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Abstract: The specificity and universality of intracellular Ca2+ signals rely on the variety of
spatio-temporal patterns that the Ca2+ concentration can display. Ca2+ release into the cytosol
through inositol 1,4,5-trisphosphate receptors (IP3Rs) is key for this variety. The opening probability
of IP3Rs depends on the cytosolic Ca2+ concentration. All of the dynamics are then well described
by an excitable system in which the signal propagation depends on the ability of the Ca2+ released
through one IP3R to induce the opening of other IP3Rs. In most cell types, IP3Rs are organized in
clusters, i.e., the cytosol is a "patchy" excitable system in which the signals can remain localized (i.e.,
involving the release through one or more IP3Rs in a cluster), or become global depending on the
efficiency of the Ca2+-mediated coupling between clusters. The spatial range over which the signals
propagate determines the responses that the cell eventually produces. This points to the importance
of understanding the mechanisms that make the propagation possible. Our previous qualitative
comparison between experiments and numerical simulations seemed to indicate that Ca2+ release
not only occurs within the close vicinity of the clearly identifiable release sites (IP3R clusters) but that
there are also functional IP3Rs in between them. In this paper, we present a quantitative comparison
between experiments and models that corroborate this preliminary conclusion. This result has
implications on how the Ca2+-mediated coupling between clusters works and how it can eventually
be disrupted by the different Ca2+ trapping mechanisms.
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1. Introduction

Calcium (Ca2+) signals are ubiquitous across cell types [1,2]. In many cases, they involve Ca2+

release from the endoplasmic reticulum (ER) into the cytosol through Inositol 1,4,5-trisphosphate
receptors (IP3Rs), which are Ca2+ channels [3]. The opening probability of IP3Rs increases with the
cytosolic Ca2+ concentration [4], provided that this concentration is not too high. Thus, the very
same Ca2+ that is released through an open IP3R can induce the opening of neighboring IP3Rs.
The combination of this Calcium Induced Calcium Release (CICR) [5] with the diffusion of Ca2+ between
its channels gives rise to propagating signals that can even embrace the whole cell [6–8]. IP3Rs become
inhibited in the presence of high cytosolic Ca2+ concentrations. From a physical/mathematical point,
the dynamics that underlie these propagating Ca2+ signals are well described by an excitable system.
Now, in most cell types, IP3Rs are organized in clusters. Waves can then fail to propagate if the
amount of Ca2+ that reaches one cluster is not high enough to “cross” the excitability threshold [9].
We have recently studied the Ca2+-mediated coupling between neighboring IP3R-clusters by means of
experiments in which we used two single-wavelength Ca2+-dyes [10]. Single-wavelength Ca2+-dyes
are Ca2+ indicators that increase their fluorescence enormously upon Ca2+ binding, without changing
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their emission wavelength [11]. The presence of the dyes affects the elicited signals because they “trap”
Ca2+ and, in this way, can disrupt CICR. How the presence of different Ca2+ trapping mechanisms
(particularly, Ca2+-binding buffers) affects Ca2+ signals had been studied with experiments in which
varying quantities of exogenous Ca2+ buffers had been introduced in the cells [12,13]. The experiments
of [10] allowed us to make visible the invisible: by observing the signals simultaneously with a slow
(Rhod-2) and a fast (Fluo-4) dye, we could infer directly the different ways in which slow and fast
buffers affect the signals. Furthermore, performing experiments for various concentrations of the dyes
and comparing qualitatively the spatio-temporal distributions of the Ca2+-bound to both dyes with
those derived from numerical simulations, we inferred that there should be functional IP3Rs between
the IP3R-clusters to explain the observations. This implied that Ca2+ release not only occurred within
the close vicinity of the centers of the clearly identifiable release sites (the clusters) but also in between.

In this paper, we present a more quantitative analysis of the experimental observations. To this
end, we compute, from the experiments, the change with the slow dye concentration, Rhod-2, of the
probability, P(` | nc) that, given that there are nc simultaneously open channels in a primary cluster,
the event does not induce the opening of IP3Rs in other (secondary) clusters (i.e., the event remains
localized). We then use a simple model to compute numerically the probability that one IP3R located
at a distance, d, from a primary IP3R-cluster becomes open (after a certain time) given that there are
nc simultaneously open channels at the primary cluster. Changing the parameters of the simulation
we conclude that the changes observed experimentally can only be explained if d ∼ 0.6 µm (i.e., it is
smaller than the typical inter-cluster distance, d ∼ 1.4 µm) and that the basal Ca2+ concentration,
[Ca]b, is reduced when the slow dye concentration, [R]T , is increased.

We present in what follows the experimental results that we use to estimate the changes in P(` | nc)

as [R]T is varied. We introduce in Section 2.2 the probabilistic model that we will then use to analyze
the experimental data. In Section 2.3, we show the results of the numerical simulations with which we
estimate some of the probabilities that enter the probabilistic model. In Section 2.4, we combine the
experimental and numerical results and determine for what parameters of the simulations they are
compatible within the framework probabilistic model. A discussion is included at the end.

2. Results

2.1. Experimental Results

The experiments analyzed here were presented and described in detail in [10]. A description of
how they were performed is included in Materials and Methods. In brief, we elicited IP3-mediated Ca2+

release events in Xenopus laevis oocytes that were previously injected with caged IP3, the Ca2+ buffer,
EGTA, and a fast, Fluo-4, and a slow, Rhod-2, Ca2+ dye. The signals were elicited by uncaging the
caged IP3 with an UV flash. In the current paper, we analyze the changes observed in the distribution
of localized Ca2+ release events (puffs) elicited in this way as the concentration of the slow dye,
[R]T = [Rhod−2], is varied but all other experimental parameters are kept fixed ([EGTA] = 90 µM;
[Fluo−4] = [F]T = 36 µM, duration of the UV flash to uncage the IP3 = (100− 200) ms; see Table 1).
In particular, we are interested in studying the changes in the “size” of the elicited release events that
remain localized (Ca2+ puffs), where by size we mean the number of IP3Rs that are simultaneously
open at the release site (the cluster) during the release event. In order to compare the localized event
size distributions obtained in experiments performed for different values of [R]T , we introduced
in [10] a quantity, Alib−F, that is an increasing function of the Ca2+ current that underlies the observed
release event regardless of the value of [R]T . We describe in Section 4.3 how we compute Alib−F from
the fluorescence emitted by the Ca2+-bound Fluo-4 molecules. We show in Figure 1 the cumulative
distribution functions (CDFs) of Alib−F derived from the experiments performed for the conditions of
Set III (dashed line), Set II (dotted line) and Set I (solid line). These CDFs were computed including
only localized events, i.e., Ca2+ puffs.
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Table 1. Combinations of the dyes and EGTA concentrations used in the different experiments.

Experiment [Fluo-4] (µM) [Rhod-2] (µM) [EGTA] (µM)

Set I 36 90 90
Set II 36 36 90
Set III 36 0 90
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Figure 1. CDF of event sizes (as measured by Alib−F) for experiments performed with [F]T = 36 µM
and [EGTA] = 90 µM and different values of [R]T (the solid line corresponds to Set I, the dotted line to
Set II and the dashed line to Set III (see Table 1).

The Kolmogorov–Smirnov test rejects the null hypothesis that Alib−F from sets III and II and sets
III and I come from the same continuous distribution with a 99% significance level (pvalue = 2.1× 10−4

and pvalue = 4.6× 10−5, respectively), but cannot reject that the data points from Set II and Set I come
from the same distribution (pvalue = 0.96). In any case, there is a tail in the CDF of Alib−F for Set I that
is unobservable in that of Set II which is consistent with having more events with relatively larger
underlying Ca2+ currents in the former than in the latter (〈Alib−F〉 = 2.2 for Set III 〈Alib−F〉 = 2.7
for Set II and 〈Alib−F〉 = 2.9 for Set I). These comparisons indicate that puffs with relatively larger
underlying Ca2+ currents can be elicited as the concentration of the slow dye, Rhod-2, is increased.
Although the transformation from puff amplitude to Alib−F involves certain uncertainties, the changes
observed in the fluorescence rise time as [R]T is varied [10] support this conclusion.

2.2. Probabilistic Model to Analyze the Differences Observed in the Experimental Event Size Distributions for
Different Values of [R]T

As analyzed in [14], being able to observe localized Ca2+ release events (puffs) with larger Ca2+

currents as a slow buffer concentration (in this case, Rhod-2) is increased can be due to a more efficient
uncoupling between IP3R clusters due to the presence of the slow buffer. Namely, we have the
hypothesis that the differences in the CDFs of localized release event sizes illustrated in Figure 1
occur because, as [R]T decreases, Ca2+ release events with too many simultaneously open IP3Rs at the
primary site can no longer remain localized, induce the opening of IP3Rs in neighboring (secondary)
clusters and, thus, are not included to compute the CDF. We hereby introduce a way to analyze the
experimental data to quantify what fraction of events that are localized for a given [R]T turn into
waves as [R]T is decreased.

We define P(nc) as the probability that there are nc simultaneously open IP3Rs in a cluster for a
given set of experimental conditions. Here, we will assume that all conditions remain the same except
for the total slow dye concentration, [R]T . Thus, we will analyze the change of P(nc) with [R]T . Given
that there are nc simultaneously open IP3Rs we want to distinguish whether this situation induces the
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opening of at least one IP3R in a neighboring (secondary) cluster (i.e., it initiates a wave) or it does not
(i.e., the Ca2+ release event due to the nc simultaneously open IP3Rs remains localized). We then write:

P(nc) = P(nc & ` | [R]T) + P(nc & w | [R]T). (1)

In Equation (1), P(nc & ` | [R]T) is the joint probability that nc channels are simultaneously open in
a cluster and the event stays localized for a given value of [R]T . P(nc & w | [R]T) is the joint probability
that nc channels are simultaneously open in a cluster and the event induces the opening of at least one
IP3R in another cluster for a given value of [R]T . The symbol |means that these are two conditional
probabilities for a given value of the slow dye concentration, [R]T . All the probabilities we work with
here are defined over the set of events, i.e., for nc ≥ 1. The aim of this calculation is to assess how
the two joint probabilities of Equation (1) change with [R]T . Under the assumption that Rhod-2 is a
slow buffer and, as such, does not affect CICR within the cluster [14], we consider that P(nc) does not
depend on [R]T . What may change when varying Rhod-2 is whether the event with nc open channels
in a cluster remains localized (stays as a puff) or elicits the opening of channels in a neighboring cluster
(becomes a wave). We rewrite the two joint probabilities of interest as:

P(nc & ` | [R]T) = P(nc | `, [R]T)P(` | [R]T)
= P(nc | `, [R]T) (1− P(w | [R]T)) , (2)

P(nc & w | [R]T) = P(w| nc, [R]T)P(nc). (3)

In these equations, P(nc | `, [R]T) is the probability that a Ca2+ release event that remains localized
for a given [R]T corresponds to a situation with nc simultaneously open channels at the release site;
P(w | nc, [R]T) is the probability that, for nc open channels in a cluster and a given [R]T , the resulting
event induces the release of Ca2+ from a neighboring cluster (i.e., generates a wave). P(`| nc, [R]T) and
P(w| nc, [R]T), on the other hand, are the probabilities that a Ca2+ release event obtained for given [R]T
remains localized or initiates a wave, respectively. They satisfy: P(`| nc, [R]T) + P(w| nc, [R]T) = 1.
We rewrite the latter as:

P(w | [R]T) = ∑
nc≥1

P(w | nc, [R]T)P(nc). (4)

Combining Equations (1)–(3), we arrive at:

P(nc) = P(nc | `, [R]T) (1− P(w | [R]T))
+ P(w | nc, [R]T)P(nc). (5)

Assuming that the Ca2+ current through an open IP3R is approximately the same for all IP3Rs,
we conclude that nc is proportional to the Ca2+ current that underlies a Ca2+ release event. The quantity
Alib−F that we derive from the experimental data, on the other hand, is an increasing function of the
underlying Ca2+ current. We must point out that, if nc is large enough, puff amplitudes increase
sublinearly with nc [15]. Assuming that nc and Alib−F are approximately linearly related, we can
then use the experimental CDF of Alib−F, which we compute for the localized Ca2+ release events,
to estimate the CDF, F that can be computed from P(nc | `, [R]T):

F(n, | `, [R]T) =
n

∑
nc=1

P(nc | `, [R]T). (6)

The aim is to compare the distribution functions, F(n, | `, [R]T), for different values of [R]T using
the corresponding experimental CDFs of Alib−F. In particular, we will compare the CDFs that are
sufficiently different according to the K–S test: the ones with [R]T = 0 and with [R]T = 90 µM. In what
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follows, we will drop the concentration units (µM) from the expressions of the probabilities to simplify
the notation. Defining ∆Pw(nc) ≡ P(w | nc, 0) − P(w | nc, 90) and ∆Pw ≡ ∑nc≥1 ∆Pw(nc)P(nc) and
using Equations (4) and (5), we obtain:

∆Pw(nc)P(nc) = (P(nc | `, 90)− P(nc | `, 0)) (1− P(w | 90)) + P(nc | `, 0)∆Pw. (7)

As illustrated in Figure 1, the experiments show that the difference between the two CDFs is more
noticeable in the region of the largest size events, i.e., for the largest values of nc. We then compute:

∑
nc≥nM

∆Pw(nc)P(nc) = (F(nM | `, 0)− F(nM | `, 90)) (1− P(w | 90)) + ∆Pw(1− F(nM | `, 0)), (8)

where nM is the event size beyond which the CDFs start to differ more noticeably. As described later,
the CDFs in the r.h.s. of Equation (8) can be estimated from the experimental CDFs. On the other hand,
we estimate P(w | nc, [R]T) using the numerical simulations that we describe in the following section.
Varying the parameters of the simulation, we determine the values for which we obtain estimates of
the l.h.s. of this equation that are consistent with those of the r.h.s.

2.3. Numerical Simulations to Estimate the Probability That a Release Event from One (Primary) Cluster
Induces the Release of Ca2+ from Another (Secondary) Cluster

We compute the probability, P0(t, d, nc, ns, [R]T), that ns IP3R located at a distance, d, from a
(primary) cluster with nc IP3Rs that are simultaneously open at t = 0, becomes open by a time, t.
We want to compare how P0 varies as [R]T is changed. We thus write explicitly its dependence on
this variable. To compute P0(t, d, nc, ns, [R]T), we proceed as explained in Materials and Methods (see
also [10]) and the parameter values used are listed in Table 2. We show in Figure 2 the results obtained
with ns = 1. We show in Figure 2a–c the results obtained using the basal Ca2+ concentration, [Ca]b=
0.1 µM, for the conditions of Sets I, II and III. We show the results obtained at d = 0.6 µm in Figure 2a
and at d = 1.4 µm (a typical inter-cluster distance) in Figure 2b,c. The number of simultaneously open
channels is nc = 10 in Figure 2a,b and nc = 50 in Figure 2c. The change of P0 with varying [R]T is
unobservable for nc = 10 at d = 1.4 µm (the difference is ≤ 0.004 for the times displayed in the figure)
while it can be ∼ 0.085 at d = 0.6 µm. Furthermore, it is ∆P0(t) = P0(t, d = 0.6 µm, nc = 10, [R]T =

90 µM)− P0(t, d = 0.6 µm, nc = 10, [R]T = 0 µM) ≈ 0.065 at t = d/V with V ∼ 10 µms−1, a typical
wave velocity. The maximum difference maxt ∆P0(t) increases with nc. This is shown in Figure 2c
where nc = 50, d = 1.4 µm and maxt ∆P0(t) ∼ 0.026. In Figure 2d, we show what happens when
[Ca]b decreases. In this case, we compare P0 at a distance d = 1.4 µm from the source obtained for
simulations performed with the concentrations of Set III (dashed line) and Set I (solid line) but with a
different value of [Ca]b in each one (100 nM and 50 nM, respectively). A similar behaviour is obtained
with ns = 5 (data not shown).

Table 2. Value of the parameters varied to compute P0.

Parameter Abbreviature Values

Number of IP3Rs in the source nc 1, 10, 50
Distance to the Ca2+ source d (0.4-1.5) µm

Number of sensing IP3Rs ns 1, 5
Rhod-2 concentration [R]T 0, 90 µM

Velocity of propagation V 10, 20 µm/s



Math. Comput. Appl. 2019, 24, 61 6 of 14

Figure 2. P0 dependence with distance d from the source and [Ca]b. (a) performed at d = 0.6 µm with
nc = 10; (b) at d = 1.4 µm with nc = 10; (c) at d = 1.4 µm and nc = 50 and (d) d = 1.4 µm with nc = 10
while varying [Ca]b from 100 nM (Set III) to 50 nM (Set I). The dashed line corresponds to Set III,
the dotted line corresponds to Set II, and the solid line corresponds to Set I.

We interpret the [R]T-dependent changes of P0 that are illustrated in Figure 2 as a sign of the
change in the level of inter-cluster coupling (or, equivalently, disruption) that can be reached as the
slow dye concentration is varied.

We further studied how sensitive is P0 to changes in the distance to the source d. The results of
Figure 3 are obtained using the basal Ca2+ concentration, [Ca]b= 0.1 µM. To illustrate the disruption
when [R]T is increased, we show in Figure 3a ∆P0 = P0([R]T = 0)− P0([R]T = 90 µM) computed with
nc = 10 and ns = 1 as a function of the distance d for each time t = d/V (with V = 10 µm/s) and it
can be observed that the probability of opening one IP3R in-between clusters decreases (from 0.4 µm
to 1.5 µm). When observing the probability of opening one IP3R as a function of d without adding
the slow buffer (RT = 0, Set III) (solid line in Figure 3b), as d increases, this probability approximates
to the basal probability (dotted line, P0 computed as in Equation (14) but with no calcium dyes),
almost no coupling can occur at the typical inter-cluster distance (d = 1.4 µm). Thus, to explain the
inter-cluster coupling, it is necessary to add a non-cluster IP3R in-between them. The optimal value
of the parameter d should be on the order of 0.4–0.8 µm (approximately the half distance between
clusters). Not even adding ns = 5 sensing channels at the second cluster, the probability differs from
the basal (dashed and dotted lines in Figure 3c, respectively). We choose d = 0.6 µm to add an isolated
IP3R in-between clusters (solid line in Figure 3c) and now the signal can propagate.

We now study whether the variations of Figure 2 can explain the changes in the distributions of
Ca2+ release during localized events observed in the experiments that are apparent in Figure 1.
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Figure 3. Existence of IP3Rs in-between clusters is necessary to explain the observations. (a) ∆P0 =

P0([R]T = 0)− P0([R]T = 90 µM) with nc = 10 and ns = 1 as a function of the distance d for each time
t = d/V (with V = 10 µm/s); (b) P0 computed as in (a) for the Set III (solid line) and basal (dotted line)
conditions; (c) P0 computed in the condition of Set III with nc = 10 and ns = 5 at a distance d = 1.4 µm
from the Ca2+ point source as a function of time when an IP3R is added in-between cluster (solid line),
with no additional IP3R (dashed line) and at the basal condition (dotted lined).

2.4. Combining the Estimates Derived from the Experiments and from the Numerical Simulations to Interpret
the Changes Observed Experimentally

We first estimate the r.h.s. of Equation (8) assuming that F(n, | `, [R]T) is given by the experimental
CDF of Alib−F for the same [R]T and some unknown factor between n and Alib−F. We recall here that
the experimental CDF corresponds only to localized events (i.e., events at a primary cluster that do not
induce the opening of IP3Rs at another secondary IP3R cluster). In order to estimate this unknown
factor, we associate, nM, (the value after which the differences in the CDFs become more noticeable)
to a value, Alib−F, for which F(nM | `, 0) is sufficiently close to 1. The basic assumption here is that,
for [R]T = 0, almost all primary events with n ≤ nM simultaneously open IP3Rs initiate waves in
which case they do not remain localized and are, therefore, not included in the computation of the CDF.
We choose Alib−F = 4.8 for which, according to the experimental data, it is F(nM | `, 0) ≈ 0.98 (see
Figure 1). For this value, it is F (nM | `, 90)) ≈ 0.90. Thus, we estimate F(nM | `, 0)− F(nM | `, 90) ≈
0.08. We do not have a direct estimation of P(w | [R]T). Assuming that nc = 10 is the most probable
value for the number of simultaneously open IP3Rs in a cluster, we approximate P(w | [R]T) =

∑nc≥1 P(w | nc, [R]T)P(nc) ≈ P(w | nc = 10, [R]T) ≈ P0(t = d/V, d, nc = 10, [R]T) with P0 the open
probability computed numerically that we introduced in the previous section and V a typical Ca2+

wave velocity. For V, we try two values, V = 20 µm/s and V = 10 µm/s. For d, we try the typical
inter-cluster distance, d = 1.4 µm and the closer distance, d = 0.6 µm that was probed in the previous
section. Using d = 1.4 µm and V = 20 µm/s, the simulations give P(w | 90) ≈ 0.14 and ∆Pw ≈ 0.
The estimate of the r.h.s. of Equation (8) then results equal to 0.07. This value changes to 0.06 if we
use V = 10 µm/s. Using d = 0.6 µm and V = 20 µm/s the simulations give P(w | 90) ≈ 0.12 and
∆Pw = 0.028. The estimate of the r.h.s. of Equation (8) then results as 0.07. This value changes to 0.06 if
we use V = 10 µm/s.

We now use the simulations of the previous section to put an upper bound, ∆Pw,max, on ∆Pw(nc)

in the l.h.s of Equation (8). With such an upper bound, we can write ∑nc≥nM
∆Pw(nc)P(nc) ≤

∆Pw,max ∑nc≥nM
P(nc) = ∆Pw,max(1− F(nM)) where F(nM) = ∑nc≤nM

P(nc). Similarly to the way we
have followed estimating P(w | [R]T), we compute P(w | nc, [R]T) ≈ P0(t = d/V, d, nc, [R]T), with P0

the open probability of the previous section illustrated in Figure 2. In particular, using the results
of these simulations, we conclude that ∆Pw(nc) ≡ P(w | nc, 0)− P(w | nc, 90 µM) is larger the larger
the value of nc. Thus, we obtain the upper bound, ∆Pw,max, using similar simulations to those of
Figure 2 but for nc = 50 (a very large number of simultaneously open IP3Rs). Namely, we estimate
∆Pw,max ≈ P0(t = d/V, d, nc = 50, 0)− P0(t = d/V, d, nc = 50, 90). In order to put an upper bound
on the l.h.s. of Equation (8), we need a bound for F(nM), the CDF of all the (primary) event sizes
at n = nM. As already explained, we assume that F(n) = ∑nc≤n P(nc) does not depend on [R]T .
Given our interpretation of the results, we assume that the difference between the CDF of all the
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(primary) event sizes, F(n), and the CDF of the primary event sizes that remain localized for a given
value of [R]T , F (n | `, [R]T), is due to the existence of primary events (of large enough size) that initiate
waves for that value of [R]T . Assuming that the fraction of primary events that initiate waves for
[R]T = 90 µM is negligible, we can approximate F(nM) ≈ F (nM | `, 90) ≈ 0.90. If we do not want to
use this approximation, then we can use the bound F(nM) < 0.90. In what follows, we mostly use
F(nM) = 0.90, but we repeat some computations changing it to 0.80 to see how much the estimates
could change. Proceeding as just explained, for d = 1.4 µm, we obtain ∆Pw(nc) ≤ ∆Pw,max ≈ 0.003 for
V = 20 µm/s and ∆Pw,max ≈ 0.026 for V = 10 µm/s. Using F(nM) = 0.9, we then obtain∼ 0.0003 and
0.0026 as upper bounds of the l.h.s. of Equation (8) for V = 20 µm/s and V = 10 µm/s, respectively.
These two upper bounds are at least one order of magnitude smaller than the values obtained for the
r.h.s. of Equation (8). If we use F(nM) = 0.8 to compute the l.h.s. of this equation, the latter estimate
doubles with respect to the previous one. Thus, the order of magnitude difference between the left
and right estimates for d = 1.4 µm remains the same. Repeating the computations for d = 0.6 µm,
we obtain ∆Pw(nc) ≤ ∆Pw,max ≈ 0.19 for V = 20 µm/s and ∆Pw,max ≈ 0.15 for V = 10 µm/s.
Using F(nM) = 0.9, we then get ∼ 0.019 and 0.015 as upper bounds of the l.h.s. of Equation (8) for
V = 20 µm/s and V = 10 µm/s, respectively. In this case, the values of the left- and right-hand sides
are of the same order of magnitude. These estimates come closer together if we use F(nM) = 0.8 in
the l.h.s. of the equation. In such a case, we obtain ∼ 0.04 and ∼ 0.03 for the l.h.s. estimate using
V = 20 µm/s and V = 10 µm/s, respectively, two values that are pretty similar to the r.h.s. estimates,
0.07 and 0.06.

2.5. Changes in Basal Calcium Concentration, [Ca]b

As illustrated in Figure 2d, decreasing basal [Ca] with increasing [R]T changes the open probability
at the distance, d = 1.4 µm, in the direction that is needed to explain the observed changes in the event
size distributions. We analyze here whether there is any evidence of a decreasing basal Ca2+ with
increasing [R]T in the experimental data. We show in Figure 4 the cumulative density functions of the
mean basal fluorescence emitted by the Ca2+-bound Fluo-4 molecules, 〈 f0,F〉, in (a) and of the mean
basal fluorescence emitted by the Ca2+-bound Rhod-2 molecules, 〈 f0,R〉 in (b) for the experiments
with [R]T = 36 µM (dotted line) and with [R]T = 90 µM (solid line). In Figure 4b, we rescaled
〈 f0R〉 by 90/36 = 2.5 in the case of Set I to make the distributions of experiments of Set I (which
has [R]T = 90 µM) and II (which has [R]T = 36 µM) readily comparable. The values of 〈 f0,F〉
and 〈 f0,R〉were derived from the fluorescence observations as explained in Materials and Methods.
We observe that the CDFs move to smaller values of their arguments with increasing [R]T . As the mean
basal fluorescence is an increasing function of [Ca]b (see Equation (12)), this observation supports the
idea that, on average, [Ca]b decreases with increasing Rhod-2.

In order to estimate the variation in [Ca]b with increasing [R]T , we compare 〈 f0,D〉 for sets I and
II. In particular, we obtain 〈 f0,F〉 = 6.1 a.u., 〈 f0,R〉 = 13.2 a.u. and 〈 f0,F〉 = 7.2 a.u., 〈 f0,R〉 = 6.4 a.u. for
sets I and II, respectively. Inserting these values into Equation (13), using that 〈NR〉 = 32 for set II and
〈NR〉 = 80 for set I, and assuming that [Ca]b = 100 nM for set II, we obtain [Ca]b = 60–80 nM for set I,
depending on whether we use the mean Rhod-2 or mean Fluo-4 basal fluorescence values.

We now repeat the calculations of the previous section but using the values of P0 prescribed by the
simulations with [Ca]b = 100 nM for set II and [Ca]b = 50 nM for set I (Figure 2d). In this case, the r.h.s.
estimates do not change much from the previous calculations. The l.h.s. estimates, on the other hand,
change slightly coming closer together with the r.h.s. estimates. For example, using V = 20 µm/s,
we obtain l.h.s.≈ 0.023 for d = 0.6 µm and l.h.s. ≈ 0.007 for d = 1.4 µm. If we use V = 10 µm/s,
we obtain l.h.s.≈ 0.019 for d = 0.6 µm and l.h.s. ≈ 0.013 for d = 1.4 µm.
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Figure 4. CDF of basal fluorescence. 〈 f0,D〉 for experiments with [EGTA] = 90 µM are shown in the
Fluo-4 (D = F, (a)) and Rhod-2 (D = R, (b)) channels. In both cases, Set II is depicted with dotted lines
and Set I with solid lines. In (b), the values, 〈 f0,R〉, of Set I are divided by 90/36 = 2.5 to make both
distributions comparable.

3. Discussion

Intracellular Ca2+ signals are ubiquitous across cell types. The spatial range over which
they spread is key to determining the eventual end responses. This points to the importance of
understanding how intracellular Ca2+ signals propagate inside the cells. To this end, Ca2+ release from
the endoplasmic reticulum into the cytosol through IP3Rs plays a major role. IP3Rs are Ca2+ channels
whose open probability depends on the cytosolic Ca2+ concentration. Therefore, the Ca2+ released
through an open IP3R can induce the opening of nearby IP3Rs. High Ca2+ concentrations, on the
other hand, lead to the inhibition of the channels. This dynamic is clearly excitable. In this regard,
however, the excitability of the cytosol is “patchy”: IP3Rs tend to be organized in clusters separated by
∼ 1.4 µm. This may lead to propagation failure when the Ca2+ released from one IP3R reaches the
vicinity of another one at a concentration that is not enough to induce its opening. The inter-cluster
Ca2+-mediated coupling can be interfered by means of Ca2+ buffers. This is used as an experimental
tool, but the cells can do it as well.

In [10], we presented experimental results in which we studied how the presence of competing
Ca2+ trapping mechanisms of different kinetics altered the resulting intracellular signals. Differently
from previous studies [12], in [10], we made visible the invisible by using two dyes of different kinetics
as the Ca2+ trapping mechanisms. The work of [10] not only allowed us to draw conclusions on how
the signals were reshaped by the presence of the different buffers but also gave some indications
on the spatial distribution of the IP3Rs involved in the signals. In particular, based on a qualitative
comparison between experiments and numerical simulations, we concluded in [10] that Ca2+ release
seemed to occur not only from the clearly identifiable release sites (IP3R clusters), but also from some
functional, probably isolated, IP3Rs in between them. In this paper, we have presented a quantitative
analysis of the experiments of [10] that corroborated this conclusion.

For the quantitative comparison between experiments and models, in this paper, we have focused
on the size distribution of the localized Ca2+ release events (puffs) that were obtained with the
experiments of [10] for [EGTA] = 90 µM, [F]T = 36 µM and two concentrations of the slow dye
Rhod-2, [R]T = 36 µM and 90 µM. Given that the fluorescence amplitude observed for a given release
event could change with varying [R]T even if the underlying Ca2+ current remained the same, we
characterized the observed puffs by the quantity, Alib−F (Equation (11)) that we introduced in [10] to
overcome this problem. The Alib−F distributions obtained for the analyzed experiments showed a shift
towards larger values of Alib−F as [R]T was increased (see Figure 1). This shift agrees with previous
observations and analyses according to which the increase of a slow Ca2+ buffer concentration (in
this case, Rhod-2) disrupts the Ca2+-mediated coupling between clusters (Figure 3a) [10,12,14,16].
Namely, we interpret this shift as reflecting the fact that events that are characterized by a certain
number of simultaneously open IP3Rs at a primary cluster and remain localized for a given value of
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[R]T can induce the opening of IP3Rs at other (secondary) clusters for smaller values of [R]T . While the
former events are puffs and would then be considered for the computation of the localized event size
distribution, the latter would not because they correspond to waves.

We observed that clusters can become coupled when adding an IP3R in-between them (Figure 3c).
We introduced a probabilistic model in order to analyze quantitatively whether the differences observed
for the experiments performed for [R]T = 0 and [R]T = 90 µM could be explained if Ca2+ release only
occurred through IP3R-clusters separated by 1.4 µm or not. Within the framework of the probabilistic
model, we then combined the analysis of the experimental data with some probability estimates
derived from numerical simulations similar to those presented in [10]. We determined in this way that
the numerically estimated values were not compatible with the differences observed experimentally
if the only Ca2+ release sites involved were ∼ 1.4 µm apart from one another. The experimental
and numerical results were more compatible if we assumed that there was Ca2+ release from at least
one IP3R at a distance ∼ 0.6 µm from the primary Ca2+ release cluster. The presence of the slow
dye, on the other hand, could reduce the basal Ca2+ concentration. We analyzed that possibility in
the experimental data (Figure 4) and estimated that [Ca]b could have been reduced by half when
[R]T was changed from 0 to 90 µM. The numerical simulations, on the other hand, showed that a
decreasing value of [Ca]b with increasing [R]T gave better results for d = 1.4 µm (Figure 2d) in terms
of their compatibility with their experiments. We then re-analyzed the experimental data but using
numerical simulations that included this change in [Ca]b with varying [R]T . The best situation to
explain Figure 1 was obtained with simulations that combined a change in [Ca]b with [R]T and the
presence of a functional IP3R at a shorter distance (d ∼ 0.6 µm) than the typical inter-cluster one.

Our quantitative analysis of the experiments of [10] presented in this paper confirms that the
spatial landscape over which intracellular Ca2+ signals propagate do not consist solely of patches of
excitability that are 1.4–2 µm apart from one another but that there are also "relay stations" (isolated
functional IP3Rs) in between. Probably, the existence of these in-between IP3Rs is necessary for the
propagation of Ca2+ waves.

4. Materials and Methods

4.1. Oocyte Preparation

Experiments were performed on Xenopus laevis immature oocytes previously treated with
collagenase. Oocytes were loaded by intracellular microinjection with different compounds.
Two calcium dyes Fluo-4 dextran high affinity (Kd = 0.8 µM) and Rhod-2 (Kd = 2 µM) were used to
probe cytosolic [Ca]. Caged InsP3 (D-Myo-Inositol 1,4,5-Triphosphate,P4(5)-(1-(2-Nitrophenyl)ethyl)
Ester) was used to induce IP3R opening. The exogenous Ca2+ buffer EGTA was also used.
Final intracellular concentrations of the different compounds were calculated assuming a 1 µl cytosolic
volume. Final intracellular concentration of InsP3 was 9 µM in all of the experiments. The different
concentrations used in each experiment are detailed in Table 1 where we classify the experiments in
three sets. Fluo-4, Rhod-2 and InsP3 were from Molecular Probes Inc.; EGTA was from Sigma Aldrich.
Recordings were made at room temperature.

4.2. Confocal Microscopy

Confocal imaging was performed using a spectral confocal scanning microscope Olympus
FluoView1000 that has a spectral scan unit connected to an inverted microscope IX81. The caged
compound was photolyzed with the UV part of the spectrum of a mercury lamp that comes with the
microscope using the modification introduced in [17]. Fluo-4 was excited with the 488 nm line of a
multiline Argon laser, Rhod-2 was excited using the 543 nm line of a He–Ne laser. Both lasers were
focused on the oocyte with a 60× oil immersion objective (NA 1.35). The Fluo-4 and Rhod-2 emitted
fluorescences were simultaneously detected in the 500–600 nm and the 600–630 ranges, respectively,
with PMT detectors. All the experiments were performed in the linescan imaging mode to improve
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the temporal resolution. Linescan images were obtained by scanning along a fixed line (250 px) within
the oocyte. The acquisition rate was fixed at 10 µs per pixel resulting in a scan rate of 3.26 ms per line.
The caged compound was photo-released approximately 3 s after the linescan acquisition started.

4.3. Image Analysis

All images were analyzed using routines written in MATLAB. In the experiments where we
simultaneously acquired the fluorescence coming from two channels (around 510 nm for Fluo-4 and
570 nm for Rhod-2), we used a linear unmmixing method to minimize the effect of the spectral
bleed-through (R = 0.1626 was the linear unmixing coefficient used). The images were also smoothed
by averaging over the eight nearest pixels.

The events were identified and the images were processed as explained in [10]. From the
fluorescence distribution, fD(xi, tj), collected in each of the channels (D = R for Rhod-2 and D = F
for Fluo-4) at each pixel, (xi, tj), and the relative increase in fluorescence at the peak of the signal,
∆ fr,D = maxxi ,tj(( fr,D(xi, tj) − f0,D(xi))/ f0,D(xi)), with f0,D(xi) the mean basal fluorescence at xi
observed with D before the UV flash, we computed the corresponding Ca2+-bound dye and (maximum)
relative Ca2+ bound dye concentrations ([CaD] and ∆[CaD]r ≡ max([CaD] − [CaD]b)/[CaD]b,
respectively, with [CaD]b the basal Ca2+-bound dye concentration). To estimate the Ca2+-bound
dye concentration, we followed [18] neglecting fluctuations in the number of dye molecules that
contribute to the fluorescence at each pixel, ND, (for more details, see [10]):

[CaD] =
[D]T

q1,D − q2,D

(
fD

γ〈ND〉
− q2,D

)
, D = R, F, (9)

∆[CaD]r = ∆ fr,D

1 +
q2,D/q1,D

(1− q2,D
q1,D

) [Ca]b
[Ca]b+Kd,D

 , D = R, F. (10)

To compute these quantities we followed [18] and used 〈NF〉 = 32, 〈NR〉 = 32 for [R]T = 36 µM,
〈NR〉 = 80 for [R]T = 90 µM, [Ca]b= 100 nM, q1,F = 0.45, q2,F = 0.01, Kd,F = 0.8 µM, q1,R = 0.36,
q2,R = 0.02 and Kd,R = 2 µM.

In this paper, we only analyzed the events observed in the Fluo-4 channel, i.e., for D = F.
The event size of each analyzed puff was then characterized by the maximum value of the relative
increase in the Ca2+-bound Fluo-4 concentration, ∆[CaF]r that we derived from the observed
fluorescence. As done in [10], we then used the total Rhod-2 concentration, [R]T , of the experiment
to obtain estimates of the maximum values, ∆[CaF]r([R] = 0), that would have been attained for the
same release event if only the dye, Fluo-4, had been present. As discussed in [10], this estimate that
we call Alib−F is an increasing function of the Ca2+ current that underlies the release event regardless
of the value of [R]T used if the Ca2+ current arises from a very localized spatial region (the cluster).
As done in [10], we computed it as:

Alib−F ≈ ∆[CaF]r + αF,R[R]T ,

(11)

with αF,R = 4.58× 10−3.

4.4. Basal Calcium Estimation

In order to study the behavior of the mean basal Ca2+ concentration, [Ca]b, for each experiment
type probed in the paper, we follow some of the steps of the method introduced in [18]. We work with
linescan images obtained before any UV flash has been applied, i.e., we analyze basal fluorescence.
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On these images, we get rid of the horizontal lines that are persistently dark, which correspond to the
cortical granules. We then compute the mean basal fluorescence for each linescan image as:

〈 f0,D〉 =
1
N ∑

i∈b f

jUV

∑
j=1

fD(xi, tj), D = R, F , (12)

where the sum over i runs over the horizontal lines that are not persistently dark and the subscript,
D, denotes whether the fluorescence comes from the Fluo-4 (D = F) or Rhod-2 (D = R) molecules.
Using the values, 〈 f0,D〉, obtained for each experiment type, we compute the corresponding cumulative
distribution functions of the mean basal fluorescence. To transform from basal fluorescence to basal
Ca2+ , we use the following expression derived from [18]:

〈 f0,D〉 = γD

[
(q1,D − q2,D)

[Ca]b
[Ca]b + Kd,D

+ q2,D

]
〈ND〉, (13)

which takes into account the contributions to the fluorescence from the free and the Ca2+-bound dye
molecules with brightness q2,D and q1,D, respectively. In Equation (13) Kd,D is the dissociation constant
of the Ca2+-dye reaction, 〈ND〉 is the mean number of dye molecules that contribute to the fluorescence
collected at a pixel and γD is a multiplying factor introduced by the detector (γR = 6 and γF = 5 [18]).

4.5. Numerical Simulations

To assess the rate of CICR-mediated coupling between neighboring clusters, we compute the
probability that an IP3R that ns IP3R located at a distance, d, from a Ca2+ point source becomes open
during a time interval, ∆t, since the start of the release by means of:

P0(∆t, d, nc, [R]T) = 1− exp
(
−
∫ ∆t

0
konns[Ca2+](d, t)dt

)
(14)

with kon = 20 µM−1s−1 the rate of Ca2+ binding to the activating site of an IP3R of the DeYoung–Keizer
model [19]. We compute [Ca2+](d, t) simulating a set of reaction-diffusion equations in a spherical
volume (assuming spherical symmetry with r the radial coordinate) for: Ca2+, an immobile
endogenous buffer (S), two cytosolic indicators (F and R) and an exogenous mobile buffer (EGTA).
A point source located at the origin and pumps (P) that remove Ca2+ uniformly in space are also
included. For the source, we assume that it consists of nc channels that open simultaneously at t = 0,
each of which becomes close after a time that is drawn from an exponential distribution of mean
topen = 20 ms [19]. For the Ca2+-buffer or dye reactions we consider that a single Ca2+ ion binds to a
single buffer or dye molecule (X) according to:

Ca2+ + X
ko f f−X←−−→
kon−X

[CaX], (15)

where X represents F, R, EGTA, or S and kon−X and ko f f−X are the forward and backward binding
rate constants of the corresponding reaction, respectively. We assume that the total concentrations
of dyes and buffers ([F]T ,[R]T , [EGTA]T , and [S]T) are spatially uniform at t = 0 so that they remain
uniform and constant for all times. We also assume that [Ca2+] is initially uniform, equal to its basal
value and in equilibrium with the buffers and dyes. The parameter values used are listed in Table 3.
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Table 3. Parameter values used to solve the simulations.

Parameter Value Units

Free Calcium
DCa 220 µm2s−1

[Ca]b 0.05–0.1 µM

Calcium dye Fluo-4-dextran
DF 15 µm2s−1

kon−F 240 µM−1s−1

ko f f−F 180 s−1

[F]T 36 µM

Calcium dye Rhod-2-dextran
DR 15 µm2s−1

kon−R 70 µM−1s−1

ko f f−R 130 s−1

[R]T 0, 36, 90 µM

Exogenous buffer EGTA
DEGTA 80 µm2s−1

kon−EGTA 5 µM−1s−1

ko f f−EGTA 0,75 s−1

[D]T 90 µM

Endogenous immobile buffer
DS 0 µm2s−1

kon−S 400 µM−1s−1

ko f f−S 800 s−1

[S]T 300 µM

Pump
kp 0.1 s−1

vp 0.9 µMs−1

Source
nc 1, 10, 50 -

topen 20 ms
ICa 0.1 pA
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