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Electronic circuits, the backbone of modern electronic devices, require precise integration of 

conducting, insulating, and semiconducting materials in two- and three-dimensional space to 

control the flow of electric current. Alternative strategies to pattern these materials outside of a 

cleanroom environment, such as additive manufacturing, have enabled rapid prototyping and 

eliminated design constraints imposed by traditional fabrication. In this work, a transformative 

manufacturing approach using laser processing is implemented to directly realize conducting, 

insulating, and semiconducting phases within an amorphous molybdenum disulfide thin film 

precursor. This is achieved by varying the incident visible (514 nm) laser intensity and raster-

scanning the thin film a-MoS2 sample (900 nm thick) at different speeds for micro-scale control 

of the crystallization and reaction kinetics. The overall result is the transformation of select regions 

of the a-MoS2 film into MoO2, MoO3, and 2H-MoS2 phases, exhibiting conducting, insulating, 

and semiconducting properties, respectively. A mechanism for this precursor transformation based 

on crystallization and oxidation is developed using a thermal model paired with a description of 

the reaction kinetics. Finally, by engineering the architecture of the three crystalline phases, 

electrical devices such as a resistor, capacitor, and chemical sensor were laser-written directly 

within the precursor film, representing an entirely transformative manufacturing approach for the 

fabrication of electronic circuitry. 

1. Introduction 
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The microscale deposition, patterning, and manipulation of thin film materials into precisely 

controlled device architectures remains arguably the most important advancement in creating 

electronic circuitry found in modern electronics. The development of device fabrication techniques 

including photolithography, reactive ion etching, and physical vapor deposition aggressively 

accelerated the first demonstration of the integrated circuit in 1958 [1,2] where current state of the 

art feature sizes within device elements are now approaching the atomic scale [3]. The device 

elements (e.g. resistors, capacitors, diodes, and transistors) within these circuits rely on controlled 

electron transport within three basic building blocks of electronic materials: insulators, conductors, 

and semiconductors. It is only through the precise integration of these three subsets of materials 

that electronics as we know them today are realized.  

Revolutionary materials within each of these three categories have helped shape the field of 

modern electronics, including silicon, III-V semiconductors, oxide dielectrics, and others. 

Transition metal dichalcogenides (TMDs), in particular, represent an emerging material class, with 

the two-dimensional monolayer form exhibiting an indirect to direct bandgap transition [4], strong 

spin-orbit coupling [5,6,7], excitonic behavior [8], and a reduced elastic modulus for mechanical 

flexibility [9,10]. Within the family of TMDs, diverse electronic properties are accessible for 

circuitry, from highly conductive TaS2 to bandgaps in the visible range such as in monolayer MoS2 

and WS2 (1.8 eV and 2.03 eV, respectively) [11]. The semiconducting properties exhibited by 

MoS2 led to its integration within fully integrated multistage circuits composed of inverters, 

NAND gates, and static random access memory all on a single chip [12,13]. Additionally, 

researchers have developed unique strategies to phase-pattern the growth of two different phases 

of MoTe2 (semiconducting 2H and conducting 1T’) to construct high performance field effect 

transistors and other logic devices with only a single step process [14].  

Transition metal oxides (TMOs) are another intriguing class of electronic materials, as the unique 

nature of the outer d-electrons and variable metal-oxygen bond strength from nearly ionic to highly 

covalent or metallic reveals a wealth of available electronic properties for future circuit designers 

[15]. This vast class of metal oxides encompasses metallic materials (RuO2, ReO3), highly 

insulative materials (BaTiO3), and materials whose electronic properties are controlled by external 

environment or composition (V2O3, La1-x, SrxVO3). As such, the electronic properties of 

molybdenum oxides are highly dependent upon the crystal stoichiometry, which has been shown 

to be highly tunable via doping, oxygen vacancies, and morphology [16-19]. The most commonly 

observed oxide is MoO3, which displays a wide bandgap of 3.0 eV and typical insulative 

properties. MoO3 thin films can be deposited by vapor phase deposition, sol-gel processing, and 

thermodynamic oxidation of transition metal sulfides [20]. Less common is the electrically 

conductive MoO2 phase, known to form as an intermediate oxide in MoO3 formation from MoS2 

as well as in processing from molybdenum ore [21]. Both molybdenum (IV) and (VI) oxides have 

been investigated in conjunction with TMDs, to realize TMD/TMO interfaces with improved 

contact junctions and electronics with complex heterostructures [22-25]. 

Strategies to pattern electronic materials including TMDs and TMOs in unique ways outside of a 

cleanroom environment, such as additive manufacturing, can potentially allow for rapid device 

prototyping and remove many of the design constraints in traditional fabrication [26-29]. While 
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additive manufacturing exhibits challenges including reproducibility, ink stability, and others, the 

benefits of the accessible design space, low cost, and paradigm shift from traditional 

manufacturing are substantial. For instance, additive manufacturing has been demonstrated as a 

viable technique to realize fully printable microelectronic circuit elements  operating as a passive 

wireless senor for various applications [30]. In this study, laser manufacturing approaches are 

leveraged to locally induce crystallization and oxidation of a monolithic thin film precursor, 

allowing for the manipulation of insulating, semiconducting, and conducting materials for the 

purpose of designing electronic circuitry on a single chip. This method represents neither an 

additive nor subtractive method, but rather a transformative manufacturing strategy using a laser 

to embed circuit devices including resistors, capacitors, and a gas sensor starting from a monolithic 

amorphous MoS2 film. The lateral integration of semiconducting crystalline 2H-MoS2, conducting 

MoO2, and insulating MoO3 via laser irradiation enabled device circuitry fabrication in air or inert 

environments at ambient pressure, without masking or photolithography steps. 

 

2. Experimental methods 

2.1 Sample fabrication 

The samples consisted of 900 ± 20 nm thick films of amorphous MoS2 (a-MoS2) grown on 0.5 

mm thick willow glass substrates by magnetron sputtering at a substrate temperature of 25°C. 

Sputtering was performed via asymmetric bi-polar pulsed direct current magnetron sputtering at 

65 kHz (with a 0.4 s reverse time) from a polycrystalline MoS2 target (Plasmaterials) at room 

temperature with a growth rate of approximately 1 atomic layer per second. While this technique 

has been previously used to grow ultra-thin films [31-33], the growth time was extended to 60 min 

in order to produce the thicker films. The 900 nm films were synthesized in order to minimize the 

effects ablation, improve the performance of the laser-written circuitry, and to minimize the 

influence of the substrate. Thinner films were also synthesized at a thickness of 6.5 nm (growth 

time 30 seconds) to elucidate the possibility of nanoscale films. 

 

2.2 Laser processing 

The output of an argon-ion laser (Coherent Innova 90C) with a central wavelength of 514 nm was 

focused onto the sample at normal incidence using a 20x magnification, infinity-corrected 

objective (Mitutoyo V80286315). The corresponding 1/e2 beam radius during processing was 

measured to be 44 ± 0.2 μm. The sample itself was housed in a home-built environmental control 

cell mounted on two high-precision, two-axis translation stages (Physik Instrumente M-687.UL 

and P-563.3CD). The sample was translated in conjunction with the operation of an optical shutter 

(Thorlabs SHB025T) to control exposure of the surface to the laser beam. For a Gaussian beam, 

the on-target intensity (power density) as a function of the Cartesian position on the sample x, y 

and time t can be described by 
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where I0 is the peak intensity, v is the translation velocity (taken to be in the x-direction), and w is 

the beam radius. For a point at the origin, this intensity is equivalent to that of a static, temporally 

Gaussian laser pulse with a full width at half maximum (FWHM) pulse duration of teff = √(2ln2)w/v 

referred to here as the effective exposure time. By varying the stage velocity and laser power, this 

effective exposure time can be controlled along with the peak intensity. In order to determine the 

effect these two parameters have on the modification of the sample in air, a grid of lines was 

written with powers varying from 20-400 mW (spaced linearly) and translation speeds from 10-2-

101 mm/s (spaced logarithmically). The corresponding intensities and exposure times spanned 

ranges of 0.66-13.2 kW/cm2 and 5 - 5000 ms. 

 

2.3 Sample analysis 

Transformation of the precursor phase was characterized via Raman spectroscopy, 

photoluminescence spectroscopy, and X-ray photoelectron spectroscopy (XPS). Unless otherwise 

stated, all Raman spectra were taken at the geometric centers of each laser-modified region. When 

creating large regions of laser-exposed material for XPS or conductivity analysis, a series of lines 

were written by raster-scanning the sample with a center-to-center line separation of 10 μm. This 

value was empirically found – through Raman and XPS analysis – to maximize conversion of the 

region while minimizing undesired, additional annealing of prior traces. Electrical characterization 

including resistance and capacitance measurements were carried out using a four-point probe 

station (Cascade Microtech MPS150-B1A). Resistance uncertainties were based on the standard 

deviation of 20 repeated measurements (including probe lift-off and touch-down) along with the 

uncertainty of the probe separation, sample thickness, and laser-written line width, where 

appropriate. 

Scanning electron microscope (SEM) and atomic force microscope (AFM) images were also taken 

to determine the polycrystallinity and topography of the laser-irradiated regions in comparison to 

the untreated sample. Scanning microwave microscopy (SMM) was used to spatially map the 

dielectric properties of the laser-written material with sub-micron precision. Optical spectroscopy 

using transmitted white light illumination was performed with a MicroExtinction Spectroscopy 

(MExS) setup described in Ref. [34]. 

 

2.4 Gas sensor characterization 

Prior to gas sensor testing, the sample was placed in a 2.2 L stainless steel chamber which was 

flushed overnight with dry nitrogen. The sample was put in series with a 1 MΩ reference resistor 

and a bias of 1 V was applied. All voltages were applied and measured with a data acquisition 

system (Measurement Computing USB 1808X) at a resolution of 18 bits (±5 V range). Voltages 
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were acquired at a rate of 200 kHz, and each grouping of 40,000 points was averaged and stored. 

A mixture of 1000 ppm NH3 balanced with nitrogen (Indiana Oxygen) was mixed with dry 

nitrogen using mass flow controllers (MKS Instruments 1179C series) to produce the desired 

concentration (1:99 for 10 ppm, 1:9 for 100 ppm, and unmixed for 1000 ppm). The total flow of 

the NH3 plus nitrogen was 2000 sccm. 

 

3. Results and discussion 

3.1 Structure and composition of laser-irradiated precursor material 

 

Figure 1  (a) Schematic of the laser-writing process. (b) Phase map illustrating the laser intensities and exposure times at which 

each of the three phases are observed to form. The color intensities shown are determined by overlaying and interpolating the 

plots of the normalized Raman signals shown in Fig. S2(a). (c) Raman spectra measured for 2H-MoS2 (3.3 kW/cm2, 5 s), MoO2 

(8.5 kW/cm2, 5 ms), and MoO3 (6.6 kW/cm2, 5 ms). (d) Confocal microscope images of each phase. Peak intensities and exposure 

times: 9.2, 9.2, and 6.6 kW/cm2 and 5 s, 5 ms, 5 ms for MoO3, MoO2, and 2H-MoS2, respectively. (e) AFM profiles across each 

phase. (f() Confocal microscope images of each phase written with 10 and 2 μm focal spot sizes. g) SEM images of each phase, 

as well as the untreated a-MoS2. 

Exposure of a 900nm thick a-MoS2 thin film on a glass substrate to 514 nm wavelength, 

continuous-wave laser light (schematically depicted in Fig 1(a)) resulted in the formation of 

distinct chemical phases. By varying the peak laser intensity and exposure time while the sample 

was exposed to lab air, a processing map depicted in Fig. 1(b) was created, revealing the formation 

of four distinct regions of crystalline 2H-MoS2, MoO2, Mo4O11, and MoO3. The color intensities 

shown are determined by overlaying and interpolating the plots of the normalized Raman peak 

intensities (Fig. S2(a)) for distinct peaks associated with each phase (A1g, B2g, and A1g for MoO3, 

MoO2, and 2H-MoS2, respectively and the Raman peak at 907 cm-1 for Mo4O11). A key feature to 

note in Fig. 1(b) is the separation between the three phases in this parameter space. While the 
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formation of 2H-MoS2 and MoO2 can be seen over a wide range of exposure times, they require 

lower intensities at the higher exposure times and are most readily formed at the lowest exposure 

times (~ milliseconds). In contrast, the MoO3 phase is only seen at longer exposure times (~ 

seconds), with the Mo4O11 phase forming as an intermediate between MoO2 and MoO3 

(corresponding to MoO3-x for x=0.25). Additionally, within their optimal exposure time values, 

the formation of the three oxides occurs after crossing an intensity threshold; below this intensity, 

only crystalline 2H-MoS2 is present. 

For the purposes of this study, the primary focus will be on the 2H-MoS2, MoO2, and MoO3 phases, 

as they represent an exciting opportunity for vastly different accessible electronic properties. The 

full Raman spectra for these three phases at select optimized intensity and exposure time values 

are plotted in Fig. 1(c), indicating distinct crystal structure with no evidence of mixing. Optical 

images of each phase are shown in Fig. 1(d), along with AFM profiles showing the changes in the 

sample height after laser exposure (Fig. 1(e)). Notably, a reduction in thickness is observed in the 

formation of oxide films due to partial film ablation. The MoO3 films exhibited a greater loss in 

thickness relative to MoO2 even though the density is lower for the trioxide than the dioxide (6.47 

g/cm3 for MoO2 as compared to 4.69 g/cm3 for MoO3). This indicates that the two orders of 

magnitude longer exposure (annealing) time required to form the MoO3 phase is primarily 

contributing to the loss of material and is a design consideration going forward.  

Crystallization into 2H-MoS2 and oxidation into MoO2 is also possible with much thinner films 

(e.g. 2D films). By increasing the laser intensity in order to compensate for decreased absorption 

and increased thermal losses, such phase transitions were observed with a 6.5 nm a-MoS2 film 

(Fig. S3(b)). Oxidation into MoO3, however, was not observed due to ablation, which was likely 

a result of sublimation given that the MoO3 sublimes readily at the temperatures required for its 

formation [35] (see thermal modeling results in the next section). While this sublimation leaves 

the majority of the thicker films left, this is not the case for few-layer films and further optimization 

will be required to reveal the chemical and structural phases seen in these 900 nm films. 

A significant benefit of the laser writing process over other manufacturing techniques is in the 

versatility with regards to the feature size. While Fig. 1(d) depicts laser-written lines is on the order 

of 50 μm (for w0 = 44 μm), smaller lines of each phase can be readily formed simply by reducing 

the focal spot size and adjusting the stage velocity. This is shown in Fig. 1(f) where confocal 

microscope images of lines of 2H-MoS2, MoO2, and MoO3 are compared for focal spot sizes of 

w0 = 10, and 2 μm (see Fig. S2(d) for plots of the corresponding Raman signals). With the smallest 

focal spot, a lateral resolution of 2 μm is achieved, and it is expected that higher resolutions are 

achievable with smaller focal spots. In addition, flat-top beam profiles and selective choice of 

thermally conductive substrates could be used to further localize the boundary of each transformed 

region and further push the resolution of the laser writing technique into the nanoscale.  

To further elucidate the nanoscale structure of the phases, SEM images shown in Fig. 1(g) 

reveals a nanocrystalline homogenous crystal structure. This is further revealed in high-

resolution AFM images (Fig. S5) with nanocrystals on the order of 100 nm in size observed for 

the MoO2 and MoO3 phases. The 2H-MoS2 depict nanocrsytals with grain sizes observed on the 

order of 50 nm.  
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3.2 

 Fundamental formation mechanisms 

The formation of the thermodynamically stable MoO3 is to be expected, as it forms by heating 

crystalline MoS2 to >300 oC in the presence of oxygen [36-39]. Less clear is the formation of MoO2 

at shorter exposure times. However, studies of the oxidation of molybdenite found MoO2 to be a 

reaction intermediate [40,41] with the reaction described by 

Given the observation of MoO2 formation at short exposure times (where rapid quenching may 

occur), it is proposed here that MoO2 similarly exists as a reaction intermediate in the oxidation of 

highly disordered a-MoS2, with the oxidation into MoO3 occurring at a much slower rate. During 

the shorter exposure times, the sample is quenched and the reaction halted before the oxidation of 

MoO2 into MoO3 (or the Mo4O11 intermediate) can occur. Even so, higher temperatures (and, 

therefore, higher intensities) are needed to ensure that the reaction rate is high enough for oxidation 

into MoO2 to occur within the ~1 ms timescales. Otherwise, 2H-MoS2 forms alongside the MoO2, 

eventually becoming the dominant product of the laser-writing process, as observed at the lower 

intensities where only chemical rearrangement occurs. This has previously been observed in few-

layer a-MoS2 and a-WS2 films where the formation mechanism was shown to be a kinetically-

controlled photothermal effect [42]. Oxidation of MoO2 into MoO3 through laser irradiation has 

also been observed by Dieterle et al. [43], albeit with significantly longer exposure times and lower 

intensities. 

In order to lend further support to this argument, the thermal aspects of the laser-writing process 

were considered. With the laser intensity acting as a heat source, the experimental conditions are 

modeled using the 3D heat equation 

 

where T is the temperature, Tamb is the ambient temperature, σ is the Stefan-Boltzmann constant, d 

is the film thickness, I is the incident laser intensity given by Eq. (1), H is the Heaviside step 

function, and ρ, cp , k, ε, and A are the material’s density, specific heat capacity, thermal 

conductivity, surface emittance, and absorptance at the laser wavelength, respectively. The heating 

from the laser is assumed to be uniform throughout the thickness of the film; this is justified as the 

characteristic time for thermal diffusion in the transverse dimension is given by tD,⊥  ∼ d2/α ∼20 

ns [44] for a thermal diffusivity of α=4.9×10-5 m2/s, which is significantly shorter than any other 

timescales under consideration. Eq. (4) was solved numerically using the COMSOL finite element 

analysis software, modeling the sample as a film of a-MoS2 on a silica substrate – both with a 

temperature-dependent thermal conductivity and specific heat capacity. Radiative losses were 
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accounted for by treating the top surface as a diffuse emitter with an emissivity of 0.6. Specific 

details of the model can be found in the supplementary material. 

Figure 2: (a) Thermal modeling results showing 2D color maps of the sample temperature for a laser intensity of 8.2 kW/cm2 and 

exposure times of 518 and 5 ms. (b) Exposure time and characteristic heating time as a function of stage speed. Inset: 

temperature at the center of the simulated region as a function of time for a stage speed of 10 mm/s ( teff=5 ms). The laser 

intensity profile is also plotted for comparison. The FWHM of the temperature profile is used to determine the heating time for 

all speeds. (c) Fitted values of the reaction rate constant for both steps of the reaction as a function of T-1. Arrhenius fits are also 

shown, together with the resulting activation energies. 

Example 2D color maps of the thermal modeling results are shown in Fig. 2(a) with exposure times 

of 518 and 5 ms at an intensity of 8.2 kW/cm2 . These results show that the heated region is 

approximately twice the size of the laser spot, with a small rise in the temperature of the 

surrounding material. Additionally, the exposure time is seen to have little effect on the peak 

temperature, suggesting that the equilibrium temperature is quickly reached (see also Fig. S7(b) 

where the peak temperature is plotted as a function of intensity for a range of exposure times). 

Consequently, the thermal effects of intensity and exposure time can largely be decoupled, with 

the intensity governing the temperature of the irradiated region, and the exposure time governing 

the duration spent at that temperature. This can be analyzed more closely by considering the 

temperature of a point at the center of the simulated region as the beam passes. An example plot 

of this temperature as a function of time is shown in the inset of Fig. 2(b) for teff = 5 ms where the 

temperature rises and falls with the passing of the laser beam. The characteristic heating time is 

determined from the FWHM of this temperature profile and is plotted as a function of stage speed 

along with the corresponding exposure times. This heating time is approximately twice that of teff, 

where the broadening is due to a rise in temperature of the surrounding material. Given that the 

heating time decreases in step with the exposure time, it is concluded that thermal diffusion is not 

a limiting factor in the quench time. This is to be expected given that the characteristic time for 

lateral thermal diffusion is tD,∥ ∼ w2/α ∼ 40 μs, appreciably shorter than all values of teff 

investigated. In other words, the irradiated region on the sample can be considered quenched and 

the oxidation process halted after the laser has passed. If values of teff close to or less than tD,∥  were 

to be used, the heating time could potentially be limited by tD,∥ , depending on the thermal 

conductivity of the substrate. Overall, these results are very similar to those of Bell et al. [45], 

where microsecond heating times were achieved with various samples on a Si substrate. 

With these insights from the thermal model, a more detailed analysis of the reaction kinetics can 

be performed. The two-step reaction can be described by the rate equations 
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where C is the concentration of the appropriate compound and k1 and k2 are the reaction rate 

constants for the reactions described by Eqs. (2) and (3), respectively. The temperature dependence 

of these reaction constants can be modeled using the Arrhenius equation 

 

where A1 and A2 are the corresponding Arrhenius constants, Ea,1 and Ea,2 are the activation 

energies, kb is Boltzmann’s constant, and T is the temperature of the irradiated region. These rate 

equations can be solved analytically if the reaction rate constants are treated as time-independent, 

i.e. if the temperature profile is modeled as constant over the duration of the heating time. Under 

the assumption that the Raman intensity for MoO2 in the phase map (Figs. 1(b) and S2(b)) is 

proportional to the concentration of MoO2, a fit was performed using the solutions to Eq. (6) with 

the rate constants as fitting parameters. This was performed at intensities ranging from 3.3-6.6 

kW/cm2, where the peak of the MoO2 signal could be clearly identified. Using the thermal model 

results (Fig. S7(b)), the temperatures corresponding to these intensities were identified. The 

resulting plot of the rate constants as a function of T−1 is shown in Fig. 2(c), with the shaded regions 

representing the uncertainty of the fit for each data point (±1 standard deviation determined from 

the sum of square residuals) . These were further fitted to Eqs. (8) and (9), yielding activation 

energies of Ea,1 = 0.75 ± 0.04 eV and Ea,2 = 0.27 ± 0.04 eV. For comparison, Marin et al. [40] 

reports activation energies of 0.23 eV for both steps of the reaction, and argues that O2 diffusion 

into the bulk is limited by the flow of SO2 while MoO2 is forming. It is therefore likely that the 

thickness of the film results in a diffusion-controlled reaction rate and a correspondingly higher 

activation energy. In other words, oxidation in the bulk of the film is inhibited by the outflow of 

SO2 until MoO2 formation is complete. This suggests that surface oxidation is likely still occurring 

in the 2H-MoS2 region of the phase diagram, which is visually apparent in the optical image of the 

2H-MoS2 line in Fig. 1(d). This line is noticeably darker than the surrounding a-MoS2, a feature 

that is not present when processing in high purity argon. 

 

3.3 Material property characterization 

The laser writing process results in uniform crystal structure within the exposed region, with some 

evidence of a transition region in the periphery, as shown in Fig. 3(a) where a 2D Raman map was 

taken for a representative spectral line of each phase. From these images, it is clear that the Raman 

signals correspond to the visual changes observed optically. It is worth noting, however, that the 
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periphery of the MoO2 line shows an appreciable 2H-MoS2 signal, likely due to the lower intensity 

in this region from the Gaussian beam profile and diffusive heating. As shown in Fig. 3(c), there 

is a process window (~8-10 kW/cm2) in which a mixed phase of MoO2 and 2H-MoS2 can form. 

SMM images provide additional evidence for the formation of 2H-MoS2 at the edges of MoO2 

lines (Fig. S11). Interestingly, the MoO3 line shows oscillations in Raman intensity due to 

oscillations in the stage velocity at low speeds, which can be minimized with more stage 

optimization and highlights the need for precise control of exposure time. 

 

Figure 3 (a) 2D color maps of the Raman intensity associated with the predominant Raman peak of each phase. Each image is an 

overlay of the signal for all three peaks, i.e. the colorbars apply to each image. (b) Conductivity of large, (5mm)2 regions of each 

phase from four-point sheet resistance measurements. The standard deviations are 9, 7, 12, and 3% for MoO3, 2H-MoS2, a-MoS2, 

and MoO2, respectively representing the error in several consecutive measurements along with the uncertainties in the film 

thickness. (c) Plot of the conductivity of individual lines as a function of laser intensity for an exposure time of 5 ms, along with 

the normalized Raman signal for the MoO2 and 2H-MoS2 Eg and E2g peaks. (d) Absorption spectra for each phase. 

To evaluate the suitability of each phase transformed from the amorphous MoS2 precursor 

material, the longitudinal electrical conductivity of each phase was determined using a four-point 

probe method.  Large (5 mm)2 regions of each phase were written by raster-scanning the laser at 

an intensity of 9.2 kW/cm2 with exposure times of 5 s for the MoO3 phase and 5 ms for the MoO2 

and 2H-MoS2 phases. The corresponding peak temperatures predicted by the thermal model are 

700 and 650°C. In the case of 2H-MoS2, the sample was processed in argon to prevent oxidation 

of the overlapping traces. The sheet resistances were then measured with a ~100 μm probe 

separation and found to be 0.8, 7.1, and 21.4 kΩ/□ for MoO2, a-MoS2, and 2H-MoS2, respectively, 

and 170MΩ/□ for MoO3. The thicknesses of each respective region were measured with a 

profilometer to be 670, 900, 940, and 725 ± 20 nm. The corresponding conductivities are shown 

in Fig. 3(b) with standard deviations of 9, 7, 12, and 3% for MoO3, 2H-MoS2, a-MoS2, and MoO2, 

respectively. Additionally, the conductivity of the 2H-MoS2 phase demonstrated an increase in 

conductivity with elevated temperatures, demonstrating the expected semiconducting properties 

of the phase (Fig. S12). The MoO3 phase shows a relatively low conductivity of 8.1× 10-3 S/m, 

similar to the value of ~10-3 S/m reported in Ref. [46]. This relatively insulating behavior compared 
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to the other phases allows the MoO3 phase to be used for electrical isolation of the 2H-MoS2 and 

MoO2 phases, with leakage currents <1% at the currents tested (1-2 μA). With this method of 

isolation, the longitudinal conductivity of the 2H-MoS2 and MoO2 phases were measured for 

individual lines written with varying intensities and a fixed exposure time of 5 ms. A plot of the 

line conductivity as a function of peak laser intensity is shown in Fig. 3(c), with the normalized 

Raman signals associated with each phase plotted as well. A sharp transition from the 2H-MoS2 

to MoO2 phase is observed with a slight lag in conductivity values, presumably corresponding to 

a more crystalline MoO2 phase. The purest 2H-MoS2 and MoO2 phases show conductivities of 25 

S/m and 4.8 × 103 S/m, respectively. For comparison, reported values for a-MoS2 include 11 S/m 

[32] and 22 S/m [47], similar to the amorphous and crystalline values for MoS2 reported here. The 

conductivity of MoO2, in contrast, has been reported to be 1.2 × 106 S/m [48], approximately two 

orders of magnitude larger than the value reported here. This indicates room for improvement of 

the oxide chemistry and polycrystallinity. It is also worth noting that these conductivities represent 

an averaging over the width of the isolated line, as the purity of the phase varies over this width 

(Fig. 3(a)). It should be emphasized, however, that the ability to locally switch between the 2H-

MoS2 and MoO2 phases on a single chip is the primary benefit of this technique for device 

applications, and that a continuum of material properties can be accessed by varying the processing 

conditions. 

Absorption coefficients of the different phases were evaluated using Micro-extinction 

Spectroscopy (MExS) [34] and depicted in Fig. 3(d), assuming thicknesses corresponding to the 

AFM profiles for each phase.  The optical spectra reveal bandgaps of 1.65 eV and 2.69 eV for 2H-

MoS2 and MoO3, respectively; no clear bandgap is observed for MoO2, indicating that it is metallic.  

For comparison, Refs. [4] and [49] report 1.29 and 2.85 eV for MoS2 and MoO3, respectively. The 

higher bandgap measured here for 2H-MoS2 is possibly due to surface oxidation, while the lower 

bandgap measured for MoO3 is likely due to some degree of sub-stoichiometricity. In addition to 

bandgap values, indication as to the extent of crystalline conversion can be evaluated using these 

spectra. The MoO3 absorption coefficient at a wavelength of 514 nm was measured to be 3.2 × 103 

cm−1 for a corresponding optical penetration depth of 3.1 μm – reasonably close to the bulk values 

of 2.3 × 103 cm−1 and 4.3 μm reported for MoO3 [50]. As MoS2 and MoO2 are opaque to visible 

light with optical penetration depths of ~60 nm, this indicates that the oxidation into MoO3 is 

complete throughout the depth of the film. This is further supported by the observed transparency 

of the transformed MoO3 regions while AFM scans showed a height difference of only 130 nm 

relative to the surrounding a-MoS2. In the cases of 2H-MoS2 and MoO2, the optically apparent 

changes are visible on the back side of the sample, suggesting that their formation also extends 

through the depth of the film. This is to be expected in particular for 2H-MoS2, given that its 

formation is a thermally-induced chemical rearrangement (as evidenced by the increase in film 

thickness after annealing) rather than a chemical reaction, and that the film thickness ensures 

uniform heating through the depth of the film. In order to provide further evidence for the 

formation of each phase through the depth of the film, Raman scans were taken from the back side 

of the sample through the transparent substrate, indicating that significant crystallization and 

oxidation is able to extend to the bottom of the film (see Fig. S4). 
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4. Electronic circuit devices 

With the ability to create isolated regions of conducting (MoO2), semiconducting (2H-MoS2), and 

insulating (MoO3) patterns, fabrication of circuit elements becomes possible. By connecting these 

elements with laser-written lines of conducting MoO2, simple devices can be made. The simplest 

circuit element to make is a resistor. While the MoO2 phase is conducting, it can be made relatively 

resistive due to the 800 nm film thickness (after processing) and by using a less pure phase of 

MoO2. By raster-scanning lines in a serpentine pattern, a resistor (inset of Fig. 4(a)) was written 

with an intensity of 8.9 kW/cm2 and an exposure time of 5 ms. This intensity is slightly lower than 

the optimized conditions for peak conductivity in MoO2 to enable a detectable change in resistance, 

further highlighting the ease in which the circuitry can be designed and optimized. In order to 

prevent current leakage through the a-MoS2, the perimeter of the serpentine was traced with an 

insulating line of MoO3. The corresponding plot of resistance as a function of serpentine length is 

shown in Fig. 4(a). The resistance increases linearly with length, as it would for a conventional 

resistor. Similarly, capacitors can be written with varying plate areas governed by the film 

thickness and the overlapping line length. A plot of the measured capacitance as a function of the 

total overlapping line length per comb is shown in Fig. 4(b), for both parallel-plate and comb 

capacitors. The MoO3 phase can also be used to better isolate the capacitor plates, while 

simultaneously serving as a dielectric to further increase the capacitance to over 1 pF with a 9% 

coefficient of variation, comparable to similarly dimensioned comb capacitors patterned using 

photolithography [51]. An image of such a capacitor with six “tines” is shown in the inset of Fig. 

4(b). 

 

 

Figure 4 (a) Resistance of a laser-written serpentine resistor as a function of length, where the perimeter of the serpentine was 

traced with MoO3 to provide electrical isolation. The error associated with the measurement was between 1.1 and 1.5 kΩ, (b) 

Capacitance of a series of laser-written parallel-plate and comb capacitors as a function of overlapping line length per comb. (c) 

Confocal microscope image of a laser-written gas sensor using MoO2 for contact pads and electrical connections, MoO3 for 
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isolation, and 2H-MoS2 for the sensing region. (d) Zoom-in of (c) showing the sensing region and the 70 μm gap between 

electrical connections in the center. (e) Image of the gas sensor placed within a clamshell-style test socket. (f) Plot of the relative 

change in sensor resistance ∆R/R as a function of time. At specific moments in time, varying concentrations of NH3 are 

introduced, which modulates the resistivity of the 2H-MoS2 region. The recovery of the sensor during N2 purging at 40°C is also 

shown. 

Active circuit elements incorporating semiconducting elements allow for architectural engineering 

of electronic building blocks for more complex circuit elements. In this case, chemical gas sensors 

utilizing the semiconducting 2H-MoS2 phase as the sensing region, the MoO2 phase as electrical 

contacts and wires, and the insulating MoO3 phase for isolation were fabricated solely through 

laser transformation of the a-MoS2 precursor phase. Such a sensor is shown in Fig. 4(c)-(e), where 

two MoO2 contacts are separated by a 70 μm gap within a 1.0 × 0.6 mm region of 2H-MoS2. This 

2H-MoS2 region was written with an intensity of 9.2 kW/cm2 and a 5 ms exposure time in an argon 

ambient environment to reduce oxidation of the sample during processing. Fig. 4(f) shows the 

response of the sensor to 10, 100, and 1000 ppm of NH3, which  modulates the conductivity of the 

2H-MoS2 via electron donation upon adsorption. A clear change in resistance above the noise level 

can be seen for each NH3 concentration, indicating a clear sub-10 ppm detection limit of NH3. The 

recovery of the sensor during N2 purging at 40°C can also be seen, with full recovery due to 

desorption achieved after 25 min. The intrinsic 1/e response time at 10 ppm is approaching 6.8 

minutes and 8.5 minutes for heated recovery time, matching similar responses found in nanoscale 

devices of MoS2. 

While monolayer or few-layer MoS2–based sensors have reported sub 0.1 ppm detection of NH3 

gas, the sub 10 ppm detection of NH3 exhibited herein is sufficiently below the 50 ppm threshold 

from the US Occupational Safety and Health Administration (OSHA) for limited short term 

exposure.[54] It is expected that an increase in sensitivity to gaseous species can be achieved by 

reducing the precursor film thickness to increase the surface-area-to-volume ratio, as well as by 

further process optimization. As addressed previously, careful consideration to balancing ablation 

processes upon reduction of the film thickness is necessary to ensure formation of the higher 

temperature oxide phases. Additionally, while a simple geometry was used for this sensor, the 

unique ability to create such devices from an inexpensive, naturally-abundant precursor material 

through laser-writing and without any other patterning or photolithography steps allows for 

multiple sensors optimized for varying functionalities to be rapidly produced on a single chip. 

 

5. Conclusions  

In summary, it has been shown that thin-film a-MoS2 can be locally transformed into 

polycrystalline 2H-MoS2, MoO2, and MoO3 through laser-induced phase and chemical 

transformation. Each of these phases require specific laser intensities and exposure times to form, 

as MoO2 and MoO3 phases were found to form most readily at intensities near 10 kW/cm2 with 

exposure times on the order of milliseconds and seconds, respectively. In air, the 2H-MoS2 phase 

formed most readily at lower intensities of 6.5 kW/cm2 with millisecond exposure times. Thermal 

simulations indicate that laser-induced heating occurs on microsecond time scales and can lead to 

localized temperatures exceeding 1000°C. By translating the sample during processing, the 

duration spent at these temperatures for any given region can be varied from milliseconds to 
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seconds, which in turn controls the reaction kinetics of the oxidation process, resulting in 

conversion to either MoO3 or its reaction intermediate MoO2. At lower temperatures and exposure 

times, oxidation is minimized and photothermal crystallization results instead. These 2H-MoS2, 

MoO2, and MoO3 phases were shown to extend over the width of the treated region and through 

the depth of the film, allowing them to exhibit the necessary semiconducting, conducting, and 

insulating electrical properties, respectively.  

The approach to creating electronic devices including resistors, capacitors, and gas sensors by 

purely transformation of an initial starting film represents a very advantageous manufacturing 

strategy. Further optimization of film uniformity utilizing different laser sources and profiles (i.e. 

flat top vs. Gaussian) is expected to result in highly controllable properties for future electronics 

and sensor devices. Additionally, exploring the transformative manufacturing technique utilizing 

optical sources to include flash lamps, parallel laser sources, laser holography, and pulsed laser 

systems will significantly reduce the manufacturing time and increase throughput as compared to 

the CW laser utilized in this study [55-57]. The tradeoff between simplicity of configuration and 

desire for throughput will determine the optical source required in future transformative 

manufacturing systems, with potentially portable units taking advantage of the CW setup described 

herein and more complicated sources (i.e. flash lamp or pulsed laser setup) requiring more 

extensive infrastructure. In addition to the manufacturing speed and high throughput for a laser 

system, another advantage is in the reconfigurability of the process. By simply modifying the laser 

pattern, individual electronic circuits can be designed on the fly with nearly complete freedom 

within the bounds of the manufacturing process. This is in contrast to traditional circuit design 

using thin film cleanroom processes, which can restrict reconfigurability, requires expensive start-

up equipment, and a multitude of both additive and subtractive steps to complete. In this simple, 

elegant solution, the amorphous film and a laser is all that is required to drive the necessary 

patterning and local electronic property control needed for functional devices. Thus, we refer to 

this process as transformative manufacturing, where – following the initial thin film deposition – 

the entire circuit design is driven by the laser writing of embedded TMD and TMO phases. The 

amorphous film is non-participative in the final design and while there is potentially some small 

amount of ablation, the resultant devices are merely transformations of this starting material. It is 

expected that by laser-processing these, or similar,  materials in active gases, many different 

chemical reactions can be locally induced, possibly with the ability to access other reaction 

intermediates and more complex circuitry.  
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