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Abstract
For a thought experiment concerning the mixing of two classical gases, Gibbs concluded that the
work that can be extracted from mixing is determined by whether or not the gases can be
distinguished by a semi-permeable membrane; that is, the mixing work is a discontinuous
function of how similar the gases are. Here we describe an optomechanical setup that generalises
Gibbs’ thought experiment to partially distinguishable quantum gases. Specifically, we model the
interaction between a polarisation dependent beamsplitter, that plays the role of a semi-permeable
membrane, and two photon gases of non-orthogonal polarisation. We find that the work arising
from the mixing of the gases is related to the potential energy associated with the displacement of
the microscopic membrane, and we derive a general quantum mixing work expression, valid for
any two photon gases with the same number distribution. The quantum mixing work is found to
change continuously with the distinguishability of the two polarised gases. In addition,
fluctuations of the work on the microscopic membrane become important, which we calculate for
Fock and thermal states of the photon gases. Our findings generalise Gibbs’ mixing to the
quantum regime and open the door for new quantum thermodynamic (thought) experiments
with quantum gases with non-orthogonal polarisations and microscopic pistons that can
distinguish orthogonal polarisations.

1. Introduction

The importance of the concept of distinguishability in classical and quantum thermodynamics is neatly
illustrated by Gibbs’ mixing thought experiment [1]. In classical physics the work that can be extracted
from mixing two gases is a discontinuous function of their similarity, determined by whether or not the
gases can be distinguished by a semi-permeable membrane. In the quantum regime, the possibility of
non-orthogonal quantum states allows one to consider gases that are neither perfectly distinguishable nor
perfectly indistinguishable but rather at best partially distinguishable [2–8]. Thus the question arises, how
does the work output from mixing quantum gases depend on their distinguishability?

This question has been investigated from an information theoretic perspective. Early studies based on
entropy arguments [2–5] showed that the work output in the thermodynamic limit of large gases should
increase continuously with the distinguishability of the two gases, quantified by the overlap in the gas
particles’ internal states. More recently [6], the Gibbs mixing of finite sized quantum gases has been shown
to lead to an extractable work, defined as the mixing ‘ergotropy’ [9], that increases smoothly with
distinguishability for homogeneous (made up of the same particles) gases, with more complex behaviour
observed for inhomogeneous gases. However, the above approaches [2–8] do not discuss how the quantum
gases and semi-permeable membranes (or alternative work extraction mechanisms) might be realised. Nor
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do they consider the time dependent dynamics of the mixing processes. Thus these information theoretic
approaches leave open how such mixing processes could physically manifest.

In this paper we investigate a more concrete quantum generalisation of the Gibbs mixing thought
experiment, that may in principle be realised with an optomechanics setup [10–15]. Specifically, we will
investigate the work that can be extracted from mixing two photon gases distinguished by their polarisation.
To study this we introduce a novel optomechanical setup that is similar to current experimentally realisable
‘membrane-in-the-middle’ setups [16–22] and the thought experiment proposed in [23], but uses a
polarisation dependent beamsplitter (PBS) instead of the usual beamsplitter (BS). The PBS membrane we
consider acts as a BS for one specific polarisation, say vertical, while as a mirror on the orthogonal
polarisation, horizontal, thus realising a quantum version of a semi-permeable membrane.

In section 2 classical Gibbs mixing is reviewed before we introduce the PBS-in-the-middle
optomechanical setup and its Hamiltonian in section 3. In section 4 we calculate the time dependent
dynamics of the state of the photon gases and the PBS membrane and associate the motion of the
membrane with a work output in section 5. We find, as expected, that the mixing work increases smoothly
with the distinguishability of the two photon gases, clearly extending the discontinuous classical case and
inline with previous results for quantum mixing [2–8]. However, with the explicit time dynamics for the
optomechanical setting, we can characterise not just the average work but also build a more complete
picture of the mixing process as discussed in section 6. For example, large fluctuations in the work output
are found that arise from quantum fluctuations as well as classical fluctuations for initial Fock and thermal
photon states. Experimental prospects of observing the Gibbs mixing work as a function of
distinguishability are discussed in section 7 before the findings are discussed in the conclusion section 8.

2. Classical Gibbs mixing

The standard classical protocol [1] for extracting work from mixing two homogeneous gases is sketched in
figure 1. Initially, there are n particles of an ideal gas of type L and n particles of an ideal gas of type R,
confined in two volumes, each of size v, separated by a pair of membranes. One of these membranes is
permeable to type L particles while impermeable to type R particles, and vice versa for the second
membrane. Both gases are in thermal equilibrium with an external heat reservoir at temperature T and each
gas exerts pressure, p, on its confining membrane, while exerting no pressure on the other membrane. By
allowing the membranes to move under the force of the gases, the two gases can isothermally expand
resulting in them mixing in the space between the membranes, see figure 1. At the end of the protocol the
two gases occupy the full volume 2v and are fully mixed. By standard thermodynamics, the work done on
the membrane as the two distinguishable gases expand from volume v to 2v is given by [1, 7]

Wdist = 2

∫ 2v

v

p dV = 2nkBT ln 2, (1)

and the energy lost by the gases is continually replenished as heat from the heat reservoir at temperature T.
Crucially, this protocol is only possible if two suitable semi-permeable membranes can be found. Clearly, if
the gases are in fact indistinguishable then no such membranes are available and thus no work can be
drawn from mixing of two indistinguishable gases, Windist = 0.

It has been argued by some [3, 6] that the discontinuous jump in the extractable work from Windist to
Wdist is at odds with the fact that the similarity of any two gases can be varied smoothly5. However, arguably
[24–26] this tension is not especially mysterious because, while one can consider gases with varying degrees
of similarity (e.g. in terms of composition or mass), it ultimately only matters whether or not two gases can
be operationally distinguished. It is important to emphasise here that the classical Gibbs mixing thought
experiment applies to the mixing of homogeneous gases, i.e. gases consisting of only particles of the same
type. Inhomogeneous, i.e. gases consisting of different types of gas particles to start with, can be partially
distinguishable. With the restriction to homogeneous gases, Gibbs’ thought experiment highlights that
fundamentally any two classical particles can either be distinguished or not, and any difficulty doing so is an
epistemic limitation due to lack of knowledge and ability to identify suitable membranes on the part of the
experimentalist.

5 The statement that the similarity of two gases can be varied smoothly is best understood from the operational perspective of a chemist
in the lab with a collection of gas specimens. The chemist can measure the properties of the gases (e.g. mass, condensation temperature,
solubility etc.) to obtain quantitative measures of the difference between the gases. Considering the fundamental elementary composi-
tion of the gases one might question the degree to which such difference measures ultimately vary smoothly. However, the point remains
that while one can consider gases with varying degree of similarity, the work that can be extracted is discontinuous, depending only on
whether the gases are identical or different.
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Figure 1. Gibbs mixing. (a) Two homogeneous gases, a ‘red’ gas and a ‘yellow’ gas, are initially confined to two halves of a box of
volume 2v. To draw work from the mixing of the two gases, a pair of semi-permeable membranes is inserted, with red (yellow)
gas particles passing through the red (yellow) membrane while being confined by the yellow (red) membrane. (b) The
membranes are held in place with two springs, allowing them to move. Since each membrane confines one gas, which exerts a
pressure on it, the membranes will slide and the gases compress the springs, performing work. The expansion of each of the two
ideal gases from v to 2v, while in thermal contact with a heat bath at temperature T, thus mixes the gases and produces work
while drawing heat from the bath.

However, for quantum systems this does not hold true. In the quantum setting two homogeneous gases
could be distinguished not by their isotope or molecular composition but rather by their internal state. For
example, a gas could consist of hydrogen atoms in their ground state or of hydrogen atoms in the first
excited state. But it is also possible for each hydrogen atom to be in a superposition of its ground state and
excited state, and the distinguishability of such a superposition state with respect to the ground state can
vary smoothly. In contrast to the classical case, one can thus consider two homogeneous gases, gas R
consisting of hydrogen atoms in the ground state and gas L consisting of hydrogen atoms in an energetic
superposition state, that are neither perfectly distinguishable nor perfectly indistinguishable. The quantum
regime thus offers the ability to smoothly vary the distinguishability of two homogeneous gases and explore
its impact on the thermodynamics of mixing.

3. The optomechanical setup

Here we introduce a physical setting that enables the study of quantum Gibbs mixing, that is the Gibbs
mixing of homogeneous quantum gases that are partially distinguishable in virtue of occupying
non-orthogonal internal quantum states [2–8]. In general, it is hard to conceive of realistic semi-permeable
membranes that can differentiate between different internal states of an atom or molecule, such as the
ground and excited state of a hydrogen atom. However, for photon gases of different polarisations [7], a
polarisation dependent beamsplitter satisfies all requirements. The PBS membrane we consider acts as a
mirror for horizontally polarised (H) photons, while acting as standard BS for vertically polarised (V)
photons [27]. Thus similarly to a classical semi-permeable membrane the PBS is permeable to one gas (V)
and impermeable to the other (H). However, unlike a classical semi-permeable membrane, a PBS acts
coherently on the V gas, generating superpositions of the left and right V modes, thus generalising the
semi-permeable membrane to the quantum realm.

One could conceive of generalising the classical Gibbs mixing protocol, sketched in figure 1, by simply
replacing the classical gases with photon gases and the semi-permeable membranes with a PBS; however, in
that case the pistons are implicitly macroscopic and therefore the work output would remain entirely
classical. Instead, we will here model the PBS membrane as a microscopic system such that the pistons, as
well as the gases, are quantum mechanical. We further simplify the setting and consider a single piston
membrane, as shown in figure 2, rather than the pair considered in the original classical protocol. This
reduces the number of light modes and mechanical modes required, making both the calculations more
tractable and the experimental setting more feasible. However, the core physics of the thought experiment
remains unchanged.

Specifically, we consider an optomechanical generalisation of the Gibbs mixing thought experiment in
which, as sketched in figure 2, a PBS attached to a microscopic cantilever has been placed in the centre of an
optical cavity. Gas L (initially on the left of the cavity) consists of vertically polarised photons, each in state
|V〉, and gas R (initially on the right) consists of photons each polarised in a superposition state

|θ〉 = cos(θ)|V〉+ sin(θ)|H〉, (2)

This allows us to explore the transition from perfectly indistinguishable to perfectly distinguishable gases by
varying θ from 0 to π/2.

Hamiltonian. The Hamiltonian describing the ‘PBS-in-the-middle’ optomechanical setup,

H = H0 + HPBS + Hint, (3)

3
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Figure 2. Optomechanical setup. A microscopically thin PBS membrane is inserted into a cavity and allowed to oscillate. The
displacement of the membrane from the mid-point of the cavity to the left is denoted by XM and the creation operator for this
mechanical mode is M†. The transmission rate between the vertically polarised photon modes on the left-hand side of the
membrane, L†

V, and vertically polarised modes on the right, R†
V , is determined by the constant λ. The force exerted per

horizontally (vertically) polarised photon on the membrane is given by gH (gV). As the membrane reflects all horizontally
polarised photons the force exerted on the membrane by horizontally polarised photons is greater than that of the vertically
polarised photons, that is gH > gV.

is comprised of the non-interacting Hamiltonians of the photons and membrane, H0, the PBS interaction
between the photons in the left and right halves of the cavity, HPBS, and the optomechanical interaction
between the photons and the membrane, Hint [17, 23]. The Hamiltonian H0 for the independent optical
and mechanical modes can be written explicitly as

H0 = �ω
(

R†
HRH + L†

HLH

)
+ �ω

(
R†

VRV + L†
VLV

)
+ �ωMM†M. (4)

Here ωM is the mechanical frequency of the membrane, ω is the light frequency in both halves of the cavity,
M† is the creation operator for the phonon membrane mode and L†

H (R†
H) and L†

V (R†
V) are the creation

operators for horizontally and vertically polarised photons respectively in the left (right) cavity [28], for
which the standard commutation relations hold, i.e. [Lj, L†

k] = δi,j, [Rj, L†
k] = 0 etc. for j, k = V, H.

While a standard BS, as considered in the standard ‘membrane-in-the-middle’ setting [16, 23], transmits
and reflects photons of any polarisation, the PBS considered here always reflects horizontally polarised
photons. Therefore the coupling between the modes in the left and right halves of the cavity is of the form

HPBS =
�λ

2

(
R†

VLV + L†
VRV

)
, (5)

i.e. a vertically polarised photon on the left is annihilated (LV) while a vertically polarised photon is created
coherently on the right (R†

V), and vice versa, but there is no such coupling between the left and right modes
for horizontally polarised photons6. The coefficient λ determines the reflection rV and transmission tV

coefficients of the vertically polarised photons at time t, with the evolution of the photonic modes induced
by HPBS alone (in the Heisenberg picture) given by

⎛
⎜⎜⎝

LV(t)
RV(t)
LH(t)
RH(t)

⎞
⎟⎟⎠ = UPBS

⎛
⎜⎜⎝

LV(0)
RV(0)
LH(0)
RH(0)

⎞
⎟⎟⎠ with UPBS =

⎛
⎜⎜⎝

rV −itV 0 0
−itV rV 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (6)

where rV(t) = cos
(
λ
2 t
)

and tV(t) = sin
(
λ
2 t
)

[27]. The horizontally polarised photons in the left and right
halves of the cavity are confined to their respective halves and thus are uncoupled such that transmission
coefficient for horizontally polarised photons vanishes, tH = 0, and the photons are always reflected, rH = 1.
The key quantum effect is that a single photon initially in a superposition state |θ〉 will in time interact with
both the BS and mirror components of the PBS.

When photons collide with the membrane they will exchange momentum and exert a pressure
(radiation pressure) on the surface of the membrane [29] that depends on whether a photon is reflected or

6 Note, if the membrane were perfectly (rather than partially) transmissive then the V modes would occupy the whole cavity and the left
and right V modes of the cavity would not be well defined. Consequently, it would not be possible to define the initial unmixed state of
the photon gases.
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transmitted. The total force exerted by photons on the membrane,

F(gH, gV) = �gHΔNH + �gVΔNV, (7)

is the sum of the products of the forces exerted per photon, �gH (�gV) for a horizontally (vertically)
polarised photon, and the difference between the numbers of photons in the left and right halves of the
cavity, ΔNH := L†

HLH − R†
HRH (and ΔNV := L†

VLV − R†
VRV) for horizontally (and vertically) polarised

photons. In general gV and gH are independent variables; however, since all horizontal photons are reflected
but vertical photons are partially reflected and partially transmitted, the force exerted by horizontal photons
on the membrane should be greater than that of vertical photons which implies that gH is larger than gV.
This radiation pressure gives rise to an optomechanical interaction energy of the form

Hint(gH, gV) = −F(gH, gV)XM, (8)

where XM = xzpf (M + M†) is the displacement of the membrane from the centre of the cavity. The prefactor
xzpf is the mechanical oscillator’s zero point uncertainty xzpf =

√
�/2mωM with m the mass of the

membrane.

Initial state. While in the classical setting the number of particles in each gas is constant and the gases are in
thermal contact with a heat bath such that their temperature is also fixed, here the photon gases do not
thermalise through mutual interactions with a heat bath and the gases cannot have both a fixed temperature
and photon number. However, the cases of fixed temperature and fixed photon number can be studied
separately. For the initial state of our photon gases we first consider a Fock state configuration which has
precisely n photons per cavity (but no notion of temperature) and thus the initial state of the photons can
be written as |ψn

F〉 := |ψn
L(0)〉 ⊗ |ψn

R(θ)〉 with

|ψn
C(θ)〉 ∝

(
cos(θ)C†

V + sin(θ)C†
H

)n
|0〉 for C = R, L. (9)

Secondly, we consider a photon gas ρT := γT
L (0) ⊗ γT

R(θ) in which the photons in each cavity are initially in
a thermal state at temperature T, with

γT
C (θ) ∝

∞∑
n=0

e−n�ω/kBT |ψn
C(θ)〉〈ψn

C(θ)| for C = R, L. (10)

This configuration has a fixed temperature, but no fixed photon number per cavity. While the thermal
configuration perhaps makes better contact with the thermodynamics which is central to the original Gibbs
mixing thought experiment, the Fock state configuration is conceptually interesting in virtue of the fact that
the Fock state is a genuinely quantum mechanical state of light.

In the usual classical setting, the states of the semi-permeable membranes are not explicitly modelled.
However, presumably, the membranes are initially at equilibrium with the surrounding heat bath. On this
basis, we will similarly take the membrane to be prepared in a thermal state,

γT
M ∝ exp

(
−�ωMM†M

kBT

)
, (11)

where, in the thermal configuration, T is also the temperature of the gases so that the setup is at thermal
equilibrium.

4. The dynamics of mixing

Before describing how the initial photon gases evolve dynamically, let us briefly recap the situation. There
are three key degrees of freedom of the photonic state: the polarisation degree of freedom, the spatial degree
of freedom and photon number. The state of the photons can be written in the number basis of the four
modes,

|
n〉 = |nLH, nRH, nLV, nRV〉 ∝ (R†
H)nRH(L†

H)nLH (R†
V)nRV(L†

V)nLV |0〉 (12)

with nLH photons in the left H mode, nRH photons in the right H mode, nLV photons in the left V mode,
and nRV photons in the right V mode. The total state of the photons at any moment in time is a mixed state
of the form

ρ =
∑

n,
m

α(
n, 
m)|
n〉〈
m|. (13)

5
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The coefficients α(
n, 
m) are at first determined by the initial conditions (as detailed in the previous section)
but then will evolve in time. In general, the dynamics of the photons will be rather complex with coherence
generated with respect to the spatial degree of freedom.

An intuitive picture of the dynamics of the photons and membrane can be built without explicit
calculation of the dynamics. As ρn

F = |ψn
F〉〈ψn

F | and ρT evolve under the total Hamiltonian (12), horizontally
polarised photons are confined to the right half of the cavity while vertically polarised photons are free to
oscillate between the two halves, leading to a partial mixing of the gases. When the two gases are perfectly
distinguishable, i.e. θ = π/2, the horizontally polarised photons, which are confined solely in the right half
of the cavity, generate a net leftwards force on the PBS membrane and this displaces the membrane from
the centre to the left. In contrast, when the two gases are indistinguishable, i.e. θ = 0, both gases are
vertically polarised and, as on average there will be equal numbers of photons in both halves of the cavity,
there will be no net force on the membrane. For indistinguishable gases we thus expect the membrane to
remain on average in the centre of the cavity. For partially distinguishable gases, i.e. 0 < θ < π/2, the force
exerted by the gases on the membrane, and therefore the membrane’s displacement, is expected to
continuously increase with increasing θ.

In analogy to the classical mixing scenario, the displacement of the membrane can be associated with a
work output, which is expected to increase with the distinguishability of the two gases. In contrast to the
classical case discussed in section 2, where the thermal bath replenishes the energy lost by the photon gases
to the membrane such that the work done on the piston ultimately stems from the heat bath, here the
system is closed and therefore the work done on the piston membrane stems solely from the effective energy
of the photon gases.

To quantitatively study the dynamics of the light field and mechanical degree of freedom it is helpful to
work in the Heisenberg picture since this makes it possible to obtain general results for the evolution of the
relevant observables, that is the membrane’s displacement and energy, for a general initial state of the
photon gases and membrane. To maintain an analogy with classical Gibbs mixing, where the number of gas
molecules is fixed and the motion of the pistons are assumed to be frictionless, we here consider an
idealised cavity and membrane which experience no dissipative effects. This assumption is relaxed in
section 7 where more realistic experimental implementations are discussed.

The membrane evolves as a quantum harmonic oscillator driven by the radiation pressure from the
photons in the cavity. Working in the Heisenberg picture, the equation of motion of the membrane reads

d2XM

dt2
+ ω2

MXM =
F(gH, gV, t)

m
, (14)

where the time dependence of the total force exerted by the photons on the membrane, equation (7), is
explicitly included. Since the PBS membrane acts as a mirror for horizontally polarised photons, the
number of horizontally polarised photons in the right (and hence left) cavity is conserved for evolutions
under the total Hamiltonian, and therefore

ΔNH(t) = ΔNH(0). (15)

However, the vertically polarised photons are free to oscillate between the two halves of the cavity with their
number difference ΔNV coupled to the position of the membrane via

d2ΔNV

dt2
= −λ2ΔNV − 2gVλXM(L†

VRV + LVR†
V). (16)

Note, that the total Hamiltonian commutes with L†
VLV + R†

VRV and L†
HLH + R†

HRH and therefore the total
number of horizontally and vertically polarised photons is conserved.

The dynamics of the photons and membrane are thus determined by the coupled differential equations
for the light and mechanical modes, equations (14) and (16). While solving these exactly is prohibitively
difficult, a perturbative solution that describes the dynamics of the expectation of selected observables can
be constructed. Given that the force exerted by a single photon on the massive membrane is weak7, the
single photon coupling strengths, gHxzpf and gVxzpf , are expected to be small compared to the PBS coupling
strength, λ. We thus choose to solve the dynamics perturbatively in gH and gV.

As the force exerted on the membrane is already linear in gH and gV, equation (7), studying the
dynamics of the membrane to 1st order in gH and gV amounts to disregarding the back-action that the
motion of the membrane has on the dynamics of the photons and evaluating the dynamics of the photons

7 Note, we are implicitly still considering what is usually called the strong coupling regime here in that we have assumed that the cavity
damping rate κ is sufficiently small that we can disregard it and therefore gHxzpf > κ and gVxzpf > κ.
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to 0th order in gH and gV. It follows from equation (16) that, in the absence of back-action, the vertically
polarised photons oscillate at a rate λ between the two halves of the cavity according to

ΔNV(t) = ΔNV(0) cos(λt) +ΔKV(0) sin(λt), (17)

where
ΔKV := i(R†

VLV − RVL†
V). (18)

The membrane dynamics (14) is thus driven by the sum of an oscillatory force, originating from the
oscillatory motion of the vertical photons between the left and right halves of the cavity, and a constant
force, originating from the initial imbalance ΔNH(0) �= 0 of the horizontal photons. The solution to the
equation of motion of the membrane,

XM(t) =
�gH

mω2
M

ΔNH(0) + Xosc
M (t), (19)

is composed of a displacement proportional to the difference in number of horizontal polarised photons in
the left and right halves of the cavity and an oscillatory term, Xosc

M (t). This oscillatory term is of the form

Xosc
M (t) = vV(t)

�gV

mω2
M

ΔKV(0) +
v̇V(t)

λ

�gV

mω2
M

ΔNV(0)

+ cos(ωMt)

(
XM(0) − �gH

mω2
M

ΔNH(0)

)
+ sin(ωMt)

PM(0)

mωM

(20)

where PM(0) is the membrane’s momentum operator in Heisenberg picture at time t = 0 and

vV(t) =
ω2

M

ω2
M−λ2

(
sin(λt) − λ

ωM
sin(ωMt)

)
is an oscillatory function quantifying beating between the driving

frequency, λ, and the membrane’s natural frequency, ωM. Having found the membrane’s dynamics (19)
with oscillatory term (20), we are now ready to quantify the thermodynamics of mixing within the present
optomechanical setting.

5. Work output from the Gibbs mixing of photons

To compare the work done by the mixing of the photon gases to that in Gibbs’ classical thought experiment,
one needs to introduce a measure of work done on the membrane. The question of how to define work and
heat in the quantum regime, where energetic coherences can be present, has been discussed extensively
elsewhere [30–35]. Here we sidestep these fundamental difficulties, and identify a natural candidate for the
work output in the present optomechanical setting by drawing an analogy with classical Gibbs mixing.

In the classical Gibbs mixing protocol described in figure 1, one could imagine the work done by the
expanding gases is stored by the pair of springs that are compressed during the mixing process. By analogy,
one might consider the work done on the PBS membrane to be the potential energy associated with its
displacement resulting from the mixing of the photon gases, WM(t) ∝ 〈XM(t)〉2. However, in contrast to the
classical protocol where the final displacement of the membrane is constant and well defined, in the
optomechanical setting the membrane oscillates about its new displaced origin in time and there is some
spread to its wave function. In order to have a well defined work output, we therefore take the work done
from mixing as given by the potential energy associated with the oscillator’s time averaged displaced origin.
That is

Wmix
M :=

1

2
mω2

M〈X̄M〉2, (21)

where

〈X̄M〉 := Tr

[
1

τ

∫ τ

0
dt XM(t)ρ

]
, (22)

is the displacement of the membrane averaged over both an oscillation cycle of time τ and the initial
quantum state of the two photon gases and the membrane, i.e. either ρ = ρn

F ⊗ γT
M for Fock state photons

or ρ = ρT ⊗ γT
M for thermal state photons, see (10) and (11).

The work that can be extracted from the mixing of partially distinguishable photon gases can now be
calculated from the expression for the dynamics of the membrane in the Heisenberg picture, equation (19).
Since the oscillatory component to the membrane’s motion Xosc

M (t) vanishes when averaged over a complete
oscillation cycle, the time averaged displacement of the membrane,

〈X̄M〉 = �gH

mω2
M

〈ΔNH(0)〉, (23)

7
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Figure 3. Time averaged displacement of PBS membrane. Plot of 〈X̄M〉 [directly related to the work output via (25)] normalised
by the mean number of photons 〈N〉 per gas as a function of the distinguishability θ of the photon gases. (a) Photons are initially
in a Fock state ρn

F with n = 1 photons per cavity (light blue squares) and n = 100 photons per cavity (dark blue circles), while the
membrane starts in a thermal state at temperature T = ωM/kB for both cases. (b) Photons and membrane are both initially in a
thermal state ρT at temperature T = �ω/kB = 10�ωM/kB (pink diamonds) and T = 100�ω/kB = 1000�ωM/kB (red triangles).
For all four cases (light blue squares, dark blue circles, red triangles, pink diamonds) the displacement per photon is the same
function over the distinguishability parameter θ. The shaded region shows the normalised standard deviation of the

displacement,

√
〈X̄2

M〉−〈X̄M〉2

〈N〉 , showing decreasing membrane displacement uncertainty per photon for higher number Fock states
and higher temperature thermal states, as expected. In both plots the following parameters were chosen to illustrate the thought
experiment: λ/ωM = 2, gH/gV = 6, ωM/gVxzpf = 10 and ω/ωM = 10. All distances are given in units of �gH

mω2
M

.

is directly proportional to the difference 〈ΔNH(0)〉 in the initial number of horizontally polarised photons
in the two gases. For the initial photon gas states ρn

F or ρT, both gases have the same total number of
photons 〈N〉 = 〈C†

H(0)CH(0) + C†
V(0)CV(0)〉 per gas C = L, R. I.e. 〈N〉 = n per gas for the Fock states (9)

and 〈N〉 = 1/(e�ω/kBT − 1) per gas for thermal states (10). However, the number of horizontally polarised
photons in the right gas is 〈N〉 sin2 θ while on the left it is zero. Hence, the time averaged displacement of
the membrane is

〈X̄M〉 =
�gH〈N〉
ω2

Mm
sin2(θ). (24)

It thus follows that the potential energy associated with the average displacement of the membrane due to
mixing of the two photon gases is

Wmix
M =

�
2g2

H〈N〉2

2ω2
Mm

sin4(θ). (25)

This is the mixing work associated with the mixing of two homogeneous quantum gases in the
‘PBS-in-the-middle’ setting. The expression implies that the work output vanishes for perfectly
indistinguishable gases and is maximised for perfectly distinguishable gases, in agreement with the classical
case, as one would expect. However, crucially, in contrast to classical Gibbs mixing and inline with prior
analyses, e.g. in terms of the mixing entropy by Luboshitz and Podgoretskii [3] and the ergotropy by
Allahverdyan and Nieuwenhuizen [6, 9], the work Wmix

M ∝ 〈X̄M〉2 now smoothly increases between these two
extremes. See figure 3 for a plot of 〈X̄M〉 and its standard deviation for the Fock and thermal photon gas
states.

The mixing work is highly general in the sense that it holds not only for the initial Fock and thermal
photon gas states, but also for any initial photon gas states that have the same number distribution while the
left gas is V-polarised and the right gas is θ-polarised. As such, the work output is independent of the purity
of the number distribution of the two quantum gases. That is, any coherence in the number basis has no
effect on the work output.

One could also consider mixing inhomogeneous gases, which in the optomechanical setting considered
here, would correspond to mixing one gas initially in the state ρR(θ) = cos2(θ)|V 〉〈V|+ sin2(θ)|H〉〈H| and
the other initially in the state ρL(0) = |V 〉〈V|. Since equation (25), is independent of coherence with respect
to the polarisation degree of freedom, it also gives the work that can be extracted from mixing two such
gases. However, as we remarked in section 2, mixing inhomogeneous gases would deviate from the spirit of
Gibbs’ original thought-experiment concerning the mixing of homogeneous gases. Conceptually, the mixing
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of partially distinguishable inhomogeneous classical gases is fundamentally different from the mixing of
partially distinguishable quantum gases in virtue of the fundamental distinction between classical mixtures
and quantum superpositions. Crucially, restricting one’s attention to homogeneous gases, only quantum
gases can be partially distinguishable. Our proposed implementation of quantum Gibbs mixing highlights
this simple but key difference in the nature of distinguishability in quantum and classical physics.

6. Optomechanical Gibbs mixing analysis

Before proceeding to discuss how one might observe the continuous work output with distinguishability
experimentally in section 7, here we provide a more detailed account of the thermodynamic properties of
Gibbs mixing in this optomechanical setting.

Fluctuations in the work output. A key distinction between Gibbs mixing in the optomechanical setting
compared to prior studies concerns the fluctuations in the work output. When the pistons are assumed to
be macroscopic classical systems, as in Gibbs’ classical analysis [1] and in prior quantum analyses based on
entropic arguments [2–5], the fluctuations in the work output from mixing are negligible. Here, however,
as shown in figure 3, the standard deviation of the displacement of the membrane is large as compared to
the membrane’s average displacement which implies that there are large fluctuations in Wmix

M .
These substantial fluctuations in the work output are a feature arising from using a microscopic

quantum piston membrane that is sensitive to the microscopic dynamics of the photon gases. The
fluctuations capture both the motion of the mechanical degree of freedom due to the oscillatory force
exerted by the photons as well as its quantum uncertainty. This quantum component to the uncertainty
stems from the initial vacuum fluctuations of the photonic and membrane modes and the coherent nature
of the dynamics. In particular, the PBS interaction gives the photons access to coherent superpositions
between the two halves of the cavity and the optomechanical interaction entangles the photonic modes and
the microscopic piston generating quantum fluctuations in the membrane’s position. As shown in light blue
and pink in figure 3, the fluctuations per photon are largest for low photon numbers and low temperatures.
This can be attributed to the increased relative significance of vacuum fluctuations when the number of
photons in the cavity is small.

Temperature dependence. We have until this point focused on the distinguishability dependence of the
dynamics; however, classically the temperature dependence of the work output is pertinent and therefore it
is natural to also discuss this dependence here. In the current setting, any temperature dependence of the
work output Wmix

M enters through the initial state of the photons. Therefore the work output does not
depend on temperature if the number of photons in each gas is temperature independent, such as in the
Fock state. However, in the thermal state the average number of photons is 〈N〉 = 1/(e�ω/kBT − 1) and its
variance is 〈(N − 〈N〉)2〉 = e�ω/kBT/(e�ω/kBT − 1)2. The resulting temperature dependence of the work
output is shown in figure 4. To aid comparison with classical Gibbs mixing work for two distinguishable
gases, Wdist = 2n kBT ln 2 in equation (1), we plot the work done on the membrane per photon, Wmix

M /〈N〉,
to compensate for the fact that classically the number of particles in the gas is an arbitrary constant n,
whereas for thermal photon gases the particle number 〈N〉 is temperature dependent. The log–log plot of
work over temperature in figure 4 shows that the work output for both distinguishable and
indistinguishable gases has the same slope as the classical work in the high temperature limit. Hence, since
the classical mixing work is linear in T, the quantum mixing work is also linear in T at high temperatures,
in agreement with prior results [3, 6]. For low temperatures, the work per photon Wmix

M /〈N〉 tends to zero
at a super-linear rate, see figure 4. These low temperature deviations from the linear scaling are
unsurprising given that the classical and entropic analyses are formulated for the asymptotic limit of large
numbers of particles [2–5], whereas in the low temperature limit here, the gases consist of only a handful of
photons. Moreover, whereas prior analyses [2–5] quantify the maximal work that can be extracted from
mixing, we have presented a protocol which we have no reason to expect to be optimal. Indeed the gases,
only partially, rather than fully mix within our setting. This could also account for the diverging
predictions.

Total energy transfer. In addition to the work output, another natural thermodynamic quantity to consider
is the total energy transfer from the two photon gases to the membrane. In contrast to the work output,
equation (21), which does not account for the energy associated with the motion of the membrane, the
total energy of the membrane is composed of a kinetic as well as a potential energy component. Thus, while
the work output derives entirely from the constant force exerted by the horizontally polarised photons, the
driving force provided by the oscillatory motion of the photons also contributes to the membrane’s energy.
Since the dynamics generates oscillatory behaviour and entangles the mechanical and optical degrees of
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Figure 4. Mixing work per particle done on the PBS membrane as a function of photon gas temperature. For perfectly
distinguishable gases (θ = π/2, solid red) the mixing work Wmix

M /〈N〉 [equation (25), to first order in gV and gH, normalised by
the average photon gas number 〈N〉], grows as a function of the photon state temperature T, equation (10), and is zero for
indistinguishable gases (θ = 0, not shown). For higher temperatures the slope becomes the same as that of the classical Gibbs
mixing work per particle Wdist/n (solid black) for distinguishable gases, see equation (1). Also shown is the full energy transfer to
the membrane given by ΔH̄M in equation (27) for perfectly distinguishable gases (dark blue dashed) and for perfectly
indistinguishable gases (light blue dotted). Again in the high temperature regime, both slopes become the same as the classical
mixing work (solid black) and hence the energy transfers to the membrane grows linearly with the photon gas thermal state
temperature. The classical work is given in units of kBT, and the quantum work WM and energy transfer ΔH̄M are given in units

of
�

2g2
H

mω2
M

. In this plot λ/ωM = 2, gH/gV = 6, ω = 10ωM.

freedom, it is most insightful to consider the time-average of the quantum mechanical expectation value of
change in the energy of the membrane,

ΔH̄M :=
1

τ

∫ τ

0
Tr[(HM(t) − HM(0))ρ]dt, (26)

where HM = �ωMM†M is the Hamiltonian of the membrane and the time average is taken over a complete
oscillation cycle, as in equation (22). Using the expression for the evolution of the membrane position
operator, equation (19), and its derivative, the energy transfer to the membrane is found to be of the form

ΔH̄M = α〈ΔN2
H(0)〉+ β〈ΔNH(0)ΔNV(0)〉+ η〈ΔN2

V(0)〉+ μ〈ΔK2
V(0)〉, (27)

where the prefactors α =
�

2g2
H

mω2
M

, β = �
2gHgV

m(ω2
M−λ2)

, μ =
�

2g2
V(3λ2+ω2

M)

4m(λ2−ω2
M)2

and η =
�

2g2
V(λ2+3ω2

M)

4m(λ2−ω2
M)2

depend only on

system parameters but not on the initial state of the gases or membrane.
Since the radiation pressure exerted by the horizontally polarised photons is greater than that exerted by

the vertically polarised photons, gH > gV, the first term of equation (27) dominates the expression and the
time averaged change in energy of the membrane can be approximated as

ΔH̄M ≈ �
2g2

H

mω2
M

〈ΔN2
H(0)〉, (28)

where

〈ΔN2
H(0)〉 = 〈N2〉sin4(θ) + 〈N〉 sin(2θ)

4
. (29)

For both thermal and Fock state photon gases, the value of 〈N2〉 is always greater than 〈N〉 and therefore the
above expression increases monotonically with θ. Thus, as shown in figure 5(a), the energy transfer to the
membrane, similarly to the work output, increases continuously with the distinguishability θ of the photon
gases. Similarly, as shown in figure 4, and inline with the work output, the energy transfer increases linearly
with temperature in the high temperature limit.

The above approximation is valid for large enough θ, but when θ → 0 then 〈ΔN2
H(0)〉 and

〈ΔNV(0)ΔNH(0)〉 vanish and the 〈ΔN2
V(0)〉 and 〈ΔK2

V(0)〉 terms in (27) become important. These are
non-zero implying that the energy transfer to the membrane is strictly non-zero even for the ‘mixing’ of
indistinguishable gases. This phenomenon, arises from the fact that the PBS membrane is a microscopic
quantum system and thus experiences heating from the radiation pressure exerted by the photons in the
cavity irrespective of their polarisation. While, as indicated in figures 4 and 5, the contribution of these
terms are small compared to the energy transfer for distinguishable gases, such small energy changes may be
detected with state-of-the-art experimental techniques [36].
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Figure 5. Energy transfer ΔH̄M to PBS membrane. Time averaged energy transfer to the membrane normalised by the expected
number of photons per gas squared, ΔH̄M/〈N2〉, to first order in gH and gV, as a function of the distinguishability θ of the
photon gases. (a) ΔH̄M/〈N2〉 for a PBS membrane is plotted for photon gases initially in a Fock state with n = 1 photons per
cavity (light blue squares) and n = 100 photons per cavity (dark blue circles), and for photon gases initially in a thermal state at
temperature kBT = �ω (pink diamonds) and kBT = 100�ω (red triangles). The inset magnifies the data for θ � π/8 to highlight
that the energy transfer does not vanish as θ → 0. The high number Fock state (dark blue circles) and high temperature thermal
state (red triangles) energy transfers to the membrane converge to the same curve. In this plot λ/ωM = 2, gH/gV = 6, ω = 10ωM

and the energy is given in units of
�

2 g2
H

mω2
M

. (b) The transition between perfect PBS and BS membranes is indicated by varying

rλ = λH
λV

and rg =
gH
gV

. For rg = 1 and rλ = 1 (red squares) the membrane is a perfect BS, whereas for rλ = 0 and rg = 10 (dark
blue diamonds) the membrane is a strongly PBS. Here λV = 4ωM and gV = 0.1ωM, the photon gases are initially in a single

photon Fock state and the energy is given in units of
�

2g2
V

mω2
M

.

The energy transfer to a standard BS membrane, as opposed to the polarising BS membrane considered
here, was studied in [23]. There the energy transfer was found to increase with the indistinguishability of the
photon gases [23] due to photonic bunching. Since the PBS considered here also acts as a BS for
V-polarised photons, photonic bunching between the V and θ-polarised photon gases also occurs and
contributes to the energy transfer to the membrane for any θ �= π/2.

The transition between these two regimes can be probed by replacing HPBS with a generalised PBS
interaction Hamiltonian

HgPBS =
�λH

2

(
R†

HLH + L†
HRH

)
+

�λV

2

(
R†

VLV + L†
VRV

)
. (30)

A perfect BS is modelled by setting λH = λV in equation (30), as well as gH = gV in Hint, equation (8), such
that the membrane does not differentiate between H and V photons. Conversely for a strongly polarisation
dependent beamsplitter λH = 0 and gH > gV. As shown in red in figure 5(b), for a perfect BS the energy
transfer to the membrane increases with indistinguishability. However, when the ratios of λV/λH and gH/gV

are increased the membrane increasingly acts as a PBS membrane. Then the effect of Gibbs mixing becomes
significant, and the magnitude of the energy transfer to the membrane for distinguishable photons increases
substantially. Consequently, as shown in dark blue, the effect of bunching is drowned out and the energy
transfer to a PBS membrane increases with distinguishability.

A deeper understanding of the nature of the energy transfer can be built by splitting it into its
contributions from the work output and from fluctuations. Namely, since the time averaged momentum of
the membrane vanishes, 〈PM〉 = 0, the time averaged energy of the membrane can be written as

〈HM〉 = WM +
mω2 δXM

2
+

δPM

2m
. (31)

Here mω2δXM
2 , where δXM is the time averaged fluctuations in the displacement membrane, captures the

fluctuations in the work output and δPM
2m captures the heat-like energy associated with the time averaged

fluctuations in the momentum of the membrane δPM. For the case of the BS membrane or
indistinguishable H photon gases with a PBS membrane, WM vanishes and the energy transfer to the
membrane is purely fluctuating in origin. However, for distinguishable photons with a PBS membrane, WM

is large and therefore dominates the energy transfer to the membrane.
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7. Experimental prospects

The Fock and thermal configurations were chosen to maintain a close resemblance with the classical Gibbs
mixing setting; however, both configurations have experimental limitations. Previous
‘membrane-in-the-middle’ experiments operate at cryogenic conditions [16] which sets the membrane
temperature to a few K. Having a thermal photon state at the same temperature, for a typical cavity
frequency ω of the order of THz, implies low photon numbers, 〈N〉 � 1, resulting in an un-measurably
small mixing work. This could be mitigated by increasing the temperature and hence 〈N〉 of the thermal
photon state; however, this will create an additional temperature gradient between the photons and the
membrane, and so care would need to be taken to ascertain whether or not the work output could be
attributed solely to mixing. For the Fock state photon gases, (9), the challenge is creating a Fock state large
enough to have a non-negligible impact on the membrane dynamics or engineering an optomechanical
coupling that is sensitive to small numbers of photons. While Fock states of high n, e.g., n ≈ 50, remain
experimentally demanding, the regime of low photon number optomechanics may be achievable in the near
future [37].

In this section we will discuss experimental strategies beyond the Fock and thermal configurations
whereby the two halves of the cavity are driven by lasers. Any experimental realisation would in practice
experience dissipation of photons from the cavity and damping of the mechanical oscillator, and these
effects are also incorporated in what follows.

Specifically, we propose simultaneously strongly driving the left cavity with V-polarised photons and
driving the right cavity with θ-polarised photons. Assuming that this driving is performed on resonance
with the cavity frequency and that the two driving processes are in phase, this can be modelled by adding
the following driving term to the Hamiltonian,

HD = �ε
(

(LV + Rθ) exp(iωt) + (L†
V + R†

θ) exp(−iωt)
)

, (32)

where Rθ = cos(θ)RV + sin(θ)RH and ε is the laser driving amplitude [38]. In a frame rotating at the
driving frequency, the equation of motion of the photonic modes take the form

dLV

dt
= −i

(
(gVXM − iκ)LV +

λ

2
RV + ε

)
(33)

dRp

dt
= −i

(
−(gpXM + iκ)Rp +

λp

2
Lp + εp

)
, (34)

for p = H, V with εV = ε cos(θ), εH = ε sin(θ), λH = 0, λV = λ and where κ is the rate of cavity dissipation
[38–40] 8. Similarly, the equation of motion of the membrane, cf. equation (14), now reads

d2XM

dt2
+ κM

dXM

dt
+ ω2

MXM =
F(gH, gV)

m
, (35)

where we account for the damping of the mechanical mode at rate κM [38–40]. Figure 6 shows the average
displacement of the membrane as a function of time, 〈XM〉, found by solving these differential equations to
first order in gH and gV and assuming that the left and right halves of the cavity are initially in the vacuum
state. The displacement of the membrane is largest for the mixing of perfectly distinguishable photon gases
(θ = π/2, red), vanishes for perfectly indistinguishable gases (θ = 0, blue), and sitting between these two
extremes is the displacement for partially distinguishable gases (e.g. θ = π/4, purple).

In the limit9 in which the cavity damping rate κ is substantially faster than the membrane damping rate
κM, the displacement of the membrane increases initially before reaching a steady oscillatory state about a
new displaced origin on the time scale 1

κ
� t � 1

κM
. This new displaced origin is found by disregarding the

effect of membrane damping altogether, and evaluating the displacement, averaged over fast oscillations, in
the limit of large t. The steady state displacement of the membrane is found to obey

lim
t� 1

κ

〈XM(t)〉 ≈ 4ε2
�gH

mκ2ω2
M

sin2(θ), (36)

8 Here the damping term is included phenomenologically and we adopt a mean-field approach for the driving term. Strictly the
equations of motion include a stochastic noise term of the form κ ain(t); however, in the limit of large photon and phonon numbers
the contribution of noise is expected to be small and so we consider the average input driving term ε = 〈κain(t)〉. This suffices to build a
coarse-grained picture of the expected work output in this driven setting.
9 This limit has been realised experimentally for standard BS membranes [18]. As PBS membranes are yet to be utilised in an
optomechanical experimental setup, their damping rates are not currently known.
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Figure 6. Displacement 〈XM〉, of PBS membrane under proposed implementation. (a) Expectation value of the displacement of
the membrane as a function of time t when the left and right cavities are driven. Polarisation angles θ = π/2, θ = π/4 and θ = 0
are shown in blue, purple and red respectively. (b) Estimate for the steady state displacement of the membrane, equation (36), as
a function of distinguishability θ. The steady state displacements in (b) for θ = 0, θ = π/4 and θ = π/2 align well with the long
time displacements in (a) as indicated by the dotted lines. Since parameters for PBS optomechanical systems are not available the
following experimental parameters from a standard BS ‘membrane-in-the-middle’ setup [18, 21] have been used: ωM = 350
kHz, ω = 20 THz, λ = 34 GHz, L = 93 mm, κ = 85 kHz, κM = 1 Hz, m = 45 ng, gVxzpf = 3.3 kHz, gHxzpf = 19.8 kHz and ε =
40 GHz.

in the limit that gH � gV. For the parameters used [18] the full numerical displacements given by (24), and
shown in figure 6(a) for θ = 0, θ = π/4 and θ = π/2, align well at long times with the predicted steady
state displacements given by (36) and shown in figure 6(b). Thus the displacement for this driven damped
implementation is directly proportional to the displacement discussed in section 5 for the un-damped and
un-driven case, equation (24), increasing continuously with the distinguishability of the photon gases. In
contrast to the demanding Fock and thermal states, this driven implementation provides a more viable
experimental scheme to observe a continuous increase in the mixing work as a function of the
distinguishability of two polarised photon gases.

While ‘membrane-in-the-middle’ experiments using BS membranes are well established [16–21],
similar setups utilising PBSs have not yet been investigated. As a result, experimental values for gH, gV, m,
ωM and κM for ultra-thin PBS membranes are not readily available and this lack of data makes it hard to
fully access the viability of our proposal. The smallest PBS membranes currently engineered are a couple of
orders of magnitude thicker than the membranes that are typically used in ‘membrane-in-the-middle’
experiments [21, 41, 42], suggesting that it might be challenging in the short term to realise quantum
regimes of the ‘PBS-in-the-middle’ setting. However, this is an unknown since it is yet to be tried.
Moreover, active progress in miniaturising PBS membranes [41, 42] will continue to increase the feasibility
of our proposal.

8. Conclusion and outlook

In this paper we have proposed an optomechanical setup with a ‘PBS-in-the-middle’ of a cavity separating
two homogeneous photon gases, one V-polarised and the other θ-polarised. By varying θ we can smoothly
vary the distinguishability of the two gases allowing us to explore not only the classical limits of two gases
that are perfectly distinguishable or perfectly indistinguishable but also consider quantum gases, that in
contrast to the classical case, are fundamentally only partially distinguishable. The setup provides a natural
physical system where the work from mixing two gases is stored: the potential energy associated with the
displacement to the microscopic membrane. Using the Hamiltonian equations of motion for this physically
motivated setup we have derived a formula for the work drawn from mixing the two gases as a function of
their polarisation-distinguishability θ, and valid for any number distribution of both photon gases.

The mixing work here varies smoothly with the polarisation distinguishability inline with previous
results [3, 6]. While there is a classical model, namely one using inhomogeneous gases composed of a
mixture of polarisation states, that is capable of producing the smooth change in the output with
distinguishability, this deviates from the spirit of the original Gibbs mixing thought experiment which
applies to the mixing of homogeneous gases. Crucially, there is no classical model involving only
homogeneous gases that can explain the smooth output with distinguishability observed in the
optomechanical setting considered here.

The optomechanical setting additionally generalises Gibbs mixing to the quantum regime in the sense
that the PBS interaction gives the photons access to coherent superpositions between the two halves of the
cavity, and the optomechanical interaction entangles the photonic modes and the microscopic piston. Since
a V photon impinging on the PBS can be transmitted while a H photon is always reflected, the coherent
action of the PBS on a photon with a θ polarisation (superposition of V and H) will be coherently
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transmitted as well as reflected by the PBS. In this manner, the PBS converts coherence in the polarisation
degree of freedom into coherence in the spatial degree of freedom. Given that the possibility of smoothly
varying the polarisation is key to be able to consider quantum Gibbs mixing, the spatial coherence goes
hand in hand with it in this optomechanical setting. Moreover, the entanglement between the photons and
the membrane is crucial to understanding the behaviour of the total energy transfer to the membrane and
the work fluctuations. Specifically, due to the back action of photon bunching on the membrane, a
fluctuating component of the energy transfer to the membrane increases with indistinguishability. Thus,
intriguingly, the effects of bunching and Gibbs mixing are antithetical. Nonetheless, since the energy
transfer to the membrane due to bunching is small in comparison to that due to quantum Gibbs mixing,
the overall energy transfer to the PBS is expected to increase as a function of distinguishability.

In a driven and dissipative cavity setting, the membrane displacement plateaus to a constant steady state
that increases smoothly with θ. While previous entropic and information-theoretic derivations of the
mixing work [1, 3, 6] have provided thermodynamic bounds on the maximal work extraction, the driven
optomechanical cavity setting discussed here could conceivably be realised experimentally in the near future
offering the chance to measure the continuous quantum mixing work for the first time, without needing to
perform an optimal protocol. Nonetheless, it would be interesting to investigate if it is possible to come up
with variations of physically realisable schemes that may extract more work from mixing the same gases.
One could, for example, consider variants of the setup utilising multiple PBS membranes to enable the two
photon gases to mix fully rather than partially as currently. Alternatively, one could consider using initial
gases that are entangled with respect to the polarisation degree of freedom, for example W or GHZ states, to
mimic the quantum enhancements found in other applications such as parameter estimation [43] and
measurement based work extraction protocols [44].

The ‘PBS-in-the-middle’ optomechanical setup also provides a framework to further study the mixing of
photon gases utilising alternative types of membranes [23]. In addition to the semi-permeable membrane
used in Gibbs mixing, many of the pioneering thought experiments in thermodynamics can be framed in
terms of gases performing work on a membrane attached to a movable piston. For example, Feynman’s
ratchet [45] (a variant of the Szilard-experiment [46]) effectively uses an uni-directionally transmissive
membrane and a Maxwell demon [47] could take the form of a fictitious semi-permeable membrane that
separates fast and slow moving particles. This suggests that ‘membrane-in-the-middle’ optomechanics has
wide ranging potential, not just as a platform to study the role of distinguishability and mixing in
thermodynamics, but also for probing the fundamental relationships between information, heat and work.

We note that in the present optomechanical setup temperature enters through the initial thermal state of
the membrane, and optionally as the temperature of initially thermal photon gases, but no continual
thermalisation with a heat bath is modelled during the mixing process. The continual thermalisation of
Gibbs’ classical gases could be studied in the current setting either through a more detailed analysis of the
dissipative coupling of the cavity modes to their surrounding thermal environment, or by using
dye-molecules to actively mediate effective interactions between photons resulting in thermalisation [48,
49]. Since the mechanical and light modes interact with different reservoirs, temperature gradients between
the gases and the piston could be introduced that we expect will lead to additional quantum
thermodynamic effects.

Note: since completing of our paper, a paper has appeared on the arXiv [50], which provides a new
information theoretic analysis of Gibbs mixing in the quantum regime that takes into account the knowledge of
an observer, while not detailing a system’s Hamiltonian or time-evolution.
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[4] Landè A 1926 New Foundations of Quantum Mechanics (Cambridge: Cambridge University Press)
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[34] Perarnau-Llobet M, Bäumer E, Hovhannisyan K V, Huber M and Acin A 2017 No-go theorem for the characterization of work

fluctuations in coherent quantum systems Phys. Rev. Lett. 118 070601
[35] Lostaglio M 2018 Quantum fluctuation theorems, contextuality, and work quasiprobabilities Phys. Rev. Lett. 120 040602
[36] Purdy T P, Peterson R W, Yu P-L and Regal C A 2012 Cavity optomechanics with Si3N4 membranes at cryogenic temperatures

New J. Phys. 14 115021
[37] Nunnenkamp A, Børkje K and Girvin S M 2011 Single-photon optomechanics Phys. Rev. Lett. 107 063602
[38] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Cavity optomechanics Rev. Mod. Phys. 86 1391–452
[39] Li Jin-Jin K D Z 2013 Generalized Optomechanics and its Applications (Quantum Optical Properties of Generalised Optomechanical

System) (Singapore: World Scientific)
[40] Chauhan A K and Biswas A 2017 Motion-induced enhancement of Rabi coupling between atomic ensembles in cavity

optomechanics Phys. Rev. A 95 023813
[41] Azzam R M A 2011 Simplified design of thin-film polarizing beam splitter using embedded symmetric trilayer stack Appl. Opt. 50

3316–20
[42] Li L and Dobrowolski J A 2000 High-performance thin-film polarizing beam splitter operating at angles greater than the critical

angle Appl. Opt. 39 2754–71
[43] Yuan H and Fung C-H F 2017 Quantum parameter estimation with general dynamics npj Quantum Inf. 3 14
[44] Ciampini M A, Mancino L, Orieux A, Vigliar C, Mataloni P, Paternostro M and Barbieri M 2017 Experimental extractable

work-based multipartite separability criteria npj Quantum Inf. 3 10
[45] Feynman R P, Leighton R B, Sands M and Hafner E M 1965 The Feynman (Lectures on Physics) vol 1 (Reading, MA:

Addison-Wesley)
[46] Szilard L 1929 Uber die Entropieverminderung in einem thermodynamischen system bei Eingriffen intelligenter Wesen Z. Phys.

53 840–56
[47] Maxwell J C 1908 Theory of Heat (London: Longmans Green)
[48] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Bose–Einstein condensation of photons in an optical microcavity Nature 468

545–8
[49] Walker B T, Flatten L C, Hesten H J, Mintert F, Hunger D, Trichet A A P, Smith J M and Nyman R A 2018 Driven-dissipative

non-equilibrium Bose–Einstein condensation of less than ten photons Nat. Phys. 14 1173–7
[50] Yadin B, Morris B and Adesso G 2020 Extracting work from mixing indistinguishable systems: a quantum Gibbs ‘paradox’

(arXiv:2006.12482)

15

https://doi.org/10.1088/0305-4470/38/32/007
https://doi.org/10.1088/0305-4470/38/32/007
https://doi.org/10.1088/0305-4470/38/32/007
https://doi.org/10.1088/0305-4470/38/32/007
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1088/1367-2630/17/5/055018
https://doi.org/10.1088/1367-2630/17/5/055018
https://doi.org/10.1103/physrevlett.121.160604
https://doi.org/10.1103/physrevlett.121.160604
https://doi.org/10.1088/0953-4075/47/13/135502
https://doi.org/10.1088/0953-4075/47/13/135502
https://doi.org/10.1038/s41534-018-0109-8
https://doi.org/10.1038/s41534-018-0109-8
https://arxiv.org/abs/1806.01034
https://doi.org/10.1088/1367-2630/abb73f
https://doi.org/10.1088/1367-2630/abb73f
https://doi.org/10.1038/nature06715
https://doi.org/10.1038/nature06715
https://doi.org/10.1088/1367-2630/10/9/095008
https://doi.org/10.1088/1367-2630/10/9/095008
https://doi.org/10.1103/physreva.88.013804
https://doi.org/10.1103/physreva.88.013804
https://doi.org/10.1038/nphys1707
https://doi.org/10.1038/nphys1707
https://doi.org/10.1038/nphys1707
https://doi.org/10.1038/nphys1707
https://doi.org/10.1038/ncomms7232
https://doi.org/10.1038/ncomms7232
https://doi.org/10.1088/2040-8978/15/2/025704
https://doi.org/10.1088/2040-8978/15/2/025704
https://doi.org/10.1103/physrevx.6.021001
https://doi.org/10.1103/physrevx.6.021001
https://doi.org/10.1103/physrevlett.124.210601
https://doi.org/10.1103/physrevlett.124.210601
https://doi.org/10.3390/e20080552
https://doi.org/10.3390/e20080552
https://doi.org/10.3390/e20060466
https://doi.org/10.3390/e20060466
https://doi.org/10.1103/physreva.94.013816
https://doi.org/10.1103/physreva.94.013816
https://doi.org/10.1103/physreve.71.066102
https://doi.org/10.1103/physreve.71.066102
https://doi.org/10.1103/physreve.75.050102
https://doi.org/10.1103/physreve.75.050102
https://doi.org/10.1103/physreve.93.022131
https://doi.org/10.1103/physreve.93.022131
https://doi.org/10.1038/srep22174
https://doi.org/10.1038/srep22174
https://doi.org/10.1103/physrevlett.118.070601
https://doi.org/10.1103/physrevlett.118.070601
https://doi.org/10.1103/physrevlett.120.040602
https://doi.org/10.1103/physrevlett.120.040602
https://doi.org/10.1088/1367-2630/14/11/115021
https://doi.org/10.1088/1367-2630/14/11/115021
https://doi.org/10.1103/physrevlett.107.099901
https://doi.org/10.1103/physrevlett.107.099901
https://doi.org/10.1103/revmodphys.86.1391
https://doi.org/10.1103/revmodphys.86.1391
https://doi.org/10.1103/revmodphys.86.1391
https://doi.org/10.1103/revmodphys.86.1391
https://doi.org/10.1103/physreva.95.023813
https://doi.org/10.1103/physreva.95.023813
https://doi.org/10.1364/ao.50.003316
https://doi.org/10.1364/ao.50.003316
https://doi.org/10.1364/ao.50.003316
https://doi.org/10.1364/ao.50.003316
https://doi.org/10.1364/ao.39.002754
https://doi.org/10.1364/ao.39.002754
https://doi.org/10.1364/ao.39.002754
https://doi.org/10.1364/ao.39.002754
https://doi.org/10.1038/s41534-017-0014-6
https://doi.org/10.1038/s41534-017-0014-6
https://doi.org/10.1038/s41534-017-0011-9
https://doi.org/10.1038/s41534-017-0011-9
https://doi.org/10.1007/bf01341281
https://doi.org/10.1007/bf01341281
https://doi.org/10.1007/bf01341281
https://doi.org/10.1007/bf01341281
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/s41567-018-0270-1
https://doi.org/10.1038/s41567-018-0270-1
https://doi.org/10.1038/s41567-018-0270-1
https://doi.org/10.1038/s41567-018-0270-1
https://arxiv.org/abs/2006.12482

	Gibbs mixing of partially distinguishable photons with a polarising beamsplitter membrane
	1.  Introduction
	2.  Classical Gibbs mixing
	3.  The optomechanical setup
	4.  The dynamics of mixing
	5.  Work output from the Gibbs mixing of photons
	6.  Optomechanical Gibbs mixing analysis
	7.  Experimental prospects
	8.  Conclusion and outlook
	Acknowledgments
	References


