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ABSTRACT 

 

Understanding the spatial and foraging ecology of marine migrants is challenging, 

due to the vast distances travelled and the numerous habitats occupied within a 

dynamic seascape. Mediterranean marine turtles migrate thousands of 

kilometers and face numerous threats, including bycatch, in their marine realm. 

To help inform targeted conservation, this complex marine ecology must be better 

understood. This thesis focuses on Mediterranean loggerhead (Caretta caretta) 

and green turtles (Chelonia mydas). By complementing stable isotope analysis 

(SIA), satellite telemetry, and environmental observations, this thesis aims to 

enhance our understanding of the complexities of marine turtle spatial and 

foraging ecology, as well as determine how future climate conditions may 

influence their habitat use. 

In Chapter 1, I introduce the importance of conserving marine migrants and 

discuss the current knowledge of marine turtle spatial and foraging ecology as 

well as threats faced, with particular emphasis on Mediterranean loggerhead and 

green turtles. By conducting an extensive review in Chapter 2, I demonstrate 

how SIA has been used to enhance our understanding of marine turtle ecology, 

as well as help inform conservation initiatives. I also highlight knowledge gaps 

(for example, bias in the species studied) and provide recommendations for future 

SIA studies (for example, following standardised protocols), and use this 

information to inform latter chapters. In Chapter 3, using SIA I highlight the 

ecological complexity of juvenile Mediterranean loggerhead turtles, 

demonstrating there are inter- and intra-population variations in ecology, and that 

region- and habitat-specific fisheries management is required. In Chapter 4, I 

identify the foraging grounds for two major Mediterranean loggerhead turtle 

populations, demonstrate foraging site fidelity over decades, show the proportion 

of females recruiting from each foraging region does not differ across the multi-

decadal study, and suggest site-specific management would be beneficial. 

Finally, in Chapter 5, I show that migratory dive behaviours of loggerhead and 

green turtles are influenced by changes in environmental conditions (e.g. wave 

height and temperature) and that the species-specific migratory corridors used 

may be due to factors such as feeding preference and physiology, rather than 

species-specific environmental tolerances, suggesting dynamic and species-



2 
 

specific conservation is required. In Chapter 6, I summarise and discuss the 

findings from this thesis within the wider context. In conclusion, this thesis 

emphasises the complexities of marine turtle spatial ecology, shows that habitat 

use will likely differ under future climate scenarios, and suggests targeted and 

dynamic conservation is required for effective long term conservation. 
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coloured by region. Ellipses = Standard ellipse area corrected for small sample 

size (SEAc) created by SIBER. Sex was unknown for East Ionian juveniles as 

they were live-caught 

Figure 4. Summary of the influence of curved carapace length (CCL) on 
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response and shaded region represents ± standard error. Edf: estimated degrees 

of freedom, F: F-statistic, p: significance. Note different x-axis for East Ionian plots 

Table S5.1. Uncertainty analysis results. % of repeats: percentage of 

repeats with the desired p-values which are shown in parenthesis. CMed: Central 
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Figure S1.1. Linear relationship between curved carapace lengths (CCL) 

notch-to-tip (N-T) and notch-to-notch (N-N) of loggerhead turtles sampled in the 
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North Levantine basin (North Cyprus). Solid line depicts linear regression and 
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(grey), and the rest of the eastern Mediterranean (blue). Oceanic movements of 

Turtle 21 (red) and Turtle 27 (black) are highlighted. (c) bivariate plot of δ13C and 

δ15N, and (d) δ13C and δ34S, respectively, of loggerhead turtles satellite tracked 

or isotopically assigned to the Adriatic region (n = 15, red squares), the Tunisian 

Plateau (n = 87, grey triangles), or the rest of the eastern Mediterranean (n = 92, 

blue circles). Unassigned individuals = open circles (n = 100). Crosses = mean 

±SD of each foraging region. Artwork inset of a foraging loggerhead turtle 

Figure 3. Foraging ground fidelity of three female loggerhead turtles 

tracked during two foraging seasons from Alagadi Beach, North Cyprus. (a) 

Foraging grounds of Turtle 1 (T_1) and Turtle 37 (T_37) located on the east coast 

of North Cyprus. Turtle 37 shuttled repeatability between the two foraging 

grounds shown throughout the seasons. (b) Foraging grounds of Turtle 3 (T_3) 

located on the east coast of Tunisia. Points = foraging ground centroids (blue = 
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first foraging season, red = second foraging season), crosses = standard 
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Table S5.5. Uncertainty analysis results. % of repeats: percentage of 

repeats with the desired p-values which are shown in parenthesis 

Figure S2.1. (a), (c), and (e) show temporal consistency in δ13C (n = 30), 

δ15N (n = 30), and δ34S values (n = 16) of samples collected from loggerhead 
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turtles during successive clutches. (b), (d), and (f) show differences in isotope 

ratios between samples using the first clutch as a reference 

Figure S2.2. (a), (c), and (e) show linear relationships between flipper and 

shoulder epidermis samples for δ13C (n = 51), δ15N (n = 51), and δ34S values (n 

= 16) of loggerhead turtles nesting at Alagadi Beach, North Cyprus. Dotted lines 

depict 95% confidence intervals. Conversion equations and regression statistics 

are shown.  (b), (d), and (f) show differences in isotope ratios between samples 

using the flipper sample as a reference 

Figure S3.3. Principal Component Analysis results separating loggerhead 

turtles in to three distinct foraging regions based on δ13C, δ15N, and δ34S values: 

the Adriatic region (red), the Tunisian Plateau (grey), and the rest of the eastern 

Mediterranean (blue) 

Figure S3.4. (a) δ13C, (b) δ15N, and (c) δ34S values of satellite tracked and 

isotopically assigned loggerhead turtles according to the three foraging regions: 

the Adriatic region (red), the Tunisian Plateau (grey), and the rest of the eastern 

Mediterranean (blue) 

Figure S3.5. Body size of females satellite tracked from Cyprus and 

Greece foraging in three foraging regions; Adriatic = Adriatic region (n = 4), and 

Other = the rest of the eastern Mediterranean (n = 77), Tunisia = Tunisian Plateau 

(n = 90). CCL = curved carapace length. Midline = median, box = interquartile 

range, whiskers = 5 and 95 percentiles, square = mean 

 

Chapter 5: Marine turtles alter their migratory behaviour in response to 

environmental conditions 

Figure 1. Migratory corridor density map of a) loggerhead (n = 33) and b) 

green turtles (n = 46) satellite tracked from Cyprus to foraging grounds. 

Hexagonal grid cells (0.25° by 0.25°) are coloured by the percentage of turtles 

using each grid cell. Leb = Lebanon, TP = Tunisian Plateau. Artwork inset of a 

foraging loggerhead and green turtle 

Figure 2. Major migratory corridors of loggerhead (red area) and green 

turtles (green area) satellite tracked from Cyprus. Environmental variables across 

the migratory corridors are shown for a) Magnetic field intensity, b) bathymetric 

depth, c) sea surface temperature, d) thermal fronts (composite of front direction 

and persistence), e) ocean surface currents (Ekman and geostrophic), and f) 
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wind. Length and direction of arrows in e) and f) represent magnitude and 

direction, respectively 

Figure 3. Example dive profiles of a female loggerhead turtle conducting 

a post-nesting migration in a) open seas (waters >200 m in depth) and b) coastal 

waters (waters <200 m in depth). Mean percentage of each dive profile 

categorised as c) open seas (blue) and coastal waters (grey), and d) day (white) 

and night (grey). Calculated from eight loggerhead turtles with dive data. Sh 

represents percentage of all dives <5 m in depth. Percentage of dives >5 m that 

were Profile A-F, or Other (O) 

Figure 4. Migratory dives of Turtle_4206 travelling from Cyprus to Tunisia 

overlaid with a) Mixed layer depth (blue line) as well as the open sea (blue area, 

>200 m in depth) and coastal water (grey area, <200 m in depth) sections of 

migration indicated, b) Sea temperature (°C), and c) Primary productivity (1x10-8 

mol m-3). White sections in b) and c) are locations or depths without sea 

temperature or primary productivity, respectively 

Table S3.1. Summary values of female loggerhead and green turtle 

migratory behaviours in open seas and coastal waters. Dive duration (DD, in 

hours), surface duration (SD, in hours), maximum dive depth (MD, in meters), 

and swim speed (SS, in km h-1), n = number of individuals compared 

Figure S1.1. Dive profiles performed by loggerhead turtles in this study. 

The figure does not represent true proportions of depths and dive durations. 

Adapted from Hochsheid (2014) 

Figure S2.2. Post-nesting migratory routes of a) thirty-five loggerhead and 

b) forty-six green turtles satellite tracked from nesting beaches in Cyprus. Black 

lines represent the migratory route and the black circles are the foraging grounds, 

some of which are numbered as used by multiple individuals. The two loggerhead 

turtles conducting oceanic foraging are highlighted in red and blue with circles 

indicating location of termination. Inserts show number of individuals satellite 

tracked from each deployment sites in Cyprus. Artwork inset of a foraging 

loggerhead and green turtle 

Figure S3.3. Migratory dive behaviours in open seas (blue) and coastal 

waters (grey) performed by female loggerhead turtles (a-d) and green turtles (e) 

tracked with SMRU SRDLs from Cyprus. a) Surface duration (n = 6), b) Dive 

duration (n = 6), c) Maximum dive depth (n = 6), d) loggerhead turtle swim speed 

(n = 22), and e) green turtle swim speed (n = 43) 
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Figure S4.4. Dive profiles of a female loggerhead turtle conducting a) 

migratory dives, b) foraging ground dives during a warmer month (October), and 

c) foraging ground dives during a colder month (February). Dive profiles of a 

female green turtle conducting d) foraging ground dives during warmer months 

(July-September) and e) foraging ground dives during a colder month (January). 

Note different x-axis. 

Figure S4.5. Temporal shift in foraging ground dive behaviours of female 

loggerhead turtles satellite tracked from Cyprus (n = eight turtles). a) dive 

duration, b) surface duration, and c) maximum depth with month. d) Influence of 

sea surface temperature on dive duration (n= eight turtles). Solid line represents 

mean dive duration response and dashed lines represents ± standard error. Edf: 

estimated degrees of freedom, F: F-statistic, p: significance 

Figure S5.6. Comparison of temperature recorded from Platform Terminal 

Transmitters (PTT) deployed on female loggerhead turtles in Cyprus and from 

remotely sensed data (OISST). SPOT Wildlife Computers (n = 8, grey), correlated 

SMRU SRDLs (n = 4, blue), and uncorrelated SMRU SRDLs (n = 2, red). Faint 

lines = linear regression of each PTT, dashed black line = overall regression for 

Wildlife Computers, solid blue line = overall regression for correlated SMRU 

SRDLs 

Figure S6.7. Migratory dives of Turtle_4206 deployed with a SMRU SRDL 

from Cyprus overlaid on chlorophyll-a concentration (in milligram m-3). White 

sections are locations or depths without sea temperature or primary productivity 

 

Chapter 6: General discussion 

 Figure 1. Dispersal of loggerhead turtle hatchlings across the 

Mediterranean modelled using particle drift analysis. Models were able to either 

advect particles offshore when the particle interacted with the coastline (first 

column) or able to strand particles on the coast (second column). Models were 

run in 2014 (first row) and 2015 (second row). Ad = Adriatic Sea, AE = Aegean 

Sea, LE = Levantine Sea.
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CHAPTER 1: GENERAL INTRODUCTION 

  

Marine migrants roam vast areas of the oceans, often occupying different 

habitats on a seasonal basis. Consequently, identifying and understanding their 

movement patterns, critical areas of habitat use, and potential risks to their 

survival can be challenging. Their reliance upon different ecosystems during 

different stages of their lives increases their vulnerability to climate change and 

direct anthropogenic pressures (Robinson et al., 2009). Therefore, to protect 

them, it is crucial to understand their spatial and temporal distribution, behaviour, 

and how they interact and are influenced by their environment. This collective 

information will facilitate effective and dynamic management of all marine 

migrants. 

Satellite telemetry and stable isotope analysis (SIA) are powerful tools 

used to investigate the spatial ecology of marine migrants. Satellite telemetry 

provides fine-scale movement data at an individual level (Godley et al., 2008), 

and when complemented with SIA, these tracking tools can provide information 

at a population level enabling better informed conservation plans. Natural isotope 

gradients occur throughout the oceans due to variations in nutrient cycling 

(DeNiro & Epstein 1978). For example, within the Mediterranean Sea the Adriatic 

Sea has low δ13C values and high δ15N values compared to other regions, due to 

the influence of terrestrial organic matter and highly enriched 15N agricultural run-

off from major river systems (Degobbis & Gilmartin, 1990). The geographical 

location food was ingested by an individual relates to the isotopes within the 

environment and are reflected in low-metabolically active tissues of the individual 

(DeNiro & Epstein 1978). The ratios of isotopes within tissue samples can be 

measured using SIA and in turn used as geographic markers at a population 

level. SIA and satellite telemetry methods have been widely used to answer 

spatial conservation questions regarding key marine indicator species, including 

marine mammals (e.g. Newsome et al. 2010), elasmobranchs (e.g. Shiffman et 

al. 2012, Bird et al. 2018), seabirds (e.g. Forero & Hobson 2003, Roscales et al. 

2011), and marine turtles (Haywood et al., 2019). 

Marine turtles in particular are an important study system for investigating 

the spatial ecology of marine migrants. They are considered as ‘flagship’ species 

as well as key indicator species of ecosystem function and health (Aguirre & Lutz, 

2004), have complex life histories spanning multiple habitats (Miller 1997, Fig 1), 
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differing diets dependent on life stage (e.g. Snover, 2008), and migrations of 

thousands of kilometers across dynamic seascapes (e.g. Luschi et al., 2003; 

James et al., 2005; Godley et al., 2008). Of the seven extant marine turtle 

species, green turtles (Chelonia mydas) and loggerhead turtles (Caretta caretta) 

are found circumglobally in nearly all the oceans of the world. However, due to 

many anthropogenic pressures, these marine turtles are listed on the 

International Union for Conservation of Nature (IUCN) Red List as Endangered 

on a global scale. 

The level of natural and anthropogenic threats faced is dependent on life 

stage and location, and therefore, a diverse approach to conservation is required 

(Wallace et al., 2011). Understanding the complexities of marine turtle spatial and 

foraging ecology, as well as how future climate conditions will influence their 

habitat use, are therefore considered research priorities (Hamann et al., 2010; 

Rees et al., 2016). 

 

MARINE TURTLE LIFE CYCLE 

 

Marine turtles have complex life history strategies, with species-specific 

differences occurring due to their adaptation to different ocean habitats during 

their evolutionary history (Plotkin, 2003). In general, the typical green and 

loggerhead turtle life cycle follows the oceanic-neritic developmental pattern 

(Bolten, 2003), with ontogenetic shifts in habitat and diet (Fig 1). Beginning at the 

nest, hatchlings emerge and enter their ‘frenzied phase’, entering the sea and 

swimming directly out to the ocean (Wyneken & Salmon, 1992). Hatchlings 

actively swim to reach offshore ocean currents in oceanic waters (water depths 

> 200 m) where they likely have higher food availability and reduced predation. 

Post-hatchlings remain in the near-surface waters, passively drifting with surface 

ocean currents as they grow in size, becoming juveniles over a period known as 

their ‘lost years’ (Carr, 1986). During this oceanic phase, juveniles remain epi-

pelagic, foraging on gelatinous prey, such as, jellyfish and tunicates (Bjorndal, 

1997). The duration of this oceanic phase differs between species and 

populations (e.g. Avens et al., 2013; Turner Tomaszewicz et al., 2017), potentially 

driven by differences in food and habitat availability (Bolten, 2003). 

After the oceanic phase, juveniles undergo an ontogenetic shift, moving to 

neritic habitats where they complete their development and their foraging 



Chapter 1: General Introduction 

21 
 

strategies become specialized. The duration of this transitional phase again 

differs among and within populations, either occurring relatively rapidly or 

gradually over several years (e.g. Ramirez et al., 2015; Vélez-Rubio et al., 2016; 

Di Beneditto et al., 2017) and at a range of sizes, for example at 0.25 m in length 

for loggerhead turtles in the Adriatic Sea (Lazar et al., 2008) and 0.67 m in the 

Amvrakikos Gulf (Rees et al., 2013). During this phase an associated dietary shift 

is likely, with turtles greater in size having greater diving capabilities, enabling 

benthic prey to be accessed. Loggerhead turtles are opportunists, foraging on 

invertebrates (for example, crustaceans and molluscs), as well as fish and 

sponges in their neritic habitats, and green turtles are generally herbivores, 

foraging on seagrass and macroalgae (Bjorndal, 1997), but are in some cases 

omnivorous (e.g. Piovano et al., 2020). 

Sexual maturity is reached in neritic foraging grounds (e.g. Rees et al., 

2013), and when mature, males and females make cyclic-seasonal migrations 

often of considerable distances to mating/nesting grounds (Casale et al., 2018). 

Females will lay several clutches over the nesting season with an inter-nesting 

interval of around two to three weeks (Broderick et al., 2003, Stokes et al., 2014), 

after which the adults will return to their foraging grounds, to which they show 

high fidelity (Broderick et al., 2007; Bradshaw et al., 2017; Shimada et al., 2020). 

Adults then remain in their foraging grounds for several years (1-6 years for 

loggerhead and 2-6 years for green turtles), building lipid reserves, before 

repeating their reproductive migrations (Broderick et al., 2001).  

Within species exceptions have been documented, for example some 

Pacific populations of loggerhead and green turtles have been reported to remain 

in oceanic foraging grounds throughout their lives (e.g. Hatase et al., 2002, 2006), 

whilst some populations in the Pacific and Mediterranean are thought to move 

between oceanic and neritic habitats interchangeably (e.g. Casale et al., 2008; 

Piovano et al., 2020).  
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Figure 1. The typical marine turtle life cycle with research questions investigated within this thesis indicated. 
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MEDITERRANEAN TURTLES 

 

The Mediterranean supports nesting populations of loggerhead and green 

turtles, whilst leatherback, olive ridley, and Kemp’s ridley turtles, only enter the 

basin to forage. Abundance estimates for these Mediterranean nesting 

populations are between 1.2 and 2.4 million loggerhead turtles, with 16,000 

adults, and between 0.3 and 1.3 million green turtles, with 3000 adults (Casale & 

Heppell, 2016). Compared to global populations, Mediterranean loggerhead 

turtles are considerably smaller in body size (for example, straight carapace 

length = 0.79 m in Greece, 0.91 m in Florida, and 0.93 m in Brazil, Tiwari & 

Bjorndal, 2000), whilst green turtles are at the lower size range (Seminoff et al., 

2015). Loggerhead turtle nesting grounds are distributed around the east 

Mediterranean basin, with major rookeries in Greece, Turkey, Libya, and Cyprus 

(Fig 2; Casale et al., 2018). In comparison, there are far fewer green turtle nesting 

grounds with major sites in Turkey, Cyprus, and Syria (Fig 2; Casale et al., 2018).  

 

 

 
Figure 2. Nesting and foraging grounds of Mediterranean loggerhead (Caretta 
caretta) and green turtles (Chelonia mydas). Points represent nesting grounds (red 
= loggerheads, green = green turtles). Shaded areas and arrows represent 
foraging grounds (orange = loggerheads, green = green turtles). 200 m isobath is 
indicated (grey line). Adapted from Casale et al. (2018). 

 

Due to the inaccessibility of their marine habitat, understanding their 

distribution and habitat use in the marine realm is challenging. The location of the 

post-hatchling oceanic phase is unknown in the Mediterranean, however, 

hatchling dispersal simulation models suggest for loggerhead turtles, the east 
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Mediterranean basin and the Adriatic Sea are potential oceanic nursery habitats, 

with dispersal to western Mediterranean unlikely. The Levantine basin is an 

important nursery ground for green turtles (Casale & Mariani, 2014; reviewed in 

Casale et al., 2018). Juvenile loggerhead turtles are thought to be distributed 

across the Mediterranean during their oceanic phase, although most commonly 

within the eastern basin (Clusa et al., 2014), and juvenile green turtles are also 

thought to reside within the eastern basin, with the majority in the Levantine Sea 

(Casale et al., 2018). 

Neritic foraging grounds are located around the east Mediterranean basin, 

as well as the Adriatic Sea, Aegean Sea, and the Spanish continental shelf for 

loggerhead turtles, whilst green turtle foraging grounds are thought to be limited 

to the east Mediterranean basin (Fig 2; Casale et al., 2018). Within the 

Mediterranean, recruitment of juvenile loggerhead turtles to neritic foraging 

grounds differs with region. In some regions, the ontogenetic shift to neritic 

grounds occurs at just 0.25 m in body size (e.g. Casale et al., 2008). For these 

individuals, the ontogenetic shift is thought to be very gradual, using both oceanic 

and neritic grounds interchangeably (Casale et al., 2008). In other areas, 

recruitment to neritic grounds occurs once loggerhead turtles are larger (over 

0.65 m), with the shift occurring more abruptly (e.g. Rees et al., 2013; Snape et 

al., 2013). Loggerhead turtles have also been reported to remain oceanic 

foragers, never recruiting to neritic habitats (e.g. Schofield et al., 2010; Haywood 

et al., 2020). Green turtles recruit to neritic grounds at around 0.30 m in size, 

which is similar to other global populations (Cardona et al., 2010). 

The body size of adult marine turtles differs with nesting population. The 

loggerhead turtle rookery-weighted mean size at sexual maturity is around 0.80 

m for the Mediterranean (Casale et al., 2005; Casale & Heppell, 2016), but those 

nesting in North Cyprus are considerably smaller, reaching sexual maturity and 

nesting at only 0.64 m (mean = 0.72 m, Omeyer et al., 2018). Size at sexual 

maturity for green turtles is larger than loggerhead turtles starting at around 0.73 

m (mean = 0.86 m, Omeyer et al., 2018). Age of sexual maturity is estimated at 

25 years of age for loggerhead turtles in the Mediterranean (Casale & Heppell, 

2016), whilst age-of-maturity remains unknown for green turtles (Casale et al., 

2018). Reproductive longevity of green and loggerhead turtles has been recorded 

up to 25 years in the Mediterranean (Omeyer et al., 2019). 
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ANTHROPOGENIC THREATS 

 

Marine migrants are considered some of the most threatened species 

globally, and their removal could have significant ecosystem wide impacts 

(Lascelles et al., 2014). Threats are relatively similar across marine migrant taxa 

and include; habitat degradation, direct exploitation, pollution, fisheries bycatch, 

and climate change (Lascelles et al., 2014), which are resulting in drastic declines 

in marine mammals (Schipper et al., 2008), sea birds (Croxall et al., 2012), 

marine turtles (Casale et al., 2018), and sharks (Dulvy et al., 2014). To successful 

manage marine migrants, understanding the cumulative effects of multiple 

pressure across their extensive range is crucial (Lascelles et al., 2014). 

Marine migrants are particularly vulnerable to climate change, as shifts in 

ocean climate are likely causing environmentally driven changes in their spatial 

ecology and behaviour (Robinson et al., 2009). In addition, climate driven 

locational shifts in human activities could increase overlap with migrating species 

(e.g. Southall et al., 2006). Despite this, research and conservation strategies are 

often static, rarely taking environmental variability into consideration. It is 

therefore important to determine how marine migrants alter their spatial ecology 

and behaviour to changes in environmental conditions to identify what may 

happen under future climate scenarios (Bates et al., 2018). 

Marine turtles are the most threatened marine migrant group (Lascelles et 

al., 2014). Climate change is the main indirect threat and bycatch the main direct 

anthropogenic threat (Wallace et al., 2011), with global marine turtle bycatch 

rates estimated to be higher than marine mammals and seabirds (Lewison et al., 

2014). Other threats to marine turtles include direct take, coastal development, 

pollution, and pathogens, although these are considered region dependent 

(Donlan et al., 2010; Lascelles et al., 2014). 

Mediterranean marine turtles face similar threats to those globally (Casale 

et al., 2018), however, the Mediterranean Sea has very high concentrations of 

contaminants (Casale et al., 2018), and plastic ingestion was found to be higher 

in Mediterranean populations in comparison to others (Duncan et al., 2019). As 

marine turtles are key indicator species (Aguirre & Lutz, 2004), this suggests the 

ecosystem function and health of the Mediterranean is likely detrimentally 

impacted. Similarly, bycatch rates are amongst the highest globally (Casale, 

2011). It is estimated approximately 132,000 marine turtles are caught in fisheries 
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in the Mediterranean each year resulting in 44,000 deaths annually (Casale, 

2011). Pelagic longline, bottom trawl, set net, and demersal longline are the main 

gear types causing bycatch (Casale, 2011). Fishing gear and intensity are region 

and habitat specific, so the susceptibility of marine turtles differs according to 

population variations in spatial and foraging ecology (Casale, 2011). This 

complicates conservation management and requires region-specific 

management approaches within the Mediterranean. The Mediterranean is a 

semi-enclosed sea and therefore is particularly susceptible to changes in sea 

temperature. In addition, increased extreme weather events will occur globally 

(IPCC, 2019). With species within the Mediterranean unable to shift latitudinally 

due to the seas enclosed nature, there is a need to protect existing habitats and 

dynamically shift management strategies with changes in ocean climates. 

Mediterranean loggerhead and green turtle populations are designated as 

Regional Management Units, with loggerhead turtles assigned as low risk but 

under high threat and green turtles as both high risk and high threat (Wallace et 

al., 2011). Under the IUCN Red List, there is no regional assessment for the 

Mediterranean green turtle subpopulation, whilst Mediterranean loggerhead 

turtles are listed as Least Concern, however, this listing is likely the direct result 

of extensive and intensive conservation, which if stopped, would likely cause a 

rapid population decline  and uplisting of conservation threat level (Casale, 2015). 

Therefore, it has been suggested that the status of both species be considered 

as ‘conservation dependent” (Casale, 2015). Despite major threats within their 

marine realm, conservation and conservation-driven research has historically 

been targeted to the easily accessible nesting grounds (Hamann et al., 2010). 

However, this is only protecting a small proportion of their life cycle (~8.3% of an 

adult females’ time is spent at the nesting ground, Hays et al., 2014). Research 

to help inform conservation in their critical marine habitats throughout their life 

cycle would help protect the population as a whole. 

Despite intensive conservation efforts on the nesting beaches, nest counts 

in Mediterranean rookeries are not increasing as rapidly as expected. Therefore, 

alternative conservation approaches, such as conserving critical marine habitats 

for all life stages, are considered essential (Casale et al., 2018). However, the 

majority of the sea turtle life cycle occurs in cryptic marine habitats which has 

resulted in large knowledge gaps in their marine spatial ecology. Increasing our 

understanding of the distribution, migratory connectivity, and how environmental 
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conditions influence the spatial and temporal ecology of marine turtles are 

therefore considered research priorities for Mediterranean marine turtles 

(Hamann et al., 2010; Rees e al., 2016). 

 

THESIS OVERVIEW 

 

This thesis ‘The spatial ecology of Mediterranean marine turtles: 

insights from stable isotope analysis, satellite telemetry, and 

environmental observations’ investigates the ecology of juvenile and adult 

Mediterranean loggerhead and green turtles. Through four chapters, written as 

independent units of study, I identify critical marine habitats for these elusive 

marine migrants, demonstrate intra- and inter-population differences in spatial 

and foraging ecology, and show that habitat use and behaviour will likely differ 

under future climate scenarios. 

To investigate the spatial ecology of marine migrants I use multiple 

research methodologies, including; stable isotope analysis (SIA), a forensic 

method used to investigate the spatial, foraging, and reproductive ecology of 

marine migrants to inform conservation approaches. How this powerful tool has 

been used to enhance our understanding of marine turtles is extensively reviewed 

in Chapter 2: ‘Global review and inventory: how stable isotopes are helping 

us understand ecology and inform conservation of marine turtles’. By 

summarising all current knowledge, I show how SIA has helped highlight the 

considerable flexibility and ecological complexity in the life histories of marine 

turtles and informed conservation initiatives by identifying threats faced. I 

highlight knowledge gaps and provide recommendations for future SIA studies. 

In Chapter 3: ‘Foraging ecology of Mediterranean juvenile loggerhead 

turtles: insights from C and N stable isotope ratios’, I highlight the ecological 

complexity of juvenile Mediterranean loggerhead turtles. I use SIA to determine 

if there are inter- and intra-population variations in foraging and spatial ecology 

of juvenile loggerhead turtles to help inform region-specific fisheries 

management. Sex-specific differences were not observed suggesting females 

and males exploit similar foraging strategies and in turn are susceptible to similar 

threats. I show juvenile ecology differs between foraging regions, with some 

populations likely shifting to neritic habitats as they grow, while others continue 

to use neritic and oceanic habitats interchangeably. The susceptibility of these 
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populations to fisheries bycatch will therefore likely differ, hence, region-specific 

and habitat-specific fisheries management will be required. 

In Chapter 4: ‘Spatial ecology of loggerhead turtles: insights from 

stable isotope markers and satellite telemetry’, I use satellite telemetry to 

provide detailed movement data for marine migrants in inaccessible habitats, 

enabling critical habitats to be identified. I complement satellite telemetry with 

SIA, to infer habitat use at a population level, identifying the foraging grounds for 

two major Mediterranean nesting populations. This work identifies a relatively 

small geographical region that supported a large proportion of females. I 

demonstrate foraging site fidelity over decades and show the proportion of 

nesting females recruiting from each foraging region does not differ across the 

multi-decadal study. In turn, this research suggests site-specific conservation to 

this specific region would increase both the survival of individuals in this foraging 

ground for the majority of their life cycle as well as protect a large proportion of 

two major Mediterranean loggerhead turtle rookeries. 

In Chapter 5: ‘Marine turtles alter their migratory behaviour in 

response to environmental conditions’, I evaluate satellite remotely sensed 

and model re-analysis data in relation to the vertical and horizontal migratory 

behaviours of nesting loggerhead and green turtles to determine how they 

respond to local changes in environmental conditions. I show that migratory dive 

behaviours are influenced by changes in oceanographic conditions, that 

migratory routes are likely a balance between minimising energy expenditure and 

remaining in favourable conditions, and that the species-specific migratory 

corridors used may be due to factors such as dietary preference, rather than 

species-specific environmental tolerances. By demonstrating that environmental 

conditions affect the migratory behaviours of marine migrants, this study 

suggests spatially and temporally dynamic management is required for effective 

long-term conservation. 

Finally, in Chapter 6, I summarise and discuss the findings from this 

thesis, highlighting the importance of combining complementary methodologies 

to better understand the complex life histories and movements of marine 

migrants. I further discuss how this information can help inform dynamic 

management strategies to help protect this mostly elusive taxa and I propose 

some novel areas of future research. 
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ABSTRACT  

 

Stable isotope analysis (SIA) has become a powerful and widely utilised tool in 

ecological studies, and more specifically has been used to answer conservation 

questions regarding key marine indicator species including marine turtles. Undertaking 

an exhaustive review of peer-reviewed literature, we summarise the current 

knowledge of marine turtle spatial, foraging, and reproductive ecology gained through 

stable isotope studies and highlight the considerable flexibility and ecological 

complexities in the life histories of the six species that have been studied. We 

demonstrate how SIA can inform conservation initiatives, identify threats faced, and 

provide pre- and post-disaster information that is otherwise unavailable. We 

summarise isotope ratios at a global scale and demonstrate intraspecific regional 

differences and interspecific overlap. We identify the geographical gaps in the current 

knowledge and the bias in the species studied. To facilitate future research we identify 

a comprehensive list of recommendations including the need for standardised 

protocols for tissue collection and analysis, the use of a third forensic marker to provide 

greater power of inference, combining complementary techniques to enhance the 

information gained, conducting long-term research, and a need for meta-analytic 

approaches to combine research findings to better understand the complexities of 

marine turtle ecology. This review provides a complete list of all published marine turtle 

stable isotope studies which are summarised in an open access inventory to enable 

researchers to add new studies and target future work. 

 

KEY WORDS: SIA, δ13C, δ15N, Sea turtle, Foraging ecology, Migratory connectivity, 

Reproductive ecology, Threats 
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INTRODUCTION 

 

1.1 Background 

As a group of large marine vertebrates found widely throughout the temperate 

and tropical oceans, marine turtles can be considered as key indicator species of 

ecosystem function and health. Marine turtles have complex life histories (Miller 1997, 

Musick & Limpus 1997, Plotkin 2003), often with multiple ontogenetic shifts in habitat 

and diet (e.g. Snover et al. 2008), and migrations of considerable distances between 

foraging and nesting grounds (e.g. James et al. 2005, Shillinger et al. 2008). Within 

one nesting aggregation, several geographically distinct foraging areas may be utilised 

and different life history strategies may be employed (e.g. Hays et al. 2006, Seminoff 

et al. 2008, Dujon et al. 2018). Understanding the complex life histories of marine 

turtles and identifying critical habitats is a research priority in marine turtle ecology 

(Hamann et al. 2010, Rees et al. 2016, Casale et al. 2018).  

Techniques to determine the movements of these elusive species include 

flipper tagging (e.g. Limpus et al. 1992, Hays et al. 2010), satellite telemetry (e.g. 

Nichols et al. 2000, Hays et al. 2006, Jeffers & Godley 2016), and genetics (e.g. 

Shamblin et al. 2017). Flipper tagging requires large numbers to be tagged for 

successful recapture and offers no locational information between captures. Satellite 

telemetry is extensively used in marine turtle spatial ecology, offering detailed 

movement data on location and speed, however, this technique is expensive and often 

results in small sample sizes, limiting knowledge of population level behaviour (Godley 

et al. 2008). Genetics can, for example, identify connectivity between rookeries and 

foraging grounds but genetic studies can require broad geographic regions to be 

sampled (Avise 2007, Komoroske et al. 2017). 

For successful conservation, it is important to protect not only the critical 

habitats of marine turtles but also the prey items on which they rely. Marine turtle 

dietary studies have historically relied on directly observing foraging behaviour (e.g. 

Ogden et al. 1983, Schofield et al. 2006), stomach content analysis at necropsy of 

stranded animals or oesophageal lavage (e.g. Seminoff et al. 2002, Santos et al. 

2011), or using animal-borne cameras (e.g. Heithaus et al. 2002, Seminoff et al. 

2006b, Fuller et al. 2009, Narazaki et al. 2013, Fukuoka et al. 2016, Thomson et al. 

2018). Although these techniques allow for the taxonomic identification of prey items, 

direct observations of foraging behaviour are logistically difficult and in many cases 
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not possible (Narazaki et al. 2013). Stomach content analysis represents a short 

dietary time frame and biases against rapidly digested soft-bodied prey (Duffy & 

Jackson 1986, Heithaus et al. 2002), whilst animal-borne camera studies are limited 

by adequate light, battery and storage capabilities, and generally small sample sizes 

(Moll et al. 2007, Narazaki et al. 2013). 

 

1.2 Stable Isotope Analysis 

 

Stable isotope analysis (SIA) can be a powerful tool that can complement the 

aforementioned methods that evaluate foraging ecology and habitat use. SIA has been 

used in ecological studies for a range of marine taxa that are of conservation concern 

(Rubenstein & Hobson 2004), including marine mammals (e.g. Newsome et al. 2010), 

elasmobranchs (e.g. Shiffman et al. 2012, Bird et al. 2018), and seabirds (e.g. Forero 

& Hobson 2003, Roscales et al. 2011). Over the last two decades SIA has become an 

important tool for investigating marine turtle spatial, foraging, and reproductive 

ecology, highlighting ecological complexities in life history strategies and enhancing 

conservation approaches (e.g. Ceriani et al. 2017, Reich et al. 2017, Burgett et al. 

2018). The isotopes of an element have different atomic weights, which react at 

differing rates. This leads to natural isotope gradients in environmental & biological 

systems. SIA relies on measuring these isotope ratios. The ratio of stable isotopes in 

low-metabolically active tissue of an individual closely relates to the food it has 

consumed and the geographical location where it was ingested (DeNiro & Epstein 

1978, 1981). Most commonly, the ratios of 13C:12C (expressed as δ13C) and 15N:14N 

(expressed as δ15N) are used as geographic markers resultant from variations in 

nutrient cycling within the water experienced by the individual (Graham et al. 2010).  

The isotope ratio itself represents a time-integrated diet (Peterson & Fry 1987), 

can be conducted on all life stages, and the analysis is cost effective (approximately 

£9-15 per sample dependent on the element to be analysed), allowing for large sample 

sizes. Different tissue types have different residence times; for example, blood serum 

has a short half-life and therefore represents food consumed recently, whilst epidermis 

has a longer half-life and therefore represents the diet consumed several months prior 

(Reich et al. 2008). Therefore, by assessing different tissue types, assessment of diet 

at multiple time points can be conducted (e.g. Petitet & Bugoni 2017, Turner 

Tomaszewicz et al. 2017b). 
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Carbon isotope ratios reflect the primary producer responsible for the energy 

flow in the food chain (DeNiro & Epstein 1978, Hobson 1987). Productive benthic and 

nearshore regions supported by algae and seagrass exhibit higher δ13C values in 

comparison to less productive pelagic and oceanic regions supported by 

phytoplankton (DeNiro & Epstein 1978, Graham et al. 2010). 

With regards to phytoplankton-driven food webs, temperature primarily drives 

the geographical and temporal variation of δ13C values, especially at higher latitudes, 

due to its influence on CO2 uptake rates, dissolved CO2 concentrations, and 

phytoplankton growth rates and community composition (Goericke & Fry 1994, Hinga 

et al. 1994, Gruber et al. 1999, Graham et al. 2010, Magozzi et al. 2017). 

Phytoplankton shape, size, and species influences isotopic fractionation and results in 

regional-scale differences in δ13C values, for example between nearshore and 

offshore regions (Hinga et al. 1994, Pancost et al. 1997, Popp et al. 1998).  

The δ15N values in marine primary producers differs with (1) δ15N values of their 

nutrient sources (e.g. nitrate, ammonium, and N2), (2) nitrogen-based processes, 

including, N2-fixation, denitrification, and nitrification, and (3) isotopic fractionation 

(Montoya 2007). Areas of N2-fixation support primary producers with low δ15N values 

as the δ15N value of dissolved N2 is near 0‰ with little isotopic fractionation during its 

biological uptake (Dore et al. 2002, Montoya et al. 2002, Montoya 2007). In 

comparison, denitrification removes 15N-depleted nitrate (NO3
−), leaving strongly 15N-

enriched nitrate and in turn primary producers with high δ15N values (Voss et al. 2001, 

Dore et al. 2002). Large-scale spatial variation of phytoplankton δ15N values is driven 

by the upwelling of 15N-enriched nitrate as a result of denitrification at depth (Graham 

et al. 2010). Anthropogenic waste and agricultural runoff in coastal habitats increase 

the δ15N values in particulate matter used by primary producers (Harrington et al. 

1998, McKinney et al. 2002). These spatial variations are reflected in higher trophic 

consumers and can therefore be used as a marker for habitat use at large scales. 

Nitrogen isotope ratios in individuals have also been used to reflect trophic 

patterns (DeNiro & Epstein 1978, 1981). It has been suggested that in marine 

ecosystems, a 3 to 4‰ step-wise enrichment of δ15N values occurs in each 

subsequent trophic level as 15N retention is higher than 14N (Minagawa & Wada 1984, 

Post 2002). However, due to the many factors influencing isotope ratios this distinction 

is sometimes not straightforward (see Section 3.5 on limitations of this method). 

Previous work using compound-specific SIA (CSIA) of amino acids on marine turtles 
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has shown variations in δ15N values are due to shifts in baseline isotope ratios and not 

trophic position (Seminoff et al. 2012, Vander Zanden et al. 2013a, see Section 3.6 for 

details on CSIA).  

Spatial and temporal variation in δ13C and δ15N values in marine phytoplankton 

is large, consistent and relatively well understood, to the extent that mechanistic 

models can capture most of the observed variance (e.g. Tagliabue & Bopp 2008, 

Somes et al. 2010, Schmittner & Somes 2016, Magozzi et al. 2017). These realistic 

predictions of baseline isotope ratios improve the interpretation of δ13C and δ15N 

values in marine organisms as geolocation tools (Graham et al. 2010, McMahon et al. 

2013, Magozzi et al. 2017). 

Stable isotope ratios of other elements, including sulphur (δ34S) and oxygen 

(δ18O), have also been used in marine turtle studies. δ34S values differ between 

primary producers in sulphide-rich sediments and those with limited access to sulphide 

(Sullivan & Moncreiff 1990). Therefore, δ34S values can be used to differentiate 

between ecosystems supported by seagrass and microphytobenthos, which have low 

δ34S values, and ecosystems supported by phytoplankton and macroalage, which 

have high δ34S values (e.g. Cardona et al. 2009, Bradshaw et al. 2017). δ18O values 

reflect water temperature when applied to biominerals such as bones or the epifaunal 

barnacles on the carapace of a turtle (e.g. Killingley & Lutcavage 1983, Detjen et al. 

2015). 

 

1.3 Current review 

 

SIA has been used in marine turtle research since 1983 (Killingley & Lutcavage 

1983) and has provided an extensive range of insights into marine turtle ecology. 

Pearson et al. (2017) reviewed SIA data of marine turtles, but their objectives were to 

highlight the bias of marine turtle stable isotope studies towards populations listed by 

the IUCN (International Union for Conservation of Nature) as least concern. 

In this review we compile the current insights into marine turtle ecology and 

conservation gained through SIA, highlight gaps in existing knowledge, and suggest 

future recommendations for the preparation and interpretation of SIA in marine turtle 

research. We also combine all published isotope ratios to summarise these data on a 

global scale. An accessible inventory of all marine turtle stable isotope research is also 

included to enable researchers to add new studies, target future work, and help 



Chapter 2: Global review: insights from marine turtle stable isotopes 

40 
 

prevent unnecessary research overlaps in the future (Table S1, see the PANGAEA 

data repository at doi.org/10.1594/PANGAEA.892683).  

 

METHODOLOGY 

 

We conducted a systematic review to determine the ecological insights gained 

from marine turtle stable isotope studies and determine the current gaps in this field. 

An extensive literature search was conducted in English (Scopus, Web of Science, 

and Google Scholar; last accessed 31st December 2018). The terms searched were, 

‘sea turtle’, ‘marine turtle’, ‘loggerhead turtle’, ‘green turtle’, ‘leatherback’, ‘hawksbill’, 

‘Kemp's ridley’, ‘olive ridley’, ‘flatback’, and ‘isotope’ in TITLE-ABSTRACT-

KEYWORDS for Scopus and TOPIC for Web of Science. The top 200 papers in 

Google Scholar were ranked by relevance and suitable literature was selected. All 

peer-reviewed primary research papers were included in the analysis excluding fossil 

isotope studies. 

From each study, isotope ratios were extracted either (1) directly from text, (2) 

from supplemental raw values, (3) from the range provided, (4) from a graph that 

provided a mean, or (5) from a scatter plot, in which case the mid-value from the range 

was determined by eye. Additional information including the location of the study, 

tissue type utilised, life stage, species, and methodology was extracted (see Table S1 

for details on information collated). If life stage was unknown it was not included in the 

interspecies and ocean basin isotope ratio comparisons (see Sections 3.2.2 and 

3.2.3). If multiple tissue-types were sampled for an individual only the epidermal 

isotope ratio was selected to be included in the analysis. Samples from the Atlantic 

Ocean were further separated into the main Atlantic basin, Gulf of Mexico, Caribbean 

Sea, or subtropical Northwest Atlantic (SNWA) due to previously published differences 

in isotope ratios attributed to the spatial variation of isotope ratios at the base of the 

food web rather than dietary differences (Pajuelo et al. 2012b, Vander Zanden et al. 

2013a, 2015, 2016, Tucker et al. 2014, Ceriani et al. 2017). For example, nutrient-rich 

waters and denitrification in the Gulf of Mexico could cause higher δ15N values in this 

region compared to the SNWA and Caribbean Sea, which is influenced by nitrogen 

fixation (Vander Zanden et al. 2015). The SNWA had high δ13C values, which was 

suggested to be due to being a seagrass-dominated ecosystem compared to other 

regions likely supported by phytoplankton, macroalgae, and mangroves (Vander 
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Zanden et al. 2015). Therefore, these regions are represented separately within our 

analysis. 

Our search results identified 114 published studies (46 since 2015) that 

investigated stable isotopes in marine turtles. The primary focus of 21 of these studies 

was on methodology whilst the remaining 93 were ecological studies (Table S1). Five 

methodological-based studies on captive individuals likely provided artefactual isotope 

ratios and were not included for geographic comparisons, however for completeness 

details on these studies are available in Table S1. 
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RESULTS AND DISCUSSION 

 

Overview of studies 

 

Compiling global isotope studies highlights gaps in current knowledge with a 

bias towards studying certain species and regions (Fig. 1 and Table 1). Loggerhead 

(Caretta caretta) and green turtles (Chelonia mydas) are the most studied whilst, as 

yet, there has been no published study on flatback turtles (Natator depressus). Split 

by ocean basin Fig. 1 shows that most studies were conducted in the Atlantic (55%), 

followed by the Pacific (25%), Mediterranean (10%), and Indian Ocean (10%). 

 

 

Fig. 1. Number of studies of stable isotopes in marine turtles by (A) species and 
(B) region. (A) Cc: loggerhead turtle; Cm: green turtle; Dc: leatherback turtle; Lo: 
olive ridley turtle; Lk: Kemp’s ridley turtle; Ei: hawksbill turtle; Nd: flatback turtle. (B) 
Atl: Atlantic Ocean (including subtropical Northwest Atlantic [red], Caribbean Sea 
[green] and Gulf of Mexico [blue]); Pac: Pacific Ocean; Med: Mediterranean Sea; Ind: 
Indian Ocean 

 

Mapping the location of studies globally illustrates that there are large 

geographical gaps in marine turtle isotope research (Fig. 2), with 77% of studies 

carried out in six countries (USA = 47%, Japan = 10%, Spain = 6%, Australia = 6%, 

Brazil = 6%, Mexico = 3%). This geographical bias is unsurprising as current SIA 

research is conducted on well-studied populations, and some areas of a species range 

are inaccessible, especially species’ with restricted nesting habitats e.g. flatback 

turtles.  
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Fig. 2. Geographical location of studies investigating stable isotopes in 
marine turtles: (A) Loggerhead, (B) green, and (C) other species. For species 
abbreviations see Fig 1. Points represent studies that investigated marine turtle 
isotope ratios from known foraging grounds or at nesting grounds when foraging 
grounds were not identified. Numbers within the points represent the number of 
studies. Loggerhead and green turtle distributions (blue) and nesting areas (green) 
are shown. Distributions adapted from IUCN and nesting areas from OBIS-Seamap 
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Table 1. Summary of the ecological information gained from marine turtle stable isotope studies. Cc: loggerhead turtle; Cm: green 
turtle; Dc: leatherback turtle; Lo: olive ridley turtle; Lk: Kemp’s ridley turtle; Ei: hawksbill turtle; Nd: flatback turtle; Pac: Pacific Ocean; Atl: 
Atlantic Ocean; Ind: Indian Ocean; Med: Mediterranean Sea; GoM: Gulf of Mexico; Car: Caribbean Sea; dash (-): no published studies 
available 
 
 Species Region  
FORAGING & 
SPATIAL ECOLOGY 

Cc Cm Dc Lo Lk Ei Nd Pac Atl Ind Me
d 

GoM Car Source 

Diet 14 24 5 3 - - - 9 20 6 7 3 1 Godley et al. 1998, Hatase et al. 2002, 2006, Revelles et al. 2007a, 
b,  Cardona et al. 2009, 2010, 2012, 2015, Wallace et al. 2009,2014, 
, McClellan et al. 2010, Vander Zanden et al. 2010, 2013a, b, 2016, 
Burkholder et al. 2011, Dodge et al. 2011, Lemons et al. 2011, 
Belicka et al. 2012, Seminoff et al. 2012, Thomson et al. 2012, 2018, 
Arthur et al. 2014, González Carman et al. 2014, Shimada et al. 
2014, Williams et al. 2014, Bezerra et al. 2015, Goodman Hall et al. 
2015, Howell et al. 2016,  Prior et al. 2016, Robinson et al. 2016, 
Vélez-Rubio et al. 2016, Di Beneditto et al. 2017, Peavey et al. 
2017, Petitet & Bugoni 2017, Sampson et al. 2017, Blasi et al. 2018, 
Burgett et al. 2018, Gillis et al. 2018,  Hancock et al. 2018, 
Hetherington et al. 2018, Monzón-Argüello et al. 2018, Turner 
Tomaszewicz et al. 2018 

Interspecies 
differences 

8 9 2 - - 3 - 1 6 1 2 1 1 Godley et al. 1998, Biasatti 2004, Wallace et al. 2006, Hannan et 
al. 2007, Reich et al. 2007, Bjorndal & Bolten 2010, Cardona et al. 
2010, Agusa et al. 2011, Belicka et al. 2012, López-Castro et al. 
2013, 2014a, Arthur et al. 2014, Robinson et al. 2016, Monzón-
Argüello et al. 2018 

Regional differences 6 1 2 - - - - 2 9 - - 6 1 Wallace et al. 2006, Pajuelo et al. 2010,2012b, Vander Zanden et 
al. 2013a, 2015, 2016, Tucker et al. 2014, Ceriani et al. 2017, 
Hetherington et al. 2018 

Ontogenetic shifts 9 13 1 - - 1 - 4 19 - 1 2 2 Reich et al. 2007, Arthur et al. 2008, Cardona et al. 2009, 2010, 
2017,   Snover et al. 2010, Eder et al. 2012,  Avens et al. 2013, 
López-Castro et al. 2013, 2014a,b, González Carman et al. 2014, 
Shimada et al. 2014, Wallace et al. 2014, Goodman Hall et al. 2015, 
Ramirez et al. 2015, Howell et al. 2016, Vélez-Rubio et al. 2016, 
2018, Di Beneditto et al. 2017, Turner Tomaszewicz et al. 2017a, 
2018, Burgett et al. 2018, Ferreira et al. 2018, Monzón-Argüello et 
al. 2018 

Migratory connectivity 22 9 4 2 1 - - 12 18 2 4 6 3 Killingley & Lutcavage 1983, Hatase et al. 2006, 2010, 2013, 2014, 
2015, 2018,  Reich et al. 2010, 2017,  Dodge et al. 2011, Watanabe 
et al. 2011, Zbinden et al. 2011, Ceriani et al. 2012, 2014a, 2015, 
2017, Eder et al. 2012, Pajuelo et al. 2012a, b, Seminoff et al. 2012,  
Thomson et al. 2012, López-Castro et al. 2013, 2014a,  Vander 
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Zanden et al. 2013a, 2014a, 2015, Cardona et al. 2014, 2017,  
Wallace et al. 2014, Detjen et al. 2015,  Prior et al. 2016, Robinson 
et al. 2016, Bradshaw et al. 2017, Madigan et al. 2017,  Peavey et 
al. 2017, Price et al. 2017, Turner Tomaszewicz et al. 2018, Vélez-
Rubio et al. 2018 

Foraging site fidelity 13 5 2 - - - - 5 12 2 1 3 1 Hatase et al. 2002, 2013, Vander Zanden et al. 2010, 2013b, 2014a, 
2016; Eder et al. 2012, Pajuelo et al. 2012b, 2016, Seminoff et al. 
2012, Thomson et al. 2012, Kaufman et al. 2014,  Shimada et al. 
2014, Tucker et al. 2014, Goodman Hall et al. 2015, Prior et al. 
2016, Robinson et al. 2016, Bradshaw et al. 2017, Cardona et al. 
2017, Vélez-Rubio et al. 2018 

Foraging dichotomy 11 1 3 - - - - 10 2 2 1 - 0 Hatase et al. 2002, 2006, 2010, 2013, 2014, 2015, 2018, Caut et al. 
2008b, Watanabe et al. 2011, Zbinden et al. 2011, Eder et al. 2012, 
Seminoff et al. 2012, Robinson et al. 2016, Cardona et al. 2017, 
Hatase & Omuta 2018 

 
SIZE, GROWTH AND REPRODUCTIVE OUTPUT 
 

Growth 9 9 - - - 3 - 6 11 - 3 1 - Hatase et al. 2002, 2010, Revelles et al. 2007a, Cardona et al. 
2009, Wallace et al. 2009, Bjorndal & Bolten 2010, Pajuelo et al. 
2010, Agusa et al. 2011, Allen et al. 2013, Williams et al. 2014, 
Goodman Hall et al. 2015, Clusa et al. 2016,  Vélez-Rubio et al. 
2016, 2018, Di Beneditto et al. 2017, Blasi et al. 2018, Burgett et al. 
2018, Ferreira et al. 2018,  Monzón-Argüello et al. 2018, Turner 
Tomaszewicz et al. 2018 

Adult size 20 4 1 1 - - - 11 10 2 2 3 - Godley et al. 1998, Hatase et al. 2002, 2006, 2010, 2013, 2014, 
2015, 2018,  Reich et al. 2010, Burkholder et al. 2011,  Watanabe 
et al. 2011, Zbinden et al. 2011, Pajuelo et al. 2012b, 2016, 
Thomson et al. 2012, Ceriani et al. 2014a, 2015, Tucker et al. 2014, 
Vander Zanden et al. 2014a, Wallace et al. 2014, Carpentier et al. 
2015, Prior et al. 2016, Cardona et al. 2017, Peavey et al. 2017, 
Price et al. 2017 

Reproductive output 12 - 1 - - - - 6 5 - 2 2 - Caut et al. 2008b, Hatase et al. 2010, 2013, 2014, 2015, 2018, 
Zbinden et al. 2011, Eder et al. 2012, Cardona et al. 2014, Vander 
Zanden et al. 2014a, Ceriani et al. 2015, 2017, Hatase & Omuta 
2018, Hetherington et al. 2018 

THREATS 9 7 - 3 1 1 - 7 7 1 3 2 - Hannan et al. 2007, Revelles et al. 2007a,  Caut et al. 2008a, 
Wallace et al. 2009, Páez-Osuna et al. 2010, Agusa et al. 2011, 
Lemons et al. 2011, Allen et al. 2013, Ceriani et al. 2014a, Bezerra 
et al. 2015, Clusa et al. 2016, Vander Zanden et al. 2016,   Le 
Gouvello et al. 2017, Madigan et al. 2017,  Petitet & Bugoni 2017, 
Reich et al. 2017, Blasi et al. 2018, Monzón-Argüello et al. 2018, 
Turner Tomaszewicz et al. 2018 
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We show that adult females were sampled most frequently (44%, including 

studies that sampled hatchlings and eggs as a proxy for maternal tissue), 

followed by juveniles (40%), and adult males (16%; Table S2 in the Supplement). 

A large range of tissue types have been sampled with epidermis sampled the 

most frequently (30%), followed by scute (carapace, 15.5%), egg yolk (9%), red 

blood cells (9%), humeri (7.5%), blood plasma (7%), muscle (6%), whole blood 

(6%), whole egg (albumen and yolk, 2%), blood serum (2%), albumen (1%), egg 

shell (1%), embryos (1%), epibionts (1%), liver (1%), and tendon (1%). 

These findings support the review by Pearson et al. (2017), who suggest 

that the focus of future work should be directed at under-studied species, for 

example flatback turtles, and we suggest more needs to be done globally across 

the full range and life stages of all species. Information on habitat use is highly 

useful for all populations, particularly those less studied or those in highly 

disturbed areas.  

 

3.2 Foraging and spatial ecology 

 

Summarising marine turtle stable isotope studies demonstrated that the 

majority (83%) have investigated foraging ecology specifics, including identifying 

foraging grounds, foraging site fidelity, and diet (Table 1). This is also the case 

for marine mammal and elasmobranch ecology where SIA is most commonly 

used to study diet and trophic position (Forero & Hobson 2003, Newsome et al. 

2010, Shiffman et al. 2012). Understanding the variation in foraging strategies 

enables population-level questions to be answered, for example, individual 

variations in life history strategies and carry-over effects between foraging and 

breeding seasons (e.g. Caut et al. 2008b, Ceriani et al. 2017, Hatase et al. 2018). 

SIA also enables the demographic trends of a population to be better understood 

(e.g. Bradshaw et al. 2017) and the threats faced by a population (both 

environmental and anthropogenic) to be assessed (e.g. Clusa et al. 2016, Vander 

Zanden et al. 2016).   

 

3.2.1 Diet 

 

The proportion of prey items contributing to the diet of an individual can be 

estimated from their isotope ratio via isotope mixing models. See Section 3.6 for 
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details and limitations of mixing models. This is a major area of study in marine 

turtle research and has enabled the diet of several marine turtle populations to 

be estimated, showing the large variability in intra- and inter-species diets (Table 

1). Isotope studies of adult and juvenile loggerhead turtles in neritic foraging 

grounds have shown that the dominant prey were benthic items such as molluscs 

and crustaceans (Hatase et al. 2002, Wallace et al. 2009, McClellan et al. 2010, 

Goodman Hall et al. 2015) whilst the dominant prey for individuals in oceanic 

foraging grounds were pelagic prey, for example macroplankton, including 

gelatinous zooplankton and jellyfish (Hatase et al. 2002, Revelles et al. 2007b, 

McClellan et al. 2010, Cardona et al. 2012). 

Depending on the population, within neritic foraging grounds, adult and 

juvenile green turtles were suggested to consume macrophytes (Bezerra et al. 

2015, Howell et al. 2016, Prior et al. 2016, Di Beneditto et al. 2017). However, 

SIA has shown the presence, and in some cases dominance, of animal-based 

matter demonstrating omnivorous behaviour (Godley et al. 1998, Hatase et al. 

2006, Cardona et al. 2009, 2010, Burkholder et al. 2011, Lemons et al. 2011, 

Belicka et al. 2012, González Carman et al. 2014, Shimada et al. 2014, Williams 

et al. 2014, Vélez-Rubio et al. 2016, Sampson et al. 2017, Burgett et al. 2018, 

Gillis et al. 2018, Hancock et al. 2018, Monzón-Argüello et al. 2018, Thomson et 

al. 2018, Turner Tomaszewicz et al. 2018). There is also evidence that adult 

green turtles forage from the water column in coastal regions (Turner 

Tomaszewicz et al. 2018) and on macroplankton in oceanic regions (Hatase et 

al. 2006) foragers. 

Isotopes can also be used to infer both individual specialisation and the 

ecological niche of a species based on the intra- and inter-individual variation in 

isotope ratios (Newsome et al. 2007, Vander Zanden et al. 2010, 2013b, 2016, 

Burkholder et al. 2011, Lemons et al. 2011, Ferreira et al. 2018, Thomson et al. 

2018). To estimate individual consistency and specialisation, analysis of variance 

techniques have been used (e.g. Vander Zanden et al. 2010, 2013b, 2016, 

Lemons et al. 2011), whilst to estimate isotopic niche width studies have used 

the Layman et al. (2007) total area metric (e.g. Burkholder et al. 2011) or Stable 

Isotope Bayesian Ellipses in R (SIBER, Jackson et al. 2011, e.g. Ferreira et al. 

2018, Hancock et al. 2018). Using SIA, individual specialisation has been 

reported for other marine taxa including sharks (e.g. Matich et al. 2011) and 

marine mammals and penguins (e.g. Cherel et al. 2007). Understanding the diet 



Chapter 2: Global review: insights from marine turtle stable isotopes 

48 
 

resources used by a population enables temporal shifts to be monitored and it 

also informs conservation strategies allowing the targeting and management of 

the turtle foraging grounds and the diverse range of prey on which they rely.  

 

3.2.2 Global interspecies differences in isotope ratios 

 

Several studies have conducted SIA on multiple species (Table 1). For 

example, previous interspecies comparisons in isotope ratios showed adult 

loggerhead turtles had higher δ15N values and in some cases lower δ13C values 

than green turtles, suggesting higher trophic level foraging (Godley et al. 1998, 

Hannan et al. 2007, Monzón-Argüello et al. 2018), whilst no differences were 

seen between oceanic loggerhead and juvenile green turtles, suggesting similar 

prey items and foraging locations (Reich et al. 2007, Cardona et al. 2010, López-

Castro et al. 2013). One SIA study showed that adult leatherback turtles 

(Dermochelys coriacea), differing from loggerhead and green turtles (Godley et 

al. 1998), have an oceanic foraging strategy, whilst a second study revealed an 

unexpected neritic foraging strategy of leatherback turtles in the Indian Ocean 

(Robinson et al. 2016). 

Isotope studies have suggested minimal levels of interspecific competition 

in foraging resources between hawksbill (Eretmochelys imbricate) and green 

turtles in the Caribbean, with hawksbill turtles foraging at higher trophic levels 

(Bjorndal & Bolten 2010). However, no differences have been reported between 

green and hawksbill turtles in Japan (Agusa et al. 2011). These contrasting 

findings are likely due to dietary differences. Further analysis could be performed 

to estimate differences in diet composition and trophic positions within these 

populations using mixing models and CSIA (see Section 3.6). SIA has been used 

to investigate interspecies differences in isotope ratios within other marine 

taxonomic groups including marine mammals (e.g. Burton & Koch 1999, 

Newsome et al. 2010), seabirds (Forero & Hobson 2003), penguins (Cherel et al. 

2007), and elasmobranchs (e.g. Shiffman et al. 2012, Bird et al. 2018). 

This review combines global marine turtle isotope ratios, demonstrating 

that clear species differences do not occur globally, for either adults or juveniles, 

with large overlapping interspecies ranges (Fig. 3, Table S2). This is likely due to 

the many complex factors affecting isotope ratios (see Section 1.2) as well as 

ocean basin differences in baseline isotope ratios (see Section 3.2.3). For adults, 
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green turtles were the most distinct species with low δ15N and high δ13C values. 

Loggerhead turtles had intermediate isotope ratios whilst hawksbill, Kemp’s ridley 

(Lepidochelys kempii), leatherback, and olive ridley turtles (Lepidochelys 

olivacea) had similar mean values with high δ15N and low δ13C values. Within 

juveniles, green and hawksbill turtles had low δ15N and high δ13C values in 

comparison to the other species. Only single studies investigated adult hawksbill 

and Kemp’s ridley turtles and juvenile leatherback and olive ridley turtles and 

therefore do not represent their global isotope ratios. In addition, the ratios used 

for these analyses stemmed from multiple tissue types that were preserved and 

prepared with different techniques, which can affect isotope results (see Section 

3.7). 

 

 

When we further split the global data by ocean basin, different interspecies 

relationships are shown (Fig. S1 in the Supplement). This is unlikely due to 

distinct intraspecies differences in foraging strategy across ocean basins, but 

rather due to local variations in isotope ratios at the base of the food chain of the 

sampled populations.  

 

 

 

 
Fig. 3. Interspecific differences in stable isotope ratios in marine turtles. 
Mean of mean δ13C and δ15N across studies of (A) adult and (B) non-adult marine 
turtles. Mean ±SD shown where n > 1. Number of studies contributing are shown 
in parentheses. Non-adults include juvenile, immature, and sub-adult individuals. 
For species abbreviations see Fig. 1 
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3.2.3 Ocean basin differences in isotope ratios 

 

The majority of studies to date focus on individual populations in specific 

regions, whilst few studies have investigated how a species’ isotope ratios differ 

between ocean basins (Table 1). In this review we compiled ocean basin isotope 

ratios for each species and show that the large intraspecies ranges previously 

observed (see Section 3.2.2) are likely partly due to geographical variation (Fig. 

4, Table S2; for other species plots see Fig. S2 in the Supplement). We show that 

adult loggerhead turtles foraging in the SNWA were the most isotopically distinct 

with low δ15N and high δ13C values. Atlantic, Gulf of Mexico, Pacific, and 

Mediterranean loggerhead turtles had similar ratios with high δ15N and low δ13C 

values. Considerable overlap is seen in the isotope ratios of juvenile loggerhead 

turtles in different ocean basins, with a relatively narrow range of δ13C values in 

all regions compared to δ15N values. Fewer values were available for green 

turtles. Adult green turtles had similar δ15N values for all ocean basins, whilst 

adults from the Pacific and Indian Ocean had low δ13C values in comparison to 

other ocean basins and the Atlantic had large ranges in isotope ratios. Isotope 

ratios were more distinct in juveniles, with those foraging in the SNWA showing 

low δ15N and high δ13C values whilst Atlantic and Pacific foragers had low δ13C 

but high δ15N values. Adult leatherback turtles had similar δ13C values for all 

ocean basins, whilst adults from the Pacific had relatively high δ15N values.  
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Fig. 4. Intraspecific variation of δ13C and δ15N values for loggerhead turtle (A) 
adults, (B) non-adults, and green turtle (C) adults, and (D) non-adults. Mean ±SD 
shown where n > 1. Number of studies contributing are shown in parentheses. 
Non-adults include juvenile, immature, and sub-adult individuals. Atl: Atlantic 
Ocean; Car: Caribbean Sea; GoM = Gulf of Mexico; Ind: Indian Ocean; Med: 
Mediterranean Sea; Pac: Pacific Ocean; SNWA: subtropical Northwest Atlantic 

 

Previously published ocean basin comparisons between Pacific and 

Atlantic leatherback (Wallace et al. 2006) and loggerhead turtles (Pajuelo et al. 

2010) demonstrated those in the Pacific had higher δ15N values. High δ13C and 

low δ15N values have been reported in the SNWA and Caribbean Sea compared 

to the Gulf of Mexico and east coast USA for loggerhead and green turtles 

(Pajuelo et al. 2012b, Vander Zanden et al. 2013a, 2015, 2016, Tucker et al. 

2014, Ceriani et al. 2017). Global variations in isotope ratios can be seen in 

previously created marine isoscapes (e.g. Somes et al. 2010, Magozzi et al. 

2017, Bird et al. 2018), and we suggest intraspecies variations between ocean 

basin are due to dissimilarities in local and ocean basin nutrient cycling regimes 

that influence isotope ratios at the base of the food web, which in turn influence 

the ratios of higher trophic level consumers. It is essential that when comparing 
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isotope values from multiple regions, researchers quantify the baseline isotope 

ratios or obtain a proxy for the baseline ratios, for example from previous studies 

on lower trophic level species, amino acid δ15N values, or isoscapes (maps of the 

geospatial distribution of isotopes). 

 

3.2.4 Ontogenetic shifts 

 

The geographical location of marine turtle developmental stages and the 

movement between developmental areas are relatively unknown, as satellite 

telemetry of these life stages is limited (Godley et al. 2008). This is important 

information for conservation, as threats in these regions are less understood and 

in turn protection measures for this developmental life stage are limited (Hamann 

et al. 2010). Many studies have used isotopes to investigate ontogenetic shifts 

(Table 1).  

SIA has revealed that ontogenetic shifts are facultative not obligatory, 

depending on whether a habitat meets the demands of an individual (Hatase et 

al. 2006) and can be either over a year or over several years (e.g. Reich et al. 

2007, Cardona et al. 2009, 2010, González Carman et al. 2014, López-Castro et 

al. 2014b, Ramirez et al. 2015, 2017, Vélez-Rubio et al. 2016, Di Beneditto et al. 

2017). Such analysis can also allow researchers to calculate the age and size at 

which a marine turtle ontogenetic shift occurs (e.g. Snover et al. 2010, Avens et 

al. 2013, Ramirez et al. 2015, 2017, Howell et al. 2016, Turner Tomaszewicz et 

al. 2017a, 2018, Vélez-Rubio et al. 2018) and in turn estimate the duration of 

each life stage and the subsequent threats faced, which can be used to better 

understand and model population dynamics.  

 

3.2.5 Migratory connectivity 

 

To date, nesting beaches remain the main target for conservation action; 

however, as the terrestrial proportion of the life cycle of marine turtles is so brief, 

prioritising the conservation of important marine habitats and identifying the 

geospatial linkages within a population should be a priority. From nesting 

beaches, inaccessible foraging grounds and migratory connectivity can be 

identified using SIA (Table 1). To represent foraging grounds, tissues with slow 

turnover rates of months (e.g. epidermis) should be sampled (see Section 3.7 for 
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recommendations on the tissue type to sample). By compiling all studies to date, 

we show the majority sampled foraging grounds (38%, either by directed capture 

for research or using animals caught in fisheries), followed by nesting grounds 

(35%), strandings (26.5%), and/or mating grounds (0.5%).  

Quantifying the baseline isotope ratios in a region can be useful for 

interpreting marine turtle foraging and migratory behaviour. Several models have 

provided realistic predictions of global baseline isotope ratios (e.g. Tagliabue & 

Bopp 2008, Somes et al. 2010, Schmittner & Somes 2016, Magozzi et al. 2017) 

and a few isoscapes are available for the open ocean (e.g. Graham et al. 2010, 

McMahon et al. 2013). However, these show the geographical gradients of 

isotopes at very coarse resolutions. Recently, isoscapes have been developed 

for coastal and shelf areas (e.g. Vander Zanden et al. 2015, Trueman et al. 2017). 

SIA can be used in combination with satellite telemetry to identify foraging 

grounds with distinct isotope ratios and in turn assign individuals to putative 

foraging grounds. This has become common practice in marine turtle ecology, 

with the majority of studies that sampled nesting grounds proceeding to assign 

individuals to putative foraging grounds (60%). This enables dispersion of adult 

females to be estimated with reasonable certainty. SIA can also be used to 

identify potential foraging grounds with distinct isotope ratios, even when these 

foraging grounds have not been previously identified via satellite telemetry. 

These can then be further investigated with targeted satellite tracking of 

individuals to identify the location of the foraging ground associated with the 

distinct isotope ratios (e.g. Bradshaw et al. 2017).  

Once the foraging grounds of a population have been identified, the 

relative importance of each foraging ground can be estimated by calculating the 

proportion of females supported by each area (e.g. Hatase et al. 2010, 2013, 

Reich et al. 2010, Zbinden et al. 2011, Eder et al. 2012, Cardona et al. 2014, 

Vander Zanden et al. 2014a, Ceriani et al. 2015, 2017, Bradshaw et al. 2017, 

Price et al. 2017). Differences in the growth and reproductive output of each 

foraging ground can also be assessed and used as another method of 

determining the relative importance of a foraging ground (see Section 3.3). Long-

term multi-year studies enable the contributions to annual nesting cohorts and 

recruitment to be estimated and therefore to identify foraging ground dynamics 

and in turn demographic trends of the population (e.g. Pajuelo et al. 2012a, 

Vander Zanden et al. 2014a, Ceriani et al. 2015, 2017, Bradshaw et al. 2017, 
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Price et al. 2017). This baseline information could then be used to target 

conservation efforts of more threatened and/or important foraging grounds. 

In comparison to adult females, males are greatly underrepresented in 

stable isotope studies due to accessibility difficulties. Males should be prioritised 

for study, as the current dataset is not large enough to provide a solid conclusion 

on differences in isotope ratios between male and female marine turtles. Using 

SIA, adult males were suggested to forage in similar regions as females (Pajuelo 

et al. 2012b) and to forage on similar prey as no differences were observed in the 

isotope ratios of male and female loggerhead (Thomson et al. 2012, Pajuelo et 

al. 2012a), green (Vander Zanden et al. 2013a, Prior et al. 2016), or olive ridley 

turtles (Peavey et al. 2017). Sex differences in isotope ratios were not observed 

in leatherback turtles when epidermis was sampled (Dodge et al. 2011, Wallace 

et al. 2014) but were observed within blood samples (whole blood and red blood 

cells, Dodge et al. 2011). Wallace et al. (2014) suggest the difference in findings 

between these studies is likely due to differences in incorporation rates among 

tissue types sampled, but could be due to between-sex foraging differences of 

different leatherback turtle populations. Although plasma has relatively quicker 

incorporation rates compared to epidermis, and therefore would explain 

differences in whole blood and epidermis isotope ratios, red blood cells have slow 

turnover rates that are similar to epidermis and thus represent similar time 

frames. Therefore, differences in foraging strategies may exist among 

leatherback turtle populations. This highlights the importance of selecting the 

correct tissue type for the question under investigation (see Section 3.7 for 

recommendations on the tissue type to sample).  

 

3.2.6 Foraging site fidelity 

 

To ascertain foraging site fidelity of an individual the temporal consistency 

of their isotope ratios is commonly used (Table 1). SIA has been used to infer 

foraging site fidelity in marine mammals using whale baleen to create multiyear 

isotopic records to show shifts in foraging ecology and habitat use (e.g. Schell et 

al. 1989, Newsome et al. 2010). To determine temporal consistency in isotope 

ratios marine turtle isotope studies have either combined skeletochronology and 

SIA, enabling prior diet and habitat to be reconstructed (see Section 3.6 for details 

on skeletochronology and SIA; e.g. Eder et al. 2012, López-Castro et al. 2013, 
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Wallace et al. 2014, Ferreira et al. 2018), or have sampled individuals across 

multiple years (e.g. Thomson et al. 2012, Tucker et al. 2014, Goodman Hall et al. 

2015). However, there are limitations in using SIA for identifying foraging site 

fidelity, as other factors such as the influence of algal blooms or small scale 

nutrient cycling shifts on isotope ratios may occur rather than shifts in foraging 

location (e.g. Tucker et al. 2014). Therefore, stable isotopes alone are not entirely 

sufficient in some cases, and it is important to verify SIA with satellite telemetry 

or a third forensic marker (see Section 3.7 for recommendations on 

complementary techniques). 

Marine turtle isotope studies have shown that post-ontogenetic juvenile 

loggerhead turtles and sexually mature females exhibit long-term site and diet 

fidelity (Hatase et al. 2002, 2013, Vander Zanden et al. 2010, 2016, Thomson et 

al. 2012, Tucker et al. 2014, Goodman Hall et al. 2015, Cardona et al. 2017). A 

study of male loggerhead turtles suggested the level of behavioural plasticity 

depends on the foraging ground used (Pajuelo et al. 2012b, 2016), showing SIA 

can be used to identify sex differences in life history strategies. 

Eder et al. (2012) conducted SIA on the outer section of humeri from 

loggerhead turtles in Cape Verde and used skeletochronology to age the turtles. 

They found neritic loggerhead turtles in Cape Verde were older than adult oceanic 

foragers and suggested that females moved to more neritic regions, with 

increasing age suggesting foraging ground shifts can occur in later years. 

However, a later study on the same population by Cardona et al. (2017) analysed 

the isotope ratios from different layers of inert carapace and showed no isotopic 

differences. The latter study therefore suggested, instead of shifting habitat as 

reported by Eder et al. (2012), it was more likely that this population exhibits long-

term site fidelity and that oceanic foragers had a shorter life expectancy (see 

Section 3.3 for more details on the carry-over effects of foraging grounds). This 

highlights how SIA results can be incorrectly interpreted and the importance of 

combining complementary techniques (see Section 3.7 for recommendations on 

complementary techniques).  

Isotope-based studies examining the extent of site fidelity in adult green 

turtles found high foraging site fidelity (Shimada et al. 2014, Vander Zanden et 

al. 2013b, Bradshaw et al. 2017) whilst a study by Prior et al. (2016) demonstrates 

a common shift between foraging grounds. Prior et al. (2016) analysed two tissue 

types (epidermis and blood serum) which have different turnover rates (long and 
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short, respectively) with isotope ratios of blood serum showing short-term shifts 

in habitat use, whilst those showing foraging site fidelity used only one tissue type 

with slow turnover rates (scute or epidermis). This highlights that certain sampling 

methods have associated limitations on temporal detail, and this should be 

considered when interpreting results.  

High site fidelity and individual specialisation could indicate limited 

adaptability to changes in foraging grounds and it is possible some individuals 

remain in sub-optimal foraging regions, which could have subsequent carry-over 

effects (see Section 3.3 for more details on the carry-over effects of foraging 

grounds).  

 

3.2.7 Foraging dichotomies 

 

Regardless of species, marine turtle hatchlings are considered omnivores 

that later switch to a more specialised diet. However, stable isotope studies have 

demonstrated the system is more complex. Nesting populations are not simply 

composed of females foraging in several similar foraging grounds with a 

specialised diet, but that in some cases a distinct foraging dichotomy occurs, for 

example with females foraging neritically or oceanically (Table 1). In general, 

adult loggerhead and green turtles were previously considered exclusive neritic 

foragers whilst leatherback turtles were thought of as oceanic foragers (Bjorndal 

1997). Stable isotopes have revealed foraging dichotomy between oceanic and 

neritic foraging grounds for all three species (Hatase et al. 2002, 2006, Caut et 

al. 2008b, Watanabe et al. 2011, Eder et al. 2012, Cardona et al. 2017). Different 

foraging strategies will lead to exposure of different threats and environmental 

conditions and therefore conservation strategies must take this into 

consideration. Using SIA, different foraging strategies (oceanic vs. neritic) within 

a species have been highlighted in marine mammal research (e.g. Walker et al. 

1999). Reich et al. (2010) proposed a nearshore-offshore foraging dichotomy for 

NWA loggerheads based on isotope ratios, however, this study did not use 

satellite telemetry whilst later studies using SIA and satellite telemetry suggested 

the isotopic difference is, in fact, more likely due to a latitudinal gradient (e.g. 

Ceriani et al. 2012, Pajuelo et al. 2012a). This highlights the importance of 

supporting SIA results with satellite telemetry (see Section 3.7 for 

recommendations on complementary techniques).  
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Foraging dichotomies represent dramatic life history differences within a 

population. For example, neritic loggerhead turtles are typically larger than their 

oceanic conspecifics, a difference in size that has been attributed to the nutritional 

benefits of neritic prey (Hatase et al. 2002, 2010, 2013, 2014, 2015, 2018, 

Watanabe et al. 2011, Eder et al. 2012, Cardona et al. 2017). Combing SIA and 

genetics, Watanabe et al. (2011) found nesting populations demonstrating 

foraging dichotomies were genetically homogeneous, suggesting that size-

related foraging dichotomy may be due to phenotypic plasticity and that foraging 

habitats do not affect offspring morphology (Hatase et al. 2015, 2018). No size 

difference was observed between neritic and oceanic female green turtles 

suggesting the nutritional benefits of their main prey did not differ (Hatase et al. 

2006). Difference in reproductive output has however been reported between 

individuals with different foraging strategies (see Section 3.3.3). 

 

3.3 Size, growth and reproductive output 

 

In addition to foraging and spatial ecology, marine turtle stable isotope 

studies have begun to elucidate the complexities of marine turtle reproductive 

ecology and other life history traits (Table 1). Carry-over effects, the influence of 

one activity (e.g. foraging) on another (e.g. breeding), will likely differ among 

foraging grounds and foraging strategies affecting fitness correlates (Harrison et 

al. 2011). As marine turtles generally show philopatry to foraging sites, carry-over 

effects could last longer than one remigration cycle.  

 

3.3.1 Juvenile size and growth 

 

Differences in turtle body size have been observed between foraging 

grounds in juvenile loggerhead turtles (Allen et al. 2013, Clusa et al. 2016) but 

not green turtles (Di Beneditto et al. 2017). Hatase et al. (2002) suggested that 

immature loggerhead turtles recruited to nutrient-rich benthic habitats will grow 

larger than those recruited to nutrient-low pelagic habitats, but will reach sexual 

maturity at a similar age (Hatase et al. 2010). Revelles et al. (2007a) found no 

difference in juvenile loggerhead turtle size between neritic and oceanic 

individuals; however, they also found the isotope ratios of prey items did not differ, 

suggesting all juveniles were foraging pelagically irrespective of water depth. 



Chapter 2: Global review: insights from marine turtle stable isotopes 

58 
 

Many studies investigate the direct relationship between size and δ15N and/or 

δ13C values to infer the occurrence of ontogenetic shifts (e.g. Cardona et al. 2009, 

Goodman Hall et al. 2015, Vélez-Rubio et al. 2016, 2018, Burgett et al. 2018, 

Monzón-Argüello et al. 2018), diet (e.g. Wallace et al. 2009, Williams et al. 2014, 

Blasi et al. 2018, Ferreira et al. 2018), habitat differences (Bjorndal & Bolten 

2010), foraging site fidelity (e.g. Goodman Hall et al. 2015, Monzón-Argüello et 

al. 2018, Turner Tomaszewicz et al. 2018), age-at-maturity (e.g. Turner 

Tomaszewicz et al. 2018), and threats faced (e.g. Agusa et al. 2011, Clusa et al. 

2016). These studies reported different relationships between juvenile size and 

δ15N and/or δ13C values for loggerhead, green, and hawksbill turtles, suggesting 

difference in life history traits between populations. However, caution should be 

taken when interpreting isotope ratios in this regards, as incorporation rates and 

trophic discrimination factors (TDFs) can be influenced by body size and growth 

(see Section 3.5 for details on this limitation). 

 

3.3.2 Adult size and growth 

 

Morphological differences in female body size, are a known factor affecting 

reproductive output (Bjorndal & Carr 1989, Broderick et al. 2003) and therefore 

size differences between foraging strategies could influence reproductive fitness. 

Morphological differences in size have been seen between foraging grounds for 

females (Zbinden et al. 2011, Ceriani et al. 2014a, 2015, Vander Zanden et al. 

2014a, Price et al. 2017) but not males (although small samples sizes were 

reported for these; Pajuelo et al. 2012b, 2016). As with juveniles, the direct 

relationship between δ15N and/or δ13C values and female size, regardless of 

foraging ground, is dependent on the species or population studied (Godley et al. 

1998, Hatase et al. 2002, Burkholder et al. 2011, Eder et al. 2012, Thomson et 

al. 2012, Tucker et al. 2014, Wallace et al. 2014, Carpentier et al. 2015, Prior et 

al. 2016, Peavey et al. 2017). For sharks, δ13C values were not seen to differ with 

size for neritic or oceanic species; however, size did affect the isotope ratio of 

deep-sea sharks (at depths >200m) suggesting their trophic ecology is size-

structured (Bird et al. 2018). 
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3.3.3 Reproductive output 

 

The allocation of resources to reproductive traits may differ between 

foraging grounds and may result in trade-offs between life history parameters. 

When female size is accounted for, foraging ground also affects loggerhead turtle 

clutch size. SIA and satellite telemetry have been used to identify foraging 

dichotomies within nesting populations and have been used to assign females to 

either neritic or oceanic foraging grounds (e.g. Hatase et al. 2002, 2006, Caut et 

al. 2008b, Watanabe et al. 2011, Eder et al. 2012, Cardona et al. 2017; see 

Section 3.2.7 for details on these studies). In turn, SIA studies have used this 

information to show females foraging in neritic regions had larger clutches and 

clutch volumes than their oceanic conspecifics (Eder et al. 2012, Hatase et al. 

2013, 2015, 2018), whilst no difference was seen in egg size, nutritional 

components, hatchling size, or nest site selection between neritic and oceanic 

foragers, suggesting trade-offs between clutch size and egg quality do not occur 

(Hatase et al. 2014, 2015, 2018, Hatase & Omuta 2018). In addition, studies 

investigating the isotopes of nesting females from populations only foraging in 

neritic regions found differences in clutch size were still evident between foraging 

grounds (Zbinden et al. 2011, Cardona et al. 2014, Ceriani et al. 2015, 2017) 

showing both foraging strategy and foraging location can cause carry-over 

effects. 

Foraging ground did not affect loggerhead turtle hatchling production, as 

measured by the number of hatchlings that emerged from an individual nest, in 

populations exhibiting foraging dichotomy (Hatase et al. 2013, 2015, 2018) or 

between neritic foraging grounds in the Northwest Atlantic (NWA; Vander Zanden 

et al. 2014a, Ceriani et al. 2015). However, a latter study of the NWA loggerhead 

turtles found there was a difference in hatchling production between foraging 

grounds (Ceriani et al. 2017). This inconsistency was not discussed in Ceriani et 

al. (2017), however, Ceriani et al. (2017) isotopically assigned females to more 

foraging regions than previous studies and used a continuous-surface approach 

that, they stated, was an improvement on previous assignment models allowing 

for the inclusion of all sampled individuals. This highlights the importance of 

identifying all foraging grounds utilised by a population and how analytical 

developments can improve the interpretation of isotope ratios. 
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Remigration interval (the number of years between breeding events) is 

dependent on the quality and quantity of resources at the foraging ground, as 

individuals require energy reserves for migration, vitellogenesis, and nesting (e.g. 

Saba et al. 2007). Foraging ground has been seen to affect the remigration 

interval of loggerhead turtles (Vander Zanden et al. 2014a, Ceriani et al. 2015); 

in particular, those isotopically assigned to neritic foraging regions had shorter 

remigration intervals than those foraging in oceanic regions, which could lead to 

higher reproductive output (Hatase et al. 2013). This was also observed for 

leatherback turtles (Caut et al. 2008b), whilst Hetherington et al. (2018) 

suggested oceanographic conditions (North Atlantic Oscillation) may influence 

leatherback turtle nesting parameters with low North Atlantic Oscillation values 

linked with low δ15N values, longer remigration intervals, and lower clutch 

frequency. 

Female loggerhead turtles assigned to neritic foraging grounds, in 

comparison to their oceanic conspecifics, had higher clutch frequency (number 

of clutches in a season), breeding frequency (number of nesting seasons) and in 

turn cumulative reproductive output with more emergent hatchlings (Hatase et al. 

2013). Clutch frequency varied more for neritic foragers than oceanic foragers 

and was attributed to shifts in prey availability (Hatase et al. 2013). Individuals 

from neritic-only foraging grounds were interpreted as having slight differences in 

arrival date (Vander Zanden et al. 2014a), which can affect the temperature of 

incubation and in turn the sex ratio (Wibbels 2003). No differences were seen for 

individuals isotopically assigned to foraging grounds in the number of clutches 

laid (Vander Zanden et al. 2014a), duration of the nesting season (Vander 

Zanden et al. 2014a), breeding lifespan (period from first to last nesting season) 

(Hatase et al. 2013), age at sexual maturity (Hatase et al. 2010), incubation 

duration (Hatase et al. 2015, 2018), survival (Hatase et al. 2013), or hatchling 

righting response (Hatase et al. 2018). 

 

3.4 Applications of SIA for management and conservation 

 

In addition to the conservation insights afforded by enhancing the 

understanding of ecology, stable isotope studies have been used to identify and 

better contextualise threats faced by marine turtles. One of the earliest 

applications of SIA was for wildlife forensics to determine the origin of ‘tortoise-
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shell’ for the management of the illegal trade of turtle products (Moncada et al. 

1997). SIA has been used successfully to aid the policing of African elephant 

(Loxodonta africana) ivory (Vogel et al. 1990) and could be used for reptile 

populations e.g. crocodile lizards (Shinisaurus crocodilurus) (van Schingen et al. 

2016). Moncada et al. (1997) analysed δ13C and δ15N values and showed no 

distinct difference in the isotope ratio of ranched versus wild hawksbill turtles. 

Within this review we have highlighted the difficulty of distinguishing marine turtle 

species based on δ13C and δ15N values (see Section 3.2.2); therefore, analysis 

of additional elements or alternative forensic markers is required for wildlife 

forensics to successfully identify the origin of marine turtle products. 

As a result of foraging site fidelity, SIA of inert tissue has the potential to 

provide pre- and post-disaster information that is often unavailable and has 

shown individuals appear to remain in foraging grounds even after devastating 

anthropogenic activities. For example, after the Deepwater Horizon disaster in 

2010, turtles in the Gulf of Mexico continued to forage in oil- and chemical 

dispersant-affected areas (Vander Zanden et al. 2016, Reich et al. 2017), 

resulting in the potential incorporation of pollutants and a slowing of the growth 

of the population (Reich et al. 2017).  

The incorporation of contaminants offers a possible practical application in 

the use of toxicological proxies as additional forensic markers to help further 

separate foraging regions in marine mammal (e.g. Born et al. 2003, Krahn et al. 

2008) and shark studies (Shiffman et al. 2012) and could be utilised further in 

future marine turtle isotope research. SIA has been used in marine turtle 

ecotoxicology studies to show the presence of pollutants in marine turtles, 

including the increase of persistent organic pollutants in green turtles fed fish and 

cephalopods by divers (Monzón-Argüello et al. 2018). SIA has also been used to 

show the effect of provisioning for ecotourism in elasmobranchs (e.g. Maljković 

& Côté 2011) and the impact of consuming fishery discards on fish (e.g. Boyle et 

al. 2012) and seabirds (e.g. Forero & Hobson 2003, Bugoni et al. 2010). SIA has 

helped reveal highly elevated mercury levels in green turtles foraging close to 

industrial activities despite foraging on the same prey as individuals foraging in 

non-industrial areas (Bezerra et al. 2015). Bioaccumulation of arsenic and 

arsenic compounds was observed in green and hawksbill turtles with the latter 

more carnivorous species, as demonstrated by SIA, exhibiting heavier loading 

(Agusa et al. 2011). The presence of Fukushima-derived radiocesium in olive 
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ridley turtles (Madigan et al. 2017), and low maternal transfer of lead (attributed 

to non-anthropogenic sources) in nesting olive ridley females has been assessed 

using SIA (Páez-Osuna et al. 2010). Biomagnification of pollutants up through 

trophic levels has also been assessed using SIA in marine mammals and 

seabirds (e.g. Forero & Hobson 2003, Tomy et al. 2004, Newsome et al. 2010).  

Isotope studies have enabled interactions with fisheries to be identified, 

including the consumption of fishery discards by green (Turner Tomaszewicz et 

al. 2018) and olive ridley turtles (Petitet & Bugoni 2017), potential ingestion by 

loggerhead turtles of fish and squid from baited long-line hooks, which poses a 

potential bycatch threat (Revelles et al. 2007a, Blasi et al. 2018), and juvenile 

loggerhead turtles foraging food commonly bycaught or purposefully caught 

which could increase competitive interactions (Wallace et al. 2009). Previous SIA 

work has found the size and genetic stock of turtles bycaught is based on fishing 

region not fishing gear, which can help target conservation (Clusa et al. 2016). 

Isotope ratios revealed olive ridley turtles foraged in neritic and oceanic grounds 

showing they can encounter both longline and trawl fisheries, which is of concern 

(Petitet & Bugoni 2017), and that loggerhead turtles caught in California drift 

gillnets are likely those that normally forage in the central North Pacific, which are 

incidentally caught in the Hawaii-based longline fishery (Allen et al. 2013).  

Stable isotope studies have also shown predation of marine turtle 

hatchlings by black rats (Rattus rattus) during the offseason for seabird nesting 

(Caut et al. 2008a) and the importance of turtle eggs as a nutrient input to the 

beach ecosystem aiding in dune and beach stabilisation (Hannan et al. 2007, Le 

Gouvello et al. 2017). 

 

3.5 Limitations of SIA 

 

With technological and statistical advancements, the strength of SIA is 

ever-increasing. However, there are still many limitations to this tool, which 

should be considered in future studies and understood when reading the current 

SIA literature. For detailed reviews on the limitations of SIA in ecology see 

Martínez del Rio et al. (2009) and Wolf et al. (2009). Here we summarize the 

major limitations and caveats of using SIA in marine turtle ecology. 

Temporal variations in the stable isotope ratios at the base of the food 

chain can occur, for example seasonal fluctuations of zooplankton isotope ratios 



Chapter 2: Global review: insights from marine turtle stable isotopes 

63 
 

(Hannides et al. 2009). This is likely due to temporal changes in the 

physicochemical and biological composition of the primary producers (Ramos & 

González-Solís 2012). This variability will be transferred up the food chain, putting 

in to question the seasonal stability of stable isotopes and isoscapes, which are 

relied on to trace predator movements (Graham et al. 2010, Ramos & González-

Solís 2012). For example, seasonal differences observed by Tucker et al. (2014) 

for loggerhead turtles in the Gulf of Mexico were due to baseline changes in 

isotope ratios, which were exhibited up the food chain, rather than seasonal 

habitat shifts of the turtles. This can limit the use of SIA in assignment studies 

and highlights the importance of using complementary satellite tracking to confirm 

the foraging site fidelity of a population. 

Newsome et al. (2010) describe in detail why isotope ratios may shift 

during fasting and periods of nutritional stress in marine mammals and may 

explain why isotope ratios of marine turtles could shift across a nesting season 

due to fasting, migratory foraging, inter-nesting foraging, or a consequence of 

egg formation (e.g. Hatase et al. 2006, Caut et al. 2008b, Zbinden et al. 2011, 

Petitet & Bugoni 2017). We therefore recommend samples be taken from 

breeding individuals as early in the season as possible to best represent the 

foraging ground.  

The time frame represented by each tissue type is dependent on the 

metabolic turnover rate of that tissue (Reich et al. 2008). Isotopic turnover rates 

can vary with body size, growth rate, diet quality, and protein turnover (for details, 

see review by Wolf et al. 2009). Known turnover rates of tissues are important 

but lacking in large marine taxa, such as marine turtles, seabirds (Forero & 

Hobson 2003), marine mammals (Newsome et al. 2010), and elasmobranchs 

(Shiffman et al. 2012) due to the limited ability to perform diet-switching 

experiments. Therefore, the time frames that tissue-types represent are not well 

known despite being required to accurately interpret SIA results and should be 

carefully considered when designing future ecological studies (Ramos &   

González-Solís 2012). 

Inherent variation of stable isotopes (isotope differences between 

consumers due to differences in their physiology, not diet) are often overlooked 

in marine turtle SIA studies, and instead the variation in isotope ratios between 

individuals is related to differences in diet or habitat. To estimate dietary or habitat 

effects on the stable isotope composition of a population with greater confidence, 
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the amount of inherent variation within the population needs to be estimated but 

this information is sparse in ecology studies (Barnes et al. 2008), and the marine 

turtle literature is no exception. Vander Zanden et al. (2012) found that a small 

portion of the isotopic variation measured in a wild green turtle population was 

due to inherent variation, whilst the majority of variation resulted from diet and/or 

habitat differences. Similar values of inherent variation were reported for juvenile 

green turtles by Seminoff et al. (2006a), whilst Seminoff et al. (2009) found 

juvenile leatherbacks had larger inherent variation (for comparison between 

these studies, see Vander Zanden et al. 2012). As inherent variation can differ 

with species, life stage, and tissue (Barnes et al. 2008, Vander Zanden et al. 

2012), additional studies are required for marine turtles, and Barnes et al. (2008) 

suggests inherent variation should be quantified on a case-by-case basis. 

Trophic discrimination factors (TDFs) are the difference between predator 

and prey isotope ratios (represented as Δ = δtissue – δdiet) and are used in SIA 

literature to infer relative trophic positions and for dietary reconstructions. 

However, a clear understanding of TDFs is critical to prevent the incorrect 

interpretation of isotope ratios and incorrect outputs for mixing models (Post 

2002, Caut et al. 2009, Martínez del Rio et al. 2009, Wolf et al. 2009).  

Many studies use generalised diet-tissue discrimination factors such as 3-

4‰ for nitrogen and 0-1‰ for carbon (Post 2002) as species-specific TDFs are 

limited (Caut et al. 2009). This is because they require studies of captive 

individuals fed on a consistent diet for sufficient time, which is difficult especially 

for large marine vertebrates such as marine turtles (Turner Tomaszewicz et al. 

2017b). There are only a few TDFs available for marine mammals (Newsome et 

al. 2010), and elasmobranchs (Shiffman et al. 2012). See Newsome et al. (2010) 

for review of TDFs in marine mammals. TDFs are limited for marine turtles but 

have been estimated for several tissues types, life stages, and species, including 

juvenile and adult green turtles (Seminoff et al. 2006a, Vander Zanden et al. 

2012, Turner Tomaszewicz et al. 2017b), hatchling and juvenile loggerhead 

turtles (Reich et al. 2008) and juvenile leatherback turtles (Seminoff et al. 2009); 

however, these are often based on small sample sizes. Differences were 

observed between the TDFs calculated for juvenile green turtles by Seminoff et 

al. (2006a) compared to those calculated by Vander Zanden et al. (2012) and 

Turner Tomaszewicz et al. (2017b). This difference was attributed to differences 

in diet, growth rates, and lipid extraction and highlights the sensitivity of TDFs. 
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The majority of these study animals were fed pelleted diets, whilst future 

experimental studies should ideally use the same food sources the consumers 

would encounter in the wild (Healy et al. 2018, Caut et al. 2009). These species-

specific TDFs have been used by other marine turtle studies even when sampling 

different populations, life stages, or tissue (e.g. Burgett et al. 2018, Gillis et al. 

2018, Monzón-Argüello et al. 2018). 

When discrimination factors cannot be measured experimentally, Caut et 

al. (2009) propose a way of estimating the TDF of a consumer (the Diet‐

Dependent Discrimination Factor method); however, this only provides a mean 

TDF that can then be included in isotope mixing models (see Section 3.6 for 

details on isotope mixing models). A new analytical approach to estimate TDFs 

has been developed, the R package SIDER (Healy et al. 2018), which calculates 

the TDF of a consumer based on their ecology and phylogenetic relatedness. The 

estimated TDF and the associated uncertainty can then be included in mixing 

models. However, this R package is not yet applicable to reptiles.  

There are also new Bayesian techniques to estimate the trophic position 

of a consumer, for example, the R package tRophicPosition (Quezada‐Romegialli 

et al. 2018). This approach estimates the trophic position of a consumer at a 

population level using the consumer and baseline stable isotope ratios, whilst 

taking into account inherent variation within the population and sampling errors 

for TDFs and baseline and consumer isotope ratios (Quezada‐Romegialli et al. 

2018). One limitation of this method is that TDFs are incorporated into the model 

as raw data and Quezada‐Romegialli et al. (2018) suggest the selection of a 

representative TDF is critical. Additionally, there are empirical ways to estimate 

trophic position, for example using compound-specific SIA (CSIA) of amino acids, 

which are discussed in Section 3.6. 

Many studies suggest TDFs are an important area for future 

methodological work, however, we recommend treating the concept of TDFs with 

caution, as the processes that influence TDFs are not fully understood and they 

are likely highly dynamic, with incorporation rates of intrinsic markers into tissues 

differing not only with species but with sex, life stage, isotope analysed, isotopic 

routing, growth rates, tissue sampled, health, diet isotopic composition, and diet 

quality (e.g. Seminoff et al. 2006a, Reich et al. 2008, Vander Zanden et al. 2012, 

Turner Tomaszewicz et al. 2017b). 



Chapter 2: Global review: insights from marine turtle stable isotopes 

66 
 

Martínez del Rio et al. (2009) and Wolf et al. (2009) highlight that there are 

far more observational field studies applying SIA than there are experimental 

studies aiming to understand the mechanisms behind stable isotopes and SIA, 

and suggest field data be accompanied by laboratory experiments. We support 

this recommendation and suggest the important limitations overviewed here 

should be considered during the design of future marine turtle studies and should 

be understood when reading SIA literature. Despite these limitations, SIA is 

undoubtedly an invaluable tool for marine turtle ecology. 

 

3.6 Additional analytical approaches 

 

Throughout the SIA literature, complementary techniques are often used 

to offer further insights about marine turtle ecology, including satellite telemetry, 

genetics, and stomach content analysis (as discussed in Section 1.1). Other tools 

used in SIA research include skeletochronology, CSIA, and mixing models. As 

these will likely become more common in the SIA literature, we offer a brief 

overview of these techniques. 

Many marine turtle SIA studies sample mineralised tissues such as scutes 

and humeri as the isotope ratios of these chemically inert accretionary tissues do 

not change after formation (Snover et al. 2010). Skeletochronology specifically 

relates to analysing skeletal growth increments, which in marine turtle research 

is usually sampled from humeri. SIA of inert tissues enables a time-series of the 

prior diet and habitat to be reconstructed from different layers of the accretionary 

tissue, showing either seasonal or inter-annual changes. This technique is often 

used to infer life history patterns, for example the occurrence of ontogenetic shifts 

(e.g. Ramirez et al. 2017, Turner Tomaszewicz et al. 2017a), or to track 

movements (e.g. López-Castro et al. 2013, Vander Zanden et al. 2015). Marine 

mammal isotope studies have analysed accretionary tissues such as teeth to 

show dietary shifts, differences in maternal strategies, as well as ontogenetic 

shifts (Newsome et al. 2009, 2010). One limitation of this technique is 

understanding the species-specific growth rates and turnover rates and therefore 

the time frame each tissue layer represents, and this is recommended for future 

experimental work (Pajuelo et al. 2016). The periodicity of bone growth layers 

have, however, been validated for several marine turtle species (Snover et al. 

2007, 2010). Another limitation of sampling scute is that unlike bone, scute tissue 
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only represents a short time-series of 0.8 to 2 years (Vander Zanden et al. 

2013b). Turner Tomaszewicz et al. (2017a) highlight the likely time delay between 

prey consumption and the assimilation into inert accretionary tissues, which may 

prevent a detailed estimation of the ontogenetic shift, especially in the most 

recent tissue layers. In addition, samples from humeri can only be obtained from 

dead turtles during necropsies, whilst scute samples can be obtained non-

invasively depending on the depth of sample required.  

CSIA can provide additional and in many cases more detailed information 

to bulk tissue SIA helping minimize assumptions related to the interpretation of 

bulk tissue isotope ratios (see review by Evershed et al. 2007). Stable isotopes 

of specific organic molecules, e.g. fatty acids and amino acids, have only been 

analysed in a few marine turtle studies (e.g. Belicka et al. 2012, Cardona et al. 

2015) but are likely to be used more frequently in the future. 

Fatty acid fingerprinting and amino acid analysis can be important 

techniques in diet studies aiming to trace the source of organic matter in food 

webs and the relative abundance of prey items within a diet (Belicka et al. 2012). 

In some cases, SIA alone cannot differentiate between primary sources of 

organic matter (seagrass, epiphytes, macroalgae) and therefore, might over- or 

under-emphasise their importance within diets (Jaschinski et al. 2008, Crawley 

et al. 2009, Larsen et al. 2012). Taxon-specific fatty acids are produced by 

phytoplankton, microzooplankton, and bacteria which are deposited into 

consumer adipose tissue with minimal modification and are therefore reflected 

within the consumers (Iverson et al. 2004, Budge et al. 2006). This enables fatty 

acid fingerprinting to estimate the source of organic matter at the base of a 

consumer’s food chain (Ramos &   González-Solís 2012). 

Fatty acid fingerprinting in combination with SIA has been used to estimate 

the contribution of primary producers to green and loggerhead turtle diets in 

Shark Bay, Australia (Belicka et al. 2012). However, this study suggested large 

sample sizes are required to separate these primary producers further. Belicka 

et al. (2012) also suggest fatty acid fingerprinting should be used with caution for 

green turtles, as hindgut bacterial fermentation could cause considerable 

modifications of fatty acids prior to deposition in lipid reserves (Seaborn et al. 

2005). Higher trophic prey items can also be distinguished within marine turtle 

diets, for example the contribution of sardines and anchovies to marine turtle diet 

(e.g. Cardona et al. 2015). Fatty acid isotopes are considered more specific to 
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the dietary source compared to bulk stable isotopes; whilst physiology could 

influence fatty acid isotope ratios of consumers. This was not considered to be 

the case for green and loggerhead turtles (Cardona et al. 2015). De Troch et al. 

(2012) highlight the importance of considering bioconversion of fatty acids when 

using them as biomarkers, as it is possible they undergo degradation and 

transformation through the food chain. Fatty acids also only makeup a small 

proportion of the total organic carbon, whilst amino acids account for a large 

proportion of organic carbon and nitrogen, and therefore amino acid analysis is 

considered more representative of the diet as a whole (Hedges et al. 2001). 

Essential amino acids (EAAs) produced at the base of the food chain have 

distinct isotope ratios (i.e. δ13CEAA) and due to little to no isotopic fractionation up 

the food chain can be used as intrinsic markers in high trophic consumers 

(O’Brien et al. 2002, Larsen et al. 2009, 2012, 2013). In addition, bulk δ13C values 

at the base of the food chain can be influenced by variable environmental 

conditions (affecting growth rates and cell surface area) whilst δ13CEAA does not 

appear to be affected by environmental conditions (Larsen et al. 2013). However, 

as with fatty acids, hindgut fermentation performed by hindgut microflora in 

consumers, e.g. green turtles, might influence δ13CEAA. EAAs have been used to 

explore the influence of marine turtle gut microflora on δ13CEAA. By analysing 

δ13CEAA in herbivorous green turtle tissue, Arthur et al. (2014) found that 

individuals receive a large contribution of EAAs from a bacterial source, whilst 

EAAs of carnivorous green, loggerhead, and olive ridley turtles were from 

microalgae sources in oceanic food webs. EAAs could therefore be used to 

differentiate between herbivores and carnivores; however, it does not 

differentiate whether the bacterial source of δ13CEAA is from gut microflora or 

epiphytes in the food. Further analysis (linear discriminant analysis) was required 

to show the δ13CEAA indeed stemmed from gut microflora (Arthur et al. 2014). 

A limitation of SIA is the inability to decipher whether differences in bulk 

δ15N values are due to baseline isotope shifts or the influence of the trophic 

position of the consumer. CSIA of amino acids can determine if differences in 

bulk δ15N values are due to differences in ‘trophic’ amino acids (e.g. glutamic acid 

and alanine), which reflect trophic level, or ‘source’ amino acids (e.g. 

phenylalanine and lysine), which reflect isotope composition of the primary 

producers at the base of the food chain (McClelland & Montoya 2002). This 

enables trophic position to be estimated without sampling prey items (Seminoff 
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et al. 2012) and has been used to show that differences in bulk δ15N values were 

due to baseline shifts, instead of differences in trophic position for leatherback 

(Seminoff et al. 2012, Hetherington et al. 2018), green (Vander Zanden et al. 

2013a), and olive ridley turtles (Peavey et al. 2017), which could have been 

misinterpreted using bulk SIA alone. 

Amino acid analysis has been recommended for use in future marine 

mammal research to help disentangle spatial and trophic difference in isotope 

ratios; however, Newsome et al. (2010) state that controlled feeding studies are 

required to confirm the distinction between source and trophic amino acids. 

Peavey et al. (2017) recommend that amino acid-specific incorporation rates and 

trophic discrimination factors need to be better understood for different marine 

turtle species and tissue types. Larsen et al. (2012) highlight two limitations of 

amino acid analysis. Firstly, primary producers could contribute to the diet of a 

consumer and not be reflected in the amino acids as amino acids are not 

equivalent to the entire diet, and secondly, isotopic differences in amino acids 

between the diet and a consumer has been seen in some consumers, especially 

those with protein-poor diets. 

CSIA of fatty acids and amino acids is complicated by the complex food 

chains used by marine turtles, especially carnivorous species, the diet of which 

will likely be based on a range of primary producers (Arthur et al. 2014). Arthur et 

al. (2014) discuss the potential power of analysing the isotopes of specific 

compounds compared to bulk tissue analysis, but highlight the need for controlled 

studies to validate their interpretation, which is also recommended by Larsen et 

al. (2012). As with any analytical tool, CSIA has considerable cost in terms of 

analysis time and expense, which can limit sample size (e.g. Vander Zanden et 

al. 2013a) and has to be considered in study design.  

In marine turtle research, mixing models are used to estimate the 

proportional contribution of dietary items to the diet of a consumer (e.g. McClellan 

et al. 2010, Burgett et al. 2018, Gillis et al. 2018, Monzón-Argüello et al. 2018). 

Within the field of isotope ecology, common analytical tools used are mixing 

models, such as linear mixing models like IsoSource (Phillips & Gregg 2003), or 

Bayesian mixing models like SIAR (Stable Isotope Analysis in R; Parnell et al. 

2010), MixSIR (Moore & Semmens 2008), and MixSIAR (Stock & Semmens 

2016). IsoSource calculates a range of possible dietary contributions that could 

result in the consumer isotope ratio and is a very common tool used in SIA due 
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to its ease of use, public availability, and the limited input data required; however, 

model outputs are often misinterpreted (Layman et al. 2012). Bayesian mixing 

models suggest the most likely proportional contribution of sources to consumers 

as these use additional a priori knowledge (e.g. proportional contributions of 

sources and potential variability in all input parameters; Layman et al. 2012). 

Although more advanced than IsoSource, Bayesian mixing models have high 

data requirements and are still sensitive to the quality of input values (for further 

details on mixing models and their limitations, see review by Layman et al. 2012).  

There are numerous conceptual and methodological issues surrounding 

the use of SIA in diet reconstruction, especially using mixing models (Martínez 

del Rio et al. 2009, Wolf et al. 2009). To build a mixing model TDFs and 

incorporation rates are required for the specific tissue, life stage, and species 

being analysed. As discussed in Section 3.5 these are limited for marine turtles. 

For best results, all prey items must be included and sampled on the same time 

frame as the consumer tissue is synthesised (Layman et al. 2012). Sampson et 

al. (2017) were unable to successfully run a MixSIAR for green turtles due to the 

exclusion of important prey items that were not considered potential prey from 

previous oesophageal lavage sampling, and Williams et al (2014) felt they were 

unable to sample all prey items, preventing them running mixing models. 

Dodge et al. (2011) also recommend locally sampled prey items to be used 

in preference to published isotope ratios, as inconsistencies in the isotope ratios 

of prey occur. Burgett et al. (2018) highlight the importance of including prey 

isotope ratios that are area-specific to prevent dramatically under- or 

overestimating prey proportions or trophic position. Large variation in baseline 

isotope ratios can make the results harder to interpret as seen for green turtles 

by Vélez-Rubio et al. (2016), and Layman et al. (2012) suggest that as temporal 

and spatial variability of source isotope ratios increase, the sampling effort must 

increase to represent this detail. Lack of distinct differences in isotope ratios 

between prey items especially within similar food groups (e.g. Shimada et al. 

2014) limits the ability of mixing models to estimate the diet of a consumer 

(Layman et al. 2012). Bias in the detection of animal matter versus plant material 

might occur, as animal matter is protein-based and is incorporated directly into 

the tissue of the turtle (Cardona et al. 2009). Determining the proportion of prey 

in the diet of a population can also change depending on the mixing models used 

(Goodman Hall et al. 2015). 
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3.7 Key recommendations 

 

This review reveals that several common recommendations have been 

made throughout the SIA literature, including standardised protocols for tissue 

collection and preservation, the use of an additional forensic marker or 

complementary techniques to provide greater power of inference, and compiling 

the isotope ratios of marine turtles at a global scale to facilitate meta-analytical 

approaches (Table 2).  This review and inventory also leads us to emphasise the 

variation in methodological approaches used (see Table S1 for details on the 

methodology used by each study; data available at 

doi.org/10.1594/PANGAEA.89268). For global comparisons to be made, 

standardised protocols are needed; however, there are scientific reasons for 

choosing particular tissues and techniques for specific studies, and we 

understand these should be the primary methodological drivers. 

 

 

 

  

Table 2. Key recommendations for future marine turtle stable isotope 
studies. SIA: Stable isotope analysis; CSIA: compound-specific SIA 
 
 

Recommendation 
 

Target under-studied species 
Cover a larger geographical range 
Target males 
Collaborate for meta-analytical approaches 
Use a standardised technique, e.g. store epidermis in 70% ethanol and freeze yolk samples 
Use a standardised technique for each tissue type 
Only collect multiple tissue types when comparing short- and long-term foraging 
Use epidermal tissue for long-term information  
Use unhatched egg yolk as a proxy for unobserved nesting females 
Conduct more research on tissue turnover rates 
Use conversion equations with caution. 
Use tissue-types representing similar biochemical mechanisms and time frames 
Conduct more research on discrimination factors 
Use a standardised isotope mixing model 
Use locally sampled prey 
Know all foraging grounds of the population 
Determine foraging site fidelity 
Collect samples from as early in the nesting season as possible 
Use a third forensic marker for greater power of inference 
Combine SIA with complementary techniques, e.g. satellite telemetry and CSIA 
Conduct multi-year studies so shifts in population dynamics can be documented and pre- and 
post-disaster information to be obtained 
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Isotope ratios of marine turtle tissue change with decomposition (Payo-

Payo et al. 2013), therefore tissues must be preserved. However, the 

preservation of samples, including blood anticoagulants, have been shown to 

significantly affect isotope ratios (Barrow et al. 2008, Lemons et al. 2012, 

Kaufman et al. 2014, Carpena-Catoira et al. 2016). We recommend a 

standardised preservation technique should be implemented for each tissue type 

in future research, although we understand logistical reasons could restrict what 

techniques are used. This was also recommended by Newsome et al. (2010) for 

SIA in marine mammals. 

Carpena-Catoira et al. (2016) recommend the storage of epidermis in 

dimethyl sulfoxide (DMSO) buffer when storage in liquid nitrogen is not possible; 

however, these authors only compare these two preservation methods. Barrow 

et al. (2008) found DMSO affects epidermis isotope ratios whilst ethanol does 

not. Storage of epidermis in ethanol was also the most common technique (44% 

of studies sampling epidermis) and therefore we recommend this preservation 

technique. Kaufman et al. (2014) recommend egg contents be frozen and only 

stored in ethanol if a freezer is unavailable. We support this recommendation, 

and freezing of egg contents was the most common technique (89% of studies 

sampling egg contents). Based on the most common techniques used we also 

recommend epibionts and tendons be stored in ethanol, inert tissues such as 

scute and humeri that do not decay to be air-dried, and freezing of muscle, blood, 

and liver. In addition, Lemons et al. (2012) recommend sodium heparin as the 

best blood anticoagulant when immediate centrifugation is not possible.  

Despite using the same tissue type, there was variation in whether lipid 

extraction was performed or correction factors applied. In some cases, lipid 

extraction was found to influence isotopes and these differences were biologically 

relevant and therefore caution must be exercised (Kaufman et al. 2014, 

Carpentier et al. 2015, Medeiros et al. 2015, Bergamo et al. 2016). Many studies 

use the recommendation that samples with C:N > 3.5 should undergo lipid 

extraction (Post et al. 2007); however, Bergamo et al. (2016) showed the C:N 

ratio might not reliably predict the lipid content of marine turtle tissue samples. 

Newsome et al. (2010) recommend that all studies should report the mean C:N 

ratio and associated error of tissues undergoing SIA, which we support. We agree 

with the recommendation by Carpentier et al. (2015) that ideally samples would 

be analysed twice, pre- and post-extraction, but it is appreciated that this adds to 
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time and cost of analysis, as highlighted by Kaufman et al. (2014) and Bergamo 

et al. (2016). For diet studies sampling prey items, we support the 

recommendation by Newsome et al. (2010) that prey items, especially lipid-rich 

prey, should be analysed pre- and post-extraction. Numerous chemical 

treatments were utilised in the extensive shark SIA dataset compiled by Bird et 

al. (2018) and the importance of tissue preservation, preparation, and lipid 

extraction methods have been highlighted as key analytical considerations in 

marine mammal (Newsome et al. 2010) and elasmobranch research (Shiffman 

et al. 2012), supporting the conclusion that the use of standardised protocols is 

important in all marine SIA applications.  

Numerous tissue types are used in the field of marine turtle SIA (see 

Section 3.1) as well as other marine taxa including marine mammals (Newsome 

et al. 2010). As the tissue type used represents different time frames of dietary 

information (Reich et al. 2008), we recommend multiple tissue types only to be 

collected when comparing short and long-term foraging (e.g. Petitet & Bugoni 

2017). The use of multiple tissues with different turnover rates has shown 

ontogenetic shifts in elasmobranchs (Shiffman et al. 2012). Newsome et al. 

(2010) recommend that for marine mammal SIA tissues selected for analysis 

should have long integration times and relatively slow turnover rates (e.g. 

epidermis) to prevent short-term diet affecting the overall isotope ratios. We also 

recommend that for long-term information, epidermal tissue, which has a turnover 

of months (Reich et al. 2008) is best and would allow comparisons between 

hatchlings, juveniles, and adults. Hatchling and egg tissue is derived from the 

mother and represents her isotope ratios (Frankel et al. 2012, Kaufman et al. 

2014, Carpentier et al. 2015). Unhatched egg content isotope ratios are 

equivalent to freshly laid egg yolk (Zbinden et al. 2011, Ceriani et al. 2014b). 

Sampling fresh egg yolk is a lethal sampling method and should be avoided if 

possible. We therefore support the recommendation by Ceriani et al. (2014b) that 

unhatched egg yolk should be sampled as a proxy for unobserved nesting 

females. Sampling for SIA can be intrusive and future work should take ethical 

concerns into consideration and determine whether it is warranted. 

Conversion equations have been developed for many tissue-tissue 

relationships, which enables isotope ratios to be compared (see Table S3 in the 

Supplement for all available conversion equations). However, many studies that 

provide conversion equations state that they should be used with caution, as they 
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are often derived from small sample sizes, with low coefficient of determination 

values, or weak correlations. Without performing controlled laboratory feeding 

studies, there are numerous factors that can influence isotopic differentiation 

between tissues (see Section 3.5), and these are unlikely to be consistent in all 

cases.  

Using a standardised tissue type (as recommended above) would prevent 

the need for conversion equations and would enable direct comparisons between 

studies. If conversions are required, we recommend studies use values from 

tissues with the same biochemical mechanism (i.e. collagen is high in 13C 

enriched glycine and therefore collagen has higher δ 13C values in comparison to 

muscle) and they should only be done with tissue-types representing similar turn-

over time frames, e.g. scute and epidermis (Petitet & Bugoni 2017), or unhatched 

egg content and epidermis (Ceriani et al. 2014b). 

We support the recommendation by Belicka et al. (2012) and Ramos & 

González-Solís (2012) that future studies should use a third forensic marker to 

provide greater power of inference of dietary estimations and geographical 

assignments. Only six marine turtle studies have thus far used a third marker, 

either δ34S (Cardona et al. 2009, Belicka et al. 2012, Tucker et al. 2014, 

Bradshaw et al. 2017), trace elements (López-Castro et al. 2013), or isotopes of 

trace elements, e.g. lead (López-Castro et al. 2014a). All of these techniques 

have limitations, for example climate and other conditions greatly affected the 

spatial and temporal variability of trace elements (Jickells et al. 2005). These 

limitations should be considered when designing studies and Ramos & González-

Solís (2012) recommend caution when simultaneously analysing multiple 

markers due to the differences in how they are integrated into a consumers 

tissues (Bond 2010).  

For a holistic understanding of marine turtle ecology, studies should, 

where possible, conduct concurrent complementary techniques such as stomach 

content analysis (e.g. Burkholder et al. 2011), satellite telemetry (e.g. Hatase et 

al. 2010), CSIA (e.g. Belicka et al. 2012, Peavey et al. 2017), and genetics (e.g. 

Watanabe et al. 2011). The need for complementary techniques is mirrored in 

seabird (Forero & Hobson 2003), marine mammal (Newsome et al. 2010), and 

shark ecological research (Bird et al. 2018). We support Newsome et al. (2010) 

who recommend the use of time-depth recorders as well as satellite telemetry in 
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marine mammal research to confirm the use of isotopic data as proxies for diet 

and habitat use. 

For a more complete meta-analysis the focus of future research should be 

on under-studied species and conducted globally across all species ranges. To 

understand a population as a whole, males should also be targeted in future 

studies, but we understand the difficulties of accessing males. We also 

recommend that, where possible, life stage and sex should be made clear in all 

publications. Studies over multiple years, rather than snap-shot studies, are also 

important to enable long-term shifts in population dynamics to be documented 

(e.g. Bradshaw et al. 2017, Ceriani et al. 2017). To fully understand the 

complexities of marine turtle ecology, data and findings should be combined at a 

global scale to facilitate meta-analytical approaches. This would also enable 

marine turtle species-specific isoscapes to be created. We encourage 

researchers to add their papers to the global inventory that we have initiated, by 

sending the appropriate data (under the specific column headings in Table S1) to 

the corresponding author for us to regularly update this open access global 

inventory. The open access means that this resource, and any future updates, 

will be available to all researchers, helping increase exposure of new studies, 

whilst also underpinning and accelerating new advances in the conservation of 

marine turtles. 

 

CONCLUSIONS 

 

This review confirms and details the wealth of ecological information 

gained from marine turtle stable isotope research. Clearly, large gaps in 

knowledge for several species and life stages exist, along with geographical bias 

in the distribution of studies. We have created a global inventory of published 

marine turtle stable isotope studies and data which can be continuously and 

easily revised as new data are collected. Recommendations, based on the 

extensive literature, are provided to guide future foci of ecology and conservation 

research of these important marine animals. Marine turtle stable isotope studies 

have helped reveal the complexity of marine turtle ecology, but we believe the full 

utility of stable isotopes is yet to be realised. 
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Supporting Information 
 

Table S2. Summary of marine turtle stable isotope studies including the life stage sampled and the isotope ratios by species 
and region. Life stage included adult females (F, including hatchlings and eggs); adult males (M); juveniles (J); or were unknown (U) 
Several studies investigated multiple species, sexes, and region and therefore feature more than once  
  Life stage       

Species/Region F M J U δ13C δ15N Source 

Loggerhead turtle (Caretta caretta) 

Pacific 10 1 6 0  -20.00 
to -14.70 

9.92 to 
17.10 

Hatase et al. 2002, 2010, 2013, 2014, 2015, 2018a, Pajuelo et al. 2010, Watanabe et al. 2011, Allen 
et al. 2013, Arthur et al. 2014, Carpentier et al. 2015, Turner Tomaszewicz et al. 2015, 2016, Hatase 
& Omatu 2018 

Atlantic 22 5 17 0  -20.50 
to -9.00 

3.10 to 
16.39 

Killingley & Lutcavage 1983, Hannan et al. 2007, Reich et al. 2007, 2010, Barrow et al. 2008, Wallace 
et al. 2009, McClellan et al. 2010, Pajuelo et al. 2010, 2012a, b, 2016, Snover et al. 2010, Vander 
Zanden et al. 2010, 2014a, b, 2015, 2016, Ceriani et al. 2012, 2014a, b, 2015, 2017, Eder et al. 2012, 
Frankel et al. 2012, Avens et al. 2013, Lopez-Castro et al. 2013, 2014, Kaufman et al. 2014, Tucker 
et al. 2014, Goodman Hall et al. 2015, Medeiros et al. 2015, Ramirez et al. 2015, 2017, Turner 
Tomaszewicz et al. 2015, Cardona et al. 2017, Price et al. 2017, Monzón-Argüello et al. 2018 

Gulf of Mexico 6 1 0 0 -17.83 to 
-14.93 

8.32 to 
12.89 

Ceriani et al. 2012, 2015, 2017, Pajuelo et al. 2012b, Tucker et al. 2014 Vander Zanden et al. 2015, 
2016 

Mediterranean 4 1 6 2 -19.25 to 
-15.40 

6.00 to 
14.00 

Godley et al. 1998, Revelles et al. 2007a, b, Cardona et al. 2010, 2012, 2014, 2015, Zbinden et al. 
2011, Payo-Payo et al. 2013, Clusa et al. 2016, Blasi et al. 2018 

Indian 4 2 1 0 -14.50 to 
-13.62 

6.90 to 
10.95 

Belicka et al. 2012, Thomson et al. 2012, Robinson et al. 2016, Le Gouvello et al. 2017 

Green turtle (Chelonia mydas) 

Pacific 8 7 12 0 -19.00 to 
-9.40 

6.30 to 
16.90 

Hatase et al. 2006, Arthur et al. 2008, 2014, Caut et al. 2008a, Agusa et al. 2011, Lemons et al. 2011, 
2012, Shimada et al. 2014, Detjen et al. 2015, Turner Tomaszewicz et al. 2015, 2016, 2017b, 2018, 
Prior et al. 2016, Sampson et al. 2017 

Caribbean 3 1 3 0 -10.00 to 
-9.00 

5.60 to 
6.60 

Biasatti et al. 2004, Lopez-Castro et al. 2013, 2014, Vander Zanden et al. 2013a, b 

Atlantic 5 2 21 0  -28.3 to 
-5.80 

0.85 to 
13.20 

Hannan et al. 2007, Reich et al. 2007,  Barrow et al. 2008, Cardona et al. 2009, Bjorndal & Bolten 
2010, Lopez-Castro et al. 2013, 2014, Vander Zanden et al. 2013a, b, Gonzalez et al. 2014, Bezerra 
et al. 2015, Bergamo et al. 2016, Velez-Rubio et al. 2016, 2018, Di Beneditto et al. 2017, Burgett et 
al. 2018, Gillis et al. 2018, Hancock et al. 2018, Monzón-Argüello et al. 2018 
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Gulf of Mexico 0 0 5 0 -12.90 to 
-8.00 

6.50 to 
9.10 

Lopez-Castro et al. 2013, 2014, Vander Zanden et al. 2013a, Williams et al. 2014, Howell et al. 2016 

Mediterranean 3 1 1 0 -16.23 to 
-5.50 

5.00 to 
11.00 

Godley et al. 1998, Cardona et al. 2010, Bradshaw et al. 2017 

Indian 3 3 0 1  -19.50 
to -11.00 

6.0 to 
10.0 

Burkholder et al. 2011, Belicka et al. 2012, Thomson et al. 2018 

Leatherback turtle (Dermochelys coriacea) 

Pacific 2 0 0 0 -19.00 to 
-16.50 

11.55 
to 
16.10 

Wallace et al. 2006, Seminoff et al. 2012 

Caribbean 1 0 0 0 -12.30 to 
-8.40 

 -  Biasatti et al. 2004 

Atlantic 7 3 2 0 -19.20 to 
-16.90 

4.20 to 
14.10 

Godley et al. 1998, Biasatti et al. 2004, Wallace et al. 2006, 2014, Caut et al. 2008b, Dodge et al. 
2011, Hetherington et al. 2018 

Indian 1 0 0 0 -18.45 to 
-16.45 

11.00 
to 
11.50 

Robinson et al. 2016 

Olive ridley turtle (Lepidochelys olivacea) 

Pacific 4 2 1 1 -18.10 to 
-15.40 

11.70 
to 
17.00 

Biasatti et al. 2004, Páez-Osuna et al. 2010, Arthur et al.  2014, Carpena-Catoira et al. 2016, Madigan 
et al. 2017, Peavey et al. 2017 

Atlantic 1 0 0 0 -16.56 10.83 Petitet & Bugoni 2017 

Kemp's ridley turtle (Lepidochelys kempii) 

Gulf of Mexico 1 0 0 0 -17.2 11.4 Reich et al. 2017 

Hawksbill turtle (Eretmochelys imbricata) 

Pacific 0 0 1 0 -16.16 6.22 Agusa et al. 2011 

Atlantic 1 1 2 0 -17.90 to 
-9.85 

5.43 to 
10.50 

Bjorndal & Bolten 2010, Ferreira et al. 2018 
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Table S3. Tissue conversion equations available for all marine turtles. RBC: red blood cells; U: unhatched; Fre: fresh; Fro: frozen; 
LE: lipid extracted; E: ethanol 
  
Tissue 
from 

Tissue to δ13C r2 p δ15N r2 p Sampl
e size 

Life Stage Source 

Loggerhead turtle (Caretta caretta) 

RBC Epidermi
s 

δ13Cepi=0.953*δ13CRBC+0.734 0.
9 

 -  δ15Nepi=1.031*δ15NRBC+1.576 0.
9 

 -  165 Adults Ceriani et al. 
2015 

RBC Epidermi
s 

δ13Cepi=0.8489*δ13CRBC-
1.6691 

0.
8 

<0.00
1 

δ15Nepi=0.7752*δ15NRBC+3.18
9 

0.
9 

<0.00
1 

66 Juveniles Ceriani et al. 
2014a 

Whole egg 
(U) 

RBC δ13Cunhat=0.964*δ13CRBC-
1.769 

0.
9 

<0.00
1 

δ15Nunhat=0.931*δ15NRBC+3.18
2 

0.
9 

<0.00
1 

80 Eggs/ Females Ceriani et al. 
2014b 

Whole egg 
(U) 

Epidermi
s 

δ13Cunhat=0.936*δ13Cepi-3.415 0.
8 

<0.00
1 

δ15Nunhat=0.875*δ15Nepi+2.16
2 

0.
9 

<0.00
1 

80 Eggs/Females Ceriani et al. 
2014b 

Whole egg 
(U) 

Yolk 
(Fre) 

δ13Cunhat=0.954*δ13Cfresh-
0.935 

1 <0.00
1 

δ15Nunhat=1.001*δ15Nfresh+0.0
79 

1 <0.00
1 

36 Eggs Ceriani et al. 
2014b 

Whole egg 
(U) 

Blood 
serum 

δ13Cunhat=0.871*δ13Cser-2.564 0.
8 

<0.00
1 

δ15Nunhat=0.925*δ15Nser+2.34
8 

0.
8 

<0.00
1 

36 Eggs/Females Ceriani et al. 
2014b 

Yolk (Fre) Yolk (U)  -   -  - δ15NUn=δ15NFresh+0.49  -  - 5 Eggs Zbinden et 
al. 2011 

Scute Yolk (U)  -  0.
7 

0.001 δ15Nyolk=0.73*δ15NScute+4.69 0.
9 

<0.00
1 

27 Females/Eggs Zbinden et 
al. 2011 

RBC Epidermi
s 

δ13Cepi=1.00*δ13CRBC+1.4 1 <0.00
1 

δ15Nepi=1.12*δ15NRBC+0.53 1 <0.00
1 

26 Males Pajuelo et al. 
2012b 

Epidermis Epidermi
s 

δ13Cfemale=0.51*δ13Chatchling-
7.38 

0.
2 

0.042 δ15Nfemale=1.02*δ15Nhatchling-
1.02 

0.
9 

<0.00
1 

14 Hatchlings/Femal
es 

Frankel et al. 
2012 

Whole 
blood 

Epidermi
s 

δ13Cepi=0.96*δ13Cwholeblood+1.9
8 

1 0.003 δ15Nepi=0.71*δ15Nwholeblood+4.
55 

0.
8 

0.054 5 Females Carpentier 
et al. 2015 

Whole 
blood 

Epidermi
s 

δ13Cepi=1.01*δ13Cwholeblood+2.0
2 

1 <0.00
1 

δ15Nepi=1.08*δ15Nwholeblood+0.
42 

0.
9 

<0.00
1 

3 Hatchlings Carpentier 
et al. 2015 

Epidermis Yolk 
(Fre) 

δ13Cyolk=0.89*δ13Cepi-5.02 0.
9 

0.016 δ15Nyolk=1.20*δ15Nepi-2.84 0.
9 

0.233 5 Females/Eggs Carpentier 
et al. 2015 

Yolk (Fre) Epidermi
s 

δ13Cepi=1.12*δ13Cyolk+6.00  -  - δ15Nepi=0.83*δ15Nyolk-2.37  -  - 5 Eggs/Females Carpentier 
et al. 2015 
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Whole 
blood 

Yolk 
(Fre) 

δ13Cyolk=0.90*δ13Cwholeblood-
2.42 

1 <0.00
1 

δ15Nyolk=1.08*δ15Nwholeblood+0.
97 

1 0.003 5 Females/Eggs Carpentier 
et al. 2015 

Yolk (Fre) Whole 
blood 

δ13Cwholeblood 
=1.12*δ13Cyolk+5.62 

 -  - δ15Nwholeblood =0.93*δ15Nyolk-
0.90 

 -  - 5 Eggs/Females Carpentier 
et al. 2015 

Epidermis Epidermi
s 

δ13Cfemale=0.76*δ13Chatchling-
2.74 

1 0.09  -   -  - 3 Hatchlings/Femal
es 

Carpentier 
et al. 2015 

Whole 
blood 

Whole 
blood 

δ13Cfemale=1.06*δ13Chatchling+1.
51 

1 0.003 δ15Nfemale=0.96*δ15Nhatchling-
1.85 

1 0.065 3 Hatchlings/Femal
es 

Carpentier 
et al. 2015 

Scute Epidermi
s 

δ13Cepi=0.90*δ13Cscute-0.25 0.
9 

<0.00
1 

δ15Nepi=0.87*δ15Nscute+2.41 0.
9 

<0.00
1 

33 Females Vander 
Zanden et 
al. 2014b 

Yolk 
(Fre/Fro)  

Epidermi
s 

δ13Cepi=0.71*δ13Cyolk−1.86 0.
7 

<0.00
1 

δ15Nepi = 1.19*δ15Nyolk−2.50 0.
8 

<0.00
1 

24 Eggs/Females Kaufman et 
al. 2014 

Yolk 
(Fre/Fro/L
E) 

Epidermi
s 

δ13Cepi =0.90* δ13Cyolk−0.95 0.
7 

<0.00
1 

δ15Nepi = 1.05* δ15Nyolk−0.75 0.
8 

<0.00
1 

24 Eggs/Females Kaufman et 
al. 2014 

Yolk 
(Fre/E) 

Epidermi
s 

δ13Cepi =0.58* δ13Cyolk−4.27 0.
5 

<0.00
1 

δ15Nepi = 1.16* δ15Nyolk−1.90 0.
8 

<0.00
1 

24 Eggs/Females Kaufman et 
al. 2014 

Yolk 
(Fre/E/LE) 

Epidermi
s 

δ13Cepi =0.91* δ13Cyolk−0.53 0.
5 

<0.00
1 

δ15Nepi = 1.15* δ15Nyolk−2.04 0.
8 

<0.00
1 

24 Eggs/Females Kaufman et 
al. 2014 

Albumen Epidermi
s 

δ13Cepi =0.81* δ13Cab−1.73 0.
7 

<0.00
1 

δ15Nepi = 0.72* δ15Nab+5.55 0.
6 

<0.00
1 

61 Eggs/Females Kaufman et 
al. 2014 

Green turtle (Chelonia mydas) 

Scutes Muscles δ13Cmuscle =1.128* 
δ13Cscute+4.194 

0.
9 

<0.00
1 

δ15Nmuscle = 1.197* δ15Nscute-
1.095 

0.
9 

<0.00
1 

12 Juveniles Bezerra et 
al. 2015 

Humeri Epidermi
s 

δ13Cepi =0.54* δ13Chumeri-8.31 0.
2 

0.01 δ15Nepi = 0.89* δ15Nhumeri+2.55 0.
6 

<0.00
1 

5 Adults and 
juveniles 

Tomaszewic
z et al. 
2017b 

Leatherback turtle (Dermochelys coriacea) 

Yolk (Fre) Plasma δ13Cplasma =1.37* δ13Cyolk+4.66 0.
8 

<0.00
1 

δ15Nplasma = 0.81* 
δ15Nscute+1.58 

0.
9 

<0.00
1 

50 Females Caut et al. 
2008b 

Yolk (Fre) RBC δ13CRBC =1.19* δ13Cyolk+3.72 0.
9 

<0.00
1 

δ15NRBC = 0.64* δ15Nyolk+2.76 0.
6 

<0.00
1 

50 Females Caut et al. 
2008b 

Olive ridley turtle (Lepidochelys olivacea) 
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Serum Epidermi
s 

δ13CEpi =0.63* δ13Cserum-5.14 0.
4 

 - δ15NEpi = 0.70* δ15Nserum+2.71 0.
9 

 - 39 Females Petitet & 
Bugoni 2017 

Serum Scute δ13CScute =1.31* 
δ13Cserum+6.10 

0.
8 

 -  δ15NScute = 0.81* 
δ15Nserum+0.19 

0.
9 

 - 39 Females Petitet & 
Bugoni 2017 

Serum RBC δ13CRBC =0.91* δ13Cserum+0.71 0.
7 

 -  δ15NRBC = 0.09* δ15Nserum-0.42 1  - 39 Females Petitet & 
Bugoni 2017 

RBC Epidermi
s 

δ13CEpi =0.70* δ13CRBC-3.72 0.
6 

 - δ15NEpi = 0.73* δ15NRBC+3.47 0.
9 

 - 39 Females Petitet & 
Bugoni 2017 

RBC Scute δ13CScute =1.11* δ13CRBC+2.68 0.
1 

 -  δ15NScute = 0.83* 
δ15Nserum+1.29 

0.
8 

 - 39 Females Petitet & 
Bugoni 2017 

Epidermis Scute δ13Cscute =0.68* δ13CEpi-6.52 0.
5 

 - δ15Nscute = 0.94* δ15NEpi-0.60 0.
8 

 - 39 Females Petitet & 
Bugoni 2017 

 

  



Chapter 2: Global review: insights from marine turtle stable isotopes 

96 
 

 

Fig. S1. Interspecies differences in stable 
isotope ratios in marine turtles. Mean of 

mean δ
13

C and δ
15

N across studies of (A) 
Atlantic adults, (B) Atlantic juveniles, (C) 
Pacific adults, (D) Pacific juveniles, (E) 
Mediterranean Sea adults, (F) Gulf of 
Mexico adults, and (G) Indian Ocean 
adults. Mean ±SD shown where n > 1. 
Number of studies contributing are 
shown in parentheses. For species 
abbreviations see Fig. 1 
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Fig. S2. Intraspecific variation of δ
13

C and δ
15

N values for (A) adult leatherback turtles and (B) Ei: hawksbill; 
Lk: Kemp’s ridley; Lo: olive ridley turtles. Mean ±SD shown where n > 1. Number of studies contributing 
are shown in parentheses. A: adult; J: juvenile; Atl: Atlantic Ocean; GoM = Gulf of Mexico; Ind: Indian 
Ocean; Pac: Pacific Ocean 
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Abstract 

 

Bycatch is one of the key threats to juvenile marine turtles in the 

Mediterranean Sea. As fishing methods are regional or habitat specific, the 

susceptibility of marine turtles may differ according to inter- and intrapopulation 

variations in foraging ecology. An understanding of these variations is necessary 

to assess bycatch susceptibility and to implement region-specific management. 

To determine if foraging ecology differs with region, sex, and size of juvenile 

loggerhead turtles (Caretta caretta), stable isotope analysis of carbon and 

nitrogen was performed on 171 juveniles from a range of foraging regions across 

the central and eastern Mediterranean Sea. Isotope ratios differed with 

geographical region, likely due to baseline variations in δ13C and δ15N values. 

The absence of sex-specific differences suggests that within an area, all 

comparably-sized animals likely exploit similar foraging strategies, and therefore, 

their susceptibility to fisheries threats will likely be similar. The isotope ratios of 

juveniles occupying the North East Adriatic and North Levantine basin increased 

with size, potentially due to increased consumption of more prey items at higher 

trophic levels from a more neritic source. Isotope ratios of juveniles with access 

to both neritic and oceanic habitats did not differ with size which is consistent with 

them consuming prey items from both habitats interchangeably. With foraging 

habitats exploited differently among size classes in a population, the susceptibility 

to fisheries interactions will likely differ with size, therefore, region-specific 

management approaches will be needed. 
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Introduction 

 

For globally distributed species, variation in life history and behavioural 

traits can improve resilience and survival in a changing environment (Jiguet et al. 

2007; Bernhardt and Leslie 2013; Timpane-Padgham et al. 2017). Variability in 

the spatial and foraging ecology of a species may occur based on many factors, 

including morphological (e.g. size) or demographic (e.g. sex) parameters, or as 

a response to the environment, and can help reduce intraspecific competition 

(Werner and Gilliam 1984; Violle et al. 2012). For example, idividuals may 

consume different prey items resulting in individual specialisation in a generalist 

population (e.g. Vander Zanden et al. 2010; Thomson et al. 2018). As different 

individuals may play different roles within an ecosystem (Chapin et al. 2001; 

Violle et al. 2012) their susceptibility to disturbances, whether natural or 

anthropogenic, will also differ. Therefore, these variations in resource exploitation 

could influence population growth and dynamics (Araújo et al. 2011), 

complicating conservation management and requiring region specific 

management approaches.  

Loggerhead turtles (Caretta caretta) demonstate complex life history 

patterns, utilising a wide range of ecosystems throughout their life cycle and 

facing various natural and anthropogenic threats at each life stage (Bolten 2003). 

Loggerhead turtle life history patterns and foraging strategies vary globally, and 

large gaps remain in our knowledge owing to the difficulty of monitoring such long 

lived animals at sea (Wildermann et al. 2018). Globally, fisheries bycatch is one 

of the most significant threats faced by marine turtles (Lewison et al. 2014). The 

extent of fishing and the fishing techniques used, drastically differs with location 

and habitat type (Casale 2011). Therefore, to better understand fisheries 

interactions and for successful conservation of loggerhead turtle populations, it is 

neccesary to understand inter- and intra-population variations in habitats used 

and resources exploited (Hamann et al. 2010; Rees et al. 2016).  

To investigate the spatial and foraging ecology of juvenile loggerhead 

turtles, satellite telemetry deployed at foraging grounds has previously been used 

and can provide fine-scale near real-time movement data (e.g. McClellan and 

Read 2007; Mansfield et al. 2009; Arendt et al. 2012). However, satellite 

telemetry does not provide dietary information and the expense of this tool can 

often limit the sample size (Godley et al. 2008). Detailed information can be 
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gained about the foraging ecology of individuals by analysing stomach contents 

and stable isotopes from stranded or incidentally captured individuals (Tomás et 

al. 2001; Revelles et al. 2007; Seney and Musick 2007; Casale et al. 2008; Lazar 

et al. 2011; Cardona et al. 2012, 2015; Blasi et al. 2018). Investigating stomach 

contents enables taxonomic identification of prey items but does bias against 

rapidly digested soft-bodied prey, represents a short dietary time frame (Duffy 

and Jackson 1986), and requires expertise, time, and access to freshly dead 

individuals. Stable isotope analysis (SIA) is a powerful cost-effective forensic tool 

that has been used to gain insights into the spatial and foraging ecology of 

numerous marine taxa (Rubenstein and Hobson 2004; Newsome et al. 2010; Bird 

et al. 2018), including marine turtles (Figgener et al. 2019a,b; Haywood et al. 

2019). The ratio of stable isotopes within low-metabolically active tissues (e.g. 

epidermis and keratinised tissues such as scutes) reflects the food that an 

individual has consumed and the location where it was ingested (DeNiro and 

Epstein 1978). These tissues typically have slow turnover rates and the isotope 

incorporation from dietary items takes several months, and therefore represents 

diet over longer time frames than stomach content analysis (Reich et al. 2008).  

The carbon isotope ratio (expressed as δ13C) of a consumer reflects the 

primary producer at the base of their food chain (DeNiro and Epstein 1978), with 

benthic and near-shore food chains supported by macroalgae and seagrass 

exhibiting high δ13C values in comparison to pelagic and oceanic food chains 

supported by phytoplankton (DeNiro and Epstein 1978; Graham et al. 2010). The 

nitrogen isotope ratio (expressed as δ15N) at the base of a food chain differs in 

relation to (1) δ15N values of their nutrient sources (e.g. N2, ammonium, and 

nitrate), (2) nitrogen-based processes, including; nitrification, denitrification, and 

N2-fixation, and (3) isotopic fractionation (Montoya 2007). On local-scales 

nitrogen isotope ratios, and to a lesser extent, carbon isotope ratios, can reflect 

trophic patterns within a food chain due to isotopic fractionation. With each 

subsequent trophic level, a 3-4‰ and a ~1‰ step wise increase in δ15N and δ13C 

values, respectively, are considered to occur (DeNiro and Epstein 1978; 

Minagawa and Wada 1984; France and Peters 1997).  

As local-scale variations in stable isotope ratios can be inferred as 

differences in foraging grounds used or prey items consumed, they allow for the 

spatial and foraging ecology of loggerhead turtles to be assessed (e.g. Thomson 

et al. 2012; Ramirez et al. 2015; Turner Tomaszewicz et al. 2017). This is 
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particularly useful for juvenile loggerhead turtles in the Mediterranean Sea, which 

have complex spatial and foraging ecology (see Casale et al. 2018 for a review 

of the biology of loggerhead turtles in the Mediterranean). Juveniles can be found 

throughout the Mediterranean in oceanic or neritic foraging grounds (Casale et 

al. 2018). Identifying foraging grounds is challenging and large data gaps remain 

in many areas of the Mediterranean, in particular the oceanic waters of the 

Levantine Basin (Casale et al. 2018). Fisheries bycatch data suggests major 

oceanic foraging grounds include the northern Ionian/South Adriatic, the southern 

Ionian/Sicilian Strait, and the westernmost part of the Mediterranean (Casale et 

al. 2011) and satellite telemetry highlighted the Tyrrhenian Sea, Algerian Sea, the 

Ionian as areas of importance (Zbinden et al. 2008; Hays et al. 2014a; Mingozzi 

et al. 2016; Luschi et al. 2018). Foraging in these oceanic regions is likely driven 

by the occurrence of patchy ephemeral resources due to eddies concentrating 

resources (Eckert et al. 2008). Neritic foraging grounds, were located in areas of 

high productivity and on the continental shelves of the Aegean Sea, Adriatic Sea, 

eastern Levantine basin, northern Africa, and off Tunisia (see Casale et al. (2018) 

and citations within).  

Juvenile Mediterranean loggerhead turtles are considered highly 

opportunistic foragers with diverse dietary items reported across the 

Mediterranean (e.g. Tomás et al. 2001; Casale et al. 2008; Lazar et al. 2008). 

Stomach contents of strandings in North Cyprus were dominated by benthic prey 

items including bivalves and sponges (unpubl data). In comparison, the diet of 

juveniles caught in the Central Mediterranean were dominated by benthic prey 

items, including Malacostraca, Gastropoda, and Echinoidea, as well as pelagic 

prey items (Casale et al. 2008). In the western Mediterranean juveniles caught 

predominantly in neritic habitats had consumed both pelagic and benthic-

demersal prey, including fish, pelagic tunicates, crustaceans, molluscs and other 

invertebrates (Tomás et al. 2001). Whilst in the Northern Adriatic, small juveniles 

that would have previously been considered oceanic in size had diets dominated 

by benthic items such as anemones, crustaceans, and molluscs (Lazar et al. 

2008).  

Mediterranean juveniles appear to follow alternative life history patterns to 

those in other ocean basins and intra-population differences in habitat use are 

also reported (Casale et al. 2008, 2015). In regions, such as Amvrakikos Gulf 

(Greece) and Cyprus, most individuals found in coastal neritic habitats are larger 
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(mean CCL: 0.67 and 0.65 m, respectively; Rees et al. 2013; Snape et al. 2013). 

This supports the traditional ontogenetic life history model of a distinct shift in 

preference from oceanic to neritic habitat use with increased size (Musick & 

Limpus 1997). This traditional life history model is challenged on the Tunisian 

Plateau, Northern Adriatic Sea, and in the western Mediterranean, where 

juveniles as small as 0.25 m in length (notch-to-tip, Bolten 1999) start to utilise 

both neritic and oceanic habitats interchangeably, and are therefore, susceptible 

to threats in both habitats (Tomás et al. 2001; Casale et al. 2008; Lazar et al. 

2008a, 2011).  

In the Mediterranean Sea, bycatch is one of the key threats to marine 

turtles resulting in high levels of mortality in both neritic and oceanic habitats 

(conservatively 44,000 deaths per year, Casale 2011; Casale et al. 2018). The 

susceptibility of juvenile loggerhead turtles to anthropogenic threats differs with 

region due to heterogeneity in fishing effort as well as due to differences in habitat 

use by turtles (e.g. Cardona et al. 2009; Casale 2011). To loggerhead turtles 

foraging in neritic habitats the threat comes from small-scale fisheries using nets 

(trammel and gill) and bottom-set longlines whilst interactions with pelagic 

longline are more common for oceanic foragers (Casale 2011).  Region and 

habitat use will also likely affect the susceptibility of marine turtles to other 

anthropogenic threats such as the ingestion of debris and chemical pollution 

(Franzellitti et al. 2004; Casale et al. 2008, 2016). Understanding the foraging 

habitats used by all individuals within and among populations is necessary in 

order to assess threats and implement appropriate management approaches. 

Therefore, using SIA of stranded, incidentally and directly captured juveniles, this 

study aims to assess the foraging ecology of juvenile loggerhead turtles from a 

range of foraging regions in the Mediterranean Sea, to determine if foraging 

ecology differs with region, sex, and size. 

 

Materials and methods 

 

2.1 Sample collection 

 

Carapace costal scute samples were obtained from dead incidentally 

captured juvenile loggerhead turtles found in the NE Adriatic (Croatia and 

Slovenia, n=52) and Central Mediterranean (Lampedusa, n=36, Fig 1) between 
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2001 and 2006. These turtles were captured by trawl, longline, or static net fishing 

gear. Scute samples were taken by scalpel from the second or third costal scute. 

The exact location of the incidentally captured individuals in the Central 

Mediterranean is unknown as turtles were collected from fishers on the Tunisian 

continental shelf and landed in Lampedusa. In the North Levantine basin (North 

Cyprus), 228 juveniles were stranded dead or incidentally captured (dead and 

alive in trammel nets) between 2012 and 2018. Of these, 65 were sampled for 

epidermis tissue (<0.25 cm2, Fig 1) from the trailing edge of the fore flipper on the 

third membrane or the shoulder (between the neck and fore flipper). Epidermis 

tissue samples were also collected from the third membrane from the trailing 

edge of the fore flipper of live-captured juveniles foraging in the East Ionian 

(Amvrakikos Gulf, Greece, n=18, Fig 1) in 2017 (see Rees et al. 2013 for details 

on the capture method). Skin samples were taken by scalpel and only the 

epidermis tissue was used in the analysis (dermis tissue was removed in the 

laboratory). Until required for analysis, scute samples were air-dried then frozen 

and epidermis samples were stored in ethanol (90% and 70% ethanol in East 

Ionian and North Levantine basin, respectively) at room temperature.  

Curved carapace length (CCL) was measured with a flexible measuring 

tape as an indicator of body size. CCL measurements in the Central 

Mediterranean, East Ionian, and NE Adriatic were notch-to-tip, whilst CCL 

measurements in the North Levantine basin were notch-to-notch (Bolten 1999; 

for conversion of notch-to-tip to notch-to-notch values see Appendix S1). 

Individuals were considered juvenile if CCL<0.80 m, which is the rookery-

weighted mean size at sexual maturity for Mediterranean loggerhead turtles, and 

was selected as genetics suggest mixed stocks in the foraging grounds (Casale 

et al. 2005, 2018; Casale and Heppell 2016). For dead juveniles, sex was 

determined by gross morphology and/or histology of the gonads (Casale et al. 

2006; Lazar et al. 2008b), whilst sex was unknown for live-caught and live-

bycaught juveniles in the East Ionian and North Levantine basin, respectively, as 

sex is not usually dimorphic at juvenile stages and gross morphology of the 

gonads could not be performed.  
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Fig. 1 (a) Locations of juvenile loggerhead turtles sampled in the Central 
Mediterranean (CMed, open circle – at sea locations are unknown), East Ionian 
(EIon, black circle), NE Adriatic (NEA, red circles), and North Levantine basin 
(NL, blue circles). The location where juveniles were sampled is shown in (b) for 
the NE Adriatic and (c) for the North Levantine basin. 200 m isobath is indicated 
(grey line). Artwork inset of a loggerhead turtle foraging 
 

 

2.2 Stable isotope analysis 

 

Scute samples were cleaned to remove epibionts and rinsed with ethanol. 

Both scute and epidermis samples were rinsed with deionized water, soaked for 

24 hours, and dried at 60 ˚C for 48 hours. Approximately 0.70 mg (±0.10 mg) of 

sample was weighed in to sterilised tin capsules. Epidermis samples did not 

undergo lipid extraction and did not require a lipid correction factor as evaluated 

by the C:N ratio (mean:3.44, range: 3.18-3.78, Post et al. 2007). Samples were 



Chapter 3: Juvenile spatial and foraging ecology 

106 
 

analysed on a Thermoquest EA1110 elemental analyser linked to a Sercon2020 

stable isotope ratio mass spectrometer running in continuous flow mode 

(conducted by Elemtex Ltd, UK laboratory). Isotope ratios are expressed as 

conventional delta (δ) values in parts per thousand (‰) using the following 

equation: δX = [( Rsample / Rstandard) – 1 ] x 1000, where X is 13C or 15N. Rsample and 

Rstandard are the corresponding ratios of the heavier to the lighter isotope (i.e. 

13C/12C, 15N/14N) in the sample and international standard, respectively. The 

international standard, for 13C and 15N is Vienna Pee Dee Belemnite and 

atmospheric nitrogen (AIR), respectively. 

All analyses were performed with the software R 3.5.1 (R Core Team 

2018) and for statistical tests, the significance level used was α = 0.05. To 

determine if region affects δ13C and δ15N values, whilst taking size into account, 

an Analysis of Covariance was performed.  To determine if sex affected stable 

isotope ratios an Analysis of Variance (ANOVA) was performed whilst a General 

Additive Model (GAM) was performed using the R package ‘mgcv’ (Wood 2011) 

to determine if size affected δ13C and δ15N values, with size set as a smooth term.  

The isotopic niche width of individuals grouped by region or sex was 

calculated using the R package ‘SIBER’ (Stable Isotope Bayesian Ellipses in R, 

Jackson et al. 2011). Maximum likelihood standard ellipses were obtained by 

Bayesian inference containing 40% of the data (SEA) and small samples sizes 

were corrected for (SEAc). Isotope niche overlap among each group was 

calculated as the proportion of the non-overlapping area of the two ellipses. See 

Jackson et al. (2011) for details on these methods. 

The time between death and sampling is unknown for stranded individuals, 

however, decomposition is not thought to affect δ13C and δ15N values of 

loggerhead turtle epidermis (Payo-Payo et al. 2013). We compared the stable 

isotope ratios of juveniles with different decomposition states (categorised as: 

alive, fresh dead, moderately decomposed, severely decomposed, and skeleton) 

and found no significant differences and therefore for further analysis individuals 

were not analysed seperately based on decomposition state. Stable isotope 

ratios of stranded and incidentally captured juveniles from the North Levantine 

basin did not differ isotopically and therefore from herein were treated as one 

group and referred to as stranded unless specified otherwise (for details on these 

analyses see Appendix S2). To determine temporal shifts in baseline ratios for 

each region, stable isotope ratios were compared across the sampling periods 
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using ANOVAs. To determine monthly differences in the δ13C and δ15N values of 

epidermis samples from the North Levantine basin, Generalised Additive Mixed 

Models (GAMM) were used in the R-package ‘mgcv’ (Wood, 2011). The GAMM 

used a cyclic smoothing spline to account for the annual cyclic trend.  

 

Results 

 

In total, tissue from 171 juveniles were analysed from the Central 

Mediterranean, East Ionian, NE Adriatic, and North Levantine basin (Table 1). 

δ13C values ranged from -19.32 to -12.76‰ (mean ± SD = -16.60 ± 1.34‰, 

n=171) and δ15N values ranged from 3.94 to 13.71‰ (mean ± SD = 8.03 ± 2.14‰, 

n=171). For 18 individuals, replicate scute samples were analysed but, no 

significant difference was found between replicates for δ13C and δ15N values 

(Wilcoxon signed-ranks test, δ13C: V=1657, Z=-1.10, P=0.27, n=88; δ15N: 

V=1547, Z=-1.40, P=0.16, n=18) and as a result the mean value was used for 

further analysis. The results were found to be insensitive to the isotope analytical 

uncertainties (for details of this analysis see Appendix S5). 

 

Table 1 Information on juvenile loggerhead turtles sampled in the Mediterranean. 
CCL: curved carapace length in meters, F: female, M: male, U: unknown. 
 

Origin Central 
Mediterranean 

East Ionian NE Adriatic North Levantine 
basin 

Tissue type Carapace Epidermis Carapace Epidermis 

Sample size 36 18 52 65 
Sex F:16, M:20, U:0 F:0, M:0, U:18 F:33, M:12, U:7 F:21, M:16, U:28 
CCL mean ± SD 
(range) 

0.43 ± 0.11 
(0.24 to 0.74) 

0.68 ± 0.05 
(0.61 to 0.75) 

0.45 ± 0.14 
(0.23 to 0.78) 

0.63 ± 0.11 
(0.12 to 0.77) 

δ13C mean ± SD 
(range, ‰) 

-18.25 ± 1.34 
(-19.32 to -14.71) 

-15.16 ± 0.49 
(-15.90 to -14.00) 

-16.94 ± 0.77 
(-18.99 to -15.20) 

-15.83 ± 0.99 
(-17.60 to -12.76) 

δ15N mean ± SD 
(range, ‰) 

6.17 ± 2.14 
(3.94 to 9.71) 

8.43 ± 1.15 
(7.10 to 10.80) 

10.16 ± 1.52 
(6.19 to 12.55) 

7.25 ± 1.64 
(4.80 to 13.71) 

Sampling period 2001 - 2003 2017 2003 - 2006 2012 - 2018 

 

To determine temporal shifts in baseline ratios for each region, stable 

isotope ratios were compared across the sampling periods. Neither δ13C nor δ15N 

values differed with year in all regions (ANOVA, Central Mediterranean: δ13C: 

F(2,19)=0.15, P=0.86, δ15N: F(2,19)=0.90, P=0.42, n=36; NE Adriatic: δ13C: F(4,46)= 

0.13, P=0.97, δ15N: F(4,46)=0.10, P=0.98, n=52; North Levantine basin: δ13C: 

F(6,58)= 1.28, P=0.28, δ15N: F(6,58)=2.13, P=0.06, n=65, see Appendix S3). These 

results were found to be insensitive to the isotope analytical uncertainties, 
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however, note the higher uncertainties (resulting in a lower performance 

consistency for nitrogen) for the North Levantine basin (for details of this analysis 

see Appendix S5). East Ionian samples were not included in this analysis as all 

samples were collected in 2017 only. A significant difference was seen in δ13C 

values with month for the samples collected in the North Levantine basin (GAMM: 

F=1.53, edf=2.32, p<0.002, R2=0.17, n=4) with higher δ13C values in the summer 

months (Fig S4.4). No difference was seen in δ15N values with month (GAMM: 

F=1.53, edf=2.32, p<0.002, R2=0.17, n=4, Fig S4.4). These results were found to 

be insensitive to the isotope analytical uncertainties (for details of this analysis 

see Appendix S5). 

 

3.1 Inter-region differences  

 

A significant difference was seen in δ13C values among regions (ANOVA, 

F(3,167)= 80.49, P<0.001, n=171) and a post hoc Tukey’s Honest Significant 

Difference test showed this was due to the δ13C values of all regions differing with 

juveniles from Central Mediterranean having the lowest values (P<0.001, Fig 2). 

When body size was taken into account, region continued to affect δ13C values 

(ANCOVA, F(3,163)= 81.80, P<0.001, n=171). A significant difference was seen in 

δ15N values among regions (ANOVA: F(3,167)= 59.99, P<0.001, n=171) and a post 

hoc Tukey’s Honest Significant Difference test shows this was due to the δ15N 

values of all regions differing with juveniles from NE Adriatic having the highest 

values (P<0.001, Fig 2). When body size was taken into account, region 

continued to affect δ15N values (ANCOVA, F(3,163)= 63.78, P<0.001, n=171). 

These results were found to be insensitive to the isotope analytical uncertainties 

(for details of this analysis see Appendix S5). SIBER results show the isotope 

niche of Central Mediterranean and NE Adriatic juveniles are distinct as their 

overlaps were null, whilst juveniles in the North Levantine basin slightly 

overlapped with East Ionian juveniles (Table 2, Fig 2). 
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Fig. 2 (a) δ13C values and (b) δ15N values of juvenile loggerhead turtles sampled in the 
Central Mediterranean (CMed, grey, n=36), East Ionian (EIon, black, n=18), NE 
Adriatic (NEA, red, n=52), and the North Levantine basin (NL, blue, n=65). Midline = 
median, box = interquartile range, whiskers = 5 and 95 percentiles. (c) Bivariate plot of 
δ13C and δ15N values showing the isotope niche coloured by region. Ellipses = 
Standard ellipse area corrected for small sample size (SEAc) created by SIBER 
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3.2 Sex-specific differences 

 

In total, sex was determined for 36 juveniles in the Central Mediterranean 

(F=16, M=20), 45 in the NE Adriatic (F=33, M=12), and 37 in the North Levantine 

basin (F=21, M=16). Neither δ13C nor δ15N values differed between female and 

male juvenile loggerhead turtles within each region (ANOVA, Central 

Mediterranean: δ13C: F(1,34) =0.87, P=0.36, δ15N: F(1,34) =1.92, P=0.17, n=36; NE 

Adriatic: δ13C: F(1,43) =3.15, P=0.08, δ15N: F(1,43) =0.10, P=0.76, n=45; North 

Levantine basin: δ13C: F(1,35) =0.02, P=0.90, δ15N: F(1,35) =1.72, P=0.20, n=37, Fig 

3). These results were found to be insensitive to the isotope analytical 

uncertainties (for details of this analysis see Appendix S5). SIBER results show 

the isotope niche of females and males are not distinct in any region (Table 2, 

Fig 3). 

 

Table 2 Summary results of SIBER. CMed: Central Mediterranean, EIon: 
East Ionian, NEA: NE Adriatic, NL: North Levantine basin, SEA: Standard 
ellipse area, SEAc: Standard ellipse area corrected for small sample size, 
Overlap: isotope niche overlap among each group calculated as the 
proportion of the non-overlapping area of the two ellipses 
  

 

                                                       Region 
   CMed EIon NEA NL 
Region SEA  3.72 1.65  3.01 5.02  
 SEAc  3.83 1.75 3.07 5.10  
 Overlap CMed  <0.001 <0.001 <0.001 
  EIon   <0.001 0.11 
  NEA   -   - <0.001 
       
Sex SEA Female 3.97 NA 2.17 5.18 
  Male 3.20 NA 2.99 2.59 
 SEAc Female 4.25 NA 2.24 5.45 
  Male 3.38 NA 3.28 2.77 
 Overlap  0.42 NA 0.43 0.50 
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Fig. 3 (a) δ13C and (b) δ15N values of female and male juvenile loggerhead turtles 
sampled in the Central Mediterranean (grey, n: F=16, M=20), NE Adriatic (red, n: F=33, 
M=12), and North Levantine basin (blue, n: F=21, M=16). F: Female, M: male. Midline 
= median, box = interquartile range, whiskers = 5 and 95 percentiles. (c) Bivariate plot 
of δ13C and δ15N values showing the isotope niche of females (solid lines) and males 
(dashed lines) coloured by region. Ellipses = Standard ellipse area corrected for small 
sample size (SEAc) created by SIBER. Sex was unknown for East Ionian juveniles as 
they were live-caught 
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3.3 Size differences 

 

A full range of juvenile sizes were sampled from 0.12 to 0.79 m (mean CCL 

= 0.54 m). Size significantly differed among regions (ANOVA, F(3,167)=40.8, 

P<0.001, n=171). A post hoc Tukey’s Honest Significant Difference test showed 

juveniles sampled from the East Ionian and the North Levantine basin were 

significantly larger than juveniles from the Central Mediterranean and NE Adriatic 

(P<0.001). The δ13C values of juvenile loggerhead turtles were not affected by 

size in any region (GAM, P>0.05, Fig 4). The δ15N values were not affected by 

size in the Central Mediterranean or East Ionian whilst larger individuals had 

higher δ15N values in the NE Adriatic (GAM, F=7.24, P=0.009) and the North 

Levantine basin (F=3.05, P=0.04, Fig 4). These results were found to be 

insensitive to the isotope analytical uncertainties (for details of this analysis see 

Appendix S5). 
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Fig. 4 Summary of the influence of curved carapace length (CCL) on δ13C values (left 
column) and δ15N values (right column) of juvenile loggerhead turtles sampled in the 
(a,b) Central Mediterranean, (c,d) NE Adriatic, (e,f) North Levantine basin, and (g,h) 
East Ionian. Solid line represents mean isotope ratio response and shaded region 
represents ± standard error. Edf: estimated degrees of freedom, F: F-statistic, p: 
significance. Note different x-axis for East Ionian plots 
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Discussion 

 

The results highlight the ecological complexity of Mediterranean juvenile 

loggerhead turtles and demonstrates the benefits of conducting SIA on 

opportunistically obtained juveniles for understanding the foraging ecology of 

marine vertebrates. Regional differences are observed in stable isotope ratios, 

and intra-regional variation occurs with size but not sex, therefore supporting a 

requirement for site specific management approaches. 

 

4.1 Inter-region differences 

 

Differences in stable isotope ratios among regions are more likely due to 

baseline variations in δ13C and δ15N values rather than geographical differences 

in foraging ecology. The Central Mediterranean sampling region is offshore (~160 

km), surrounded by both neritic and oceanic habitats, from which loggerhead 

turtles forage (Casale et al. 2008). Although on the continental shelf, food chains 

in this offshore region are likely supported by phytoplankton, which have lower 

δ13C values in comparison to productive benthic and nearshore regions with food 

chains supported by algae and seagrass (DeNiro & Epstein, 1978; Graham et al. 

2010). This likely explains why juveniles foraging in the Central Mediterranean 

have lower δ13C values than juveniles foraging in the East Ionian, NE Adriatic, 

and North Levantine basin, which are likely foraging predominantly in neritic 

habitats. This trend has been observed in several loggerhead turtle populations 

(e.g. Hatase et al. 2002; Eder et al. 2012). Although a stepwise enrichment in 

δ13C values can be seen with each subsequent trophic level it is unlikely juveniles 

foraging in the Central Mediterranean are foraging at lower trophic levels than the 

other regions as they do not have lower δ15N values (except in comparison to the 

NE Adriatic, DeNiro and Epstein 1978; Minagawa and Wada 1984; France and 

Peters 1997).  

High δ15N values have been previously reported for loggerhead turtles 

foraging in the NE Adriatic and has been attributed to the extensive influence of 

highly enriched 15N agricultural run-off and anthropogenic waste from major river 

systems (Degobbis and Gilmartin 1990; Zbinden et al. 2011; Cardona et al. 2014; 

Haywood et al. 2020). In comparison, relatively low baseline δ15N values are seen 

across the eastern Mediterranean basin, which includes the North Levantine 
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basin and the Central Mediterranean and is most likely due to high levels of N2-

fixation (Pantoja et al. 2002). 

Differences in sampling methods among the geographical regions may 

also bias the results. For example, the sampling area of each geographical region 

differs substantially with the East Ionian individuals sampled from a discrete 

neritic site in the Amvrakikos Gulf with limited foraging options (max depth 65m, 

Rees et al. 2013), the NEA Adriatic and North Levantine basin were sampled in 

a relatively discrete area, whereas a large area was fished in the Central 

Mediterranean where juveniles likely had access to multiple foraging habitats 

(Casale et al. 2008). Sampling method differed with region with individuals in the 

East Ionian live caught in targeted foraging grounds, individuals from Central 

Mediterranean and NE Adriatic incidentally captured, whilst individuals from the 

North Levantine basin were incidentally captured or stranded. The cause of 

stranding was often unidentified and the location in which the turtle died was 

unknown. 

In addition, incidentally captured individuals were caught in different fishing 

gears dependent on the geographical region. In the North Levantine basin 

individuals were incidentally captured in trammel nets therefore incidentally 

targeting neritic foragers, whilst individuals caught in the Central Mediterranean 

and NEA Adriatic were caught by trawl, longline, or static net fishing gear, and in 

turn sampling either benthic or pelagic habitats. The SIBER results, show that 

juveniles in the East Ionian have the narrowest isotopic niche, which may be due 

to limited foraging options or due to the small sample size (although small sample 

sizes were corrected for). Juveniles in the Central Mediterranean and NE Adriatic 

have relatively small isotope niche widths, whilst juveniles foraging in the North 

Levantine basin had the largest. The larger isotope niche width seen for North 

Levantine basin juveniles could suggest they are foraging on a larger range of 

prey or are using a larger range of habitats. The mean size (CCL) at sexual 

maturity for loggerhead turtles in the Mediterranean is considered 0.80 m (Casale 

and Heppell 2016), but, females nesting in North Cyprus and foraging in other 

regions of the Mediterranean can be considerably smaller (minimum recorded 

was 0.59 m,  unpublished data). Therefore, some of the individuals sampled in 

the North Levantine basin and assigned as juveniles may in fact nest in North 

Cyprus but forage in other areas of the Mediterranean, resulting in a large isotope 

niche width for the North Levantine basin group.  
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It should be noted that in this study two tissues types, scute and epidermis, 

were used. The isotope ratios represent a time intergrated diet with each tissue 

type respresenting different time frames of dietary information due to differences 

in the metabolic turnover rate (Peterson & Fry 1987). Epidermis incorporates 

dietary information over several months  (Reich et al. 2008), whilst scute 

represents a longer time frame (e.g. Vander Zanden et al. 2010). This is not an 

issue when studying adults as they are known to show high foraging site fidelity 

and therefore have relatively constant isotope ratios through their scutes. 

However, this can be a limitation for juvenile loggerhead turtles in the 

Mediterranean as although some remain in distinct grounds others have been 

found to shift habitats relativley frequently (e.g. Cardona et al. 2005, 2009; Casale 

et al. 2007, 2012; Eckert et al. 2008). Epidermis samples from the North 

Levantine basin show a seasonal change in carbon isotope ratios demonstrating 

a potential habitat or dietary shift through the year and may explain the larger 

isotope niche reported in this region. Scute samples analysed from Central 

Mediterranean and NE Adriatic juveniles may therefore represent a combination 

of several habitats and prey items. As juveniles from these regions had distinct 

isotope ratios, relatively small isotope niche widths, and isotope ratios that match 

the current knowledge about the isoscape of the Mediterranean, it suggests that 

even if these individuals are frequenting several habitats they are likely remaining 

in the same geographical region. 

Although tissue-tissue conversion equations enable isotopes ratios from 

different tissue types to be compared, they should be used with caution as there 

are numerous factors that can influence isotopic differentiation between tissues. 

Therefore, we support previous reccomendations that a standardised tissue type 

should be used enabling direct comparisons between studies especially when 

investigating juveniles (see Haywood et al. 2019 and citations within).  

 

4.2 Sex-specific differences 

 

Differences between resource use of female and male adults might be 

expected due to various evolutionary and energetic pressures related to 

reproduction (Pajuelo et al. 2016), although differences may not be evident until 

they have reached sexual maturity. No difference in the foraging ecology of 

female and male loggerhead turtles has been documented previously in the 
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Mediterranean or other ocean basins (Tomás et al. 2001; Seney and Musick 

2007; Schofield et al. 2010, 2013; Pajuelo et al. 2012; Thomson et al. 2012; 

Casale et al. 2013; Hays et al. 2014b). The absence of sex-specific differences 

in stable isotope ratios, the high overlap in isotope niche, and the similar sex 

ratios at each sample site, suggests juvenile males and females exploit similar 

prey items and inhabit similar areas. With both sexes utilising the same 

resources, their susceptibility to fisheries threats will likely be similar. This 

supports the findings of an unbiased sex ratio of bycaught juveniles in the 

Mediterranean Sea previously reported by Casale et al. (2006). 

 

4.3 Size differences 

 

Higher δ13C and δ15N values with size have been previously reported for 

both juvenile and adult loggerhead turtles in the Mediterranean and other ocean 

basins (Godley et al. 1998; Hatase et al. 2002; Pajuelo et al. 2010; Eder et al. 

2012; Goodman Hall et al. 2015; Ramirez et al. 2015; Blasi et al. 2018), but this 

is not always the case (Wallace et al. 2009; Clusa et al. 2016). This suggests 

shifts in habitat use or diet with size are not obligate, and a relaxed life history 

model has been previously reported in the Mediterranean Sea (Casale et al. 

2008). Higher δ15N values in larger juveniles could suggest larger individuals are 

foraging in more neritic habitats which have comparatively higher baseline δ13C 

and δ15N values compared to oceanic habitats (Hatase et al. 2002; McClellan et 

al. 2010; Ramirez et al. 2015). This isotope ratio and size trend is well reported 

for populations undertaking oceanic-neritic ontogenetic shifts during the juvenile 

life stage (Snover et al. 2010; Ramirez et al. 2015; Turner Tomaszewicz et al. 

2017). 

However, it is very likely the loggerhead foraging grounds in the NE 

Adriatic and North Levantine basin are on the continental shelf and therefore 

differences in oceanic and neritic foraging habitat is less likely than differences in 

epi-pelagic verses benthic prey consumption. Due to trophic fractionation, higher 

trophic prey items have higher δ15N values (DeNiro and Epstein 1978; Minagawa 

and Wada 1984; France and Peters 1997; Belicka et al. 2012). Improvement in 

diving capacity (depth and duration) as well as larger heads, larger gape size, 

and therefore higher bite force with size (Salmon et al. 2004; Marshall et al. 2012) 

means previously inaccessible higher trophic fauna, such as large molluscs, 
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crustaceans, and fish, become available to larger individuals (Seney and Musick 

2007, Casale et al. 2008; Goodman Hall et al. 2015; Blasi et al. 2018). This would 

explain the size trend observed in this study for juveniles foraging in the North 

Levantine basin and NE Adriatic, whilst the small size range in East Ionian turtles 

may explain why no size effects were reported. With trammel and gill nets, as 

well as bottom-set longlines, being the highest cause of bycatch in neritic habitats 

(Casale 2011), juvenile loggerheads may become more susceptible to neritic 

fishing gears in these regions as they grow, as they may be foraging on more 

neritic prey items.  

In contrast, in the Central Mediterranean, Casale et al. (2008) reported 

benthic and epi-pelagic prey was commonly consumed in both neritic and oceanic 

individuals of all size classes. This not only suggests foraging throughout the 

water column, but the use of both neritic and oceanic habitats interchangeably 

(Casale et al. 2008). This was also found in the western Mediterranean with no 

differences in isotope ratios reported for juveniles caught in neritic or oceanic 

habitats or between individuals of different sizes suggesting the consumption of 

similar dietary items (Revelles et al. 2007). Hence, isotope ratios of an individual 

could incorporate baseline isotope ratios of both neritic and oceanic habitats and 

would explain why no size trend was seen in juveniles sampled from the Central 

Mediterranean in this study or for juveniles sampled in southern Italy by Clusa et 

al. (2016). With bycatch in the Central Mediterranean spanning both the neritic 

and oceanic habitats (as emphasised by samples in this region collected from 

trawl, pelagic longline, and static net fishing gear), the results from this study 

suggests juveniles in the Central Mediterranean maybe bycaught in both habitats 

throughout their size range. 

 

4.4 Implications for conservation 

 

SIA has been used globally to demonstrate size related differences in 

habitat use for loggerhead turtles and in turn highlighting the need for 

conservation management to consider population sub-groups (e.g. Hatase et al. 

2002; McClellan et al. 2010; Snover e tal. 2010; Thomson et al. 2012; Ramirez 

et al. 2015; Turner Tomaszewicz et al. 2017). In neritic habitats, such as in the 

North Levantine basin, bottom-set fishing gear is most common (Casale 2011). 

With larger individuals potentially consuming a more benthic dominated diet this 
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may increase the probability of bycatch in this size class. This has been 

previously reported by Snape et al. (2013) who found mostly larger individuals 

were bycaught in Cyprus and attributed most strandings to small-scale fisheries 

using demersal gears, which could cause a shift in population dynamics. In the 

water of eastern mainland Spain, juveniles appear to extensively use the 

continental shelf where their susceptibility to neritic fishing gears is high (Cardona 

et al. 2009). In comparison, with juveniles of all sizes utilising both neritic and 

oceanic habitats in the Central Mediterranean, interactions with both bottom-set 

gears and pelagic longlines are likely. This is supported by research by Clusa et 

al. (2016) that showed isotope and genetic markers of Atlantic and Mediterranean 

juveniles in the western and central Mediterranean differed with region but not 

between pelagic or neritic fishing gears. This suggests that these juveniles are 

using both habitats interchangeably and it was concluded that in these areas of 

the Mediterranean the impact of turtle bycatch depends on the geographic 

distribution of the fishing effort rather than the fishing type (Clusa et al. 2016) 

unlike in the North Levantine basin. With different foraging strategies used in 

different regions of the Mediterranean, region-specific management approaches 

are required, dependent on whether management of fishing gear or fishing 

location would be most beneficial. 

Surface currents in the global oceans are thought to passively disperse 

loggerhead turtle hatchlings to the foraging grounds that they continue to return 

to throughout their life time (Hays et al. 2010; Putman et al. 2012; Scott et al. 

2012; Casale & Mariani, 2014). The distinct isotope niche of juveniles in each 

geographical region in this study suggests a limited exchange of individuals 

between these areas and therefore supports the hypothesis that large juveniles 

remain in the same geographical region they passively drifted to. 

With juveniles likely remaining in the same geographical region, the 

susceptibility to fisheries interactions will differ as fishing effort and fishing gear 

is not spatially homogenous across the Mediterranean (Casale 2011 and citations 

within). Marine turtles face other anthropological threats and the level of these 

also differs with region and habitat use (see review by Casale et al. (2018)). For 

example, in the north Adriatic, loggerhead turtles have high levels of heavy metals 

(Franzellitti et al. 2004), whilst low levels were reported in Cyprus turtles twenty 

years ago (Godley et al. 1999). Individuals with a higher trophic position are 

thought to have heavier burdens of pollutants due to diet related bioaccumulation 
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(Mckenzie et al. 1999). In addition, Central Mediterranean loggerhead turtles 

caught in pelagic habitats have higher rates of debris ingestion compared to those 

in neritic habitats (Casale et al. 2016). Therefore, for conservation management 

to be successful the spatial and foraging ecology of marine turtles must be 

considered.  

To further enhance our understanding of the complexities of loggerhead 

turtle foraging ecology globally, we support the recommendations to (1) use 

additional forensic markers or complementary techniques to provide greater 

power of inference of dietary estimations and geographical differences, (2) for 

standardised methods to be used to allow comparisons across studies, and (3) 

for the collaboration and combining of datasets at a global scale (as reviewed in 

Haywood et al. (2019) and citations within).  

 

Conclusions 

 

This study highlights the use of stable isotope analysis to better 

understand the foraging ecology of marine vertebrates. For juvenile loggerhead 

turtles in the Mediterranean Sea, differences in foraging ecology do not occur 

between sexes but do occur among geographical regions and with size. 

Differences in stable isotope ratios among geographical regions are likely due to 

the different habitats used by each population, with individuals in the Central 

Mediterranean using more oceanic habitats than the other populations. 

Susceptibility of these regions to different fisheries will therefore be likely and 

should be considered in future management strategies. Size differences were 

region dependent with no differences reported in regions where oceanic and 

neritic habitats were available suggesting juveniles in these regions will be 

bycaught by multiple fishing gears throughout their size range. In regions with 

only neritic habitats, differences were attributed to larger individuals exploiting 

different prey, and suggests that individuals of different sizes may play different 

roles in the ecosystem and in turn become more susceptible to neritic fishing 

gears as they grow. These results confirm the necessity of implementing region 

as well as habitat specific management approaches.  
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Supporting Information 
 

Appendix S1 – Curved carapace length notch-to-tip and notch-to-notch 

conversion  

 

To determine if notch-to-tip (N-T) and notch-to-notch (N-N) curved 

carapace lengths (CCL) can be used interchangeably, 26 loggerhead turtles 

stranded dead or bycaught (dead and alive) in the North Levantine basin (North 

Cyrpus) were measured for both variables. N-T and N-N did differ significantly 

(Paired t test, t=-12.72, df=25, p<0.001, n=26) with N-T being larger (mean ± SD 

= 0.66 ± 0.61 m) than N-N (mean ± SD = 0.65 ± 0.60 m). There was a strong 

positive correlation between N-T and N-N (Pearson’s correlation, ρ=0.99, 

p<0.001, n=26, Fig S1.1), hence, N-T could be converted to N-N for further 

analysis using the conversion equations derived here from linear regressions 

(F1,24=6902, p<0.001, R2
(Adj)=0.99, Fig S1.1). 

 

 

Fig. S1.1 Linear relationship 
between curved carapace 
lengths (CCL) notch-to-tip (N-
T) and notch-to-notch (N-N) of 
loggerhead turtles sampled in 
the North Levantine basin 
(North Cyprus). Solid line 
depicts linear regression and 
dotted lines depict 95% 
confidence intervals. The 
conversion equation and 
regression statistics are 
shown  
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Appendix S2 – Isotopic differences with decomposition state and catch 

method 

 

Individuals stranded in the North Levantine basin were either alive (n=18), 

fresh dead (n=18), moderately decomposed (n=10), severly decomposed (n=1), 

skeleton (n=1), or the decomposition state was unknown (n=19). Neither δ13C nor 

δ15N values differed with decomposition state (ANOVA, δ13C: F(4,42)=0.34, 

p=0.85, δ15N: F(4,42)=1.48, p=0.23, n=47, Fig S2.2) and therefore samples were 

considered one group for further analysis. Individuals found in the North 

Levantine basin were either bycaught (n=28) or stranded (n=27). Neither δ13C 

nor δ15N values differed with catch method (ANOVA, δ13C: F(1,53)=0.13, p=0.72, 

δ15N: F(1,53)=2.32, p=0.13, n=55, Fig S2.2) and therefore samples were 

considered one group for further analysis. Analysis for both decomposition state 

and strand method were found to be insensitive to the isotope analytical 

uncertainties (for details of this analysis see Appendix S5). 
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Fig. S2.2 (a) δ13C and (b) δ15N values of stranded loggerhead turtles of varying 
decomposition states found in the North Levantine basin. AL:  alive, FD: fresh dead, MD: 
moderately decomposed, SD: severely decomposed, SK: skeleton. (c) δ13C and (d) δ15N 
values of stranded loggerhead turtles either stranded or bycaught in the North Levantine 
basin 
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Appendix S3 – Temporal variation in isotope ratios 

   

   
 
Fig. S3.3 Temporal change of δ13C (top row) and δ15N values (bottom row) of juvenile 
loggerhead turtles sampled in the Central Mediterranean (a,d), NE Adriatic (b,e), and North 
Levantine basin (c,f) 
 

 

Appendix S4 – Seasonal variation in isotope ratios 

 

 

  

  
Fig. S4.4 Seasonal change of δ13C and δ15N values of juvenile loggerhead turtles sampled in 
the North Levantine basin. 
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Appendix S5 - Sensitivity of the analysis to the isotope analytical 

uncertainties 

 

To determine the robustness of our isotope analysis each statistical 

analysis underwent uncertainty analysis. Analytical precision for δ13C and δ15N 

values was 0.18‰ and 0.20‰, respectively, determined as the standard 

deviation from the reference materials USGS40, USGS41, and BLS (see Table 

S5.1 for values). Analytical accuracy was calculated as the sample variance 

across all samples (see Table S5.1 for values). The combined analytical 

uncertainty was estimated as a sum of squares of the analytical precision and 

accuracy assuming that they are uncorrelated (see Table S5.1 for values). 

Therefore, to identify that the results are insensitive to the isotope combined 

analytical uncertainties, each analysis was repeated 100 times whilst perturbing 

the isotope data using additive noise. Noise was calculated as random values 

following a truncated Gaussian distribution centred on zero with a standard 

deviation equal to the combined analytical uncertainty. For each analysis the 

percentage of repeats with a p-value that meets the desired p-value was 

calculated (see Table S5.1 for values).  
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Table S5.1 Uncertainty analysis results. % of repeats: percentage of repeats with 
the desired p-values which are shown in parenthesis. CMed: Central 
Mediterranean, EIon: East Ionian, NEA: NE Adriatic, NL: North Levantine basin. 
 
Statistical 
analysis 

Isotope 
ratio 

Analytical 
accuracy 
(‰) 

Analytical 
Precision (‰) 

Combined 
uncertainty (‰) 

% of repeats 

Variation in isotope ratios with decomposition state 

 Carbon 0.94 0.18 0.48 100 (p>0.05) 

 Nitrogen 2.63 0.20 2.64 100 (p>0.05) 

Variation in isotope ratios with strand method 

 Carbon 1.03 0.18 1.04 100 (p>0.05) 
 Nitrogen 2.67 0.20 2.68 97 (p>0.05) 

Inter-sample variation in isotope ratios 

 Carbon 0.14 0.18 0.23 100 (p>0.05) 
 Nitrogen 0.33 0.20 0.38 100 (p>0.05) 

Temporal variation in isotope ratios 

CMed Carbon 0.68 0.18 0.70 100 (p>0.05) 
 Nitrogen 1.37 0.20 1.39 100 (p>0.05) 
NEA Carbon 0.46 0.18 0.50 100 (p>0.05) 
 Nitrogen 2.05 0.20 2.06 100 (p>0.05) 
NL Carbon 1.07 0.18 1.09 100 (p>0.05) 
 Nitrogen 2.58 0.20 2.59 69 (p>0.05) 

Seasonal variation in isotope ratios 

 Carbon 0.98 0.18 1.00 100 (p<0.05) 

 Nitrogen 2.88 0.20 2.89 92 (p<0.05) 

Variation in isotope ratios with region 

Analysis of 
Variance 

Carbon 0.58 0.18 0.61 100 (p<0.05) 

 Nitrogen 1.77 0.20 1.79 100 (p<0.05) 
Analysis of 
Covariance 

Carbon 0.58 0.18 0.61 96 (p<0.05) 

 Nitrogen 1.77 0.20 1.79 99 (p<0.05) 

Variation in isotope ratios with sex 

CMed Carbon 0.65 0.18 0.68 100 (p>0.05) 
 Nitrogen 1.31 0.20 1.33 91 (p>0.05) 
NEA Carbon 0.45 0.18 0.48 94 (p>0.05) 
 Nitrogen 1.60 0.20 1.61 100 (p>0.05) 
NL Carbon 1.05 0.18 1.07 100 (p>0.05) 
 Nitrogen 1.75 0.20 1.76 99 (p>0.05) 

Variation in isotope ratios with size 

CMed Carbon 0.97 0.18 0.99 100 (p>0.05) 
 Nitrogen 2.69 0.20 2.70 100 (p>0.05) 
EIon Carbon 0.97 0.18 0.99 100 (p>0.05) 
 Nitrogen 2.69 0.20 2.70 100 (p>0.05) 
NEA Carbon 0.97 0.18 0.99 86 (p>0.05) 
 Nitrogen 2.69 0.20 2.70 95 (p<0.05) 
NL Carbon 0.97 0.18 0.99 100 (p<0.05) 
 Nitrogen 2.69 0.20 2.70 100 (p<0.05) 
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ABSTRACT 

 

Aim Using a combination of satellite telemetry and stable isotope analysis 

(SIA) our aim was to identify foraging grounds of loggerhead turtles (Caretta 

caretta) at important rookeries in the Mediterranean, examine foraging ground 

fidelity, and across 25 years determine the proportion of nesting females 

recruiting from each foraging region to a major rookery in Cyprus. 

Location Mediterranean Sea 

Methods Between 1993 and 2018, we investigated the spatial ecology of 

loggerhead turtles from rookeries in Cyprus and Greece using satellite telemetry 

(n=55 adults) and SIA of three elements (n=296). 

Results Satellite telemetry from both rookeries revealed the main foraging 

areas as the Adriatic region (Cyprus: 4% of individuals, Greece: 55%), Tunisian 

Plateau (Cyprus: 16%, Greece:  40%), and the eastern Mediterranean (Cyprus: 

80%, Greece: 5%). Combining satellite telemetry and SIA allowed 64% of all 

nesting females to be assigned to; the Adriatic region (Cyprus: 2%, Greece: 

38.5%), Tunisian Plateau (Cyprus: 47%, Greece: 38.5%), and the eastern 

Mediterranean (Cyprus: 51%, Greece: 23%), which are markedly different to 

proportions obtained using satellite telemetry. The proportion of the Cyprus 

nesting cohort using each foraging region did not change significantly, with the 

exception that individuals foraging in the Adriatic region are only present in the 

Cyprus nesting population from 2012. Repeat satellite tracking (n=3) and 

temporal consistency in isotope ratios (n=36) of Cyprus females, strongly suggest 

foraging ground fidelity over multiple decades. 

Main Conclusions This study demonstrates the advantages of combining 

satellite telemetry and SIA to investigate spatial ecology at a population level. The 

importance of the Tunisian Plateau for foraging is demonstrated. This study 

indicates that females generally show high fidelity to foraging grounds and shows 

a potential recent shift to foraging in the Adriatic region for Cyprus females, whilst 

the importance of other regions persist across decades, thus providing baselines 

to develop and assess conservation strategies. 

 

Keywords δ13C, δ15N, δ34S, Foraging ecology, Loggerhead turtle, 

Mediterranean, Migration, Satellite telemetry, Sea turtle, SIA 
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INTRODUCTION 

 

Many marine species migrate over long distances, often travelling 

thousands of kilometres across remote areas, between critical habitats. 

Consequently, understanding their movements and identifying areas of habitat 

use can be challenging. Marine migrants are considered particularly vulnerable 

to overexploitation, habitat loss, and climate change (Robinson et al., 2009) and 

a lack of knowledge of where and how populations move throughout their life 

cycle makes it difficult to identify potential risks to their survival. It is therefore 

necessary to understand the geographical range and migratory connectivity of a 

species for successful development of long-term conservation plans (Webster et 

al., 2002). 

Marine turtles often migrate across ocean basins between foraging and 

nesting grounds (e.g. Shillinger et al., 2008), and several geographically distinct 

foraging areas are typically used by individual nesting populations (e.g. Hays et 

al., 2006; Seminoff et al., 2008; Stokes et al., 2015; Dujon et al., 2018). 

Traditionally, conservation, and conservation-driven research, of marine turtles 

has been focused on easily accessible nesting grounds (Bjorndal et al., 1999; 

Hamann et al., 2010), protecting nesting females and their eggs, thus potentially 

only protecting a small proportion of the life cycle of the species. The large 

geographical range over which marine turtles migrate and forage means that 

turtles are under high threat from fisheries so require a more diverse approach to 

conservation (Wallace et al., 2011). Bycatch is one of the key threats to marine 

turtles in the Mediterranean Sea resulting in high levels of mortality 

(conservatively 44,000 deaths per year, Casale, 2011; Casale et al., 2018). 

Consequently, working towards the conservation of critical marine regions, 

including foraging grounds and migratory routes, is considered a research priority 

in Mediterranean marine turtle ecology (Casale et al., 2018).  

A common technique used in marine megavertebrate spatial ecology is 

satellite telemetry which enables migratory species to be tracked over long 

distances (e.g. Gillespie et al., 2001). This can provide fine-scale near real-time 

movement data on location and speed, but is an expensive technique, and this 

cost can often limit the sample size (Godley et al., 2008). In contrast, stable 

isotope analysis (SIA) is a powerful but relatively cheap forensic tool and has 

been used for several marine taxa (Rubenstein & Hobson, 2004; Newsome et al., 
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2010; Bird et al., 2018), including marine turtles (Figgener et al., 2019a,b; 

Haywood et al., 2019), to gain insights into the spatial and foraging ecology of 

marine species. Combining the locational data of satellite telemetry with stable 

isotope ratios allows scaling up and has been shown to enable inference of 

habitat use at a population level (e.g. Bradshaw et al., 2017; Ceriani et al., 2015, 

2017). This would enable conservation plans to be better informed, targeting 

foraging grounds that support the largest proportion of the nesting cohort.  

Within low-metabolically active tissues of a consumer, the ratio of stable 

isotopes reflects the food that an individual has consumed and the location where 

it was ingested, therefore, acting as intrinsic habitat markers of migratory 

connectivity (DeNiro & Epstein, 1978). In marine research, the ratio of 13C:12C 

(expressed as δ13C), 15N:14N (expressed as δ15N), and 34S:32S (expressed as 

δ34S) are most commonly used as geographical markers. Carbon isotope ratios 

reflect the primary producer at the base of the food chain in which feeding occurs 

(DeNiro & Epstein, 1978), with benthic and nearshore regions supported by algae 

and seagrass exhibiting high δ13C values in comparison to pelagic and oceanic 

regions supported by phytoplankton (DeNiro & Epstein, 1978; Graham et al., 

2010). Nitrogen isotope ratios of marine primary producers differ in relation to (1) 

nitrogen-based processes (e.g. nitrification, denitrification, and N2-fixation), and 

(2) nitrogen isotope ratios of their nutrient sources (e.g. N2, ammonium, and 

nitrate) (Montoya, 2007). Sulphur isotope ratios in primary producers differ based 

on access to sulphides with inshore ecosystems supported by seagrass and 

microphytobenthos exhibiting low δ34S values when compared to offshore 

ecosystems supported by phytoplankton (e.g. Bradshaw et al., 2017).  δ34S 

values are believed to be a true habitat marker as they are independent of 

fractionation from prey to predator, unlike δ13C and δ15N values (McCutchan et 

al., 2003). Despite the benefits of analysing all three isotopes, only one previous 

study has used this methodology for loggerhead turtles (Tucker et al., 2014). The 

oligotrophic Mediterranean Sea has regional heterogeneity in salinity, 

temperature, and primary productivity, all of which influence nutrient cycling 

(Zotier et al., 1999). Therefore, the Mediterranean can support regions and food 

webs of differing isotopic compositions, and this variation can allow marine turtle 

foraging habitats to be inferred (e.g. Cardona et al., 2014; Bradshaw et al., 2017).  

Fresh egg yolk and epidermis tissue sampled during the egg laying 

process are considered representative of the diet consumed in the foraging 
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ground used several months prior to the tissue being sampled (Ceriani et al., 

2014). The combination of satellite telemetry and SIA data allows the isotope 

ratios of specific foraging grounds to be determined. If isotope ratios of foraging 

grounds are distinct, this enables untracked females to be reliably assigned to 

putative foraging grounds from a single tissue sample, hence providing an 

understanding of the spatial ecology at a population level (e.g. Seminoff et al., 

2012; Ceriani et al., 2015). In addition, the temporal consistency of isotope ratios 

have been used for confirming foraging ground fidelity in marine taxa (e.g. 

Newsome et al., 2010), including marine turtles (e.g. Thomson et al., 2012; 

Bradshaw et al., 2017). If foraging ground fidelity occurs, then long-term studies 

enable the proportion of individuals in each annual nesting cohort using each 

foraging ground to be determined across multiple nesting seasons and therefore 

identifying potential shifts in population dynamics (e.g. Ceriani et al., 2015, 2017; 

Bradshaw et al., 2017). Temporal changes in the proportion of individuals using 

each foraging ground could be inferred as changes in the foraging ground 

dynamics, including changes in recruitment, survival of individuals, or changes in 

foraging resources and environmental conditions. These could in turn be 

reflective of natural ecological or anthropological changes. 

It is estimated that there are approximately 16,000 adult loggerhead turtles 

in the Mediterranean of which ~3500 females nest annually (Casale & Heppell, 

2016). The major foraging regions for these nesting females have been identified 

using flipper tag returns and satellite telemetry and include the northern Adriatic 

Sea, Aegean Sea, Turkey, Egypt, and the Tunisian Plateau (Godley et al., 2003; 

Lazar et al., 2004; Broderick et al., 2007; Hays et al., 2010, 2014; Zbinden et al., 

2008, 2011; Margaritoulis & Rees, 2011; Schofield et al., 2013; Patel et al., 2015; 

Snape et al., 2016; see also reviews by Margaritoulis et al., 2003; Luschi & 

Casale, 2014; Casale et al., 2018). However, this information currently exists for 

only a small sample of these populations. Nest counts in Mediterranean rookeries 

are generally not increasing as rapidly as expected despite intensive 

conservation efforts on the nesting beaches (Casale et al., 2018). A more 

comprehensive picture of where Mediterranean loggerhead turtles are foraging 

would help target conservation strategies (Casale et al., 2018). Combining 

satellite telemetry and SIA, Bradshaw et al. (2017) described in detail the foraging 

grounds of a large proportion of nesting green turtles (Chelonia mydas) from an 

important rookery in North Cyprus. We aimed to replicate this study, and be the 
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first to analyse three isotope markers for loggerhead turtles in the Mediterranean, 

to identify the foraging grounds used by loggerhead turtles from nesting 

populations in Greece and North Cyprus, examine the level of foraging ground 

fidelity, and determine the proportion of the North Cyprus nesting cohort using 

each identified foraging ground during this multi-decadal study. 

 

METHODS 

 

2.1 FIELD DATA AND SAMPLE COLLECTION 

 

The beaches at Alagadi (35°20'N, 33°29'E) are major nesting grounds for 

loggerhead turtles in North Cyprus (Casale et al., 2018), where nest protection 

and monitoring has been implemented since 1992 (Broderick et al., 2002, Fig. 1). 

Nightly monitoring (for details see Stokes et al., 2014) took place between 20:30 

and 05:00 during the nesting seasons between 1993 and 2018, from May to mid-

August. For individual identification, after laying, females had flipper tags placed 

in the trailing edge of both fore-flippers and, since 1997, passive integrated 

transponders were injected into the shoulder muscle. Minimum curved carapace 

length (CCL, notch-to-notch, Bolten et al., 1999) was measured with a flexible 

measuring tape as an indicator of body size. 
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Figure 1 Location of loggerhead turtle satellite tracking deployment sites in 
North Cyprus (n = 4 sites). Insert box shows the location of Cyprus and the 
deployment site Zakynthos, Greece (from Zbinden et al. (2011)). Number of 
satellite tags deployed indicated within circles at each area. 

 

2.2 SATELLITE TELEMETRY 

 

At Alagadi Beach, between 2001 and 2018, 32 Platform Terminal 

Transmitters (PTTs) were attached to 29 adult female loggerhead turtles after 

oviposition, with three of these individuals tracked on two occasions. In addition, 

eight PTTs were deployed from other beaches in North Cyprus; Akdeniz 

(35°20'N, 32°56'E), Iskele (35°16'N, 33°55'E), and Tatlisu (35°41'N, 33°76'E, Fig. 

1, see Appendix S1 in Supporting Information). The PTTs deployed between 

2001 and 2012 from North Cyprus were previously published (Godley et al., 2003; 

Broderick et al., 2007; Snape et al., 2016), whilst 11 PTTs were attached in 2017-

2018 on Alagadi (see Appendix S1). To further increase sample sizes, previously 

published satellite telemetry data for 18 individuals nesting at the Bay of Laganas 

on Zakynthos, Greece (37°72'N, 20°86'E, Zbinden et al., 2008, 2011) were 

included in our analysis (Fig. 1, see Appendix S1 in Supporting Information). For 

details on the analysis of satellite telemetry data see Appendix S1.  
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2.3 STABLE ISOTOPE ANALYSIS 

 

Of 373 individual females that were recorded nesting at Alagadi between 

2001 and 2018, epidermis tissue samples (<0.000025 m2) were collected using 

a scalpel from the trailing edge of the right fore-flipper (from the third membrane) 

or the shoulder (between the neck and fore-flipper) from 233 individuals (21 of 

which were satellite tracked individuals). Until required for analysis, tissue 

samples were stored in either, >70% ethanol at room temperature (n=421), >70% 

ethanol in a non-frost-freezer (n=31), or frozen in sodium chloride solution (n=28). 

Dermis tissue was separated from the skin samples in the laboratory and only the 

epidermis tissue was used in the analysis. For details on the stable isotope 

analysis conducted, see Appendix S2 in Supporting Information. 

Several individuals were sampled multiple times to determine the 

consistency of isotope ratios between left and right flipper samples (n=38 

females), between flipper and shoulder samples (n=51 females), across 

successive clutches in the same season (sampled during first encounter and 10-

16 days after the previous clutch, n= 30 females), and across nesting seasons 

(n=36 females). For details on the methods of this analysis see Appendix S2 in 

Supporting Information. 

In addition, stable isotope ratios (δ13C and δ15N) were available for the 

present study from 12 satellite tracked (see Appendix S1) and 51 untracked 

females from Zakynthos (previously published in Zbinden et al., 2011). Zbinden 

et al. (2011) collected yolk from unhatched eggs (during post-hatchling clutch 

excavation) and fresh eggs (during laying). Yolk samples were frozen and 

subjected to lipid extraction. Therefore, to obtain comparable values to the 

present study, we converted the isotope ratios of unhatched yolk to fresh yolk (by 

subtracting 0.49 ‰ from δ15N values, see Zbinden et al., 2011) and then to 

epidermis values using published tissue conversion equations for frozen fresh 

lipid extracted yolk to female loggerhead turtle epidermis values 

(δ13Cepi=0.90*δ13Cyolk-0.95, δ15Nepi=1.05*δ15Nyolk-0.75, Kaufman et al., 2014). 
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2.4 FORAGING GROUND ASSIGNMENT 

 

Tissue samples were available for 21 Alagadi and 12 Zakynthos satellite 

tracked females. Due to limited tissue quantity, six Alagadi individuals could only 

be run for δ13C and δ15N analysis, whilst 15 were analysed for all three stable 

isotope ratios (see Appendix S1). δ13C and δ15N analysis were prioritised for 

comparison to previous SIA research, as only four marine turtle studies to date 

have analysed δ34S values (see review by Haywood et al., 2019). From the 

previous study only δ13C and δ15N values were available from Zakynthos 

individuals. The PTTs of two Alagadi individuals ceased to function during 

migration, therefore these were excluded from further analysis.  

To enable assignment of untracked females to putative foraging grounds, 

statistically significant differences in stable isotope ratios among foraging 

grounds are required. To determine suitable geographical regions which are 

isotopically distinct a Principal Component Analysis was run, and an Analysis of 

Covariance was used to confirm if the isotope ratios of the identified regions were 

significantly different from each other. For details of this analysis see Appendix 

S3 in Supporting Information. To assign untracked females to putative foraging 

grounds, the nominal assignment approach of Linear Discriminant Function 

Analysis (LDA) was used in the R-package ‘MASS’ (Venables & Ripley, 2002). 

Non-uniform priors based on the number of turtles tracked to each foraging region 

were used as recommended by Vander Zanden et al. (2015). As no Zakynthos 

individuals and not all Alagadi individuals had associated δ34S values, two LDAs 

were run. The first for δ13C and δ15N values whilst the second included all three 

isotopes. For the LDA using δ13C and δ15N values, the isotope ratios of 31 tracked 

females (Alagadi: n=19; Zakynthos: n=12) were used as the training dataset to 

develop the discriminant functions, whilst the remaining 265 untracked females 

(Alagadi: n=214; Zakynthos: n=51) were the test dataset for assignment to 

putative foraging grounds. For the LDA using δ13C, δ15N, and δ34S values (using 

only Alagadi individuals), the training dataset consisted of 11 tracked females, 

whilst 160 untracked females were the test dataset for assignment. A jack-knifed 

leave-one-out cross validation method was used to assess the accuracy of the 

assignments. Assignments with posterior probabilities of ≥80% were considered 

successful. 
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2.5 FORAGING GROUND FIDELITY 

 

Thirty-six individuals that had multi-year δ13C and δ15N values, and of 

those 23, individuals had multi-year δ34S values, allowed foraging ground fidelity 

to be examined for this population. Twenty-two individuals had isotope ratios for 

two nesting seasons, eight for three seasons, three for four seasons, and three 

for five nesting seasons. To test isotope temporal consistency, repeatability 

estimates using a linear mixed-effects model for Gaussian data fitted with 

restricted maximum likelihood were used in the R-package ‘rptR’ (Stoffel et al., 

2017). Turtle ID was set as the grouping factor. 

 

2.6 ANNUAL CONTRIBUTIONS TO THE ALAGADI NESTING COHORT 

 

Satellite tracked individuals, with known foraging region, and individuals 

assigned to putative foraging regions (with posterior probabilities of ≥80%) were 

used to estimate the proportion of the annual cohort using each foraging ground 

through SIA. Tissue samples were only collected from 2001 onwards but some 

individuals, that were identified from 1993 onwards, had samples collected in later 

seasons and therefore could be assigned to foraging grounds based on the 

assumption of foraging ground fidelity. To determine whether the proportion of 

nesters using each foraging ground differed among years (1993 to 2018), 

generalised additive models for binomial data were run for each foraging ground 

in the R-package ‘mgcv’ (Wood, 2017), which took autocorrelation into account. 

All analyses were performed with the software R 3.5.1 (R Core Team, 2018) and 

for statistical tests, the significance level was alpha = 0.05. 

 

RESULTS 

 

SATELLITE TELEMETRY 

 

From this study a total of 40 PTTs were deployed on 37 females from four 

release sites in North Cyprus (three females were tracked twice from Alagadi, 

Figure 1). Locational data were transmitted for 6-2007 days (mean: 371 days). 

Of these, 37 PTTs provided location data throughout the post-nesting migration 

to the foraging grounds. From Zakynthos, 18 females were satellite tracked and 
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all transmitted to confirmed foraging grounds and transmitted for 114-740 days 

(mean: 328 days). Satellite tracked females from North Cyprus had mean CCL of 

0.73 ± 0.06 m (range: 0.65 to 0.85 m), whilst turtles from Greece had mean CCL 

of 0.84 ± 0.04 m (range: 0.76 to 0.89 m). These CCL values are within the ranges 

recorded for nesting females at each representative site, showing satellite 

tracked females represent the parent population well (Omeyer et al., 2017; 

Casale et al., 2018). 

Post-nesting females from North Cyprus migrated via numerous migratory 

routes to the Aegean Sea, the Adriatic region (including the Adriatic Sea and the 

Gulf of Amvrakikos), and across a large extent of the eastern Mediterranean 

basin, to foraging grounds in Italy, Turkey, Cyprus, Syria, Lebanon, Israel, Egypt, 

Libya, Tunisia, and the Tunisian Plateau (Fig. 2a). Females nesting in Greece 

migrated to Croatia, Slovenia, Italy, Greece, Tunisia, and the Tunisian Plateau 

(Fig. 2b). Thirty nine females remained in distinct foraging grounds all located on 

the continental shelf (within the 200 m isobath), fourteen females showed over-

wintering behaviours moving to a second distinct area during the winter months, 

and two turtles (Turtle 21 and Turtle 27) conducted oceanic foraging throughout 

their deployments in waters >200 m (466 and 222 days, respectively, Fig. 2a). 

These oceanic individuals were considered untracked for foraging ground 

assignment as they did not occupy a distinct foraging ground.  
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Figure 2 Foraging grounds of female loggerhead turtles tracked from (a) North 
Cyprus and (b) Greece to the Adriatic region (red), the Tunisian Plateau (grey), and 
the rest of the eastern Mediterranean (blue). Oceanic movements of Turtle 21 (red) 
and Turtle 27 (black) are highlighted. (c) bivariate plot of δ13C and δ15N, and (d) δ13C 
and δ34S, respectively, of loggerhead turtles satellite tracked or isotopically assigned 
to the Adriatic region (n=15, red squares), the Tunisian Plateau (n=87, grey 
triangles), or the rest of the eastern Mediterranean (n=92, blue circles). Unassigned 
individuals = open circles (n=100). Crosses = mean ±SD of each foraging region. 
Artwork inset of a foraging loggerhead turtle. 
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3.2 FORAGING GROUND ASSIGNMENT 

 

The Principal Component Analysis identified three isotopically distinct 

geographical regions (see Appendix S3a in Supporting Information), the Adriatic 

region, the Tunisian Plateau, and the rest of the eastern Mediterranean (Fig. 2). 

The ‘Adriatic region’ includes all individuals foraging in the Adriatic Sea and the 

North Ionian Sea (including the Gulf of Amvrakikos), the ‘Tunisian Plateau’ 

includes all individuals foraging offshore the Tunisian coast (mean distance from 

coast: 68.5 km) on the Tunisian Plateau, and the ‘rest of the eastern 

Mediterranean’ includes all individuals foraging in neritic regions in the eastern 

Mediterranean basin, including individuals foraging nearshore on the Tunisian 

Plateau (Fig. 2). These regions had significantly different isotope ratios even 

when body size was taken into account (Analysis of Covariance, δ13C: F2,25= 

11.99, p<0.001, δ15N: F2,25=14.62 , p<0.001, δ34S: F2,7= 4.47, p=0.05, see 

Appendix S3b). A post hoc Tukey’s Honest Significant Difference test revealed 

that significant differences occurred between all regions with the Adriatic region 

distinct based on high δ15N values, the Tunisian Plateau distinct based on high 

δ34S values, and the rest of the eastern Mediterranean distinct based on high 

δ13C values (see Appendix S3a).  

Tissue samples were available from 265 untracked females (of which 51 

were from Greece), which ranged in size between 0.59 to 0.94 m (mean: 0.722 

m). Stable isotope ratios ranged from -19.37 to -8.18 ‰ for δ13C (mean: -15.47 

‰), 4.44 to 12.8 ‰ for δ15N (mean: 8.88 ‰), and 1.62 to 23.39 ‰ for δ34S (mean: 

18.05‰). The LDA using δ13C and δ15N values correctly assigned 74% of satellite 

tracked individuals to their foraging region (Alagadi: 69% and Zakynthos: 83%) 

as tested by the jack-knifed leave-one-out cross validation method. The LDA 

using δ13C, δ15N, and δ34S values correctly assigned 73% of the Alagadi satellite 

tracked females (Zakynthos individuals did not have associated δ34S values so 

were not included). The resultant uncertainties in the LDA due to propagating the 

isotope analytical uncertainties are ±0.1% (for both cases, for details on this 

analysis see Appendix S5 in Supporting Information). 

Untracked individuals included in both LDAs (n=129) were assigned to the 

same foraging region, showing consistency in this method. For Alagadi 70% of 

untracked females (n= 148) were successfully assigned to putative foraging 

grounds. Of those assigned, 2% were assigned to the Adriatic region, 47% to the 



Chapter 4: Adult spatial ecology 

149 
 

Tunisian Plateau, and 51% to the rest of the eastern Mediterranean. For 

Zakynthos 25% of untracked females (n= 13) were successfully assigned to 

putative foraging grounds. Of those assigned, 38.5% were assigned to the 

Adriatic region, 38.5% to the Tunisian Plateau, and 23% to the rest of the eastern 

Mediterranean. Due to posterior probabilities being ≤80%, 30% of untracked 

Alagadi females (n = 62) and 75% of untracked Zakynthos females (n = 38) 

remained unassigned (Fig. 2, see Appendix S3a). Oceanic Turtle 27 was 

assigned to the Tunisian Plateau, whilst Turtle 21 was unassigned due to 

posterior probabilities being ≤80%. Isotope ratios of satellite tracked and 

isotopically assigned females are shown in Table S3.2 in the Supporting 

Information.  

 

3.3 FORAGING GROUND FIDELITY 

 

Three individuals (Turtles 1, 3, and 37) were tracked during two foraging 

seasons and showed strong foraging ground fidelity. The centroids of their 

foraging grounds were separated by 1.2 km (Turtle 1), 20.2 km (Turtle 3), and 0.2 

km and 0.8 km (Turtle 37, Fig. 3). Turtle_37, was tracked for 2007 days across 

two foraging seasons, and shuttled repeatability between two foraging grounds 

13 km apart but showed exceptionally high fidelity to both foraging grounds (Fig. 

3). For individuals sampled for SIA, the δ13C, δ15N, and δ34S values across 

multiple nesting seasons had highly significant repeatability estimates 

(Repeatability estimation (R), δ13C: R ± Standard error=0.92 ± 0.02, 95% 

Confidence Interval=0.86 − 0.95, p<0.001, n=36, δ15N: R ± Standard error=0.94 

± 0.02, 95% Confidence Interval=0.89 − 0.96, p<0.001, n=36, δ34S: R ± Standard 

error=0.84 ± 0.06, 95% Confidence Interval=0.68 − 0.92, p<0.001, n=23, Fig. 4). 

The analysis was repeated 100 times whilst perturbing the isotope data using 

additive noise (with a noise distribution based on the analytical uncertainties). In 

all cases the p-values remained < 0.05 (for details of this analysis see Appendix 

S5 in Supporting Information). Therefore, these results are considered to be 

insensitive to the isotope analytical uncertainties. Isotope ratios of the oceanic 

Turtle 21 did not differ between two nesting seasons despite not occupying a 

distinct foraging ground (Fig. 4, only one sample was available for the oceanic 

turtle Turtle 27). 
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Figure 3 Foraging ground fidelity of three female loggerhead turtles tracked during two 
foraging seasons from Alagadi Beach, North Cyprus. (a) Foraging grounds of Turtle 1 
(T_1) and Turtle 37 (T_37) located on the east coast of North Cyprus. Turtle 37 shuttled 
repeatability between the two foraging grounds shown throughout the seasons. (b) 
Foraging grounds of Turtle 3 (T_3) located on the east coast of Tunisia. Points = foraging 
ground centroids (blue = first foraging season, red = second foraging season), crosses = 
standard deviations. Insert box shows the location of (a) and (b). 
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Figure 4 (a), (c), and (e) show temporal consistency in δ13C, δ15N, and δ34S values of 
samples collected from female loggerhead turtles across multiple nesting seasons in 
Alagadi Beach, North Cyprus. The oceanic Turtle 21 is highlighted in red. (b), (d), and (f) 
show differences in isotope ratios between samples using the first nesting season as a 
reference. 
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3.4 ANNUAL CONTRIBUTIONS TO THE ALAGADI NESTING COHORT 

 

Across the study period 70% (n=148) of sampled Alagadi nesting females 

were successfully assigned to a putative foraging region. Of these, fewest 

females foraged in the Adriatic region (2%) whereas the remainder were 

approximately equally split between the Tunisian Plateau (47%) and the rest of 

the eastern Mediterranean (51%). By determining foraging ground use at a 

population level, this study shows the number of females utilising each region is 

markedly different to the proportions obtained from using purely the satellite 

tracking data, which results in one Alagadi individual tracked to the Adriatic region 

(4%), four to the Tunisian Plateau (16%), and 20 to the rest of the eastern 

Mediterranean (80%, see Appendix S1 in Supporting Information). Of those 

assigned to the Adriatic region, half were remigrants (returning females), whilst 

26% of Tunisian Plateau foragers and 29% of the foragers in the rest of the 

eastern Mediterranean were remigrants. The proportion of individuals assigned 

to all foraging regions did not differ among years (Generalised additive model, 

Adriatic region: t-value=0.21, df=25, p=0.83, Tunisian Plateau: t-value=0.97, 

df=25, p=0.34, rest of the eastern Mediterranean: t-value=0.44, df=25, p=0.67, 

Fig. 5, for the number of females assigned to each foraging ground see Table 

S4.3 in the Supporting Information) but it should be noted that breeding 

individuals that use the Adriatic region were only recorded from 2012 onwards. 

 

 
 

Figure 5 Proportion of the 
Alagadi (North Cyprus) annual 
loggerhead turtle nesting cohort 
assigned to the Tunisian 
Plateau (grey), the rest of the 
eastern Mediterranean (blue), 
or the Adriatic region (red). 
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DISCUSSION 

 

This study adds to the growing body of literature that demonstrates the 

benefits of combining the complementary methodological approaches of satellite 

telemetry and SIA in understanding the spatial ecology of animal populations (e.g. 

Ceriani et al., 2012; Seminoff et al., 2012; Reich et al., 2017; for a review and 

references therein see Haywood et al., 2019). This combined approach allowed 

us to understand the importance of foraging grounds for the broader population, 

which demonstrates a remarkable difference from results obtained from several 

individuals using satellite telemetry alone. When teamed with long-term 

individual-based monitoring programmes these combined techniques can 

determine whether the importance of these foraging regions persist over decades 

and provide baselines to assess future conservation strategies (e.g. Pajuelo et 

al., 2012; Vander Zanden et al., 2014; Ceriani et al., 2015, 2017; Bradshaw et al., 

2017).  

Previous satellite telemetry has shown these North Cyprus and Greece 

nesting populations utilise a broad range of foraging grounds (Godley et al., 2003; 

Broderick et al., 2007; Hays et al., 2010, 2014; Zbinden et al., 2008, 2011; 

Schofield et al., 2013; Snape et al., 2016). The PTTs deployed in this study in 

2017 and 2018 (see Appendix S1) continued to identify a wide range of migratory 

routes and new foraging grounds including the first use of the Aegean Sea, the 

Adriatic Sea, and the western Mediterranean basin, none of which had previously 

been observed for the North Cyprus nesting population (Fig. 2a). Satellite 

telemetry results suggest the majority of the Alagadi nesting population forages 

around the eastern Mediterranean Basin (80%), whilst few forage on the Tunisian 

Plateau (16%) and in the Adriatic region (4%). However, by combining telemetry 

results with the powerful forensic tool of SIA, this study identifies the importance 

of the Tunisian Plateau as a foraging region for this population. This region 

appears to support almost half of the Alagadi nesting population (47%), despite 

being a relatively small geographical region and is a considerable distance from 

the rookery (2500 km). This result can be used to better inform conservation, 

suggesting this relatively small foraging region, which supports a large proportion 

of the nesting cohort, is targeted for future management.  

Prior satellite tracking and SIA studies have also shown the Tunisian 

Plateau to be a major foraging ground for loggerhead turtle rookeries across the 
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Mediterranean Sea (e.g. Hays et al., 2010; Zbinden et al., 2011; Schofield et al., 

2013; Cardona et al., 2014; Snape et al., 2016) as well as for male (Casale et al., 

2013; Schofield et al., 2013; Hays et al., 2014) and juvenile loggerhead turtles 

(Casale et al., 2012). In addition, both our satellite telemetry and SIA results 

support previous work showing foraging ground fidelity occurs in this species (Fig. 

3 and Fig.4, Broderick et al., 2007; Schofield et al., 2010; Thomson et al., 2012; 

Tucker et al., 2014). In comparison to satellite telemetry alone, using isotope 

ratios to investigate foraging site fidelity not only enhances the sample size but 

enables tracking over decades. This is the first loggerhead turtle study to use this 

method on multi-decadal data showing foraging site fidelity across five nesting 

seasons. Isotopically tracking individuals over decades provides a baseline to 

potentially investigate shifts in habitat use as well as to provide pre- and post-

disaster information (e.g. Reich et al., 2017).  

In the Mediterranean Sea, bycatch is one of the most important threats to 

marine turtles and the Tunisian Plateau has some of the highest rates (Casale et 

al., 2007, 2018; Casale, 2011). In Alagadi and Zakynthos, nest counts are not 

increasing as rapidly as expected (Casale et al., 2018), suggesting that 

alternative conservation approaches are needed. This study supports the need 

to focus site-specific conservation strategies on anthropogenic activities (such as 

fishing) to key marine habitats, such as the Tunisian Plateau, which may 

dramatically increase the survival of individuals in this foraging ground and aid in 

the recovery of many loggerhead rookeries across the Mediterranean. Potential 

future conservation management approaches to reduce bycatch in important 

foraging areas, such as the Tunisian Plateau, have been reviewed in Casale et 

al. (2018). The review highlights the need of monitoring and reporting bycatch, 

the enforcement of changes to less detrimental fishing gears, as well as mitigation 

measures such as the use of turtle excluder devices by bottom trawlers or ‘circle 

hooks’ by longliners (Casale et al., 2018 and references therein). 

Both satellite telemetry and SIA show the Adriatic region is a more 

important foraging area for those nesting in Greece than nesting females in North 

Cyprus. The use of the Adriatic region by nesting populations in Greece (Lazar 

et al., 2004; Zbinden et al., 2011; Schofield et al., 2013; Cardona et al., 2014; 

Hays et al., 2014) and the limited use by eastern nesting populations, such as 

North Cyprus, have been previously reported (Snape et al., 2016 Margaritoulis & 

Rees, 2011). Hatchling dispersal studies suggest adult foraging grounds may be 



Chapter 4: Adult spatial ecology 

155 
 

selected based on the passive dispersion of hatchlings by surface currents, with 

those originating from Greece dispersed to the Adriatic region (Hays et al., 2010; 

Casale & Mariani, 2014), whilst those from eastern nesting sites are restricted 

from entering this region (Casale & Mariani, 2014). Therefore, with the 

importance of foraging grounds likely to differ between nesting populations, this 

study should be replicated for all major nesting grounds to ensure all critical 

marine habitats for this species are considered in conservation plans. 

Temporal differences in hatchling dispersal have been simulated and are 

thought to be due to fluctuations in surface currents (e.g. Hays et al., 2010). With 

shifts in ocean circulation likely with future climate scenarios (Hoegh-Guldberg & 

Bruno, 2010), shifts in hatchling dispersal and in turn adult foraging grounds may 

occur (Hays et al., 2010). Shifts in foraging grounds will not only determine the 

potential of fisheries interactions due to variable bycatch rates across the 

Mediterranean (Casale, 2011) but could also influence reproductive output, with 

individuals foraging in areas of high productivity, such as the Adriatic region, 

being larger with larger clutch sizes (e.g. Cardona et al., 2014). 

Collecting long-term individual-based data at easily accessible nesting 

beaches can allow monitoring of shifts in the importance of foraging grounds (e.g. 

Ceriani et al., 2015, 2017; Bradshaw et al., 2017). Although loggerhead turtle 

foraging grounds have been identified, how each foraging ground contributes to 

a nesting cohort on a long-term scale has not been investigated in the 

Mediterranean and no marine turtle study has investigated this over multiple 

decades. This study shows that the proportion of the Alagadi cohort using each 

foraging region did not significantly differ across this multi-decadal study. This 

suggests little shift in the importance of these regions, with recruitment, 

survivorship, and conditions potentially remaining similar. In contrast, significant 

shifts in the relative contributions to foraging grounds has been reported in major 

loggerhead turtle rookeries in the Atlantic (Pajuelo et al., 2012; Vander Zanden 

et al., 2014; Ceriani et al., 2017). 

Over this 25 year study period, individuals foraging in the Adriatic region 

were only seen in the Alagadi nesting cohort from 2012 onwards (Fig. 5) and 

could suggest differences in recruitment and survivorship in some areas or a 

range shift possibly due to climatic variations in the environmental conditions or 

anthropological changes (Casale et al., 2018). We support the recommendation 

by Ceriani et al. (2017) that multi-decadal studies are required to detect long-term 
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trends in population dynamics, providing a baseline to assess temporal shifts in 

foraging ground importance enabling conservation management to be adapted 

and targeted appropriately. It also provides baselines to develop and assess 

future conservation strategies.  

This is the first instance of oceanic foraging behaviours reported for the 

North Cyprus nesting population (Fig. 2a), however, this behaviour has 

occasionally been recorded previously for adult females in other regions of the 

Mediterranean Sea (e.g. Bentivegna, 2002; Schofield et al., 2010; Zbinden et al., 

2008). Despite oceanic foraging, Turtle 21 showed temporal consistency in 

isotope ratios (Fig 4) suggesting they are consuming similar prey items from 

similar food chains across years. Oceanic foraging could reduce the accuracy of 

using SIA for foraging ground assignment as foraging ground fidelity is required, 

however, a small proportion of females are doing this. Both oceanic foragers were 

relatively small in comparison to the other satellite tracked females. A size 

difference between foraging strategies has been reported in previous SIA studies 

investigating neritic versus oceanic foragers and was attributed to sparsely 

distributed planktonic prey in oceanic habitats leading to smaller individuals in 

comparison to those foraging on nutritional neritic prey (Hatase et al., 2002; Eder 

et al., 2012; Cardona et al., 2017).  

Oceanic Turtle 21 spent 230 days in the Strait of Sicily before entering the 

western Mediterranean basin. This is the first report of a westerly migration for 

the North Cyprus nesting population. Although juvenile loggerhead turtles 

originating from the eastern Mediterranean have been previously reported to 

forage in the western basin (e.g. Margaritoulis et al., 2003), few adults have been 

observed to migrate here (e.g. Margaritoulis et al., 2003; Schofield et al.,2013). 

The Strait of Sicily has strong south easterly currents year-round (Poulain & 

Zambianchi, 2007), which may have restricted Turtle 21 from entering the 

western basin sooner. Strong surface currents may limit hatchling dispersal to 

this region reducing the likelihood of adult foraging areas in the western basin 

(Hays et al., 2010; Casale & Mariani, 2014). 

For SIA to successfully assign individuals to putative foraging grounds 

isotopically distinct regions must be used, and three were identified in this study, 

the Adriatic region, the Tunisian Plateau, and the rest of the eastern 

Mediterranean (Fig. 2, see Appendix S3a). Individuals in the Adriatic region have 

relatively low δ13C values and high δ15N values. This is because they are foraging 
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on food chains strongly influenced by major river systems supplying terrestrial 

organic matter, which have lower δ13C values than marine organic matter 

(Degobbis & Gilmartin, 1990; Vizzini et al., 2005; Zbinden et al., 2011), and are 

likely to have a substantial amount of highly enriched 15N anthropogenic waste 

and agricultural run-off (e.g. Degobbis & Gilmartin, 1990; Zbinden et al., 2011). 

This trend has been previously reported in Mediterranean loggerhead turtles 

(Zbinden et al., 2011; Cardona et al., 2014), notably, the eastern Mediterranean 

basin (including the Tunisian Plateau) has high levels of N2-fixation and therefore 

lower baseline δ15N values in comparison to the Adriatic region (Pantoja et al., 

2002), explaining the low δ15N values reported for these foragers. 

Individuals foraging on the Tunisian Plateau are foraging further offshore 

(mean: 68.5 km) than those in the rest of the eastern Mediterranean (mean: 11.0 

km) or the Adriatic region (mean: 4.8 km). Although still on the continental shelf 

it is likely loggerhead turtles on the Tunisian Plateau are foraging on food chains 

with phytoplankton as the primary producer. Individuals foraging on the Tunisian 

Plateau have relatively low δ13C values and high δ34S values. This is expected 

as less productive pelagic and oceanic regions supported by phytoplankton have 

lower δ13C values and higher δ34S values in comparison to productive benthic 

and nearshore regions supported by algae and seagrass (DeNiro & Epstein, 

1978; Graham et al., 2010). This trend has been previously reported in benthic 

communities (Pinnegar & Polunin, 2000) and for green turtles (Cardona et al., 

2009; Tucker et al., 2014; Bradshaw et al., 2017).  

In total, our study was unable to assign 30% of the Alagadi and 75% of the 

Zakynthos females sampled to one of three relatively broad geographic regions 

(Fig. 2, see Appendix S3a). Samples from Zakynthos were run previously for only 

δ13C and δ15N analysis (by Zbinden et al., 2011), which likely contributed to the 

low assignment success observed. To better understand the spatial variation of 

loggerhead turtle isotopes in the Mediterranean Sea, we support the 

recommendation of previous studies (e.g. Ceriani et al., 2012; Seminoff et al., 

2012; Bradshaw et al., 2017) in the use of these complementary tracking 

approaches and urge all future satellite telemetry studies to sample satellite 

tracked individuals for SIA to understand the spatial ecology of marine 

vertebrates at a population level. In addition, the collaboration of researchers 

enabled the data for two major rookeries in the Mediterranean Sea to be 

combined to better understand the geographical differences in isotope ratios. 
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This is the first study of this geographical scale in the Mediterranean. A basin-

scale collaboration, combining data from foraging and nesting grounds across the 

Mediterranean, would enable species-specific isoscapes to be created (as 

recommended by Haywood et al., 2019), which would enhance our 

understanding on marine turtle ecology in this oceanographically complex region. 

To date, only one loggerhead turtle study has analysed δ34S values to 

assign individuals to foraging grounds (Tucker et al., 2014). The present study is 

the first study to analyse all three isotopes for loggerhead turtles in the 

Mediterranean, a method that has been previously reported as vital for 

distinguishing green turtle foraging grounds in this region (Bradshaw et al., 2017). 

We strongly support the recommendation by Bradshaw et al. (2017) that sufficient 

tissue should be sampled to allow analysis of δ13C, δ15N, and δ34S values. The 

Tunisian Plateau, for example, would not have been distinguishable from the rest 

of the eastern Mediterranean without δ34S analysis and in turn the importance of 

this region would not have been highlighted. In addition, if sulphur had been 

analysed for the Zakynthos nesting population then it is likely a much larger 

proportion of nesting females would have been assigned to a foraging region. To 

better delineate isotopic profiles between multiple foraging grounds and help 

assign more individuals to putative foraging regions, analysis of additional 

intrinsic markers e.g. trace elements (e.g. Ramirez et al., 2019) or additional 

analytical techniques such as amino acid compound specific stable isotope 

analysis (e.g. Seminoff et al., 2012, Vander Zanden et al., 2013) would also be 

beneficial. This could be especially important in regions of complex geography 

and oceanography with multiple foraging regions, such as the Mediterranean Sea 

(Bradshaw et al., 2017).  

The large geographical range used by loggerhead turtles in the 

Mediterranean Sea makes protection challenging and requires a diverse 

approach to conservation (Wallace et al., 2011). Due to the collaboration of 

researchers, this is the first SIA study of this geographical scale in the 

Mediterranean, that combines satellite telemetry and SIA of three isotopes, 

enabling the critical marine regions of two major loggerhead turtle rookeries to be 

determined at a population level. This will enable conservation plans to be better 

informed, targeting foraging grounds that support the largest proportion of major 

nesting cohorts, where fisheries management can be directed. Continual 

monitoring of critical marine habitats is vital to detect changes in habitat use 
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resulting from natural or anthropological changes, such as climate change. This 

would enable successful development of long-term conservation plans. By 

conducting the longest study of its kind, this research demonstrates the strength 

of stable isotope tracking to detect shifts in the importance of foraging regions 

across multiple decades and to direct management and conservation efforts to 

these critical habitats. 

To summarise, to create a more comprehensive picture of where 

Mediterranean loggerhead turtles are foraging, we combined satellite telemetry 

and SIA to infer habitat use at a population level. This study confirms the 

importance of the Tunisian Plateau as a foraging region and as a potential area 

for future conservation management. We demonstrate high foraging ground 

fidelity in this population and show that the importance of these foraging regions 

persists across this multi-decadal study, providing baselines to develop and 

assess conservation strategies. This work has greatly enhanced our 

understanding of the movements and habitat use of loggerhead turtles nesting in 

the regionally important rookery at Alagadi, North Cyprus and demonstrates the 

advantages of using complimentary tracking techniques to study the spatial 

ecology of elusive marine vertebrates. This study shows how this method could 

be a powerful tool in the designation of Marine Protected Areas designed to 

protect migratory species. 
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SUPPORTING INFORMATION 

 

Appendix S1 – Satellite tracking 

 

Raw telemetry data, obtained from the Argos satellite system, were 

downloaded using the Satellite Tracking and Analysis Tool (Coyne & Godley, 2005) 

and the Wildlife Computers data portal (wildlifecomputers.com). To ensure a higher 

accuracy in the location data, filters were applied to the telemetry data using the R-

package ‘Argosfilter’ (Freitas, 2012), removing Z (failed Argos plausibility tests) and 0 

(error >1500 m) ARGOS classes (CLS, 2008), and positional data entries with turn 

angles <15 ˚ and calculated speeds of >5 km h-1 (considered implausible for marine 

turtles, Witt et al., 2010).  

To identify foraging grounds, state-space models were applied to each 

individual turtle track. Continuous-time correlated random walk models were fitted to 

de-noise the data using a Kalman-filter in the R-package ‘crawl’ (function ‘crawlWrap’, 

Johnson & London, 2018) and ‘momentuHMM’ (McClintock & Michelot, 2018). This 

assumes a bivariate normal measurement error model and outputs a position estimate 

every 6 hours. It was assumed step length had a gamma distribution and turning angle 

had a wrapped Cauchy distribution (Langrock et al., 2012). Discrete-time hidden 

Markov models were then fitted using the R-function ‘fitHMM’, which estimated the 

likelihood of the two behavioural states ‘transit’ (migratory-type movements) and 

‘resident’ (area-restricted-search-type movements, McClintock & Michelot, 2018). 

Resident behaviour was inferred as foraging and resting, as these behaviours cannot 

be distinguished from locational data alone (Thums et al., 2017). Locations assigned 

as resident behaviour were considered foraging grounds if the individual remained for 

>30 days (Blumenthal et al., 2006). The large spatial distances between potential 

regions (>2500km) suggests that the uncertainties in the telemetry data will be 

insignificant. 
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Table S1.1 Satellite telemetry details of loggerhead turtles tracked from Cyprus (Turtles 1-37) and 

Greece (Turtles 38-55). CCL: curved carapace length. Data were previously published for Cyprus 

deployments between 2001 and 2012 (Godley et al., 2003; Broderick et al., 2007; Snape et al., 2016) 

and Greece deployments (Zbinden et al., 2008, 2011). 

 

Manufacturer Tracking Foraging Nesting

Turtle CCL (m) δ
13

C (‰) δ
15

N (‰) δ
34

S (‰) Year Site (Model) Duration Ground Seasons

1 0.708 -11.92 5.44 NA 2001 Alagadi Telonics (ST14) 80 Cyprus 4

2 0.725 NA NA NA 2001 Alagadi Telonics (ST14) 59 Syria 3

3 0.733 -12.03 6.28 17.69 2002 Alagadi SMRU (SRDL) 422 Tunisia 9

4 0.728 NA NA NA 2002 Alagadi Telonics (ST14) 391 Libya 6

5 0.722 NA NA NA 2002 Alagadi Telonics (ST6) 404 Cyprus 6

6 0.685 -15.71 6.66 NA 2002 Alagadi SMRU (SRDL) 138 Libya 4

7 0.710 NA NA NA 2002 Alagadi Telonics (ST6) 226 Egypt 2

8 0.689 NA NA NA 2002 Alagadi Telonics (ST14) 86 Egypt 1

1 0.733 -11.92 5.44 NA 2003 Alagadi Telonics (ST18) 1405 Cyprus 4

9 0.774 -15.2 8.41 NA 2003 Alagadi Telonics (ST18) 627 Syria 2

4 0.749 NA NA NA 2004 Alagadi Telonics (ST18) 70 NA 6

3 0.733 -12.03 6.28 17.69 2005 Alagadi Sirtrack (Kiwisat 101) 176 Tunisia 9

10 0.817 -16.88 10.725 22.12 2005 Alagadi Sirtrack (Kiwisat 101) 6 NA 7

11 0.756 NA NA NA 2005 Alagadi Sirtrack (Kiwisat 101) 137 Egypt 2

12 0.782 -15.23 4.83 18.8 2006 Alagadi SMRU (SRDL) 63 NA 6

13 0.770 -15.44 11.575 NA 2006 Alagadi SMRU (SRDL) 351 Tunisia Plateau 2

14 0.650 NA NA NA 2006 Alagadi SMRU (SRDL) 348 Libya 1

15 0.850 -14.75 9.86 NA 2007 Alagadi SMRU (SRDL) 261 Lebanon 1

16 0.670 -16.59 7.73 NA 2007 Alagadi SMRU (SRDL) 144 Libya 1

17 0.657 NA NA NA 2008 Alagadi SMRU (SRDL) 700 Cyprus 1

18 0.649 -15.23 10.56 17.02 2009 Alagadi SMRU (SRDL) 267 Syria 2

19 0.779 -12.09 7.31 17.66 2017 Alagadi Wildlife Computers (SPOT) 541 Lebanon 7

20 0.806 -15.8 15.29 15.84 2017 Alagadi Wildlife Computers (SPOT) 102 Italy 3

21 0.679 -16.74 7.64 22.66 2017 Alagadi Wildlife Computers (SPOT) 466 Oceanic 2

22 0.762 -17.66 9.07 22.24 2017 Alagadi Wildlife Computers (SPOT) 435 Tunisia Plateau 2

23 0.743 -14.81 11.68 17.9 2017 Alagadi Wildlife Computers (SPOT) 200 Israel 1

24 0.803 -11.99 9.67 14.3 2018 Alagadi Wildlife Computers (SPOT) 169 Tunisia 3

25 0.738 -15.98 7.78 14.4 2018 Alagadi Wildlife Computers (SPOT) 221 Cyprus 4

26 0.677 -17.26 9.24 19.66 2018 Alagadi Wildlife Computers (SPOT) 521 Tunisia Plateau 2

27 0.653 -17.24 7.94 20.25 2018 Alagadi Wildlife Computers (SPOT) 222 Oceanic 2

28 0.694 -15.78 9.34 19.39 2018 Alagadi Wildlife Computers (SPOT) 183 Tunisia Plateau 2

29 0.677 -15.1 10.12 20.58 2018 Alagadi Wildlife Computers (SPOT) 193 Turkey 2

30 NA NA NA NA 2011 Akdeniz Sirtrack (K2G) 403 Syria NA

31 NA NA NA NA 2011 Akdeniz Sirtrack (K2G) 440 Egypt NA

32 NA NA NA NA 2012 Iskele Sirtrack (F4) 174 Libya NA

33 NA NA NA NA 2012 Iskele Sirtrack (K2G) 334 Tunisia Plateau NA

34 NA NA NA NA 2012 Iskele Sirtrack (K2G) 219 Egypt NA

35 NA NA NA NA 2012 Iskele Wildlife Computers (SPOT) 212 Tunisia NA

36 NA NA NA NA 2012 Iskele Wildlife Computers (SPOT) 1252 Cyprus NA

37 NA NA NA NA 2011 Tatlisu Sirtrack (K2G) 2007 Cyprus NA

38 0.850 NA NA NA 2004 Zakynthos Sirtrack (Kiwisat 101) 128 Adriatic (north) 2

39 0.860 NA NA NA 2004 Zakynthos Sirtrack (Kiwisat 101) 147 Italy 7

40 0.910 NA NA NA 2004 Zakynthos Sirtrack (Kiwisat 101) 740 Gulf of Tunis 2

41 0.790 NA NA NA 2005 Zakynthos Sirtrack (Kiwisat 101) 189 Adriatic (north) NA

42 0.987 -16.56 12.39 NA 2005 Zakynthos Sirtrack (Kiwisat 101) 419 Adriatic (north) 3

43 0.890 NA NA NA 2005 Zakynthos Sirtrack (Kiwisat 101) 392 Adriatic (north) 2

44 0.760 NA NA NA 2005 Zakynthos Sirtrack (Kiwisat 101) 119 Tunisia Plateau NA

45 0.860 -17.4 10.62 NA 2007 Zakynthos Telonics (A-2010) 114 Tunisia Plateau 5

46 0.855 -18.67 13.59 NA 2007 Zakynthos Telonics (A-2010) 325 Amvrakikos NA

47 0.815 -16.9 9.62 NA 2007 Zakynthos Telonics (A-2010) 386 Tunisia Plateau 2

48 0.845 -16.9 11.28 NA 2007 Zakynthos Telonics (A-2010) 220 Croatia (south) NA

49 0.785 -17.93 9.41 NA 2007 Zakynthos Telonics (A-2010) 430 Tunisia Plateau NA

50 0.880 -16.78 10.33 NA 2007 Zakynthos Telonics (A-2010) 412 Adriatic (north) 4

51 0.870 -17.1 11.47 NA 2007 Zakynthos Telonics (A-2010) 418 Adriatic (north) 2

52 0.760 -17.67 12.84 NA 2007 Zakynthos Telonics (A-2010) 204 Amvrakikos NA

53 0.890 -16.8 8.34 NA 2007 Zakynthos Sirtrack (Kiwisat 101) 145 Tunisia Plateau NA

54 0.820 -16.89 7.87 NA 2007 Zakynthos Sirtrack (Kiwisat 101) 452 Tunisia Plateau 3

55 0.775 -12.78 7.49 NA 2007 Zakynthos Sirtrack (Kiwisat 101) 673 Tunisia Plateau NA

Deployment
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Appendix S2 – Stable isotope analysis 

 

Epidermis tissue samples were rinsed with deionized water, soaked for 24 

hours, dried at 60 ˚C for 48 hours, and weighed in a sterilised tin capsule prior to 

analysis. For carbon and nitrogen stable isotope analysis 0.0007 g (+/-0.0001 g) of 

sample was required and 0.004-0.0055 g was required for sulphur analysis. Vanadium 

pentoxide (<0.001 g) was added to sulphur samples (Bradshaw et al., 2017). In some 

cases, it was not possible to process an individual for sulphur due to insufficient 

sample mass (n=53, including six satellite tracked females). Lipid extraction was not 

undertaken and samples did not require a lipid correction factor as evaluated by the 

C:N ratio (mean:3.44, Post et al., 2007). 

Stable isotope analysis was conducted (Elemtex Ltd, UK laboratory) with 

samples being analysed on a Thermoquest EA1110 elemental analyser linked to a 

Sercon2020 stable isotope ratio mass spectrometer running in continuous flow mode. 

Isotope ratios are expressed as conventional delta (δ) values in parts per thousand 

(‰) using the following equation: δX = [( Rsample / Rstandard) – 1 ] x 1000, where X is 13C, 

15N, or 34S. Rsample and Rstandard are the corresponding ratios of the heavier to the lighter 

isotope (i.e. 13C/12C, 15N/14N, 34S/32S) in the sample and international standard, 

respectively. The international standard, for 13C, 15N, and 34S is Vienna Pee Dee 

Belemnite, atmospheric nitrogen (AIR), and Vienna Cañon Diablo Trolite, respectively.  

 

Inter-sample variation in isotope ratios 

 

Epidermis samples from the left and right fore-flipper of the same individual 

taken on the same date did not significantly differ in δ13C or δ15N values (Wilcoxon 

matched pairs test, δ13C: V=365, Z=0.20, p=0.84, n=38, δ15N: V=492.5, Z=1.77, 

p=0.08, n=38). The results were insensitive to the isotope analytical uncertainties (for 

details of this analysis see Appendix S4). This suggests that one sample represents 

the isotopic ratios of an individual accurately, therefore, if multiple samples were 

analysed, the mean isotope ratio was used for further analysis. Due to the restricted 

size of tissue samples, differences were unable to be tested for δ34S values.  
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Inter-clutch variation in isotope ratios  

 

This is the first study to determine isotopic shifts in epidermis samples 

successively collected across a nesting season. Epidermis samples were obtained 

from the third membrane of the right fore-flipper whilst laying the first clutch and the 

left fore-flipper whilst laying the second clutch. Both flippers were used to reduce 

flipper membrane damage, which will not affect the results as no significant difference 

in isotope values were reported between flippers (see Appendix S2a). The δ13C and 

δ34S values of epidermis samples did not vary significantly across successive clutches 

of the same female (δ13C: Wilcoxon matched pairs test, V=173, Z=-0.99, p=0.34, n=30, 

δ34S: Paired t-test, t15=-0.49, p=0.63, n=16) but δ15N values did vary (δ15N: Paired t-

test, t15=-3.54, p=0.001, n=30, Fig S2.1). 

The mean difference in δ15N values was 0.44 ‰ (range = -0.73 to 1.44 ‰), 

which is not considered biologically relevant as the difference can be either positive or 

negative (Fig S2.1) and the difference in nitrogen isotope values between clutches 

was smaller than the difference in isotope values among foraging areas, thus, tissue 

samples collected from either clutch could be used for foraging ground assignment. 

However, for the isotope ratios to best represent the foraging ground, we support the 

recommendation of Haywood et al. (2019), that the isotope ratio of the first 

encountered clutch should be used for further analysis. The results were insensitive 

to the isotope analytical uncertainties (for details of this analysis see Appendix S4). 

 

Flipper versus shoulder epidermis tissue samples  

 

Regular biopsy sampling and flipper tagging of the same individuals was found 

to lead to flipper damage, and thus we explored taking tissue samples from the 

shoulder as a less detrimental, long-term alternative. This is the first study to 

investigate if shoulder and flipper epidermis samples can be used interchangeably. 

The δ13C and δ15N values in the flipper and shoulder epidermis samples collected from 

an individual on the same date differed significantly (Wilcoxon matched pairs test, 

δ13C: V=206, Z=-4.06, p<0.001, n=51, δ15N: V=1064, Z=4.13, p<0.001, n=51) whilst 

δ34S values did not (Paired t-test, δ34S: t17=2.15, p=0.05, n=18). These results were 

insensitive to the isotope analytical uncertainties with the exception of δ34S values 

where only 54% of the repeats had p>0.05 and therefore a conversion equation (see 
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below for details on the conversion equation) was also created for flipper and shoulder 

δ34S values (for details of the uncertainty analysis see Appendix S4). The mean 

difference in δ13C values was -0.27 ‰ ± 0.43 ‰ (range = -1.15 to 1.08 ‰) and δ15N 

values was 0.24 ‰ ± 0.35 ‰ (range = -0.53 to 1.17 ‰) and δ34S values was 0.35 ‰ 

± 0.66 ‰ (range = -0.72 to 2.00 ‰) using flipper samples as the reference. 

There was a strong positive correlation between flipper and shoulder epidermis 

isotope ratios (Spearman’s rank-correlation coefficient, δ13C: ρ=0.94, p<0.001, n=51, 

δ15N: ρ=0.96, p<0.001, n=51, δ34S: ρ=0.96, p<0.001, n=21), hence, shoulder samples 

could be used as a less intrusive alternative to flipper epidermis sampling or where 

flipper tagging impedes collection at the flipper. Therefore, for further analysis 

unknown flipper isotope ratios were estimated from known shoulder isotope ratios 

using the conversion equations derived from linear regressions (δ13C: F1,49=890, 

p<0.001, R2
(Adj)=0.95, δ15N: F1,49=1671, p<0.001, R2

(Adj)=0.97, δ34S: F1,16=356.7, 

p<0.001, R2
(Adj)=0.95, Fig S2.2). Both correlation and linear regression results were 

found to be insensitive to the isotope analytical uncertainties (for details of this analysis 

see Appendix S4). 
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Fig S2.1 (a), (c), and (e) show temporal consistency in δ13C (n=30), δ15N (n=30), and δ34S 
values (n=16) of samples collected from loggerhead turtles during successive clutches. 
(b), (d), and (f) show differences in isotope ratios between samples using the first clutch 
as a reference. 
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Fig S2.2 (a), (c), and (e) show linear relationships between flipper and shoulder epidermis 
samples for δ13C (n=51), δ15N (n=51), and δ34S values (n=16) of loggerhead turtles nesting at 
Alagadi Beach, North Cyprus. Dotted lines depict 95% confidence intervals. Conversion 
equations and regression statistics are shown.  (b), (d), and (f) show differences in isotope 
ratios between samples using the flipper sample as a reference. 
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Appendix S3 - Foraging ground assignment 

 

To determine suitable geographical regions which are isotopically distinct i) a 

Principal Component Analysis was run, ii) data were tested using a Levene’s test to 

show they met the assumption of homogeneity of variances, iii) an Analysis of 

Variance was used to confirm whether the identified regions were significantly 

different, and iv) a post hoc Tukey’s Honest Significant Difference test performing 

multiple pairwise comparisons was used to identify which regions differed isotopically. 

As body size can influence diet (Seney & Musick, 2007) and in turn the isotope ratios 

of an individual, an Analysis of Covariance was performed to determine if body size 

differed between foraging regions and a post hoc Tukey’s Honest Significant 

Difference test was used to determine which regions differed. To test whether foraging 

region continues to affect stable isotope ratios when body size was taken into account, 

an analysis of covariance was performed. 

A MANOVA was also performed and again showed that the overall isotope 

ratios differed between foraging region (MANOVA, , Pillai’s trace test, F(6,20) = 5.8, p 

= 0.001), with each isotope differing significantly between the final three foraging 

regions (ANOVA, δ13C: F(2,11) = 7.77, p = 0.007; δ15N: F(2,11) = 6.90, p = 0.01; and 

δ34S: F(2,7) = 7.77, p = 0.01).   

 

Identifying isotopically distinct foraging regions 

 

 

Fig S3.3 Principal Component Analysis 
results separating loggerhead turtles in 
to three distinct foraging regions based 
on δ13C, δ15N, and δ34S values: the 
Adriatic region (red), the Tunisian 
Plateau (grey), and the rest of the 
eastern Mediterranean (blue). 
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Fig S3.4 (a) δ13C, (b) δ15N, and (c) δ34S 
values of satellite tracked and isotopically 
assigned loggerhead turtles according to 
the three foraging regions: the Adriatic 
region (red), the Tunisian Plateau (grey), 
and the rest of the eastern Mediterranean 
(blue). 
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Table S3.2 (a) Post hoc Tukey’s Honest Significant Difference results comparing stable 
isotope ratios of satellite tracked loggerhead turtles among the three foraging regions. 
Significant p-values (p < 0.05) in bold. (b) Range and mean (in parenthesis ‰) of 
isotope ratios of satellite tracked and isotopically assigned loggerhead turtles in the 
three foraging regions. Only one Adriatic region individual was sampled for δ34S. 
 
Region δ15N  δ34S δ13C 

(a)     

Adriatic region - East Mediterranean <0.001  0.80 <0.001 

Adriatic region - Tunisian Plateau 0.002  0.16 0.73 

Tunisian Plateau - East Mediterranean 0.24  0.03 0.001 

(b)     

Adriatic region 10.33 to 16.60 
(13.10) 

 15.84 -18.67 to -
14.89 (-16.48) 

Tunisian Plateau 4.44 to 11.58 
(8.32) 

 17.08 to 23.39 
(20.61) 

-18.96 to -
12.78 (-16.78) 

East Mediterranean 5.44 to 
12.80(8.85) 

 1.62 to 20.58 
(15.32) 

-16.59 to -8.18 
(-13.33) 

 

 

  

Table S3.3 (a) Discriminant Function Analysis assignments of loggerhead turtles 
to the three foraging regions based on δ13C, δ15N, and δ34S values with posterior 
probabilities of ≥80%. Adriatic = Adriatic region, Tunisia = Tunisian Plateau, Other 
= rest of the eastern Mediterranean. Number and percentages (in parenthesis) 
shown. (b) Percent of satellite tracked females assigned to the correct foraging 
ground. 
 

(a)   Predicted foraging region  

Dataset n Location Adriatic Tunisia Other Total 

Training 31 Adriatic 6 (75) 1 (12.5) 1 (12.5) 8 
  Tunisia 1 (8) 9 (69) 3 (23) 13 
  Other 0 1 (10) 9 (90) 10 
Test 263 Unknown 8 (5) 75 (47) 78 (48) 161 
  Total 15 (8) 86 (45) 91 (47) 192 
       
(b)  Sample Population    

LDA  Alagadi Zakynthos    

δ13C, δ15N  69% 83%    
δ13C, δ15N, δ34S  73% NA    
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Body size Analysis  

 

A significant difference was seen in body size between foraging regions 

(Analysis of Variance: F2,28= 8.36, p=0.001) and a post hoc Tukey’s Honest Significant 

Difference test shows this was due to the females foraging in the Adriatic region being 

significantly larger than individuals in the rest of the eastern Mediterranean (p=0.001, 

Fig S5). When body size was taken into account, foraging region continued to affect 

stable isotope ratios (Analysis of Covariance, δ13C: F2,25= 11.99, p<0.001, δ15N: 

F2,25=14.62 , p<0.001, δ34S: F2,7= 4.47, p=0.05). However, it must be noted this result 

is based on very few individuals for the Adriatic region (n=4) and therefore this result 

should be taken with caution. Both Analysis of Variance and Analysis of Covariance 

results were found to be insensitive to the isotope analytical uncertainties (for details 

of this analysis see Appendix S4). 

 

 

Fig S3.5 Body size of females 
satellite tracked from Cyprus and 
Greece foraging in three foraging 
regions; Adriatic = Adriatic region 
(n=4), Other = the rest of the eastern 
Mediterranean (n=77), and Tunisia = 
Tunisian Plateau (n=90). CCL = 
curved carapace length. Midline = 
median, box = interquartile range, 
whiskers = 5 and 95 percentiles, 
square = mean. 
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Appendix S4 – Number of females in the Alagadi nesting cohort assigned to 

foraging grounds. 

 

Table S4.4 Number of individuals from the Alagadi nesting cohort assigned to the 
Adriatic region (Adriatic), the Tunisian Plateau (Tunisia), or the rest of the eastern 
Mediterranean (Other) or remained unassigned (Unassigned) between 1993 and 
2018. Total number of individuals sampled is shown. 
 

Year Adriatic Tunisia Other Unassigned Total 

1992 0 0 1 0 1 

1993 0 1 0 0 1 

1994 0 0 0 0 0 

1995 0 0 1 0 1 

1996 0 0 0 1 1 

1997 0 3 2 0 5 

1998 0 0 0 1 1 

1999 0 1 4 0 5 

2000 0 2 1 1 4 

2001 0 0 2 1 3 

2002 0 3 3 0 6 

2003 0 1 5 1 7 

2004 0 3 1 0 4 

2005 0 1 7 5 13 

2006 0 3 3 0 6 

2007 0 4 9 7 20 

2008 0 2 4 0 6 

2009 0 7 11 8 26 

2010 0 4 5 7 16 

2011 0 6 9 1 16 

2012 1 6 6 2 15 

2013 0 17 13 5 35 

2014 1 16 7 6 30 

2015 1 7 7 6 21 

2016 1 14 13 10 38 

2017 2 3 10 6 21 

2018 1 7 17 6 31 
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Appendix S5 – The sensitivity of LDA analysis and foraging ground assignment 

to the isotope analytical uncertainties 

 

To determine the robustness of our results each statistical analysis underwent 

uncertainty analysis. This is the first marine turtle study to perform uncertainty analysis 

on the results of SIA. We recommend all future studies follow this method, so the 

robustness of each result is understood. Analytical precision for δ13C and δ15N values 

was 0.18‰ and 0.2‰, respectively, determined as the standard deviation from the 

reference materials USGS40, USGS41, and BLS, whilst analytical precision for δ34S 

values was 0.44 ‰, determined as the standard deviation from the reference materials 

USGS42, USGS43, IAEA S1, and IAEA S2. Analytical accuracy was calculated as the 

sample variance across all samples (see Table S4.2 for values). The combined 

analytical uncertainty was estimated as a sum of squares of the analytical precision 

and accuracy assuming that they are uncorrelated (see Table S4.2 for values). 

Therefore, to identify that the results are insensitive to the combined isotope analytical 

uncertainties, each analysis was repeated 100 times whilst perturbing the isotope data 

using additive noise. Noise was calculated as random values following a truncated 

Gaussian distribution centred on zero with a standard deviation equal to the combined 

analytical uncertainty. For each analysis the percentage of repeats with a p-value that 

meets the desired p-value was calculated (see Table S4.2 for values). For foraging 

ground assignment, propagating the combined analytical uncertainty for both δ13C and 

δ15N values through the LDA classification gave 70±0.1% (median ± standard 

deviation). The equivalent result for the LDA classification using δ13C, δ15N, and δ34S 

values gave 73±0.1% (median ± standard deviation). 
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Table S5.5 Uncertainty analysis results. % of repeats: percentage of repeats with the 
desired p-values which are shown in parenthesis. 
 

Statistical analysis Isotope 
ratio 

Analytical 
accuracy 
(‰) 

Analytical  
Precision 
(‰) 

Combined 
analytical 
uncertainty 
(‰) 

% of 
repeats 

Inter-sample variation in isotope ratios 
 Carbon 0.06 0.18 0.19 100 

(p>0.05) 
 Nitrogen 0.07 0.20 0.21 89 (p>0.05) 
 Sulphur NA 0.44 NA NA 
Inter-clutch variation in isotope ratios 
 Carbon 0.10 0.18 0.21 100 

(p>0.05) 
 Nitrogen 0.17 0.20 0.26 100 

(p<0.05) 
 Sulphur 0.19 0.44 0.48 100 

(p>0.05) 
Flipper versus shoulder epidermis tissue samples 
T-test Carbon 0.13 0.18 0.22 100 

(p<0.05) 
 Nitrogen 0.09 0.20 0.22 100 

(p<0.05) 
 Sulphur 0.26 0.44 0.51 54 (p>0.05) 
Correlation Carbon 0.13 0.18 0.22 100 

(p<0.05) 
 Nitrogen 0.09 0.20 0.22 100 

(p<0.05) 
 Sulphur 0.26 0.44 0.51 100 

(p<0.05) 
Linear Regression Carbon 0.13 0.18 0.22 100 

(p<0.05) 
 Nitrogen 0.09 0.20 0.22 100 

(p<0.05) 
 Sulphur 0.26 0.44 0.51 100 

(p<0.05) 
Identifying isotopically distinct foraging regions 
Analysis of Variance Carbon 2.14 0.18 2.15 100 

(p<0.05) 
 Nitrogen 2.74 0.20 2.75 100 

(p<0.05) 
 Sulphur 2.20 0.44 2.24 80 (p<0.05) 
Analysis of 
Covariance 

Carbon 2.14 0.18 2.15 100 
(p<0.05) 

 Nitrogen 2.74 0.20 2.75 100 
(p<0.05) 

 Sulphur 2.20 0.44 2.24 94 (p<0.05) 
Foraging site fidelity      
 Carbon 0.33 0.18 0.37 100 

(p<0.05) 
 Nitrogen 0.25 0.20 0.32 100 

(p<0.05) 
 Sulphur 1.46 0.44 1.52 100 

(p<0.05) 
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Abstract 

 

The environmental conditions that marine turtles experience during 

migration differ both spatially and temporally, yet how they respond to these 

changes has received little attention. This study evaluates the influence of 

environmental conditions on the migratory corridors and dive behaviour of two 

sympatric Mediterranean turtle species (loggerhead turtles = 37, green turtles = 

50). The results show that vertical migratory dive behaviours of these marine 

turtles are influenced by local, fine-scale, changes in environmental conditions, 

with individuals diving deeper (4 m to 40 m) for longer (10 to 30 minutes) to avoid 

high sea states, spending more time in surface waters (2 to 12 minutes) when 

sea temperature increased, and conducting shallower dives during the night (30 

m to 23 m). The species-specific migratory corridors had similar environmental 

properties (magnetic field intensity, sea temperature, thermal fronts, surface 

geostrophic and Ekman currents, and wind), suggesting both species may be 

following similar large-scale environmental cues. However, we suggest migratory 

routes may be dependent on the physiology of each species, with a trade-off 

between reducing migratory distance, minimising time from foraging, minimising 

swimming effort, whilst attempting to remain in favourable conditions by staying 

within warmer waters. With environmental-driven changes in migration likely in 

the dynamic ocean, especially as climate change continues, a better 

understanding of these cues, preferences, and responses are needed to 

implement effective long-term conservation. 

 

Key words: dynamic ocean management, satellite telemetry, satellite 

remotely sensed data, dive profiles, Mediterranean, climate change, sea state, 

diel patterns, migratory corridor 
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1. Introduction 

 

Migration is the cyclic movement between distant habitats to exploit 

temporally abundant resources (Robinson et al., 2009). The phenomenon of 

migration is taxonomically widespread and a vital component to the life history of 

many species (Webster 2002). In many cases, migrations cover vast distances 

with individuals travelling through numerous habitats resulting in exposure to 

varying environmental conditions. Understanding the distribution, migratory 

connectivity, and environmental influences on migratory species can be 

challenging, but this information is critical for identifying threats faced by climate 

change and more immediate anthropogenic pressures (Dunn et al., 2019). 

Due to their reliance on multiple dynamic and seasonal habitats, migratory 

species are considered particularly vulnerable to climate change (Robinson et al., 

2009). To effectively protect marine migrants, we need to not only know their 

distribution but also how they interact with, and are influenced by, the dynamic 

marine environment (Luschi et al., 2003a; Jeffers & Godley 2016). Shifts in ocean 

climate could cause environmentally driven changes in migration, but the likely 

impact of this is unknown. Previous work investigating the influence of long-term 

environmental changes on marine migrants has shown shifts in migrations due 

to changes in habitat suitability (Block et al., 2011 and references therein). For 

example, changes in prey abundance and location of foraging grounds may result 

in longer migrations (e.g. Keiper et al. 2005; Perry et al., 2005), changes in sea 

temperature may cause shifts in migratory routes and migratory distances due to 

thermal tolerances (McMahon & Hays, 2006), whilst shifts in the magnitude and 

direction of ocean currents might influence migratory routes (e.g. Huse & 

Ellingsen, 2008). Climate change may affect the cues used to initiate the onset 

of migrations, resulting in a mismatch in predator presence and optimum resource 

availability (e.g. Beaugrand et al., 2003; Edwards & Richardson, 2004). In 

addition, climate driven locational shifts in human activities could increase their 

detrimental interactions with migrating species (e.g. Southall et al., 2006).  

The response of an individual to climate change, will likely depend on their 

behavioural plasticity (Pulido & Berthold, 2003). Those able to modify behaviours 

will be more likely to respond sufficiently and survive (Pulido & Berthold, 2003; 

Robinson et al., 2009). It has recently been highlighted that the response of 

marine species to local, short-term changes (instead of large, long-term 
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changes), in environmental conditions will better represent their behaviour under 

future climate scenarios (Bates et al., 2018). This focus on short-term 

environmental changes will enable responses to be documented on spatial and 

temporal scales which are more relevant at an individual level (Bates et al., 2018). 

However, few studies have investigated short-term changes in migratory 

behaviours even though changes in wind (Kavanagh et al., 2017), waves (Storch 

et al., 2006), and sea temperature (e.g. McIntyre et al., 2011), are known to affect 

distributions and dive behaviours of marine species. Greenhouse gas emissions 

from human activities has resulted in a dramatic rise in global temperatures 

(IPCC, 2019). Future climate scenarios show sea temperatures, and extreme 

weather events, resulting in higher wind speeds and wave heights, will increase 

due to the absorption of excess heat by the oceans and shifts in large scale 

weather systems (IPCC, 2019). Therefore, understanding the influence of these 

oceanographic factors on the movements of migrants is important. 

Satellite telemetry is regularly used to investigate migrant movements and 

is a valuable tool for highlighting high-use areas, such as migratory corridors, to 

inform conservation management (e.g. Block et al., 2011) and the development 

of transmitters recording dive data has enabled 3-dimensional habitat use to be 

documented (Hochscheid, 2014; Hussey et al., 2015). Satellite observations and 

model re-analysis data provide environmental information for observing or 

indicating conditions within highly dynamic ocean systems, enabling analysis 

across a range of spatial and temporal scales. Analysing these data in 

conjunction with vertical and horizontal movements of marine migrants from 

satellite telemetry data will allow us to better understand the phenomenon of 

migration within the dynamic ocean, towards better understanding how migrants 

respond to changes in environmental conditions, which in turn will enable more 

effective long-term conservation plans.  

Marine turtles make migrations over thousands of kilometres between 

specific nesting and foraging grounds (e.g., Shillinger et al., 2008). Limited 

research has investigated the influence of oceanographic conditions on marine 

turtle behaviour, particularly during migrations (Hochscheid, 2014). Most marine 

turtle research to date, has investigated horizontal movements and their 

relationship with primary productivity (e.g. Polovina et al., 2004), temperature or 

thermal fronts (e.g. Hays et al., 2001b; Luschi et al., 2003b; Polovina et al., 2004; 

Seminoff et al. 2008), and large scale (geostrophic) ocean currents (e.g. Luschi 
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et al., 2003b; Cuevas et al., 2008), rather than the more complete combination of 

geostrophic and wind driven Ekman currents. Few studies have investigated how 

vertical migratory dive behaviours are affected by environmental conditions 

(Hochscheid, 2014). To date, only two studies have investigated how storm 

conditions affect dive behaviours, with surface avoidance behaviours conducted 

during storms (Sakamoto et al., 1990; Storch et al., 2006). The influence of 

temperature on dive behaviour has been investigated for turtles foraging, but not 

during migrations, and shows the dive response to temperature differs with 

species and region (e.g. McMahon & Hays, 2006; Weir, 2007; Howell et al., 

2010). By analysing satellite telemetry in conjunction with environmental data, 

this study aims to determine if Mediterranean loggerhead (Caretta caretta) and 

green turtles (Chelonia mydas) alter their migratory routes and migratory dive 

behaviour in response to changes in environmental conditions, including sea 

state and temperature. 

 

2. Methods 

 

2.1 Satellite telemetry and dive data 

 

Between 1998 and 2019, 87 Platform Terminal Transmitters (PTTs) were 

attached to adult female loggerhead (n = 37) and green turtles (n = 50) nesting in 

North Cyprus. Loggerhead turtle PTTs were deployed from four nesting beaches, 

whilst green turtle deployments were from eight nesting beaches (Fig S1.1). The 

migratory tracks in this study from 1998 to 2015 were previously published 

(Godley et al., 2002; 2003; Broderick et al., 2007; Stokes et al., 2015; Snape et 

al., 2016; Haywood et al., 2020), while nineteen green turtle PTTs (fourteen = 

Sirtrack FastGPS, five = SPOT Wildlife Computers) were deployed in 2018 and 

2019 and are previously unpublished. All tracks, including those previously 

published, were re-analysed for this study.  

Telemetry data, obtained from the Argos satellite system and GPS, were 

downloaded using the Wildlife Computers data portal (wildlifecomputers.com) 

and the Satellite Tracking and Analysis Tool (Coyne & Godley, 2005). Filters were 

applied to the telemetry data to ensure higher accuracy using the R-package 

‘Argosfilter’ (Freitas, 2012). This removed positional data entries with turn angles 

<15 ˚ and calculated speeds of >5 km h-1 (considered implausible for marine 
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turtles, Witt et al., 2010), as well as Z (failed Argos plausibility tests) and 0 (error 

>1500 m) ARGOS classes (CLS, 2008). GPS data were considered high 

accuracy and were assigned ARGOS class 3 location quality. 

State-space models were applied to each individual turtle track to separate 

migrations from foraging grounds. To de-noise the data, continuous-time 

correlated random walk models were fitted using a Kalman-filter in the R-package 

‘crawl’ (function ‘crawlWrap’, Johnson & London, 2018) and ‘momentuHMM’ 

(McClintock & Michelot, 2018). This assumes a bivariate normal measurement 

error model and outputs a position estimate for every 6 hours. It was assumed 

turning angle had a wrapped Cauchy distribution and step length had a gamma 

distribution (Langrock et al., 2012). Using the R-function ‘fitHMM’, discrete-time 

hidden Markov models were then fitted estimating the likelihood of the two 

behavioural states ‘transit’ (migratory-type movements) and ‘residential’ (area-

restricted-search-type movements, McClintock & Michelot, 2018). Residential 

behaviours were inferred as both foraging and resting, as from locational data 

alone these behaviours cannot be distinguished (Thums et al., 2017).   

In addition to providing location data, ten PTTs deployed on nine 

loggerhead and one green turtle which were Sea Mammal Research Unit – 

Satellite Relay Data Loggers (SMRU SRDLs), also had associated dive data 

providing information on individual dives and dive profiles. To enhance the 

locational accuracy of the dive data, each dive was matched with the temporally 

closest location point from the state-space model output. SMRU SRDLs 

measured dive duration, surface duration, and maximum dive depth for all 

recorded dives. Dive profiles were categorised as Profile-A, Profile-C, Profile-E, 

and Profile-F, based on Hochscheid (2014) categorisations. See S1 in Supporting 

Information for details of these dive profiles. 

 

2.2 Environmental data 

 

2.2.1 Comparison with migratory corridors 

 

The influence of large-scale environmental conditions on marine turtle 

migratory corridors were investigated. Options for environmental data include 

satellite remote sensing, in situ collated datasets or model re-analyses.  Satellite 

observations of temperature and primary productivity would likely provide 
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spatially complete fields but would only be valid for the surface waters. Whereas 

in situ based datasets, such as International Comprehensive Ocean-Atmosphere 

Data Set (ICOADS), can provide depth resolved measurements but offer poor 

spatial coverage and resolution.  Therefore, to maximise the potential for 

coincident matchups between the environmental data and turtle tracking data, 

spatially complete and fully depth resolved model re-analysis data were used. 

These re-analysis datasets are free running model analyses, that include 

assimilation of in-situ observations, and their accuracy has been assessed for the 

Mediterranean region. 

The environmental data compiled included; magnetic field intensity from 

the CHAOS-6 field model, derived from data collected by Swarm and earlier 

satellites (including Oersted and CHAMP) as well as from ground observations 

(Finlay et al., 2016), providing data at six month intervals at a 0.5 degree 

resolution. Bathymetry data at a 0.063 degree resolution from European Marine 

Observation and Data Network (EMODnet Bathymetry Consortium, 2018, 

https://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6). Monthly sea 

surface temperature from The Mediterranean Forecasting System (Simoncelli et 

al., 2019), supplied by the Nucleous for European Modelling of the Ocean 

(NEMO), provided monthly data at 6 km resolution, and was available from the 

Mediterranean Sea Physics Reanalysis product (http://marine.copernicus.eu). 

Monthly thermal ocean front data derived from the Multi-scale Ultra-high 

Resolution (MUR) temperature dataset, which provided daily data from 2002 - 

present at 1 km resolution (Miller, 2009), were available from NERC Earth 

Observation Data Acquisition and Analysis Service (NEODAAS, 

https://www.neodaas.ac.uk/). Monthly geostrophic and Ekman surface currents 

from the GLORYS12V1 reanalysis (Rio et al., 2014) provided monthly data at 8 

km resolution, and was available from the Global Ocean Physics Reanalysis 

(http://marine.copernicus.eu). Finally, monthly wind speed from the European 

Centre for Medium-Range Weather Forecast reanalysis, which provided data at 

0.25 degree resolution, and was available from ERA5 (Copernicus Climate 

Change Service (C3S, 2017), accessed form https://cds.climate.copernicus.eu). 
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2.2.2 Comparison with migratory dives 

 

Migratory dive behaviours were compared to environmental conditions. 

Monthly data on primary production and chlorophyll-a concentrations (available 

from the Mediterranean biogeochemical MedBFM model, which includes data 

assimilation of surface chlorophyll concentration (Teruzzi et al., 2019)), were 

downloaded at a 6 km resolution from the Copernicus Mediterranean Sea 

Biogeochemistry Reanalysis. Monthly sea temperatures were available from the 

Copernicus Mediterranean Sea Physics Reanalysis. Daily wind speeds from the 

European Centre for Medium-Range Weather Forecast reanalysis, were 

downloaded at 0.25 degree resolution from ERA5 (C3S, 2017, 

https://cds.climate.copernicus.eu). Daily sea surface significant wave height from 

the global ocean reanalysis wave system of Météo-France (WAVERYS) based 

on the Meteo France WAve Model (MFWAM), was downloaded at 0.20 degree 

resolution from Global Ocean Waves Reanalysis (http://marine.copernicus.eu). 

Finally, mixed layer depth from the GLORYS12V1 reanalysis, was downloaded 

at 8 km resolution from the Global Ocean Physics Reanalysis 

(http://marine.copernicus.eu). 

Data were available for primary production, chlorophyll-a concentration, 

and sea temperature for twenty-five depths between 1 and 193 m. Each dive was 

matched with the temporally closest state-space model output, enabling the dive 

location to be corrected and the environmental variables were extracted from this 

location and for all depths when available. To determine what may influence dive 

behaviour of loggerhead turtles, the effect of location (open sea versus coastal 

waters), time of day (day versus night), wind speed, significant wave height, and 

sea surface temperature on dive duration, surface duration, and maximum dive 

depth were statistically analysed. Each dive was assigned as a day or night dive 

categorised by local sunrise and sunset times (using the R-package ‘suncalc’, 

Thieurmel, 2019). A Generalised Additive Mixed Model (GAMM) was then used 

with significant wave height and sea surface temperature set as smooth terms, 

location and time of day as factors, and PTT set as the random term. Due to the 

estimated concurvity exceeding 0.3 between wind speed and sea surface 

temperature (concurvity = 0.50), wind was not included in the analysis.  

All analyses were performed with the software R 3.5.1 (R Core Team, 

2018) and for statistical tests, the significance level was alpha = 0.05. 
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3. Results 

 

3.1 Migratory corridors 

 

Loggerhead turtle PTTs provided locational data for 6 to 2007 days (mean: 

364 days, n=37), whilst green turtle PTTs provided data for 26 to 751 days (mean: 

226 days, n=50). All migrations from Cyprus started between 8th June and 12th 

August. Of the eighty-seven PTTs deployed, seventy-nine provided data 

throughout the post-nesting migrations (hereon migrations) to distinct foraging 

grounds located on the continental shelf (Fig S2.2 in Supporting Information, 

loggerhead turtles = 33, green turtles = 46). Loggerhead turtle migrations lasted 

between 1 and 93 days (mean: 37 days), traveling to nearby foraging grounds in 

Cyprus or covering up to 3406 km to foraging grounds on the Tunisian Plateau 

(mean ± SD: 1961 ± 1131 km). Green turtle migrations lasted between 5 and 87 

days (mean: 24 days) covering up to 2990 km to reach foraging grounds as far 

as Tunisia (mean ± SD: 1410 ± 785 km). In addition, two loggerhead turtles 

conducted oceanic foraging (Fig S2.2 in Supporting Information). Instead of 

migrating directly to foraging grounds, as would be expected to reduce energetic 

costs, coastal waters were used en route by both species which extended the 

migratory distance. For further details on individual migratory routes see S2 in 

Supporting Information. 

Species-specific high-use migratory corridors were identified (Fig 1). For 

loggerhead turtles the major open sea migratory corridor extended from west 

Cyprus to the Egypt-Libya border (used by 38% of loggerhead turtles), whilst two 

corridors were evident for green turtles, one from west Cyprus to Egypt and one 

from east Cyprus to Lebanon (used by 40% and 44% of turtles, respectively, Fig 

2). High-use migratory corridors were evident on the coast of Libya for loggerhead 

turtles, whilst Lebanon, Israel, Egypt, and Libya coasts were heavily used by 

green turtles (Fig 1). During migrations, loggerhead turtles spent less time in 

coastal waters compared to green turtles (43% and 64% of their migrations, 

respectively). For both species, longer migrations resulted in a larger proportion 

of time in coastal waters, although this was only significant for green turtles (GLM, 

loggerhead: F(1,22)=3.53, p=0.07; green: F(1,41)=6.78, p=0.01). 
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Figure 1 Migratory corridor density map of a) loggerhead (n=33) and b) green 
turtles (n=46) satellite tracked from Cyprus to foraging grounds. Hexagonal grid 
cells (0.25° by 0.25°) are coloured by the percentage of turtles using each grid 
cell. Leb = Lebanon, TP = Tunisian Plateau. Artwork inset of a foraging 
loggerhead and green turtle. 

 

The migratory corridors of both species were compared to large-scale 

environmental variables to determine the conditions that were experienced and 

what possible large-scale environmental cues they may use for navigation (Fig 

2). Turtles did not follow ocean fronts during their migration (Fig 2a). However, 

the apparent targeting of coastal transits rather than travelling directly to foraging 

grounds, meant both species migrated through warmer waters. Turtles migrating 

from west Cyprus to north Africa moved from higher to lower sea surface 

temperatures, with each species exposed to different temperature ranges (Fig 

2b). Due to the more westerly location, the loggerhead turtle corridor to north 

Africa crossed colder waters (22.6 to 24.7 °C) than the green turtle corridor to 

north Africa (23.5 to 24.7 °C). In comparison, green turtles crossing to Lebanon 

moved to higher temperatures (24.7 to 25.7 °C). During the initial open sea 

migrations from Cyprus, both loggerhead and green turtles moved from higher to 
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lower magnetic field intensities (Fig 2c). Magnetic intensity in Cyprus was 46 µT, 

whilst on the north African and Lebanon coast it was 44 µT and 45 µT, 

respectively. With different migratory corridors used, each species crossed 

multiple recirculating ocean surface currents in open seas, whilst there is 

evidence that both species at some point travelled against ocean surface currents 

in coastal waters (Fig 2d). In the open seas both species travelled perpendicular 

to the direction of the wind, whilst in coastal waters they were subject to varying 

wind directions (Fig 2e). During the open sea migration, landmarks and 

bathymetric features were not available Fig 2f). In general, the species-specific 

migratory corridors had similar environmental properties, suggesting both 

species may be following similar large-scale environmental cues. 
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Figure 2 Major migratory corridors of loggerhead (red area) and green turtles (green 
area) satellite tracked from Cyprus. Environmental variables across the migratory 
corridors are shown for a) thermal fronts (composite of front direction and persistence), 
b) sea surface temperature, c) Magnetic field intensity, d) ocean surface currents 
(Ekman and geostrophic), e) wind, and f) bathymetric depth. Length and direction of 
arrows in d) and e) represent magnitude and direction, respectively. 
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3.2 Migratory dives 

 

From the ten SMRU SRDLs, 1475 migratory dives were recorded from 

nine loggerhead turtles and 50 migratory dives for the green turtle. Dive profiles 

were available for 16% of dives (± 4, range: 10 to 24%, loggerhead turtle: 9, green 

turtle = 1), with 336 migratory dive profiles for the loggerhead turtles and 

unfortunately, only ten migratory dives for the green turtle. For loggerhead turtles, 

four main dive profiles were evident throughout the migration (Profile-A, Profile-

C, Profile-E, and Profile-F; Fig 3). See S1 in Supporting Information for details of 

these dive types. The proportion of each dive profile differed between open seas 

and coastal waters, with shallow (<5 m) and Profile-F dives more common in 

open seas than coastal waters, whilst Profile-A dives were more common in 

coastal waters than open seas (Fig 3b). During open sea migrations dive duration 

was shorter (GAMM: t=-1.98, p=0.04) and surface duration was longer (t=8.68, 

p<0.001) than when in coastal waters, whilst no difference was seen in maximum 

dive depth (t=-1.37, p=0.17). For further details of this comparison see S3 in the 

Supporting Information. The one green turtle with a SMRU SRDL followed the 

same trend with shorter dive duration (although not significant, GLM, F=1.84, 

p=0.18) and longer surface duration (F=124.80, p<0.001) in the open sea in 

comparison to coastal waters and conducted deeper dives (F=13.61, p<0.001) in 

open seas with shallow coastal dives conducted to the seafloor. 

Minimum swim speed of both species differed between open seas and 

coastal waters. Both loggerhead (Generalised Linear Mixed Model with PTT set 

as the random term; t=6.32, p<0.001, n=22) and green turtles (t=12.39, p<0.001, 

n=43) swam significantly faster in open seas (Table S3.1). In addition, individuals 

of both species conducted foraging area restricted search movements in coastal 

waters whilst one loggerhead likely foraged in open seas (see S2 in Supporting 

Information). Slower swim speeds and the occurrence of Profile-A dives in coastal 

waters suggests coastal foraging. For further evidence of foraging en route see 

S3.1 in Supporting Information.  

Diel diving patterns were evident for loggerhead turtles, with shallow dives 

(<5 m) more common during the night than the day (19 and 12% of dives, 

respectively; Fig 3c). Of the deeper dives (>5 m), during the night the most 

common dives were Profile-E (44%) and Profile-F dives (23%), whilst a small 

percent were Profile-C (12%) and Profile-A (10%; Other = 11%). During the day 
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the most common dives were Profile-E (35%), Profile-C (27%), and Profile-A 

(17%), whilst a small percent were Profile-F dives (10%; Other = 11%). In addition 

to changes in dive profile, night dives were longer (GAMM; t=2.84, p<0.01) and 

shallower (t=-6.71, p<0.001) than during the day, whilst no difference was seen 

in surface duration (t=0.21, p=0.83). The green turtle dived for longer at night 

(Generalised Linear Model, F=10.71, p<0.01), whilst surface duration (F=0.98, 

p=0.33) and maximum dive depth did not differ (F=0.11, p=0.74). 

 

 

 
 
Figure 3 Example dive profiles of a female loggerhead turtle conducting a post-
nesting migration in a) open seas (waters >200 m in depth) and b) coastal waters 
(waters <200 m in depth). Mean percentage of each dive profile categorised as c) 
open seas (blue) and coastal waters (grey), and d) day (white) and night (grey). 
Calculated from eight loggerhead turtles with dive data. Sh represents percentage 
of all dives <5 m in depth. Percentage of dives > 5 m that were Profile A-F, or 
Other (O). 
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In both open seas and coastal waters, average maximum dive depth for 

loggerhead turtles was 26 and 33 m, respectively, with only 20 and 12% of dives 

less than 5 m in depth. Changes in environmental conditions altered the migratory 

dive behaviours of migrating turtles. Sea state affected dive behaviours with 

increased waves resulting in surface avoidance. As significant wave height 

increased, dives became longer (10 to 30 minutes, GAMM; F=7.33, p<0.001), 

deeper (4 to 40 m, F=2.94, p=0.02), and less time was spent at the surface (6 to 

4 minutes, F=5.86, p<0.001). As sea surface temperature increased, dives 

became longer (10 to 21 minutes, GAMM; F=12.23, p<0.001), longer periods 

were spent at the surface (2 to 12 minutes, F=3.11, p=0.02), and dives became 

shallower (20 to 5 m, F=26.01, p<0.001). 

Dives were also visually compared to several environmental conditions. 

Mixed layer depth occurred between 7.6 and 31.9 m in depth (13.4 ± 2.8 m, Fig 

4a). Deep chlorophyll maximum occurred in depths between 90 and 130 m (Fig 

S6.7 in Supporting Information). Sea temperature decreased with water depth 

with migratory dives remaining in waters between 15.0 and 28.8 °C (Fig 4b). 

Primary productivity decreased with depth with dives occurring between 9x10-11 

and 5x10-8 mol m-3 (Fig 4c). Neither maximum dive depth nor the gradual ascent 

phase of Profile-E dives, aligns with mixed layer depth, chlorophyll-a 

concentration, sea temperature, or primary production (Fig 4). 
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Figure 4 Migratory dives of Turtle_4206 travelling from Cyprus to Tunisia overlaid 
with a) Mixed layer depth (blue line) as well as the open sea (blue area, >200 m in 
depth) and coastal water (grey area, <200 m in depth) sections of migration 
indicated, b) Sea temperature (°C), and c) Primary productivity (1x10-8 mol m-3). 
White sections in b) and c) are locations or depths without sea temperature or 
primary productivity, respectively. 
 

4. Discussion 

 

This research demonstrates that local fine-scale changes in environmental 

conditions alter the migratory dive behaviour of marine migrants. This study 

identifies the plasticity in the vertical dive behaviours of marine turtles in response 

to location, sea state, temperature, and time of day. Our results suggest migratory 

routes are likely selected based on the physiology and foraging strategy of each 

species, and as a compromise between minimising energy expenditure whilst 

attempting to remain within favourable conditions. Despite species-specific 

migratory corridors, similar environmental conditions were experienced, including 
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thermal fronts, currents, and magnetic fields, suggesting both species may be 

following similar large-scale environmental cues. 

 

4.1 Migratory corridors 

 

Identifying key marine regions is a fundamental step for informing effective 

conservation of marine species. The species-specific foraging grounds and 

migratory corridors identified in this study support those previously documented 

for Mediterranean marine turtles (e.g. Casale et al., 2018 and references therein) 

and highlights the importance of coastal waters as well as open sea corridors.  

Previous studies show marine turtle migratory routes are not related to or 

affected by large scale (geostrophic) ocean currents (Cuevas et al., 2008). This 

study not only investigated the influence of large-scale surface currents but also 

wind driven (Ekman) surface currents, which showed both loggerhead and green 

turtles followed relatively straight-line migratory routes within their species-

specific migratory corridors regardless of surface currents. Future studies should 

include both geostrophic and Ekman currents when investigating the influence of 

surface currents on migrations towards a better representation of the true 

oceanographic conditions experienced. Shifts in the ocean current regimes are 

likely with future climate scenarios (Hoegh‐Guldberg & Bruno, 2010). This could 

displace marine migrants or affect navigation to final destinations. Juvenile 

marine turtles can return to specific coastal foraging grounds (e.g. Snape et al., 

2020) and oceanic foraging adult turtles can return to natal beaches after many 

years of passive wanderings (Hatase et al., 2002). Therefore, it is likely turtles 

can compensate for ocean current drift (Luschi et al., 2003b; Hays et al., 2020), 

which has also been suggested for marine mammals (Horton et al., 2011). 

Although changes in the magnitude and direction of ocean surface currents may 

increase the energetic demands of migration, this study shows marine turtles 

often travel against surface currents and it has been previously documented that 

adult marine turtles (e.g. Bentivegna et al., 2007; Cuevas et al., 2008) and other 

taxa (e.g. Horton et al., 2011) can travel against currents with little effect on their 

swimming abilities and migrations. However, travelling with surface currents 

would minimise energetic costs (e.g. Horrocks et al., 2001; Luschi et al., 2003a) 

and exploiting currents has been shown to result in more efficient migrations in 

other taxa (e.g. fish, Healey et al., 2000; marine mammals, Ream et al., 2005).  
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Thermal fronts can increase primary productivity and are considered 

potential prey aggregation zones for many species (Palacios et al., 2006), for 

example, basking sharks (Sims et al., 1998), tuna (Polovina et al., 2001), and 

penguins (e.g. Hull et al., 1997). Oceanic foraging has been associated with 

ocean fronts for marine turtles such as loggerhead, green, and leatherback turtles 

(e.g. Luschi et al., 2003b; Polovina et al., 2004; Seminoff et al. 2008), whilst no 

association is seen for post-nesting migrations direct to foraging grounds (e.g. 

Hays et al., 2001b), which was also the case for the migrants in this study. 

Although turtles are restricted by lower sea temperatures (Spotila et al., 2017), 

water temperatures throughout the Mediterranean during the summer months, 

when post-nesting migrations occur, are well within thermal tolerances. For 

example, a large proportion of loggerhead turtles nesting in Zakynthos (the 

largest rookery in the Mediterranean) migrate north to the highest Mediterranean 

latitudes (Schofield et al., 2013), suggesting migratory routes are not restricted 

by temperature in the Mediterranean. Despite this, by targeting the coast rather 

than travelling directly to foraging grounds, the turtles in this study remained on 

the warm side of thermal fronts. Migratory routes may, therefore, be a 

compromise between minimising energy expenditure by reducing migration 

distance as well as remaining in favourable thermal conditions. Thermal fronts 

have been reported to shift interannually, which could have implications for the 

distribution and survival of migrating species (Bograd et al., 2004), and shifts in 

sea temperature, which are expected to continue to change under future climates 

(IPCC, 2019), have already resulted in range shifts in marine turtles (e.g. 

McMahon & Hays, 2006) and migrating fishes (e.g. Perry et al., 2005).  

It would be expected for these sympatric species to be resilient to similar 

environmental ranges, and therefore, with different migratory corridors used but 

similar environmental conditions experienced, it raises the question of what 

causes these species-specific corridors. It is likely other factors are also 

influencing migratory routes, such as their physiology, foraging strategy and 

resources, differing ability or preference for sustained travel, and the location of 

the final destination. Green turtles undertook a more direct route to the coast 

where they can forage on seagrass and algae (Bjorndal 1997; Cardona et al., 

2010), whilst loggerhead turtles could forage in open seas on gelatinous plankton 

(jellyfish and tunicates) as well as foraging in coastal waters on invertebrates 

(molluscs and crustaceans) and fish (Bjorndal 1997; Tomás et al., 2001; Lazar et 
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al., 2011). This interspecific difference in foraging strategy may therefore help 

explain the different migratory corridors used, rather than species-specific 

environmental tolerances.  

For the spatial prioritisation of conservation management to be successful, 

migratory routes must be taken into account (Mazor et al., 2016). With these 

migratory species crossing many international jurisdictions, their conservation is 

challenging, and requires a diverse and basin-wide collaborative approach to 

management (Wallace et al., 2011). If marine turtle migratory routes are based 

on a compromise between minimising energy expenditure and remaining in 

favourable conditions, the spatial-temporal corridors observed today are likely to 

alter with climate change. A shift in the prevalence of green turtles migrating from 

Cyprus to Lake Barawil in Egypt has already been reported (Bradshaw et al., 

2017), with a higher proportion of individuals using this route in more recent 

years. Therefore, conservation strategies must adapt with shifting environmental 

conditions (Robinson et al., 2009). 

 

4.2 Migratory dives 

 

Minimising energy expenditure during long-distance migrations is 

paramount. Air-breathing migrants that must surface to breath, can dive to 

approximately 2.5 times their body thickness to reduce surface drag (Hertel 

1966), and likely reduce the influence of wave driven currents, whilst diving 

substantially deeper than this would likely increase the energetic cost of 

migration. The loggerhead turtles tracked in this study, however, regularly dived 

to depths over 5 m, as did the single green turtle with dive data available, and 

deep migratory dives have been reported in other marine turtle species (e.g. 

Whiting et al., 2007), as well as other marine vertebrates (e.g. seals, Thompson 

et al. 1991). Deep dives could provide a sub-surface refuge to reduce predation 

by preventing silhouetting (Hays et al. 2001a; Thomson et al., 2011). This study 

shows marine turtles are unlikely conducting deep dives to forage or to remain 

within thermal tolerances, as herbivorous green turtles would have few prey 

options, and there was no clear relationship between dive depth and primary 

production, mixed layer depth, or sea temperature.  

The surface drag avoidance theory (Hertel 1966) is only applicable in calm 

conditions, but marine turtle migrations occur across dynamic seascapes where 
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conditions are changing on relatively fine spatial-temporal scales. This study 

shows sea state did affect the diving behaviour of loggerhead turtles with larger 

waves resulting in deeper and longer dives. This provides evidence that diving to 

2.5 times their body thickness is not the most optimal migratory option in stormy 

conditions when turtles retreat to deeper depths. Deeper dives might in fact 

reduce energy expenditure during high sea states in comparison to travelling near 

the surface (Hertel, 1966). Surface avoidance behaviour has been reported in 

hawksbill (Storch et al., 2006) and loggerhead turtles (Sakamoto et al., 1990) 

during storms to reduce disturbance from wave action. Retreat to deeper waters 

during storms are also evident for other marine species (e.g. Heupel et al., 2003). 

Higher frequency of storm events may increase migratory energy expenditure 

and have carry-over effects (Harrison et al., 2011). However, with a deeper 

distribution during high sea states, marine turtles may be less vulnerable to 

anthropogenic activities, such as ship strikes and surface fishing, during storm 

conditions. Under future climate scenarios, extreme weather events such as 

storms are expected to increase (Emanuel, 2005; IPCC, 2019), despite this, few 

studies have directly investigated the effect of wind, waves, or storms on vertical 

dive behaviours of other air-breathing marine migrants.  

Behavioural changes in diving have previously been reported as a 

response to different temperatures, however, the relationship differs with species 

and region (Hochscheid, 2014), and is investigated in marine turtles foraging 

rather than migrating (e.g. McMahon & Hays, 2006; Weir, 2007; Howell et al., 

2010). For example, extended surface times related to temperature have been 

previously reported for foraging loggerhead turtles when solar radiation was 

highest and was suggested as a basking technique to increase the body 

temperature of these ectotherms (Hochsheid et al., 2010), whist dive data 

suggested migrating green turtles do not bask (Hays et al., 1999). Marine 

mammals (e.g. McIntyre et al., 2011) and penguins (e.g. Culik et al., 2000) are 

reported to dive deeper for longer in warmer waters when foraging, which was 

likely due to temperature directly affecting prey distribution. In this study, 

loggerhead turtles migrated in shallower waters during higher sea surface 

temperatures. Future increases in sea temperature (IPCC, 2019), may result in 

an increase in the overlap of marine turtles with surface anthropogenic activities, 

but shallower dives could also reduce energy expenditure during migrations. 
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Diel-diving patterns has been reported previously in foraging grounds of 

marine turtles, for example with turtles moving to different patches dependent on 

time of day (e.g. Dujon et al., 2018), whilst limited research looks at migratory 

dives (see Hochsheid, 2014 for review of dive behaviours and references 

therein). Diel diving patterns are also evident for a large range of taxa (Hays, 

2003) and is related to the diel vertical migration of prey, for example, deeper and 

longer night dives are conducted by several marine mammal species (Scott et 

al., 2009; Biuw et al., 2010). This study provides evidence for diel-diving patterns 

in migrating loggerhead turtles with long shallow travel dives evident at night. 

Previous research suggests diel differences in marine turtle dive behaviour varies 

between and among species (e.g. Papi et al., 1997; Hays et al., 1999; Rice & 

Balazs, 2008; Blanco et al., 2012). Shallower night dives in this study were 

unlikely related to the ability to feed shallower due to vertical migration of prey or 

due to sea temperature, as the heat flux increases at night, with water losing heat 

to the atmosphere, and in turn surface waters cool. It may instead be a response 

to reduced light in the water column, with shallower dives resulting in better 

visibility.  

 

5. Conclusions 

 

This research demonstrates behavioural plasticity of marine migrants in 

response to local fine-scale changes in environmental conditions. Movement 

behaviours of marine species are often used to represent their response to 

anthropogenic pressures (e.g. Weir, 2007; DeRuiter et al., 2013). This study 

shows that changes in fine-scale environmental conditions as well as time of day 

affects dive behaviours. Changes in vertical dive behaviour in response to 

environmental conditions will affect the susceptibility of migrants to direct 

anthropogenic pressures and should be taken into consideration within 

conservation efforts and disturbance studies should either control for these 

environmental factors or include them in their analysis (Kavanagh et al., 2017).  

For example, during night-time, calm sea states, and warmer sea temperatures, 

marine turtles remain in shallow waters making them more susceptible to ship 

strikes and surface fishing activities such as pelagic longlines. A better 

understanding of these behavioural changes would enable more spatial and 

temporally specific conservation measures to be implemented. In addition, shifts 
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in ocean climate could result in both large-scale and fine-scale environmentally 

driven changes in the migrations of many species. By researching behavioural 

responses to fine-scale short-term changes, the behavioural alterations 

documented will inform what may happen under future climate scenarios. Clearly, 

flexible dynamic ocean management is needed and should be systematically 

incorporated into conservation decision-making for effective long-term 

conservation of migratory species. 
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Supporting Information 

 

Appendix S1 – Dive profiles 

 

Dives were plotted with the software R 3.5.1 (R Core Team, 2018) and visually 

assigned as Profile-A, Profile-C, Profile-E, Profile-F, or Other.  

 

 
Figure S1.1 Dive profiles performed by loggerhead turtles in this study. The 
figure does not represent true proportions of depths and dive durations. 
Adapted from Hochsheid (2014). 

 

Appendix S2 – Migrations 

 

Migrations are thought to be a necessity to move from nesting grounds 

with inadequate food resources to areas of high food availability (Plotkin 2003). 

Residential foraging grounds used by both species, suggests long-distance 

migration is not vital and that sufficient food resources are available in the coastal 

waters of Cyprus, which are known juvenile foraging grounds (Palmer et al., 

unpub). Residential foragers and long-distance migrants have been reported 

within other nesting populations (e.g. Seminoff et al., 2008; Blanco et al.,2012; 

Esteban et al., 2015; Patel et al., 2015). This raises the question, why do most 

individuals migrate vast distances, which has significant energetic costs? The 

various migratory strategies used by a population may be the results of hatchling 

dispersal by ocean currents (Seminoff et al 2008; Blanco et al., 2012) and could 

have carry-over effects, with individuals in habitats with low food resources (e.g. 

residential and oceanic habitats), being smaller in size and in turn may have a 

lower reproductive output (Hatase et al., 2002; Seminoff et al., 2008). Conversely, 

residential foragers exclude the need to spend energy on migration and may be 

able to increase fat reserves and reach reproductive condition quicker than long-

distance migrants.  
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Of the seventy-nine turtles that migrated to distinct foraging grounds, eight 

loggerhead turtles and three green turtles conducted area restricted search 

behaviours characteristic of foraging en route (lasting for 1 to 11 days). Foraging 

en route was always on the continental shelf for green turtles whilst foraging in 

the open seas was evident for one loggerhead turtle. For a discussion on foraging 

en route see S3.1. 

During coastal migrations both species passed suitable foraging grounds, 

that are used by other individuals in these nesting populations. Passing known 

suitable foraging grounds has been seen in other populations (e.g. Blanco et al., 

2012) and supports that these nesting populations have high foraging site-fidelity 

(e.g. Schofield et al., 2010; Haywood et al., 2020). 

 

 
 
Figure S2.2 Post-nesting migratory routes of a) thirty-five loggerhead and b) 
forty-six green turtles satellite tracked from nesting beaches in Cyprus. Black 
lines represent the migratory route and the black circles are the foraging 
grounds, some of which are numbered as used by multiple individuals. The two 
loggerhead turtles conducting oceanic foraging are highlighted in red and blue 
with circles indicating location of termination. Inserts show number of 
individuals satellite tracked from deployment sites in Cyprus. Artwork inset of a 
foraging loggerhead and green turtle. 
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Appendix S3 – Migratory Dives 

 

Appendix S3.1 Foraging en route 

 

Marine turtles are considered capital breeders, fasting during the nesting 

season, therefore replenishing fat reserves is vital post-nesting (Hamann et al., 

2002). In the minority of cases, the use of coastal waters instead of direct 

migratory routes has been reported and was attributed to allowing refuelling en 

route to final foraging grounds, however, this behaviour was only performed by a 

few individuals (e.g. Cheng 2000; Dujon et al., 2017). Slower swim speed and 

area restricted search behaviours in coastal waters have previously been 

reported in migrating marine turtles, which have been inferred as foraging en 

route (Bentivegna et al., 2007; Cuevas et al., 2008; Seminoff et al., 2008; 

Baudouin et al., 2015). Therefore, indirect migrations may enable refuelling en 

route which in turn minimises the energetic cost of migration. 

In this study, distinct differences were seen in the dive profiles of 

loggerhead turtles migrating in open seas versus coastal waters. Shallow dives 

(<5 m) were mostly Profile-C dives and more common in the open seas than 

coastal waters (20 and 12% of dives, respectively). Of the deeper dives (>5 m) in 

the open seas the most common dives were Profile-E (39%), followed by Profile-

C (25%), and Profile-F dives (24%) whilst few Profile-A dives (5%) were 

conducted (7% of dives were assigned as ‘Other’; Fig 3). The most common dives 

>5 m in the coastal waters were Profile-E dives (39%), followed by Profile-C 

(20%), and Profile-A dives (18%) whilst few Profile-F dives (10%) were conducted 

(13% of dives were assigned as ‘Other’; Fig 3). Migratory dives gradually became 

longer in duration and more Profile-A dives were conducted as an individual 

approached their foraging ground, suggesting a gradual change in dive behaviour 

occurs between migration and foraging. For an example of foraging dives see S4 

in the Supporting Information. Green turtles swam significantly faster than 

loggerhead turtles in both coastal (ANOVA, F(1,62)=36.58, p<0.001) and open 

seas (F(1,58)=14.39, p<0.001), which is likely due to green turtles being larger 

(mean CCL loggerhead=72.87 cm; green=91.86 cm). 
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Appendix S3.2 Resting en route 

 

In both coastal waters and open seas, the most common dive profile was 

Profile E (39% of all dives) and these occurred during the day and night (Fig 3). 

For the Profile-E dives, the gradual ascent phase occurred between 5 and 43 m 

in depth, regardless of the maximum dive depth, and was not related to the turtle 

size (GLM: -1.66, p=0.15, n=8). These dives could be resting dives with neutral 

buoyancy met at the gradual ascent phase during which, swim speeds are slower 

(Minamikawa et al., 1997), and gliding occurs (Hays et al., 2004). This could 

provide a sub-surface refuge to reduce predation by preventing silhouetting 

(Hays et al. 2001a; Thomson et al., 2011). Forward motion still occurs during 

Profile E dives so migration can continue whilst resting (e.g. Rice & Balazs 2008). 

To determine whether resting dives occur in specific conditions on-board sensors 

to determine more accurately the oceanographic conditions during these dives 

would be required in the future. 

On-board animal sensors allow fine-scale oceanographic conditions 

experienced by an individual to be recorded and directly related to spatial 

behaviours (Fedak 2004). Satellite derived environmental conditions are often 

missing in shallow coastal waters, therefore, on-board sensors on marine turtles, 

which migrate and forage in coastal waters, would help fill these oceanographic 

data gaps (March et al., 2019; e.g. McMahon et al., 2005). In addition, satellite 

derived environmental conditions can be used when in situ sampling by PTTs is 

not available. The present study shows that for this to be successful PTTs need 

to (1) be designed  to minimise the time lag between the turtles location and 

oceanographic measurements, (2) be calibrated in the laboratory to ensure 

accurate values are recorded, and (3) the precision and accuracy of the onboard 

sensors should also be easily available to the consumer (see Appendix S5 in the 

Supporting Information for a comparison between on-board and satellite sea 

temperature collected in this study).  
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Table S3.1 Summary values of female loggerhead and green turtle migratory 
behaviours in open seas and coastal waters. Dive duration (DD, in hours), 
surface duration (SD, in hours), maximum dive depth (MD, in meters), and swim 
speed (SS, in km h-1), n = number of individuals compared. 
 

 Loggerhead  Green 

 Location Mean SD Range n Mean SD Range n 
DD Open 

seas 
0.34 0.12 0.01 to 1.28 6 0.25 0.09 0.05 to 

0.39 
1 

 Coastal 0.48 0.14 0.01 to 2.13 6 0.30 0.18 0.03 to 
0.64 

1 

SD Open 
seas 

0.13 0.03 0.001 to 
0.21 

6 0.17 0.04 0.05 to 
0.20 

1 

 Coastal 0.10 0.03 0.001 to 
0.21 

6 0.03 0.007 0.02 to 
0.04 

1 

MD Open 
seas 

25.7 11.5 4 to 175.5 6 23.2 9.12 12.5 to 
59.5 

1 

 Coastal 32.7 11.9 4 to 147.5 6 13.4 1.96 10.5 to 
17.5 

1 

SS Open 
seas 

2.03 0.41 0.93 to 2.87 22 2.65 0.38 1.98 to 
3.71 

42 

 Coastal 1.47 0.29 0.76 to 1.86 22 1.87 0.41 0.60 to 
2.66 

42 
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Figure S3.3 Migratory dive behaviours in open seas (blue) and coastal waters 
(grey) performed by female loggerhead turtles (a-d) and green turtles (e) 
tracked with SMRU SRDLs from Cyprus. a) Surface duration (n=6), b) Dive 
duration (n=6), c) Maximum dive depth (n=6), d) loggerhead turtle swim speed 
(n=22), and e) green turtle swim speed (n=43). 

 

Appendix S4 – Foraging Grounds 

 

Eight loggerhead turtles with SMRU SRDLs reached foraging grounds 

(whilst one terminated en route). Movements within the foraging grounds are 

defined as ‘residential’ compared to ‘migratory’ and are identified from the state-

space models (see Section 2.1 for these methods). Residential movements within 
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foraging grounds were inferred as either foraging or resting, as from locational 

data alone these behaviours cannot be distinguished (Thums et al., 2017). 

Profile-A dives were conducted in foraging grounds with individuals rapidly 

descending to the maximum dive depth where they remained for most of the dive 

before a rapid and direct ascent (Fig S4.4b). A gradual temporal change in dive 

behaviour was seen for all individuals with dives of longer duration occurring in 

colder months (Fig S4.4). The green turtle with a SMRU SRDL conducted short 

Profile-A and Profile-C dives during warmer months (Fig S4.4d) and long Profile-

A dives during the colder months (Fig S4.4e). 
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Figure S4.4 Dive profiles of a female loggerhead turtle conducting a) 
migratory dives, b) foraging ground dives during a warmer month (October), 
and c) foraging ground dives during a colder month (February). Dive profiles 
of a female green turtle conducting d) foraging ground dives during warmer 
months (July-September) and e) foraging ground dives during a colder 
month (January). Note different x-axis. 

  

To determine if month affected dive behaviours of loggerhead turtles in 

foraging grounds, GAMMs were used with month set as a cyclic smooth term, 

PTT set as the random term, and with autocorrelation considered using an ARMA 

Correlation Structure. In the foraging grounds, dive duration ranged between 0.01 

and 10.24 hours. Month significantly affected dive duration, longer dives occurred 

during colder months (GAMM: F=3.13, edf=3.37, p<0.001, R2=0.44, n=8, Fig 
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S4.5a). Neither surface duration (range: 0.01 and 0.20 hours, F=0.66, edf=2.15, 

p=0.05, R2=0.10, n=8, Fig S4.5b) nor maximum dive depth was affected by month 

(range: 4.00 and 95.50 m , F=0.00, edf=0.001, p=0.98, R2<0.001, n=8, Fig S4.5c).  

To determine if dive duration was affected by temporal changes in 

temperature, dive duration was compared to daily sea surface temperature 

(Reynolds Optimum Interpolation Sea Surface Temperature data (OISST) 

available from the NOAA National Climatic Data Center, 

https://www.ncdc.noaa.gov/oisst). OISST temperature data were used instead of 

the temperature recorded by the onboard PTT sensors as OISST data gave 

coverage for all telemetry data (whereas temperature sensor data were only 

available from some PTTs). The OISST data and PTT data were highly correlated 

(see Appendix S5 for this comparison), therefore, OISST data is a suitable proxy 

for the temperature conditions experienced by the turtle. In addition, some PTTs 

had inaccuracies (see Appendix S5) and therefore OISST data is likely more 

consistently reliable. 

The location of each dive was matched with the temporally closest state-

space model output and the temperature was then extracted from this location 

for that day. Mean daily values were used in the analysis and a GAMM was used 

with temperature set as the smooth term and PTT as a random term. Turtles 

dived in sea surface temperatures ranging between 13.7 and 30.5 °C. 

Temperature significantly affected dive duration, with colder temperatures 

resulting in longer dive durations (GAMM, F=10.56, p<0.001, Fig S4.5d). 
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Figure S4.5 Temporal shift in foraging ground dive behaviours of female 
loggerhead turtles satellite tracked from Cyprus (n= eight turtles). a) dive 
duration, b) surface duration, and c) maximum depth with month. d) 
Influence of sea surface temperature on dive duration (n= eight turtles). 
Solid line represents mean dive duration response and dashed lines 
represents ± standard error. Edf: estimated degrees of freedom, F: F-
statistic, p: significance. 
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Appendix S5 - Comparison of temperature recorded by two sampling methods: 

Remotely sensed data and Platform Terminal Transmitters 

 

Daily Reynolds Optimum Interpolation Sea Surface Temperature data 

(OISST) were available from the NOAA National Climatic Data Center 

(https://www.ncdc.noaa.gov/oisst). Two Platform Terminal Transmitter (PTT) 

models recorded temperature, SPOT Wildlife Computers (n = 8) and SMRU 

SRDLs (n = 6, as temperature data were not available for two PTTs and one PTT 

terminated before reaching the foraging ground). Wildlife Computers recorded 

temperature at time of transmission from an internal thermistor resulting in a 

>15min time lag. For the dives recorded by Wildlife Computers, 34.6 ± 1.03% had 

temperature measured. SRDLs recorded temperature at twelve depths during a 

dive from which the surface temperature value (recorded at 5 or 6 decibars) was 

selected for further analysis. Of all SRDLs dives recorded, 4.43 ± 1.51% had 

temperature measured and 41% of dives were removed from the analysis for 

SRDLs due to an error reading of 35.95 °C. For both PTT models, the location 

that the PTT temperature was recorded was determined as the temporally closest 

state-space model output. The temporally closest OISST data point was then 

extracted for this location. Only values recorded in foraging grounds were used, 

whilst migratory values were not included. 

Although temperature significantly differed between OISST and PTTs for 

both PTT models (GLMM, Wildlife Computers, t=4.26, p<0.001; SRDLs, t=-2.10, 

p=0.03), there was a significant correlation between temperature recorded by 

OISST and both Wildlife Computers (Spearman’s correlation, p<0.001, rho=0.93) 

and SRDLs (p<0.001, rho=0.57). When each PTT was considered separately, 

temperatures from all Wildlife Computers were significantly correlated to the 

OISST (p<0.001) but only four of the six SRDLs were significantly correlated 

(p<0.001, Fig S5.6). This was due to two SRDLs recording a large range of 

temperatures in comparison to the OISST as well as all other PTTs (Fig S5.6). 

When these SRDLs were removed from the analysis the strength of association 

was drastically increased for SRDLs (Spearman’s correlation, p<0.001, 

rho=0.94). 
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Figure S5.6 Comparison of temperature recorded from Platform Terminal 
Transmitters (PTT) deployed on female loggerhead turtles in Cyprus and from 
remotely sensed data (OISST). SPOT Wildlife Computers (n = 8, grey), 
correlated SMRU SRDLs (n = 4, blue), and uncorrelated SMRU SRDLs (n = 2, 
red). Faint lines = linear regression of each PTT, dashed black line = overall 
regression for Wildlife Computers, solid blue line = overall regression for 
correlated SMRU SRDLs. 

 

Highly correlated but different temperature values are expected to be 

recorded between OISST and PTTs due to differences in the sampling methods. 

Wildlife computers have a >15 min time lag between location and temperature 

measurements, therefore, the temperature of the PTT at transmission represents 

water temperatures previously experienced at varying depths. The shallowest 

temperature measure available for the SRDLs was recorded at five or six 

decibars. In comparison, remote satellite sensors are recording daily values and 

are observing the upper 1-10 mm of the sea surface, which is influenced by sea-

air heat fluxes. In addition, the observed difference may be due to solar heating 

of the PTTs during surfacing events (e.g. Bahr et al. 2016; Brewin et al. 2020). 

SRDLs outputted 35.95 °C as an error value and this may be due to insolation 

during basking events raising the PTT temperature. This has been previously 

reported by March et al. (2020 in prep). However, in this case the surface duration 

of foraging dives ranged between 1 to 10 minutes and the PTT temperature 

values were lower than OISST values.  

Only 35 and 5% of dives had associated temperature values for Wildlife 

Computers and SRDLs, respectively. This is likely due to various factors affecting 

the amount of recovered data, including; the repetition rate of the PTT 

(determining the frequency of messages sent to ARGOS), the proportion of 
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messages with temperature values, the duty cycle of the PTTs, the ARGOS 

coverage, and the behaviour of the turtles with extended surface duration 

resulting in an increase in messages sent.  

 

Appendix S6 – Chlorophyll-a Concentration 

 

 
 
Figure S6.7 Migratory dives of Turtle_4206 deployed with a SMRU SRDL from 
Cyprus overlaid on chlorophyll-a concentration (in milligram m-3). White 
sections are locations or depths without chlorophyll data. 
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CHAPTER 6: GENERAL DISCUSSION 

 

This research provides new information on the spatial and foraging 

ecology of Mediterranean marine turtles and demonstrates how these methods 

could be applied to other marine migrants. I show that juvenile loggerhead turtles 

follow different developmental strategies dependent on region, that a shift in 

habitat and prey occurs with size, and I emphasise the importance of region-

specific and habitat-specific conservation to protect this vital life phase. I identify 

key foraging regions in the Mediterranean for adult loggerhead turtles to help 

inform targeted conservation. Finally, I demonstrate that species-specific 

migratory routes are likely dependent on the physiology of a species, that vertical 

migratory dive behaviours are affected by changes in environmental conditions, 

and that dynamic conservation plans that can shift with future changes in the 

ocean climate must be implemented. 

 

1. Spatial and foraging ecology 

 

Mediterranean marine turtles face major threats within the marine realm 

(Casale et al., 2018). Despite this, conservation and conservation-driven 

research has historically been targeted to the easily accessible nesting grounds 

(Hamann et al., 2010). Nest counts in Mediterranean rookeries are not increasing 

as rapidly as expected in spite of intensive conservation efforts on the nesting 

beaches. This may be a result of lack of protection away from the nesting beach, 

where the majority of their life cycle occurs, and requires alternative conservation 

approaches to be considered (Casale et al., 2018). With individuals travelling vast 

distances between breeding and foraging grounds, understanding their 

distribution and habitat use in the marine realm is challenging and has resulted 

in large knowledge gaps in their marine spatial ecology. 

In Chapter 2, I demonstrated how stable isotope analysis (SIA) is a 

powerful tool for investigating the marine spatial ecology of marine turtles, and by 

conducting an exhaustive study of peer-reviewed literature, demonstrated the 

wealth of ecological information gained. By summarising current knowledge 

obtained from SIA, Chapter 2 explored the considerable flexibility and ecological 

complexity of the life histories of marine turtles, demonstrating that SIA may help 

reveal the cryptic diet of many species and indicate diet variability between 



Chapter 6: General Discussion 

229 
 

foraging sites, so that critical habitats important for foraging populations are 

protected (e.g. Reich et al., 2007; Ramirez et al., 2015). In addition, this review 

demonstrated how SIA can inform conservation initiatives by identifying threats 

faced (e.g. Agusa et al., 2011), and providing pre- and post-disaster information 

by investigating whether the spatial ecology of individuals shift with unfavourable 

conditions (e.g. Vander Zanden et al., 2016, Reich et al., 2017). Isotope ratios 

were summarised at a global scale and demonstrated intraspecific regional 

differences and interspecific overlap. The review highlighted the geographical 

gaps in the current knowledge, the bias in the species studied, and provided a 

comprehensive list of recommendations that helped inform subsequent chapters 

and would be applicable to other marine migrant studies. This work also provided 

an inventory of all published marine turtle stable isotope studies, summarised in 

an open access inventory to enable researchers to add new studies and target 

future work. The benefits of SIA were further proven by its use in Chapter 3 and 

Chapter 4 to investigate the spatial and foraging ecology of juvenile and adult 

Mediterranean marine turtles. 

 

1.1 Juvenile ecology 

 

Marine turtles have complex life-history patterns, utilising a wide range of 

ecosystems throughout their life cycle and facing various natural and 

anthropogenic threats at each life stage (Bolten, 2003). In the Mediterranean, 

loggerhead turtles have been reported to follow alternative life-history patterns 

and intra-population differences in habitat use are also reported (Casale et al., 

2008, 2015). To better understand fisheries interactions and for successful 

conservation of loggerhead turtle populations, it is necessary to understand inter- 

and intra-population variations in habitats used and resources exploited (Hamann 

et al., 2010; Rees et al., 2016). Chapter 3 showed juveniles had different isotope 

ratios dependent on geographical region, suggesting different habitats are being 

used by each population, and providing support for differing life strategies in the 

Mediterranean. For example, in regions such as Amvrakikos Gulf (Greece), the 

NE Adriatic, and Cyprus, juveniles had isotope ratios suggestive of foraging 

predominantly in neritic habitats. This is supported by stomach contents of 

stranded turtles from these regions showing a diet dominated by benthic prey 

items (Lazar et al., 2008a, b). In comparison, where oceanic and neritic habitats 



Chapter 6: General Discussion 

230 
 

are available, such as the Central Mediterranean, juveniles had isotope ratios 

characteristic of foraging in a more oceanic habitat. Diets reported in this region 

consisted of both benthic and pelagic prey items (Casale et al., 2008). Inter- and 

intrapopulation differences in foraging strategies have been reported in other 

ocean basins, for example Pacific loggerhead turtles may become neritic or 

remain oceanic foragers (Hatase et al., 2002). 

In addition, we reported that intra-regional variation in spatial and foraging 

ecology differed with size but not sex. Size-structured trophic ecology within 

sharks has been highlighted using SIA (Bird et al., 2018). In the predominately 

neritic habitats, it was likely that larger individuals with increased diving 

capabilities (Salmon et al., 2004; Marshall et al., 2012), consumed larger 

numbers of higher trophic prey from neritic sources. This isotope ratio and size 

trend has been reported for juveniles undertaking oceanic–neritic ontogenetic 

shifts in other ocean basins (e.g. Snover et al., 2010; Ramirez et al., 2015; Turner 

Tomaszewicz et al., 2017). The shift reported in Chapter 3 is supported by the 

fact that in these neritic habitats, where bottom-set fishing gear is used, larger 

individuals are more frequently encountered (e.g. Rees et al., 2013; Snape et al., 

2013). This supports the traditional ontogenetic life-history model of a distinct shift 

in preference from oceanic to neritic habitat use with increased size (Musick and 

Limpus, 1997). In comparison, no size-related shifts were evident in regions 

where oceanic and neritic habitats were available suggesting juveniles use these 

habitats interchangeably, which has been previously reported in other ocean 

basins (e.g. Revelles et al., 2007; Clusa et al., 2016; Piovana et al., 2020). This 

challenges the traditional life-history model and has been previously reported for 

the Central and Western Mediterranean where juveniles as small as 0.25 m 

(CCL) start to utilise both neritic and oceanic habitats interchangeably (e.g. 

Casale et al., 2008; Lazar et al., 2008a). 

 

1.2 Adult ecology 

 

Adult marine turtles make cyclic reproductive migrations between distant 

foraging and nesting grounds (e.g. Shillinger et al., 2008) and several 

geographically distinct foraging areas are typically used by individual nesting 

populations (Seminoff et al., 2008; Stokes et al., 2015). A lack of knowledge of 

where and how populations move throughout their distribution makes it difficult to 
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identify potential risks to their survival. It is therefore necessary to identify critical 

habitats and understand the geographical range and migratory connectivity of a 

species for successful development of long‐term conservation plans (Webster et 

al., 2002) and is considered a research priority in Mediterranean marine turtle 

ecology (Casale et al., 2018). 

The findings of Chapter 4 and Chapter 5 greatly enhanced our 

understanding of the movements and habitat use of adult loggerhead and green 

turtles in the Mediterranean. In Chapter 4, satellite telemetry and SIA were used 

to present a more comprehensive picture of where adult Mediterranean 

loggerhead turtles are foraging. This was the first study to analyse carbon, 

nitrogen, and sulphur isotopes for loggerhead turtles in the Mediterranean, 

confirming the importance of the Tunisian Plateau as a critical habitat for two 

major loggerhead turtle rookeries. This region has been highlighted as important 

for male (e.g. Casale et al., 2013; Schofield et al., 2013) and juvenile loggerhead 

turtles (Casale et al., 2012) as well as other rookeries (e.g. Hays et al., 2010; 

Schofield et al., 2013). The results of Chapter 4 suggest foraging ground fidelity 

occurs in loggerhead turtles, which supports previous research in other ocean 

basins, including the Indian Ocean (Thomson et al., 2012) and the Gulf of Mexico 

(Vander Zanden et al., 2016). SIA can also be used to infer foraging site fidelity 

in marine mammals (Schell et al., 1989; Newsome et al., 2010). 

By conducting SIA on a long‐term individual‐based monitoring programme, 

this was the first study to show foraging ground fidelity for up to five nesting 

seasons. Chapter 4 was also the first study to determine how each foraging 

ground contributes to a nesting cohort over multiple decades, showing that the 

foraging grounds in the Mediterranean persist on a decadal-scale, which may 

indicate that recruitment, survivorship, and conditions potentially remain similar 

in these regions. This differs from major Atlantic populations, where significant 

shifts in the relative contributions to foraging grounds have been reported (Vander 

Zanden et al., 2014; Ceriani et al., 2017). 

 

1.3 Influence of environmental conditions on spatial ecology 

 

Marine migrants are considered especially vulnerable to climate change, 

with shifts in ocean climate likely affecting their spatial ecology (Robinson et al., 

2009; Lascelles et al., 2014). The environmental conditions that they experience 
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during migration differ both spatially and temporally, yet how they respond to 

these changes has received little attention. To effectively protect marine 

migrants, we need to not only know their distribution (as investigated in Chapter 

3 and Chapter 4) but also how they interact with, and are influenced by, the 

dynamic marine environment (Luschi et al., 2003; Jeffers & Godley, 2016). 

Limited research has investigated the influence of oceanographic conditions on 

marine turtle behaviour, particularly during migrations (Hochscheid, 2014; Hays 

et al., 2020). Chapter 5 evaluates the influence of environmental data on the 

migratory corridors and dive behaviour of two sympatric Mediterranean turtle 

species. This is the first study to investigate how the vertical migratory dive 

behaviour of marine turtles is affected by sea temperature and sea state. Chapter 

5 demonstrated behavioural plasticity of Mediterranean loggerhead and green 

turtles in response to local fine-scale changes in environmental conditions. 

During night-time, calm sea states, and warmer sea temperatures, loggerhead 

turtles remain in shallow waters. Surface avoidance behaviour, of longer deeper 

dives, was recorded during high sea states, which has been previously reported 

for loggerhead turtles (Crowe et al., 2020) and sharks (Heupel et al., 2003). 

Chapter 5 also shows that the species-specific migratory corridors have similar 

environmental properties (magnetic field intensity, sea temperature, thermal 

fronts, surface geostrophic and Ekman currents, and wind), suggesting both 

species may follow similar cues. The species-specific migratory routes taken may 

therefore be dependent on the physiology and foraging strategy of each species, 

with green turtles undertaking a more direct route to the coast where they can 

forage whilst loggerhead turtles remain in the open sea for longer, where oceanic 

foraging can occur. Migratory routes are also likely a compromise between 

reducing migratory distance, minimising time from foraging, minimising swimming 

effort, whilst attempting to remain in favourable conditions by staying in warmer 

sea temperatures.  

 

2. Implications for conservation 

 

In the Mediterranean Sea, bycatch is one of the key threats to marine 

turtles resulting in high levels of mortality in both neritic and oceanic habitats 

(Casale, 2011; Casale et al., 2018). Within the Mediterranean, fishing gear and 

intensity are region and habitat specific, so the susceptibility of marine turtles 
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differs according to inter- and intra-population variations in spatial and foraging 

ecology (Casale, 2011). SIA has been used globally to demonstrate size-related 

variation differences in habitat use for loggerhead turtles and in turn highlighting 

the need for conservation management to consider population sub-groups (e.g. 

Hatase et al., 2002; McClellan et al., 2010; Snover et al., 2010; Thomson et al., 

2012; Ramirez et al., 2015; Turner Tomaszewicz et al., 2017). The findings of 

Chapter 3 show juveniles among and within regions have differing spatial 

ecology and therefore may have varying susceptibility to different fisheries. 

Turtles in neritic habitats will become more susceptible to bottom set gears as 

they grow larger. In comparison, those using oceanic and neritic habitats 

interchangeably will be susceptible to both bottom set gears and pelagic long 

lines throughout their size range (Casale, 2011). Region and habitat use will also 

likely affect their susceptibility to other anthropogenic threats such as the 

ingestion of debris and chemical pollution (Franzellitti et al., 2004; Casale et al., 

2008, 2016). Therefore, the results of Chapter 3 suggest region-specific and 

habitat-specific management approaches are required within the Mediterranean 

to protect juvenile marine turtles. 

Chapter 4 identified the Tunisian Plateau as a critical habitat for 

Mediterranean loggerhead turtles and therefore recommended this relatively 

small region, as a potential area for future site-specific conservation strategies 

and fisheries management. Protecting this region may dramatically increase the 

survival of individuals in this foraging ground and aid in the recovery of many 

loggerhead rookeries across the Mediterranean. By conducting the study across 

25 years, the longest study of its kind, I demonstrate that loggerhead turtles show 

foraging site fidelity and foraging grounds are persistent across decades. This 

enables temporal shifts in relative importance of foraging grounds to be 

assessed, enabling adaptive conservation management. These results provide 

baselines to develop and assess future conservation strategies. 

With changes in environmental conditions altering vertical migratory dive 

behaviours, as reported in Chapter 5, the susceptibility of migrants to direct 

anthropogenic pressures, such as ship strikes and fishing activities, may change 

and should be taken into consideration within conservation efforts. In addition, 

with sea temperature and extreme weather events such as storms expected to 

increase with climate change (Emanuel, 2005; IPCC, 2019), turtle migrations may 

be more energetically demanding as individuals engage surface avoidance 
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behaviours, diving deeper for longer, to avoid high sea states. Surface avoidance 

has been reported previously in marine turtles during storms to reduce 

disturbance from wave action (Sakamoto et al., 1990; Storch et al., 2006). A 

better understanding of these behavioural changes would enable more spatial 

and temporally specific conservation measures to be implemented and could 

represent what may happen under future climate scenarios. In addition, 

movement behaviours of marine species are often used to represent their 

response to anthropogenic pressures (e.g. Weir, 2007; DeRuiter et al., 2013), 

and with Chapter 5 showing that environmental conditions affect the vertical 

movements of marine turtles, disturbance studies should either control for these 

environmental factors or include them in their analysis (Kavanagh et al., 2017). 

Shifts in the ocean current regimes are likely with future climate scenarios 

(Hoegh‐Guldberg & Bruno, 2010), which could displace marine migrants, affect 

navigation to final destinations, and increase the energetic demands of migration, 

however, Chapter 5 shows marine turtles often travel against surface currents 

with little effect on their migrations, which has also been previously documented 

(e.g. Bentivegna et al., 2007; Cuevas et al., 2008). Shifts in sea temperature, are 

expected to continue to change under future climates (IPCC, 2019), and have 

been reported to cause range shifts in marine turtles (e.g. McMahon & Hays, 

2006). With Chapter 5 demonstrating that migratory routes are potentially 

selected based on thermal tolerances, the spatial-temporal corridors observed 

today are likely to alter along with climate change. Therefore, flexible dynamic 

ocean management is needed and should be systematically incorporated into 

conservation decision-making for effective long-term conservation of migratory 

species. 

 

3. Future work 

 

The research within this thesis concentrates on the spatial and foraging 

ecology of juvenile and adult marine turtles. Leading on from this research and to 

better understand the spatial ecology of marine turtles, two ideas are proposed 

for future work.  

As shown in Chapter 5, marine turtles alter their behaviours in response 

to local, fine-scale changes in environmental conditions and suggests that the 

migrations of marine turtles may follow large-scale environmental cues. Under 
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future climate scenarios, sea temperatures are likely to continue increasing, and 

extreme weather events are expected to change in frequency but increase in 

strength (IPCC, 2019), resulting in shifts in ocean circulation (Hoegh‐Guldberg & 

Bruno, 2010; IPCC, 2019). Therefore, how environmental conditions and future 

changes in ocean climate may influence marine turtle spatial ecology is important 

to enable more effective long-term conservation plans and should to be 

considered in future work. 

 

3.1. Hatchling dispersal, survival and fate 

 

Surface currents in the global oceans are thought to passively disperse 

marine turtle hatchlings to the foraging grounds which they then return to 

throughout their lifetime (Hays et al., 2010; Putman et al., 2012; Scott et al., 2012; 

Casale and Mariani, 2014). To date, particle drift models for the Mediterranean 

suggest the east Mediterranean basin and the Adriatic Sea as potential oceanic 

nursery habitats (Casale & Mariani, 2014; reviewed in Casale et al., 2018). 

Temporal differences in hatchling dispersal have been simulated and are thought 

to be due to variations in surface currents (e.g., Hays et al., 2010). With shifts in 

ocean circulation likely with future climate scenarios (Hoegh‐Guldberg & Bruno, 

2010), shifts in hatchling dispersal and in turn adult foraging grounds may occur 

(Hays et al., 2010). Previous particle drift models used thermohaline, geostrophic, 

and Ekman currents to predict the dispersal of hatchlings (e.g. Hays et al., 2010; 

Casale & Mariani, 2014). However, for a more realistic representation of hatchling 

dispersal and survival, investigating their drift patterns in response to a more 

complete surface current description that includes geostrophic, Ekman, wave 

driven orbital currents (Stokes drift), and tides is required. This will enable future 

hatchling dispersal studies to investigate how shifts in oceanographic conditions, 

for example storm events, affect hatchling dispersal and survival, to better 

understand what may happen under future climate. 

Preliminary work on this has been conducted using particle drift models. 

To determine where loggerhead turtle hatchlings disperse to, their survival rate 

and possible fate, virtual particles were released from the major Mediterranean 

nesting beaches (see Fig 2 in Chapter 1) across the hatchling season (1st August 

to 30th September, 2014 and 2015) using a particle modelling framework (e.g. 

Lacerda et al., 2019). Daily horizontal velocities of geostrophic and Ekman 
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currents as well as Stokes drift for surface waters were included in the model runs 

using satellite and model re-analysis data. Simulations were run for 12 months 

since the first particle was released. Separate annual simulations were run for 

two decades (nesting seasons in 1995 to 2015) to determine if temporal shifts in 

ocean circulation affects hatchling dispersal and survival. Several models were 

run to investigate the influence of 1) advecting all particles offshore that hit land 

versus stranding those that hit land (to simulate that hatchings survival could 

decrease  by wave interactions with the coast or where strong currents 

persistently force them ashore), and 2) not including versus including Stokes drift 

in the model (to determine how Stokes drift influences hatchling dispersal). 

Preliminary results show that 1) models stranding particles that hit land removes 

up to 99% of particles and distinct differences between hatchling dispersal where 

evident (suggesting hatchlings are capable of actively orientating away from the 

coast), 2) dispersal differs annually (due to oceanographic conditions and 

therefore storms may affect hatchling dispersal), and 3) the Levantine basin may 

be an important nursery ground (Fig 1). 

 

 
 
Figure 1. Dispersal of loggerhead turtle hatchlings across the Mediterranean modelled 
using particle drift analysis. Models were able to either advect particles offshore when 
the particle interacted with the coastline (first column) or able to strand particles on the 
coast (second column). Models were run in 2014 (first row) and 2015 (second row). 
Ad = Adriatic Sea, AE = Aegean Sea, LE = Levantine Sea. 
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3.2 Enabling the use of Animal borne environmental sensors for Earth 

system science 

 

Oceans have absorbed >90% of anthropogenic heat since the industrial 

period (Zanna et al., 2019), but the heat content varies with depth and the 

Mediterranean heat content was not analysed, presumably due to a lack of 

temperature observations. To help monitor heat fluxes within the surface and 

interior ocean, more observations are required. Recent work has suggested the 

use of animal-borne instruments to complement global ocean observing systems, 

with animals able to sample areas that are currently not covered by ocean 

observing systems (March et al., 2019). 

In Chapter 5, a comparison between the temperature recorded by 

remotely sensed data and platform Terminal Transmitters (PTTs) was conducted. 

This highlighted several issues that need to be overcome before the PTT 

measurements can be thoroughly exploited for Earth system science, including; 

>15 min time lag between the temperature being sampled and recorded, 41% of 

dives recorded by SMRU SRDLs had unexplained temperature sensor failures 

sporadically throughout deployments, a lack of temperature sensor 

characterisation prior to deployment and no understanding of sensor temporal 

drift due to biofouling or sensor age. The issue of a lack of characterisation means 

that no uncertainty information is available for these sensors and no standard 

quality control procedures appear to exist. As a result, the PTTs deployed during 

this research have limited use for Earth system science. This can be improved 

upon in the future, for example, the manufacturers providing specifics about the 

sensor used, including its associated uncertainty information, the characterisation 

of each temperature sensor in a water bath prior to deployment (e.g. Brewin et 

al., 2015), as well as a community-wide effort to agree and develop standard 

temperature data quality control procedures and protocols for these sensors. This 

relatively small additional effort would significantly enhance the benefits of these 

data and sensors to the Earth system science community. The work in Chapter 

5 shows that some of the historical PTT temperature measurements could be 

utilised for Earth system science applications if quality control procedures were 

used. Understanding these issues may also provide insight into how to improve 

the quality of all measurements taken by the PTT tags.  
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CONCLUSION 

 

The research within this thesis ‘The spatial ecology of Mediterranean 

marine turtles: insights from stable isotope analysis, satellite telemetry, and 

environmental observations’ has enhanced our understanding of the movements 

and habitat use of juvenile and adult loggerhead and green turtles in the 

Mediterranean. It highlighted the range of complex developmental strategies 

used by juveniles and provided evidence for the need of region-specific and 

habitat-specific strategies to protect this vital life phase. This research identified 

critical marine habitats used by adults where conservation should be targeted, it 

demonstrated that migrations are affected by changes in environmental 

conditions, and supports the need for dynamic conservation plans that can shift 

with future changes in the ocean climate. 
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