicate (chlorite and white mica) for low temperature (e.g., Parra et al., 2002; Dubacq 

et al., 2010; Lanari et al., 2014), which should also include the Fe
+3

 content (e.g., Vidal et al., 

2016; Trincal and Lanari, 2016). Furthermore, if the equilibrium phase diagram construction 

is applied, it is required to determine a reliable effective (or reactive) bulk composition, 

discarding detrital phases and the effect of polymorphism and fractionation of the bulk 

composition (zoned minerals, minerals that do not participate in the reactions; e.g., Stüwe, 

1997; Lanari and Engi, 2017).  

In this work, XRD methods and geothermobarometric calculations are applied and 

evaluated through the detailed study of metapelites from two low-grade metasedimentary 

belts of San Luis Formation (Prozzi, 1990) from Sierra de San Luis (Eastern Sierras 

Pampeanas of Argentina). This unit was selected due to its structural features, which are 

relatively simple, with two superposed foliations: the main penetrative S1, parallel to 

compositional primary bedding (S0), and another S2 locally developed as a crenulation 

cleavage (see von Gosen, 1998; Gonzalez et al., 2004). In addition, we include a spreadsheet 

(see Supplementary Table 1) that allows calculating all the used thermometers in a simple 

way, from semi-empirical and empirical chlorite thermometers compiled from literature, to 

white mica crystallochemical indexes (Kübler Index and b parameter). 

 

2. Geology of the San Luis Formation 

The metamorphic basement of the Sierra de San Luis (Fig. 1) is commonly divided 

into three metamorphic complexes, from east to west: Conlara (mid- to high-grade), Pringles 

(low- to high-grade) and Nogolí (mid- to high-grade) (e.g., Hauzenberger et al., 2001). These 
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complexes would represent part of the Early Paleozoic evolution of the paleo-margin of 

southwestern Gondwana (e.g., Steenken et al., 2006; Siegesmund et al., 2010). The San Luis 

Formation was described alternatively as an independent unit (e.g., von Gosen and Prozzi, 

1998; Ortiz Suárez and Casquet; 2005; Morosini et al., 2017) or as part of the Pringles 

Metamorphic Complex (e.g., Steenken et al., 2006, 2008; Delpino et al., 2015). The San Luis 

Formation is a low-grade metasedimentary succession exposed in two NNE-SSW belts, here 

denominated as Eastern and Western belts (Fig. 1), well represented in the south-western 

region of the Sierra de San Luis. This unit is mainly composed by an alternation of 

metapelites (slates and phyllites), metapsammites, metaquartzites and scarce 

metaconglomerates (see von Gosen, 1998; Perón Orrillo and Rivarola, 2014 and references 

therein), whose protoliths were interpreted as part of a clastic turbiditic sequence (Prozzi, 

1990). Detrital zircon U-Pb ages suggest a Mid Cambrian maximum depositional age for 

protholits (Drobe et al., 2009). On the other hand, the schist succession, in transitional contact 

with the low-grade rocks in the Western Belt (Fig. 2a), is intruded by the Ordovician 

Escalerilla granitic pluton (Morosini et al., 2017), thus a minimal Ordovician depositional age 

is established.  

Structurally, the compositional bedding in the San Luis Formation defines the primary 

S0 plane with NNE trend and WNW-ESE deep dip, which is overprinted by a penetrative S1 

metamorphic foliation (Fig. 3; von Gosen, 1998; Gonzalez et al., 2004; Delpino et al., 2015). 

The S1 plane was widely recognized in west and east low-grade belts, with NNE structural 

trend and high WNW-ESE deep in relation to axial plane of open to tight folds (von Gosen, 

1998; Gonzalez et al., 2004). Locally, a N-NE trend and high NW deep S2 foliation was 

identified near and sub-parallel to narrow shear zones, mostly located in the E-W limits of the 

low-grade belts (von Gosen, 1998; von Gosen and Prozzi, 1998; Gonzalez et al., 2004; 

Morosini and Ortiz Suárez, 2011; Fig. 2). The thermal conditions for the minerals associated 
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with D1 stage (white mica-chlorite-quartz-plagioclase) were linked to low green schist facies 

(Gonzalez et al., 2004; Wemmer et al., 2011; Delpino et al., 2015). 

 

3. Methods: sampling and analytical procedures 

3.1. Sampling  

The sampling was carried out along two W-E profiles from the Eastern and the 

Western belts of the San Luis Formation (Fig. 2). In the Western Belt, the profile followed 

the Nº 9 provincial road near La Carolina town (Fig. 2a); in the Eastern Belt, the profile 

followed the road that links the Paso del Rey and Santo Domingo localities (Fig. 2b). A total 

of 22 samples of fine-grained metapelites (slates and phyllites; listed in Table 1) were 

selected in order to analyse textural and mineralogical relationships, through petrographic 

descriptions and, in selected samples for electron microprobe (see below), backscattered 

electron image analysis.  

 

3.2. Clay minerals X-ray diffraction (XRD) analyses   

The <2 µm fraction was separated for 22 samples of metapelites following the 

recommendations of Moore and Reynolds (1997). Clay-mineral composition was established 

by the comparison of orientated aggregates: air-dried (AD), ethylene-glycol solvated (EG), 

and heated at 500 ºC (HO). X-ray analyses were performed with a Philips PW1800 

(Laboratory of Electron Microscopy and X-ray Analysis-LAMARX, Facultad de Matemática, 

Física y Astronomía, Universidad Nacional de Córdoba-UNC, Argentina) and a X-Pert Pro 

(Departamento de Físico Química, UNC) diffractometers employing Cu radiation, from 4 to 

35° 2θ, with a step size of 0.02° 2θ, a count time of 2 s per step and 40 kV, 40 mA. Clay-

mineral phases were semi-quantified using Mineral Intensity Factors (MIF) following the 

recommendations of Moore and Reynolds (1997). The weight percentages of each clay 
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mineral present were estimated using the HighScore software and the MIF factors. Those that 

do not appear between the lists of Moore and Reynolds (1997) were calculated with the 

NEWMOD
©

 software (Reynolds, 1985) on the base of the intensity relationships of clay 

minerals referenced to the (003) illite reflection (Moore and Reynolds, 1997). White mica 

(Wm) was identified by the presence of reflections at ~10 (001), 5 (002) and 3.38 Å (003) in 

the AD oriented sample diagrams, which do not show modifications in the diagrams of 

samples treated with Ethylene Glycol nor in the heated ones. The kaolinite was identified by 

the presence of the reflections at ~7 (001) and 3.58 Å (002), both in the AD and EG diagrams, 

which disappear in the HO diagrams, after heating the samples to 500 °C for 4 hours. The 

chlorite was identified by its reflections at ~14 (001), 7 (002), 4.76 (003) and 3.53 Å (004) in 

the AD diagrams, which are not modified in the EG diagrams, while in the HO diagrams they 

become less intense. The presence of illite-smectite (I/S) mixed-layers was determined by the 

reflection near ~11 to 17 º2θ in the EG diagrams and the percentage of white mica in I/S and 

ordering types (R0, R1 and R3) were determined by the position of the I/S (001-002) and 

(002-003) reflections in the EG preparations following the recommendations of Moore and 

Reynolds (1997). The goethite was identified by its more intense reflection at ~4.18 Å; while 

the reflections located at ~4.26 and 3.34 Å were assigned to quartz. The Kübler Index (KI) 

was measured in the <2 µm fraction, and in both AD and EG orientated aggregates between 

7.5 and 10 º2θ, with a divergent slit of 1º, and 0.5º/min. KICIS values (Crystallinity Index 

Standard, Warr and Rice, 1994; Warr and Ferreiro Mählmann, 2015) were established from 

the regression equation for the X’PertPro diffractometer: y = 0.812x + 0.0819 (R
2
 = 0.9833). 

KICIS values were also measured in 2-10 and 10-20 µm fractions from 8 samples that were 

also analysed by electron microprobe (see below), with the aim of comparing the presence of 

more than one white mica generation episodes. The white mica b parameter (Guidotti and 

Sassi, 1986) was measured in 20 samples, between 59.25 and 62° 2θ, with a step size of and 
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0.005° 2θ and a count time of 1 second per step, in rock slices orientated perpendicular to the 

main foliation. The quartz (211) reflection, positioned at 1.541Å, was used as internal 

standard. Mineral abbreviations are from Whitney and Evans (2010).  

 

3.3. Mineral chemistry  

Chemical analyses of chlorites (n=121) and white mica (n=235) were made in eight 

metapelitic samples, which were selected because of they present the best foliation 

development (S1 or S1+S2; see Table 1). These analysis were performed with an electron 

microprobe (EPMA) JEOL JXA 8230 at the LAMARX, operating in WDS mode, under 15 

kV accelerating potential, 10 nA beam current in phyllosilicates, on carbon-coated polished 

mounts. The beam diameter was between 2 to 10 µm based on the size of the mineral of 

interest, with counting time of 10 seconds on the peak, and 5 seconds at each background 

position. In order to decrease the diffusion effect, Na2O and K2O were first analysed during 5 

seconds on the peak and 2.5 seconds on the background. Mineral compounds were used as 

standards: Si (forsterite, wollastonite), Al (anorthite, anorthoclase), Fe (fayalite), Mg 

(forsterite, diopside), Na (anorthoclase), Mn (rodonite), Ti (ilmenite), Ca (wollastonite), F 

(topaz) and Cl (sodalite).  

Structural formulas were calculated for chlorite and white mica on the base of 14 and 

11 anhydrous oxygen, respectively. In these minerals, total Fe is expressed as FeO for 

chemical descriptions, but an initial XFe
3+

=Fe
3+

/(Fe
3+

+Fe
2+

) was assumed for chlorite and 

white mica in thermobarometric calculations. In chlorite, the XFe
3+

 value was adjusted in a 

similar way to the approach of Inoue et al. (2018). In this methodological approach, 

temperatures from thermometers with Fe total as Fe
2+

 + Fe
3+

 (Inoue et al., 2009) and with Fe 

total as Fe
2+

 (Inoue et al., 2018) should be identical or similar for a set of XFe
3+

. Obtained 

values between 0.1 and 0.3, with a value of 0.2 in most of chlorite analyses (see 
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Supplementary Table 2) were used. Similar results were obtained comparing the thermometer 

of Inoue et al. (2009) and Bourdelle et al. (2013) for analyses that have amounts of vacancies 

of (Al
VI

-Al
IV

-Na-K)/2 >0.05 apfu (Fe total as FeO). In the white mica, the XFe
3+

 was 

adjusted from oxide mineral association, following the recommendations of Guidotti et al. 

(1994). The presence of rutile and ilmenite, and locally of pyrite and graphite, as main 

accessory associations in most samples, suggests a low-fO2, which is consistent with XFe
3+

 

value in white mica of around 0.5 (see Guidotti et al., 1994). Chemical analyses of chlorites 

with Na2O+CaO+K2O contents >0.5 wt% were rejected and interpreted as contaminated. 

 

3.4. Thermobarometric calculations  

Empirical (Cathelineau, 1988; and Jowett, 1991) and semi-empirical (Inoue et al., 

2009, 2018; Bourdelle et al., 2013; Bourdelle and Cathelineau, 2015; Lanari et al., 2014) 

thermometric methods were applied in chlorite. The structural site location of Ti, Mn, Na, Ca 

and K was done taking into account the configuration followed by each author.  

The chlorite + white mica + quartz + H2O equilibrium was calculated in the 

KFMASH system using the software ChlMicaEqui (Lanari, 2012; Lanari et al., 2012). For 

these calculations, thermodynamic database of Berman (1988) was selected. This database 

contains modifications from Vidal et al. (2005, 2006) for chlorite, and Parra et al. (2002) and 

Dubacq et al. (2010) for white mica. For chlorite, the Vidal et al. (2005, 2006) solution model 

was selected, whereas the Parra et al. (2002) and Dubacq et al. (2010) models were selected 

for white mica. The Dubacq et al. (2010) model allowed calculating the equilibrium of 

chlorite-white mica incorporating the hydrated pyrophyllite end-member (H2O in A-site). In 

these equilibria, the XFe
3+

 for chlorite and white mica were constrained from convergence 

methods of Vidal et al. (2005, 2006), which were consistent with those obtained from the 

approach of Inoue et al. (2018).   
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The chlorite + white mica + quartz + H2O equilibrium was modelled with the 

equilibria:  

4 Daphnite +5 Mg-Amesite  4 Clinochlore + 5 Fe-Amesite (1) 

14 alpha-Quartz + 5 Fe-Amesite + 3 Mg-Amesite + 8 H2O  4 Daphnite + 6 

Sudoite (2) 

15 alpha-Quartz + 10 Fe-Celadonite + 2 Mg-Amesite + Sudoite  10 Mg-

Celadonite + 2 Daphnite + 4 Pyrophyllite (3) 

75 alpha-Quartz + 2 Daphnite + 10 Muscovite + 5 Sudoite  2 Clinochlore + 10 

Fe-Celadonite + 20 Pyrophyllite (4) 

Clinochlore + 4 Daphnite + 5 Muscovite  5 Mg-Celadonite + 5 Fe-Amesite (5) 

2 Fe-Amesite + 13 Mg-Amesite + 8 Muscovite + 14 Pyrophyllite + 30 H2O  8 

Fe-Celadonite + 26 Sudoite (6) 

 

The chlorite + hydrated white mica (WmH) + quartz + H2O equilibrium was modelled 

following the equilibria:  

2 Phlogopite + 2 Pyrophyllite.H2O  2 Mg-Celadonite + 4 alpha-Quartz + Mg-

Amesite (7) 

26 alpha-Quartz + 5 Fe-Amesite + 2 Pyrophyllite.H2O  4 Daphnite - 8 

Pyrophyllite (8) 

4 Daphnite + 5 Mg-Amesite  4 Clinochlore + 5 Fe-Amesite (9) 

14 alpha-Quartz + 5 Fe-Amesite + 3 Mg-Amesite + 8 H2O  4 Daphnite + 6 

Sudoite (10) 

15 alpha-Quartz + 10 Fe-Celadonite + 2 Mg-Amesite + Sudoite  10 Mg-

Celadonite + 2 Daphnite + 4 Pyrophyllite (11) 
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75 alpha-Quartz + 2 Daphnite + 10 Muscovite + 5 Sudoite  2 Clinochlore + 10 

Fe-Celadonite + 20 Pyrophyllite (12) 

Clinochlore + 4 Daphnite + 5 Muscovite  5 Mg-Celadonite + 5 Fe-Amesite (13) 

2 Fe-Amesite + 13 Mg-Amesite + 8 Muscovite + 14 Pyrophyllite + 30 H2O  8 

Fe-Celadonite + 26 Sudoite (14) 

 

The hydrated white mica + quartz + H2O equilibrium was calculated following the 

Dubacq et al. (2010) approach. This equilibrium is represented by a P-T line constructed from 

interlayer water content variation. Thus, a set of divariant P-T lines was obtained for each 

sample. For the calculation, an XFe
3+

 of 0.5 was fixed in white mica (see Mineral chemistry 

method section). This equilibrium was modelled from:  

Pyrophyllite.H2O  Pyrophyllite + H2O (15) 

3 Mg-Celadonite + 2 Pyrophyllite  11 alpha-Quartz + 2 Muscovite + Phlogopite 

+ 2 H2O (16) 

The uncertainties on the P-T calculations from the different thermobarometric 

methods applied in this work are approximately ±2 kbar and ±50º C (e.g., Vidal et al., 2006; 

Lanari et al., 2014).  

  

4. Petrology of the metapelites 

4.1. Mineral and structural relations 

The metapelites from the Eastern and the Western belts in San Luis Formation 

(phyllites and minor slates) are characterized by high proportions of fine grained 

phyllosilicates (more than 50 wt%), phyllosilicate flakes with an average size of <100 µm, 

and scarce quartz-veins and detrital mineral phases. The mineral association contains white 

mica, chlorite, quartz, plagioclase and a low proportion of biotite, K-feldspar, calcite and 
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accessory minerals (rutile, apatite, zircon, tourmaline, pyrite, scarce ilmenite and monazite). 

The K-feldspar is only part of detrital mineral association, which is also composed of quartz 

(Qz1), plagioclase (Pl1) and a minor proportion of white mica (Wm1) and biotite (Bt1; 

partially replaced by chlorite). Graphite was recognized in black-metapelites (slates) and 

calcite ± iron oxides were locally observed in late quartz-veins.   

In most samples, microstructures linked to S0 and S1 were identified (Fig. 4a-f), 

whereas an S2 was also recognized locally (Fig. 4c, d, f). The S1 is associated with D1 linked 

to a F1 folding stage, whereas S2 is linked to D2 stage that included a F2 crenulation folding. 

The early compositional bedding (S0) is represented by alternation of levels of <500 µm thick 

with significant variations of the modal proportion of phyllosilicates (white mica + chlorite ± 

biotite) and quartz-plagioclase (Fig. 4b). Detrital minerals are poorly preserved in quartz-

plagioclase-rich beds, showing irregular to sub-rounded shapes, weak to moderate undulose 

extinction and sizes between 20 to 300 µm. Weak to moderate pressure-solution effects are 

identified in the contact between detrital Qz1 grains. The S0 is affected by a D1 deformation 

stage and development of S1 foliation (Fig. 4b). The S1 is defined by inter-grown flakes 

(frequently 5 to 50 µm, up to 200 µm in coarser grain metapelites, Fig. 4e) of white mica 

(Wm2), chlorite (Chl1) and local occurrence of biotite (Bt2) intercalated with elongated grains 

of quartz (Qz2) and plagioclase/albite (Pl2) (up to 100 µm long), defining continuous (Fig. 4a) 

to disjunctive foliation (phyllosilicate domains alternating with quartz microlithons, Fig. 4b). 

The S0 and S1 are deformed by the restricted D2 stage and overprinted by the S2 crenulation 

foliation. This second foliation is characterized by phyllosilicate domains (without quartz), 

which are intercalated with quartz-plagioclase-phyllosilicate microlithons, showing variable 

thickness, from a few microns up to 500 µm, anastomosed to parallel interrelationship and 

discrete to low-gradational contacts (Fig. 4c, d). The S2 is defined by oriented white mica 
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(Wm3) and rarely chlorite (Chl2) flakes (Fig. 4d, f), with grain-sizes from 10 to 50 µm 

(reaching up to 200 µm).  

  

4.2. Clay minerals association  

In the Western Belt the <2µm fraction is formed mainly by illite/K-white mica (22-

89%), with variable proportions of interstratified I/S (0-33%), kaolinite (0-55%) and/or 

chlorite (0-24%), and goethite and quartz as subordinate phases (Fig. 5). In the Eastern Belt, 

illite/K-white mica appear with proportions similar to those in the Western Belt (20-91%), 

with I/S presence in most of the samples (0-29%). Kaolinite and chlorite proportions are 

different (0-1% and 0-65%, respectively), with one sample (FSL31039a1) reaching 83% of 

kaolinite. Table 1 shows the mineral associations obtained for each sample. In both belts, the 

interstratified I/S coexisting with white mica presents an R0 ordering type with <10% of 

white mica layers, except in a sample of the Western Belt (FSL-301013a1), in which R0, R1 

and R3 ordering types were identified (Figs. 5b, d, e).  

 

4.3. Chemical composition of the phyllosilicates 

Average chemical analysis for chlorite and white mica from different textural 

positions are shown in Table 2 (full data is reported in the Supplementary Table 2). Chlorite 

is absent in sample FSL-31013a1.  

The Chl1 analyses obtained from the selected samples belonging to the Western Belt 

show Si values of 2.59±0.06 apfu (average ± standard deviation; values between 2.49 and 

2.73 apfu), Al of 2.89±0.08 apfu (between 2.75 and 3.11 apfu) and XMg=Mg/(FeTotal+Mg) 

(FeTotal is all iron as Fe
2+

) of 0.41±0.06 (between 0.31 and 0.49). Vacancies in the M1 site 

were calculated following Lanari et al. (2014), as (A
VI

-Al
IV

-Na-K)/2, obtaining mean 

contents of 0.03±0.04 apfu (all values <0.11 apfu). On the other hand, Chl1 from the Eastern 
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Belt samples analysed contains 2.64±0.03 apfu of Si (between 2.57 and 2.76 apfu), 2.81±0.06 

apfu of Al (between 2.66 and 2.92 apfu) and vacancies in the M1 site of 0.04±0.03 apfu, with 

values up to 0.11 apfu. The XMg values are 0.48±0.06 (between 0.37 and 0.62), with the 

highest values corresponding to a black slate sample (0.60-0.62; FSL-31037a), and the rest of 

the samples limited to the range of 0.37-0.52 (average of 0.47±0.05). The Chl2 has been 

recognized in FSL-31032a sample, with Si contents of 2.64±0.04 apfu (between 2.58 and 

2.75 apfu), Al contents of 2.78±0.05 apfu (between 2.65 and 2.84 apfu), XMg of 0.50±0.01 

(between 0.49 and 0.52) and vacancies in the M1 site of 0.03±0.02 apfu (values up to 0.07 

apfu). In both belts, chlorite analyses plot near or over the clinochlore-amesite segment in the 

chlorite compositional diagrams, R
2+

 (Mg+Mn+FeTotal) – Si (Fig. 6) (after Wiewióra and 

Weiss, 1990; modified by Bourdelle and Cathelineau, 2015) and there are no clear 

differences between the compositions of Chl1 and Chl2 (see Fig. 6b). However, when an 

initial XFe
3+

 ratio is assumed (see methods section), the vacancies calculated as (Al
VI

+Fe
3+

-

Al
IV

-Na-K)/2 for Chl1 show a mean value of 0.22±0.06 apfu (between 0.07 and 0.36 apfu) in 

the Western Belt and of 0.20±0.04 apfu (between 0.14 and 0.28 apfu) in the Eastern Belt, 

whereas for this last belt the Chl2 presents an average value of 0.19±0.02 apfu (between 0.16 

and 0.23 apfu). Thus, when Fe
3+

 is taken into account the values show an increase in the 

sudoitic component, such as is shown in the R
2+

-Si diagrams, when R
2+

 is calculated with 

Fe
2+

 instead of Fe total (see triangles in Fig. 6). In addition, the chemical composition of 

chlorite in each sample from Eastern and the Western belts are aligned to the Si + □ = R2
2+

 

and Si1.25 + □0.75 = R
3+ 

+ R
2+

 substitution vectors (considering both the FeTotal as Fe
2+

 and the 

Fe
2+ 

+ Fe
3+

), with apparent minor contribution of di-trioctahedral and tschermak substitutions 

(Fig. 6).  

The Wm2 analysed in the samples selected from the Western Belt has 3.11±0.05 apfu 

of Si (between 3.00 and 3.11 apfu), 2.68±0.11 apfu of Al (between 2.47 and 2.90 apfu) and 
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alkali content (Na+K) of 0.90±0.04 apfu (between 0.80 and 0.96 apfu). The XMg is 

constrained to 0.53±0.04 (between 0.42 and 0.60), except in FSL-31010a sample which 

exhibits lower XMg, with an average of 0.21±0.03 (from 0.16 to 0.26) (see Table 2). The 

Wm3 was characterized in two samples, FSL-31013a1 and FSL-31016a, which contains Si of 

3.16±0.03 apfu (from 3.10 to 3.22 apfu), Al of 2.59±0.04 apfu (from 2.52 to 2.68 apfu), 

alkalis of 0.90±0.04 apfu (from 0.79 to 0.94 apfu) and XMg of 0.55±0.03 (values between 

0.49 and 0.61). The Wm3 is more Si-richer than Wm2 in FSL-31016a, although this behaviour 

is not observed in FSL-31013a1 (Fig. 7a,b). In the Eastern Belt, the Wm2 has 3.17±0.07 apfu 

of Si (3.02-3.33 apfu), 2.59±0.13 apfu of Al (2.27-2.88 apfu) and alkalis of 0.89±0.04 (0.79-

0.95 apfu). The XMg ratio has a value of 0.37±0.08 (0.20-0.54), except for FSL-31037a 

(black slate) with an average ratio of 0.66±0.05 (0.55-0.73). The Wm3 was analyzed in the 

FSL-31032a sample, with Si contents of 3.22±0.05 apfu (3.14-3.29 apfu), Al of 2.47±0.09 

apfu (values between 2.30 and 2.60 apfu), Na+K of 0.90±0.03 apfu (between 0.82-0.94 apfu) 

and XMg of 0.44±0.06 (0.32-0.52). In both belts, the white mica data show no clear 

differences between Wm2 and Wm3, as illustrated in Figure 7. For the Western Belt, the 

analyzes of Wm2 and Wm3 are apparently aligned with the pyrophyllitic vector, with a little 

influence of the tschermak substitution, and do not show a clear alignment with the 

ferrimuscovite and di/trioctahedral vectors (Fig. 7a, b). In white mica from the Eastern Belt, 

the effect of the tschermak substitution seems to be significant, with the exception of sample 

FSL-31034a3. This sample does not show a clear alignment with the tschermak substitution 

vector for white mica analyses (Fig. 7c, d).  

 

5. Chrystallochemical indexes 

5.1. Kübler Index (KICIS) 
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The KICIS AD values were measured in the <2 m fraction of 20 samples from both 

belts (Fig. 8a,b). In the Eastern Belt KICIS values range from 0.19 to 0.26 º2θ (n: 10) with a 

mean value of 0.23 º2θ belonging to the epizone field (Table 1, Fig. 8a), with no significant 

modifications in the EG samples. In the Western Belt, obtained values range between 0.18 

and 0.60 º2θ (n: 10), with a mean value of 0.30 º2θ belonging to the upper anchizone-

epizone transition, with predominance of epizone values (Table 1, Fig. 8b). In two samples, 

KICIS EG values (0.21-0.45 º2θ) are somewhat lower than KICIS AD values (see Table 1, Fig. 

8b), and together with the asymmetry of the white mica (001) reflections suggest the 

influence of small quantities of I/S (likely R3 ordering type). In general, values from the 

Western Belt are less homogeneous than the KI data from the Eastern Belt. KICIS values 

corresponding to the 2-10 µm (Western Belt: mean ± standard deviation of 0.23±0.002 º2θ; 

Eastern Belt: 0.23±0.008 º2θ) and 10-20 µm (Western Belt: 0.21±0.012 º2θ; Eastern Belt: 

0.21±0.010 º2θ) fractions measured in the 8 samples, also analysed by EMPA, are 

somewhat lower than the <2 µm fraction (Western Belt: 0.33± 0.183 º2θ; Eastern Belt: 

0.25±0.010 º2θ; see Table 1 and Fig. 8a,b).  

 

5.2. White mica b parameter  

The white mica b parameter from the Eastern Belt gave a mean value of 9.014 Å (n: 

11; 9.003 to 9.020 Å), while the Western Belt gave a mean value of 9.018 Å (n:9; 9.006 to 

9.025 Å), without a clear trend along each transect. Both values are comparable with b 

parameter values of intermediate pressure facies series (inferred geothermal gradients of 25-

35ºC/km) defined by Sassi and Scolari (1974) and Guidotti and Sassi (1986) (Fig. 9a). The 

white mica b parameters were calculated from chemistry mineral of white mica from  

samples analysed by EMPA (Table 2), using the formula proposed by Guidotti et al. (1989) 

[b = 8.9931 + 0.0440 Σ(Mg + Fetotal)]. The values obtained are between 9.013 to 9.026 Å for 
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the Eastern Belt (9.020 Å), and 9.013 to 9.023 Å (mean of 9.018 Å) for the Western Belt. In 

both cases, the ranges are comparable with those measured through XRD (Fig. 9a).   

 

6. Thermobarometric calculations 

6.1. Chlorite thermometry 

Empirical and semi-empirical thermometry was applyed in all chlorite-bearing 

samples. The results of each sample with the average and standard deviation as 1 sigma (σ), 

are listed in Table 3. In general, empirical thermometry from Catherlineau (1988; abbreviates 

as C88) and Jowett (1991; abbreviates as J91) shows similar results in each sample. The 

average temperature for Chl1 in the Western Belt ranges from 384º to 403º C (C88) and 389º 

to 413º C (J91), whereas in the Eastern Belt are: 349º C (C88) and 351º C (J91) in FSL-

31037a, and 376º-379º C (C88) and 383º-384º C (J91) for FSL-31032a, FSL-31034a3 and 

FSL-31035a. In addition, the Chl2 in the Eastern Belt (FSL-31032a) does not record 

significant differences with the Chl1, with average values of 376º C (C88) and 381º C (J91) 

(see Table 3).  

Two groups of semi-empirical thermometers were applied to chlorites: the first using 

Fe total as FeO (abbreviates as B13 for Bourdelle et al., 2013; and I18 for Inoue et al., 2018) 

and the last using Fe total as FeO + Fe2O3 (abbreviated as I09 for Inoue et al., 2009; and La14 

for Lanari et al., 2014). The Fe
3+

/(Fe
3+ 

+ Fe
2+

) ratio was fixed such as it is explained in the 

analytical method descriptions. In addition, for the Lanari et al. (2014) thermometer the Si 

content in chlorite must not exceed 3 apfu, whereas up to 4 apfu is accepted for the Inoue et 

al. (2009, 2018) and Bourdelle et al. (2013) thermometers. For the last thermometers, where 

Fe total is FeO, the value of vacancies should be >0.05 apfu, being defined as (Al
VI

-Al
IV

-Na-

K)/2 (cf. Lanari et al., 2014). On the other hand, when Fe
3+

 is estimated, the vacancies were 

calculated as 6-(Fe
2+

+Fe
3+

+Mg+Al
VI

) for Inoue et al. (2009) and as (Al
VI

-Al
IV

+Fe3
+
-Na-K)/2 
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for Lanari et al. (2014). The thermometer of Bourdelle et al. (2013) was applied only in few 

analyses since most of them do not reach the minimum vacancy criteria for this calibration, 

with the exception of the FSL-31034a3 sample (see Fig. 6 and Table 3). However, 

temperatures obtained with B13 are similar to the rest of the applied thermometers (see Table 

3). In the Western Belt, temperature averages for Chl1 range between 351º-367º C (I18), 

364º-386º C (I09) and 380º-416º C (La14), whereas in the Eastern Belt they are between 

283º-349º C (I18), 301º-367º C (I09) and 352º-403º C (La14). The Chl2 in FSL-31032a 

records mean temperatures of 348º (I18), 364º C (I09) and 398º C (La14), being similar to 

those from Chl1 in the same sample (Table 3).  

 

6.2. Multi-equilibrium thermobarometry  

 The P-T conditions from the local equilibrium of chlorite (Chl1) - white mica (Wm2) 

pairs were calculated using the chlorite + white mica + quartz + H2O equilibrium and are 

summarized in Table 4 and Figure 10. These calculations were made for Chl1-Wm2 pairs in 

FSL-31009a2 and FSL-31016a samples from the Westen Belt (see Fig. 4e), and FSL-31032a 

and FSL-31034a3 samples from the Easten Belt (see Fig. 4f). The P-T conditions were 

constrained in 317º C and 5.1 kbar for FSL-31009a2 (Fig. 10a) and 365-480 ºC – 2.5-4.6 kbar 

for FSL-31016a (Fig. 10b,c). In the Eastern Belt, the FSL-31034a3 sample records 401-408 

ºC and 4.3-4.7 kbar (Fig. 10d), whereas in the FSL-31032a sample, values are of 361-380 ºC 

and 3.3-3.6 kbar (Fig. 10e,f). In addition, two Chl2-Wm3 pairs from the FSL-31032a sample 

were analyzed, obtaining values of 433º C-3.2 kbar and 442º C-2.8 kbar. In the FSL-31032a, 

the XFe
3+

 of Chl1 and Chl2 were adjusted to >0.15 to achieve the equilibrium. XFe
3+

 values 

higher than 0.15 are consistent with those obtained from Inoue et al. (2018) for this sample 

(XFe
3+

 = 0.20, see Table 2). 
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  The hydrated white mica + chlorite + quartz + H2O equilibrium was calculated for 

Chl1-Wm2 pairs (Table 4). In the Western Belt, P-T conditions of 359º C and 8.9 kbar were 

calculated in FSL-31009a2, whereas 375º C and 4.9 kbar were obtained for FSL-310016a. In 

the Eastern Belt, 354º C and 3.4 kbar were calculated for the FSL-31032a sample. On the 

other hand, the equilibrium of hydrated white mica + quartz + H2O from Dubacq et al. (2010), 

considering the pressures calculated from the white mica + chlorite + quartz + H2O 

equilibrium, was calculated for both belts. At around 5 kbar, the temperatures estimated for 

the Western Belt are of 340-420º C in FSL-31009a2, 340-420º in FSL-31013a1, and 370-

430º C in the FSL-31016a. In the Eastern Belt, the temperature in FSL-31034a3 was 

estimated in the range of 330-420º C at 4.5 kbar, 310-390º C in FSL-31035a at 4.5 kbar, 

whereas in FSL-31032a is 285-370º C at 3.5 kbar. In addition, the temperature for Wm3 in 

FSL-310032a was estimated in 300-370º C at 3 kbar (see Table 4 and Fig. 10g,h).  

  

7. Discussion 

7.1. Analysis of crystallochemical indexes  

The KICIS values (<2m) obtained for both belts are generally found in the epizone 

field and there are no significant differences between samples that recorded more than one 

growth episode of white mica (Wm2, Wm3). For the Eastern Belt, the values are all in this 

field and do not present any tendency (Fig. 8a), whereas for the Western Belt there is a slight 

increase in the KICIS values (anquizone field) towards the west (see Fig. 8b), with one sample 

presenting diagenetic values.  

In addition to the <2m fraction, the KICIS was measured in the 2-10 m and 10-20 

m fractions corresponding to the 8 samples also studied by EMPA, mainly because the 

<2m fraction does not include the size of the petrographically identified of Wm2 and Wm3 

(both, associated with S1 and S2, exceeding 5 μm), but also to assess the influence of the grain 
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size on this indicator. Although the problems related to the influence of the granulometric 

fraction on which the KI measurement is made have been mentioned several times (Kübler 

and Jaboyedoff, 2000; Jaboyedoff et al., 2001; Kisch et al., 2004), these have been 

fundamentally linked to the presence of detrital white mica, very common in diagenetic and 

anquizonal samples (Kübler and Jaboyedoff, 2000). In the case of the epizonal samples, and 

as it has been seen in the samples of this work, the <2m fraction is in general substantially 

lower than the grain size of the neoformed white micas. Thus, the <2µm fraction do not 

include most of the material formed during the prograde and, at the same time this fine 

fraction could contain grains associated with processes subsequent to the metamorphic peak 

(e.g., retrograde diagenesis, Nieto et al., 2005, processes associated with decompression, 

Muñoz et al., 2017). It should be noted that, although KI is a very sensitive indicator from the 

diagenesis to the epizone in different geotectonic contexts, and is widely used to characterize 

the low grade metamorphism (equivalent to the low greenschist facies; Jaboyedoff, 2001), it 

is a specific index of anquizone (Abad, 2007) and its sensitivity decreases as we move away 

from this field toward diagenesis or epizone. In the case of the San Luis Formation, although 

most of the values are restricted to the epizone field, the different granulometric fractions 

analyzed show a tendency with higher values towards the finer fractions (Fig. 8c). For the 10-

20 µm fraction (which concentrates the white micas on which the mineral chemistry 

measurements were made), KI(CIS) values between 0.20-0.23 °2 were obtained, which 

would be associated with temperatures higher than 300ºC (which is the temperature estimated 

for the transition between anchizone and epizone fields, see Merriman and Frey, 1999). It 

should be noted that the samples FSL-31008a1 and 31008a2 have anchizonal values and 

sample FSL 31013a1 diagenetic values for the <2 μm fraction. In the case of the sample FSL-

31013a1 this value is substantially higher than those obtained for the 2-10 (0.24 °2) and 

10-20 μm fractions (0.21 °2 (see table 1). These higher values could be associated with 
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processes that would have taken place after the two main growth episodes, at lower 

temperature conditions, as indicated by the presence of I/S and/or kaolinite in the <2m 

fraction of most of the analyzed samples, with mineral associations that suggest an episode of 

mineral growth in diagenetic conditions (<200º C; Merriman and Frey, 1999).  

The cumulative frequency curves of white mica b parameter values obtained from the 

XRD measurements are similar to those from New Hampshire and Ryoke Belt (Fig. 9a), and 

indicate that the two belts were metamorphosed under intermediate pressure facies conditions 

(Guidotti and Sassi, 1986, Fig. 9a), suggesting intermediate thermal gradients of 25-35 ºC/km 

(Merriman and Peacor, 1999). These values are similar to those obtained from the chemical 

analyses (see Table 2), where the P-T conditions calculated for Wm2-Chl1, associated to D1-

S1, are consistent with the range of b parameter values as shown in Figure 9b. The selected 

samples from both belts are projected in the P-T diagram proposed by Guidotti and Sassi 

(1986), which included isopleths for the white mica b parameter values. Thus, pressure values 

ranging from 2.7 to 3.9 kbar are obtained from the combination of semi-empirical chlorite 

thermometry average temperatures (Inoue et al., 2009, 2018; Lanari et al., 2014) and the 

white mica b parameter values measured in each sample.  

 

7.2. Thermobarometric results  

Empirical and semi-empirical chlorite thermometers show similar results in each 

sample for Chl1 (S1) (Table 3). Thus, considering all the samples, mean temperatures for 

chlorite empirical thermometers are constrained between 384-413º C in the Western Belt and 

349-384º C in the Eastern Belt. Temperatures for chlorite semi-empirical thermometers are 

between 316-416º C in the Western Belt and 261-403º C in the Eastern Belt, suggesting a 

consistency between both methods in each sample (Table 3). These values show a trend to 

lower temperatures in Bourdelle et al. (2013) and Inoue et al. (2018) semi-empirical 
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calibrations, which consider the Fe Total as FeO. Within the semi-empirical methods that 

included the Fe
3+

, the thermometer proposed by Lanari et al. (2014; La14) systematically 

yields temperatures higher than those from Inoue et al. (2009), as it was previously observed 

by Vidal et al. (2016). On the other hand, the Dubacq et al. (2010) method shows results 

similar to previous thermometers, thus 340-430º C are obtained in the Western Belt, and 285-

420º C in the Eastern Belt. The thermobarometric results from chlorite (Chl1) - white mica 

(Wm2) - quartz - H2O equilibrium show temperatures between 317-480º C and 2.5-5.1 kbar in 

the Western Belt and 362-408º C and 3.3-4.7 kbar in the Eastern Belt (Table 4). When 

hydrated white mica is included in this equilibrium, the P-T conditions are comparable (Table 

4). Spatially, significant variations in temperatures for Chl1, for all methods, are not observed 

in the Western Belt. On the other hand, the Eastern Belt shows variations in temperatures, but 

without clear temperature field gradient, being the lowest temperature recorded in a black-

slate sample (FSL-31037a).  

Similar empirical and semi-empirical chlorite temperatures are obtained between Chl1 

(349-403º C) and Chl2 (343-398º C) in the FSL-31032a sample (Table 3). These suggest that 

Chl2 (D2-S2) formed close to the temperature peak of Chl1, which is consistent with similar 

compositions between Wm2 and Wm3 in this sample. However, the chlorite – white mica – 

quartz – H2O equilibrium results show slightly higher temperatures and lower pressures for 

Chl2 (Tabla 4). However, the possibility of a chemical Chl1-Wm2 re-equilibrium during the 

Chl2-Wm3 growth episode, without obvious textural modification (e.g., Scheffer et al., 2016; 

Airaghi et al., 2017) should be not discarded. 

Pressure values calculated from white mica – chlorite pairs are quite similar in most 

calculation for both belts (Table 4). However, a value of 8.9 kbar calculated from chlorite – 

white mica (hydrated) – quartz – H2O equilibrium for FSL-31009a2 is not consistent with the 

rest of the calculations, unlike temperature (Table 4). This pressure value contrasts, and 
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seems unrealistic, with respect to values estimated in previous works for the San Luis 

Formation and nearby schists of Sierra de San Luis. Ortiz Suárez and Casquet (2005) and 

Morosini and Ortiz Suárez (2011) obtained values between 4-6 kbar, similar to those obtained 

in this work (2.5-5.1 kbar, Table 4).  

 

Final comments and conclusions 

Results obtained in this work for the San Luis Formation show the advantages of the 

multiproxy study, showing a very good consistency between the methods of 

thermobarometric calculations and crystallochemical indexes to estimate the P-T conditions 

in low-grade metamorphic units. Crystallochemical indexes are ideal to characterize units 

distributed across wide regions. A dense and systematic sampling allows identifying 

mineralogical changes in an expeditious way (e.g., prograde, retrograde, metasomatic effects, 

variations in the compositions of the protoliths; Collo et al., 2008; Potel et al., 2016; Vazquez 

et al., 2016) and P-T variations (e.g., field gradients, structural effects), which makes it 

possible to generate a basic characterization in which subsequent quantitative studies are 

based. Moreover, the use of empirical and semi-empirical chlorite thermometers and the 

multiequilibrium methods allow making a precise constrain of P-T conditions, including 

comparisons between different calibrations as well as estimation of the XFe
3+

 in chlorite. The 

XFe
3+

 estimated from comparison of temperatures calculated with different thermometers (Fe 

total as FeO and Fe Total as FeO + Fe2O3) are similar to those calculated from convergence 

methods in the chlorite – white mica – quartz – H2O equilibrium (see Tables 2 and 4). The 

themobarometric methods also allows identifying P-T conditions variation related to 

compositional zoning (e.g., Lanari et al., 2012) and partial re-equilibration (e.g., Airaghi et al., 

2017). This is a strong advantage in comparison to the crystallochemical indexes which do 

not allow identifying local compositional variations.  
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Comparable temperatures were obtained from KI measurements, which allow 

inferring temperatures >300°C (epizone conditions), and from those from chlorite 

thermometers (261-416º C) and chlorite - white mica – quartz – H2O equilibrium (317-480º 

C). Pressure conditions inferred from the white mica b parameter are also consistent with the 

pressures calculated from the white mica-chlorite equilibrium pair as shown in Fig. 9b. 

Moreover, the similarity between the b parameter values measured through XRD and those 

calculated from the mineral chemistry reinforce the reliability in these crystallochemical 

indexes.  

A retrograde process was identified based on the mineralogy of the <2 µm, which 

presents I/S and Kln, and in three KI values compatible with anchizonal and diagenetic 

conditions. This reinforces the approach of using not only the <2m fraction but larger grains 

size fractions for the KI measurement in low-grade metamorphic rocks, where the newly 

formed mineral phases could have substantially larger sizes. The measurement of the KI and 

the mineralogical characterization by means of XRD in several granulometric fractions, 

including the mean grain size defined petrographically for the white micas associated with 

the main foliation, would guarantee the identification and elimination of the influence of 

retrograde phases that could potentially mask the conditions of the prograde metamorphism.  
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Figure captions 

 

Fig. 1. (a) Geological map of the Northwestern Argentine with the location of the study area, 

modified from Rapela et al. (2016). Location of the Sierra de San Luis for Fig. 1b is shown in 

a grey square. (b): Detail of the geology of the Sierra de San Luis, included both the Eastern 

and the Western belts studied in this work. The location of figures 2a and 2b is also shown. 

Abbreviations: San Salvador del Jujuy (Ju), Salta (Sal), Tucumán (Tuc), La Rioja (LR), San 

Juan (SJ), Mendoza (Mz), San Luis (SL), Catamarca (Ca) and Córdoba (Cba). 
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Fig. 2. Detail of the Western (a) and Eastern (b) belts in which the sampling point and the 

methodologies applied to each sample are indicated.  

 

Fig. 3. Outcrop view of the studied sequences showing the centimetric (a, b) alternance of 

metapelitic (shale) and metapsammitic (silty-sandy) layers associated with the S0 primary 

foliation. The S1 foliation is parallel (a) to subparallel with S0 (b and c). Figures a and b from 

the Western Belt, and c from the Eastern Belt. 

 

Fig. 4. Microphotographs of the phyllites from the San Luis Formation. (a) Metapelite 

showing the development of the main S1 foliation, which is represented by aligned Wm2 and 

Chl1. (b) Relation between S0 and S1 in microfolding (F1) hinge area affecting the alternation 

of quartz-plagioclase-rich and phyllosilicate-rich layers. (c, d) Crenulation cleavage (S2) 

affecting the S1 (Wm2+Chl1) and represented by aligned sheets of Wm3 (c; FSL-31016a 

sample) or Wm3 – Chl2 (d; FSL-31032a sample). (e) and (f) are backscattered electron 

imaging obtained from electron microprobe that show details of mineral assemblage in (c) 

and (d) respectively. In both images, point analysis for chlorite-white mica pairs used for 

thermobarometry are indicated as yellow (chlorite) and orange (white mica) triangles. 

Number of each analysis is described in each point.  

 

Fig. 5. X-ray diffraction diagrams comparing air dried (AD), glycolated (EG) and calcinated 

oriented (HO) samples (a, b and c: samples from Western belt; d and e: samples from Eastern 

belt). 
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Fig. 6. Chemical composition diagrams of chlorites, Chl1 (S1) and Chl2 (S2), from the 

Western (a) and the Eastern belts (b) (after Wiewióra and Weiss, 1990, modified by 

Bourdelle and Cathelineau, 2015). The triangles represent the composition of chlorites with 

Fe
3+

 in the calculation (Fe total as Fe
2+

 + Fe
3+

), preserving the color of the symbol (circle) for 

each sample. See text for descriptions. 

 

Fig. 7. Diagrams showing chemical compositions of white micas, Wm2 (S1) and Wm3 (S2), in 

Western (a, b) and Eastern (c, d) belts. Arrows represent different exchange vectors (modified 

from Abad et al., 2006): Al
VI 

= Fe
3+

 (ferrimuscovite), □
VI 

+ (Al
IV

, Al
VI

) = 3R
2+

 

(di/trioctahedral), Al
IV 

+ Al
VI 

= Si + R
2+

 (Tschermak), Al
IV

 + (Na, K)
A
 = Si + □

A
 

(pyrophyllite).  

  

Fig. 8: Kübler index value (KICIS) distribution along the belts obtained by air dried (AD) and 

glycolated (EG) methods. (a) and (b) are values for the <2m fraction from the Eastern and 

the Western belts, respectively. (c) Set of values for the <2m, 2-10 m and 10-20 m 

fractions in samples that also were analysed through electron microprobe. Temperatures 

according to Merriman and Peacor (1999). 

 

Fig. 9. (a) Cumulative frequency curves for the white mica b parameter values from both 

belts. These curves were projected from b parameter values measured with XRD and 

calculated from mineral chemistry (average in each sample, see Table 2). As reference low-

pressure, intermediate-pressure, and high-pressure fields from Guidotti and Sassi (1986) are 

shown, and curves from other well-characterized low-grade metamorphic terranes are added 

(cf. Sassi and Scolari, 1974). (b) P-T diagram shows b-parameter isopleths (after Guidotti and 

Sassi, 1986) and theorical curves for kaolinite dehydratation and Al2SiO5 triple points 
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(andalusite-And, sillimanite-Sil and kyanite-Ky) after Pattison (1992). Samples from both 

belts are projected in base of temperature obtained from average of semi-empirical 

thermometers (Inoue et al., 2009, 2018; Lanari et al., 2014) and b parameter measured value. 

The horizontal bar on each sample represents the range of average temperature values. 

 

Fig. 10. (a-f) P-T diagrams shows results of chlorite + white mica + quartz + H2O equilibrium 

calculations for Chl1-Wm2 pairs, associated to S1 development, for two samples of the 

Western Belt (a-c) and two samples from the Eastern Belt (d-f). (g-h) Thermometer method 

from Dubacq et al. (2010) applied to samples from the Western Belt (FSL-31009a2, FSL-

31013a1 and FSL-31016a) and the Eastern Belt (FSL-31035a, FSL-31034a3 and FSL-

31032a). In each sample, the P-T lines calculated were projected and constrained with solid 

lines with different colours (e.g., FSL-31009a2 with blue line). For more details, consult the 

text and Table 4. 
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 able 1. Summar  of the cla  minerals identified in the <2μm fraction of the analysed samples. Kübler index 

(KI; Δ°2θ) and white mica b (Å) parameter values are also shown. X: present but without quantification; Tr: 

traces. AD: air-dried samples; EG: glycolated samples.  

Samples 
W

m 

Ch

l 
Kln Qz 

I/S 

(R0) 

I/S 

(R1) 

I/S 

(R3) 

Gt

h 

KICIS 

AD  

<2µm 

KICI

S EG 

 

<2µ

m 

KICI

S  

2-10 

µm 

KICIS  

10-20 

µm 

White 

mica 

b 

para

meter 

Observation

s 

Western Belt 

FSL310

08a1 
47 20 - - 33 -  -  Tr 0.42 - - - - 

- 

FSL310

08a2 
58 18 - - 24 -  -  - 0.35 0.34 - - 9.014 

Bt; S1 

FSL310

07a1 
77 - 23 - - -  -  Tr 0.28 0.28 - - 9.018 

Bt; S1 

FSL310

09a1 
75 24 - - 1 -  -  - 0.28 0.25 - - 9.019 

S1 

FSL310

09a2* 
89 1 10 X Tr -  -  - 0.28 0.25 0.23 0.23 9.019 

Bt; S1 

FSL310

10a* 
80   20 X - -  -  Tr 0.23 0.23 0.23 0.21 9.006 

S1 

FSL310

12a 
59 - 41 X - -  -  X 0.19 - - - 9.022 

S1±S2 

FSL310

13a1* 
22 2 28 - 1 28 29 X 0.60 0.45 0.24 0.21 9.025 

Bt; S1±S2 

FSL310

14a 
31 14 55 - - -  -  X 0.18 - - - 9.017 

S1 

FSL310

16a* 
68 3 29   - -  -  X 0.21 0.21 0.23 0.20 9.020 

Bt; S1-S2 

Eastern Belt 

FSL310

32a* 
60 12 - - 28 -  -  - 0.24 0.22 0.23 0.22 9.003 

Bt; S1-S2 

FSL310

33a1 

62 6 3 - 29 
-  -  - 0.21 0.21 - - 9.008 

S1 

FSL310

34a1 
- - - - - -  -  - 0.21 - - - 9.013 

S1 

FSL310

34a2 
91 - Tr - 9 -  -  - 0.24 0.27 - - - 

S1 

FSL310

34a3* 
84 2 - - 14 -  -  - 0.23 0.24 0.24 0.22 9.011 

S1 

FSL310

34a4 
87 13 - - Tr -  -  - 0.26 0.26 - - 9.014 

S1 

FSL310

34a5 
- - - - - -  -  - 0.19 0.19 - - 9.020 

S1±S2 

FSL310

35a* 
20 65 1 - 14 -  -  - 0.25 0.25 0.23 0.21 9.017 

S1 

FSL310

36a2 
79 2 -   20 -  -  - 0.20 0.19 - - 9.020 

S1±S2 

FSL310

37a* 
84 13 - - 3 -  -  - 0.26 0.23 0.22 0.2 9.017 

S1-S2 

FSL310

39a1 
17 - 83 - - -  -  - - - - - 9.019 

Bt; S1-S2 

FSL310

39a2 
73 7 Tr - 20 -  -  - - - - - 9.018 

Bt; S1-S2 

* Samples selected for electron microprobe analysis.  
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Table 2. Mean composition for chlorite, white mica and biotite in each sample.   

Samples 

Western Belt Eastern Belt 

FSL-

31009a2 

FSL-

31010a 

FSL-

31016a 
FSL-31037a FSL-31035a FSL-31034a3 FSL-31032a 

Mineral, textural 
variety and number 

of analyses 

Chl1 (S1) 

(n=10) 

Chl1 (S1) 

(n=14) 

Chl1 (S1) 

(n=14) 

Chl1 (S1) 

(n=5) 

Chl1 (S1) 

(n=13) 

Chl1 (S1) 

(n=15) 

Chl1 (S1) 

(n=34) 

Chl2 (S2) 

(n=16) 

Mean S.d. 
Mea

n 
S.d. 

Mea
n 

S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d. 

Wt(%) 
                

SiO2 24.33 0.74 
23.4

0 

0.58 24.7

7 
0.44 26.52 0.43 24.60 0.53 24.41 0.25 24.66 0.34 24.76 0.51 

TiO2 0.05 0.05 0.07 0.03 0.06 0.05 0.09 0.02 0.07 0.04 0.06 0.05 0.08 0.07 0.08 0.08 

Al2O3 22.99 0.36 
22.9

3 

0.77 22.6

8 
0.23 22.54 0.80 22.13 0.34 22.52 0.24 22.24 0.41 22.15 0.33 

FeO 28.07 0.82 
32.1

9 

0.63 26.8

0 
0.92 20.25 0.21 27.02 0.42 29.56 0.50 25.10 0.64 25.21 0.55 

MnO 0.11 0.07 0.24 0.08 0.33 0.17 0.33 0.02 0.32 0.03 0.15 0.04 0.10 0.04 0.11 0.03 

MgO 12.36 0.32 
9.11 0.37 13.4

5 
0.25 17.39 0.59 12.90 0.36 10.62 0.44 14.32 0.31 14.28 0.25 

CaO 0.02 0.03 0.02 0.03 0.04 0.05 0.02 0.03 0.02 0.02 0.00 0.00 0.00 0.01 0.01 0.01 
Na2O 0.01 0.02 0.04 0.04 0.01 0.01 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.01 0.02 

K2O 0.03 0.04 0.03 0.03 0.03 0.03 0.24 0.13 0.10 0.08 0.03 0.03 0.07 0.08 0.09 0.11 

Apfu (14 oxygen) 
                

Si 2.59 0.07 2.55 0.05 2.62 0.04 2.72 0.02 2.64 0.03 2.64 0.02 2.63 0.03 2.64 0.04 

Ti 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 
Al 2.89 0.06 2.95 0.08 2.82 0.04 2.73 0.06 2.79 0.03 2.87 0.04 2.80 0.05 2.78 0.05 

Fe total 2.50 0.07 2.94 0.08 2.37 0.08 1.74 0.02 2.42 0.04 2.67 0.05 2.24 0.06 2.25 0.05 

Mn 0.01 0.01 0.02 0.01 0.03 0.02 0.03 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.00 
Mg 1.96 0.05 1.48 0.05 2.12 0.03 2.66 0.12 2.06 0.06 1.71 0.07 2.28 0.05 2.27 0.04 

Ca 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 
K 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.02 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 

XMg=Fe/(Fe+Mg) 0.44 0.01 0.34 0.01 0.47 0.01 0.60 0.01 0.46 0.01 0.39 0.01 0.50 0.01 0.50 0.01 

Vacancies 
                

(AlVI - AlIV - Na - 

K)/2 
0.04 0.05 

0.03 
0.03 0.03 0.03 0.08 0.04 0.03 0.03 0.08 0.01 0.03 0.02 0.03 0.02 

(AlVI-AlIV)/2 0.03 0.05 0.03 0.03 0.03 0.03 0.09 0.05 0.03 0.03 0.08 0.01 0.03 0.03 0.03 0.02 

Vacancies for Fe total = FeO + Fe2O3 
XFe3+/(Fe2++Fe3+) 

estimated 
0.18 0.05 

0.22 
0.04 0.20 0.01 0.20 0.00 0.20 0.01 0.19 0.02 0.20 0.01 0.21 0.02 

XMg=Mg/(Fe2 + 
Mg)  

0.49 0.02 
0.39 

0.02 0.53 0.01 0.66 0.01 0.51 0.01 0.44 0.02 0.56 0.01 0.56 0.01 

6-

(Fe2++Fe3++Mg+A
VI)  

0.22 0.07 
0.29 

0.05 0.24 0.04 0.27 0.05 0.25 0.03 0.28 0.03 0.22 0.03 0.22 0.03 

 (AlVI - AlIV + 

Fe3+-Na-K)/2 
0.19 0.08 

0.25 
0.05 0.20 0.03 0.20 0.04 0.20 0.03 0.26 0.02 0.19 0.02 0.19 0.02 

Note: F and Cl contents were omitted in this table. Full analyses are listed in Table Supplementary 2. S.d.: standard deviation. 

 

 

 

 

 

 

 
Table 2. Continuation.   

Samples 

Western Belt Eastern Belt 

FSL-

31009a2 

FSL-

31010a 
FSL-31013a1 FSL-31016a 

FSL-

31037a 

FSL-

31035a 

FSL-

31034a3 
FSL-31032a 

Mineral and 

textural 

variety 

Wm2 
(S1) 

(n=12) 

Wm2 
(S1) 

(n=24) 

Wm2 
(S1) 

(n=11) 

Wm3 
(S2) 

(n=6) 

Wm2 
(S1) 

(n=23) 

Wm3 
(S2) 

(n=26) 

Wm2 
(S1) 

(n=22) 

Wm2 
(S1) 

(n=19) 

Wm2 
(S1) 

(n=43) 

Wm2 
(S1) 

(n=31) 

Wm3 
(S2) 

(n=18) 

Me
an 

S.d
. 

Me
an 

S.d
. 

Me
an 

S.d
. 

Me
an 

S.d
. 

Me
an 

S.d
. 

Me
an 

S.d
. 

Me
an 

S.d
. 

Me
an 

S.d
. 

Me
an 

S.d
. 

Me
an 

S.d
. 

Me
an 

S.d
. 

Wt (%) 
                      

SiO2 
47.

12 

0.8

5 

45.

99 

0.6

6 

47.

30 

0.8

8 

47.

32 

0.5

6 

46.

61 

0.6

1 

47.

07 

0.8

1 

47.

63 

1.0

5 

47.

99 

1.1

5 

46.

77 

0.8

8 

47.

64 

1.0

5 

48.

10 

0.6

3 
TiO2 0.3 0.1 0.2 0.0 0.4 0.0 0.4 0.1 0.4 0.1 0.4 0.0 0.4 0.1 0.3 0.0 0.2 0.1 0.3 0.1 0.3 0.1
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Al2O3 
32.
44 

1.0
6 

35.
74 

0.4
4 

32.
92 

1.2
4 

32.
71 

0.5
7 

33.
58 

0.5
2 

32.
80 

0.6
5 

33.
49 

1.6
2 

31.
50 

1.0
4 

34.
47 

1.0
1 

31.
19 

1.1
6 

31.
34 

1.2
5 

FeO 
2.9

5 

1.0

6 

2.9

7 

0.3

0 

2.7

7 

0.5

4 

2.6

6 

0.2

6 

2.3

6 

0.2

9 

2.4

6 

0.6

3 

1.6

9 

0.5

4 

3.2

6 

0.5

8 

2.8

5 

0.3

2 

3.7

0 

0.6

1 

3.5

5 

0.2

5 

MnO 
0.0

4 

0.0

7 

0.0

3 

0.0

5 

0.0

5 

0.0

8 

0.0

3 

0.0

4 

0.0

7 

0.0

8 

0.0

5 

0.0

7 

0.0

3 

0.0

3 

0.0

2 

0.0

2 

0.0

1 

0.0

2 

0.0

2 

0.0

2 

0.0

2 

0.0

2 

MgO 
1.7
8 

0.4
4 

0.4
5 

0.0
7 

1.6
9 

0.3
9 

1.7
8 

0.1
1 

1.6
2 

0.1
4 

1.6
5 

0.2
5 

1.8
3 

0.5
9 

1.3
5 

0.3
4 

0.6
6 

0.1
2 

1.6
6 

0.5
0 

1.6
4 

0.4
5 

CaO 
0.0

3 

0.0

3 

0.0

3 

0.0

3 

0.0

2 

0.0

3 

0.0

4 

0.0

4 

0.0

3 

0.0

2 

0.0

3 

0.0

3 

0.0

2 

0.0

2 

0.0

2 

0.0

2 

0.0

1 

0.0

2 

0.0

2 

0.0

4 

0.0

1 

0.0

2 

Na2O 
0.2

9 

0.0

8 

0.7

1 

0.0

8 

0.2

4 

0.0

9 

0.2

5 

0.0

7 

0.3

2 

0.0

5 

0.2

6 

0.0

7 

0.2

6 

0.1

1 

0.3

3 

0.0

7 

0.4

9 

0.1

2 

0.2

1 

0.0

7 

0.2

4 

0.0

7 

K2O 
10.
11 

0.4
6 

9.4
5 

0.3
9 

10.
17 

0.4
7 

10.
50 

0.1
0 

10.
12 

0.2
9 

10.
04 

0.4
3 

9.6
8 

0.3
5 

10.
12 

0.3
7 

9.8
3 

0.2
4 

10.
20 

0.3
8 

10.
17 

0.3
0 

Apfu (11 

oxygen)                       

Si 
3.1

6 

0.0

5 

3.0

6 

0.0

3 

3.1

5 

0.0

5 

3.1

5 

0.0

2 

3.1

2 

0.0

2 

3.1

6 

0.0

4 

3.1

6 

0.0

6 

3.2

3 

0.0

6 

3.1

2 

0.0

5 

3.2

1 

0.0

6 

3.2

2 

0.0

5 

Ti 
0.0
2 

0.0
0 

0.0
1 

0.0
0 

0.0
2 

0.0
0 

0.0
2 

0.0
1 

0.0
2 

0.0
1 

0.0
2 

0.0
0 

0.0
2 

0.0
1 

0.0
2 

0.0
0 

0.0
1 

0.0
1 

0.0
2 

0.0
1 

0.0
2 

0.0
1 

Al 
2.5

6 

0.0

7 

2.8

0 

0.0

4 

2.5

9 

0.1

0 

2.5

7 

0.0

4 

2.6

5 

0.0

4 

2.6

9 

0.0

4 

2.6

2 

0.1

2 

2.5

0 

0.0

8 

2.7

1 

0.0

7 

2.4

8 

0.0

9 

2.4

7 

0.0

9 

Fe total 
0.1

7 

0.0

6 

0.1

7 

0.0

2 

0.1

5 

0.0

3 

0.1

5 

0.0

1 

0.1

3 

0.0

2 

0.1

4 

0.0

4 

0.0

9 

0.0

3 

0.1

8 

0.0

3 

0.1

6 

0.0

2 

0.2

1 

0.0

4 

0.2

0 

0.0

1 

Mn 
0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

Mg 
0.1
8 

0.0
4 

0.0
5 

0.0
1 

0.1
7 

0.0
4 

0.1
8 

0.0
1 

0.1
6 

0.0
1 

0.1
7 

0.0
3 

0.1
8 

0.0
6 

0.1
4 

0.0
3 

0.0
7 

0.0
1 

0.1
7 

0.0
5 

0.1
6 

0.0
4 

Ca 
0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

Na 
0.0

4 

0.0

1 

0.0

9 

0.0

1 

0.0

3 

0.0

1 

0.0

3 

0.0

1 

0.0

4 

0.0

1 

0.0

3 

0.0

1 

0.0

3 

0.0

1 

0.0

4 

0.0

1 

0.0

6 

0.0

2 

0.0

3 

0.0

1 

0.0

3 

0.0

1 

K 
0.8
7 

0.0
4 

0.8
0 

0.0
3 

0.8
7 

0.0
4 

0.8
9 

0.0
1 

0.8
6 

0.0
3 

0.8
6 

0.0
4 

0.8
2 

0.0
3 

0.8
7 

0.0
3 

0.8
4 

0.0
2 

0.8
8 

0.0
3 

0.8
7 

0.0
3 

Cation sum  
6.9

9 

0.0

3 

6.9

8 

0.0

3 

6.9

8 

0.0

3 

7.0

0 

0.0

1 

6.9

9 

0.0

2 

6.9

7 

0.0

4 

6.9

3 

0.0

2 

6.9

7 

0.0

3 

6.9

7 

0.0

3 

6.9

9 

0.0

3 

6.9

8 

0.0

2 

                       
XMg=Mg/(

Fe+Mg)  

0.5

2 

0.0

3 

0.2

1 

0.0

3 

0.5

2 

0.0

4 

0.5

4 

0.0

3 

0.5

5 

0.0

3 

0.5

5 

0.0

4 

0.6

6 

0.0

5 

0.4

2 

0.0

4 

0.2

9 

0.0

4 

0.4

4 

0.0

5 

0.4

4 

0.0

6 

XNa = 
Na/(Na+K+

Ca) 

0.0

4 

0.0

1 

0.1

0 

0.0

1 

0.0

3 

0.0

1 

0.0

3 

0.0

1 

0.0

5 

0.0

1 

0.0

4 

0.0

1 

0.0

4 

0.0

2 

0.0

5 

0.0

1 

0.0

7 

0.0

2 

0.0

3 

0.0

1 

0.0

3 

0.0

1 

Calculated b parameter (Å) 
b = 8.9931 

+ 0.0440 Σ 

(Mg + Fe) 

9.0
23 

0.0
09 

9.0
12 

0.0
02 

9.0
21 

0.0
06 

9.0
22 

0.0
01 

9.0
19 

0.0
02 

9.0
20 

0.0
05 

9.0
17 

0.0
08 

9.0
21 

0.0
06 

9.0
13 

0.0
02 

9.0
26 

0.0
07 

9.0
25 

0.0
05 

b = 9.1490 - 

0.0258 Σ 

(A1IV + 
A1VI) 

9.0

17 

0.0

04 

9.0

04 

0.0

02 

9.0

16 

0.0

05 

9.0

16 

0.0

02 

9.0

12 

0.0

02 

9.0

15 

0.0

02 

9.0

14 

0.0

06 

9.0

20 

0.0

04 

9.0

09 

0.0

04 

9.0

21 

0.0

04 

9.0

21 

0.0

05 

b = 8.5966 

+ 0.0666 Si 

9.0

18 

0.0

07 

9.0

04 

0.0

04 

9.0

17 

0.0

07 

9.0

17 

0.0

03 

9.0

12 

0.0

03 

9.0

17 

0.0

05 

9.0

18 

0.0

09 

9.0

26 

0.0

08 

9.0

12 

0.0

07 

9.0

24 

0.0

08 

9.0

26 

0.0

06 

b parameter 

from DRX 
9.019 9.006 9.025 9.020 9.017 9.017 9.011 9.003 

Note: F and Cl contents were omitted in this table. Full analyses are listed in Table Supplementary 2. S.d.: standard deviation. 
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Table 3. Summary of temperatures (ºC) calculated in chlorites with empirical and semi-empirical methods.   

Samples 

(ordered 

from west to 

east) 

Western Belt Eastern Belt 

FSL-

31009a2 

(S1) 

FSL-

31010a 

(S1) 

FSL-

31016a 

(S1) 

FSL-

31037a 

(S1) 

FSL-

31035a 

(S1) 

FSL-

31034a3 

(S1) 

FSL-

31032a 

(S1) 

FSL-

31032a 

(S2) 

Empirical thermometry 

Catherlineau 

(1988) 

(C88) 

391±22 

(n=10) 

403±17 

(n=14) 

384±13 

(n=14) 

349±8  

(n=5) 

377±11  

(n=13) 

376±6  

(n=15) 

379±8  

(n=34) 

376±14 

(n=16) 

Jowett 

(1991) (J91) 

398±22 

(n=10) 

413±17 

(n=14) 

389±13 

(n=14) 

351±8  

(n=5) 

383±11  

(n=13) 

384±6 

(n=15) 

383±8  

(n=34) 

381±14 

(n=16) 

Semi-empirical thermometry – Fe total as FeO 

Bourdelle et 

al. (2013) 

(B13) 

316±47 

(n=4) 

361±31 

(n=4) 

326±23 

(n=3) 

261±21 

(n=3) 

348±45  

(n=4) 

346±30 

 (n=15) 

366±42 

(n=7) 

343±34 

(n=3) 

Inoue et al. 

(2018) (I18) 

356±65 

(n=8) 

367±67 

(n=14) 

351±44 

(n=14) 

283±32 

(n=5) 

332±27  

(n=13) 

318±10  

(n=15) 

349±23  

(n=32) 

348±28 

(n=16) 

Semi-empirical thermometry – Fe total as FeO + Fe2O3 

Inoue et al. 

(2009) (I09) 

386±66 

(n=10) 

372±33 

(n=14) 

364±35 

(n=14) 

301±36 

(n=5) 

351±30  

(n=13) 

331±16 

(n=15) 

367±20  

(n=32) 

364±30 

(n=16) 

Lanari et al. 

(2014) 

(La14) 

380±60 

(n=7) 

416±43 

(n=14) 

405±48 

(n=14) 

357±31 

(n=5) 

400±39 

(n=13) 

352±19 

(n=15) 

403±23  

(n=32) 

398±29 

(n=16) 

Notes: errors are expressed as one sigma (1σ). Number of anal sis is signalled with “n”. 
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Table 4. Temperatures and pressures calculated in chlorites (Chl1) – white mica (Wm2) pairs from Chl-

Wm/WmH-Qz-H2O equilibrium. Also, temperatures were estimated at fixed pressure from WmH-Qz-H2O 

equilibrium followed the Dubacq et al. (2010) method. WmH= white mica with interlayer water. 

Sample Chl-Wm-Qz-H2O 
(1)

 
Chl-WmH-Qz-H2O 

(2) 

and WmH-Qz-H2O 
(3) 

equilibria  

Western Belt   

FSL-31009a2 

(S1) 

Analysis Chl-22 and Wm-40 

317.2º C – 5.09 kbar. XFe
3+

 Chl=0.23; XFe
3+

 

Wm=0.49 

Chl-WmH-Qz-H2O
 

Analysis Chl-22 and Wm-40 

358.6º C – 8.86 kbar 

XFe
3+

 Chl=0.14; XFe
3+

 Wm=0.44 

 

WmH-Qz-H2O  

(XFe
3+

 in Wm = 0.5) 

Pressure of 5 kbar and n=12 

ca. 340-420º C. 

FSL-31016a 

(S1) 

Analysis Chl-45 and Wm-57 

 476.1º C – 2.61 kbar. XFe
3+

 Chl=0.11; XFe
3+

 

Wm=0.22 

 

Analysis Chl-51 and Wm-62 

480.2º C – 4.01 kbar. XFe
3+ 

Chl=0.10; XFe
3+

 

Wm=0.18 

 

Analysis Chl-2 and Wm-14 

455.1º C – 3.87 kbar. XFe
3+ 

Chl=0.06; XFe
3+

 

Wm=0.16 

 

Analysis Chl-43 and Wm-35 

377.2º C – 4.60 kbar. XFe
3+

 Chl=0.17; XFe
3+

 

Wm=0.46 

 

Analysis Chl-3 and Wm-12 

365.2º C – 3.93 kbar. XFe
3+

 Chl=0.1; XFe
3+

 Wm=0.4 

 

Analysis Chl-5 and Wm-11 

445.5º C – 2.53 kbar. XFe
3+

 Chl=0.08; XFe
3+

 

Wm=0.14 

Chl-WmH-Qz-H2O
 

Analysis Chl-2 and Wm-14 

375.1º C – 4.85 kbar 

XFe
3+

 Chl=0.22; XFe
3+

 Wm=0.43 

 

WmH-Qz-H2O  

(XFe
3+

 in Wm = 0.5) 

Pressure of 5 kbar and n=23 

ca. 370-430º C. 

Eastern Belt   

FSL-31034a3 

(S1) 

Analysis Chl-41 and Wm-39 

407.9º C – 4.29 kbar. XFe
3+

 Chl=0.15; XFe
3+

 

Wm=0.65 

 

Analysis Chl-43 and Wm-38 

 401.1º C – 4.68 kbar. XFe
3+

 Chl=0.21; XFe
3+

 

Wm=0.65 

WmH-Qz-H2O  

(XFe
3+

 in Wm = 0.5) 

Pressure of 4.5 kbar and n=43 

ca. 330-420º C. 

FSL-31032a 

(S1) 

XFe
3+

 was adjusted to >0.15 for to achieve the 

equilibrium 

 

Analysis Chl-7 and Wm-59r 

361.6º C – 3.5 kbar. XFe
3+

 Chl=0.15; XFe
3+

 Wm=0.67 

 

Analysis Chl-1 and Wm-60 

370.5º C – 3.3 kbar. XFe
3+

 Chl=0.19; XFe
3+

 Wm=0.69 

 

Analysis Chl-20 and Wm-67r 

380.0º C – 3.6 kbar. XFe
3+

 Chl=0.15; XFe
3+

 Wm=0.65 

Chl-WmH-Qz-H2O
 

Analysis Chl-20 and Wm-67r 

353.8º C – 3.4 kbar 

XFe
3+

 Chl=0.22; XFe
3+

 Wm=0.68 

 

WmH-Qz-H2O  

(XFe
3+

 in Wm = 0.5) 

Pressure of 3.5 kbar and n=31 

ca. 285-370º C. 

FSL-31032a XFe
3+

 was adjusted to >0.15 for to achieve the WmH-Qz-H2O  
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(S2) equilibrium 

  

Analysis Chl-90 and Wm-106r 

432.9º C – 3.2 kbar. XFe
3+

 Chl=0.15; XFe
3+

 Wm=0.68 

 

Analysis Chl-92r and Wm-109r 

442.1º C – 2.8 kbar. XFe
3+

 Chl=0.157; XFe
3+

 

Wm=0.69 

(XFe
3+

 in Wm = 0.5) 

Pressure of 3 kbar and n=18 

ca. 300-370º C. 

(1) The calculations were made with the solution models of chlorite from Vidal (2005, 2006) and white mica of 

Parra et al. (2002). (2) The calculations were made with chlorite model from Vidal (2005, 2006) and white mica 

(WmH) model from Dubacq et al. (2010). (3) WmH-Qz-H2O thermometer method from Dubacq et al. (2010) 

for variable hydration status in white mica. For FSL-31013a1 sample, a temperature of 340-420º C was 

estimated at 5 kbar. For the FSL-31035a a temperature of 310-390º C was estimated at 4.5 kbar. The pressure in 

both samples was estimated from correlation to near samples: FSL-31016a and FSL-31034a3 respectively.  
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Highlights: 

 Multiproxy analysis to characterize units with low-grade metamorphism 

 Advantages of a joint use of crystallochemical indexes and geothermobarometric 

calculations  

 Kübler index and white mica b parameter as crystallochemical indexes  

 Chlorite thermometers and multi-equilibrium as geothermobarometric methods 

 Similar P-T conditions are obtained from both methods  
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